University of

Stavanger

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization: Autumn semester, 2011
Computer Science
Open access

Writer: Bo Liu

(Writer’s signature)

Faculty supervisor: Reggie Davidrajuh

Title of thesis: Simulation of Network Intrusion Detection System with GPenSim

Credits (ECTS): 30

Key words: Pages: ... 42............

Colored Petri Net, GPenSIM, Network Intrusion +enclosure: 24............
Detection System, Particle Filter

Stavanger, 19, December, 2011

Abstract

In recentyears, network has penetrated into every aspect of ourlife with its rapid growth and
popularization. More and more serious network security problems have occurred together with this
process, especially network intrusion problem. It has seriously affected the normal use of network, so
research of networkintrusion detection has become one of the hottest research areas. This thesis
simulated anetworkintrusion detection system based on particle filterto solve the network intrusion
problems. It can filterthe intrusion behaviors by using particle filtertechnique into network intrusion
detection. This thesis simulates against two specificintrusion behaviors (intrusion and Trojan). The tool
used formodelingis colored Petri net whichis built up on basic Petri net. Colored Petri net can model
complex object by adding specificmeaning to tokens. Italso supports structured modeling, which can

divide complex objectinto several parts.

Thisthesisemphasized on the process of simulating with colored Petri nets. It simulates two network
intrusion systems againstintrusion and Trojan behaviors. Both of the two models for networkintrusion
detectionsystemare divided into three modules. The models, functions and connecting methods of
these modules are presentedin the thesis. The meaning of the places and color spaces of tokensinthe
model are presented in detail. The meanings of the transitions and requirements forthemtofire are
alsointroduced. This thesis programs with GPenSIM (General Purpose Petri Net Simulator) toolbox. The
problemsinthe simulation and the process of solving them are described. The result of the simulationis

also presented and analyzed.

Key Words: Colored Petri Net, GPenSIM, Network Intrusion Detection System, Particle Filter

Contents

FaTagoTe [V Tord o] o H PP EUTPTRPPTRPN 1

P Y/ =1 d o oo PSPPI PP 3
2.1 POLIINEL.. ...t 3

D C 4T - .« T 4

b B o T4 1 (o1 =3] (= TP PTPPRPRR 4

2.4 INtrusion deteCtion SYSLEMiiiuu it 5

T V=1 =T Yo o O 6
Model aNd SIMUIATIONt et ettt e et e e e e e e eaaens 7

4.1 OVEIAII AESIGN ... e 7

B N 1 11V (g I (=3 =Tt o Lo ¢ PP PPRT 8
4.2.1 MOTEI DESIZN ..vuveviveeiereitetieteeeteetee et et et etee s eteetesseteeteseeteesese et e s eseasessebensese et essese et essese st eneebesseteseseeseseensetesensereneeseneen 8

4.2.2 PEEI NETIESIZN ..cuitieietiieieieiete ettt ettt sttt et e e te st e st st et es e be st e s enses e s es e ene b e st eaesseneebenseseseneesenseneeteseneeseneesenean 8

4.2.3 SIMUIGTON FESUIT..c.eiiiitiitiitieitetetete ettt b e s b b et e b e e s aesb e s bt e bt e bt e b e b e ebesnesbeeas 21

L R o) [I =1 o =Zox (o 26
4.3, 1 IMOTET AESIN .ttt h e bt ettt e e bbbt e st et e e e e b e e bt s b e e bt e h e e e et e eenbe e bt et et et e b e eneenenaeeas 26

L P A R = Ao =T - OSSOSO 27

4.3.3 SIMUIGTON FESUIT...eieiereieeerte ettt ettt et st sat e s bt e s bt e s bt e sae e sa s e saeesb e e sbe e be e beenbeesbee st enbeeanennnes 36

LT oo 1 Vol [V T Y o I 40
B, FULUIE WOIK ottt et ettt et e et et e ettt et e e et e e et e e bt e e e enens 42
2] =T YTl Y PPN 43
Yo T ol olo Yo [P PPTRPPRN 45

1. Introduction

With the rapid development of the Internet, its security problems are also coming out.
Networkintrusionisabigprobleminnetwork security field. Network intrusionis the
behaviorthatillegally operates others’” computersystemto steal orjuggle theirimportant
private messages without authorization. Network intrusionis very harmful, can cause
damage to the system, lost of the secret data and illegal control (including Trojan control).
The target of network intrusion detectionisto detect the abnormal behaviors orabnormal
packetsto maintain the interests of the network users and guarantee the safety of the
network. The research of network intrusion detection has both important theoretical

significance and practical value.

There are various kinds of methods for modeling of network intrusion detection system.
Petrinetisa popularmethod amongthem. Petri netis the mathematical representatives of
discrete concurrent system. Itis createdin 1960’s , and has been expanded to many
different kinds from the basic Petri nets after many years’ development, including timed
Petrinets, colored Petri nets, layered Petrinets, and so on. Nowadays, the applications of
Petrinets have penetrated into many computerfields including network protocol, network

security, concurrent systems and artificialintelligence ™.

Colored Petrinetis used frequently inthe modeling of complex models. Colored Petri netis
an advanced Petri net derived from the basic Petri net. Its expressingcompetence is
expanded by adding specificmeaning to each token on the basis of normal Petri net. Coloris
similarto the data structure in the advanced programminglanguage and can make a good
description of the resources. During the process of modeling, colored Petri net can build
hierarchical model. Thatis, by decomposinglayer by layer, simple models are designed first,
thentheyare combinedtogethertoform complex models. With these advantages, color
Petrinetis applied more and more in the modeling of complex modelsin recentyears™?. In
thisthesis, some practical problemsin network intrusion are analyzed. Two simulation cases
includingintrusion detection and Trojan detection are analyzed and studied. This thesis aims
at the solution of network security problem by simulating ageneral network intrusion

detection system. This goal is achieved by filtering the abnormal packetsin the networkin

the simulation process.

Itisa greatchallenge to judge whetherthe packets and operations are abnormal inan IDS.
Because the scale of networkis so large that itis almost used in every corner of the world, it
isalso difficultto decide how to deploy the network intrusion detection system reasonably.

What’s more, the behaviors of networkintrusion are changeable and new intrusion

behaviorsappear continuously, whichincreases the error rate of networkintrusion

detection system.

In thisthesis, anotherimportant problemisthe process of simulation. We need to analyze
the details and results of the simulation of IDS to see what happensin the networkintrusion
process so that we can analyze these problems thoroughly and solve them. In this thesis, the

simulation of IDSis realized with colored Petri netand GPenSIMtools.

There are many problems and difficulties in the process of simulating IDS. Firstis the
simulation of the network environment. Since the real network is changeable every minute,
itisdifficulttosimulateevery aspect. We simplified it when simulating the network, but still
try to make it close tothe real oneinorderto get ideal results. The second problemis thatit
isdifficult to simulate the abnormal packets. We realized it by settinga color in the color
space of the places for packets. We also encountered some problems concerning the bugs of

GPenSIM. We solved it by some special techniques.

In the paper "Particle Filter for Depth Evaluation of Networking Intrusion Detection Using
Coloured Petri Nets"", Chien-Chuan Lin and Ming-Shi Wang proposed a networking
intrusion detection system using particle filter concept, and simulated it with Colored Petri
Netstools (CPN Tools). This thesis used the architecture of the model of that paper. Both of
twomodelsdivide the systeminto three parts: sender module, detection module and
receiver module. And the algorithm to decide whethera packetis normalinthisthesisisthe
same as their paper, whichis based on the absolute value of the difference between the
port numbersentfromthe senderandthat of the particle filter. However, the process of
building Petri netsinthisthesisis different from their paper, because the development
platformthey usedis CPN tools while | used GPenSIMtoolsin this thesis. The Petri nets used
inthisthesisis designed by myself. Inthis way, the programming process and simulation
processinthisthesisisalsodifferent fromthatintheirpaper. The simulationresultisalso

different.

2. Methods

2.1 Petri net

The word Petri spreads widely since Carl Adam Petri from Federal Germany first used
reticularformation to simulate communication systems in his doctoral
dissertation’Communication with Automata’ in 1962. Today, the word Petri net not only
means this kind of model, butalso means the theory developed onthe basis of it. A great
progress hasbeenmade inthe field of application and theory of Petri net. A Petri netis
composed of several places, transitions and arcs which pointfroma place to a transition or
froma transitiontoa place. Places and transitions can be connected by many arcs, but there
are notarcs between places or between transitions. A place can contain any number of
tokens. When a transition fires, the tokensinitsinput places will be consumed and tokens
will be producedinits output places. A transition will fire only when there are enough
tokensinallitsinputplaces. Ina basic Petri net, all the tokens are the same, while in the
colored Petri net, individuals of the same kind are colored with the same col orand different
individuals are distinguished by different colors. The advanced Petri net system includes
Colored Petri Net, Cyber Net System, Timed PetriNet, Stochastic Petri Net, etc 41

The formal definition of a Petrinet™ :

“A Petrinetisa four-tuple (P, T, A, x0), in which:

P isthe setof places, P =[p1, p2,*:* pn],

Tis the setof transitions, T=[t1,12,*** tn],

Aisthe set of arcs (from placesto transitions and from transitions to places),
A=(P X T) U (TXP),

x isthe row vector of markings (tokens) on the set of places,

x =[x(p1),x(p2),...x(pn)] € Nn

Xgis theinitial marking.”

2.2 Gpensim

GPenSIMtools are invented by Professor Reggeie Davidrajuh at University of Stavanger. Itis
a modelingand simulation tool based on Matlab. It can helprealize the modelingand
simulation of Petri net easily and combine the othertoolboxes of Matlab with Petri net

models, which makes the modeling and simulation of Petri net much more convenient 25

GpenSIMis based on Matlab which has very powerful functions. Matlab has powerful
toolboxes such as Stochastictoolbox which can generate random data obeying arbitrary
distribution. It also has some graph toolboxes which can draw imaginal pictures and show
the results of simulation tangibly. Matlab also has its own powerful programming language,
which makes the simulation of Petri net using GPenSIMvery easy. We only need to program
some transition functions, network definition functions and initial functions when simulating
Petri net with GPenSIM®'.

The powerful function of GPenSIMcan help us simulate complex network models. In this
thesisthe complex Petri net model of IDSis designed with the modular function of GPenSIM.
It also has itsown colored Petri net functions which can help us model colored Petri net
easily. What’s more, GPenSIM can combine with Matlab toolboxes perfectly which can help
us utilizing the powerful functions of Matlab for our simulation. Compared with other

simulationtools, GPenSIMhas three advantages 1.

(1)Flexibility: GPenSIMcan be combined conveniently with otherlibraries and tools, making

it easyto build hybrid models. Forexample, Fuzzy Petri netis from the combination of Petri

netand Fuzzy logic;

(2)Extensible: users can write their own extensions to extend the existing functions or create

theirown functions which can help them realize special needs;

(3) Easy of use: This software provides natural language userinterfaceand hides the
complex mathematical details which helps users avoid complex mathematical computations

inthe modeling process.

2.3 Particle filter

In statistics, particle filteris also called sequential Monte Carlo methods, whichisacomplex
model estimation technique based on simulation. Particle filter plays animportantrolein
econometrics and otherfields. It represents probability with particle setand can be used on
any forms of state space models. Its core ideais to express the distribution with random
state particle extracted from posterior probability. Itis one kind of Sequential Importance

Sampling. Insimple terms, particle filteris the process of approximating the probability

density function by looking foraset of random samplesthatspreadin the state place and
gaining the minimum variance distribution by replacingintegration computation with
sample means. Here the sample means particle. When the amount of samples (particles) N

— o<, it can approach any form of probability density distribution "),

The superiority which the particle filter technique has shown in the nonlinear, non-Gaussian
system makes its application range very wide. Additionally, the multi-mode processing
ability of the particle filteris also one of the reasons which make it used widely. The particle
filterhasbeen usedin many fields all overthe world. In the economicsfield, it has been
used forthe economicdata prediction; inthe military field, ithas been used forthe radar to
track aero planesand air to air, air to ground passive tracking; in the trafficcontrol field, it
has been used forvideo monitoring of the drivers and the cars; it has also been used for

global localization of the robot "),

2.4 Intrusion detection system

Intrusion detectionisatechnique to detectthe computer network and system actively and
dynamicallyin orderto recognize the events which violatethe security strategy. It can find
the security problems, recognize and alarm the intrusion activities, and take appropriate
actionsto preventthe intrusion events or make up forthe damage of the computerand the
network. The research of intrusion detection technology started in the late 1980s. It isa new
type of network security technology that is developed on the basis of the traditional audit
technology. It can monitorthe security state of the system by means of statistics or
intelligent analyzing algorithm according to the features of networkintrusion orthe traces
leftinthe systemlog. Intrusion detection has become animportant part of the network
security system now. It will also be ahot spotin the research area of network securityinthe
future. The intrusion detection can’t stop some intrusion behaviors, butitcan help the
system administrator to prevent further attacks from the hacker. It makes up forthe

deficiency of the passive network security package .

The accuracy of the detectionisavital index to measure anintrusion detection system,
whichincludesfalsereject rate and missingrate. The pattern matching methodisamore
mature method at present, and the biggest advantage of this methodis high accuracy. But
for the unknown types of attacks it can do nothing. How toimprove the intelligence of the
intrusion detection system has become a hot spotinresearch area. Many intelligent
methods and theories such as artificial intelligence, immunity algorithm, machine learning,

have been usedinthe intrusion detection field to improve the intelligence of the system .

3. Related Work

Petri nets are widely used for modeling and simulating networks.

In the paper “An Application of GSPN for Modeling and Evaluating Local Area Computer
Networks”, Masahiro Tsunoyama and Hiroei Imai proposed amethod for modelinglocal
area computer networks used for processing and delivering multimedia data with
Generalized Stochastic Petri Net. It can “evaluate the meandelaytime andits jitter
(standard deviation) for systems based on the GSPN model and tagged

task approach “ .

HugoRodriguez, Rubén Carvajal, Beatriz Ontiveros and Ismael Soto proposed a method to
model and formally analyze acommunication system which holds a ellipticcurve encryption
scheme using Petri netintheir paper “Using Petri Net for Modeling and Analysis of a

Encryption Scheme for Wireless Sensor Networks” .

Charles Lakos, John Lamp, Chris Keen and Brian Marriott examines “how object-oriented
extensions tothe Petri Netformalism can address a number of issuesin the modeling of
network protocols” intheir paper “Modeling Network Protocols with Object Petri Nets”.
“The object-oriented extensions lead to the formalism of Object Petri Nets, with a textual
language form referred to as LOOPN++". Their paper “considers practical examples for which
clean, well-structured models can be created because of the support for modularity,

inheritance, polymorphism, genericity, and mobile objects” **'.

