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Abstract

Volume of publicly available data in biomedicine is constantly in-

creasing. However, this data is stored in different formats on different

platforms. Integrating this data will enable us to facilitate the pace

of medical discoveries by providing scientists with a unified view of

this diverse information. Under the auspices of the National Cen-

ter for Biomedical Ontology, we have developed the Resource Index

a growing, large-scale index of more than twenty diverse Biomedical

resources. (13)

The purpose of this thesis is to scaling out the semantic annotation

data of NCBO Resource Index (13) that they have implemented on

MySQL server on single machine. In order to improve the performance

of the computation we implement the algorithms for data-parallel

computing and data combining.

We show a time difference of computation performance both user de-

fined function and high-level query languages; furthermore the choice

of programming interface has a different effect on the performance of

computation. In order to get good performance I need to organize

the cluster server and implement the good execution plans that can

fit well for such computation and platform.

This thesis evaluates the implementations for performing data com-

bination and computation in several state of the art distributed com-

puting systems: Hadoop(20), HBase(26), Pig(24), MapReduce (2),

MySQL servers.

The solution was proposed on the paper Tomasz, Chunming and oth-

ers (11) ”Scaling-out the NCBO Resource Index Processing and Main-



tenance” and I describe implementation details of a number of com-

putation strategies in Hadoop platform and HBase, and present a

comprehensive experimental comparison of these techniques on an 11

node Hadoop cluster. The experimental results provide insights that

are about the MapReduce platform and comparisons of particular join

algorithms on the Hadoop platform.
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Chapter 1

Introduction

1.1 Motivation

The National Center for Biomedical Ontology (NCBO) (13) maintains BioPortal

(14), an open library of more than 200 ontologies in biomedicine they use the

terms from these ontologies to annotate, or tag, automatically the textual de-

scriptions of the data that resides in diverse public resources. The goal of NCBO

is to enable a researcher to browse and analyze the information stored in these

diverse resources and it also provide the user interface of BioPortal.

The BioPortal includes the NCBO Resource Index (13), which is a searchable

database of semantic annotations for biomedical resources using all BioPortal

ontologies. In The context, a biomedical resource is a repository of elements that

may contain patient records, gene expression data, scholarly articles, and so on.

A data element is unstructured text describing elements in the resource.

The Number of Researchers who are using ontologies extensively to annotate

their data, to drive decision support of the systems is increasing constantly. So

now the Resource Index currently includes 22 different data resources, comprising

over 3.5 million data elements resulting in 16.4 billion annotations stored in a 1.5

terabyte MySQL database. We are ramping-up the system to include nearly

100 different data resources, 50 million data elements, and well over 100 billion

annotations as analyzed earlier work on the paper Tomasz, Chunming and others
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1. INTRODUCTION

(11) ”Scaling-out the NCBO Resource Index Processing and Maintenance”.

Running such amount of indexed data and computing from different data

resource are reaching storage and processing limits of a single machine. Knowing

these storage and performance limitations makes us critical decisions on which

systems, platform, algorithm will work best for our needs, or when and how to

build something new that can work faster.

Therefore, we approach the scalability problem for a knowledge base of an-

notations, like the Resource Index, first by examining existing, scalable systems.

The goal is to incorporate a large variety of ontologies as well as a large amount

of data.

In order to compute Resource index for more than 22 resources we need to

scale out from single machine to distributed computing machines. There is possi-

bility of using more powerful machine or parallel databases but it cannot be good

solution for a longer term and license of Relational databases. Parallel databases

have for some time permitted user-defined selection and aggregation operations

that have the same computational expressiveness as MapReduce, although with a

slightly different interface. Many data-mining computations have as a fundamen-

tal subroutine a Group By Join and Aggregate operation. This takes a dataset;

partitions its records into groups according to some key, then performs join, group

by, any other computation and an aggregation over each resulting group.

This thesis evaluates the implementations for performing data combination

and computation in several state of the art distributed computing systems: Hadoop

(20), HBase (26), Pig (24), MapReduce (3) and MySQL Servers. We plan to

implement data storage both directly in HDFS and in HBase. We will evalu-

ate relative performance differences and we will create a standard and a custom

HBase index and its multidimensional structure which will be also investigated

as a way to reduce storage requirements for semantic expansion.

Systems like MapReduce and Hadoop allow programmers to decompose an

arbitrary computation into a sequence of maps and reductions, which are written

in a full-edged high level programming language (C++ and Java, respectively)

using arbitrary complex types.

The resulting systems can perform quite general tasks at scale, but offer a

low-level programming interface: even common operations such as database Join

2



1.2 The Contributions of this thesis

require a sophisticated understanding of manual optimizations on the part of

the programmer. Consequently, layers such as Pig Latin and HIVE have been

developed on top of Hadoop, offering a SQL-like programming interface that

simplifies common data-processing tasks.

1.2 The Contributions of this thesis

In NCBO Resource index(13) there are three main processing steps required to

perform the semantic expansion. The first step is concept recognition, which can

be classified as embarrassingly parallelit can easily be divided among process-

ing nodes. The second step is term expansion based on semantics, where the

most computationally expensive process relies mostly on join operations. During

that stage, information on ontological distance between concepts is also utilized.

For implementing this step we implement different join techniques and compare

a programming models for Resource Indexing in Hadoop, HBase, and MySQL,

and show the impact of interface-design choices on optimizations. We describe

and implement a general, rigorous treatment of distributed computation in the

MapReduce, Pig and HBase system. We use Hadoop to evaluate several opti-

mization techniques for distributed programming in real applications running on

a small-sized cluster of several computers.

Finally, we implement an inverted index which is applied on the entire set of

associated terms for efficient search.

1.3 What is the NCBO Resource Index

The range of publicly available biomedical data is enormous and is expanding

fast. This expansion means that researchers now face a hurdle to extracting the

data they need from the large numbers of data that are available. Biomedical

researchers have turned to ontologies and terminologies to structure and annotate

their data with ontology concepts for better search and retrieval. Using the anno-

tation work flow of the Annotator Web Service NCBO(28) has built a biomedical

3



1. INTRODUCTION

resources index in which biomedical data is indexed by ontology concepts. The

index allows a user to search for biomedical data based on ontology concepts.

The NCBO Resource Index directly run queries in the BioPortal ontology

repository: when a user browses a given concept, he has access (link) to the list

of resource elements that have been annotated with this concept. A user can also

search for resources directly using the ’All resources’ tab. The annotations in

the index keeps track of the structures of elements that have been annotated i.e.,

from which part of the element (e.g., title, description) an annotation has been

produced. This information is used to score annotations.

The Resources Index system architecture consisting of different levels ( See

Figure 1.1):

• Resource level:Public biomedical resources (such as GEO and PubMed

(15)) are composed of elements that represent an abstraction for the unit

of storage in those databases.

• Annotation level: The System uses a concept recognition tool called

mgrep (developed by Univ. of Michigan) to annotate (or tag) resource

elements with terms from a dictionary.

• Index level: A global index combines all the annotation tables and indexes

annotations according to ontology concepts. The index contains informa-

tion such as: Concept T annotates elements E1, E2, ....

• Ontology level: The system also uses relations provided to expand the

annotations. This is the first step of the semantic expansion. Using the

is a ontology relation, for each annotation, we create additional transitive

closure annotations according to the parentchild relationships subsumed by

the original concept.

4



1.3 What is the NCBO Resource Index

Figure 1.1: The Resources Index WorkFlow diagram - WorkFlow diagram

(13)
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1. INTRODUCTION

1.4 The Thesis outline

The following chapters constitute the thesis:

• Chapter 1 introduces the resent NCBO system and data structure. The

scope and contributions of this thesis are summarized.

• Chapter 2 gives the background of Hadoop based systems such as MapRe-

duce,HBase and Pig. Some NCBO data samples are shown in this chapter.

