

Telephone Number

System and Ring Back

Tone
University of Stavanger

Name: Yizu Li Student NO.: 208016

2011-6-15

1. INTRODUCTION .. 4

2. Background.. 4

2.1 System scope and context... 5

r.001... 5

r.002... 5

r.003... 5

r.004... 5

r.005... 5

r.006... 5

r.007... 5

r.008... 5

2.2 Ring Back Tone System ... 6

2.2.1 What is ring back tone? .. 6

2.2.2 CRBT software side network diagram ... 7

2.2.3 CRBT system external network .. 8

3. Software .. 8

Struts2:.. 9

Hibernate:.. 9

Oracle-database:... 9

Java 6: ... 10

Tomcat 5: ... 10

4. Design ... 11

4.1 Overall Design: .. 11

4.2 Overall Architecture: .. 11

4.3 Client Web Page Design .. 12

4.4 Middle Tier Design: .. 14

4.4.1 Web layer: .. 14

OGNL .. 19

4.4.2 Entity layer:... 22

4.5 Database: ... 27

Telephone numbers: .. 27

Users: ... 28

RBT .. 28

Operation Record .. 29

E-R model of phone number database: ... 29

5. Results .. 30

6. Discussion.. 37

6.1 Originality of this work ... 37

6.2 Relevant works .. 37

6.3 Learning experience... 37

6.4 Limitations.. 38

6.5 Further work .. 38

7. Reference .. 39

8. Appendix-A .. 40

ABSTRACT

The development of Computer Network Technology has brought great changes to

the modern society, especially e-commerce relying on network has leap-type

development. So, how to use the network to improve users’ experience, enabling

users’ operation to become faster, more convenient and intuitive, is now the focus

of many enterprises. So that customers can stay at home for business, not

only convenient for customers, but also saves the company's human resources.

I did this project with Altibox company, trying to establish a telephone number

system, making individuals and business users can complete the business on the

internet, and also implements a simple ring back tones system, the program is built

with struts2, hibernate, oracle-database , tomcat, using HTML, JSP and struts2 tag for

page display.

1. INTRODUCTION

Altibox has since 2002 provided triple play services (Internet Access, VoIP,

IPTV) to residential customers in Norway and Denmark. Services from Altibox are

delivered using Fiber to the Home. Altibox do not sell services directly to customers;

a number of franchise partners sell the services and manage the customer relationship.

In recent years additional services such as IP based residential alarms and mobile

services have been added to the Altibox service portfolio.

The object model of the unified telephone number inventory system is quite

simple. Number Series, consisting of a certain amount of telephone numbers, are

allocated by the National Post and Telecommunications Authority (in Norway this is

www.npt.no) to service providers who operate fixed- line or mobile services.

The unified telephone number inventory system shall act as a master resource

repository for fixed- line and mobile telephone numbers, while a common inventory at

Altibox will maintain the relationship between subscriber and number.

We are now working on a new telephone number system which can offer web

service to the customers so that they can manage their telephone numbers on the

internet. In additional, I am trying to build a simple RBT (Ring Back Tone) system,

which allows users to choose ring back tone online, replacing the old boring original

tone.

2. Background

Currently, if a user wants to apply for a telephone number, he has to go to a

relevant office (such as stores, supermarket etc.), and the telephone number he

obtained is randomly selected. If we can allow customers to choose a specific number

that they want? Customers want to know that if their favorite number is already

occupied, and if they can apply to get that number. The operators also hope to manage

and classify telephone numbers, such as different phone numbers should belong to

different areas, some contain special digit number should be distinguished from other

ordinary numbers. For business users, they want to apply to a group

of consecutive numbers. Therefore, now we need a new telephone number system to

implement these new requirements.