Congzhe Zhang and Mengchu Zhou present a Stochastic Peiri net-based approach in their
paper “A StochasticPetri Net Approach to Modelingand Analysis of Ad Hoc Network”. In this
paper, theyillustrate how their model can exploit the characteristics of the system to
construct a scalable model. The scheme theyproposedis “a powerful analytical model that

can be used to derive network performance much easierthan a simulation-based approach”

[12]

4. Model and simulation

4.1 Overall design

Networkintrusion detection systemis used forthe detection of misuse behaviors on
computersystems so as to keep the reliability and availability of them. It plays an important
role inthe network defense system. The modelis simulated with colored Petri nets. Itis
based on particle filter which makes use of aseries of samples called particletoapproach
the posterior conditional probability density of the state variables of the object. The
utilization of particlefilteralgorithm canfilter the network packets to detect some abnormal
packets. The block diagram of the network intrusion detection system proposed in this
thesisisas

below:

Detection .
Sender Receiver
< Center

4

Figure 1 Block diagram for network detection system

This networkintrusion detection system includes three parts:
1. Sender: It is mainly used to send the network packets.

2. Detection center: It mainly detects the network packets to find out anomalous packets

and packets with intrusion behavior.

3. Receiver: Itismainly used toreceive the network packets which are sent by the sender

and send out confirmation packets.

The major part of this systemisthe detection center which mainly filters the network

packets using particle filter algorithm. The major processis as below:

First, N number of characteristics are taken as particles; each of themis endowed with

different weight.

Then, every packetin one time window which lasts forafew minutesisfiltered to see

whetheritisanomalousornot.

At last, if any packetis confirmedto be anomalous, the packets with the same IP address,
UDP port numberand TCP port numberneedto be foundin thistime window and the

weight of corresponding particles should be added.

In thisthesis, two kinds of intrusion are studied: 1. Intrusion Detection 2. Trojan Detection.

4.2 Intrusion detection

4.2.1 Model Design
The intrusion packets are assumed to come from the sender, sothe intrusion detection
systemwe designed only detect the packets fromthe senderandignore the confirmation

packetsfromthe receiver. The block diagram belowshows the intrusion detection system:

Network
Intrusion
Detection

»

Network
Channel

Figure 2 Block diagram for intrusion detection system

4.2.2 Petrinet design

It isverydifficulttocompletely simulatethe real network environment, anditis also difficult
to simulate the classification of network packets using particle filter, so the network
intrusion detection systemis simplified in this thesis. The colored Petri netis used for

simulation.

GPenSIMtoolboxis used for building the Petri nets. It works in the Matlab environment and

isvery powerful. It can alsointegrate with the available Matlab toolboxes.

The sendermodule is used to generate network packets randomly. The diagram forits Petri

netis as below:

—» Gen_First_Sender

v
e Gen_Sender
v I A
t_SNA1 . TA t_TN

o
Rec_Akl
e
Rec_Ak2 4
v
@ Rec_Ak20 |-

Figure 3 Diagram for the Petri net of sender module of intrusion detection system

The meanings of the placesinthe Petrinet:

'start', thisplaceiswithoutcolor. Theinitial numberoftokenis 1. It isusedto generate the

first packet.

'Sender’, representsthe network packet. Its color spaceis(‘an’, 'bshst’, 'crhst', 'dprt’,
'ptT'), of whichthe beginningcharacters(a, b, ¢, d, pt) have nospecificmeanings. Theyare
used forordering the colors when simulating. The meanings of the colors are as follows: the
letter'n'in'an' isto mark the network packetsand n is added by 1 whena new packetis
generated. The 'shst'in 'bshst' stands forthe IP address of the sender. Ten sets of sender
computersystemsare set up inthis simulation and they are indicated by integers from 1 to
10 which are generated randomly. The 'rhst'in 'crhst' represents the IP address of the
receiverwhichisthe destination. Foronly three sets of receiver computer systems are set
up inthissimulation, they are indicated by integers from 1 to 3 which are generated

randomly. The 'prt'in'dprt' representsthe TCP port number of the receiver whichis

indicated by integersfrom 1to 100 which are generated randomly. Andthe letter 'T'in 'ptT'
representsthe content of the network packets which areindicatedby' N'and 'A'. 'N'
stands for the normal packets, while'A'standsfor anomalous packets. The probability to

generate anomalous packetsin thissimulationis 10%.

'Sender1": its colorspaceis the same as 'Sender'. It acts as a transit station to produce

places'SenderNo'and 'Al'.

'Sender 2" its colorspace is the same as 'Sender', and it also acts as a transitto generate

place 'TA"and place 'TN'".

'Sender 3" its colorspace is the same as 'Sender'. It acts as a production device to generate

network packets continuously, which willbe putintothe place 'Sender'.

'Sender No':it is used for the storage and statistics of all the packets generatedin the

simulation.

'A1": this place stands forthe network packets that will be senttothe receiver.

'TA'": it isused for the storage and statistics of all the anomalous packets generatedin this

simulation.

'TN': it isusedfor the storage and statistics of all the normal packets generatedin this

simulation.

'A2": itstands for the confirmation packets sent by the receiver. Itis the output of the former

module.
'A21': it acts as a transitto generate place 'Send_Rec'.

'A22': it acts as a transitto generate places 'TA2' and 'TA20".

'Send_Rec":itisusedforthe storage and statistics of the received confirmation packets sent

by the receiver.

'TA2": itis usedforthe storage and statistics of the received abnormal confirmation packets

sent by the receiver.

'TA20": itis used forthe storage and statistics of the received normal confirmation packets

sent by the receiver.
Meanings of the transitions in the Petri net:

'Gen_First_Sender':itis usedtogenerate the first network packet. When the simulation

starts, its input place contains one token, and it will fire immediately.

10

'Senders':itis usedto generate three network packets. Whenitsinput place ‘Sender’
containstoken and reach the time to fire, it fires. In this simulation, GPenSIMtools and
Matlab’s own toolbox StochasticFiring Times are combined for programming. Function

‘unifrnd’isused to generate firingtimerandomly.

'Gen-Sender':itactsas a generatorto generate network packets continuously. When the
input place contains token, itfires. This transition is designed notto inheritthe color space
frominputplace. Thisfunction can be realized perfectly by GPenSIM. We only need to set

transition.override=1. New network packets will be generated continuously.

't_TA'": itis used forthe statistics of anomalous packets. When ‘ptT’ in the color space of

input placeis ‘ptA’, itfires.

't_SNA1', itis usedto generate the packets that will be senttothe receiverand the packets

for statistics of the number of sent packets. It fires when itsinput place contains token.

't_TN', it isused for statistics of normal packets. When ‘ptT’ in the color space of itsinput

placeis ‘ptN’, itfires.

't_A2':itacts as a transitto generate packets fortwo channelsthat will be used forthe

follow-up operation.

'Rec_Ak1":itisusedfor statistics of all the received confirmation packets sent from the

receiver.

'Rec_Ak2": itisusedfor statistics of all the received abnormal packets sentfrom the receiver.

When ‘ptT’ inthe color space of its input place is ‘ptA’, it fires.

'Rec_Ak20'": itis used forstatistics of all the received normal packets sentfrom the receiver.

When ‘ptT’ inthe color space of its input place is ‘ptN’, it fires.
The analysis of the sender module:

The sender module mainly consists of two parts: 1. the part used for generation, statistics,
and sending of network packets; 2. the part used for receiving and statistics of the

confirmation packets sent from the receiver.

Thefirst part is used forgeneration, statistics, and sending of network packets. The changing
process of system statusis as follows: First, the first network packetis generated from the
firing of transition 'Gen_First_Sender'. Then, it waits forthe arrival of the triggertime of
transition 'Senders', and the triggertime is evenly distributed random integers. Three
network packets are generated from the firing of ‘Senders’ and they are separately sentto

three channels:the channel used forstatistics and sending, the channel for packets

11

generatorandthe channel used for statistics of anomalous packets. The transition ‘t_SNA1’
for the firstchannelisimmediately triggered to generate the token for place 'SenderNo'and
the tokenfor place ‘Al’. The channelforpackets generatorgeneratesanetwork packet
randomly and then waits for the trigger of transition’Senders’. The channel for statistics of
anomalous packetsis used forthe statistics of anomalous packets and normal packets and
they are stored separatelyinplace ‘TA’and ‘“TN’. ‘A1’ is used as the input for the next

module.

The second part is used forreceiving and statistics of the confirmation packets se nt by the
receiver. The changing process of the system statusis as follows: Place ‘A2’ stores the
confirmation packets sent from the receiver. Two same packets are generated afterthe
transition ‘t-A2’ has a packet as input and they are sent separately to two channels: the
channel forstatistics of all confirmation packets and the channel for statistics of anomalous
confirmation packets. The transition for the channel for statistics of all the confirmation
packetsistriggeredimmediately and place ‘Send-Rec’ storesall the received confirmation
packets. If the confirmation packets are anomalous, transition ‘Rec-Ak2’ fires and cause the
place ‘TA2’ to change. ‘TA2' is used for statistics and storage of the anomalous confirmation
packetssent by the receiver, If the confirmation packetsare normal, transition ‘Rec-Ak2’
firesand cause place ‘TA20’ to change. ‘TA20’ is used for statistics and storage of the normal

confirmation network packets sent by the receiver.

The second module isthe networkintrusion detection module. Itis mainly used forthe
filtering of the sent packets to see whetherthey are anomalous ornormal. Thenit makes
statisticsand sends the normal onesto the next module. Asitis difficult to fully simulate

particle filteralgorithm, this partis simplified in the model.

The diagram forthe Petrinetis as below:

12

Gen_First_pd

\\\ @ cy_Attacks cy_Nattacks
\ |

Normallo Normal2o \\\
T T \
‘ \‘ | |
,'/ A g ,//’
Normall Normal2 Normal3
4 ﬂ Gen_First_Rate
¥ x// .
cy_B1 cy_B2 cy_B3 cy_B4 start_rate

TranSlo |«

) TranS1 ¢**@
\
\
\
TranS3 [—

TranS3o

Figure 4 Diagram for the Petri net of intrusion detection module

13

The meanings of the places of the Petri net:

'start_pd'": it iswithout colorinformation. The initial number of tokenis 1. It is used as

generator of the particlesin the particle filter.

'Particle":it stands for the particlesinthe particle filter. Its color space is the same as the
colorspace of the packets. The difference betweenthemisthatthe ‘n’ inthe first color ‘an’
inthis placeis represented by arandom integerfrom 1to 1000 while the one inthe network

packets stands for the generating order of the packets.

'NPF_Pd1": itstandsfor the particles used forthe channel of particle generator.
'NPF_Pd2":itstandsfor the particles used forthe anomalous packets channel.
'NPF_Pd3":itstandsfor the particles used forthe normal packets channel.
'‘Al11": it stands forthe packets usedinthe particle generatorchannel.

'A12": it stands forthe packets usedinthe anomalous packets channel.

'A13": it stands forthe packets usedinthe normal packets channel.

'NPF2_ot" it has no specificmeaningand acts as a garbage station.

'NPF3_ot": it has no specificmeaningand acts as a garbage station.

'classify21': this place stands for the normal packets sentto NO.1 computerinthe receiver

part.

'classify22': this place stands for the normal packets sentto NO.2 computerinthe receiver

part.

'classify23': this place stands for the normal packets sentto NO.3 computerinthe receiver

part.

'classifyl": this place stands for the suspicious packets judged by the particle filter. And they
are sentto the first purification channelforfurtherjudgmentto see whethertheyare

intrusion packets or not.

‘classify12": this place stands for the suspicious packets judged by the particle filter. And they
are sentto the second purification channel for further judgment to see whetherthey are

intrusion packets or not.

'start_Rate': it has no color space. Itsinitial number of tokensis one, and is used to generate

the firstrate when simulation begins.

14

'Rate': this place standsfor a rate. Its color spaceis ‘r and itis represented by arandom

numberfrom 1 to 1000. It usesthe first purification channel.

'Rate2": this place also stands for a rate. Its colorspace is ‘r’ and it isrepresented by a

random numberfrom 1 to 1000. It usesthe second purification channel.
'cypkl":itisusedto generate the nextrate continuously.

'cypk2': this place stores the suspicious packets and the packets will be furtherjudgedto see

whetherthey are intrusion packets.

'attacks': it isused for the storage and statistics of the intrusion packets detected by the

network intrusion detection system.

'Nattacks': itis used forthe storage and statistics of the packets that are judged notto be

intrusion packetsinthe suspicious packets.

'‘B1": it stores the packets judged to be normal by the networkintrusion detection system

and the sendingtargetis NO.1computer. It will be used as the input of the receiver module.

'‘B2": it stores the packets judged to be normal by the networkintrusion detection system

and the sendingtargetis NO.2 computer. It will be used as the input of the receiver module.

'B3": it stores the packets judgedto be normal by the networkintrusion detection system

and the sendingtargetis NO.3 computer. It will be used as the input of the receiver module.

'‘B4": it stores the packets judged to be suspicious by the network intrusion detection system
and abandoned by the purification system. Thatis to say, the packets are neitherintrusion

nor normal packets. They are the packetslostinthe process of sending.

'Blo": this place stands for the packets judgedto be normal by the networkintrusion

detection system, butthe target of these packetsis not NO.1computer.

'B20' this place stands for the packets judged to be normal by the networkintrusion

detection system, butthe target of these packetsis not NO.2 computer.

‘B30’ this place stands for the packets judgedto be normal by the networkintrusion

detection system, but the target of these packetsisnot NO.3computer.

'C1": this place stands for the confirmation packets sentby No .1 receiver computer.
'C2": this place stands for the confirmation packets sentby No.2 receiver computer.
'C3": this place stands for the confirmation packets sentby No .3 receiver computer.

'Clo": this place stands for the lost confirmation packets sentby No .1 receiver computer.

15

'C30": this place standsfor the lost confirmation packets sent by No .3 receiver computer.

'A2': this place stands forthe collected confirmation packets sent by No.1, No.2and No.3

receiver computersanditwill be usedasthe inputof the receiver module.
The meanings of the transitionsin the Petri net:

't_A',itisusedas areplicatorto generate packets 'A11','A12"' and 'A13' usedinthree

channels.

'Gen_First_pd':itisusedto generate particles of the particle filter. As there'satokeninthe

initial place, itimmediately fires when the simulation starts.

'NPF': itis used to generate the particles of the particle filter for three channels:

'NPF_pd1','NPF_pd2', and 'NPF_pd1'".

'NPF1': itisusedto generate particles of the particle filter continuously. This transition is
designed nottoinheritthe colorspace fromthe input place. This function can be realized
very well with GPenSIMtools. We only need to set transition.override=1. New particles will
be generated continuously. The serial numberis generated to be arandom integerfrom 1 to

1000 here whileitisgenerated orderlyinthe sender module.

'NPF2":itisusedto judge whetherthe packets sent from the senderare suspicious. The
judging standard is based on the absolute value of the difference be tween the port number
sentfromthe senderand that of the particle filter. If the absolute value is belowathreshold
value, this packetis suspicious, and then this transition fires and sends the suspicious

packetsto the purification channelforfurther judging.

'NPF20'": itacts as a recycle binand has no practical meaning. It only fires when transition

‘NPF2’ doesn’tfire andits own fire conditions are met.