• Chapter 3 gives about related work.

• Chapter 4 shows different methods to compute and combine data. The

advantages and disadvantages of these methods are mentioned. The details

about our method are discussed and it also shows the implementation of the

algorithms and different methods. The results of our methods are presented.

• Chapter 5 discusses the Hadoop implementation of the Join, Pig joins and

Results of our methods are presented.

• Chapter 6 summarizes the major contributions and conclusions of this

work, and suggests the problems for further research.

6



Chapter 2

Background

2.1 Hadoop

Hadoop (20) is the Apache Software Foundation top-level project that holds the

various Hadoop sub projects that graduated from the Apache Incubator. The

Hadoop framework is open source software that supplies a framework for the de-

velopment of highly scalable distributed computing and handles the processing

details, leaving developers free to focus on application logic. It includes sev-

eral sub-projects such as: Hadoop Cores is core sub-project and it provides a

distributed file system (HDFS)(22) and support for the MapReduce distributed

computing. The Hadoop Distributed File System (HDFS) and MapReduce en-

vironment provides the user to manage the execution of map and reduce tasks

across a cluster of machines. The user is required to specify the following param-

eters to run a job

• The location(s) in the distributed file system of the job input

• The location(s) in the distributed file system for the job output

• The input format

• The output format

• The class containing the map function

7



2. BACKGROUND

• Optionally. the class containing the reduce function

• The JAR file(s) containing the map and reduce functions and any support

classes

The Hadoop will partition the input into the small chunks, and schedule and

execute map tasks across the cluster. If requested, it will sort the results of the

map task and execute the reduce task(s) with the map output. The final output

will be moved to the output directory, and the job status will be reported to the

user.

This framework provides two basic processes that can handle the management

of MapReduce jobs;

• Task Tracker executes an individual map and reduces tasks on a compute

node in the cluster.

• Job Tracker accepts job submissions, provides job monitoring and control,

and manages the distribution of tasks to the Task Tracker nodes.

Generally a cluster have a Master node and several Slave nodes. The JobTrackers

and TaskTrackers work on master and slave nodes respectively to handle jobs and

tasks. When a MapReduce job is submitted to the master, a Job Trackers divides

it into tasks and assigns a task to each TaskTrackers. Following is the sequence

of steps for MapReduce work flow on Hadoop (see figure 2.1) :

1. Mapping Phase: The Mapper performs the interesting user-defined work of

the first phase of the MapReduce program. Given a key and a value, the

map() method emits (key, value) pair(s) which are forwarded to the Reduc-

ers. Each mapper works on input splits assigned to it by the NameNode. An

input split consists of a number of records. The records can be in different

formats depending on the InputFormat of the input file. A RecordReader

for that particular InputFormat reads each and every record, determines

the key and value for the records, and supplies the key-value pairs to map

functions where the actual processing takes place (Figure 3). Each mapper

applies a user defined function on the key-value pairs and converts them

to intermediate key-value pairs. The intermediate results of mappers are

written to the local file-system in a sorted order.

8



2.1 Hadoop

2. Partitioning Phase: A partitioner determines which reducer an intermedi-

ate key-value pair should be directed to. The default partitioner provided by

Hadoop computes a hash value for the key and assigns the partition on the

basis of the function: (hash value of key) mod (total number of partitions).

3. Shuffling Phase: Each map process, in its heartbeat message, sends infor-

mation to the master about the location of the partitioned data. The master

informs each reducer about the location of the mapper from which it has to

pick its partition. This process of moving data to appropriate reducer-nodes

is called shuffling.

4. Sorting Phase: Each reducer, on receiving its partitions from all mappers,

performs the sort-merge join to sort the tuples on the basis of the keys. Since

keys within partitions were already sorted in each mapper, the partitions

have to be merged only such that the similar keys are grouped together.

5. Reduce Phase: A user-defined reduces operation is applied on each group

of keys and the result is written to HDFS.

Hadoop Distributed File System (HDFS) is a distributed, scalable, and

portable file system written in Java for Hadoop and it designed for use for MapRe-

duce jobs that read input in large chunks of input, process it, and write poten-

tially large chunks of output. Furthermore, data in HDFS are simply mirrored to

multiple storage nodes which has a datanodes process. Each node in a Hadoop

typically has a single datanode instance.

HDFS services are provided by two processes:

• NameNode handles management of the file system metadata, and provides

management and control services.

• DataNode provides block storage and retrieval services

To get an idea of how data flows between the clients interacting with HDFS,

the namenode and the datanodes, consider figure 2.2.

Step 1. The client opens the file it wishes to on the file system, which for

HDFS is an instance of Distributed File System.

9



2. BACKGROUND

Figure 2.1: Hadoop Work Flow Diagram - Work Flow Diagram (3)

10



2.1 Hadoop

Figure 2.2: Hadoop Data-flow diagram - Data-flow diagram (19)

Step 2. Distributed File System calls the namenode, using RPC, to determine

the locations of the blocks for the first few blocks in the file.

Step 3. The Distributed File System returns an input stream that supports

file seeks to the client for it to read data from Input Stream.

Step 4. DFS Input Stream, which has stored the datanode addresses for the

first few blocks in the file, then connects to the first datanode for the

first block in the file. Data is streamed from the datanode back to

the client, which calls read() repeatedly on the stream.

Step 5. When the end of the block is reached, DFS Input Stream will close

the connection to the datanode, then find the best datanode for the

next block.

Step 6. When the client has finished reading, it calls close() on the FS Data

InputStream

11



2. BACKGROUND

2.2 HBase

The HBase(26, 27) is a distributed column-oriented database built on top of

HDFS. HBase is the Hadoop application to use when you require real-time read/write

random-access to very large datasets and it provides a scalable, distributed database.

Data modeling is important on the HBase that sore data into labeled tables those

are made of row and columns. Row columns are grouped into column families.

The HBase called a column-oriented storage. see Figure 2.3. Tables: HBase

tables are like those in an RDBMS, only cells are versioned, rows are sorted, and

columns can be added on the fly by the client as long as the column family they

belong to preexists. Tables are automatically partitioned horizontally by HBase

into regions. ows: Row keys are uninterrpreted bytes. Rows are lexicograph-

ically sorted with the lowest order appearing first in a table. The empty byte

array is used to denote both the start and end of a tables’ namespace.

Column Family: Columns in HBase are grouped into column families. All

Column family members have a common prefix, so for example in my implemen-

tation the columns data: concept id and data: dictionary id are both members

of the data column family. The colon character (:) delimits the column family

from the column qualifier. The qualifying tail, the column family qualifier, can

be made of any arbitrary bytes. Column families must be declared up front at

schema definition time whereas columns do not need to be defined at schema time

but can be conjured on the fly while the table is up a running.

Physically, all column family members are stored together on the file system.

Because tunings and storage specifications are done at the column family level, it

is advised that all column family members have the same general access pattern

and size characteristics.

Cells: A row, column, version tuple exactly specifies a cell in HBase. Cell

content is uninterrpreted bytes.

Regions: The Tables are automatically partitioned horizontally by HBase

into regions and each of them comprises a subset of a tables rows. HBase char-

acterized with an HBase master node orchestrating a cluster of one or more

regionserver slaves. The HBase Master is responsible for boot strapping a virgin

12



2.2 HBase

install, for assigning regions to registered regionservers, and for recovering region-

server failure. HBase keeps special catalog tables named -ROOT- and .META,

which maintains the current list, state, recent history, and location of all regions

afloat on the cluster. The -ROOT- table holds the list of .META table regions.

The .META table holds the list of all user-space regions. Entries in these tables

are keyed using the regions start row. see Figure2.3

Figure 2.3: HBase cluster architecture - Cluster architecture (19)

13



2. BACKGROUND

2.3 MapReduce

The advantage of parallel programming in Hadoop is a MapReduce Job that runs

it on a cluster of machines. MapReduce allows you the programmer to specify a

map function followed by a reduce function, but working out how to fit your data

processing into this pattern, which often requires multiple MapReduce stages.

