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Abstract

Video-Based Markerless Motion Capture
The task for this master’s thesis was to develop, implement, and evaluate
an algorithm for markerless human pose tracking. The algorithm should be
based on the freely available HumanEva framework to enable a quantitative
comparison to the state of the art. This framework uses an articulated body
model to estimate the pose in an analysis by synthesis approach. Some of
the hard problems of markerless motion capture come from self-occlusions and
3D-2D mapping ambiguities. These problems are alleviated by using multiple
cameras. But the hardest problem remains: The high number of parameters
that define the pose of the body model.

Soft Partitioning Particle Swarm Optimization
This thesis proposes a new algorithm called soft partitioning particle swarm
optimization (SPPSO) which formulates pose tracking as an optimization of
the 31 parameters that define the pose of the body model. The optimization
objective is a fitness function which represents the match between the body
model and the video frames. To tackle the dimensionality problem, SPPSO
divides the optimization into two stages that exploit the hierarchical structure
of the model. The first stage only optimizes the six most important parameters
that define the global orientation and position of the model. In contrast to
hard hierarchical partitioning schemes, soft partitioning refines the estimation
of these parameters in the second optimization stage. In addition to presenting
SPPSO, the thesis also provides a literature review of the current research in
the field with an emphasis on approaches that use particle swarm optimization.

Better Tracking at Low Frame Rates
The performance of SPPSO was evaluated in various tracking experiments on
the Lee walk sequence, a standard dataset from the HumanEva framework
which contains multi-view video and ground truth motion capture data. The
most important result of these experiments is that SPPSO performs better
than the annealed particle filter, a common benchmark algorithm, at a frame
rate of 20fps, and equally well at 60fps. The better performance at the lower
frame rate is attributed to the explicit exploitation of the hierarchical model
structure. The experiments also showed that SPPSO performs better than
a single-stage global optimization and better than a variant with hard par-
titioning. An important conclusions from the literature review is that any
future developments should combine a stochastic global optimization, such as
SPPSO, with a local refinement stage to make tracking more accurate. The
global optimization stage allows such an algorithm to recover from tracking
failure and the local refinement efficiently improves the tracking accuracy.
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1 Acronyms

APF Annealed Particle Filter [DR05]

CSS Covariance Scaled Sampling [ST01]

DoF Degrees of Freedom

GA Genetic Algorithm [SP94]

GLAPSO Global Local Annealed Particle Swarm Optimization [KKW11b]

GLPSO Global Local Particle Swarm Optimization [KKW11a]

ISA Interacting Simulated Annealing [GPS+07]

KLT Kanade Lucas Tomasi [LK81, TK91]

NSF Niching Swarm Filtering [ZS11]

PF Particle Filter [AMGC02]

PSO Particle Swarm Optimization [KE95]

ROI Region of Interest

SIS Sequential Importance Sampling [AMGC02]

SPPSO Soft Partitioning Particle Swarm Optimization
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2 Task Description

2.1 Task

The task for this master’s thesis was to develop, implement, and evaluate an al-
gorithm for markerless human motion capture based on multiple cameras. The
original idea for the algorithm was to segment the observed images into individual
body parts and use dense optical flow to propagate the segmented images. The
segmentation would facilitate hierarchical optimization for the pose estimation step
and thus make the whole tracking process much faster. However, using optical flow
for tracking always introduces drift and early experiments clearly showed this. Con-
sequently, using optical flow was abandoned and the further work was focused on
the soft partitioning aspect of SPPSO. Moreover, an extensive study of the related
work in the area of pose tracking with articulated models and also tracking with
optical flow was carried out to provide a profound base for the presented and future
work.

2.2 Implementation

The proposed algorithm should be implemented in Matlab, using the HumanEva
framework [BSB05, SBB10]. This enabled a quantitative comparison to a state of
the art tracking algorithm.

2.3 Supervisor

The supervisor for this thesis was Ivar Austvoll (Assoc. Prof. at the University of
Stavanger UiS, Norway). Many ideas for the proposed algorithm were developed
in collaboration with Bogdan Kwolek (Assoc. Prof. at the Rzeszów University of
Technology, Poland) during his research stay at UiS in autumn 2011.



3. Introduction 9/83

3 Introduction

This thesis proposes an algorithm for markerless video-based human motion capture Outline
called Soft Partitioning Particle Swarm Optimization (SPPSO). This chapter first
gives a short general overview of the motion capture process, its taxonomy, and ap-
plications. Furthermore, it lists the main challenges of motion capture and outlines
SPPSO. The remainder of this thesis is structured as follows: Chapter 4 Related
Work establishes the context by reviewing relevant contributions to markerless mo-
tion capture, chapter 5 Soft Partitioning Particle Swarm Optimization de-
scribes SPPSO in detail, and chapter 6 Experiments reports the experimental
results. Finally, chapter 7 Conclusion summarizes the gained insights and gives
some suggestions for future work. Appendix A explains implementation details.

3.1 Video-Based Human Motion Capture

The aim of video-based human motion capture is to estimate the pose and position Surveys
of a human subject at consecutive time instants. The following surveys give broad
overview of the subject: [MG01, MHK06, Pop07, BSF10]. The taxonomy of Moes-
lund and Granum [MG01] is used throughout this thesis. Sigal and Black recently
compiled a short overview over the current state of the art in pose tracking [SB10].

Commercially available motion capture systems are most often marker-based. These Markerless
motion capturemarkers are attached to the subject and tracked using multiple video cameras. This

method works well and has been used by the film industry for years. But in many
cases it is inconvenient or even impossible to attach markers to the subject, e.g. in
surveillance. Markerless motion capture is therefore an active research topic. From
now on the term tracking always means markerless tracking.

Figure 3.1 shows a flow diagram of the whole human body motion analysis process Process overview
according to Moeslund and Granum. This thesis only treats the tracking and pose
estimation step. The initialisation is done by using ground truth data and the
recognition step is not considered.

SPPSO belongs to the category of multiple view 3D pose estimation algorithms. It Taxonomy
estimates the body location (tracking) and the limb configuration (pose estimation)
simultaneously within the same framework. Therefore, the term pose tracking is used
to refer to the whole process throughout this thesis. The term subject is henceforth
used to denote a human tracking subject, multi-person tracking is not discussed.



10/83 3. Introduction

Initialisation

Tracking

Pose Estimation

Recognition

Find all model parameters in 
the first frame.

Follow the position of the 
subject in subsequent frames.

Determine the body 
configuration of the subject.

Classifiy the performed 
action.

Figure 3.1 The process of human body motion analysis [MG01].

3.2 Applications of Human Motion Capture

There are many applications of markerless motion capture, ranging from computer
games to medical gait analysis. Moeslund et al. group the applications into three
sectors: surveillance applications, control applications, and analysis applications
[MHK06]. Brubaker et al. emphasize the use of motion capture in perceptive en-
vironments and man-machine interfaces [BSF10]. The ubiquitous presence of com-
puter vision hardware in the modern world, e.g. in smart phones or surveillance
cameras, offers many opportunities for video based human motion capture.

3.3 Challenges in Human Motion Capture

Markerless Human motion capture from video is a hard problem due to various
reasons. Four major difficulties are listed below:

Ambiguities arise from the mapping of 3D poses to 2D images. Two mirrored poses
are for example indiscernible in a 2D silhouette image.

Self occlusions are also caused by the 3D to 2D mapping. They prevent the obser-
vation of body parts.

Clothing and Appearance variability are a major challenge in real-world applica-
tions. This problem especially applies to the initialisation step.

High dimensionality of the parameter space is a major problem in all approaches
that use articulated body models. The required number of parameters for a
full body model is often over 30, even for coarse models.

Motion capture from monocular video is a largely unsolved problem [BSF10]. There-Multiple cameras
fore, most algorithms use multi-view videos to alleviate the ambiguity- and self
occlusion problems. SPPSO always uses four cameras.
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3.4 Outline of SPPSO

Moeslund and Granum compiled a list of common assumptions made by motion Requirements
capture systems [MG01]. The proposed algorithm relies on the following of these
assumptions:

Movement Assumptions

• The subject remains inside the workspace
• No camera motion
• Only one person in the workspace at the time
• No external occlusion (only self-occlusion)

Appearance Assumptions

• Constant lighting
• Static background
• Known camera parameters
• Known start pose

The static cameras, background, and lighting enable a simple background subtrac- Background
subtractiontion. SPPSO uses precomputed background-subtracted images that are included in

the used dataset.

The camera parameters are also included in the dataset. They are required for Camera parameters
the projection of the body model into the four camera views. The term view is
henceforth used to denote the image produced by one of the four used cameras.

SPPSO uses a freely available articulated body model, introduced by Balan et al. Articulated model
[BSB05]. It is based on a kinematic tree with 31 parameters to approximate the
skeleton. The shape is approximated by 10 truncated cones.

Pose tracking is hereafter formulated as an optimization problem. The objective is Optimization
formulationto maximize a fitness that indicates how well certain image features of the model and

the observation match. Namely the background subtracted image, the silhouette,
and an image gradient based edge map.

SPPSO uses a soft search space partitioning with two stages. In the first stage, only Search space
partitioningthe position and orientation (6 parameters) are optimized. The second stage is a

global optimization of all parameters but the position parameters are constrained
to a narrower range. Both stages are optimized using Particle Swarm Optimization
(PSO) This scheme achieves a good tracking accuracy with few fitness evaluations
and avoids error accumulation.
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3.4.1 Summary of Contributions

The major contributions of this thesis are:

• A literature survey of articulated pose tracking algorithms, focusing on algo-
rithms that use PSO.

• The SPPSO algorithm and study of soft search space partitioning for opti-
mization of hierarchical models with PSO.

• An experimental examination of different parameter configurations for PSO in
pose tracking.
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4 Related Work

This chapter is a literature survey in the field of pose tracking. It first gives a general
overview of the two fundamentally different approaches to pose tracking: model free
methods (section 4.1) and direct model use methods (section 4.2). After that the
commonly used objective functions, i.e. fitness/likelihood functions, are discussed
in section 4.3. Section 4.4 then categorizes pose tracking algorithms according to
the used optimization method. Section 4.5 discusses the HumanEva framework,
which consists of a tracking algorithm and various video sequences with synchronised
motion capture data. The freely available Matlab implementation of the HumanEva
tracking algorithm is used as the base for SPPSO and the experiments in chapter
6 were performed using the Lee sequence from this framework. Finally, section 4.6
shows how optical flow is used in various pose tracking algorithms.

4.1 Model Free Pose Estimation

Model free pose estimation algorithms take an observed image and find the best Two main
categoriesmatching pose in a database of examples. Model free means that they do not use an

explicit geometric model of the body. They can be categorized into two categories
[MHK06]: Probabilistic assemblies of parts use a classifier to locate possible positions
of individual body parts in the observed image and then find the most probable body
configuration [FH05, FMJZ08, ARS09, BKSS10]. Example-based methods directly
use a classifier to match an observed image to a database with possible poses [AT06,
GEJ+08, GPZ+11, GLS11].

All the model free approaches share one inherent limitation: they only recognize Limited to
examplesthe poses or motions in their example database. These databases are commonly

produced by rendering motion capture data using a 3D model. Direct model use
algorithms do not exhibit this limitation in general.

4.2 Direct Model Use Methods

4.2.1 Kinematic Tree

In contrast to the model free methods (discriminative), direct model use (genera-
tive) algorithms incorporate a 3D model in an analysis-by-synthesis fashion. This
model approximates the shape, appearance, and kinematic structure of a human
body [MHK06]. The kinematic structure is usually modelled by a kinematic tree
with the joint angles as the variable parameters during tracking. The 3D position
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and orientation of the root node of the tree is parametrised with six additional pa-
rameters. Table 4.1 lists the number of parameters for various sources. A kinematic
tree for a full body model requires around 30 parameters, this high number of de-
grees of freedom (DoF) makes pose estimation and tracking a very hard problem.
See Table 4.2 for a list of the used acronyms.

Table 4.1 Number of parameters in the human model in various references.

Reference Algorithm DoF

Deutscher et al. [DR05] APF 29
Balan et al. [BSB05] APF 31
Bandouch et al. [BEB08] PS, APF 41
John et al. [JTI10] HPSO 31
Sigal et al. [SBB10] APF 34
Zhang et al. [ZHW+10] APSOPF 31
Krzeszowski et al.[KKW11a] GLPSO 26

Table 4.2 Acronyms of various particle based algorithms and the first reference that
applies the algorithm to full body pose tracking.