‘NPF3’:itis usedto judge whetherthe packets sent fromthe senderare normal. The judging
standard is based onthe absolute value of the difference between the port numbersent
from the senderand that of the particle filter. If the absolute value is above athreshold
value and the content of the packetis ‘ptN’, the packetis considered to be normal. Then this

transition fires and sends the normal packetsto the follow-up receiver system.

'NPF30'": itacts as a recycle binand has no practical meaning. It only fires when transition

‘NPF3’ doesn’tfire andits own fire conditions are met.

'Normall": itis usedtofilterthe packets fromthe senderbyjudging whetherthey are sent

to NO.1receivercomputer. Ifyes, it willfire.

16

'Normallo':itisusedto filter the packets thatare notsentto No.1receiver computer. [t will

fire whenthe receiver of packetsis not NO.1computer.

‘Normal2'": itis used tofilterthe packets fromthe sender by judging whethertheyare sent

to NO.2receiver computer. Ifyes, it willfire.

'Normal2o":itisusedto filterthe packets thatare notsentto No.2 receiver computer. It will

fire when the receiver of packetsisnot NO.2 computer.

'Normal3'" itis usedtofilterthe packets fromthe senderby judgingwhetherthey are sent

to NO.3 receiver computer. Ifyes, it willfire.

'Normal3o"itisusedto filterthe packetsthatare notsentto No.3 receivercomputer. It will

fire whenthe receiver of packetsis not NO.3 computer.

'Gen_First_Rate':thistransitionis usedto generate the firstrate. Asinitially itsinput place

containsone token, it will fire immediately when the simulation begins.

'Classify': this transition works as areplicator. Itis used to generate packets which will be

sentto rate generating channel and intrusion packets judging channel.

'cy_Rate': thistransitionis usedto generate rate continuously. It cannot inherit the color
space from the input place either. It will produce anew colorspace as the new rate through

a random number generating function.

'cy_Attacks': thistransitionis usedfor judging whetherthe suspicious network packetisan
intrusion packet or not. The standard is whetherthe ‘ptT’ color space of the packetis ‘ptA’

or not. Ifyes, itfires.

'cy_Nattack': thistransitionis used for determining whether the suspicious network packet
isa normal packetor not. The standard is whetherthe ‘ptT’ color space of the packetis ‘ptN’

or not. Ifyes, itfires.

'cy_B1": thistransitionis used forfurtherfiltering by judging whetherthe suspicious packets
are normal network packets, and whetherthe destination addressis NO.1 receiver
computer. When the value of the input transition ‘Rate2’ is below athreshold and the

receiver’sIPisNo.1, itfires.

'cy_B2": thistransitionis used forfurtherfiltering by judging whetherthe suspicious packets
are normal network packets, and whether the destination addressis NO.2receiver
computer. When the value of the input transition ‘Rate2’ is below athreshold and the

receiver’'sIPisNo.2, itfires.

17

'cy_B3'": thistransitionisusedforfurtherfiltering by judging whether the suspicious packets
are normal network packets, and whetherthe destination addressis NO.3 receiver
computer. Whenthe value of the input transition ‘Rate2’ is below athreshold and the

receiver'sIPisNo.3,itfires.

'cy_B4'": thistransitionis used forstatistics of the lost suspicious packets-those who are
neitherjudgedto be intrusion packets norsent toreceiver. When the value of the input

transition ‘Rate2’ is above a threshold, it fires.

"TranS1": this transition filters the confirmation packets from NO.1computer. The condition
iswhetherthe serial number of the packetis greaterthana randomintegerfrom 1 to 1000.

That is to say, it receives packets with a certain probability.

"TranS10": thistransitionis used forstatistics of the filtered confirmation packets sent by

NO.1receivercomputer, which are the lost confirmation packets.

"TranS2": thistransitionis used for statistics of the confirmation packets sent by NO.2

receivercomputer.

"TranS3": thistransitionis used forfiltering the confirmation packets sentby NO.3receiver

computer. The conditionis thatthe serial number of the packetisless than a randominteger

from 1 to 1000. That isto say, itreceives confirmation packets with a certain probability.

"TranS30": thistransitionis used forstatistics of the filtered confirmation packets sent by

No.3 receiver computerwhich are the lost confirmation packets.
Analysis of network intrusion detection module:

Thismodule includes two parts. One isfiltering of the packets from the sender, and the
otheris filtering of the confirmation packets from the receiver. Forthe networkintrusion
detection systeminthis simulation just detect the packets fromthe sender, the part of
filtering of the packets fromthe senderis more important, and only in this part we need the

particle filter. The first partis analyzed specifically.
Part 1: filtering of packets fromthe sender:

When this module receives anetwork packet fromthe sender, aninitial judgment will be
made through the particle filter. [t will be able to decide which are normal and which are
suspicious. Ifitisa normal packet, transition ‘NPF3’ willfire, and the packet will be sentto
the follow-up receiver. And then through IP address of the normal packets, the packets will
be sentto differenthost. There are three hostsin this simulation. When the packetisjudged
to be suspicious, it will be sent to the follow-up purifying channel. The transition’NPF2’ will

fire. A packetwill be considered to be intrusion packetifits contentis ‘ptA’. Thenitwill be

18

sentto the place ‘attacks’, and will be used inthe final analysis forthe experiment. Ifitis not

an intrusion packet, it will be senttothe senderwith a certain probability.

Part 2: filtering of the packetsfromthe receiver. The confirmation packets will be received
with a certain probability. This partis comparatively easy. Finally, the received confirmation

packets will be collected and sentto the sender module for statistics.

Receivermodule: because this part has little effect on the network intrusion detection, itis
simplified in the simulation. Afterreceiving the packets, each receiver computerwillsend

confirmation packets directly, without any filtering or handling.

The diagram of the Petri netis as below:

host1 host2 host3

e

Figure 5 Diagram of the Petri net for the receiver

The meanings of the placesinthe Petri net:

'C1": it represents the confirmation packets fromthe receiver host1.

'C2": it represents the confirmation packets fromthe receiver host2.

'C3": it represents the confirmation packets fromthe receiver host3.

The meanings of the transitionsin the Petrinet:

'host1": thistransitionis fromreceived packets to confirmation packets on receiver host1.
'host2": thistransitionis fromreceived packets to confirmation packets onreceiver host2.
'host3': this transitionis from received packets to confirmation packets on receiver host3.

The analysis of the receiver module:

19

The receivermoduleisvery simple. Each computerreceivesits own packets, and then sends

confirmation packets.
Connection between the modules:

Firstis the connection between the sender moduleand the network intrusion detection
module. The output of the sendermodule is the place ‘A1’ which will connect with the
transition’t_A1’ inthe net workintrusion detection module. Andthen, the place ‘A2’ for
confirmation packetsinintrusion detection module will be connected to the transition't_A2

inthe receiver module.

Nextisthe connection between the network detection module and the receiver module.
The output places of the network intrusion detection moduleare’B1’,’B2’ and’B3’, which
are the network packets sentto each host by the sender. They will be connected with the
transitions’host1’,’host2’,’host3’ in the receiver module. And the output places of the
receivermodule are’C1’,’C2’ and’C3’, which are the confirmation packets thatare sent from
each receiverhost. They willbe connected with the transitions’TranS1’,’TranS2’,’TranS3’ in
the networkintrusion detection module. These transitions will further collect and filter the

confirmation packets.

The connection of each module is achieved by using the modulartool of GPenSIMin the
simulation. Modularity is a major feature of GPenSIMtools. It can help ussimulate a
complex network. With the modulartool, we can divide the complexPetri netintoindividual
modulestodefine theirnetwork structures and the transition functions separately. Finally
usinga link function, we can connect the modules together. With this tool, the onlythingwe

needtodoisto definealink function.
The integral process of network intrusion detection system:

Firstly the sender module generates network packets continuously, and it will count the
number of sent packets and abnormal packets, then save them in a global variable whichis
defined by the GPenSIMtools. The global variable can save the simulation dataand use

themfor the final analysis and conclusion.

Then, wheneverthe sendersends a packet, the intrusion detection module will detect and
classifyitand count the number of the intrusion packets. It will also filter the packets from

the senderandthe confirmation packets from the receiver.

Finally, the receiver will receive the packets fromthe sender, and send confirmation packets
to the intrusion detection module. The intrusion detection module willforward the packets

to sender, and do some necessary statistics work.

20

4.2.3 Simulation result

The result of the simulationis shown as below:

) Command ¥indow | &
File Edit Debug Desktop Windew Help]
A
"Time:” T 33L0801 " Place:” Tk "7 Colorasd’ af R Tel’ THMIT Tptd
"Time:” 7223783 " Place:” Tk "7 Colorasd’ "aly w2 AT pti
"Time:” T1113.6666° 7 Placer” T4 7 Colers:’ Tal® B el TdRY Tptd

"Time:’ "2272.4818° 7 Placer’ T4 ! Colors:” 7400 "B Tel” A1 Tptd]

"Time:' "2889.513F 7 Placer’ T4 ! Colors:” "&bl "BY el Td19 Tptd

"Time:’ "3822.585% 7 Placer’ T4 ! Colors:” "af8 "BY el Tdi’ Tptd]

"Time:' "3912,8826° 7 Placer’ T4 ! Colors:” 7al0’ "®88 Te2 Td28 Tptd

"Time:” "3927.9322° 7 Placer” T4 ’ Colorz:™ "aTl’ W7 e’ A1 Tptd]

"Time:” T3042,981T 7 Placer” T4 ’ Colorz:™ "aT? w7 e’ A1 Tptd]

"Time:” '6493.0852° 7 Placer” T4 ’ Colors:’™ "al0” B9 '3 498 ptd’

"Time:” THT48. 8275 7 Placer” T4 ’ Colors:’™ 7al0F "B e’ TR Tptd]

"Time:” CTITEEMT 7 Placer” T4 ’ Colors:’ 7al28 WE g2 AT Tptd

"Time:” CTEO0.319%F 7 Placer” T4 ’ Colors:’™ 7al3T "W g2 48R Tptd]

"Time:” T82TT.ERIT 7 Place:r” T4 ’ Colors:’™ TaldT "B e’ 7482 Tptd

"Time:” T8427.7472 7 Place:” T4 7 Colers:” Tald® b1 e’ Td2F ptd
"Time:” "8803.885%° 7 Place:” T4 7 Colers:” Tal®d” b Ted Td¥ Tptd
"Time:” T9285.5714° 7 Place:” T4 " 7 Colers:” Taldy v el TdY Tptd]
"Time:” '9841.413% 7 Placer” T4 7 Colers” TaléT 0 w2 e Td8F ptd
"Time:” T97RA 107 7 Place:” T4 " 7 Colers:” TalT0 b Te2” Td8ET Tptd

ﬁ! "Time:” T10594,8822° 7 Placer” TTA 7 Colers:” Tal®” bl Te2 Td9Y Tptd 3

Figure 6 Simulation result of intrusion detection (1)

21

) Command ¥indow

File

Jx

Edit Debug Desktop Window

*Time:

*Time:

*Time:

Time:

*Time:

*Time:

*Time:

*Time:

*Time:

*Time:

Time:

*Time:

Time:

*Time:

*Time:

*Time:

*Time:

* Time:

*Time:

Time:

2

H

:

:

2

:

2

H

:

:

:

2

H

:

2

:

2

10910,

11001,

T11226.

"11257.

12445,

1330,

" 14266,

T14718.

" 16019,

T1BTTL.

" 15967,

" 15465,

" 18556,

18721,

1007,

T 20833,

T2,

121248,

" 21388,

" 21508,

227

27

9632’

ng2y

9768’

nage’

972"

4585’

4484

9269’

571

79617

0933

384’

5798

927"

5168

9625

4085

8049

Help

* Place:’

’ Flace:’

" Place:’

’ Place:’

* Place:’

2

Place:

" Place:’

* Place:

’ Place:’

* Place:

" Place:’

* Place:’

* Place:’

" Place:’

* Place:’

’ Flace:’

" Place:’

’ Place:’

" Place:’

* Place:’

T

TA

T4

"TL

T4

; T4

"TA

; T4

T4

, T4

"TA

T4

T

T4

T

T4

T4

"TL

T4

T

2

" Colora:’

* Colors:’

" Colors:’

" Colors:’

" Colors:’

a

* Colors:’

" Colora:’

* Colors:’

" Colors:’

* Colors:’

" Colors:’

" Colora:’

" Colors:’

" Colora:’

* Colors:’

" Colors:’

" Calors:’

" Colors:’

" Colora:’

Colors:’

Tal8y

Taldl’

"al9F’

TaldT

Tal21¥

a3l

Tal4d’

" 2283

v

2271

TalTd’

Taj2l’

"aj2y

" 232y’

232y

Ta3fd’

" 2368

Ta3Tl’

2372’

aiTd’

" dag’

T sy’

Tary

Td4F

T

" dag’

Tqre’

T3’

T 49’

" a0’

Td4f

"d2g’

" g2’

i

ptd’

"tk

"tk

Ttk

"tk

ptd’

"tk

ptd’

i

pth

Figure 7 Simulation result of intrusion detection (2)

22

) Command ¥indow | &
N
A

File Edit Debug Desktop Mindow Help
*Time:’ T21731. 8481 * Place:’ TTh ’ " Colors:’ Ta378 B0 el T 489’ Tptd’
"Time:’ 21866, 934 " Place:’ "Th ! * Colors:’ "a38l’ by o T4 Tptd
"Time:’ 122107, T8EE * Place:’ TTh ’ " Colors:’ T a38h b Tel’ a1y Tptd’
*Time:’ T224A8, 978 " Flace:’ 'Th ’ * Colors:’ Ta3ol’ b1’ Tol’ Tz Tptd
"Time:’ T22RA0. 26427 * Place:’ "Th ’ " Colora:’ TadoT Thil’ Tel’ Tdiy Tptd’
*Time:’ 123010, 7597 * Place:’ 'Th ’ * Colors:’ 2400’ "bE o’ T A8 Tptd
"Time:’ " 236AT. BIY " Place:’ "Th ! * Colors:’ T ad09° by’ Tel’ " das’ Tptd
"Time:’ 24365, 21917 * Place:’ TTh ’ " Colors:’ T2’ b oY T4’ Tptd’
"Time:’ T24575, 9128 " Place:’ "Th ! " Colors:’ Tad2d’ "bE o’ " Ay Tptd
"Time:’ T24861, 842 * Place:’ TTh ’ " Colors:’ T ad 28 ThE oY 422 Tptd’
*Time:’ T 2RE24, 0347 * Place:’ 'Th ’ * Colors:’ 2138 b2 Tol’ a4y Tptd
"Time:’ T 2AT04. 289 " Place:’ T4 ! " Colora:’ T add?’ b’ o’ d40’ Tptd’
*Time:’ T26216. 3135 * Place:’ TTh ’ " Colors:’ " 2450 ThE oY 1482’ Tptd’
"Time:’ T2T074. 1378 " Place:’ "Th ! " Colors:’ " adfd’ b’ e Tdid’ Tptd
"Time:’ T2TRTA. 1198 * Place:’ TTh ’ " Colors:’ T T By e 1492’ Tptd’
*Time:’ ' 28804, 8309 ’ Place:’ 'Th ’ * Colors:’ T 2492’ "bE o’ a7y Tptd
"Time:’ 120376, T18T * Place:’ TTh ’ " Colors:’ a0y The’ oY T2’ Tptd’
*Time:’ 2aR2T, 2142 * Place:’ 'Th ’ * Colors:’ " 2505’ b’ o iy Tptd
"Time:’ 30324, 8403 " Place:’ T4 ! " Colors:’ "ah1f’ "hil’ To?’ a9z Tptd’