2.1 System scope and context

r.001

The system shall keep track of Telephone Numbers. Any telephone number is part

of a Telephone Number Series. A typical telephone number series in Norway contains

between 1000 and 100.000 telephone numbers.

r.002

Telephone Number Series are allocated to one or more services. Typical services

are Voice, Data, Fax, M2M.

r.003

Number series are categorized as either geographical or mobile. (although, the

government plans to allow for use of numbers across these two categories)

r.004

Geographical number series are only allowed to operate in a certain geographic

region. In Norway a geographic region is typically a County (such as Roga land or

Vest Agder).

r.005

Altibox operates in multiple countries, currently Norway and Denmark. The

unified telephone number inventory system should be able to support operation in any

country, at minimum the two mentioned countries

r.006

The system must support adding attributes to numbers, to support such features as

“special number” (gold, silver, bronze)

r.007

Numbers must have a status. Possible statuses are “Available, Not Available,

Reserved, Ported Out, Ported In, In Use”. The system must support additional statuses

if needed.

r.008

Numbers assigned by regulatory authorities are imported into the system in

number series. However, numbers may also be ported in by customers. This means

that the number series which the specific number originates from is owned by another

operator. The same can happen to Altibox numbers, customers can choose to port out

their telephone number to another operator.

2.2 Ring Back Tone System

2.2.1 What is ring back tone?

CRBT (Coloring Ring Back Tone) is a personalized ring back tone business. It is

a business that the called user can customize personalized ring back tone to the calling

user [1]. The original idea came from South Korean SK Corporation. Now it is very

popular in East Asia (China, Japan, Korea etc.).

Traditional: The traditional voice communication services, when user A is calling

user B, before user B answer the phone, user A will hear the monotonous “beep ~

beep ~” ring back tone.

CRBT: If user B has enabled the CRBT service and customized his ring back

tone, then user A will hear the music which user B customized instead of the original

ring back tone.

2.2.2 CRBT software side network diagram

Features of each module

1) WEB Portal: RBT Portal is the gateway to an external RBT service, the

management system is divided into parts of the system administrator,

SP part, some business users, customer service part, for system administrators,

SP administrators, business users, provides access to customer

service Interface. System administrator, SP administrator, RBT business users and

customer service staff can be HTTP (Hyper Text Transport Protocol) access

to Portal, through a simple intuitive customization for business, management and

other functions.

2) VXML Server: Voice Extensible Markup Language VXML (Voice eXtensible

Markup Language) workflow script, according to Interactive Voice Response IVR

(Interactive Voice Response)'s request for the

corresponding VXML process scripts.

3) USDP: General business development platform USDP (Universal Service

Development Platform) is the core of a unified platform for value-added

voice. Will be part of the interface with the core functional

module separated by SOAP protocol to achieve the core database, core logic

and business separation. USDP provide a unified external interface, and the

message center interface directly with the intelligent network or

the BOSS interface directly. Portal and VXML only simple logic.。

4) CTI / UI: call connection control and tones play channel control

5) DB: a database (including user data and all system-related data)

6) FS: ringtone file server (all the ring tones stored information file)

7) GW: CRBT access gateway (Provide SP, the central music platform and other

services

and Ring management interface)

8) F5: Ethernet load balancers (Complete virtual network address mapping and

traffic load balancing function)

9) AIP + VRS / URP: Call Admission and play ring tones

2.2.3 CRBT system external network

Due to Altibox company currently doesn’t have their own switch machine,

therefore, my project focus on the website part, to build a website that users can play

and customize a ring back tone for their telephone number.

3. Software

The telephone number system is built with Struts2, Hibernate, Oracle-database,

Java 6, Tomcat 5, etc. using HTML, JSP and struts2 tags for page display.

Struts2:

Apache Struts 2 is an elegant, extensible framework for creating enterprise-ready

Java web applications [2]. The framework is designed to streamline the full

development cycle, from building, to deploying, to maintaining applications over

time.

Apache Struts 2 was originally known as WebWork 2. After working

independently for several years, the WebWork and Struts communities joined forces

to create Struts2. This new version of Struts is simpler to use and closer to how Struts

was always meant to be. Apache Struts is an open-source web application framework

for developing Java EE web applications [3]. It uses and extends the Java Servlet API

to encourage developers to adopt a model-view-controller (MVC) architecture.

In this project, I use Struts2 to process the interaction of client web page and

business logic, data validation and conversion.

Hibernate:

Hibernate is a high-performance Object/Relational persistence and query service

[4]. The most flexible and powerful Object/Relational solution on the market,

Hibernate takes care of the mapping from Java classes to database tables and from

Java data types to SQL data types. It provides data query and retrieval facilities that

significantly reduce development time. Hibernate’s design goal is to relieve the

developer from 95% of common data persistence-related programming tasks by

eliminating the need for manual, hand-crafted data processing using SQL and JDBC.