Acronym Algorithm Reference

APF Annealed Particle Filter [DBR00]
PS Partitioned Sampling [BEB08]
HPSO Hierarchical Particle Swarm Optimization [JTI10]
APSOPF Annealed PSO based Particle Filter [ZHW+10]
GLPSO Global Local Particle Swarm Optimization [KKW11a]

4.2.2 Shape Model

The shape model represents the outer geometric shape of the human body. Its grade
of detail may vary from the coarse model with 15 cylinders used in this thesis [BSB05]
to the very detailed model used by Kehl et al. [KBVG05] (Figure 4.1). The shape
model is often initialised manually for every new subject and usually not adapted
during tracking. Balan et al. reported successful automatic recovery of a full human
body model only from multi-view image data [BSB+07]. They use the SCAPE model
[ASK+05], which is a detailed but low-dimensional parametric model of the human
shape. Gall et al. propose a two-stage skeleton-tracking and surface estimation
approach where the estimated skeleton is used to initialise the surface estimation
stage [GSDA+09]. However, the estimated skeleton does not restrict the surface
estimation stage, which allows the algorithm to accurately model wide clothing.
The main drawback of highly detailed shape models is their high computational
cost.
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(a) (b) (c)

Figure 4.1 3D shape-models of the human body with different levels of detail.
(a) Model with 15 truncated cones used in this thesis, based on the model of Balan
et al. [BSB05]. (b) Model based on superellipsoids used by Kehl et al. [KG06]. (c)
SCAPE model [ASK+05], image taken from a video from http://ai.stanford.edu/
~drago/Projects/scape/scape.html.

4.2.3 Appearance Models

An appearance model defines a mapping from the body model and the observation Mapping
to a common representation. For example, the observed silhouette is computed
by performing foreground-background segmentation on the observed image and the
model silhouette (projected silhouette) is obtained by projecting the 3D body model
into the image plane. The two silhouettes can then be compared to determine the
fitness of the model.

Surface texturing models the colour (or grey-value) and texture of individual limbs Surface texturing
or areas. Because the appearance can change rapidly due to lighting changes or
shadows, the model is usually made adaptive. A simple way to do this is to
use the colour of pixels that lie inside the projection of the model as a template
[WN97, SBF00, MH03]. In other words, the 3D model at time t is textured with the
pixels that lie inside the projection of the model at time t− 1. This approach relies
heavily on an exact pose estimation at time t− 1 and is therefore prone to error ac-
cumulation. Kehl et al. implement an adaptive colour model with variable learning
rate [KBVG05]. Gall et al. circumvent the error accumulation problem by using a
static texturing [GRS08]. As mentioned above, this approach becomes problematic
if the appearance of the subject changes, e.g. due to lighting variability.

Edges are an important cue in appearance modelling because they can be extracted Edges
reliably and are invariant to illumination. Often, a distance map of the observed
edges is computed. This map can then be used to determine how well the edges
produced by the model fit the observation [DR05].

http://ai.stanford.edu/~drago/Projects/scape/scape.html
http://ai.stanford.edu/~drago/Projects/scape/scape.html
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The silhouette is a binary image where all pixels belonging to the foreground (i.e.Silhouette
the tracking subject) are 1, and pixels in the background are 0. The foreground-
background segmentation is commonly performed by classifying each pixel with a
statistical model of the background and the foreground. The background is most
often modelled by a mixture of Gaussians (MoG) [MHK06], whereas the foreground
may be modelled by a uniform distribution [BSB05]. This can be seen as an inverse
appearance model because the appearance of the background is modelled instead of
the foreground. Background subtraction works well in controlled indoor scenarios,
but is more difficult in outdoor scenarios where the background may vary over time.
The main drawback of this kind of background subtraction is the requirement for
stationary cameras.

Silhouettes from multiple views can be used to construct the visual hull, an approx-Visual hull
imation of the 3D shape of the subject. The visual hull can then be used to match
a body model directly in 3D [KG06, CMC+06, MCA07]. The main drawback of
this approach is the computational cost of computing a visual hull, a result of the
large number of required voxels. Moreover, it requires a relatively large number of
cameras to compute an accurate visual hull (8 cameras in [CMC+06, MCA07], 4-11
in [KG06]).

4.2.4 The Pose Tracking Process

Pose tracking is the process of sequentially estimating the pose in a sequence of
images. These image sequences are typically produced by video cameras at a frame
rate of 10 to 60 frames per second (fps). In the first frame, the pose must be
initialised. This includes locating the subject in the image and estimating the pose.
Initialisation can be a very difficult task when there is only little prior information.
Pose tracking, on the other hand, is simpler because the pose estimation from the
previous frame can be used as a starting point.

When the type of motion (e.g. walking) is known, a strong (action specific) motionAction specific
motion model model can be used to predict possible poses in the next frame [SBF00]. Successful

algorithms for monocular tracking all rely on a strong motion model because it can
alleviate the occlusion- and ambiguity-problem [MHK06, ARS10, Fle11].

When the type of motion is unknown, a weak motion model must be used. The mostGeneral
motion model simple weak model is zero motion with additional Gaussian noise [BSB05, SBB10].

This works well at high frame rates, but it inevitably breaks down at low frame
rates because of the high-dimensional search space of possible poses. Finding better
general motion models is an active research topic [LH05, LM07, Fle11].

4.2.5 Bayesian Problem Formulation

The objective of all the direct model use algorithms is to fit the model as closely asPosterior estimation
possible to the observations. There are two common formulations of this objective.
The first is the Bayesian tracking formulation. Here, the goal is to estimate the
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posterior probability distribution p(xt|y1:t), where xt is the current state of the
model (i.e. the true body pose) and y1:t are all the observations up to time t (i.e.
the current and past images).

With the two assumptions that the underlining process is a first-order Markov pro- Probabilistic model
cess where the current state only depends on the previous state

p(xt|x1:t−1) = p(xt|xt−1) (4.1)

and that the current observation only depends on the current state

p(yt|x1:t, y1:t−1) = p(yt|xt) (4.2)

the posterior can be formulated recursively as follows:

p(xt|y1:t) ∝ p(yt|xt)
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (4.3)

This process model is known as a Hidden Markov Model, see Figure 4.2 for a graph-
ical representation.

yt-1 yt

p(xt|xt-1)

p(yt|xt)

xtxt-1

Figure 4.2 Bayesian network of the hidden Markov model (HMM) underlying the
Bayesian tracking formulation.

The tracking process consists of two steps: In the predict step, the previous estimate Predict and
updatep(xt−1|y1:t−1) is transformed using the motion model (motion prior) p(xt|xt−1). In

the update step, this prediction is weighted by the likelihood of the current obser-
vation p(yt|xt). The likelihood indicates how well a pose x fits the observed image
y [AMGC02].

4.2.6 Optimization Formulation

The true prior and observation distributions are unknown in pose tracking. However, Sequential
optimizationa fitness function based on image features can be constructed easily [GPS+07]. It is

therefore convenient to formulate the pose tracking problem as an optimization with
two steps. The predict step uses a motion model to predict the new pose at time t
based on the previous estimations: xt = fmotion(x̂1:t−1). This prediction is then used
as the initial value for the second step, the actual optimization. Here, the optimizer
searches for an x̂t that maximizes the fitness f(x̂t, yt). The fitness indicates how
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well a candidate pose x̂t fits the observation yt, it corresponds to the likelihood in
the Bayesian formulation. This two-step optimization process is repeated for every
new frame.

The main advantage of the optimization formulation is its simplicity. Where theSimplicity
Bayesian formulation requires the estimation of a probability distribution in a high-
dimensional state space, the optimization formulation only searches the state space
for a pose that maximizes the fitness. No attempt is made to describe the probability
distribution.

In this simplicity lies also the major drawback of the optimization formulation. ItAmbiguities
is not able to represent pose ambiguities. The Bayesian formulation is in principle
able to represent multimodal posterior distributions where the pose estimation is
ambiguous. In other words: It can propagate multiple hypotheses. This would
make the tracker more robust. In practice however, the complete representation of
the posterior of a high-dimensional articulated 3D model becomes infeasible within
the commonly used particle filtering framework due to the exponential growth of
the required number of particles [DR05].

4.3 Fitness/Likelihood Functions

Regardless of whether the problem is directly formulated as an optimization orObjective function
as Bayesian inference, all the pose tracking algorithms that are discussed in the
following section 4.4 try to optimize some sort of objective function (in SPPSO
called fitness function). There are two fundamentally different classes of optimization
objectives in use: edge/silhouette matching and correspondences.

4.3.1 Edge/Silhouette Matching

The objective in silhouette matching approaches is to maximize the overlap betweenSilhouette matching
the observed and projected silhouette. A simple way of doing this is to sample the
observed silhouette image at discrete points, located on the projected silhouette.
Then the number of points that are inside the observed silhouette can be counted
[DBR00]. However, one of the most important properties of a silhouette fitness is
that it not only rewards the proportion of the projected silhouette that lies inside the
observed (as just described), but also the proportion of the observed silhouette that
lies inside the projected [ST02, SBB10]. Such a bidirectional or symmetric silhouette
fitness is used for SPPSO. The most simple bidirectional silhouette fitness is obtained
by simply XOR-ing the two silhouettes and inverting the remaining area [BEB08].

The edges of the model and the observation are also often matched. They especiallyEdge matching
help to align body parts that do not contribute to the contour of the observed
silhouette. An important step for edge matching is to smooth the observed edges,
for example by a Gaussian filter [SBB10] or by computing a distance map [KKW11b].
SPPSO uses the same edge fitness as Sigal et al. [SBB10]. A different way to match
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edges was introduced by Sidenbladh and Black. They use directional filters aligned
to the edges of the model limbs to determine the fitness [SB03]. Balan et al. showed
that tracking with an articulated model fails if only an edge fitness is used [BSB05].
This can be explained by the fact that an edge fitness has generally more local
maxima than a silhouette fitness (See experiment 6.10). But another result of their
experiments is that a combination of edge and silhouette fitness makes tracking more
accurate.

The common drawback of silhouette and edge matching is that the gradient of the No gradient
fitness function can not be derived in a closed form. This is no problem for gradient
free optimization methods like PSO or APF (See section 4.4). But gradient based
optimization using these fitness functions must smooth the fitness to make sure the
gradient can be estimated robustly [ST02].

4.3.2 Correspondences

The most important advantage of a fitness function based on correspondences is that Closed form
gradientthe gradient can be derived in a closed form as a function of the model parameters

[BC08]. This facilitates employing gradient based optimization methods which are
generally much faster than gradient free methods [BKMM+04].

Correspondences are essentially displacement vectors that indicate where the model Concept
should be moved to match the observation. In 2D, the starting point of a correspon-
dence lies on the projection of the model, and the end point lies on the corresponding
point on the observation. For example, given a set of starting points on the contour
of the model projection, correspondences could be obtained by searching for the
closest points on the contour of the observation [DF01, BC08, GRS08]. Another
way of obtaining correspondences is using optical flow [GRS08].

Once the correspondences are found, the optimization objective is simply to min- Finding good
correspondencesimize the length of all the correspondences. The main problem is to find good

correspondences, especially with fast motion. The closest points on the contour for
example do not coincide with the true corresponding points when the model is far
off the observation. Therefore, correspondence based methods are inherently local
optimization methods. However, they yield impressive results for full body tracking
[KBVG05, BC08, GRS08].

4.4 Pose Tracking Algorithms

This section reviews different pose tracking algorithms using articulated body mod- Outline
els. The algorithms are categorized by their optimization method as follows: First,
subsection 4.4.1 discusses gradient based algorithms. Then, a few applications of
genetic algorithms are shown in 4.4.2. After that, subsection 4.4.3 reviews one of the
most common algorithms for pose tracking: particle filtering (and why it is regarded
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as an optimization method here). Finally, the related work on tracking with particle
swarm optimization is discussed in subsection 4.4.5.

4.4.1 Gradient Based Optimization

Gradient based optimization is attractive for pose tracking because it is much fasterSpeed
than the gradient free methods discussed below. But gradient based methods can
only perform local optimization. Thus, the used fitness function should be as smooth
as possible and not have spurious maxima. However, such a fitness function is hard
to find in practice and therefore a robust optimization method must be used, e.g. a
trust region method [ST01] or stochastic meta-descent (SMD) [BKMM+04].