ﬁz *Time:’ T 30385, 0385 * Place:’ TTh ’ " Colors:’ TahlT B g Td6T Tptd’ 3

Figure 8 Simulation result of intrusion detection (3)

23

) Command ¥indow

File Edit Debug Desktop Hindow Help A

"Time:’ 30430, 18717 " Place:” "Th i " Colors:’ "afld "hE’ "2’ 49y’ Tpta’ °
"Time:’ ' 30565, 63317 " Place:’ T4 ! " Colors:’ T ah21’ by’ T dTE Tpta’
"Time:’ 31318, 11087 " Place:’ T4 ! " Colors:’ " ah35 "Bl e Tded’ Tpta’
"Time:” 131709, 3988 " Place:’ T4 ’ " Colors:’ Tabd ¥ "B e’ Tdit’ Tptd
"Time:” 31908, 34027 " Place:’ T4 ’ " Colors:’ T ahb0’ "Bl e’ day Tptd
"Time:’ 32040, 4888 " Place:’ TTh ’ "’ Colors:’ *ahBy "bl’ Te¥ i Tptd

" Time:’ T 32446, 8266 ’ Place:’ TTh ’ " Colors:’ Tabfil’ b o Tdil’ Tptd’

" Time:’ 132813, 36267 ’ Place:’ TTh ’ " Colors:’ TafTl ThE ol T d9g’ Tptd’

" Time:’ T3enze. 412y ’ Place:’ TTh ’ "’ Colors:’ TafTd ThE’ el "dsl’ Tpth’
"Time:’ 33891, 5833 " Place:’ TTh ’ " Colors:’ Taf9l’ "hl’ e Td1s’ Tptd’
"Time:’ ' 34899, 90317 " Place:’ TTh ’ " Colors:’ " af0g’ b’ e Tdf2’ Tptd’
"Time:’ 35923, 2724 " Place:’ T4 ! " Colors:’ T af23’ b’ ¥ TdE3’ Tpta’
"Time:’ " 36570, 4029° " Place:’ T4 ! " Colors:’ T af32’ "By’ e " dEd’ Tpta’
"Time:’ 137127, 2362 " Place:’ T4 ! " Colors:’ T afdl’ "By ey TaT Tpta’
"Time:” 137247, 63287 " Place:’ T4 ’ " Colors:’ Tafdy "Bl ey " dan’ Tptd
"Time:’ 137428, 2272 " Place:’ TTh ’ "’ Colors:’ Tafd T bl Tel’ " 490’ Tptd
"Time:’ 137638, 92097 " Place:’ TTh ’ "’ Colors:’ *affl’ bl TeF TATE’ Tptd

" Time:’ 39023, 4794 ’ Place:’ TTh ’ " Colors:’ TafTh ThE ¥ Td3f Tptd’

" Time:’ ' 39695, 3622 ’ Place:’ TTh ’ "’ Colors:’ E-UEER ThE’ ¥ Tdid’ Tpth’

fas TTime:’ 39670, A0S * Place:” TTh ’ * Colors:’ T aREy "hd’ Tel’ L Tpta 3

Figure 9 Simulation result of intrusion detection (4)

24

) Command ¥Window

File Edit

The
The
The
The

Jx >

"Time:

"Time:

"Time:

"Time:

" Time:

"Time:

"Time:

" Time:

"Time:

"Time:

"Time:

"Time:

"Time:

"Time:

2

3

2

3

"Time:’

whole

rnumber of the szend packagesz iz :

Debug Desktop Window Help

2

2

2

"11257. 0623 " Place:’
T 12445, 9766 " Place:
T16TTL. 9269 " Place:’
" 18556, 0933 " Place:’
T1ET21. 6384 " Place:’
T 20833 RRY " Place:’
T21114. 5166 " Place:
" 21866, 994 * Flace:’
T 22468, 974 " Place:’
T 24861, BB " Place:
730430, 18T " Place:
"31318. 1108 " Place:
T 34889, 90317 * Place:
T3T127. 2362 " Place:
137428, 2272 " Place:

Tattacks

Tattacks

Tattacks

Tattacks

Tattacks

Tattacks

Tattacks

" attacks

Tattacks

Tattacks

Tattacks

Tattacks

Tattacks

Tattacks

Tattacks

696

whole number of the attack packages 1z :80

rumber of attack packages captured by svstem i=z:15

detect rate iz :0. 1&T500

Colors:”

Colors:

=

Colors:”

Colors:”

Colors:”

* Colora:’

Colors:”

" Colors:’

Colors:’

" Colors:”

Colors:

" Colors:’

2

Colors:

]

" Colora:’

Colors:”

TaldT’

Tally

TalTl’

Taj2y

T ajzy’

Taifd’

T alfy

a3gl’

Ta3dl’

Tad2®

Tably

" ah3g

" afi0g’

Tafidl’

TafdT

pta’

pta’

pta’

pta’

The curve chart for intrusion detection simulation is shown as below:

Figure 10 Simulation result of intrusion detection (5)

25

I:Izz T T T T T T T
attack rate
detect rate

0.2

0.1a

0. 16

0.14

rate

012

0.1

0.03

0.0&

|:||:|.|'.1. | | | | | | |
] :
time ” 1|:|4

Figure 11 The curve chart for intrusion detection simulation

Figure 6 to Figure 10 show the output data of Matlab inthe process of simulation. Eachline
of the data represents the status of the Petri net after one more intrusion packetis detected.
The data follows ‘time’ is the running time of the program. The data follows ‘place’ isthe

place containing the intrusion packet. The data follows ‘place’ is the colorspace of this place.

Figure 11 shows the change of the detected rate and the percentage of abnormal packetsin
all the packets, in which the horizontal axis stands fortime and the vertical axis stands for
percentage. The red curve shows the changing percentage of the detected intrusion packets
inall the intrusion packets. The blue curve shows the changing percentage of the intrusion
packetsinall the packets. Accordingto the result of the simulation we can know that after
40000 unittime 696 packets are sent, including 80 intrusion packets, in which 15of them

are detected. The detection accuracy rate is 0.1875.

4.3 Trojan detection

4.3.1 Model design
We assume thatall the Trojan packets are fromthe receiver, sowe just detect the

confirmation packets from receiver for Trojan detectioninthe networkintrusion detection

26

system. The packetsfrom senderwill be ignored, which is opposite to the intrusion

detection. The block diagram forthe model of Trojan detection system is shown as below:

Network
Pl Channel

Sender {f

Receiver

Trojan
Detector

Figure 12 Block diagram for the model of Trojan detection system

4.3.2 Petri net design

In this thesis, we use GPenSIMtools for modeling and simulation. Trojan detection system

also contains three modules.

The sendermodule is used to generate network packets randomly. The diagram forits Petri

netis as below:

27

——»{ Gen_First_Sender

h 4
Senders Gen_Sender
v
t_ SNA1

« Rec_Ak (¢

Figure 13 Diagram for the Petri net of sender of Trojan detection

The meanings of the placesin the Petri net:

'start’, this place is without color. The initial number of tokenis 1. It is used to generate the

first packet.

'Sender': it represents the network packets. The packets contain three parts: the IP address
of the sender, the IP address of the receiver, and the TCP port number. The colorspaceiis
{*an’,’bshst’,’crhst, ‘dprt’}, of which the beginning characters (a, b, ¢, d) have no specific
meanings. They are used for ordering of the colors when simulating. The meanings of the
colorsare as follows: the letter'n'in 'an'is to mark the network packetsandnisadded by 1
whena new packetis generated. The 'shst'in 'bshst' stands for the IP address of the sender.
Ten sets of sendercomputer systems are setupinthis simulation and they are indicated by
integers from 1to 10 which are generated randomly. The 'rhst'in 'crhst' representsthe IP
address of the receiver which is the destination. Foronly three sets of receiver computer
systems are set up inthis simulation, they are indicated by integersfrom 1 to 3 which are
generated randomly. The 'prt'in 'dprt' represents the TCP port number of the receiver which

isindicated by integersfrom 1to 100 whichis generated randomly.

28

'Sender1": its colorspaceis the same as 'Sender'. It acts as a transit station to produce

places'SenderNo'and 'Al'.

'Sender 2" its colorspace is the same as 'Sender'. It acts as a production device to generate

network packets continuously, which will be putinto place 'Sender'.

'Sender No':it is used for the storage and statistics of all the packets generatedin the

simulation.
'Al": this place stands forthe network packets that will be senttothe receiver.

'A2': itstandsfor the confirmation packets sent by the receiver. Itis the output of the former

module.

'Send_Rec":itisused forthe storage and statistics of the received confirmation packets sent

by the receiver.
Meanings of the transitionsin the Petri net:

'Gen_First_Sender':itis usedto generate the first network packet. When the simulation

starts, its input place contains one token, and it will fire immediately.

‘Senders’:itisused asa replicatorand to generate two network packets. Whenitsinput
place ‘Sender’ containstoken andreachthe time tofire, it fires. Inthis simulation, GPenSIM
tools and Matlab’s own toolbox Stochastic Firing Times are combined for programming.

Function ‘unifrnd’ is used to generate firing time randomly.

Gen-Sender:itacts as a generatorto generate network packets continuously. When the

input place containstoken, itfires.

't SNA1', itis usedto generate the packets that will be senttothe receiverandthe packets

for statistics of the number of sent packets. It fires whenitsinput place contains token.

'Rec_Ak'": itis used for statistics of all the received confirmation packets sentfromthe

receiver.
The analysis of the sender module::

The sender module mainly consists of two parts: 1. the part used for generation, statistics,

and sending of network packets; 2. the part used for receiving and statistics of the

confirmation packets sent from the receiver.

29

The first part is used for generation, statistics, and sending of network packets. The changing
process of system status is as follows: First, the first network packetis generated fromthe
firing of transition 'Gen_First_Sender'. Then, it waits for the arrival of the trigger time of
transition 'Senders', and the triggertime is evenly distributed randomintegers. Two network
packets are generated fromthe firing of ‘Senders’ and they are separately senttotwo
channels:the channel used for statistics and sending, the channel for packets generator. The
transition ‘t_SNAZ1’ forthe first channel isimmediately triggered to generate the token for
place 'SenderNo'and the tokenforplace ‘A1l’. The channel for packets generator
generates anetwork packet randomly and then waits forthe trigger of transition’Senders’.

‘Al isusedas the input forthe nextmodule.

The second part is used forreceiving and statistics of the confirmation packets sent by the
receiver. The changing process of the system statusis as follows: Place ‘A2’ stores the
confirmation packets sentfrom the receiver. The transition’'Rec_AK for statistics of all the
confirmation packetsis triggered immediately. Place ‘Send-Rec’ stores all the received

confirmation packets.

The second module isthe Trojan intrusion detection module. Itis mainly used for the
filtering of the confirmation packets sent by the receiverto see whethertheyare Trojan or

normal. Thenit makes statistics and sends the normal confirmation packetstothe sender.

The diagram forthe Petri netisas below:

30

t Al Gen_First_Rate [(start_Rate

Gen_Rate

t pd . @ TranS1 TranS2 TranS3

t_ A2 t_Trojan

Figure 14 Diagram for the Petri net of detection module of Trojan detection simulation

31

The meanings of the places of the Petri net:

‘Start-Rate’:ithas no color space. Itsinitial numberof tokensisone, andis used to generate

the firstrate when simulation begins.

'Ratel": this place stands fora rate. Its colorspaceis ‘r andit isrepresented by arandom

numberfrom1 to 1000. It is usedto generate the nextrate.

‘Rate2’:this place also stands fora rate. Its colorspaceis ‘r anditisrepresentedbya

random numberfrom 1 to 1000. Itisused for filtering the packetsfromsender.

‘B1’: it stores the packets that have passed the filtration and sending targetis NO.1 receiver

computer. It will be used asthe input of the receiver module.

‘B2’: it storesthe packets that have passed the filtration and sendingtargetis NO.2 receiver

computer. It will be used as the input of the receiver module.

‘B3': it storesthe packets that have passed the filtration and sendingtargetis NO.3receiver

computer. It will be used asthe input of the receiver module.

'B4' stores the packets that have failed to pass the filtration. In other words, they are the lost

packets during the transmission process.

'C1": this place stands for the confirmation packets sentby No.1 receiver computer.
'C2": this place stands for the confirmation packets sentby No.2 receiver computer.
'C3": this place stands for the confirmation packets sentby No .3 receiver computer.

‘collect’: this place represents the confirmation packets sentby NO.1, NO.2and NO.3

receivercomputers.
‘collect1": this place representsthe confirmation packets used for particle generatorchannel.
'collect 2": this place represents the confirmation packets used for Trojan Detection channel.

‘Start_pd’:itiswithout colorinformation. The initial number of tokenis 1. It is used as

generatorof the first particle in the particle filter.

‘Particle’:itstands forthe particlesinthe particle filter. Its color space isthe same as the
color space of the confirmation packets. The difference between themisthatthe ‘n’in the

firstcolor‘an’ inthis place is represented by arandomintegerfrom 1 to 1000.
‘Pd1’:it standsfor the particle used forthe particle generator channel.

'Pd2": it stands for the particle used forthe Trojan detection channel.

32

"Trojan'": it isused forstorage and statistics of the Trojan packets detected by the Trojan

detection system.

'A2": this place represents the normal network confirmation packets which have passed the

Trojan detection system. And it will be sentto the sender.
The meanings of the transitionsin the Petri net:

'Gen_First_Rate':thistransitionis usedto generate the first rate. Asinitially itsinput place

contains one token, it will fire immediately when the simulation begins.

‘t Rate’:thistransitionactsas a replicatorto generate two same rates which will be usedin

the rate generatorchannel and packetsfiltering channel.
‘Gen_Rate’:itisusedto generate the nextrate.

't_B1": thistransitionisusedforfilteringthe packets from senderandjudge whetherit will
be sentto NO.1receivercomputer. If the destination addressis NO.1receiver computerand

the rate islessthana threshold, itfires.

't_B2": thistransitionis used for filteringthe packets from senderand judge whetherit will
be sentto NO.2 receivercomputer. If the destination addressis NO.2receiver computerand

the rate islessthana threshold, it fires.

't_B3'": thistransitionis usedforfilteringthe packets from sender and judge whetherit will
be sentto NO.3 receivercomputer. If the destination addressis NO.3receiver computerand

therate islessthana threshold, itfires.