However, unlike many other persistence solutions, Hibernate does not hide the power

of SQL from you and guarantees that your investment in relational technology and

knowledge is as valid as always.

Hibernate responsible for data persistence and data communication with database

in my project.

Oracle-database:

Oracle is the world's most complete, open, and integrated business software and

hardware systems company. The Oracle Database (commonly referred to as Oracle

RDBMS or simply as Oracle) is an object-relational database management system

produced and marketed by Oracle Corporation.

1. Globalization, cross-platform database.

2. Oracle to comply with data access language, operating system, user interface

and industry standard network communication protocols.

3. Supports multiple users, high-performance transaction processing.

4. Strong security controls and integrity controls.

5. Support distributed databases and distributed processing.

In my project, I use the Oracle Database to store information and data of

telephone numbers, users, ring back tones and transaction records.

Java 6:

Java is a general-purpose, concurrent, class-based, object-oriented language that

is specifically designed to have as few implementation dependencies as possible [5].

It is intended to let application developers "write once, run anywhere". Java is

currently one of the most popular programming languages in use, and is widely used

from application software to web applications.

I use Java application to manage and access the Oracle Database, achieving some

function and the communication between client and server.

Tomcat 5:

Apache Tomcat (or Jakarta Tomcat or simply Tomcat) is an open source servlet

container developed by the Apache Software Foundation (ASF) [6]. Tomcat

implements the Java Servlet and the JavaServer Pages (JSP) specifications from Sun

Microsystems, and provides a "pure Java" HTTP web server environment for Java

code to run.

4. Design

4.1 Overall Design:

In this section, the system architecture design will be explained. This section

includes all design ideas was intended to be implemented, however, due to limited

time, some of them was dropped, those not implemented elements will be pointed out

in description.

4.2 Overall Architecture:

Multi- layered architecture

“A multilayered software architecture is using different layers for allocating the

responsibilities of an application”. A multi- layered architecture is easier to understand

and maintain. Each layer has specific function or domain that obviously differ the

others’. The most popular multilayer architecture is the “3-tier architecture”,

Presentation  Business Logic  Data.

Each layer has its own responsibility in the system. Inside each layer, some

sub- layers may exist. For example in the presentation layer involve

Module-View-Controller pattern, then Module, View and Controller can be seen as

the sub- layers.

I have used the model view controller design pattern in designing the system. In

both client and server, I have used this design pattern to separate the business logic

from the front end and database layer. The server side is handled by the controller

which binds the methods of the server as a service and it contains implementation that

separates the database implementation of the server.

There are three layer in my program:

1) Web client

2) Middle tier

3) Database

The following figure is the architecture:

4.3 Client Web Page Design

On the client web page side, I am supposed to provide the functions: login, which

allows the client (individual user and enterprise user) to log into the server; new user

registration, which allows the client to get a user account from server; telephone

number information display, which allows the client to check his/her telephone

number account, and manage his/her telephone numbers; new telephone number

registration, to search and register a new available telephone number; Ring Back Tone

registration, to play and bind a ring back tone to client’s telephone numbers.

Figure shows the main web page design for client.

JSP page

Middle tier (servlet)

Database server

Responsible for the disposal of client

requests and return results.

Hibernate

Struts2

DATA

Welcome Page

(two entrances for

Individual User and

Enterprise User)

Individual User Enterprise User

Login page Registration page of

Individual User

Registration page of

Enterprise User

Account Information

and operations page

of Individual User

Account Information

and operations page

of Enterprise User

RBT page

Play and register RBT

music

Query telephone

number information

and register a new

number

Query telephone

number information

and register

enterprise numbers

4.4 Middle Tier Design:

Basically, the middle tier is consist of Struts2 and Hibernate, Struts2 responsible

for processing and validating the data, and Hibernate responsible for data persistence

and data communication with database.

Following picture is the structure of middle tier.

4.4.1 Web layer:

In this layer, I used Struts2 to process the interaction of client web page and

business logic, data validation and conversion.