Hadoop provides our query as a MapReduce Job that works by dividing the

processing into two phases; each phase has key-value pairs as input and output.

• Map phase: The master node takes the input and chops it up into pieces

and distributes those to worker nodes:

– In the inputs extract keys and record

– Partition in these outputs by keys of the records

• Reduce phase: The master node then takes the answers to all the pieces

and combines them in a way to get the output.

– Collect and merge all the records with same k

Detailed: The map function merely extracts the keys and values and emits them

as its output:

(k1, 0)

(k1, 22)

(k2, 11)

(k4, 111)

(k4, 78)

The output from the map function is processed by the MapReduce framework

before being sent to the reduce function. This processing sorts and groups the

key-value pairs by key. So, continuing the example, our reduce function sees the

following input:

(k1, [0, 22])

(k2, [-11])

(k4, [111, 78])

14



2.3 MapReduce

All the reduce function has to do now iterate through the list and aggregate

a max function:

(k1, 22)

(k2, 11)

(k4, 111)

This is the final output: the maximum values recorded in each key. See

Figure2.4.

The HBase support MapReduce job and classes and utilities in the org.apache.hadoop.HBase.MapReduce

package facilitate using HBase as a source and/or sink in MapReduce jobs. The

TableInputFormat class makes splits on region boundaries so maps are handed

a single region to work on. The TableOutputFormat will write the result of

reduce into HBase.

Figure 2.4: MapReduce Dataflow - Mapre Reduce (22)

15



2. BACKGROUND

2.4 Apache Pig

Apache Pig(24) is a platform for analyzing large data sets that consists of a high-

level language for expressing data analysis programs, coupled with infrastructure

for evaluating these programs. Pig raises the level of abstraction for processing

large datasets. With Pig, the data structures are much richer, typically being

multivalued and nested; and the set of transformations you can apply to the data

are much more powerful - they include joins, for example, which are not for the

faint of heart in MapReduce. Pig is made up of two pieces:

• The language used to express data flows, called Pig Latin.

• The execution environment to run Pig Latin programs.

A Pig Latin program is a high level distributed programming language that

consists of a series of operations, or transformations, that are applied to the input

data to produce output.

Taken as a whole, the operations describe a data flow, which the Pig execution

environment translates into an executable representation and then runs. Under

the covers, Pig turns the transformations into a series of MapReduce jobs, but as

a programmer you are mostly unaware of this, which allows you to focus on the

data rather than the nature of the execution.

Pigs sweet spot is its ability to process terabytes of data simply by issuing

half-dozen lines of Pig Latin from the console. The Pig is a Hadoop extension

that simplifies Hadoop programming by giving you a high-level data processing

language while keeping Hadoops simple scalability and reliability. Yahoo , one of

the heaviest user of Hadoop (and a backer of both the Hadoop Core and Pig), runs

40 percent of all its Hadoop jobs with Pig. Twitter is also another well-known

user of Pig.

2.5 Singleton Pattern

In software engineering, the singleton pattern is a design pattern used to imple-

ment the mathematical concept of a singleton, by restricting the instantiation of a
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class to one object. This is useful when exactly one object is needed to coordinate

actions across the system. The concept is sometimes generalized to systems that

operate more efficiently when only one object exists, or that restrict the instan-

tiation to a certain number of objects, but common mistakes can inadvertently

allow more than one instance to be created.

The Singleton’s purpose is to control object creation, limiting the number to

one but allowing the flexibility to create more objects if the situation changes.

Since there is only one Singleton instance, any instance fields of a Singleton will

occur only once per class, just like static fields.

Singletons often control access to resources such as database connections or

sockets. For example, if you have a license for only one connection for your

database or your JDBC driver has trouble with multithreading, the Singleton

makes sure that only one connection is made or that only one thread can access

the connection at a time. If you add database connections or use a JDBC driver

that allows multithreading, the Singleton can be easily adjusted to allow more

connections. Moreover, Singletons can be stateful; in this case, their role is

to serve as a unique repository of state. If you are implementing a counter

that needs to give out sequential and unique numbers, the counter needs to be

globally unique. The Singleton can hold the number and synchronize access; if

later you want to hold counters in a database for persistence, you can change

the private implementation of the Singleton without changing the interface. On

the other hand, Singletons can also be stateless, providing utility functions that

need no more information than their parameters. In that case, there is no need

to instantiate multiple objects that have no reason for their existence, and so a

Singleton is appropriate.

The Singleton should not be seen as way to implement global variables in

the Java programming language; rather, along the lines of the factory design

patterns, the Singleton lets you encapsulate and control the creation process by

making sure that certain prerequisites are fulfilled or by creating the object lazily

on demand.
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Chapter 3

Related work

Since we choose Hadoop based platforms such as HBase, HDFS the data of ma-

terialization of semantic expansion is expanded on disk and queries are directly

performed on the data. On the NOSQL query a join operation is one of the

fundamental, most difficult operations, and hence the most researched query op-

eration. So this is an important operation that makes easy for combining data

from two sources on the basis of some common key.

There are some papers related to the distributed computing and join algo-

rithms in parallel and distributed computing such as ”A Comparison of Join

Algorithms for Log Processing in MapReduce” (1),(2),(4),(5),”MapReduce: Sim-

plified Data Processing on Large Clusters” (6),(7),(8). Also there is a rich history

of studying join algorithms in parallel and distributed RDBMSs. The database

literature is full of discussions on techniques, performance, and optimization of

this operation. Nested loops, sort/merge, and hash join are the most commonly

used join techniques. A more recent work (4) proposes extending the current

MapReduce interface with a merge function. While such an extension makes it

easier to express a join operation, it also complicates the logic for fault-tolerance.

On the paper Distributed Aggregation for Data-Parallel Computing: Inter-

faces and Implementations (8) the approach they have defined six strategies both

accumulator- and iterator-based implementations of distributed reduction using

the DryadLINQ system to take advantage of a good data reduction, pipelining,
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low memory consumption and multi core cluster computer.The full Sort imple-

mentation accumulates all the objects in memory and performs in parallel and

it attains an optimal data reduction for each partitions. This strategy adopted

by MapReduce and Hadoop. Iterator PartialSort approach close to MapReduce.

Idea is to keep only a bounded number of chunks of input records into memory

and is processed independently parallel. The bound on memory makes pipelining

possible. They had two implementation of MapReduce those one applies the Map

faction, sorts the resulting records, while another performs partial aggregation on

the sorted records but they have almost same performs.

On the paper A Comparison of Join Algorithms for Log Processing in MapRe-

duce (1) They have been explored a few join methods in the declarative frame-

works on MapReduce, like Pig (24), Hive (23) and Jaql. Then they compare their

join algorithms to those in Pig. The contribution of this paper is to investigate

various parallel/distributed join techniques on the MapReduce platform, thus

the insights from our work can be directly used by declarative frameworks like

Pig. They had two join strategies such as repartition join and fragment replicate

join in pig and the results consistently show a more 2.5X speed up with their

implementation than in Pig implementation.

In my work, we choose to modify the existing MapReduce programming in-

terface for join implementation. Nextly we tried to evaluate the preforms of all

those approaches. Furthermore, there have been several efforts in designing high

level query languages on MapReduce. This includes Pig (24), (23), and HBase

client API, all of which are open source. They differ in the underlying data model

and query syntax. Moreover this work will provide an experimental result on the

performance of these strategies of join, in Pig and in HBase.
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Chapter 4

Implementation

There are three main processing steps required to perform the semantic expansion.