't_B4': thistransitionis used forstatistics of the lost network packets, which fail to pass the

filtration. Whenthe value of the input token from ’Rate2’ is higherthan athreshold, it fires.

"TranS1": thistransitionis used for statistics of confirmation packets sentby No.1receiver

computer.

"TranS2": this transitionis used forstatistics of confirmation packets sent by No.2 receiver

computer.

"TranS3'": this transitionis used for statistics of confirmation packets sent by No.3receiver

computer.

‘t_clt’: thistransition acts as a replicator. Itis used for generating two confirmation packets

which are used in particle generating channel and Trojan detection channel.

'Gen_First_pd":itisusedto generate particles of the particle filter. As there'satokeninthe

initial place, itimmediately fires when the simulation starts.

33

‘t_pd’: thistransition actsas a replicator. Itis used for generating two particles which are

usedinTrojan detection channel and particle generating channel.

'NPF1':itisusedto generate particles of the particle filter. This transition is designed not to
inheritthe colorspace fromits input place. This function can be realized well by GPenSIM
tools. We only need to set transition.override=1. New particles can be generated

continuously.

't_Trojan':itisusedto judge whetherthe confirmation packets sent by the receiverare
Trojan packets. The judging standard is based on the absolute value of the difference
betweenthe port number of the packet and that of the particle. If the absolute value is
smallerthan a thresholdvalue, this packetis a Trojan packet. Thenthe transitionfires, and

sends the packetto the place ‘Trojan’ for statistics.

't_A2" itis usedto judge whetherthe confirmation packets sent by the receiverare normal.
The judging standard is based on the absolute value of the difference between the port
number of the packet and that of the particle. If the absolute value is higherthan a
thresholdvalue, this packetis normal, then this transition will fireand send the packetto

the follow-up receiver system.

Thismodule includestwo parts. One is used for filtering of the confirmation packets from
the receiver, and the otheris used for filtering of the packets from the sender. Forthe Trojan
detection systeminthis simulation just detects the confirmation packets fromthe receiver,
the part for filtering of the confirmation packets from the receiveris more important. And

onlyinthis part we needthe particle filter, so this partis analyzed specifically.
Part 1: filtering of packets from the sender:

The packets will be decided whetherto be sent or not with a certain probability. This partis
simple. Atlast, it will be sentto different receiver host according to the port numberof the

packet.
Part two:filtering of the packets fromthe receiver.

When this module has received the confirmation packet fromthe receiver, ajudgment will
be made by the particle filter to decide which normal packets are and which Trojan packets
are.The judgingstandardis based onthe absolute value of the difference between the port

number of the confirmation packets and that of the particle.

Receiver module: because this part haslittle effect on the networkintrusion detection, itis
simplifiedinthe simulation. Afterreceiving the packets, each receiver computerwillsend

confirmation packets directly, without any filtering or handling.

34

The diagram of the Petri netis as below:

hostl host2 host3

SRS

Figure 15 Diagram for the Petri net of receiver of Trojan detection

The meanings of the places of the Petri net:

'C1" it representsthe confirmation packets fromthe hostlreceiver.

'C2": it represents the confirmation packets fromthe host2 receiver.

'C3": it represents the confirmation packets fromthe host3receiver.

The meanings of transitionsin Petri net:

'host1": this transitionis from received packets to confirmation packets on receiver host1.
'host2": this transitionisfrom received packets to confirmation packets on receiver host2.
'host3'": thistransitionis fromreceived packets to confirmation packets on receiver host3.

The analysis of the receiver module:

The receiver moduleisvery simple. Each computerreceivesits own packets, and then sends

confirmation packets.

Connection of the modules:

Firstis the connection betweenthe sender moduleandthe Trojan detection module. The
output of the sendermoduleisthe place ‘A1’ which will be connected with the

transition’t_A1l' inthe Trojan detection module. And then, the place ‘A2’ for confirmation

35

packets sent by the receiverwillbe connected to the transition’t_A2’ inthe detection

module.

Nextisthe connection between the Trojan detection moduleand the receiver module. The
output places of the Trojan detection moduleare ’B1’,’B2’ and 'B3’,which are the network
packets sent by each host of the sender. They will be connected to the
transitions’host1’,’host2’,’host3’ in the receiver module. And the output places of the
receivermodule are’C1’,’C2’ and’C3’, which are the confirmation packets thatare sentfrom
each receiverhost. They willbe connected to the transitions'TranS1’,’TranS2’,’TranS3’ in the
Trojan detection module. Thesetransitions will further collect and filter the confirmation

packets.

The connection of each module is also achieved by using the modular tool of GPenSIMtools

inthe simulation. The overall process of the Trojan detection system:

Firstly the sender module generates network packets continuously, and it will count the
number of sent packets and received confirmation packets, then save themin aglobal

variable which is defined by the GPenSIMtools.

Then, each packet sent by the senderwill be filtered by the Trojan detection module with a
certain probability, and send the passed packetstothe receiver. The numberof Trojan

packets will be counted when the confirmation packetfromthe receiveris received.

At last, the receiver will receive the packets fromthe sender, and send confirmation packets

to the Trojan detection module. The normal confirmation packets will be senttothe sender.

4.3.3 simulation result

The result of the simulationis shown as below:

36

File

fx

Edit Debug

*Time:

TTime:’

" Time:

P Time:

T Time:

" Time:

PTime:’

T Time:

" Time:’

P Time:

" Time:

T Time:

" Time:

‘Time:’

T Time:

" Time:’

P Time:

TTime:’

" Time:

P Time:

Desktop

T 1398,

171z,

T 1852,

2044,

Ta2z202.

T403T.

T4753.

TT262.

" BEEO.

T10171

11116,

13212,

T14173.

T 16292,

T 15624,

17187,

T 17388,

T 204300

TenTin.

T 21496,

Window

16347

738

86337

78947

0817’

16817

72177

8z21°

TH13"

. BBE3’

31997

58017

TEOE"

30337

38487

28747

53357

61727

14787

E0927

Help

Place:

FPlace:’

Place:

Place:

Place:

Place:

Place:’

Flace:"

Place:”

Place:

Place:

Place:

Place:

Place:’

Place:

Place:’

Place:

Flace:’

Place:

Place:

Trojan

"Trojan

"Trojan

Trojan

"Trojan

"Trojan

*Trojan

"Trojan

"Trojan

*Trojan

Trojan

"Trojan

"Trojan

Trojan

"Trojan

"Trojan

Trojan

"Trojan

"Trojan

*Trojan

Colors:

Colors:’

Colors:

Colors:’

Colors:

Colors:’

Colors:’

Colors:’

Colors:’

Colors:

Colors:’

Colors:

Colors:’

Colors:’

Colors:

Colors:”

Colors:

Colors:’

Colors:

Colors:’

all2’

Taldl”

T algl’

TalTy’

T az08’

Taz2t’

T azd49’

T azZba’

T azgd”

T azaT’

T a340”

T a348"

T a363

T dBT”

Td4T”

Td3rt

*dion0’

Figure 16 Result of Trojan detection(1)

37

) Command ¥Window

3

File Edit Debug Desktop Hindew Help

"Time:’ T22143. 26527 " Place:’ "Trojan ’ * Colors:’ T a3Ty’ “ba’ CEN Td2T’ ~

"Time:’ T 24327, 86987 * Place:’ "Trojan ’ * Colors:’ " ad08” b1’ T2 T ded’

"Time:’ T 24882, 1778 " Place:’ "Trojan ’ " Coloras:’ Tad2l’ "bE ol Td3T

TTime:’ T 27089, 223 * Place:’ "Trojan ’ * Colors:” T adh2’ “bi” -x Tdar’

TTime:’ T 28382, 51497 * Place:’ *Trojan ’ * Colors:” Tad 79’ "bE” Tel” T 46’

TTime:’ T 28539, 8072 * Place:’ *Trojan ’ * Colors:” T ad32’ “b1” Tel” ' deR’

TTime:’ T 28R62. 14667 * Place:’ *Trojan ’ * Colors:” T ad85° “b1” Tel” 1 d33’

TTime:’ T 28AT9. A225° * Place:’ *Trojan ’ * Colors:” T ad 867 “b1” Tel” T2’

"Time:’ T 28976, 73027 " Place:’ "Trojan ’ " Colors:’ T 292’ b3 o2 Tdq2”

"Time:’ T 20675, 80697 " Place:’ "Trojan ’ * Colors:’ " ab08” "BE Ted Tdq2”

"Time:’ T 30408, 83747 * Place:’ "Trojan ’ * Colora:’ TablE’ ‘b107 T2’ T dTE”

TTime:’ T 31143, 8687 * Place:’ "Trojan ’ * Colors:” T ab2e’ "be” T2’ Tdz’

TTime:’ T 31248, T295° * Place:’ *Trojan ’ * Colors:” T ah30’ BT Tel” T ded’

TTime:’ ' 31363, 6917 * Place:’ "Trojan ’ * Colors:” T af3y’ ‘hid’ s TdTd’
f-E TTime:’ T 31738, 08327 * Place:’ *Trojan ’ * Colors:” T ah3e’ ‘b10° T3’ T d2g” ;

Figure 17 Result of Trojan detection(2)

) Command Window . ['5_<
File Edit Debug Desktop Window Help o
-
"Time:’ *31807. 99097 " Place:’ "Trojan ’ " Colors:’ T ahd1’ "hE’ el T d56’
"Time:’ *33311. 0058 " Place:’ "Trojan ’ * Colors:’ " abBE’ "ha’ Tel’ T dg2’
"Time:’ T 33922, 698" * Place:’ "Trojan ’ * Coloras:’ T abTT "ba’ T3 "d51”
TTime:’ ' 362684207 * Place:’ *Trojan ’ * Colors:” T ah9g’ BT Tel” ' de3’
TTime:’ ' 3688001128 * Place:’ *Trojan ’ * Colors:” Tafll’ “bd” T2’ Td2o’
TTime:’ ' 3AGTY. 18957 * Place:’ *Trojan ’ * Colors:” T af2q’ Tba” T2’ Tda3’
TTime:’ ' 3ABE1. 1586 * Place:’ *Trojan ’ * Colors:” T af33’ “b1” s Td3T
TTime:’ T3T243. 31297 * Place:’ *Trojan ’ * Colors:” T aR3T Tb2” Tel” T d9s’
TTime:’ T3TTET. 61997 * Place:’ *Trojan ’ * Colors:” T afdh’ “b1” s T den’
TTime:’ ' 389386735 * Place:’ *Trojan ’ * Colors:” T afRg’ BT s TdET’
The whole rumber of the szend packages iz : G886
The whole rumber of the received packages i1z:49d4
The whole rumber of the trojan packages iz :46
The trojan rate iz :0.093117
fx > v

Figure 18 Result of Trojan detection(3)

38

Trojan Rate
I:Iz"l T T T T T T T

0.22

0.2

0.18

0.16

rate

0.14

012

0.1

0.0a

DDE | | | | | | |
] :
time ” 1|:|4

Figure 19 Curve diagram for the result of Trojan detection

Figure 16 to Figure 18 show part of the output data of Matlab inthe process of simulation.
Each line of the data represents the status of the Petri net after one more Trojan packetis
detected. The datafollows ‘time’ isthe running time of the program. The datafollows ‘place’
isthe place containingthe Trojan packet. The data follows ‘place’ is the color space of this

place.

Figure 19 shows the change of the detected rate with time, in which the horizontal axis
stands for time and the vertical axis stands for percentage. According to the result of the
simulation we can know that after 40000 unittime 686 packets are sent, and 494
confirmation packets are received, including 46 Trojan packets. The overall detectionrate is

0.093117.

39

5. conclusion

In thisthesis, | used the architecture of the paper"Particle Filter for Depth Evaluation of
Networking Intrusion Detection Using Coloured Petri Nets", the overall design of the system
isthe same as inthat paper. | alsoused theiralgorithmto judge whethera packetis normal.
However, since the tool to build Petri nets | usedinthis thesisis totally different from theirs,
the Petrinets builtin thisthesisis also different from the precious paper. The programming

process and simulation process are also different between this thesis and that paper.

Thisthesis analyzed some problemsinthe process of network intrusion detection, and
simulated anetwork detection system based on particle filter. Two kinds of cases were

considered:intrusion detection and Trojan detection, which have different schemes.

Againstthe intrusion detection, this thesis just considered the packets from the sender. That
is, only the packets fromthe senderwere detected. Forthe Trojan detection, this thesis just
considered the confirmation packets from the receiver. In otherwords, itjust detected the

packetsfromthe receiver.

The colored Petrinetwas usedin this thesisfor simulation. The intrusion detection system

was simplified inthe simulation, the reasons were as below:

(1) It is hard to simulate the real network environment. Although I tried my best to make the

simulated environment close to the real one, itis still simplified significantly.

(2) Itisalsoverydifficulttoapply particle filter to network intrusion detection, mainly due to
the limitation of the particle filteritself and the characteristic of the network environment.
The data flowis discontinuous, anditwon’ tremain afixed modeland probability
distribution. Moreover, the number of the particlesis difficult to decide. The result will be

betterif the number of filtersis more, butitwill also be less efficient because of this.

(3) Itisalsoverydifficultto getthe truly intrusive network packets. In this simulation

experiment, it was generated with arandom probability. The processisalso simplified.

For the reasons above, the simulation resultsinthis thesis are notveryideal. From the data
of the results, we can see that the detection rates are not so high and the overall resultis
not so satisfying. However, the analyses and experiments realized in this thesiscanbe a
good guidance for designing anetwork detection system. It can analyze what happened
duringthe process of the networkintrusion, and can get the details of the problems during

the networkintrusion. Itis useful for the furtherimprovement of the IDS.

The GPenSIM toolbox itself also has some problems. One bug | foundinthe process of

programmingisthe problemforitto deal withthe colorspace. If the values of two colors in

40

the same color space are the same, the toolbox will combine them as one color. For example,

an example in the manual can show this bug very clearly.

Thisexample istoadd two numbers together. When |l input two same numbers, such as one
plusone, thenitwillshow ‘inputerror’ inthe Matlab command window, because it
onlyfinds one colorwhen calculating. | solved this problem from another point of viewin
thisthesis. Forexample, when | definethe color space of the network packets, itis defined
like{ ‘a1’ ,” b4’ ,” c2’ ,” d43’ ,” ptN’ }.Iplayedalittle trick here byaddingone
character before each colorin order to solve this problem, because there willnot be two
same colorsin one colorspace anymore. Thereisalsoa bug concerningthe sequence of the
colorsin one colorspace. They are not sorted by theirgenerated order but by the firstletter
of each color. Problems would be raised because of this. Forexample, the position of each
coloris veryimportantinthe network packets, because itis related to some specific
meaning. Such as the third color, it means the IP address of the receiver. If the colors are
reordered by GPenSIM, the meaning of each color would be confusing. | also solved this

problembyaddinga firstletter, forexample,{ ‘al’ , ‘b2’ , ‘c3’, ‘d4’ , ‘e5 1}

Anothermajorproblemisthe memoryleakerror. Thatis, whenthe program runsforalong
time, the leak error will occur sometimes. To solve this problem, | set the colorspace of
some unimportant places to be null, sothat these places do not save tokens. This can save
memory space and avoid such error. Now we can run at least 40000 unitstime withoutlead

error.