Structure of Struts2:

Workflow:

1. Load the class (FilterDispatcher)

2. Read the configuration (Actions in Struts configuration files)

3. The distribution of the request (client sent a request)

4. Call Action (FilterDispatcher read the corresponding Action from Struts

configuration file)

5. Enable the interceptor (WebWork interceptor chain automatically use common

functions to the request, such as validation)

6. Operations processing (callback Action’s execute() method)

7. Returns a response (using the execute() method returns information to the

FilterDispatcher)

8. Search the response (FilterDispatcher resolve the information by searching the

configuration, such as: SUCCESS, ERROER, and jump to the corresponding JSP

page)

9. Response to user (JSP  client browser)

According to the operations in the web page, I defined several Actions

corresponding with the forms in the web page by using Struts2-XML:

<struts>

 <package name="front" namespace="/" extends="struts-default" >

 <!-- <default-action-ref name="index"/> --> <!-- bug!!! -->

Browser

Struts2 Core controller (FilterDispatcher)

Interceptor1

Interceptor2

Interceptor3

Action

Result

 <action name="add" class="com.headoor.PND.action.UserAction"

method="addUser">

 <result>userLogin.jsp</result>

 </action>

 <action name="login" class="com.headoor.PND.action.UserAction"

method="loginUser">

 <result name="input">userLogin.jsp</result>

 <result>userLogin.jsp</result>

 </action>

 <action name="logout" class="com.headoor.PND.action.UserAction"

method="logoutUser">

 <result>userLogin.jsp</result>

 </action>

 <action name="load" class="com.headoor.PND.action.UserAction"

method="loadUser">

 <result>/success.jsp</result>

 </action>

 <action name="search"

class="com.headoor.PND.action.NumberAction" method="corpList">

 <result name="input">/corporateRegister.jsp</result>

 <result>/corporateRegister.jsp</result>

 </action>

 <action name="corpRegister"

class="com.headoor.PND.action.NumberAction" method="corpRegister">

 <result>/userLogin.jsp</result>

 <result name="input">/corporateRegister.jsp</result>

 </action>

 <action name="register"

class="com.headoor.PND.action.NumberAction" method="register">

 <result>/userLogin.jsp</result>

 <result name="input">/numberRegister.jsp</result>

 </action>

 <action name="check" class="com.headoor.PND.action.UserAction"

method="check">

 <result>/userInf.jsp</result>

 </action>

 <action name="customize"

class="com.headoor.PND.action.NumberAction" method="customize">

 <result name="input">/numberRegister.jsp</result>

 <result>/numberRegister.jsp</result>

 </action>

 <action name="RBT" class="com.headoor.PND.action.RBTAction"

method="listRBT">

 <result>/rbt.jsp</result>

 </action>

 <action name="registerRBT"

class="com.headoor.PND.action.RBTAction" method="registerRBT">

 <result type="chain">check</result>

 </action>

 <action name="goRegisterRBT"

class="com.headoor.PND.action.RBTAction" method="goRegisterRBT">

 <result type="chain">RBT</result>

 </action>

 <action name="enableNumber"

class="com.headoor.PND.action.NumberAction" method="enableNumber">

 <result type="chain">check</result>

 </action>

 <action name="suspendNumber"

class="com.headoor.PND.action.NumberAction" method="suspendNumber">

 <result type="chain">check</result>

 </action>

 </package>

</struts>

Each form or operation in the web page has a corresponding Action, in order to

respond to client's request, send the results to the client.

Struts2 responsible for processing and validating the data, and deliver it to the

next layer.

When a user has logged in server, Struts2 will create a session from

ActionContext, and put user in the session until user logout or session time expired, so

that server can keep tracking user’s operations:

public String loginUser() {

 User loginUser = userService.loadUser(user);

 if (null == loginUser || loginUser.equals(null)) {

 this.addFieldError("Loginerror", "User is not exist!");

 return "input";

 }

 if(!loginUser.getPassword().equals(user.getPassword())){

 this.addFieldError("Loginerror", "Password Wrong!");

 return "input";

 }

 Map<String, Object> attibutes =

ActionContext.getContext().getSession();

 attibutes.put("user", loginUser);

 return SUCCESS;

 }

Server checks user’s validation for every request that user sends, if user has

logged out, not exist or time expired, then return error information to the client:

HttpServletRequest req = ServletActionContext.getRequest();

 User loginUser = (User) req.getSession().getAttribute("user");//to

get login user

 if (null == loginUser || loginUser.equals(null)) {

 this.addFieldError("registererror", "Wrong!");

 return "input";//if user logout or time expired then returns error

 }

Struts2 also responsible for data validity check before delivering it to the next

layer, for instance, in user registration, server must check if the username is already

exist, password is valid, user has input all the information we need, etc.

