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Abstract

The Kinect is a cheap and wildly spread sensor array with some interesting

features, such as a depth sensor and full body skeleton tracking.

The Kinect SDK does not support �nger tracking; We have therefore created

algorithms to �nd �nger positions from depth sensor data. With the detected

�nger position we use dynamic time warping to record and recognize �nger

gestures.

We have created an API that can record and recognize �nger gestures. The

API was created with focus on ease of use and the possibility to customize

and change core algorithms. Even the Kinect can be changed for other

similar devices. This opens up a new �eld of applications utilizing the Kinect

and �nger gestures.
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Glossary

Kinect Kinect is a sensor device from Mi-

crosoft for Xbox 360 and Windows.

It has a microphone array, RGB cam-

era and a depth sensor.

XNA XNA is a product from Microsoft

that facilitates video game develop-

ment for Windows, Xbox 360 and

Windows Phone.

NUI Natural User Interface.

API Application Programming Interface.

SDK Software Development Kit.

RGB An additive color model; Red, Green,

Blue.

YUV A color model used to encode video

images.

DTW Dynamic time warping. Recognition

algorithm between two time series.

View frustum The region of space a camera

sees in a 3D environment.

VR Virtual Reality.
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1

Introduction

With the launch of Kinect for Xbox 360 in November 2010 and for Windows in February

2012, ordinary consumers have the ability to cheaply buy a sensor array and, with some

programming knowledge, easily play with the received data.

The Kinect for Windows SDK provides, amongst other things, out of the box skele-

ton tracking. However it does not provide �nger tracking or gesture recognition. We

have therefore created an API that enable users to �nd �ngertip locations and pointing

direction and to record and recognize �nger gestures. In addition it also gives the ability

to create virtual reality using head tracking and the XNA framework. We will talk more

about the Kinect in chapter 2.

1.1 Inspiration

The inspiration to do �nger tracking and gesture recognition was found in the science

�ction movie "Minority Report" (1) where the main character uses his hands and �ngers

to navigate and manipulate video and pictures on a large horizontal screen. However

his hands and �ngers were not touching anything but the air. This gives us some insight

on how NUI can be used to interact with a computer. In addition there did not exist

any satisfying solution that would enable someone, with relative ease, to create a NUI

as seen in the movie or any NUI based on �nger tracking with Kinect. This gave us the

opportunity to be the �rst to create a tool to facilitate easy and quick NUI development,

speci�cally with the use of �ngers, with Kinect.

1



1. INTRODUCTION

Inspiration to create virtual reality came from a video (2) were a Nitendo Wii remote

was used to achieve VR on an old television by utilizing the users head movement.

1.2 Existing solutions

There exists some open source libraries that try to do �nger tracking and gesture recog-

nition, but most of these were either not working correctly, performed poorly due to poor

programming or were not documented and hard integrate into other applications. We

were not able to �nd any libraries that combined �nger tracking and gesture recognition

that would perform on a reasonably level.

1.3 Vision

Our vision is to create an API that can do �nger tracking and gesture recognition with

reasonably good results and make it available to a broad spectrum of people. To do

this the API should be easy to use and the code should be well documented and easy

to read. We will talk more in depth about the API in chapter 9.
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2

The Kinect sensor

2.1 Kinect versions

There are two di�erent versions of the Microsoft Kinect sensor; Kinect for Windows

and Kinect for Xbox 360. The Kinect for Windows sensor does not work with the Xbox

360 gaming console.

2.1.1 Commercial and development usage

Both versions can be used for development, but only the Kinect for Windows can be

used for commercial purposes. The Kinect for Xbox sensor will not work with the

Kinect for Windows runtime (v1.0 at the time of writing), however it does work with

the Kinect for Windows SDK. The Kinect for Windows runtime needs to be installed

by the end user to enable the Kinect for Windows sensor to work with the application.

The commercial license of the v1.0 release allows us to develop, distribute and sell

our applications using the Kinect for Windows sensor on Windows platforms (3).

2.2 Specs

The Kinect has a RGB camera, depth sensor (IR) and a microphone array. The RGB

camera and depth sensor has a resolution of 640×480 pixels at 30 Hz. The sensor array

stand also features a motor so the tilt can be changed without physical interaction.