41

6. Future work

The future work will mainly be focused on the optimization of the model. How to simulate
the network environment more reasonably? How to get more reasonable intrusion packets?
How to make a better use of the particle filterinthe network intrusion detection? The
experimentresultinthisthesisis notsoideal because | have notsolved these problems so

well. lwill focus onthese problemsinthe future work.

Another problem which I needto move onto studyis how to analyze more kinds of network
intrusion. And when analyzing and detecting the network packets, more factors and
connections should be considered. In this thesis we only discussed two kinds of attacks,
actually the networkintrusion conditions are much more complex than this. Another
problemishow to judge whetherapacketisabnormal, thatis, how to distinguish the
normal and abnormal packets. We just considered a packetas an individual in this thesis.
However, the effect between the previous packet and the next one and the effect between
multiple timewindows should also be considered. In the future work I will analyze the
impact and connections between each otherto get a more reasonable intrusion dete ction

scheme.

42

References

[1] Jensen, K. (1997). Coloured Petri Nets Basic Concepts, Analysis Methods and Practical
Use Springer-Verlag.

[2] Dahl, O. M. and S. D. Wolthusen (2006). Modeling and execution of complex attack
scena-rios using interval timed colored Petri nets. the Fourth IEEE International Work-shop
on Information Assurance.

[3] Chien-Chuan Lin, Ming-Shi Wang. Particle Filter for Depth Evaluation of Networking
Intrusion Detection Using Coloured Petri Nets. InTech.2010.

[4] Kristensen, L. M., J. B. Jorgensen, et al., Eds. Application of Coloured Petri Nets in
detection rate. The attack packet rate is the ratio of attack packets against all sent packets.
System Development. Lecture Notes in Computer Science, Springer-Verlag.2004.

[5] Reggie Davidrajuh. GPenSIM: A New Petri Net Simulator. InTech. 2010.

[6] Kotecha, J. H. and P. M. Djuric (2003). "Gaussian sum partide filtering." IEEE Trans. Signal
Process 51(10): 2602-2612.

[7] Lehn-Schioler, T., D. Erdogmus, et al. (2004). "Parzen partide filters."
IEEE Int. Conf.Acoust., Speech, Signal Process 5: 781-784.

[8] Servilla, R. H. G. L. A. M. M.The architecture of a network level intrusion detection System.
Technical report, Department of Computer Science, University of New Mexico.1990.

[9] Masahiro Tsunoyama, Hiroei Imai.An Application of GSPN for Modeling and Evaluating
Local Area Computer Networks.InTech.2010.

[10] HugoRodriguez, Rubén Carvajal, Beatriz Ontiveros, Ismael Soto.Using Petri Net for
Modeling and Analysis of a Encryption Scheme for Wireless Sensor Networks. InTech.2010.
[11] Charles Lakos, John Lamp, Chris Keenk, Brian Marriott.Modeling Network Protocols with
Object Petri Nets.Workshop on Petri Nets Applied to Protocols.1995.

[12] Congzhe Zhang, Mengchu Zhou.A Stochastic Petri Net Approach to Modeling and
Analysis of Ad Hoc Network. Information Technology: Research and Education.2003.

[13] Hurzeler, M., H. R. Kunsch. Monte Carlo approximations for general state space models.
Computat. Graph. Statist.1998.

[14] Savage, S., D. Wetherall, et al. Network Support for IP Traceback. IEEE/ACM

43

TRANSACTIONS ON NETWORKING9(3).2001.
[15] David, R. & Alla, H. Discrete, Continuous, and Hybrid Petri Nets, Springer-Verlag, Berlin.

2005.

44

Source code

Instructions about how to run the souce code:

1. GPenSIM must be installed first.
(1)Unzip the file “GPenSIM_v60_System_Files.zip” (attached in the CD) under a directory,
say "d:\GPenSIM\".
(2)Set MATLAB Path Command. Start MATLAB, and go to the file menu in MATLAB, and
select "set path" command, then select "Add folder". A new dialog box will appear, then
browse through the directories and select the directory where you have unzipped the
GPenSIMtoolbox functions.
(3)Test Installation. Go to MATLAB command window and type 'gpensim'; if the foll owing
outputis printed, thenthe installationis complete:
"GPenSIMversion6.0; Lastupdate: May 2011
(C) Reggie.Davidrajuh@uis.no
http://www.davidrajuh.net/gpensim".

2. Unzip the "souce code.rar" file (attached in the CD) under a directory, say
"d:\sourcecode\".

3. Run Matlab, open the file "d:\sourcecode\pn_sim_part1\NPF_Intrusion.m" and run it.
Wait a moment, and then you will get the detection simulation result.

4. Run Matlab, open the file "d:\sourcecode\pn_sim_part2\NPF_Intrusion.m" and run it.
Wait a moment, and then you will get the Trojan simulation result.

%INTRUSION DETECTION PART:

%main function

addpath('./toolbox/'); %librariesforsimulation

clearall;

clc;

global global_info; %global variable

global_info.STOP_AT=40000; %runtime of simulation

global_info.package_count=0; %statistics of the number of packets
global_info.TN_count=0; %statistics of the number of normal packets

global _info.TA_count=0; %statistics of the numberof abnormal packets
global_info.attack_count=0; %statistics of the numberof intrusion packets
png=petrinetgraph({'Sender_def','Detect_def','Receive_def','conn_def'}); = %combine all
the modules

%png=petrinetgraph('NPF_Intrusion_def");

dynamicpart.initial_markings ={'start_pd',1,'start_Rate',1,'start’,1}; %generate initial token
dynamicpart.firing_times ={'Senders', 'unifrnd(0,100)'}; %definethe time of transition

45

dynamicpart.initial_priority ={'TranS1', 1,'TranS3',1}; %definepriorityof the transition
results = gpensim(png, dynamicpart); %simulation

print_finalcolors(results); %outputthe simulationresult

fprintf('The whole number of the send packagesis: %d\n',global_info.package_count);
fprintf('The whole number of the attack packagesis : %d\n',global_info.TA count);
fprintf('The number of attack packages captured by system is: %d\n',
global_info.attack_count);

fprintf('The detectrate is: %f\n',global_info.attack_count/global_info.TA_count);

%define the transition Classify

function [fire,transition]=Classify_pre(transition) %definethe transitionfunction
tokID1 =select_token('classifyl’, 1); %get a token as the input from classifyl
colors1l=get_color(toklD1); %getthe colorof the token

transition.override =1; %the outputtoken doesn'tinheritthe colors of the input token
transition.new_color=colorsl; %get new colorspace from colors1

fire=1; %fire

%define the connection module
function [png]=conn_def() %module definition function
png.PN_name ='Connections Profile'; %define the name of this module
png.set_of Ps=[]; %definethe placesinthis module
png.set_of Ts=[]; %define the transitionsin this module
png.set_of As={'A1't_A"1,... %ddefinethearcsinthismodule

'B1','host1',1,...

'B2','host2',1,...

'B3','host3',1,...

'C1','TranS1',1,...

'C1','TranS10',1, ...

'C2','TranS2',1,...

'C3','TranS3',1,...

'C3','TranS30',1, ...

'A2''t_A2',1};

%define the transition cy_Attacks
function [fire,transition]=cy_Attacks_pre(transition) %define the transition function
global global_info; %declare global variable
tokID1 =select_token('cypk2',1); %returnthe ID of the selected token
colorsl=get_color(toklD1); %getthe color
pt = colors1{5}; %the fifth color
if strcemp(pt,'ptA') %compare two strings
fire=1; %fire
global_info.attack_count=global_info.attack_count+1; %statistics
else

46

fire=0; %notto fire
end

%define the transitioncy_B1
function [fire,transition]=cy_B1 pre(transition) %define the transition function
tokID1 =select_token('classifyl2',1); %geta tokenfrom classfyl2as theinput
tokID2 =select_token('Rate2',1); %getatokenfromRate2 as anotherinput
colorsl=get_color(toklD1); %getthe color of the token
colors2 =get_color(toklD2); %getthe color of the token
num1l = str2num(colors1{3}(2:end)); %getthe portnumberofinputtoken
num2 = str2num(colors2{1}); %getthe rate
transition.override=1; %the outputtokendoesn'tinheritthe colorsof the inputtoken
transition.new_color=colorsl; %getnew colorspace from colorsl
if num1==1&&num2<=800 %the conditiontofire

fire=1;
else

fire=0; %notto fire
end

%define the transition cy_B2
function [fire,transition]=cy_B2_pre(transition) %define the transitionfunction
tokID1 =select_token('classifyl2',1); %geta tokenfromclassfyl2as theinput
tokID2 =select_token('Rate2',1); %getatokenfromRate2 as anotherinput
colorsl=get_color(tokiD1); %getthe color of the token
colors2 =get_color(toklD2); %getthe color of the token
num1 = str2num(colors1{3}(2:end)); %getthe portnumberofinputtoken
num?2 = str2num(colors2{1}); %getthe rate
transition.override=1; %the outputtokendoesn'tinheritthe colorsof the inputtoken
transition.new_color=colorsl; %getnew colorspace from colorsl
if nuM1==2&&num2<=800 %the conditiontofire

fire=1;
else

fire=0; %notto fire
end

%define the transition cy_B3

function [fire,transition]=cy_B3_pre(transition) %define the transition function

tokID1 =select_token('classifyl2',1); %geta tokenfrom classfyl2as theinput

tokID2 =select_token('Rate2',1); %getatokenfromRate2 as anotherinput
colorsl=get_color(toklD1); %getthe color of the token

colors2 =get_color(toklD2); %getthe color of the token

num1 = str2num(colors1{3}(2:end)); %getthe portnumberofinputtoken

num?2 = str2num(colors2{1}); %getthe rate

transition.override=1; %the outputtokendoesn'tinheritthe colorsof the inputtoken

47

transition.new_color=colorsl; %getnew colorspace from colorsl
if num1==3&&num2<=800 %the conditiontofire
fire=1;
else
fire=0; %notto fire
end

%define the transition cy_B4
function [fire,transition]=cy_B4 pre(transition) %define the transitionfunction
tokID1 =select_token('classifyl2',1); %geta tokenfrom classfyl2astheinput
toklD2 =select_token('Rate2',1); %getatokenfrom Rate2 as anotherinput
colorsl=get_color(tokiD1); %getthe color of the token
colors2 =get_color(toklD2); %getthe color of the token
num?2 = str2num(colors2{1}); %getthe rate
transition.override=1; %the outputtokendoesn'tinheritthe colors of the inputtoken
transition.new_color=colorsl; %getnew colorspace from colors1
ifnum2>800 %the conditiontofire

fire=1;
else

fire=0; %notto fire
end

%define the transition cy_Nattack
function [fire,transition]=cy_Nattack_pre(transition) %define the transitionfunction
toklD1 =select_token('cypk2',1); %getatokenfrom cypk2 as the input
colorsl=get_color(toklD1); %getthe color of the token
pt = colors1{5}; %judge the packettobe normal or abnormal
% transition.override =1,
if stremp(pt,'ptN') %the conditiontofire
fire=1;
else
fire=0; %notto fire
end

%define the transition cy_Rate

function [fire,transition]=cy_Rate_pre(transition) %define the transitionfunction
transition.override=1; %the outputtokendoesn'tinheritthe colors of the inputtoken
rd=ceil(unifrnd(0,1000)); %geta randomintegerbetween 0and 1000
transition.new_color=num?2str(rd); %use the integerasthe color of the token

fire=1; %fire

%define detection module
function [png]=Detect_def() %define module name
png.PN_name ='Dectect Module'; %definethe name of this module

48

png.set_of Ps={'A11''A12''A13',... %define the placesinthismodule
'A2','start_pd','Partide’,...
'NPF_Pd1','NPF_Pd2''NPF_Pd3,...
'NPF2_ot','NPF3_ot','classify21',...
‘classify22','classify23','start_Rate’,...
'Rate’,'Rate2','classifyl),...
‘classify12','attacks’,'Nattacks',...
'cypkl’,'cypk2’,'cypk3’,...
'B1','B2','B3',...
'B4','B10','B20/,...
'B30','C10','C30'};

png.set_of Ts={'t A','Gen_First_pd','NPF',... %definethe transitionsinthis module
'NPF3','NPF1','NPF2',...
'NPF20','NPF30','Normal1l,...
'Normal2','Normal3','Normallo',...
'Normal20','Normal30','Gen_First_Rate',...
'cy_Rate','cy_Attacks','cy Nattack’,...
'cy_B1','cy_B2','cy_B3',...
'cy_B4','Classify’,'ClassfyT’,...
"TranS1','TranS10','TranS2,...
TranS3','TranS30'};

png.set_of As={"t_A','Al1l',1,... %ddefinethearcsinthismodule
't A'VAL2'1,...
t_A''A13'1,...
'start_pd','Gen_First_pd',1,...
'Gen_First_pd','Partide’, 1,...
'Partide’,'NPF',1,...
'NPF','NPF_Pd1',1,...
'NPF','NPF_Pd2,1,...
'NPF','NPF_Pd3"1,...
'NPF_Pd1','NPF1',1,...
'Al11','NPF1',1,...
'NPF1','Partide’,1,...
'NPF_Pd2','NPF2',1,...
'A12','NPF2',1,...
'NPF2','classifyl',1,...
'NPF2','classify12',1,...
'NPF_Pd2','NPF20',1,...
'A12','NPF20',1,...
'NPF20','NPF2_ot',1,...
'NPF_Pd3','NPF3',1,...
'A13','NPF3',1,...
'NPF3','classify21',1,...
'NPF3','classify22',1,...

49

'NPF3','classify23',1,...
'NPF_Pd3','NPF30',1,...
'A13','NPF30',1,...
'NPF30','NPF3_ot',1,...
‘classify21','Normal1',1,...
'Normal1','B1',1,...
‘classify21','Normallo',1,...
'Normallo','B10',1,...
‘classify22','Normal2',1,...
'Normal2','B2',1,...
‘classify22','Normal20',1,...
'Normal20','B20',1,...
‘classify23','Normal3',1,...
'Normal3','B3',1,...
‘classify23','Normal30',1,...
'Normal30','B30',1,...
'start_Rate','Gen_First_Rate',1,...
'Gen_First_Rate','Rate’,1,...
'Gen_First_Rate','Rate2',1,...
'Rate’,'Classify’,1,...
‘classifyl','Classify',1,...
'Classify','cypk1',1,...
'Classify','cypk2',1,...
‘'cypkl','cy_Rate',1,...
'cy_Rate','Rate’, 1,...
'cy_Rate','Rate2',1,...
'cypk?2','cy_Attacks',1,...
'cy_Attacks','attacks’,1,...
'cypk2','cy_Nattack',1,...
'cy_Nattack','Nattacks',1,...
‘classify12','cy B1',1,...
'Rate2','cy_B1',1,...
'cy_B1','B1',1,...
‘classify12','cy B2',1,...
'Rate2','cy_B2',1,...
'cy_B2','B2',1,...
‘classify12','cy B3',1,...
'Rate2','cy_B3',1,...
'cy_B3','B3',1,...
‘classify12','cy B4',1,...
'Rate2','cy_B4',1,...
'cy_B4','B4',1,...
"TranS1','A2',1,...
TranS10','Cl10',1,...