Following is a segment of RegisterAction-Validation:

<validators>

<field name="user.userName">

 <!—String cannot be empty -->

 <field-validator type="requiredstring">

 <!—Space trim -->

 <param name="trim">true</param>

 <!—Error message -->

 <message>username cannot be empty</message>

 </field-validator>

 <!—Check the length of the string -->

 <field-validator type="stringlength">

 <param name="minLength">2</param>

 <param name="maxLength">20</param>

 <message> Username length should be between 2-18 characters </message>

 </field-validator>

</field>

<field name="user.password">

 <field-validator type="requiredstring">

 <param name="trim">true</param>

 <message>Password cannot be empty</message>

 </field-validator>

 <field-validator type="stringlength">

 <param name="minLength">6</param>

 <param name="maxLength">18</param>

 <message> Password length should be between 6-18 characters </message>

 </field-validator>

</field>

<field name="user.age">

 <field-validator type="int">

 <param name="min">1</param>

 <param name="max">150</param>

 <message> Age should be between 1 to 150 </message>

 </field-validator>

</field>

<!—Date type validation -->

<field name="user.birthday">

 <field-validator type="date">

 <param name="min">1900-01-01</param>

 <param name="max">2008-10-16</param>

 <message>Birthday should be from 1900-01-01 to 2011-5-31</message>

 </field-validator>

</field>

</validators>

OGNL

OGNL is the Object-Graph Navigation Language, it is a powerful expression

language (Expression Language, referred to as EL), through its simple and consistent

expression syntax, you can access any property of the object, call the object's method ,

traversing the object structure, to achieve field type conversion functions [7]. It uses

the same expression to access the object.

OGNL allows us to use very simple expressions to access object layer, for

example, the root object in the current environment as user1, by using expression

person.address [0]. province can access the user1’s person attributes’ province

property of the first address.

OGNL (Object-Graph Navigation Language) can easily operate the open source

object property expression language, make the page more concise.

Struts 2 default expression language is OGNL, it supports object method calls,

class static method calls and the value of the access, assignment and expression in

series, access OGNL context (OGNL context) and ActionContext, operations for

collection object.

Following is a code snippet written with OGNL and Struts2 tags:

<s:set name="user" value="#session.user"></s:set>

 <s:if test="#user != null">

 <div>

 Welcome back!

 <s:property value="#session.user.username" /> !

 Last logged in: <s:date name="#session.user.last_login_date" />

 Check my telephone numbers

 Logout

 </div>

 </s:if>

 <s:else>

 <div>

 Welcome User!

 <s:fielderror />

Following figures is the relationship chart of ValueStack , StackContext and

ActionContext, and sample view in my system:

4.4.2 Entity layer:

According to the tables in the database, there are four entity classes, namely,

“User”, “Number”, “RBT” and “Trade”, see figure.

For using Hibernate, we need to map the entities to the database, there are two

ways, XML and Annotations. In my project, I chose to use Annotations, because it is

simple, convenient and intuitive. It is a new trend.

For example, to map entity User, the following is a simplified version of code:

@Entity //to demonstrate an entity

@Table(name="T_User")//to define a specific name to the entity in database

public class User {

 private int id;

 private String name;

 private String username;

 private String password;

 private String rePassword;

 private Date register_date;

 private Date last_login_date;

 private Set<Number> numbers = new HashSet<Number>();

 @Id //to specify the primary key

 @GeneratedValue //auto-increase

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 @Column(unique=true) //the data in this column is unique

 public String getUsername() {

 return username;

 }

 public void setUsername(String username) {

 this.username = username;

 }

 public String getPassword() {

 return password;

 }

 public void setPassword(String password) {

 this.password = password;

 }

 @Transient //to inform Hibernate that not to create a column for it

 public String getRePassword() {

 return rePassword;