The first step is concept recognition, which can be classified as embarrassingly

parallel it can easily be divided among processing nodes. The second step is

term expansion based on semantics, where the most computationally expensive

process relies mostly on join operations. During that stage, information on on-

tological distance between concepts is also utilized. For every recognized term,

approximately 14 additional terms are also associated. Finally, an inverted index

is applied on the entire set of associated terms for efficient search.

In order to create the Resource index we implement a number of different join

algorithms those are provided by MapReduce and Pig in different platforms such

as HDFS(22) and HBase(26): map-side, reduce-side, parallel and Replicated join

algorithms. In this section, we discuss those algorithms, present our own algo-

rithm, and provide some important implementation-specific details. Finally we

will present efficient multidimensional data structure for search index in HBase.

We conducted each experiment three times and present the mean of those values

here.
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4.1 Hardware configuration

We have a Hadoop cluster of eleven nodes. Out of these eleven nodes, ten nodes

are the datanodes and tasktrackers as slave; a node is the secondarynamenode,

namenode responsible for managing the distributed file system and assigning the

map and reduce tasks to other worker nodes as a master.

Each node is a HP with sex AMD Phenom(tm) II X6 1090T Processor and a

16GB ECC DDR-2 memory chip. The secondary storage of each node is 80GB

SATA drive running at 7200rpm. The nodes are connected to an HP ProCurve

2650 at the network bandwidth of 100 BaseTx-FD. The cluster contains two

racks with three datanodes in each rack. The racks are connected by a 1Gbps

Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet

link. On each node are installed Linux version 2.6.18-194.32.1.el5.centos.plus (gcc

version 4.1.2 20080704 (Red Hat 4.1.2-48)), Hadoop 0.20.1, pig 0.8.1 and Java

1.6.0-23 for 64 bit. The block size is the default 64MB. The size of the heap

memory is increased to 2048MB. The cluster hase:

• 11 Nodes

• 66 Cores

• 176 GB memory

• CentOs 4.12

• 1GB Ethernet link

4.2 Data sets

Currently the NCBO Resource Index(12) currently includes 22 different data

resources comprising over 3.5 million data elements resulting in 16.4 billion an-

notations stored in a 1.5 terabyte MySQL database.

The semantic expansion consumes considerable amount of resources in terms

of storage and processing power. In this implementation we got some real data

sets from NCBO Resource Index(13) those consist of three different files from

annotation table and a file from relation table.

22



4.3 Join Algorithms in Pig

File name Size of file Number of Rows

obr wp annotation 1786MB 54039

obr ct annotation 5916MB 164808416

obr pm annotation 16983MB 42049697

obs relation 659MB 24153638

Table 4.1: Data sets - Size and Rows

4.3 Join Algorithms in Pig

4.3.1 Replicated Pig Join in HDFS

In certain cases, the performance of inner joins and outer joins can be optimized

using replicated. We run the pig in MapReduce mode with 11 nodes cluster. Pig

allocates a fix amount of memory to store bags and spills to disk as soon as the

memory limit is reached. This is very similar with how Hadoop decides when

to spill data accumulated by the combiner. The amount of memory allocated to

bags is determined by pig.cachedbag.memusage the default is set to 10% of

available memory. Note that this memory is shared across all large bags used

by the application (25). So In our case the relation file is not bigger than our

machine’s memory but default memory for Pig is not enough for running the

replicated join so we have increased the memory up to 8GB and we use some

optimization techniques for speeding up the Pig queries(25). The following table

4.2 shows the result of the experiment.

File name Size/ # of records Mapper Reducer Time(sec) Relation file

wp annotation 1786MB/54039 12 0 29 659MB/24153638

ct annotation 5916MB/164808416 104 0 799 659MB/24153638

pm annotation 16983MB/42049697 277 0 1794 659MB/24153638

Table 4.2: Replicated Pig Join. - The Execution time
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The replicate join is a special type of join that load the small file (obs relation.txt)

into the main memory then the join is done by each map side in the memory.

If one or more relations are small enough to compare with another file it can

work efficiently. In such cases, Pig can perform a very efficient join because all

of the hadoop work is done on the map side and the time for loading file into the

memory is negligible for small file. In our case it does not work very well because

of our relation file is not small enough. The reason why replicated join performs

worse that default join is because of the large number of maps and the large

size of the replicated file. Each map task ends up reading and (de)serializing the

replicated file (obs relation.txt), and usually that takes bulk of the runtime. In

my case (691MB x 277 (maps) = )̃ 187GB of replicated input data will be read

and (de)serialized by all the map tasks.

Here is the theoretical rule of thumb for replicated join: for replicated join

to perform significantly better than default join, the size of the replicated input

should be smaller than the block size (or pig.maxCombinedSplitSize if property

pig.splitCombination=true and larger than block size).

This is because for the number of map tasks started are equal to the number

of blocks (or size/pig.maxCombinedSplitSize) in the left side input of replicated

join. Each of these blocks will read the replicated input. If the replicated input

read size is few times larger than block size, using replicated join will not save on

IO/(de)serialization costs. If I increase the block size of my cluster the time for

transferring the block trough the network will be increased.

4.3.2 Parallel Pig Join in HDFS

The Parallel join operator is used if all the relation files are too large to fit in

memory. In our case the relation file is not small and we have not got a good

result from previous experiment so the regular hash join can fit in this case.

The Pig uses a hash join algorithm for default join. Because of their nature,

hash join algorithms can easily be parallelized. The difference is between the

single processor and multi-processor/parallel variants of these algorithms and

the partitions are processed in parallel by multiple processors in the parallel

variant. The following section describes how the hash join works on the files
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obr ct annotation.txt and obs relation from NCBO Resource index on the cluster

machines.

The input obr ct annotation.txt file (we call ANNO file) is horizontally di-

vided into 104 partitions (mappers) such that each partition carries approximately

—ANNO—/104 tuples (it is around 64MB that is default block size of Hadoop).

Then a hash function F1 is applied on the concept id as a distribution key. The

range of this hash function is from 0 to 103 so that keys can be directed to one

of the ten nodes. The 104 partitions of annotation file formed as a result of the

hash distribution are written to the disk.

On another side same process is applied for input obs relation.txt file (we

call REL file). It is divided into n partitions, each partition carrying about

—REL—/n tuples, by applying the same hash function F1. This ensures that a

partition x of the REL contains the same join keys as partition x of the REL. The

partitions of REL are also written to the disk. Each processor reads in parallel a

partition of relation file from the disk. It creates an in-memory hash table for the

partition using a hash function F2. A corresponding partition of ANNO is also

read in parallel from the disk by each processor. For each tuple in this relation,

it probes the in-memory hash table for any match. For each matching tuple, a

joined record is outputted to the disk.

Since all the n partitions of a relation are completely independent of each

other, parallel processing can be carried out. Each processor handles the corre-

sponding partitions from both the relations and writes the joined records for the

matching tuples. Take an advantage of Join we use some optimization techniques:

Use Types: If types are not specified in the load statement, Pig assumes the

type of =double= for numeric computations. Specifying the real type will help

with speed of arithmetic computation and it also has an additional advantage of

early error detection.

Use the Parallel Features: We can set the number of reduce tasks for the

MapReduce jobs generated by Pig using parallel features. (The parallel features

only affect the number of reduce tasks. Map parallelism is determined by the

input file, one map for each HDFS block.)

In our case I use PARALLEL clause and sets the number of reducers using a

heuristic based on the size of input data. When I calculate the number of reduce

25



4. IMPLEMENTATION

I use following calculation that set the values for these properties:

• pig.exec.reducers.bytes.per.reducer - Defines the number of input bytes per

reduce; default value is 1024*1024*1024 (1GB).

• pig.exec.reducers.max - Defines the upper bound on the number of reducers;

default is 999.

The formula, shown below, helps us to improve the performs. The computed

value takes all inputs within the script into account and applies the computed

value to all the jobs within Pig script.