50

TranS2','A2'1,...
'"TranS3','A2',1,...
"TranS30','C30',1};

%define the transition Gen_First_pd
function [fire,transition]=Gen_First_pd_pre(transition) %definethe transitionfunction
rd=ceil(unifrnd(0,1000)); %generate arandomintegerbetween0and 1000
transition.new_color{1}=['a'num2str(rd)]; %getthe firstcolorof theinputtoken
rd=ceil(unifrnd(0,10)); %getarandomintegerbetweenOand 10
transition.new_color{2}=['b'num2str(rd)]; %getthe second colorofthe inputtoken
rd=ceil(unifrnd(0,3)); %generate arandomintegerbetweenOand 3
transition.new_color{3}=['c'num2str(rd)]; %getthe third color of the inputtoken
rd=ceil(unifrnd(0,100)); %generate arandomintegerbetween0and 100
transition.new_color{4}=['d' num2str(rd)]; %getthe fourth colorof theinputtoken
rd=unifrnd(1,1000); %generate arandomintegerbetween 1and 1000
if rd>100

transition.new_color{5}=['pt''N']; %getthe fifth colorof the inputtoken
else

transition.new_color{5}=['pt''A']; %getthe fifth coloroftheinputtoken
end
fire=1; %fire

%define the transition Gen_First_Rate

function [fire,transition]=Gen_First_Rate_pre(transition) %definethe transitionfunction
rd=ceil(unifrnd(0,1000)); %generate arandomintegerbetween0and 1000
transition.new_color=num2str(rd); %getthe color of the outputtoken

fire=1; %fire

%define the transition Gen_First_Sender
function [fire,transition]=Gen_First_Sender_pre(transition) %define the transitionfunction
global global_info; %defineglobal variable
global_info.package count=global_info.package count+l; %statistics of the number of
packets
transition.new_color{1}=['a’ num2str(global_info.package_count)]; %the color of
generated token
rd2=ceil(unifrnd(0,10)); %generate arandominteger
transition.new_color{2}=['b'num2str(rd2)]; %the colorof generated token
rd3=ceil(unifrnd(0,3)); %generate arandominteger
transition.new_color{3}=['c'num2str(rd3)]; %the colorof generated token
rd4=ceil(unifrnd(0,100)); %generate arandominteger
transition.new_color{4}=['d'num2str(rd4)]; %the colorof generated token
rd=unifrnd(1,1000); %generate arandominteger
ifrd>100 %the colorof generated token

transition.new_color{5}=["pt''N'];

51

else

transition.new_color{5}=['pt''A"];
end
fire=1; %fire

%define the transition Gen_Sender

function [fire,transition]=Gen_Sender_pre(transition) %define the transition function
global global_info; %defineglobal variable

transition.override =1;

global_info.package_count=global_info.package_count+l; %statistics of the number of

packets

rd1=global_info.package_count;

transition.new_color{1}=['a’ num?2str(global_info.package_count)]; %the color of
generated token

rd2=ceil(unifrnd(0,10)); %generate arandominteger
transition.new_color{2}=['b'num2str(rd2)]; %the colorof generatedtoken
rd3=ceil(unifrnd(0,3)); %generate arandominteger
transition.new_color{3}=['c'num2str(rd3)]; %the color of generated token
rd4=ceil(unifrnd(0,100)); = %generate arandominteger
transition.new_color{4}=['d' num2str(rd4)]; %the colorof generated token
rd=unifrnd(1,1000); %generate arandominteger
if rd>100

transition.new_color{5}=["pt''N'];
else

transition.new_color{5}=['pt''A'];
end
fire=1;

%define the transition Normall
function [fire,transition]=Normall_pre(transition) %define the transitionfunction
toklD1 =select_token('classify21',1); %getatokenfrom classify2las the input
colorsl=get_color(toklD1); %getthe color of the token
num1 = str2num(colors1{3}(2:end)); %getthe portnumberofinputtoken
ifnuml==1 %the conditiontofire

fire=1;
else

fire=0; %notto fire
end

%define the transition Normallo

function [fire,transition]=Normallo_pre(transition) %define the transition function
tokID1 =select_token('classify21',1); %geta tokenfromclassify21as the input
colorsl=get_color(toklD1); %getthe color of the token

num1 = str2num(colors1{3}(2:end)); %getthe portnumberofinputtoken

52

% transition.override =1,
ifnuml~=1 %the conditiontofire
fire=1;
else
fire=0; %notto fire
end

%define the transition Normal2
function [fire,transition]=Normal2_pre(transition) %define the transitionfunction
tokID1 =select_token('classify22',1); %geta tokenfrom classify22as the input
colorsl=get_color(toklD1); %getthe color of the token
num1 = str2num(colors1{3}(2:end)); %getthe portnumberofinputtoken
ifnum1==2 %the conditiontofire

fire=1;
else

fire=0; %notto fire
end

%define the transition Normal2o
function [fire,transition]=Normal2o_pre(transition) %define the transition function
tokID1 =select_token('classify22',1); %geta tokenfrom classify22as the input
colors1=get color(tokID1); %getthe color of the token
num1 = str2num(colors1{3}(2:end)); %getthe portnumberofinputtoken
% transition.override =1,
ifnum1~=2 %the conditiontofire
fire=1;
else
fire=0; %notto fire
end

%define the transition Normal3
function [fire,transition]=Normal3_pre(transition) %define the transition function
tokID1 =select_token('classify23',1); %geta tokenfrom classify23as the input
colorsl=get_color(toklD1); %getthe color of the token
num1 = str2num(colors1{3}(2:end)); %getthe portnumber of inputtoken
ifnum1==3 %the conditiontofire

fire=1;
else

fire=0; %notto fire
end

%define the transition Normal3o

function [fire,transition]=Normal3o_pre(transition) %define the transition function
tokID1 =select_token('classify23',1); %geta tokenfrom classify23as theinput

53

colorsl=get_color(tokiD1); %getthe color of the token
numl = str2num(colors1{3}(2:end)); %getthe portnumberofinputtoken
% transition.override =1,
ifnum1~=3 %the conditiontofire
fire=1;
else
fire=0; %notto fire
end

%define the transition NPF1
function [fire,transition]=NPF1_pre(transition) %define the transition function
rd=ceil(unifrnd(0,1000)); %generate arandominteger
transition.new_color{1}=['a' num2str(rd)]; %the colorof generatedtoken
rd=ceil(unifrnd(0,10)); %generate arandominteger
transition.new_color{2}=['b'num2str(rd)]; %the color of generated token
rd=ceil(unifrnd(0,3)); %generate arandominteger
transition.new_color{3}=['c'num2str(rd)]; %the colorof generated token
rd=ceil(unifrnd(0,100)); %generate arandominteger
transition.new_color{4}=['d' num2str(rd)]; %the color of generated token
rd=unifrnd(1,1000); %generate arandominteger
if rd>100

transition.new_color{5}=['pt''N']; %the colorof generated token
else

transition.new_color{5}=['pt''A']; %the colorof generated token
end
transition.override =1;
fire=1; %fire

%define the transition NPF2
function [fire,transition]=NPF2_pre(transition) %define the transitionfunction
toklD1 =select_token('A12',1); %getatokenfromAl2 astheinput
tokID2 =select_token('NPF_Pd2',1); %getatokenfromNPF_Pd2 as anotherinput
colorsl=get_color(tokliD1); %getthe color of the token
colors2 =get_color(toklD2); %getthe color of the token
num1 = str2num(colors1{4}(2:end)); %getthe port numberof the token
num?2 = str2num(colors2{4}(2:end)); %getthe port numberofthe particle
transition.override=1; %the outputtokendoesn'tinheritthe colorsof the inputtoken
transition.new_color=colorsl; %getnew colorspace from colorsl
if abs(num1-num2)/100<=0.1 %the conditiontofire

fire=1;
else

fire=0; %notto fire
end

54

%define the transition NPF20
function [fire,transition]=NPF20_pre(transition) %definethe transitionfunction
tokID1 =select_token('A12',1); %getatokenfromAl2 astheinput
tokID2 =select_token('NPF_Pd2',1); %getatokenfromNPF_Pd2 as theinput
colorsl=get_color(toklD1); %getthe color of the token
colors2 =get_color(toklD2); %getthe color of the token
num1 = str2num(colors1{4}(2:end)); %getthe port numberofinputtoken
num2 = str2num(colors2{4}(2:end)); %getthe portnumberofthe particle
transition.override=1; %the outputtokendoesn'tinheritthe colorsof the inputtoken
transition.new_color=colorsl; %getnew colorspace from colorsl
ifabs(num1-num2)/100>0.1 %the conditiontofire

fire=1;
else

fire=0; %notto fire
end

%define the transition NPF3
function [fire,transition]=NPF3_pre(transition) %define the transitionfunction
toklD1 =select_token('A13',1); %getatokenfromA13 astheinput
toklD2 =select_token('NPF_Pd3',1); %getatokenfrom NPF_Pd3as anotherinput
colorsl=get_color(tokiD1); %getthe color of the token
colors2 =get_color(toklD2); %getthe color of the token
num1 = str2num(colors1{4}(2:end)); %getthe portnumberofinputtoken
num?2 = str2num(colors2{4}(2:end)); %getthe port numberofthe particle
transition.override=1; %the outputtokendoesn'tinheritthe colorsof the inputtoken
transition.new_color=colorsl; %getnew colorspace fromcolorsl
pt=colors1{5};
if abs(num1-num?2)/100>0.1&&strcmp(pt,'ptN') %the conditiontofire
fire=1;
else
fire=0; %notto fire
end

%define the transition NPF3o

function [fire,transition]=NPF30_pre(transition) %definethe transitionfunction
tokID1 =select_token('A13',1); %getatokenfromAl3 astheinput

toklD2 =select_token('NPF_Pd3',1); %getatokenfrom NPF_Pd3as anotherinput
colorsl=get_color(toklD1); %getthe color of the token

colors2 =get_color(toklD2); %getthe color of the token

numl = str2num(colors1{4}(2:end)); %getthe portnumberofinputtoken

num?2 = str2num(colors2{4}(2:end)); %getthe port number of the particle
pt=colors1{5};

transition.override=1; %the outputtokendoesn'tinheritthe colors of the inputtoken
transition.new_color=colorsl; %getnew colorspace from colorsl

55

if ~(abs(num1-num?2)/100>0.1&&strcmp(pt,'ptN')) %the conditiontofire
fire=1;

else
fire=0; %notto fire

end

%define the transition Rec_Ak2

function [fire,transition]=Rec_Ak2_pre(transition) %define the transition function
tokID1 =select_token('A22',1); %getatokenfromA22 astheinput
colorsl=get_color(tokiD1); %getthe color of the token

pt = colors1{5};

if stremp(pt,'ptA') %the conditiontofire
fire=1;

else
fire=0; %notto fire

end

%define the transition Rec_Ak2o0
function [fire,transition]=Rec_Ak2o_pre(transition) %definethe transitionfunction
tokID1 =select_token('A22',1); %getatokenfromA22 astheinput
colors1l=get color(tokiD1); %getthe color of the token
pt = colors1{5};
% transition.override =1,
if stremp(pt,'ptN') %the conditionto fire
fire=1;
else
fire=0; %notto fire
end

%define the receiver module
function [png]=Receive_def() %module definitionfunction
png.PN_name ='Receive Profile'; %definethe name of this module
png.set_of Ps={'C1','C2','C3'}; %definethe placesinthismodule
png.set_of Ts={'hostl','host2','host3'}; %definethe transitionsinthismodule
png.set_of As={host1','C1'1,... %ddefinethearcsinthismodule
'host2','C2',1,...
'host3','C3',1};

%define the sender module

function [png]=Sender_def() %module definition function

png.PN_name ='Sender Module'; %define the name of thismodule

png.set_of Ps={'start','Senderl’,'Sender2’,... %define the placesinthis module
'Sender3','Sender','SenderNo',...

56

'A1','TA",'TN',...
'A21','A22','Send_Rec,...
'TA2','TA20'};
png.set_of_Ts = {'Gen_First_Sender','Senders','Gen_Sender',... %define the transitions in
this module
't_TA','t_SNAL','t TN','t_A2',...
'Rec_Ak1','Rec_Ak2','Rec_Ak20'};
png.set_of As={'start','Gen_First_Sender',1,... %ddefine the arcsinthis module
'Gen_First_Sender','Sender,1,...
'Sender','Senders',1,...
'Senders','Sender1',1,...
'Senders','Sender2',1,...
'Senders','Sender3',1,...
'Senderl','t SNA1',1,...
't SNA1','A1'1,...
't SNA1','SenderNo',1,...
'Sender2','t TA',1,...
't TA','TA'1,...
'Sender2','t TN',1,...
"t TN''TN',1,...
'Sender3','Gen_Sender',1,...
'Gen_Sender','Sender',1,...
't_A2''A21'1,...
't_A2''A22',1,...
'A21','Rec_Ak1',1,...
'Rec_Ak1','Send_Rec',1,...
'A22''Rec_Ak2'1,...
'Rec_Ak2','TA2',1,...
'A22','Rec_Ak20',1,...
'Rec_Ak20','TA20',1};

%define the transitiont_SNA1
function [fire,transition]=t_SNA1_pre(transition)
fire=1;

%define the transitiont_TA
function [fire,transition]=t_TA_pre(transition) %define the transition function
global global_info; %defineglobal variable
% transition.selected_tokens = select_token_with_colors('Sender2',1,'ptA"); %get a token
fromSender2as the input
tokID1 = select_token_with_colors('Sender2',1,'ptA"); %get the select token whose color is
ptAfrom Sender2
transition.selected_tokens=toklID1,;
colorsl=get_color(tokliD1); %getthe color of the token

57

transition.override=1; %the outputtokendoesn'tinheritthe colors of the inputtoken
transition.new_color=colorsl; %getnew colorspace fromcolorsl

if “isempty(transition.selected tokens) %the conditiontofire

fire=1;

global _info.TA_count=global_info.TA_count+1; %statistics of numberof abnormal packets
else

fire=0;

end;

%define the transitiont_TN

function [fire,transition]=t_TN_pre(transition) %define the transitionfunction

global global _info;

tokID1 = select_token_with_colors('Sender2',1,'ptN'); %select the tokens whose color is
ptN from Sender2

transition.selected_tokens=toklD1;

colors1=get _color(tokliD1); %getthe color of the token

transition.override=1; %the outputtokendoesn'tinheritthe colorsof the inputtoken
transition.new_color=colorsl; %getnew colorspace from colorsl

if “isempty(transition.selected_tokens),

fire=1;

global_info.TN_count=global_info.TN_count+1; %statistics of numberof normal packets
else

fire=0;

end;