Gradient based methods are very attractive for correspondence based fitness func-Fitness functions
tions because the gradient can be derived in closed form [BKMM+04, BC08]. Smin-
chisescu and Telea even developed an elaborate silhouette fitness that is smooth
enough to enable gradient based optimization [ST01].

Another approach is to use a gradient based method for the local refinement stage inLocal refinement
a population based search method. Zhang and Seah use the Levenberg-Marquardt
method [Mar63] to refine the estimate obtained by a PSO based optimization. Smin-
chisescu and Triggs employ a trust region method to find multiple modes of the fit-
ness function [ST01]. Here, the local optimization is initialised with multiple starting
points obtained by a stochastic sampling method. The strategy of using a popula-
tion based global search method as the first stage, followed by a local refinement
stage, seems to be the most powerful approach to pose tracking [GRBS10].

4.4.2 Genetic Algorithms

Genetic algorithms (GA) are a group of stochastic global optimization methodsTerminology
based on the principle of evolution in nature. A GA works with a population of
individuals (PSO terminology: swarm of particles), which have a candidate solution
encoded in their genes, i.e. the parameter set. In every iteration, the fittest indi-
viduals of the swarm are selected for mutation and crossover to produce the next
population.

There are very few examples of genetic algorithms applied to pose tracking or esti-Few applications
mation [OK94, ZL08]. But the crossover operator, introduced by genetic algorithms,
has been shown to improve pose tracking with the annealed particle filter [DR05].

The crossover operator builds on the hypothesis that the parameter set can beBuilding-block
hypothesis split into building blocks, and that a combination of good building blocks from

different individuals produces a good parameter set. This is called the building-block
hypothesis [SP94]. In pose tracking, the parameter set can, for example, be split
into: body position, arm configuration, and leg configuration. Combining a good
arm configuration and a good leg configuration will produce a very fit individual.
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Therefore, the building-block hypothesis holds for pose tracking with kinematic tree
models.

4.4.3 Particle Filtering

Variants of the basic particle filtering (PF) algorithm (also known as sequential Bayesian
frameworkimportance sampling (SIS) [AMGC02] or condensation [IB98]), have often been

applied to the pose tracking problem. The particle filter builds on the Bayesian
problem formulation, i.e. estimating the posterior p(xt|y1:t) of the pose parameters,
given the priors and observations. The main idea is to approximate the posterior as
a discrete set of weighted particles. The approximation is then refined iteratively by
evaluating the likelihood of all the particles and resampling concentrated near more
likely poses.

The straightforward application of particle filtering to pose tracking with high- Partitioned sampling
dimensional (> 10 DoF) articulated models suffers from the problem that the num-
ber of required particles to approximate the posterior grows exponentially [DR05],
known as the curse of dimensionality. A way to solve this, is partitioned sampling
[MI00]. Partitioned sampling is the statistical equivalent of hierarchical search. It
is based on the assumption that the likelihood (fitness) on higher hierarchy levels
can be evaluated independently from lower hierarchy levels. A similar approach is
proposed by Bandouch et al. [BEB08]. The problem is that this assumption does
not hold under realistic conditions. For example: With imperfect human models and
noisy observations it is impossible to localize the torso exactly, without knowing the
true configuration of the arms. In any hierarchical method, errors on higher hierar-
chical levels propagate to the final pose estimate. This error is then propagated to
the next frame and and so on. This finally results in catastrophic failure [DDR01].
The hierarchical approach may produce good results with a perfect model [BEB08],
or in single pose estimation, where error accumulation is less of a problem.

Sminchisescu and Triggs [ST01] proposed Covariance Scaled Sampling (CSS) to Covariance scaled
samplingovercome the curse of dimensionality in stochastic sampling. Their approach is

based on a sophisticated set of priors and a local approximation of the cost surface,
i.e. the likelihood function. With this approximation, the search space can be
tightly focused on more promising areas. This algorithm is able to perform full
body tracking with 30 DoF using only monocular video.

4.4.4 Annealed Particle Filtering and Interacting Simulated Annealing

Particle filtering aims to approximate the posterior distribution, which is possibly Optimization
methodmultimodal. However, interacting simulated annealing (ISA), which is based on

particle filtering, only aims to find the global maximum of the posterior. It is
therefore an optimization method and not a particle filter in the strict sense. The
basic annealed particle filter (APF) is the predecessor of ISA and included in ISA
as a special case.
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The basic APF was introduced by Deutscher et al. in 2000 [DBR00]. In 2005,Basic APF
an improved version was reported which includes soft partitioning and the crossover
operator [DR05]. This improved APF is the core of the baseline algorithm of the Hu-
manEva framework described in section 4.5 and is used as a benchmark for SPPSO
in section 6.5.

APF modifies the standard particle filter algorithm in three important ways. First,Annealing
it introduces an annealing scheme inspired by simulated annealing [KGV83]. At the
first annealing layer, the particles are sampled from a broad distribution, which is
gradually narrowed down on subsequent layers. This ensures that the search space
is explored thoroughly on the first annealing layer and the algorithm does not get
stuck on local maxima of the likelihood function. On later layers the particles are
more concentrated around interesting regions and the estimate is refined.

Second, the distribution is adapted separately for every parameter, based on howSoft partitioning
well the parameter has been localized yet. Parameters on high hierarchy levels (for
example the global body position) can be localized faster than parameters lower in
the hierarchy because they have more influence on the likelihood function. The sepa-
rate adaptation of the sampling distribution is a soft partitioning of the search space.
More important parameters are estimated first, and less important parameters after,
without completely relying on the initial estimation of the important parameters.
This is probably the most important contribution of the annealed particle filter.

The third modification to the particle filter is the introduction of a crossover param-Crossover
eter. Deutscher et al. clearly show the benefit of a crossover operator when applied
to articulated models with sections that have some degree of independence and can
therefore be optimized in parallel (for examples the arms and legs). However, the
important point is that the annealed particle filter is successful because it does not
completely trust this assumption.

The annealed particle filter is one of the most successful pose tracking algorithmsInteracting
simulated annealing and is often used as a benchmark [BEB08, SBB10, KKW11a]. Gall et al. conducted

a through mathematical study of the algorithm and showed that APF converges to
the global maximum of the likelihood function under some assumptions [GPS+07].
In the same paper, they introduced a new algorithm called interacting simulated
annealing (ISA), which adds a stochastic selection operator to the basic APF (APF
is the special case of ISA where 100% of the particles are selected). In a recent
comparison of different optimization approaches for pose tracking, ISA was found
to outperform APF [SGS+09]. This comparison used 200 particles and 15 iterations
for both algorithms, a detailed body model, and 5 cameras with a frame rate of
50fps. The performance of ISA can be improved further when it is combined with
a local optimization step [GRBS10]. In this case, the local refinement is performed
by an iterative closest point algorithm (ICP) [Zha94].
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4.4.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization method that is well Dimensionality
problemsuited for parameter-optimization problems like pose estimation (See section 5.3.1

for a detailed description). It was first applied to markerless pose estimation by
Ivekovic and Trucco in 2006 [IT06]. PSO is based on a swarm of particles, each
particle represents a candidate pose and moves through the space of possible poses.
Unfortunately, the standard PSO also suffers from the curse of dimensionality, which
has led to many variants specifically adapted for pose tracking.

Ivekovic and Trucco first used PSO only for static pose estimation of the upper body Hierarchical PSO
[IT06]. In two recent papers, Ivekovic et al. describe a hierarchical approach using
PSO for full body pose tracking [JTI10, IJT10]. They use the articulated human
model of the HumanEva framework and divide the 31-dimensional parameter space
into 12 (!) hierarchical subspaces to overcome the problem of high dimensionality.
This approach is flawed because the optimization can not escape from local maxima
found in preceding hierarchical levels, the final solution tends to drift away from
the true pose, especially at low frame rates. This drifting behaviour can be seen
in the error graphs in the above-mentioned sources and it could be replicated in
experiments (See section 6.6).

Krzeszowski et al. propose a global local PSO (GLPSO) [KKW11a] where the PSO Global local PSO
is divided into two stages. The first stage is a global optimization of the pose. The
second stage is a local refinement of the limb configuration. This is done for the legs
and arms separately. They also use skin colour detection for body segmentation.
The GLPSO performs better than the standard PSO. In another paper, Kowlek
et al. [KKW11b] combine the global-local approach with a modified PSO named
global local annealed PSO (GLAPSO). The most notable property of this variant of
PSO is the quantization of the fitness function. Instead of one global best candidate
gbest the algorithm maintains a pool of candidate gbest candidates, which improves
the algorithm’s ability to explore the search space. This modification improves the
tracking performance and allows the use of fewer fitness evaluations.

Robertson and Trucco use a different hierarchical approach which they call hierar- Hierarchical fitting
chical fitting [RT06]. They use this approach to fit a model of the upper body to 3D
data from stereo cameras. The optimization proceeds as follows: The position of the
root node is optimized first (3 DoF), while keeping the other parameters fixed. In
the second stage, the position and orientation of the root node is optimized (6 DoF).
In the third stage, the position and orientation of the root node plus the clavicle
joints is optimized (10 DoF). The subsequent stages always optimize a superset of
the parameters of the preceding stages. This approach is very similar to SPPSO
and exploits the hierarchical structure of the body model while avoiding the error
accumulation problem of other hierarchical approaches.

Another way to overcome the error accumulation problem is suggested in a paper Global refinement
of Ivekovic and Trucco [IT06]. They divide the fitting of an articulated model of
the upper body with 20 DoF into seven hierarchical steps. After the hierarchical
optimization, a global refinement step is used to correct the errors accumulated
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during the hierarchical steps. In the global refinement, the inertia parameter of the
PSO is set to a low value to restrict the search space. This makes sense because the
optimization result from the hierarchical steps should be near the global optimum.

Hierarchical optimization, as well as global local PSO, divide the optimization intoSoft partitioning
multiple stages, in which a subset of the parameters is optimized while the rest
of the parameters is fixed. This is a hard partitioning of the search space. The
term soft partitioning was introduced by Deutscher et al. to describe the way the
annealed particle filter automatically adjusts the sampling variance of individual
parameters [DR05]. In contrast to hard partitioning, soft partitioning means that
some parameters are allowed more variance than others, but no parameters are
completely fixed. The annealed particle filter adjusts the variance fully automatic,
it uses no prior information about the hierarchical structure of the body model and
is therefore a very general approach. SPPSO on the other hand, explicitly exploits
the hierarchical structure. See Figure 5.6 for an illustration of the soft partitioning
principle in SPPSO.

Zhang et al. proposed a hybrid of APF and PSO to introduce swarm intelligencePSO PF
hybrid to the annealed particle filter [ZHW+10]. This means, that the particles can ex-

change information about the current global best candidate solution gbest. This
approach yields better results than both, the standard PSO and APF algorithms.
In a more recent paper, Zhang et al. [ZS11] introduce yet another hybrid algo-
rithm which they call Niching Swarm Filtering (NSF). Furthermore, they use the
Levenberg-Marquardt (LM) algorithm [Mar63], a gradient based algorithm for local
optimization, to refine the result from NSF.

Deutscher et al. clearly showed that the crossover operator can improve humanPSO GA hybrids
pose tracking by exploiting the independence of different body parts. It seems
therefore promising to introduce the crossover operator from genetic algorithms into
the PSO framework. Such PSO-GA hybrids [LRK01, Jua04, PTA07] have, to the
authors knowledge, not yet been applied to human pose tracking. Another promising
direction is the introduction of cooperating sub-swarms [VdBE04]. PSO with sub-
swarms has been introduced to battle the curse of dimensionality and seems suitable
for the high-dimensional pose tracking problem.

PSO is generally insensitive to variations of swarm size. Bratton and Kennedy re-Number of
particles ported that swarms of 20 to 100 particles produced comparable results on a set of

standard benchmark sequences [BK07]. But this result was obtained with optimiza-
tions over 300’000 fitness evaluations, much more than the commonly used 1000
evaluations per frame in pose tracking [BSB05, SBB10]. Table 4.3 lists the number
of particles and iterations used by various full body pose tracking algorithms. All
the listed algorithms use either particle filtering or PSO to fit a full body model to
observations from multiple cameras. See Table 4.2 for a list of the used acronyms.