• Number of reducers = MIN (pig.exec.reducers.max, total input size (in

bytes) / bytes per reducer) .

• Number of reducers = MIN (999 6203559140+690981765/ 1073741824) 7̃

reducer (around)

But I my case I have already 10 nodes so it was better result on 10 reducer. In

the following tables 4.3 shows the results of the Parallel join implementation in

Pig.

File name Size/ # of records Mapper Reducer Time(sec) Relation file

wp annotation 1786MB/54039 12 10 32 659MB/24153638

ct annotation 5916MB/164808416 104 10 350 659MB/24153638

pm annotation 16983MB/42049697 277 10 454 659MB/24153638

Table 4.3: Parallel Pig Join in HDFS. - The Execution time of join

4.3.3 Replicated Pig Join in HBase

The Algorithm of replicated join in this part is exactly same as previous part

only difference is we use HBase data storage instead of HDFS. In the previous

part I had mentioned that what is HBase so now I will explain why we needed

HBase instead of HDFS and how it works.
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In the HBase data is organized into tables, rows and columns, but a query

language like SQL is not supported. Instead, an Iterator-like interface is available

for scanning through a row range (and of course there is an ability to retrieve a

column value for a specific key).

Any particular column may have multiple values for the same row key. A

secondary key can be provided to select a particular value or an Iterator can be

set up to scan through the key-value pairs for that column given a specific row

key. Furthermore the main reason is the tables are mutable that I can update

and edit and delete as single row or multiple rows. The HDFS works great with

immutable data such as log file or some text file.

I needed to organize data into tables, rows and columns, but on this ex-

periment I just kept the structure of the NCBO Resource index data such as

obr wp annotaion, obr ct annotaion, obr pm annotaion and obs relation as a ta-

bles. Both of those tables use row key that is concept id as a distribution key that

you can see the following structure in the HBase distributed data base system.

• 11885226 column=cf:concept id, timestamp=1304003760030, value=11885226

• 11885226 column=cf:context id, timestamp=1304003760030, value=4

• 11885226 column=cf:dictionary id, timestamp=1304003760030, value=5

• 11885226 column=cf:element id, timestamp=1304003760030, value=1

• 11885226 column=cf:porsition from, timestamp=1304003760030, value=1

• 11885226 column=cf:position to, timestamp=1304003760030, value=17

• 11885226 column=cf:term id, timestamp=1304003760030, value=26871846

• 11885226 column=cf:workflow status, timestamp=1304003760030, value=8

HBase automatically partitions the Tables horizontally into regions. Each

region comprises a subset of a tables rows. A region is denoted by the table

it belongs to, its first row, inclusive, and last row, exclusive. Initially, a table

comprises a single region, but as the size of the region grows, after it crosses a
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Figure 4.1: HBase Regions archtecture - Regions archtecture
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configurable size threshold, it splits at a row boundary into two new regions of

approximately equal size. see Figure(4.1).

In my case HBase the files obr wp annotation, obr wp annotation, obr wp annotation

splits 42, 571 and 1518 regions respectively. Regions are the units that get dis-

tributed over an HBase cluster. In this way, a table that is too big for any one

server can be carried by a cluster of servers with each node hosting a subset

of the tables total regions. This is also the means by which the loading on a

table gets distributed. In the following table4.4 you can see the result of the

implementation.

File name Size/ # of records Mapper Reducer Time(sec) Relation file

wp annotation 1786MB/54039 43 0 50 659MB/24153638

ct annotation 5916MB/164808416 613 0 532 659MB/24153638

pm annotation 16983MB/42049697 1560 0 707 659MB/24153638

Table 4.4: Parallel Pig Join. - The Execution time

We depicted a diagram that shows the execution time for two Replicated join

algorithms such as Replicated Join in HDFS and Replicated Join in HBase. We

conducted each experiment three times and present the mean of those values here.

See Figure 4.2.
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Figure 4.2: Replicated Joins in Pig - Execution time of joins

4.3.4 Parallel Pig Join in HBase

This implementation is almost same as Parallel Join in HDFS in previous part.

The only difference is that we use HBase distributed database instead of HDFS.

The main reason is the tables are mutable that I can update and edit and delete

as single row or multiple rows. The HDFS works great with immutable data such

as log file or some text file. In order to increase speed of the join in the HBase I

need to configure some important parameters in the configuration file of HBase.

HBase0.20.0 configuration important parameters of hbasesite.xml.

See Table 4.5

The value of those parameters that I had configured depends on the job and

how many mappers can be handled, memory consumption of Hadoop, how many

zookeeper server that I have and how many region servers for the tables. The

parameter hbase.client.scanner.caching is number of rows that will be fetched

when calling next on a scanner if it is not served from (local, client) memory.
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Parameter value Comments

hbase.cluster.distributed true Fullydistributed with unmanaged

ZooKeeper Quorum

hbase.regionserver.handler.count 200 Count of RPC Listener instances spun

up on RegionServers. Same property is

used by the Master for count of master

handlers. Default is 10.

hbase.zookeeper.property.maxClientCnxns 1000 Property from ZooKeeper’s config

zoo.cfg. Limit on number of concurrent

connections (at the socket level) that a

single client, identified by IP address,

may make to a single member of the

ZooKeeper ensemble. Set high to

avoid zk connection issues running

standalone and pseudo-distributed.

Default: 30

hbase.hregion.max.filesize 1073741824 Maximum HStoreFile size. If any one

of a column families’ HStoreFiles has

grown to exceed this value, the hosting

HRegion is split in two. Default: 256M.

Default: 268435456

hfile.block.cache.size 0.4 Percentage of maximum heap (-Xmx

setting) to allocate to block cache used

by HFile/StoreFile. Default of 0.2

means allocate 20Default: 0.2

hbase.client.scanner.caching 100000 Number of rows that will be fetched

when calling next on a scanner if it is

not served from (local, client) memory.

Table 4.5: Customized configuration of Hbase - HBase0.20.0 hbase site.xml
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As long as HBase depends on memory and in the pig join we need to fetch data

as much as we can, so that value is as maximum as our cluster can handle.

The parameter hbase.zookeeper.property.maxClientCnxns is limit on number of

concurrent. In our case we have 613 mappers for obr ct annotation file so we

have to handle more than 100 connections one time. The following the tables 4.6

shows the results of the Parallel join implementation in HBase.

File name Size/ # of records Mapper Reducer Time(sec) Relation file

wp annotation 1786MB/54039 43 10 43 659MB/24153638

ct annotation 5916MB/164808416 613 10 482 659MB/24153638

pm annotation 16983MB/42049697 1560 10 583 659MB/24153638

Table 4.6: Parallel Pig Join HBase. - The Execution time of Join

We depicted a diagram that shows the execution time for two parallel join

algorithms such as Parallel Join in HDFS and Parallel Join in HBase. We con-

ducted each experiment more than three times and present the mean of those

values here.See Figure 4.3.

Figure 4.3: Parallel Joins in Pig - Execution time of join

32



4.4 Join Algorithms in MapReduce

4.4 Join Algorithms in MapReduce

4.4.1 MapReduce Joins in HDFS use Singleton pattern

On This Join we implement the Singleton pattern that we have mentioned in the

background part.

How we implement the join depends on how large the datasets are and how

they are partitioned. If one dataset is large but the other one is small enough

to be distributed to each node in the cluster, then the join can be affected by a

MapReduce job that brings the records into the every task trackers.

The mapper or reducer uses the smaller dataset to look up the relation meta-

data for a Join key, so it can be written out with each record. In our case the

relation file is not so small for distributing the data to all the tasktrackers so

we needed to implement other efficient way that is the Singleton pattern can fit

our requirement. We use Singleton object for the relation dataset to look up the

metadata for the Join key so every node of cluster has an instance of Singleton

object that contains a Hash Map object. In each node have two reducers and

those two reduce access through a Singleton object for looking up the join key

(concept id). see Figure 4.4

Figure 4.4: MapReduce Joins with Singleton in HDFS - Data flow

diagram

Implementing Singletons: There are a few ways to implement Singletons.