%define the transition TranS1
function [fire,transition]=TranS1_pre(transition) %definethe transitionfunction
toklD1 =select_token('C1',1); %getatokenfromClas theinput
colorsl=get_color(toklD1); %getthe color of the token
num1 = str2num(colors1{1});
rd=ceil(unifrnd(0,1000));
ifnuml>rd
fire=1;
else
fire=0;
end

%define the transition TranS1lo
function [fire,transition]=TranS1o_pre(transition)
fire=1;

%define the transition TranS3

function [fire,transition]=TranS3_pre(transition) %definethe transitionfunction
tokID1 =select_token('C3',1); %getatokenfromC3as theinput

58

colorsl=get_color(tokiD1); %getthe color of the token
num1 = str2num(colors1{1});
rd=ceil(unifrnd(0,1000));
if numl<rd
fire=1;
else
fire=0;
end

%define the transition TranS30
function [fire,transition]=TranS3o_pre(transition)
fire=1;

%TROJAN DETECTION PART:

%main function
clearall;
clc;
addpath('./toolbox/'); %librariesforsimulation
global global_info; %global variable
global info.STOP_AT=10000; %runtime of simulation
global_info.package_count=0; %statisticsof the numberof packets
global_info.Trojan_count=0; %statistics of numberof Trojan packets
global_info.Rec_count=0; %statistics of the number of received confirmation packets
% png=petrinetgraph('NPF_Intrusion_def');
png=petrinetgraph({'Sender_def','Detect_def','Receive_def','conn_def'}); = %combine the
modulesintoaPetrinet
dynamicpart.initial_markings = {'start',1,'Start_Rate',1,'Start_Partide'1}; %generate the
initial token
% dynamicpart.firing_times={'Senders', '100'};
dynamicpart.firing_times ={'Senders', 'unifrnd(0,100)'}; %definethe time fortransition
results = gpensim(png, dynamicpart); %simulation
print_finalcolors(results); %outputsimulationresult
fprintf('The whole number of the send packagesis: %d\n',global_info.package_count);
fprintf('The whole number of the received packagesis: %d\n', global_info.Rec_count);
fprintf('The whole number of the trojan packages is: %d\n',global_info.Trojan_count);
fprintf('The trojanrate is : %f\n',global_info.Trojan_count/global_info.Rec_count);

%define the connection module
function [png]=conn_def() %module definition function
png.PN_name ='Connections Profile’; %define the name of this module

59

png.set_of Ps=[]; %definethe placesinthismodule
png.set_of Ts=[]; %definethe transitionsinthis module
png.set_of As={'A1't Al'1,... %ddefinethearcsinthis module

'‘B1','host1',1,...

'B2','host2',1,...

'B3','host3',1,...

'C1','TranS1',1,...

'C2','TranS2',1,...

'C3','TranS3',1,...

'A2','Rec_Ak',1};

%define detection module
function [png]=Detect_def() %define module name
png.PN_name ='Dectect Module'; %definethe name of thismodule
png.set_of Ps={'A11','A12','Start_Rate',... %define the placesinthis module
'Rate’,'Rate1','Rate2’,...
'B1','B2','B3','B4,...
'Collect','Collectl','Collect2’,...
'Start_Partide','Partide’,'Pd1',...
'Pd2','Trojan','A2',...
|7
png.set_of Ts={'t_Al','Gen_First_Rate','Gen_Rate',... %define the transitions in this
module
't_Rate','t_B1''t_B2''t_B3''t_B4'...
TranS3','TranS1','TranS2','t_clt',...
'NPF1','Gen_First_pd','t_pd',...
't_Trojan','t_A2'};
png.set_of As={"t_A1','A11'1,... %ddefinethe arcsinthis module
't AL',A12'1,...
'Start_Rate','Gen_First_Rate',1,...
'Gen_First_Rate','Rate’, 1,...
'‘Rate’,'t_Rate',1,...
't_Rate','Ratel',1,...
't Rate','Rate2',1,...
'Ratel’,'Gen_Rate',1,...
'A1l','Gen_Rate',1,...
'Gen_Rate','Rate’,1,...
'Rate2','t B1'1,...
'A12''t_B1'1,...
't B1','B1'1,...
'Rate2','t_B2',1,...
'A12''t_B2',1,...
't B2','B2'1,...
'Rate2','t_B3',1,...

60

'A12''t_B3',1,...

't B3','B3"1,...

'Rate2','t B4',1,...
'A12''t_B4'1,...
't_B4','B4"1,...
"TranS1','Collect',1,...
"TranS2','Collect,1,...
"TranS3','Collect', 1,...
'Collect','t_clt',1,...
't_clt','Collectl’,1,...

't _clt','Collect2',1,...
'Start_Partide','Gen_First_pd',1,...
'Gen_First_pd','Partide’,1,...
'Partide’,'t_pd',1,...
't_pd','Pd1',1,...

't pd','Pd2',1,...
'Pd1','NPF1',1,...
'Collectl','NPF1',1,...
'NPF1','Partide’,1,...
'Pd2','t_Trojan',1,...
'Collect2','t_Trojan',1,...
't_Trojan','Trojan',1,...
'Pd2','t_A2'1,...
'Collect2','t_A2',1,...

't A2''A2'1,...

|7

%define the transition Gen_First_pd

function [fire,transition]=Gen_First_pd_pre(transition) %definethe transitionfunction
rd=ceil(unifrnd(0,1000)); %generate arandomintegerbetween0and 1000
transition.new_color{1}=['a' num2str(rd)]; %getthe firstcolorof the inputtoken
rd=ceil(unifrnd(0,10));

transition.new_color{2}=['b' num2str(rd)]; %getthe second colorofthe inputtoken
rd=ceil(unifrnd(0,3));

transition.new_color{3}=['c'num2str(rd)]; %getthe third color of theinputtoken
rd=ceil(unifrnd(0,100));

transition.new_color{4}=['d'num2str(rd)]; %getthe fourth colorof the inputtoken
fire=1; %fire

%define the transition Gen_First_Rate
function [fire,transition]=Gen_First_Rate_pre(transition) %definethe transitionfunction
rd=ceil(unifrnd(0,1000)); %generate arandomintegerbetween0and 1000
transition.new_color=num2str(rd); %getthe color of the outputtoken
fire=1; %fire

61

%define the transition Gen_First_Sender

function [fire,transition]=Gen_First Sender_pre(transition) %define the transition function
global global_info; %defineglobal variable

global_info.package count=global_info.package count+l; %statistics of the number of
packets

transition.new_color{1}=['a’ num2str(global_info.package_count)]; %the color of
generated token
rd2=ceil(unifrnd(0,10)); %generate arandominteger

transition.new_color{2}=['b'num2str(rd2)]; %the colorof generated token
rd3=ceil(unifrnd(0,3)); %generate arandominteger
transition.new_color{3}=['c'num2str(rd3)]; %the colorof generated token
rd4=ceil(unifrnd(0,100)); %generate arandominteger
transition.new_color{4}=['d'num2str(rd4)]; %the colorof generated token
fire=1; %fire

%define the transition Gen_Rate

function [fire,transition]=Gen_Rate_pre(transition) %define the transitionfunction
transition.override =1;

rd=ceil(unifrnd(0,1000));

transition.new_color=num?2str(rd); = %the color of generated token

fire=1; %fire

function [fire,transition]=Gen_Sender_pre(transition)
global global_info;
transition.override =1;
global_info.package_count=global_info.package_count+1;
rd1=global_info.package count;
transition.new_color{1}=num2str(global_info.package_count);
while(1)
rd2=ceil(unifrnd(0,10));
if(rd2~=rd1)
transition.new_color{2}=num2str(rd2);
break;
end
end
rd3=ceil(unifrnd(0,3));
while(1)
rd2=ceil(unifrnd(0,10));
if(rd2~=rd1&&)
transition.new_color{3}=num2str(rd3);
break;
end
end

62

rd=ceil(unifrnd(0,100));
transition.new_color{4}=num2str(rd4);
rd=unifrnd(1,1000);
if rd>100
transition.new_color{5}='N’;
else
transiton.new_color{5}="'A";
end
fire=1;

%define the transition Gen_Sender

function [fire,transition]=Gen_Sender_pre(transition) %define the transition function
global global_info; %defineglobal variable

transition.override =1;

global_info.package count=global_info.package count+1; %statistics of the number of
packets

rd1=global_info.package_count;

transition.new_color{1}=['a’" num2str(global_info.package_count)]; %statistics of the
number of packets

rd2=ceil(unifrnd(0,10));

transition.new_color{2}=['b'num2str(rd2)]; %statistics of the number of packets
rd3=ceil(unifrnd(0,3));

transition.new_color{3}=['c'num2str(rd3)]; %statistics of the numberof packets
rd4=ceil(unifrnd(0,100));

transition.new_color{4}=['d'num2str(rd4)]; %statistics of the number of packets

fire=1;

%define the transition NPF1

function [fire,transition]=NPF1_pre(transition) %define the transitionfunction
rd=ceil(unifrnd(0,1000)); %generate arandominteger
transition.new_color{1}=['a' num2str(rd)]; %the colorof generatedtoken
rd=ceil(unifrnd(0,10)); %generate arandominteger
transition.new_color{2}=['b'num2str(rd)]; %the color of generated token
rd=ceil(unifrnd(0,3)); %generate arandominteger
transition.new_color{3}=['c'num2str(rd)]; %the colorof generatedtoken
rd=ceil(unifrnd(0,100)); %generate arandominteger
transition.new_color{4}=['d' num2str(rd)]; %the color of generated token
transition.override =1;

fire=1; %fire

%define the transition Rec_Ak

function [fire,transition]=Rec_Ak_pre(transition) %define the transition function
global global _info;

63

global_info.Rec_count=global_info.Rec_count+1; %statistics of the numberof packets
fire=1;

%define the receiver module
function [png]=Receive_def() %module definition function
png.PN_name ='Receive Profile';, %definethe name of thismodule
png.set_of Ps={'C1','C2','C3'}; %definethe placesinthismodule
png.set_of Ts={hostl','host2','host3'}; %definethe transitionsinthis module
png.set_of As={'hostl','C1',1,... %ddefine the arcsin this module
'host2','C2',1,...
'host3','C3',1};

%define the sender module
function [png]=Sender_def() %module definition function
png.PN_name ='Sender Module'; %definethe name of thismodule
png.set_of Ps={'start’,'Sender','Senderl',... %definethe placesinthismodule
'Sender2','SenderNo','A1','Send_Rec'};
png.set_of Ts={'Gen_First_Sender','Senders',... %definethe transitionsinthis module
'Gen_Sender','t_ SNA1','Rec_Ak'};
png.set_of As={'start','Gen_First_Sender',1,... %ddefine the arcsinthismodule
'Gen_First_Sender','Sender',1,...
'Sender','Senders',1,...
'Senders','Sender1',1,...
'Senders','Sender2',1,...
'Senderl','t SNA1',1,...
't SNA1','A1'1,...
't SNA1','SenderNo',1,...
'Sender2','Gen_Sender',1,...
'Gen_Sender','Sender',1,...
'Rec_Ak','Send_Rec',1,...
|

%define the transitiont_A2
function [fire,transition]=t_A2_pre(transition) %definethe transitionfunction
tokID1 =select_token('Collect2',1); %geta tokenfrom Collect2asthe input
tokID2 =select_token('Pd2',1); %getatokenfromPd2 asthe input
colorsl=get_color(toklD1); %getthe color of the token
colors2 =get_color(toklD2); %getthe color of the token
num1 = str2num(colors1{4}(2:end));
num?2 = str2num(colors2{4}(2:end));
transition.override =1;
transition.new_color=colorsl; %getnew colorspace from colorsl
if abs(num1-num?2)/100>=0.05
fire=1;

64

else
fire=0;
end

%define the transitiont_B1
function [fire,transition]=t_B1_ pre(transition) %define the transition function
tokID1 =select_token('A12',1); %getatokenfromAl2 astheinput
toklD2 =select_token('Rate2',1); %getatokenfrom Rate2 as the input
colorsl=get_color(tokiD1); %getthe color of the token
colors2 =get_color(toklD2); %getthe color of the token
num1 = str2num(colors1{3}(2:end));
num2 = str2num(colors2{1});
transition.override =1;
transition.new_color=colorsl; %getnew colorspace from colorsl
if num1==1&&num2<=800
fire=1;
else
fire=0;
end

%define the transitiont_B2
function [fire,transition]=t_B2_pre(transition) %define the transitionfunction
toklD1 =select_token('A12',1); %getthe selecttokenwhose colorisptAfromA12
toklD2 = select_token('Rate2',1); %getthe selecttokenwhose coloris ptA from Rate2
colorsl=get_color(toklD1); %getthe color of the token
colors2 =get_color(toklD2); %getthe color of the token
num1 = str2num(colors1{3}(2:end));
num?2 = str2num(colors2{1});
transition.override =1;
transition.new_color=colorsl; %getnew colorspace from colorsl
if num1==2&&num?2<=800
fire=1;
else
fire=0;
end

%define the transitiont_B3

function [fire,transition]=t_B3_pre(transition) %define the transitionfunction
tokID1 =select_token('A12',1); %getatokenfromAl2 astheinput

toklD2 =select_token('Rate2',1); %getatokenfrom Rate2 as the input
colorsl=get_color(tokiD1);

colors2 =get_color(toklD2);

num1 = str2num(colors1{3}(2:end));

num2 = str2num(colors2{1});

65

transition.override =1;
transition.new_color=colorsl; %getnew colorspace from colorsl
if num1==3&&num2<800
fire=1;
else
fire=0;
end

%define the transitiont_B4
function [fire,transition]=t_B4_pre(transition) %define the transitionfunction
toklD2 =select_token('Rate2',1); %getatokenfromRate2 asthe input
colors2 =get_color(toklD2); %getthe color of the token
numz2 = str2num(colors2{1});
transition.override =1;
if num2>800
fire=1;
else
fire=0;
end

%define the transitiont_SNA1
function [fire,transition]=t_SNA1_pre(transition)
fire=1;

%define the transitiont_Trojan
function [fire,transition]=t_Trojan_pre(transition) %define the transition function
global global_info; %defineglobal variable
toklD1 =select_token('Collect2',1); %geta token Collect2astheinput
tokID2 =select_token('Pd2',1); %getatokenfromPd2 asthe input
colorsl=get_color(tokiD1); %getthe color of the token
colors2 =get_color(toklD2); %getthe color of the token
numl = str2num(colors1{4}(2:end)); %get the portnumber of the token
num?2 = str2num(colors2{4}(2:end)); %getthe port numberofthe particle
transition.override =1;
transition.new_color=colorsl; %getthe colorof generatedtoken
if abs(num1-num?2)/100<0.05
fire=1;
global_info.Trojan_count=global_info.Trojan_count+1; = %statistics of number
Trojan packets
else
fire=0;
end

66

of