The number of fitness or likelihood evaluations per frame is the number of particlesNumber of
evaluations times the number of iterations. For multi-stage (e.g. hierarchical) optimizations,

the number of evaluations must be summed over all stages (some algorithms use
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Table 4.3 Number of particles and iterations of markerless full body pose tracking
algorithms. For multi-stage (e.g. hierarchical) optimizations with different swarm sizes,
the largest swarm size on a single stage is given. For the APF based methods, the
number of iterations is the number of resampling layers.

Reference Algorithm Particles Iterations Stages

Deutscher et al. [DR05] APF 400 10 1
Balan et al. [BSB05] APF 200 5 1
Bandouch et al. [BEB08] PS, APF 1000 10 5
John et al. [JTI10] HPSO 10 60 12
Sigal et al. [SBB10] APF 200 5 1
Zhang et al. [ZHW+10] APSOPF 50 20 1
Krzeszowski et al.[KKW11a] GLPSO 200 20 3

Table 4.4 Number of evaluations per frame and per second of markerless full body
pose tracking algorithms.

Reference Algorithm fps Eval/frame Eval/s

Deutscher et al. [DR05] APf ? 4000 ?
Balan et al. [BSB05] APF 60 1000 60’000
Bandouch et al. [BEB08] PS, APF 25 ca. 20’000 ca. 500’000
John et al. [JTI10] HPSO 60 7200 432’000
Sigal et al. [SBB10] APF 60 1000 60’000
Zhang et al. [ZHW+10] APSOPF 60 1000 60’000
Krzeszowski et al. [KKW11a] GLPSO 24 6000 144’000

a different number of evaluations at different stages). Table 4.4 lists the number
of evaluations per frame and per second. Note that the algorithms with a hard
partitioning [BEB08, JTI10, KKW11a] require the most evaluations per frame and
also per second. This is probably because these algorithms require a very high
accuracy at every optimization hierarchical stage to minimize error propagation.

4.5 The HumanEva Framework

Balan et al. initiated the effort for a quantitative comparison of markerless articu- Quantitative
comparisonlated human pose tracking by releasing the Matlab implementation of their algorithm

in 2005, along with the used motion capture dataset. In their paper [BSB05] they
established a standard error measure for pose tracking, based on the 3D error of 15
marker joints.

In 2010, Sigal et al. published an improved algorithm and a new dataset with a larger State of the art
variety of motions. In the same year, Sigal and Black compiled a representative list
of papers to give an overview over the current state of the art of markerless mo-
tion capture [SB10]. This section gives an overview over the HumanEva framework
because SPPSO uses its body model and its standard error measure.
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Given the true pose x and an estimated pose x̂, the 3D error D is computed asStandard
error measure

D(x, x̂) = 1
15

15∑
i=1
||mi(x)−mi(x̂)|| (4.4)

where mi(x) returns the 3D location of marker i in mm, given the pose x. The
ground truth model parameters were acquired using a marker-based, commercial
motion capture system. Figure 4.3 Depicts the locations of the 15 marker joints. All
pose errors presented in this thesis are computed using this formula. For a sequence
of T frames, the mean and max errors are defined as follows:

Dmean = 1
T

T∑
i=1

D(xt, x̂t) (4.5)

Dmax = max
t
D(xt, x̂t), t ∈ [1, 2, .., T ] (4.6)

In their first paper [BSB05], Balan et al. used the standard error measure onlyCylinder model
to evaluate their own tracking algorithm, which is based on the annealed parti-
cle filter. As the body model, they used an articulated model with 13 joints, 31
parameters, and 10 truncated cones (See Figure 4.3). SPPSO, presented in chap-
ter 5, uses this body model with some minor modifications. The Matlab code for
the model and the algorithm can be downloaded from http://www.cs.brown.edu/
~alb/download.htm.

Figure 4.3 The 15 marker joints for the standard error measure [BSB05]. The ground
truth markers (red), kinematic tree (black), and cylinder model (yellow) are superim-
posed on a frame of the Lee walk sequence.

http://www.cs.brown.edu/~alb/download.htm
http://www.cs.brown.edu/~alb/download.htm
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4.5.1 HumanEva Datasets

The first HumanEva dataset is called Lee walk [BSB05], it consists of video and Lee walk
motion capture data of one human subject walking in a circle. The subject is filmed
by four greyscale cameras with a resolution of 644x484 at 60fps (in total 532 images
per camera). The recorded motion capture data was used to compute ground truth
parameters for the body model. Figure 4.4 shows frame 190 of the Lee walk from
all four views. The dataset can be downloaded from: http://www.cs.brown.edu/
~alb/download.htm.

(a) view 1 (b) view 2

(c) view 3 (d) view 4

Figure 4.4 Frame 190 of the Lee walk sequence (total 532 frames), seen from all four
views. The image resolution is 644x484 pixels and the frame rate is 60fps.

The HumanEva-I dataset was released in 2006 and contains synchronised video and HumanEva-I
motion capture data of 4 subjects, performing a standard set of six actions including
walking and jogging [SB06]. It contains about 50’000 frames of video in colour and
greyscale. It is mainly intended as a training dataset.

The HumanEva-II dataset was released in 2010 [SBB10]. It contains colour videos HumanEva-II
and motion capture data of 2 subjects which perform a different set of actions. This
dataset is intended as a validation set. The HumanEva-I and II datasets can be
downloaded from http://vision.cs.brown.edu/humaneva/.

http://www.cs.brown.edu/~alb/download.htm
http://www.cs.brown.edu/~alb/download.htm
http://vision.cs.brown.edu/humaneva/
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Table 4.5 shows the used evaluation datasets in several references. The trackingUsed datasets
results in section 6 were all obtained on the Lee walk dataset.

Table 4.5 Evaluation datasets used in various references.

Reference Algorithm Dataset

Deutscher et al. [DR05] APF own, natural, various movements
Balan et al. [BSB05] APF Lee walk
Bandouch et al. [BEB08] PS, APF own, synthetic , walking in circle
John et al. [JTI10] HPSO Lee walk
Sigal et al. [SBB10] APF HumanEva-II
Zhang et al. [ZHW+10] APSOPF Lee walk
Krzeszowski et al.[KKW11a] GLPSO own, natural, walking straight

4.5.2 Baseline Algorithm

The most recent paper by Sigal et al. [SBB10] describes the HumanEva-II dataset,Body model
contains a short survey of pose tracking algorithms and presents the baseline algo-
rithm, which is intended as a benchmark for future developments. The body model
for the baseline algorithm comprises 34 parameters and 15 cylinders. It is more
detailed than the first body model [BSB05] that only comprised 31 parameters and
10 cylinders. SPPSO uses the older model with 10 cylinders because it is simpler
and therefore requires less computational power.

The baseline algorithm is a further development of the original algorithm of BalanOptimization
et al. [BSB05]. It mostly differs in the more detailed body model and in the new
bidirectional likelihood function. The core of the algorithm, the optimization, is still
the annealed particle filter.

4.6 Using Optical Flow for Tracking

Optical flow (OF) is the apparent motion between two images. It can be eitherDefinition
described as a dense flow field, where every pixel has an associated displacement
vector, or it can be a sparse set of displacement vectors. Such sparse flow fields are
computed by tracking feature points, for example SIFT [Low04] or KLT features
[LK81, TK91]. Examples for dense OF estimation algorithms are: Lucas-Kanade
[LK81], Horn-Schunck [HS81], and Brox [BBPW04]. Note that OF only represents
the apparent motion, it may not always describe the true motion because of problems
such as the aperture problem, variable lighting, and occlusions.

One way OF is used in tracking applications is for motion segmentation. This meansMotion
segmentation that the dense OF field is segmented into clusters of similar motion vectors. For

one thing these clusters indicate the position of moving objects in the scene and
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for another thing they are also used for velocity estimation [WA96, HN99, TMS01,
HTWM04].

Because OF contains the motion information, it is an obvious feature candidate for Error
accumulation
in tracking

tracking and it is often used to track rigid objects and even articulated models.
However, every tracking algorithm that only relies on OF suffers from the same
problem: error accumulation. A tracker based on OF uses the last known position
of the tracking subject and propagates its position with the OF between the last
and the current frame. This process is repeated for every new frame and therefore
integrates the small errors in the OF which are unavoidable.

Articulated body models are made up by rigid objects, connected by joints. It is Rigid objects
therefore interesting to look at rigid object tracking with OF. The following survey
gives an overview over the subject [LF05]. It concludes that OF-based tracking has
the following problems:

• As explained above, the main problem is drift. It must be corrected by some
drift correction mechanism.

• Furthermore, the OF estimation is problematic under variable lighting condi-
tions.

• And lastly, OF estimation may fail with fast movements or low frame rates.

4.6.1 Articulated Body Models

Some early approaches of articulated body model tracking with OF simply use OF Without
drift correctionto propagate the model to the next frame and do not employ a drift correction. For

example Pentland and Horowitz use a model with soft joints, modelled as springs
[PH91]. Yamamoto et al. [YSK+98] use a model with real joints. The two ap-
proaches are interesting sources, even without drift correction, because they explain
how the model parameters can be inferred from OF.

Meyer et al. use motion segmentation to initialise an articulated model for gait Model initialisation
analysis. Clusters of similar flow vectors are used to determine the contours of the
head, torso, and legs, the arms are not modelled. These contours are then used to
track the body in subsequent frames. The resulting body model is only very coarse
and the approach only works when the subject walks in a defined direction across
the camera view.

Daubney et al. use sparse OF obtained with KLT features [DGC09]. They employ a Motion model
trained motion model for individual limbs and the full body to classify the observed
motion field. This approach shows a good performance and was evaluated on the
HumanEva dataset. However, it is restricted to the trained walking model.

Another approach is defining an objective function based on correspondences [BC08]. Correspondences
These correspondences are essentially displacement vectors in 2D where the starting
point of each vector is allocated to a point on the body model at time t. The objec-
tive of the optimization is then to minimize the length of the displacement vectors
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by adapting the body model parameters. The major advantage of this objective
function is that its gradient can be derived in closed form and the optimization can
be efficiently performed with gradient descent. Ballan and Cortelazzo [BC08] use
sparse OF from KLT features to obtain a part of their correspondence set. The
other part is obtained by finding closest points on the contours of the projected and
observed silhouettes. These contour correspondences are updated during the opti-
mization and help to correct the drift of the OF correspondences. This algorithm
could track complex motion very accurately with video from four cameras running
at 21pfs and a body model with 46 DoF and deformable skin.

Gall et al. also use correspondences for rigid object and articulated model trackingDrift correction
[GRS08]. They use correspondences obtained from sparse OF for their prediction
step in the pose estimation. Afterwards, the estimate is refined with new corre-
spondences obtained in two different ways. For one thing, they compute optical
flow from the projection of a static textured 3D model to the observed image. For
another thing they use closest points on the projected and the observed contour. By
using twists [BMP04] for the model parametrisation, they are able to estimate the
parameters by solving a linear system.



5. Soft Partitioning Particle Swarm Optimization 31/83

5 Soft Partitioning Particle Swarm
Optimization

This chapter describes Soft Partitioning Particle Swarm Optimization (SPPSO) in Summary
detail. SPPSO is a direct model use algorithm for markerless, full body pose tracking
in multi-view video. It works in an analysis-by-synthesis fashion with an articulated
body model. The skeleton of this model consists of a kinematic tree with 13 joints
and 31 parameters which determine the global body position and the relative joint
angles. Attached to the kinematic tree are 10 truncated cones (referred to as cylin-
ders), to model the torso, head, and limbs. The cylinder model is used to project
the silhouettes and the edges to the four camera views, which can then be compared
with the silhouette and the edges that were extracted from the four videos using
image processing methods. A two-stage PSO is used to maximize the similarity
(fitness) of a set of candidate poses to the observations.

This chapter is structured as follows: Section 5.1 describes the body model and its Outline
parametrisation, section 5.2 explains the silhouette and edge fitness functions, and
section 5.3 explains the optimization step of SPPSO, after a short review of the
basics of PSO in section 5.3.1.

5.1 Body Model

The body model is a modification of the model used by Balan et al. [BSB05]. Source
This model is implemented completely in Matlab and can be downloaded from
http://www.cs.brown.edu/~alb/download.htm. There exists a newer and more
accurate human model in the HumanEva framework [SBB10], but the older model
was chosen because of its much simpler Matlab source code, which makes modifica-
tions easier and rendering faster. Furthermore, the older model has only 31 instead
of 34 parameters. The main deficiency of the older model is that it does not model
the hands and feet.