Although Singleton can be like behavior with static fields and methods, you gain
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more flexibility by creating an instance. With Singletons implemented as single

instances instead of static class members, we can initialize the Singleton lazily,

creating it only when it is first used. Likewise, with a Singleton implemented

as single instance, you leave open the possibility of altering the class to create

more instances in the future. With some implementations of the Singleton, you

allow writers of subclasses to override methods polymorphically, something not

possible with static methods.

We implement a Singleton in Java by having a single instance of the class as

a static field. We can create that instance at class-loading time by assigning a

newly created object to the static field in the field declaration.

Implementation details: In our case we consider two relations obr ct annotation

(ANNO) and obs relation (REL) in HDFS those have to be joined together and

emit the output into HDFS. I will explain the sequential steps of the algorithms:

1. Datasets: we have two datasets as obr ct annoation and obs relation those

are in HDFS as a text file. The input file obr ct annoation is split by Hadoop

into chunks those are assigned to a collection of map processes.

2. Mapping: The Map function carry out only on the obr ct annotation

file. When map function run it read key-value pairs from the input file

(obr ct annotation) and create intermediate key -value pairs such that in

each pair, the generated key is the join key. In case of relation obr ct annotation,

a map process will turn each tuple (K1, V1) from the input of ANNO file

into a key-value pair.the

3. Partitioning: In our case the Mapper was producing (key, value) pairs,

partitioning is to be done so that pairs with the same join key reach the

same reducer.

4. Shuffling: The intermediate key-value pairs of mappers are shuffled across

the network such that each reducer gets the key-value pairs of its partition.

5. Grouping: Each reducer groups the keys within a partition and presents

each group to a separate reduce process.
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6. Reducing: The Each groups (K1, [(V1) ,( V2) ,( V3)]) and (K2, [(V1)

,( V2) ,( V3)]) are provided to separate reduce processes those has single

instance of Singleton object (obs relation) and the method for the values

by associated with a join key from the Hash Map. In each reduce process, a

join is computed between the values grouped as K1 with values fetched as

K1 from Hash Map (Singleton object). Then the joined records produced

as a result of this cross-product are written to the output part file of the

reducer.

The following the tables 4.7 shows the results of the MapReduce Joins in

HDFS use Singleton pattern

File name Size/ # of records Mapper Reducer Time(sec) Relation file

obr wp annotation 1786MB/54039 110 10 19 659MB/24153638

obr ct annotation 5916MB/164808416 110 10 69 659MB/24153638

obr pm annotation 16983MB/42049697 228 10 138 659MB/24153638

Table 4.7: MapReduce Joins in HDFS with Singleton pattern. - The

Execution time of Join

4.4.2 MapReduce Reduce side join in HDFS

In this part we implement the Reduce side join that is applied on the reduce

nodes and the join is more general than a other join, in that the input datasets

do not have to be a structured in any particular way, but it is less efficient as

both datasets have to go through the MapReduce shuffle process.

The main idea is that the mappers tags each record from the input dataset

in the HDFS with its source information and generate key value pairs such that

the join key as the map output key, so that the records with the same key are

brought together in the reducer. Then key-value pairs in the output of Mapper

are shuffled across the network and each reducer gets the emitted key-value pairs
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from both data sets. The join is carried out by each reducer between the records

of the two datasets and the joined records are outputted.

In practice all of the input is interpreted by a single input format and a single

Mapper function. In our case we need multiple inputs and different dataset those

are different format. The input sources for the datasets have different formats, in

general, so we need to implement the MultipleInputs class to separate the logic

for parsing and tagging each source. For instance, one might be tab-separated

plain text and the other a binary sequence file. Even if they are in the same

format, they may have different representations and, therefore, need to be parsed

differently.

Implementation details: In our case we consider two relations obr ct annotation

(ANNO) and obs relation (REL) that have to be joined together. Both relations

are stored in separate text files in the HDFS. These two relations have to be

joined on the concept id as key in MapReduce that is not essentially the same

as in relational databases. The Map/Reduce keys are not unique. They are just

the attributes used to distribute data among reduce processes. To keep things

simple, we consider an inner-join between ANNO and REL.

In the following figure4.5 you can see the Join obr ct annotation and obr relation

using MapReduce.

Figure 4.5: MapReduce Reduce side join in HDFS - Data flow diagram

As you see on the figure 4.5 I will explain the sequential steps of the algorithms:
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1. Datasets: we have two datasets as obr ct annoation and obs relation those

are yellow and blue color for input. The input files of both the datasets

are split by Hadoop into chunks those are assigned to a collection of map

processes.

2. Secondary sort: the reducer will see the records from both sources that

have same key, but they are not guaranteed to be in any particular order.

However, to perform the join, it is important to have the data from one

source before another.

3. Mapping: When map function run it read key-value pairs from the input

file (obr ct annotation and obs relation files) and create intermediate key

-value pairs such that in each pair, the generated key is the join key. It also

tags the intermediate key-value pairs with information about their source

relation. Furthermore, the intermediate key-value pair emitted by a mapper

consists of the join key tagged with data source (DS1 and DS2 on the figure)

and a value.

In case of relation obr ct annotation, a map process will turn each tuple

(K1, V1) from the input of ANNO file into a key-value pair with compos-

ite key-value and the indication of data source (K1, DS1,V1 ). Similarly,

for obs relation file, each map process will turn tuple (K1, V4) from REL

into a key-value pair with key and the indication of data source (K1, DS2,

V4). The indication DS1, DS2 that indicates the source of data. Instead

of tagging a key-value pair with full name of the dataset, we use here this

abridged notation in order to save some bytes since the tag has to be in-

cluded with each key-value pair. This indication of data source has another

use in sorting the pairs during the reduce phase as well. Also this tagging

is important because in the reduce phase, we want tuples from ANNO and

REL to be joined together and having an identifier for each relation helps

distinguish the tuples according to their data sources and hence tuples from

different relations are joined.

4. Partitioning: In Hadoop regular MapReduce job do a partitioning au-

tomatically after the map part. In our case the Mapper was producing
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(composite key, value) pairs, partitioning is to be done so that pairs with

the same join key reach the same reducer. But if we partition the key-value

pairs on the basis of the composite key, values belonging to keys (K1,DS1)

and (K1, DS2) will be reached to different reducers. We want the parti-

tioning on the basis of just the join key K1 in our case.

Since the output of the map phase is a composite key (join key, data source),

we neet to implement our own partitioner that extracts the join key and

assigns an appropriate partition number to the tuple depending on the hash

value of this join key.

In our implementation of Partitioner class we overwrite the getPartition()

function of this custom partitioner class, we extract the join key from the

composite key and on the basis of the hash code of this join key, we assign

it a particular partition number.

5. Shuffling: The intermediate key-value pairs of mappers are shuffled across

the network such that each reducer gets the key-value pairs of its partition.

6. Grouping: Each reducer groups the keys within a partition and presents

each group to a separate reduce process. But in our case we use composite

key so we want the key-value pairs with same join attribute should be

received by one reduce process. This can be accomplished by grouping

the keys according to the join attribute. To achieve this, we implement

our custom group comparator derived from WritableComparator class of

Hadoop which considers only the join attribute for grouping.

7. Reduction: The groups (K1, DS2,[ V6,V7,V1 ]) and (K2, DS2,[ V9,V10,V8

]) in the example above are provided to separate reduce processes. In each

reduce process, a join is computed between the values tagged as DS1 with

values tagged as DS2 after decoupling the tags from the (value, tag) pairs.

The joined records produced as a result of this cross-product are written to

the output part file of the reducer.