 }

 public void setRePassword(String rePassword) {

 this.rePassword = rePassword;

 }

 @OneToMany(mappedBy="user") //the relationship between tables

 public Set<Number> getNumbers() {

 return numbers;

 }

 public void setNumbers(Set<Number> numbers) {

 this.numbers = numbers;

 }

 @Temporal(TemporalType.TIMESTAMP)

 public Date getLast_login_date() {

 return last_login_date;

 }

 public void setLast_login_date(Date last_login_date) {

 this.last_login_date = last_login_date;

 }

So, there are four persistent classes, hibernate responsible for the management

and operation of these classes. In the Java web application based on MVC design

pattern, Hibernate can be used as the model layer/data access layer. It is through the

configuration file (hibernate.properties or hibernate.cfg.xml) and the mapping file

(***.hbm.xml) to Java objects or PO (Persistent Object) are mapped to data in the

database, and then by operating PO, to add, delete, update, search and other

operations to the data in the tables.

For example, to register a new user, user needs to fill a form on the client web

page and submit the form to server; after server receiving the request from client,

Struts2 responsible for processing and validating the data, and deliver it to Hibernate

to carry out database operations.

Following is the code snippet of adding new user:

public static SessionFactory sessionFactory;

 static {

 try {

 sessionFactory = new

AnnotationConfiguration().configure().buildSessionFactory();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

public void addUser(User user) {

 Session session = sessionFactory.getCurrentSession();

 Transaction tx = null;

 try{

 tx = session.beginTransaction();

 user.setRegister_date(new Date());

 user.setLast_login_date(new Date());

 session.save(user);

 tx.commit();

 } catch (Exception e) {

 if (tx != null) {

 tx.rollback();

 }

 }

 }

Applications first call Configuration class to read configuration files and

Hibernate mapping file information, and use this information to generate a

SessionFactory object.

Read Configuration of Database:

<property

name="connection.driver_class">oracle.jdbc.driver.OracleDriver</prope

rty>

<property

name="connection.url">jdbc:oracle:thin:@localhost:1521:PND</property>

<property name="connection.username">scott</property>

<property name="connection.password">tiger</property>

<property

name="dialect">org.hibernate.dialect.OracleDialect</property>

Read Configuration of PO (Persistent Object):

<mapping class="com.headoor.PND.model.User"/>

<mapping class="com.headoor.PND.model.Number"/>

<mapping class="com.headoor.PND.model.RBT"/>

<mapping class="com.headoor.PND.model.RBT"/>

Then Hibernate generates a Session object from SessionFactory object, and

generates Transaction object with the Session object; through the Session object’s

get(), load(), save(), update(), delete() and saveOrUpdate() and other methods to load

on the PO, to save, update, delete or other operations; in the case of queries, create a

Query object through the Session object, and then use the Query object to execute

queries; if no exception, Transaction object will submit the result of these operations

to the database.

Following is the query which Hibernate created when a use is registering:

Hibernate:

 insert

 into

 T_User

 (address, birthdate, last_login_date, name, other_information,

password, region, register_date, username, usertype)

 values

 (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)

And this is the Query of checking telephone number information:

Hibernate:

 select

 user0_.id as id0_,

 user0_.address as address0_,

 user0_.birthdate as birthdate0_,

 user0_.last_login_date as last4_0_,

 user0_.name as name0_,

 user0_.other_information as other6_0_,

 user0_.password as password0_,

 user0_.region as region0_,

 user0_.register_date as register9_0_,

 user0_.username as username0_,

 user0_.usertype as usertype0_

 from

 T_User user0_

 where

 user0_.username=?

lyz9

Hibernate:

 select

 numbers0_.user_id as user16_2_,

 numbers0_.id as id2_,

 numbers0_.id as id1_1_,

 numbers0_.c_p as c2_1_1_,

 numbers0_.geographical as geograph3_1_1_,

 numbers0_.last_operator as last4_1_1_,

 numbers0_.last_user_id as last5_1_1_,

 numbers0_.number_type as number6_1_1_,

 numbers0_.operator as operator1_1_,

 numbers0_.other_information as other8_1_1_,

 numbers0_.partner as partner1_1_,

 numbers0_.rbt_id as rbt15_1_1_,

 numbers0_.region as region1_1_,

 numbers0_.register_date as register11_1_1_,

 numbers0_.status as status1_1_,

 numbers0_.telephone_number as telephone13_1_1_,

 numbers0_.types as types1_1_,

 numbers0_.user_id as user16_1_1_,

 rbt1_.id as id2_0_,

 rbt1_.rbt_content as rbt2_2_0_,

 rbt1_.rbt_name as rbt3_2_0_,

 rbt1_.rbt_prise as rbt4_2_0_

 from

 T_Number numbers0_

 left outer join

 RBT rbt1_

 on numbers0_.rbt_id=rbt1_.id

 where

 numbers0_.user_id=?

4.5 Database:

There are four parts in phone number database:

1) Telephone Numbers

2) Users

3) RBT

4) Operation Record

So there are four tables in database: T_Users, T_Numbers, T_RBT and T_Trade.

According to the request of system scope and context, each table has several

segments:

Telephone numbers:

1. Id (int, primary key)

2. telephone_number (varchar2, unique)

3. user_id (int, foreign key)

4. last_user_id (int, foreign key)

5. RBT_id (int, foreign key)

6. operator (varchar2)

7. last_operator (varchar2)

8. status (Available, Not Available..etc)(varchar2)

9. register_date (Date)

10. types (Voice, Data, Fax, M2M..etc)(varchar2)

11. number_type (Gold, Silver, Normal, etc)(varchar2)

12. geographical (varchar2)

13. region (varchar2)

14. cooperate or private (varchar2)

15. partner (varchar2)

16. other_information (varchar2)

Users:

1. id (int, primary)

2. name (first middle and last name)(varchar2)

3. birthday (date)

4. telephone_number (varchar2)

5. username (varchar2)

6. password (varchar2)

7. address (varchar2)

8. region (or nationality)(varchar2)

9. other_information (varchar2)

10. usertype (varchar2)

11. register_date (date)

12. last_login_date (date)

RBT

1. id (int, primary key)

2. rbt_name (varchar2)

3. rbt_prise (varchar2)

4. rbt (varchar2)

Operation Record

1. id (int, primary key)

2. telephone_number (varchar2, foreign key)

3. date (date)

4. description (varchar2)

Varchar2 is a data type proper to Oracle Database, it is Variable- length character

data, and its maximum length is 4000B. The biggest difference with char data type is

the varchar2 automatically filter out spaces.

Considering that a user can own more than one telephone numbers, but a phone

number belongs to only one user, so the relationship between users and telephone

numbers is (1:n), and the relationship between telephone numbers and ring back tone

is (1:1).

E-R model of phone number database:

FK_Reference_1

FK_Reference_2

FK_Reference_3

T_User

id
name
address
username
password
birthdate
telephone_number
region
other_information
usertype
register_date
last_login_date

int
varchar(0)
varchar(0)
varchar(0)
varchar(0)
date
varchar(0)
varchar(0)
varchar(0)
varchar(0)
date
date

<pk>

T_Numbers

id
telephone_number
last_user_id
operator
last_operator
status
number_type
types
c_p
partner
geographical
region
register_date
other_information
user_id
rbt_id

int
varchar(0)
int
varchar(0)
varchar(0)
varchar(0)
varchar(0)
varchar(0)
varchar(0)
varchar(0)
varchar(0)
varchar(0)
date
varchar(0)
int
int

<pk>
<ak>

<fk1>
<fk2>

T_RBT

id
rbt_name
rbt_prise
rbt

int
varchar(0)
varchar(0)
binary(0)

<pk>

T_Trade

id
telephone_number
date
description

int
varchar(0)
date
varchar(0)

<pk>
<fk>

5. Results

Sample Run:

1) Setup and configure Tomcat server and Oracle database, run the system:

2) Index page:

3) Login page:

Above is the login page for user, if username that user input is not exist or

password is wrong, a error message will be shown as following:

figure 1 username not exist

figure 2 wrong password

4) Registration page:

Here user will fill some personal information, and submit it to the server, after the

validity check, user will get a new account, and user’s information will be registered

into system database:

5) User information page:

By clicking link “Check my telephone numbers”, users can check their telephone

number information in their account.