5.1.1 Kinematic Tree

The kinematic tree, a coarse approximation of the human skeleton, is the base of Parametrisation
the body model (See Figure 5.1(a)). The root node of the kinematic tree is at the
centre of the pelvis. Its position and orientation are the first six variable parameters
and determine the global position and orientation of the model. The rest of the
total 31 variable parameters are relative joint angles. Table 5.1 lists all variable

http://www.cs.brown.edu/~alb/download.htm
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parameters in the parameter vector of the kinematic tree. The lengths of the limbs
are kept constant throughout tracking. They were determined by using motion
capture data.

All computations in 3D space (world coordinates) are performed in 4D homoge-Implementation
neous coordinates. This allows the implementation of all necessary operations for
rendering, such as translation, rotation, and scaling, as matrix multiplications. The
joint angle parameters are Euler angles that can be easily transformed to rotation
matrices. Their ordering is chosen so that the last parameter of joints with three
DoF (hips, shoulders, and neck) is a rotation around the axis of the outer skeleton
segment (transformed z axis). For example: the third parameter of the left shoul-
der joint, x19, defines the rotation around the axis of the left upper arm. After
computing the transformation matrices for all joints, the position and orientation
of individual limbs in the kinematic tree is computed by chaining these matrices
according to the tree structure.

5.1.2 Cylinder Model

The cylinder model is a modified version of the original 10-cylinder model used byTruncated cones
Balan et al. [BSB05]. It defines the outer shape of the body with a set of trun-
cated cones (henceforth called cylinders), which are fixed to the kinematic tree. The
cylinders for the head and torso have elliptical cross-sections and the cylinders rep-
resenting the limbs have circular cross sections. Figure 5.1(b) shows the projection
of the cylinder model into view 1. The dimensions of the cylinders were determined
by Balan et al. using motion capture data and are kept constant during tracking.

All cylinders are fixed to a certain joint of the kinematic tree. Table 5.2 lists theCylinder allocation
allocation of all cylinders. Note that the torso cylinder is fixed to the pelvis joint,
i.e. the global orientation of the kinematic tree. This means that the spine joint
influences the position of the head- and arm-cylinders but not the torso cylinder.

Initial experiments showed that some modifications of the original cylinder modelModifications
improve the tracking results on the Lee walk sequence. The original model was
modified as follows:

• The lower limbs were lengthened by a factor of 1.2 to cover the wrists and
heels.

• The head was shortened by a factor of 0.6 and offset from the torso by half its
length. This is a more accurate model of the head.

• The torso was lengthened by a factor of 1.05 to align its upper edge to the
observed edges in the shoulder area.

• The upper legs were thickened by a factor of 1.2 to better model the loose
shorts of the subject in the Lee walk.

Figure 5.2 shows a comparison of the original and the modified cylinder model.
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Figure 5.1 (a) The kinematic tree of the body model with the respective number of
DoF for all joints. (b) Cylinder model projected into view 1. The right limbs are always
shown in yellow, the left limbs in cyan.

Table 5.1 Parametrisation of the kinematic tree (only the 31 variable parameters).
Angle parameters are in radians.

Parameter Joint

x1 − x3 Pelvis orientation (Global orientation)
x4 − x6 Pelvis position (Global position, in mm)
x7 − x9 Left hip
x10 Left knee
x11 − x13 Right hip
x14 Right knee
x15 − x16 Left clavicle
x17 − x19 Left shoulder
x20 Left elbow
x21 − x22 Right clavicle
x23 − x25 Right shoulder
x26 Right elbow
x27 − x28 Spine orientation
x29 − x31 Head Orientation
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Table 5.2 Allocation of the cylinders to the joins of the kinematic tree.

Nr. Cylinder Joint

1 Torso Pelvis (Global orientation and position)
2 Left thigh Left hip
3 Left calf Left knee
4 Right thigh Right hip
5 Right calf Right knee
6 Left upper arm Left shoulder
7 Left lower arm Left elbow
8 Right upper arm Right shoulder
9 Right lower arm Right elbow
10 Head Neck

(a) (b)

Figure 5.2 (a) The modified cylinder model used in this thesis. (b) The original
cylinder model [BSB05]. Both models projected into view 1.

5.2 Fitness Function

The above described body model is used to compute the fitness of candidate poses,Observations
defined by the parameters x1−x31. The fitness indicates how well a candidate pose
matches the observations. Since the fitness is only computed for individual time
instants, the observations are the images from all four views at the time instant.

The fitness f = fs+fe is the sum of two terms: the silhouette fitness fs and the edgeComposition
fitness fe. Both terms are normalized to lie in the range between 0 and 1, where
0 means no match and 1 means complete match. Both partial fitness terms are
defined on a single observed image. The total fitness is computed by first averaging
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the partial fitness values of all four views and then summing the two averaged partial
fitness values.

5.2.1 Edge Fitness

Edges are an image feature that can be computed robustly under lighting and back- Robust feature
ground changes, and human subjects usually produce strong edges along the outline
of the body and individual limbs. Edges are therefore a valuable feature for motion
tracking [DR05]. The edge fitness fe is computed similar to the edge likelihood used
by Sigal et al. [SBB10].

The edges in an observed image are detected by convolving the image with a Sobel Edge map
operator and thresholding. The binary edge image is first masked with the dilated
silhouette to remove spurious edges in the background, then it is blurred with a
Gaussian kernel and rescaled to the range [0,1] to produce the edge map. The
Gaussian blurring is used to approximate a distance map at a low computational
cost. Balan et al. compared different edge detection methods and distance maps
for motion tracking. They concluded that a more sophisticated edge map does not
improve the tracking when combined with a silhouette fitness [BSB05].

To compute the edge fitness fe for a candidate pose, the edge map is sampled Fitness computation
at discrete points along the visible edges of the candidate pose (as introduced by
Deutscher et al. [DBR00]). Let p(i) denote the value of the edge map at pixel i and
S the set of sampling points along the candidate pose’s edges. The edge fitness is
then

fe = 1
|S|

∑
k∈S

p(k). (5.1)

fe is approximately 1 if all sampling points lie on the detected edges and 0 if all
points are far away from edges.

The discrete sampling points on the candidate pose are computed using the frame- Discrete points
work of Balan et al. [BSB05]. The edge fitness can be computed for all, or for
individual cylinders. At the first stage of SPPSO, only the torso cylinder is consid-
ered for the edge fitness.

Normally, only the edges parallel to the cylinder axes of the model are considered. Special cylinders
The torso is an exception from this rule. Its upper edge is also sampled because
it provides a valuable hint for the z-location of the model (See section 6.10). The
head cylinder is never used for the edge fitness because its shape is only a very crude
approximation of the head’s shape. Figure 5.3 depicts the sampling points for the
edge fitness overlaid on the edge map.
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(a) (b)

Figure 5.3 Sampling points for the edge fitness function, overlaid on the edge map.
(a) Only the torso cylinder at the first stage of SPPSO. (b) All cylinders except the
head at the second stage of SPPSO.

5.2.2 Silhouette Fitness

The silhouette fitness measures the overlap of the observed silhouette and the pro-Overlap
jected silhouette. The observed silhouette is a binary image, obtained by foreground-
background segmentation of the observed image. And the projected silhouette is ob-
tained by projecting the cylinders of the candidate pose into the respective view.

A good silhouette fitness must be bidirectional (i.e. symmetric) [ST02, SBB10].Bidirectionality
This means that it must measure how much of the projected silhouette falls into the
observed, as well as how much of the observed silhouette falls into the projected.
This is necessary to prevent unreasonably high fitness values for poses that have
overlapping limbs (See [SBB10] for a detailed explanation.

The used silhouette fitness is based on the bidirectional silhouette log-likelihood usedComputation
by Sigal et al. [SBB10]. It is computed as follows: Let Mo(i) represent the observed
silhouette image at pixel i and Mp(i) the projected silhouette. Furthermore, let
Red, Blue, and Yellow, be the following sums over all pixels in the binary silhouette
images:

R =
∑
i

Mo(i)(1−Mp(i)) (5.2)

B =
∑
i

Mp(i)(1−Mo(i)) (5.3)

Y =
∑
i

Mo(i)Mp(i)) (5.4)
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In words: R is the area that lies in the observed, but not in the projected silhou-
ette, B the area that lies in the projected, but not in the observed silhouette, and
Y the overlap area of both silhouettes (See Figure 5.4 for an illustration of this
segmentation.). The silhouette fitness is then computed as

fs = (1− a) Y

B + Y
+ a

Y

R+ Y
, a = 1

2 . (5.5)

Hence, fs is 1 when the two silhouettes are identical, and 0 when there is no overlap.
The formula would allow an asymmetric weighting of the R and B by changing
a, but the above definition is used throughout this thesis. fs is equivalent to the
inverse of the log-likelihood of Sigal et al.: fs = 1 + log pd(yt|xt). Figure 5.5 shows
an overview of the whole fitness computation with edge- and silhouette fitness.

Note that a bidirectional silhouette fitness only makes sense when evaluated over the Full body
evaluationfull body. For example: when only a single arm cylinder would be projected for the

evaluation, it would normally yield a higher fitness value when it is projected onto
the torso. This is because the model and the observed silhouette are not perfect.
Consequently, the arm cylinder always protrudes from the observed arm silhouette
at some places, yielding a slightly higher fitness than when the arm is projected onto
a bigger body part in the observation.

(a) (b)

Figure 5.4 Silhouette fitness fs. (a) Projected cylinders of the body model. (b)
Image segmentation for the silhouette fitness. Red: in observed silhouette but not in
projected, blue: in projected but not in observed, yellow: overlap of both silhouettes.
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Figure 5.5 Overview over the computation of the silhouette and edge fitness.
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5.3 Optimization

The basics of Particle Swarm Optimization (PSO) are summarized in the following Outline
subsection 5.3.1 because it constitutes the core of Soft Partitioning PSO (SPPSO).
The subsequent subsections give the details of the full SPPSO algorithm.

5.3.1 Particle Swarm Optimization

PSO is a stochastic method for global optimization (also called a metaheuristic), Algorithm
inspired by the flocking behaviour of birds and other animals. It has been used
in a great variety of applications because of its simplicity and ability to optimize
nonlinear and multidimensional problems [ES01]. The PSO Algorithm works with a
set of particles, called swarm, which move through the search space. Each particle
consists of three D-dimensional, real-valued vectors: a position xi, the best position
it has found so far pi, and its velocity vi (Note that the commonly used term velocity
for vi is misleading, it is a translation vector). Additionally, the algorithm keeps track
of the global best particle position pg. To start the optimization, the positions and
velocities are randomly initialised. The positions are often distributed uniformly
over the search space SD ⊂ RD. After initialisation, the particles move through
the search space by updating their position in every dimension d according to the
following equations:

vid = wvid + c1ε1(pid − xid) + c2ε2(pgd − xid), (5.6)
xid = xid + vid. (5.7)

That means that they move according to their own previous velocity (term one
in (5.6)), but are also draw towards their own best and the global best position
(term two and three). The parameters w, c1, and c2 control the algorithm’s two
contradictory tendencies of exploring the search space and converging to a local
optimum. ε1 and ε2 are independent and uniformly distributed random variables in
the interval [0, 1], they are uniquely generated for every iteration. Furthermore, it
is common practice to limit the components of the particle velocity to a constant
vector Vmax. Algorithm 1 summarizes the basic PSO algorithm.

Algorithm 1 The PSO update process [BK07].
for each iteration do
for each particle i in the swarm do
update position xi using (5.6) and (5.7)
calculate particle fitness f(xi)
update pi and pg

end for
end for

Particle Swarm Optimization was introduced by Kennedy and Eberhart in 1995 History
[KE95]. Soon after that, Shi and Eberhart added the inertia weight parameter w
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to the original algorithm [SE98]. This PSO with inertia weight is the most widely
known version of the algorithm. It uses the update equations (5.6) and (5.7). In 2002,
Clerc and Kennedy [CK02] published their findings on the convergence behaviour of
PSO and suggested to modify the velocity update equation as follows:

vid = χ(vid + c1ε1(pid − xid) + c2ε2(pgd − xid)) (5.8)

where the constriction factor χ is calculated as:

χ = 2∣∣∣2− ϕ−√ϕ2 − 4ϕ
∣∣∣ , ϕ = c1 + c2. (5.9)

The constricted PSO will consistently converge to a local optimum if ϕ > 4, with
faster convergence for larger ϕ. Common parameter values are: c1 = c2 = 2.05,
resulting in χ = 0.72984. Note that the constricted PSO update rule is algebraically
identical to the PSO with inertia weight. The constriction factor just ensures con-
vergence.