The following the table 4.8 shows the results of MapReduce Reduce side join

in HDFS
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File name Size/ # of records Mapper Reducer Time(sec) Relation file

obr wp annotation 1786MB/54039 200 20 36 659MB/24153638

obr ct annotation 5916MB/164808416 210 20 108 659MB/24153638

obr pm annotation 16983MB/42049697 379 20 248 659MB/24153638

Table 4.8: MapReduce, Reduce side join in HDFS. - The Execution time

of join

We depicted a diagram that shows the execution time for two MapReduce

join algorithms such as MapReduce, Reduce side Join in HDFS and MapReduce

join with Singleton. We conducted each experiment more than three times and

present the mean of those values here.

Figure 4.6: MapReduce joins in HDFS - The execution time of joins

4.4.3 MapReduce Join in HBase and HDFS

In this part we implement the MapReduce join that is applied on the reduce

nodes and input datasets are in HBase and HDFS, in that the input datasets
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have to be structured in HBase as structure way.

The main idea is that the mappers tags each record from the bigger input

dataset obr ct annotation in the HDFS and generate key value pairs such that

the join key as the map output key, so that the records with the same key are

brought together in the reducer. Then key-value pairs in the output of Mapper

are shuffled across the network and each reducer gets the emitted key-value pairs

from the big data sets. The smaller dataset obs relation is in the HBase as a table,

the join key is as row key on the table. In the Reducer side reducer function load

the smaller dataset from the HBase to look up the relation meta data for a Join

key. The join is carried out by each reducer between the records of the two

datasets and the joined records are emitted. See Figure 4.7.

In our case the relation file is not so small for distributing the data to all

the task trackers and I will be difficult to load into the memory of machines as

Singleton implementation, so that is why we need to implement in the HBase.

The main Advantage of this method is the tables (in HBase) are mutable that

I can insert, fetch, update and edit and delete as single row or multiple rows.

The HDFS works great with immutable data such as log file or some text file. In

order to increase speed of the join I needed to make a multidimensional structure

of obs relation table.

Figure 4.7: MapReduce join in HDFS and HBase - Data flow diagram

Implementation details: In our case we consider two relations obr ct annotation
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(ANNO) in HDFS and obs relation (REL) in HBase those have to be joined to-

gether and emit the output into HDFS. I will explain the sequential steps of the

algorithms:

1. Datasets: we have two datasets as obr ct annoation and obs relation those

are in HDFS as a text file and HBase as a table respectively. The input

file obr ct annoation is split by Hadoop into chunks those are assigned to a

collection of map processes.

2. Make a multidimensional structure: As I mentioned before I have

the obs relation file that has 24,153,638 lines (row) and 690,981,765 bytes

(658 MB). In order to get an advantage of HBase we need to reorganize

the structure of the dataset. So I have changed the id by concept id and

I have added a dimension parent concept id as a column family. After I

implement the multidimensional structure I can decrease the number of

row up to 2257402 and it means a row has it is much easy to fetch row

from HBase. It means more chances of hitting a single region to fetch

the needed data. In the following table 4.9 is showed the implantation of

multidimensional structure of obs relation table.

Table name Row key Family Attributes

obs relation table concept id metainfo:id Always contains the column keys

id. It should be IN-MEMORY.

parent concept id: Column keys are written like par-

ent concept id and the values are

written as a parent level

Table 4.9: Multidimensional Structure of Relation table - obs relation

table

The table means a row has multiple columns as parent concept id under col-

umn family parent concept id and the values are written as a parent level.

See Figure 4.8.
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Figure 4.8: Hbase Cell structure - Cell diagram

3. Mapping: When map function run it read key-value pairs from the in-

put file (obr ct annotation) and create intermediate key -value pairs such

that in each pair, the generated key is the join key. In case of relation

obr ct annotation, a map process will turn each tuple (K1, V1) from the

input of ANNO file into a key-value pair.

4. Partitioning: In our case the Mapper was producing (key, value) pairs,

partitioning is to be done so that pairs with the same join key reach the

same reducer.

5. Shuffling: The intermediate key-value pairs of mappers are shuffled across

the network such that each reducer gets the key-value pairs of its partition.

6. Grouping: Each reducer groups the keys within a partition and presents

each group to a separate reduce process.

7. Reducing: The Each groups (K1, [(V1) ,( V2) ,( V3)]) and (K2, [(V1) ,(

V2) ,( V3)]) are provided to separate reduce processes those has an instance

of HTable (obs relation) and the method for getting a row by associated

with a key. In each reduce process, a join is computed between the values

grouped as K1 with values fetched as K1 from HTable. Then the joined
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records produced as a result of this cross-product are written to the output

part file of the reducer.

In the following the tables 4.10 shows the results of the MapReduce Join in

HBase and HDFS

File name Size/ # of records Mapper Reducer Time(sec) Relation file

obr wp annotation 1786MB/54039 110 10 41 659MB/24153638

obr ct annotation 5916MB/164808416 210 10 2780 659MB/24153638

obr pm annotation 16983MB/42049697 228 10 3650 659MB/24153638

Table 4.10: MapReduce Joins in HDFS and HBase - The Execution time

of Join

We depicted a diagram 4.9 that shows the execution time for join algorithms

in Pig and the execution time for MapReduce join algorithms 4.10. We conducted

each experiment more than three times and present the mean of those values here.
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Figure 4.9: Join algorithms in Pig - The Execution time of Joins

Figure 4.10: Join algorithms in MapReduce - The Execution time of Joins
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4.4.4 Build Multidimensional structure in HBase

In NCBO BioPortal (14) they are currently working on expanding the Resource

Index to include more resources. The goal is to index up to 100 public re-

sources, including PubMed (15), which provides access to all research articles

in biomedicine. They have already encountered limitation of storage and pro-

cessing, with the original workow taking too long to process each resource. The

most computationally expensive process is term expansion based on semantics,

which relies mostly on join operations.

The NCBO Resource Index that is used for search purposes is a product of

several complex processes. Resource Index has to be available for search and it

would be beneficial to introduce the update as soon as possible. We need special

architecture that will allow for concurrency of updates and searches. That will

allow for continuous updates to Resource Index without taking the search offline.

Moreover, such architecture should support many concurrent requests without

noticeable decrease in performance.

So I have analyzed the resent structure of the database in order to re-structure

the database; this restructuring will be enabled us to reduce the processing time

for one of the larger datasets from one week to few hour and no need time for

join queries.

Implementation details: Getting high scalability from your relational database

is not done by simply adding more machines because its data model is based on

single-machine architecture. HBase can be reduced to a Map [ byte[], Map [

byte[], Map [ byte[], Map [ Long, byte[] ]]]]. The first Map maps row keys to their

column families. The second maps column families to their column keys. The

third one maps column keys to their timestamps. Finally, the last one maps the

timestamps to a single value. The keys are strings, the timestamp is a long and

the value is an array of bytes. The column key is always preceded by its family

and is represented like this: family:key. Since a family maps to another map, this

means that a single column family can contain a theoretical infinity of column

keys. So, to retrieve a single value, the user has to do a get using three keys:

• row key+column key+timestamp = value
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1. Rows: In our case we chose the row key as concept id that is treated

by HBase as an array of bytes but it must have a string representation. A

special property of the row key Map is that it keeps them in a lexicographical

order. To keep the integers natural ordering, the row keys have to be left-

padded with zeros. Getting a row we can collect the all parent concept ids

with their elements information for a concept quickly and the advantage

of making this structure is all related data will be saved on the a region

in on a Region server. In order get a row data we use Get class of HBase

client API. When I get a row I will have maps those contain keys as column

families (position from, metainfo, element id etc in the table.) and values

as maps those contain keys as column keys.