6) Telephone number registration page:

Also users can input their favorite numbers to query.

figure 3 telephone number availab le

figure 4 no number available

If successfully registered, telephone number will be bound with user’s account,

they can Enable or Suspend their telephone numbers, and operation will be recorded

to inform administer.

For enterprise users, they can search a certain number of consecutive telephone

numbers from the system, and register them at one time.

7) Ring back tone page:

In this page, users can play and choose a ring back tone for their telephone

numbers, also they can find their favorite song by searching the same of music.

6. Discussion

6.1 Originality of this work

I created a survey web site (see Appendix-A) while I was doing this project, and

sent it to hundreds of people, from the analysis of the results, I found that people on

the communication service requirements are raising, individual demand is increasing,

we need better systems to meet this trend, this is what this project trying to do,

providing a new telephone number system that

1) Users can apply telephone numbers and manage their telephone numbers by

staying indoors.

2) Classify telephone numbers, give the users more choice.

3) Operator can manage telephone number series systematically, efficiently and

automatically.

4) Users can chose colorful ring back tone for their telephone numbers to make their

numbers more personality.

6.2 Relevant works

 Each operator has its own system, but most of them cannot meet user’s

requirement perfectly, we need to continually improve our system, try our best to

satisfy the customer. For example, CRBT system is already exists and popular for a

long time in East Asia, SK and HUAWEI provide this system, but currently there is

no operators provide this service in Norway.

6.3 Learning experience

I learned a lot from designing such a system. For me, J2EE is almost brand new

knowledge. Although I learned some knowledge about Java and database, practice

and build a whole project is totally another thing. I learned how to design web page

(HTML, JavaScript, CSS, JSP, Struts2 tags), how to build server (Struts2, Hibernate,

some Spring and JUnit), how to use tomcat, Oracle database and MySQL database.

Designing an extendable frame work is another challenge I met. The problems are,

what features I want to extend in future, and how much extendable is enough? Since

no design is perfect, I cannot make a fully extendable design that meet every future

needs, it is like perperual motion, is impossible. The only design choice is to design it

with respect to current requirements and the most possible new requirements. So I just

listed all I need to support right now, then design the system model, without too much

thinking or future.

6.4 Limitations

There is much to be desired in this project, due to time and knowledge is limited,

a lot of functions and ideas have not been achieved. The system needs to be stronger

to handle any possible request coming from users.

No performance test. Due to time limitation, I only performed some basic tests to

make sure the system runs correctly. To make it really usable, more tests, especially

performance test should be performed in order to reveal more problems in design and

implementation.

Owing to Altibox company currently does not have its own switch machine and

some other technical limitations, I only finished the web part and database part of

CRBT system.

6.5 Further work

1. Security enhancement.

2. Performance test.

3. More operations for users and more aesthetically pleasing interface.

4. Telephone number port- in and port-out (need API support).

5. Improve the RBT system.

7. Reference

[1] http://www.dialogic.com/solutions/mobile-vas/mobile-crbt.htm

[2] http://struts.apache.org/2.2.1/index.html

[3] http://en.wikipedia.org/wiki/Struts2

[4] http://www.hibernate.org/about

[5] http://en.wikipedia.org/wiki/Java_(programming_language)

[6] http://en.wikipedia.org/wiki/Apache_Tomcat

[7] http://www.hudong.com/wiki/OGNL

http://www.dialogic.com/solutions/mobile-vas/mobile-crbt.htm
http://struts.apache.org/2.2.1/index.html
http://en.wikipedia.org/wiki/Struts2
http://www.hibernate.org/about
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Apache_Tomcat
http://www.hudong.com/wiki/OGNL

8. Appendix-A

Survey and Result:

Question 1: 1. 40% 2. <1% 3. 32% 4. 8% 5. 16% 6. <1% 7. <1%

Question 2: A. 16% B. 24% C. 44% D. 24%

Question 3: 1. 48% 2. 52%

Question 4: A. 72% B. 48% C. 4% D. 36% E. 8% F. 4% G. 8%

Question 5: 1. 68% 2. 24% 3. <1% 4. 4%

Question 6: 1. 28% 2. 32% 3. 24% 4. 4% 5. 12%

Question 7: 1. 44% 2. 48% 3. <1% 4. 4%

Question 8: 1. 84% 2. 16%