The original algorithm uses a global communication topology called gbest, meaningCommunication
topology that every particle in the swarm “knows” about the global best particle pg and

is drawn towards it. But shortly after their original paper [KE95], Kennedy and
Eberhart proposed the lbest topology [EK95]. In this algorithm variant, a particle
only knows about the best particles within a certain neighbourhood. A simple
example of such a neighbourhood is a ring topology where every particle has only
two neighbours.

There exist many variations of the PSO algorithm, and the update rule with inertiaStandard PSO
weight (5.6) is still widely used as a starting point for new developments. In 2007,
Bratton and Kennedy [BK07] suggested a more modern standard definition of the
algorithm with the following properties:

• a ring communication topology (lbest),
• the constricted velocity update rule as shown in equation (5.8),
• 50 particles,
• boundary conditions wherein a particle is not evaluated when it exits the search

space.

The lbest variant of PSO is more immune to local optima than the gbest, but thisConvergence speed
comes at the price of slower convergence [EK95]. Bratton and Kennedy also com-
pared the performance of these two variants, and proposed the lbest variant for
the standard PSO because it achieves better fitness values for standard benchmark
functions [BK07]. However, the fitness values using lbest are often worse than with
gbest for tens of thousands of iterations. Because fitness evaluations are computa-
tionally very expensive in human pose tracking, the lbest topology is a bad choice.
Most pose tracking algorithms use between 1000 and 10’000 fitness evaluations and
a gbest topology [IT06, ZHW+10, KKW11b].
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5.3.2 Optimization Formulation

Pose tracking with SPPSO is done by maximizing the fitness function for every new Sequential
optimizationframe. The estimated pose from the previous frame is used to initialise the optimiza-

tion. Hence, the tracking process is a series of static optimizations. Furthermore,
these optimizations are divided into two stages and both stages use a constricted
PSO.

Each particle in the PSO constitutes a candidate pose. Its position vector consists Candidate poses
of the variable parameters of the body model (i.e. the position and angles of the
kinematic tree). The initial particle positions xti are sampled from a multivariate
normal distribution centred around the estimated pose from last frame x̂t−1.

xti ← N (x̂t−1,Σ), Σ =

 σ2
1 0
. . .

0 σ2
31

 , σ =

 σ1
...
σ31

 (5.10)

Σ is the same diagonal covariance matrix as used for the first annealing layer in
the annealed particle filter by Balan et al. [BSB05]. The standard deviations σd
in Σ are equal to the maximum absolute inter-frame differences of the body angles
in a training set of motion capture data at 60fps. For example: σ4 (x-translation)
is 13.7mm an σ10 (left knee angle) is 0.093 rad. The distribution N (x̂t−1,Σ) can
be interpreted as a prior probability for the parameters at time t. It is therefore
reasonable to sample the initial particle set from this distribution.

The used training set focuses primarily on walking motions. Therefore, this co- Motion model
variance matrix can be regarded as a weak model for walking motions. This bias
towards walking motions could be removed by using a training set with more diverse
motions. But this would enlarge the search space and therefore make the tracking of
a walking subject more difficult. For experiments at slower frame rates than 60fps,
σ is always upscaled accordingly. That is, at a frame rate of 20fps σ is multiplied
by three.

The particle velocity is limited to two times the standard deviation in every dimen- Vmax
sion. This is because it was found that the PSO produces many unreasonable poses
when the velocity is not limited, especially during the first few iterations. The initial
particle velocities are sampled from a uniform distribution over the range +/−σ.

The optimization is subject to two constraints: Constraints

• The angles must remain inside anatomical joint limits.
• The limbs may not inter-penetrate.

These constraints are equal to the hard priors of Balan et al. [BSB05]. They were
found to improve the tracking performance significantly by Balan et al. because they
reduce the search space. The constraints are enforced by resampling the particle
velocity until either the constraints are met or the maximum number of 10 attempts
is exceeded.
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Algorithm 2 shows the PSO that is used at the two stages of SPPSO. The coefficientsSingle stage
optimization c1(k) and c2(k) are increased linearly from 2.05 to 2.15 during the optimization

to gradually increase the algorithm’s tendency to converge. Consequently, χ(k)
is adapted according to equation 5.9 for every iteration. This can be seen as an
annealing scheme which was introduced to enforce swarm convergence even with a
limited number of iterations N .

Algorithm 2 Constricted PSO with enforced constraints for one stage of SPPSO.
sample particle positions xi ← N (x̂t−1,Σ)
sample particle velocities vi ← U(−σ, σ)
calculate particle fitness: f(xi) = fs(xi) + fe(xi)
update particle best pi and global best pg
for each iteration k = 2 to N do
for each particle i in the swarm do
repeat
for each dimension d do
vid = χ(k)(vid + c1(k)ε1(pid − xid) + c2(k)ε2(pgd − xid))

end for
limit abs(vi) to 2σ
xi = xi + vi

until xi meets constraints
calculate particle fitness: f(xi) = fs(xi) + fe(xi)
update particle best pi and global best pg

end for
end for

5.3.3 Soft Partitioning Stages

The optimization of the pose is divided into two hierarchical stages. Both stages are
complete optimizations with the above described PSO and the estimated pose from
the first stage is used as the initialisation for the second stage.

Pose estimation which is divided into hierarchical stages with hard partitions suffersError accumulation
from error accumulation. This happens because the fitness function for one stage
cannot be evaluated completely independently from subsequent stages. The fitness
function based on silhouettes and edges cannot be evaluated separately for individual
body parts because there is no segmentation of these parts. Edges produced by the
left lower arm, for example, cannot be discerned from edges produced by the torso.
Therefore, the torso cylinder cannot be localized unambiguously without localizing
the lower arm cylinder.

To avoid error accumulation, SPPSO uses a soft partitioning scheme. Figure 5.6Soft partitioning
illustrates the principle of soft partitioning compared to hard (hierarchical) parti-
tioning and global optimization. As in hierarchical schemes, the search space is
partitioned according to the model hierarchy. The most important parameters are
optimized first, while the less important are kept constant. The crucial difference
to hard partitioning is that the previously optimized parameters are allowed some
variation in the following stage. Soft partitioning reduces the search space not as



5. Soft Partitioning Particle Swarm Optimization 43/83

much as hard partitioning but the search space is much smaller than in a global
optimization. This allows a much more efficient optimization.

SPPSO has two hierarchical stages: In the first stage, only the six first parameters Partitions
x1 − x6 (global orientation and position) are optimized. The second stage is a
global optimization over all parameters. But the standard deviations for x4 − x6
(global position) are reduced to one tenth. Experiments showed that the tracking
performance is not significantly increased when the optimization is further divided
into three stages. However, the soft partitioning scheme performs much better than
global optimization or hard partitioning.

Standard PSO is a global optimization method. This means that the particles can Soft partitions
with PSOgenerally explore the whole search space, given enough iterations. To divide the

search space into soft partitions, the movement of the particles most be constrained
in the required dimensions. In SPPSO the partitioning is done by downscaling the
standard deviation vector σ for these dimensions. This influences the PSO in three
ways:

• The initial sampling distribution is narrower in the downscaled dimensions.
• The initial particle speed is smaller in the downscaled dimensions.
• By limiting the particle velocity to 2σ and through the limited number of

iterations, the part of the search space that a particle can explore during the
optimization is narrower in the downscaled dimensions.
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Figure 5.6 Illustration of different partitioning schemes by the example of a opti-
mization with two parameters. xt−1 denotes the initial and xt the new estimate. (a)
Global optimization. Here, the optimizer searches the whole search space (grey) at
once. (b) Hierarchical optimization. At the first stage, x1 is optimized while x2 is kept
constant. At the second stage, x1 is kept constant while x2 is optimized. Consequently,
the optimizer cannot correct the suboptimal estimate of x1 from the first stage. (c) Soft
partitioning. The first stage is identical to the hierarchical scheme, but x1 is allowed
some variation at the second stage. Therefore, the optimizer finds a better estimate.
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6 Experiments

This chapter presents the experimental evaluation of SPPSO. First, SPPSO is com- Summary
pared to the standard benchmark algorithm, the annealed particle filter (APF).
SPPSO outperforms the APF at a frame rate of 20fps and performs equally well at
60fps. After this comparison, the maximum obtainable tracking accuracy with the
used body model is established. Furthermore, the effect of various algorithm pa-
rameters of SPPSO, such as number of particles, iterations, and stages is examined.
The impact of different fitness functions is also shown in comparative experiments.
Moreover, the convergence behaviour of the PSO inside SPPSO is shown. And fi-
nally, the required computation time for different parts of the SPPSO algorithm is
analysed.

6.1 Experimental Setup

The base configuration of SPPSO with two stages, shown in the following Table 6.1, Base configuration
was used for all the experiments unless otherwise specified.

Table 6.1 Base configuration for SPPSO.

Stage Particles Iterations Edge fitness Silhouette fitness

1 10 20 only torso full body
2 20 40 full body full body

The base configuration requires 1000 fitness evaluations per frame (particles · it- 1000 evaluations
erations). Keeping the number of evaluations fixed allows a fair comparison to
other algorithms because fitness evaluations (including rendering) dominate the to-
tal processing time (See 6.11). 1000 evaluations per frame is the standard number
of evaluations in the HumanEva framework [BSB05, SBB10].

The experiments were performed on the Lee walk sequence of the HumanEva frame- Dataset
work (See section 4.5). Figure 6.1 illustrates the action of the subject during the
sequence that is 8.8s long. The subject walks counter-clockwise in a circle, inter-
rupted by a short period of standstill from frame 330 to 430. The maximum frame
rate of the Lee walk is 60fps, but it is downsampled to 20fps for many experiments.

The tracking results are presented as error graphs over the first 450 frames of the Error graphs
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Figure 6.1 10 cropped frames of the lee walk sequence from view 1.

Lee walk. This is a sufficiently long sequence to show that a tracking algorithm
does not exhibit drift. The error values are computed using the standard error
measure (4.4) and denoted by D. For experiments at 60fps, the errors are computed
for every frame. For experiments that estimate the pose at 20fps, the errors are
only computed for the frames that were used for pose estimation, i.e. every third
frame. Full error graphs are more informative than only average errors over the
whole sequence because they show how the error behaves during different actions
(e.g. walking or standstill). The error of SPPSO at frame 0 is always zero because
the algorithm is initialised with the ground truth pose.

Because SPPSO is a stochastic algorithm, the tracking results vary for every runMultiple runs
(One run is one tracking of the sequence). Several runs were therefore carried out for
most experiments. Most often the mean and the maximum error over the performed
runs are shown. This allows conclusions about the accuracy and robustness of the
tested algorithms.

The parameter x31, which determines the rotation of the head cylinder around itsHead Rotation
own axis, was kept constant throughout all experiments. This is because the head
cylinder is only a very crude approximation of the head’s shape and the head rotation
can therefore not be estimated accurately with this model. Furthermore the head
rotation has no influence on the error measure because the marker is located on the
axis of the head cylinder (see Figure 4.3).
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6.2 General Results

Figures 6.2 to 6.4 give an overview of the tracking results obtained with SPPSO. Accuracy
Figure 6.2 depicts results with the base configuration at 20fps. The tracking is
clearly not perfect, but it can generally follow the body configuration. However,
the right arm is completely lost in frame 216 and then reacquired in frame 279.
This is a typical tracking error at the low frame rate of 20fps. In Figure 6.3, still
with the base configuration but at 60fps, the arm is not lost in the depicted frames.
The tracking is also generally more accurate (for example the head in frame 279).
Finally, with 4000 evaluations per frame at 60fps, the tracking is very accurate in
Figure 6.4. Generally, the tracking gets more accurate with higher frame rates and
more evaluations per frame, i.e. with a higher evaluation rate.

Lost limbs, like in frame 216 of Figure 6.2, appear as outliers in the error graphs Lost limbs
(for example in Figure 6.5(b)). Very high error values (> 80mm) are normally the
result of confused legs. Section 6.7 shows the errors of individual marker joints at
different frame rates.