2. Column Famulies: A column family regroups data of a same nature in

HBase and has no constraint on the type. The families are part of the table

schema and stay the same for each row; what differs from rows to rows is

that the column keys can be very different from each other. For example,

row key ”20080702” (concept id) may have in its ” content id:” family the

following column keys as element id or parent concept id:

content id:321321

content id:43215432

content id:1

A column family is a dimension so in my implementation have 11 column

families it means a table with 11 dimensions.

3. Timestamps: The values in HBase may have multiple versions kept ac-

cording to the family configuration. By default, HBase sets the timestamp

to each new value to current time in milliseconds and returns the latest

version when a cell is retrieved. In our case I left the timestamp for latest

data time for fetching the values.

In the figure 4.11 shows the resent database structure of MySQL :
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Figure 4.11: ERD (entity relationship diagram) - ERD (entity relationship

diagram) of Database
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Here you can see the Multidimensional index structure in HBase 4.11

Also you can see 4.11 that the one-to-many relationship between obr wp annotation

and obr wp element is handled by putting each attributes of the obr wp element

as a family in Annotation table and by using it an element id as a column key,

all elements are already sorted. One advantage of this design is that when we

fetch a row we can get the all the elements and parents.
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Table name Row kye Family Attributes

Annotation table concept id metainfo: Always contains the column keys dic-

tionary id and workflow

content id: Column keys are written like element id

that is from the obr wp annotation ta-

ble. The value are written as a con-

tent id.

context id: Column keys are written like element id

and the values are written as a con-

text id

position from: Column keys are written like a ele-

ment id and the values are written as

a position from.

position to: Column keys are written like element id

and the values are written as a con-

text id

term id: Column keys are written like element id

and the values are written as a posi-

tion to.

element id: Column keys are written like element id

and the values are written as a ele-

ment id

parent concept id: Column keys are written like par-

ent concept id and the values are writ-

ten as a parent level

local element id: Column keys are written like element id

and the values are written as a lo-

cal element id

wp name: wp organism: Column keys are written like element id

and the values are written as a lo-

cal element id

Table 4.11: Multidimensional index structure in HBase - HBase Resourse

index
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Chapter 5

Discussion on the results

We would like to see following results of our experiments, it is quite evident

from the results presented in Figures 5.1,5.2,5.3,5.4 those for combination of five

different distributed join algorithms and two different distributed file systems

such as HDFS and HBase.

Theoretically Replicated Join should be faster than Hash Join but in my case

Regular Hash join was faster than replicated join. The reason behind this is

because for the number of map tasks started are equal to the number of blocks in

the left side input of replicated join. Each of these blocks will read the replicated

input. If the replicated input read size is few times larger than block size, using

replicated join will not save on IO/ (de)serialization costs. In the Replicated Join

in Pig we have got only better performance than other joins in Pig when the

input data is small enough in our case of obs wp annotation file.The Replicated

join does not finish when the build relation does not fit in the main memory. In

the experiments conducted for the comparison of the join algorithms, fortunately

the relation file is fitting in the main memory, but more practical, real datasets

consisting of trillions of records are huge enough to exceed the size of the main

memory. Hence, the Replicated join will be out of the competition for future

work.

The MapReduce join with Singleton pattern performs efficiently to handle

the situations in all tree different input dataset. Except MapReduce join with

Singleton pattern, among the remaining algorithms, the reduce-side join performs
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better in case of obr ct annotation and obr pm annotation. This is because all

other algorithms require partitioning of datasets on the join key to accumulate

similar keys of both datasets into partitions with same partition number. The two

corresponding partitions of both datasets are then joined in the join stage. Since

the reduce-side join skips this phase of partitioning, its performance is better

than the other algorithms.

It is evident from the results that in case of MapReduce join in HDFS and

HBase and join MySQL. The algorithm MapReduce join in HDFS and HBase

takes a longer time than others joins but it was faster than implementation of

join in MySQL it show in case of our situation using cluster is more efficient than

Relational database management system (RDBMS). In our experiments running

join query is possible in case of obr wp annotation and obr ct annotation files

and it was not able to complete the query in case of obr pm annotation file but

more practical, real datasets consisting of trillions of records are huge enough to

exceed the size of the single machine so running RDBMS server is expansive and

difficult to create the index.

Figure 5.1: Joins in obr wp annotation - The Execution time of

obr wp annotation file
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Figure 5.2: Joins in obr wp annotation - The Execution time of

obr ct annotation file
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Figure 5.3: Joins in obr wp annotation - The Execution time of

obr pm annotation file

Figure 5.4: Joins in MySQL - The Execution time in MySQL
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Figure 5.5: The Execution time of Joins - The Execution time of Joins
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we presented methods related with scaling-out the semantic annota-

tion data of NCBO Resource Index (13) those they have implemented on MySQL

sever on single machine. In order to improve the performance of the computation

we implement the algorithms for data-parallel computing and data combining.

We have presented a time difference of computation performance both user

defined function and high-level query languages, furthermore the choice of pro-

gramming interface has a different effect on the performance of computation. In

order to get good performance I had organized the cluster server and implemented

the good execution plans that can fit well for such computation and platform.

This thesis evaluates the implementations for performing data combination

and computation in several state of the art distributed computing systems: Hadoop

(20), HBase (26), Pig (24), MapReduce (1) and MySQL Servers. We had stored

data in storage in the Hadoop Distributed File System (HDFS) (22), which is ab-

stracts data distribution across the cluster nodes and HBase, which is distributed

database system based on the HDFS. The Pig and The Map/Reduce framework

facilitates parallel processing of the data distributed among processing nodes in

a computing cluster.

We have implemented several methods in two different storage HDFS and
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HBase, the execution of all the Join in HDFS was faster than in HBase, fur-

thermore As every kind of Processing task benefits from parallelization, so does

the parallel joining of datasets. The processing stage was initially implemented

in Pig but we needed to compare it with pure MapReduce jobs to potentially

leverage a custom HBase index. Implementing join in Pig was easier than join in

MapReduce.

In this project, we presented a join algorithm that is a MapReduce Join with

Singleton pattern and the MapReduce reduce-side joins and those are capable of

handling in the any input datasets.The MapReduce join with Singleton pattern

performs efficiently to handle the situations of our case.

The hash join in Pig performs well in the case of big data which is bigger

than memory of machine and the Replicated join has a better performance when

the input data is small enough in our case of obs wp annotation file, our algo-

rithm dynamically selects an appropriate partitioning strategy on the basis of the

characteristics of the input data.

I have analyzed the resent structure of the database in order to create a custom

HBase index as a multidimensional structure; this restructuring enabled us to

reduce the processing time for one of the larger datasets from one week to few

hours and we do not need a time for join queries. The multidimensional structure

of HBase will be also investigated as a way to reduce storage requirements for

semantic expansion. This allowed scaling-out the NCBO Resource Index to cover

all the required resources and to perform better.

6.2 Future Work (11)

Processing part: The project can be extended in future to apply several differ-

ent data processing languages those base on top of Hadoop such as Hive (23) is

a SQL-like query language and Cascalog (31) is a Clojure-based query language

for Hadoop inspired by Datalog. Furthermore can be used for data storage Hy-

perTable (32) can be an alternative it has its own HyperTable Query Language

with a SQL-like syntax.
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Maintaining Part: The big part of future work is maintaining the Resource

Index that includes two main tasks: updating and making it available for rapid

search and those both tasks should work in parallel. In order to maintain the

Resource index that we implement in HBase it can be implemented client API of

HBase. Cassandra and Voldemort (30) can both be considered here as they focus

on fast data serving in contrast with bulk processing in, for example, HBase.

They can also handle parallel read and writes well. However, they do not offer

any dedicated mechanism for handling the connection with the bulk processing

backend. Though, it can be constructed. The most recent project that emerged is

ElephantDB (29). It consists of two integrated components where one is dedicated

to creating the Resource Index and the other to serving it.
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