The ground truth pose, depicted in black in Figures 6.2 to 6.4, is not perfect. The Ground truth
left lower leg in frame 216 is for example far off from the real position. This is one
of the reasons why the minimally obtainable error of SPPSO is not closer to zero.
See section 6.4 for experiments to determine the minimally obtainable error.
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(a) f 81, D=34mm (b) f 186, D=42mm (c) f 216, D=76mm (d) f 279, D=53mm

Figure 6.2 SPPSO tracking results at 1000 evaluations per frame and 20fps. Ground
truth cylinders are shown in black, estimated cylinders are coloured to distinguish left
and right limbs. Results are shown at frames 81, 186, 216, and 279. D denotes the
tracking error at the depicted frame.

(a) f 81, D=36mm (b) f 186, D=41mm (c) f 216, D=43mm (d) f 279, D=29mm

Figure 6.3 SPPSO tracking results at 1000 evaluations per frame and 60fps.

(a) f 81, D=35mm (b) f 186, D=57mm (c) f 216, D=37mm (d) f 279, D=29mm

Figure 6.4 SPPSO tracking results at 4000 evaluations per frame and 60fps.
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6.3 Base Configuration

The error graphs produced by SPPSO with base configuration at 60fps and 20fps
are shown in Figure 6.5. The mean error is a little smaller at 60fps and the tracking
is generally more stable. The outliers in the graph at 60fps come from a temporarily
lost arm. At 20fps, the maximum error is much higher because SPPSO often looses
track of the legs around frame 250 and also looses arms frequently. Figure 6.6
illustrates how SPPSO looses multiple limbs but reacquires them after some frames
at 20fps. The ability to recover from tracking failures is an important feature for
pose tracking algorithms. As expected, the tracking is always very good during the
standstill period (frame 330 to 430).
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(a) 60fps, D: mean = 38.0 mm, max = 86.4 mm

0 100 200 300 400
0

20

40

60

80

100

120

140

Frame

E
rr

or
 [m

m
]

 

 
mean

(b) 20fps, D: mean = 46.3 mm, max = 129.4 mm

Figure 6.5 3D tracking error of SPPSO with base configuration (1000 evaluations
per frame) for the Lee walk sequence. The graphs show five individual runs and the
mean error.
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(a) f 192, D=48.1mm (b) f 249, D=90.7mm (c) f 318, D=34.0mm

Figure 6.6 SPPSO tracking results with the base configuration at 20fps. The tracker
temporarily looses the legs and one arm but can recover in later frames.

6.4 Minimal Error at 60fps

The minimal obtainable tracking error of SPPSO is mainly limited by two things.
First, the ground truth poses are not perfectly accurate. And second, the body
model is very coarse. To establish the minimal error with the used body model,
SPPSO was run with high numbers of evaluations at the maximum frame rate of
60fps. Figure 6.7 shows the results for 1000, 2000, and 4000 evaluations per frame.
There are still some limited tracking errors at 1000 and 2000 eval/frame visible in
Figure 6.7(b), but at 4000 eval/frame, the tracking has reached the minimal error.
The mean tracking error, depicted in Figure 6.7(a), is almost the same for all three
configurations, it is not significantly decreased by more evaluations. The minimal
mean error is reached at about 35mm (See Table 6.2).

Table 6.2 Accuracy of SPPSO at 60fps with different evaluation rates. The table
shows mean and maximum 3D error on the first 450 frames of the Lee walk sequence.

eval/frame 1000 2000 4000
runs 5 3 1

mean error [mm] 38.0 37.3 35.7
max error [mm] 86.4 82.3 56.7
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Figure 6.7 Mean and maximum 3D tracking error of SPPSO at 60fps and different
evaluation rates for the Lee walk sequence.

6.5 Comparison of SPPSO to APF

SPPSO was compared to APF in this experiment, which is the benchmark algorithm Standard
benchmarkof the HumanEva framework [BSB05, SBB10]. See subsection 4.4.4 for a discussion

of APF. The comparison shows that SPPSO performs better than APF at 20fps and
equally at 60fps.

Both algorithms used the same body model and the same fitness function. In the Same
body modelparticle filter terminology, the fitness is called negative log likelihood. It was simply

computed as
− log p(y|x) = fe + fs. (6.1)

The experiment was performed with the standard number of 1000 evaluations per Results
frame for both algorithms. Figure 6.8 shows the resulting mean error graph at
60fps. The two algorithms perform about equally well at this frame rate. For the
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experiment at 20fps, the sampling covariance Σ of the APF was upscaled exactly
as for SPPSO. Figure 6.9 shows that SPPSO performs significantly better at this
frame rate. The better performance probably comes from the direct exploitation of
the hierarchical model in SPPSO. APF on the other hand, relies on an automatic
soft partitioning.
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Figure 6.8 Comparison of the mean 3D tracking error of APF and SPPSO at 1000
evaluations per frame and 60fps for the Lee walk sequence.
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Figure 6.9 Comparison of the mean and maximum tracking error of SPPSO and
APF at 1000 eval/frame and 20fps for the Lee walk sequence.

6.6 Partitioning Schemes

The following experiments have been carried out to demonstrate the superiority of
soft partitioning for articulated pose tracking compared to global optimization and
hard partitioning.

Figure 6.10 shows the performance of SPPSO compared to a hard partitioning al- Hard partitioning
gorithm. The two algorithms are completely identical, except that the first six
parameters (global orientation and position) are kept constant in the second stage
for the hard partitioning algorithm. As a result, the tracking performance gets much
worse. The torso is often badly located and even the legs get confused. While the
leg confusion could be prevented by more accurate anatomical constraints, the bad
localization of the torso clearly comes from the hard partitioning.

Figure 6.11 shows the comparison of SPPSO to a global optimization with 25 par- Global optimization
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Figure 6.10 SPPSO compared to hard partitioning with two stages at 20fps.
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Figure 6.11 SPPSO compared to global optimization at 20fps.

ticles and 40 iterations at 20fps. Again, SPPSO performs much better at 20fps.
However, the difference is less pronounced at 60fps (See figure 6.12. This is prob-
ably because the first stage of SPPSO is especially useful for handling the larger
displacements of the subject between frames at lower frame rates.

The concept of SPPSO can be extended to more than two partitions. Figure 6.13Three partitions
shows the results of an experiment with three partitions compared to the SPPSO
base configuration. Table 6.3 shows the used number of particles and fitness func-
tions a the individual stages for the three-partition SPPSO. The optimization se-
quence goes as follows:

1. Optimization of the six parameters for global orientation and position.
2. Optimization of all parameters except the ones that only affect the lower limbs

(x9, x10, x13, x14, x19, x20, x25, x26).
3. Global optimization.

The soft partitioning is done by scaling σ for the tree stages as follows (the scaling
is always relative to the standard σ):
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Figure 6.12 SPPSO compared to global optimization at 60fps.

1. Standard σ
2. downscale σ4 − σ6 by ten (global position).
3. downscale σ1 − σ6 by ten (global orientation and position), downscale the

parameters optimized in the previous stage by two, upscale σ for the remaining
parameters by

√
2.

These scaling factors were determined empirically and could certainly be optimized.
As can be seen in Figure 6.13, the three-partition SPPSO has about the same ac-
curacy over the whole sequence as the base configuration with the same number of
fitness evaluations. The robustness is even better (lower maximum error), but the
accuracy during the standstill period is a bit worse.

Table 6.3 SPPSO with 3 partitions

Stage Particles Iterations Edge fitness Silhouette fitness

1 10 20 only torso full body
2 10 40 torso + upper limbs full body
3 10 40 full body full body
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Figure 6.13 SPPSO with two partitions (base configuration) compared to SPPSO
with three partitions at 20fps. Both configurations require 1000 evaluations per frame.

Figure 6.14 shows a comparison of the SPPSO base configuration to an algorithm12 partitions
with 12 hard partitions as used by John et al. [JTI10] at 60fps. Each of the 12
partitions uses 10 particles and 60 iterations, resulting in 7200 fitness evaluations
per frame. Even with such a high number of evaluations, the hard partitioning
performs worse than SPPSO with only 1000 evaluations. The pose estimate tends
to drift away from the true pose with hard partitioning and the effect is even more
pronounced at lower frame rates. This can also be seen in the graphs published
by John et al. [JTI10]. A hard partitioning may work with a more detailed body
model and more precise silhouettes [BEB08] but with a simple model and imperfect
silhouettes the soft partitioning clearly performs better.
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Figure 6.14 SPPSO base configuration compared to 12 hard partitions at 60fps, the
12 partitions are the same as used by John et al. [JTI10] and require 7200 fitness
evaluations.

6.7 Individual Marker Errors

This experiment shows how some of the 15 individual markers contribute to the
mean error at different frame rates. As can be seen in Figure 6.15, some lower limbs
are repeatedly lost and reacquired at 20fps whereas the pelvis is always tracked
accurately. At 60fps no limbs are completely lost during tracking, except for the
right lower arm from frame 420 on. The problem here seems to be that the rotation
parameter of the right arm x25 can not be estimated correctly during the standstill
period because the arm is stretched out. When the subject starts to move again,
the arm is bended but the tracker can not follow the bending correctly because the
rotation parameter is too far away from the true value. This is a general problem
because the rotational parameters are not observable while the limbs are stretched
out. A very accurate body model and accurate silhouettes would be required to
overcome this problem.
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(b) 60fps

Figure 6.15 Individual marker errors during a single run of SPPSO at different frame
rates. At 20fps some lower limbs are repeatedly lost and reacquired.

6.8 Number of Particles vs. Iterations

PSO is generally robust against changing the swarm size [BK07]. To show this,
SPPSO was run with different swarm sizes while keeping the total number of eval-
uations at 1000. The first stage was always run with 10 particles and 20 iterations
while the second stage was run with 2 - 400 particles. As expected, the algorithm
performs well in the medium range of 10 - 40 particles (See Figure 6.16). With very
low or high swarm sizes, PSO looses its swarm behaviour and can not track the
subject accurately. Table 6.4 shows how many runs were performed for the different
settings to produce figure 6.16.
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Table 6.4 SPPSO with different numbers of particles for the second stage, number
of performed runs.

Particles Iterations runs

2 400 1
10 80 3
20 40 5
40 20 3
400 2 1
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Figure 6.16 Mean error of SPPSO with different swarm sizes for the second stage
(The total number of evaluations per frame is always 1000). The algorithm is robust
against changing the swarm size. Table 6.4 shows how many runs were performed for
the different settings.
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6.9 Swarm Convergence

Figure 6.17 illustrates visually how the SPPSO stages work. The first stage opti-SPPSO Stages
mizes the global orientation and location parameters while the joint angles are kept
constant. The second stage mainly optimizes the joint angles.

(a) (b) (c)

Figure 6.17 Illustration of the two SPPSO stages. The estimated poses are depicted
in blue and the initial particle distribution in grey. (a) previous pose estimate, (b) after
stage 1, (c) final pose estimate after stage 2.

Figure 6.18 shows how the variances of the individual parameters develop throughoutParameter
convergence the two optimization stages of SPPSO. Iterations 0-19 are in stage one and the

further iterations in stage two. The graph depicts the standard deviations of the
parameters over the swarm, normalized to one in the first frame they are optimized.
The factors c1 and c2 of the PSO are increased linearly from 2.05 to 2.15 during the
optimization in both stages to ensure the convergence that can be seen in Figure
6.18.

The standard deviation of the position parameters x4 − x6 is reduced to about oneIndividual
parameters tenth by the PSO during the first stage. In the second stage these parameters are

resampled from a distribution downscaled by one tenth to enforce this convergence.
The global orientation parameters x1−x3 are resampled from the same distribution
for both stages because initial experiment showed that they did not converge to a
good estimate in the first stage. The joint parameters x7 − x31 (relative angles) are
kept constant during the first stage.
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Figure 6.18 Normalized standard deviation of individual parameters averaged over
50 SPPSO optimizations. The standard deviation is estimated over all particles at every
SPPSO iteration. The 50 SPPSO optimizations are successive pose estimations on the
Lee walk sequence at 20fps.

6.10 Different Fitness Functions

To show the different properties of the silhouette and edge fitness, the following One parameter
variedexperiment was conducted: Starting from the ground truth pose, a single parameter

was varied with all other parameters kept constant and the silhouette and edge
fitness (fs and fe) was evaluated at every parameter value. The offset range of the
parameter equals the standard deviation of the sampling distribution at 20fps. The
total fitness was computed as f = fs + fe.

The three fitness graphs are depicted in Figure 6.19, each graph was normalized Fitness properties
separately to allow an easier comparison. The silhouette fitness fs is much smoother
than the edge fitness fe which has significant local maxima in the depicted range.
On the other hand, the edge fitness allows a more accurate localization of the global
maximum. Note that the maxima of fs and fe coincide only roughly. This can be
explained by the coarse body model and the noisy observations.

Figure 6.21 shows a comparison of SPPSO with base configuration to SPPSO where Only silhouette
only the silhouette fitness is used. The tracking becomes more robust robust over
all, as can be seen by the lower maximum error. On the other hand, the accuracy
is worse during the standstill period where the subject is standing with the arms
hanging down. This can be explained by the ability of the edge fitness to locate the
torso and the arms better when the arms are close to the torso or in front of it.

Figure 6.22 shows that the tracking gets much worse when the upper edge of the No upper edge
torso is omitted in the edge fitness. When the limbs are roughly aligned with the
torso, the edge fitness without the upper edge becomes invariant to changes of the
vertical position. This is because the model limbs do not cover the full length of
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Figure 6.19 Normalized Fitness functions evaluated at different values of the pa-
rameter x24. All other parameters are kept constant. The varied parameter controls
the forward-backward angle of the right shoulder joint. Figure 6.20 depicts the body
model at the two extreme positions projected into view 1. The maximum offset of the
parameter equals the standard deviation of the sampling distribution at 20fps.

(a) (b)

Figure 6.20 Body model with parameter x24 varied. The parameter controls one
angle of the right shoulder joint. (a) Offset -6.8◦, (b) offset +6.8◦.

the subject’s limbs and can therefore slide up and down without affecting the edge
fitness. This experiment shows that even small changes in the fitness functions can
have a big effect on the tracking accuracy with the used coarse body model.
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Figure 6.21 Comparison of SPPSO at 20fps with base configuration to SPPSO where
only the silhouette fitness is used. The tracking becomes more robust (lower maximum
error) but the accuracy is worse during the standstill period.
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Figure 6.22 SPPSO with and without using the upper edge of the torso at 20fps.
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6.11 Computation Time

The task of this project was not to develop a real-time implementation for SPPSO,Major problem
and the algorithm is almost entirely implemented in Matlab. However, computation
time is a major problem for pose tracking algorithms. It usually takes seconds to
minutes to estimate the pose in one frame for Matlab implementations [BSB05,
SBB10, JTI10]. This means that tracking an entire sequence may take hours. It is
therefore very time consuming to evaluate different algorithm configurations.

To enable a faster evaluation of different algorithm configurations, the Matlab imple-Optimizations
mentation was optimized in the following ways: (See Appendix A for more details.)

• The polygon filling function of Matlab, used to render the cylinders, was re-
placed by a MEX-file.

• ROI processing was added to the silhouette fitness function to avoid summing
over the whole images.

• A cache was added to the cylinder rendering function to avoid re-rendering
cylinders that have not moved.

With these optimizations, SPPSO spends about half of the total computation timeCode parts
rendering the cylinders, i.e. projecting the 3D model to the camera views. Fitness
computations account for 39% of the time. And finally, the kinematic tree requires
11% of the time for computing the 3D locations of the cylinders from the angle
parameters. Table 6.5 lists the percentage of time spent in the code parts that
dominate the time consumption.

Table 6.5 Time consumption of individual parts of the Matlab implementation of
SPPSO. Results from a run with 1000 evaluations per frame.

Code part Time/frame [s] %

Rendering 10.0 48
Edge fitness 4.6 22
Silhouette fitness 3.5 17
Kinematic tree 2.4 11
Rest 0.5 2
Total 21 100
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7 Conclusion

7.1 SPPSO

One of the main insights gained during this project is that the refinement stages in Soft partitioning
a hierarchical pose tracking algorithm should be global in some way to avoid error
accumulation. The soft partitioning scheme of SPPSO is able to correct small errors
from the first hierarchical stage in the second stage and thus does not suffer from
error accumulation. A hard hierarchical partitioning only works with a very precise
model and noise free observations [BEB08].

SPPSO performs better than APF at a frame rate of 20fps with the same number Comparison to APF
of fitness evaluations. At 60fps, the performance is equal. The better performance
at slow frame rates probably comes from the explicit exploitation of the hierarchical
model structure in SPPSO. APF relies on an automatic soft partitioning where the
algorithm must detect the more important parameters by itself, whereas SPPSO has
predefined partitions based on the model structure.

7.2 PSO for Tracking Articulated Body Models

PSO is a relatively new optimization method for pose tracking (The first source Young method
known to the author is [IT06]). And there exist only few, more or less successful,
attempts to video-based full body tracking [JTI10, ZHW+10, KKW11a]. It seems
that the methods of John et al. and Krzeszowski et al., which use a hard partitioning,
require more fitness evaluations to minimize the problem of error accumulation.

All of the discussed methods use different hierarchical approaches to battle the Soft partitioning
curse of dimensionality and none of them seems to be clearly superior. With the
soft partitioning scheme, SPPSO proposes yet another approach and it has been
shown to perform well. A similar approach has been shown to work by Robertson
and Trucco [RT06], but they used only an upper body model and 3D data.

7.3 Future Work

Future work in PSO based pose tracking may explore the use of newer variants of PSO algorithm
the PSO algorithm such as the sub-swarms method [VdBE04]. Another promising
area is the introduction of operators from genetic algorithms such as the crossover
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operator, which has been shown to improve tracking for the annealed particle filter
[DR05].

The simple ten-cylinder model of Balan et al. [BSB05] was used for SPPSO becauseDetailed model
it has relatively few parameters and is freely available. However, it does not model
the human body sufficiently accurate. This could be shown by experiment 6.10
where the upper edge of the torso was not used for the fitness function. This minor
change of the fitness function resulted in a significantly worse tracking performance.
A more detailed model, which models the torso and head more accurately and also
includes the hands and feet, should be less sensitive to changes of the fitness function.
But a more elaborate model requires a faster rendering method.

SPPSO is based on the HumanEva framework an therefore almost completely im-Fast rendering
plemented in Matlab, including the rendering of the 3D model. Consequently, the
algorithm needs 20 seconds to process one frame and is therefore far from being
real-time, which would be necessary for many applications. But more importantly,
the long processing time means that testing new algorithm settings is a very lengthy
task. It is not sufficient to run the tracking for only a few frames because drift prob-
lems may only show after many frames. Moreover, several runs are required to really
evaluate a new setting because SPPSO is a stochastic algorithm. Consequently, the
most processor intensive tasks should be outsourced for future developments to speed
up testing cycles. The most processor-intensive tasks in SPPSO are model rendering
and fitness evaluation. They could be performed very fast by graphics processing
hardware.

APF is outdated as a benchmark algorithm for pose tracking. Interacting simu-New benchmark
lated annealing (ISA) has a better tracking performance and should therefore be
the benchmark for new developments. Moreover, it has been shown, that a two
stage pose estimation with a global optimization stage and a local refinement stage
achieves a significantly better accuracy than only a global optimization [GRBS10].

The important local refinement stage could for example employ a gradient basedLocal refinement
method such as stochastic meta descent (SMD) [BKMM+04] or an iterative closest
point algorithm (ICP) [Zha94].

The global optimization step in a two-stage pose estimator is necessary to enable re-Global optimization
covering from wrong estimates. This can not be achieved by approaches that rely on
basic correspondences such as closest points on silhouette contours or optical flow.
An interesting option is to incorporate a body part detector in the first pose estima-
tion stage [BKSS10] because part detector based approaches are inherently global
optimizations. They could also be used for initializing a model based algorithm
[SB10].

7.4 Optical Flow for Tracking Articulated Body Models

The original idea for the algorithm was to segment the observed images based onOriginal
algorithm idea
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the estimated pose at time t − 1 an then propagate the segmentation using dense
optical flow between the frames t − 1 and t. This segmented image would then be
used in a PSO based pose estimation at time t. It turned out that this approach
introduces new problems such as error accumulation, which is a problem for all
OF based approaches. Furthermore, there are more efficient ways of exploiting the
information in OF.

When OF is used for tracking, the best way of using the information in OF seems Correspondences
to be the concept of correspondences (See section 4.3). The most important ad-
vantage of correspondences is that the model parameters can be estimated much
more efficiently than with conventional fitness functions such as silhouette based
ones. However, care must be taken to find valid correspondences, i.e. reliable OF,
and a correspondence-based approach must include a drift correction mechanism
[GRS08].
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A Matlab Implementation

The SPPSO implementation is based on the Matlab implementation of the annealed Source
particle filter by Balan et al. [BSB05]. The code and the Lee walk dataset can be
downloaded from http://www.cs.brown.edu/~alb/download.htm. Both are also
contained in the zip archive Lee_Tracking_original.zip in the directory matlab
on the accompanying DVD. The used Matlab version is R2011a.

To run SPPSO, first copy the whole folder matlab from the DVD to a location on Setup
your hard drive. The Lee walk dataset has already been unpacked and is in the folder
matlab\WebData, it has to remain in this exact location. The m-files for SPPSO are
in the folder matlab\SPPSO. To start tracking, simply run my_TrackPSO_tb.m. The
algorithm parameters can all be adjusted in this file. When the variable DEBUG is set
to 0, only console output will be produced to show the progress of tracking. When
it is set to 3, there will be multiple figures that illustrate the fitness evaluations and
the tracking results of the SPPSO stages.

The tracking results will be saved in a .mat file in the folder matlab\SPPSO Tracking results
\outTrackPSO. A subfolder will be created with the name specified by the variable
experimentName in my_TrackPSO_tb.m. A video and images of the tracking result
will also automatically be saved in this subfolder. The error graphs shown in this
thesis were produced by the m-file my_ErrorGraphDoc.m. The tracking results of
the shown experiments can be found in the folder matlab\SPPSO
\outTrackPSO.

The original implementation of the model rendering used the Matlab function OpenCV
poly2mask() to fill the polygons that are produced when the cylinders are projected
into 2D. To speed up the rendering, the MEX-file overlayCylinders.mexw32 was
compiled, which uses the function cvFillConvexPoly() from OpenCV. This is the
only part of the implementation that not only uses Matlab. In case the MEX-file
has to be recompiled, the visual studio project is in the folder visualStudio on
the DVD. For instructions on how to compile MEX-files that call OpenCV, refer to
the file visualStudio\OpenCV_And_MEX_Files_quick_guide.pdf. OpenCV can be
downloaded from http://opencv.willowgarage.com/wiki/.

A.1 Program Flow and Variables

This section gives some hints for an easier understanding the Matlab code. Most of Data structures
the important variables are the same as in the original implementation.

http://www.cs.brown.edu/~alb/download.htm
http://opencv.willowgarage.com/wiki/
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A.1.1 Variables in my_Track_PSO.m

The structure PRM contains the global algorithm configuration, such as: number of
frames to process, subsampling factor, and location of the dataset. The number of
particles and iterations for each stage are defined in the cell array
PRM.OPTIMIZING_SEQ.

The structure MODEL_PRM contains the lengths and diameters of the cylinders in the
body model as well as the ground truth parameters in MODEL_PRM.angles.

The 31 variable model parameters are kept in a row vector, the indexing can be seen
in Table 5.1. The estimated parameters from my_performPSOAdvanced() are saved
in the matrix gbestAngles.

A.1.2 Variables in my_performPSOAdvanced.m

The four binary image silhouettes are in the cell array bgs, the edge maps in
edgeMaps, and the original frames in img.

The cell array cyls, produced by my_ComputeCylArray(), contains a struct for every
cylinder of the body model. This struct contains the dimensions of the cylinder and
the transformation matrix that defines its location in 3D. This matrix is 4x4 because
all 3D computations are done in homogeneous coordinates.

The cell array cylpts, produced by my_computeCylptsCell(cyls), contains the
four corner points of the projections of the cylinders for all four camera views.

A.1.3 Program Flow

The main loop of the program is in my_Track_PSO.m. After initialising the model
and tracking parameters, the function my_performPSOAdvanced.m is called once for
every frame to perform the two step optimization. in my_performPSOAdvanced.m
the subfunction partialPSO() is called for the individual optimization stages. This
is the subfunction that contains the actual PSO implementation. The subfunction
computeFitness() is called from partialPSO() to compute the fitness for all par-
ticles of the swarm in one call.
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