3



2. THE KINECT SENSOR

2.3 Kinect for Windows SDK

The Kinect for Windows beta 2 was released on November 1, 2012. and gave us an

o�cial way to create applications using the Kinect sensor. This beta release is licensed

only for research and development purposes. On February 1. Microsoft simultaneously

released version version 1 of the SDK and the Kinect for Windows sensor. This would

allow anyone to create and sell applications using the Kinect sensor. A version 1.5 was

released May 22.

The SDK allows a programmer to access the video, depth and sound stream pro-

duced from the Kinect sensor.

With the SDK we can get skeleton tracking data from up to two players who are

in front of the Kinect sensor. The skeleton tracking data gives us the position of 20

joints and has a depth rage of about 0.7 − 6 meters. The SDK also provides sound

triangulation.

2.3.1 Data streams

The depth data stream is given as an array of size 640 × 480 = 307200 with distances

in millimeters for each pixel. There is a di�erence between the Kinect for Xbox 360

and the Kinect for Windows depth stream. With the Kinect for Windows and its Near

Mode, we can see objects as close as 40 cm from the sensor. The Kinect for Xbox can

only see objects that are further than 80 cm from the sensor.

The video data stream is also given as an array of size 640× 480 = 307200 with the

color value for each pixel. We can choose between RGB and YUV for the color value.

We have not used the audio stream in this thesis.

2.4 Possibilities with the Kinect

Two researchers have created a system that uses multiple Kinect depth streams to keep

track of objects as they are moved around in a building (4). This may be the end of

searching after our misplaced car keys.

A group of independent game makers has created a physical sandbox with an image

projected on to the sand from above. The image adds a virtual world to the sandbox

by for instance showing snow on high peaks of sand or adding virtual water to lower

4



2.4 Possibilities with the Kinect

regions of the sandbox. The water is fully animated and dynamic, meaning the water

�ows with terrain changes. They have achieved this by using the depth stream from a

Kinect mounted above the sandbox (5).

This show what can be done with the Kinect.
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3

Contour tracking

Contour tracking will �nd the contour of objects in range of the depth camera.

This algorithm works by scanning the depth image from the bottom and up for

a valid contour pixel. When a valid contour pixel is found it will begin to track the

contour of the object that the pixel is a part of. This is done by searching in a local grid

around the pixel. After the contour tracking algorithm has terminated the tracking it

will return an ordered list with the positions of the contour pixels.

3.1 Existing algorithms

There exists several contour tracing algorithms, such as (6), (7) and (8), but we have

chosen to implement our own algorithm.

3.2 Finding the initial pixel

To start the contour tracking we need to �nd a valid contour pixel. A valid contour

pixel is a pixel that is in a speci�ed range from the Kinect sensor and has at least

one neighboring pixel that is not in the speci�ed range. The initial pixel is found by

scanning the depth image, from bottom and up, after a valid pixel. This means the

scan for the initial pixel will have to scan a substantial amount of pixels if the hands

are high up on the image. To reduce the time it takes to �nd the initial pixel we can

make an assumption about the hands position. We assume the hand is somewhere in

the middle of the picture. With this assumption we can add a height o�set to the start

height of the scan. In the algorithm we set the height o�set to be 20% of the image

7



3. CONTOUR TRACKING

height. Now we don't have to scan so many pixels and to make it scan even less pixels

we only scan every �fth row. The e�ect can be seen if we have an empty image, i.e no

objects are visible to the depth camera. This is our worst case scenario.

The best resolution we can get from the depth camera is 640 × 480. Worst case

number of pixels we have to scan if we don't optimize the scan is 307200 pixels. See

equation 3.1.

imageWidth× imageHeight = 640× 480 = 307200 pixels (3.1)

Worst case with the optimized version, as shown in equation 3.2, is 48640 pixels.⌊
imageHeight× 0.80

5

⌋
×imageWidth =

⌊
480× 0.80

5

⌋
×640 = 76×640 = 48640 pixels

(3.2)

This is an 84% reduction of pixels we have to scan.

3.3 Tracking the contour

After the initial contour pixel is found we can begin the search for the next contour

pixel. The algorithm will search in a local grid pattern with the current found pixel at

the origin. The grid extends one pixel in each direction.

3.3.1 Search directions

We assign a search direction to each found contour pixel to speed up the discovery

process. The search directions are up-left, up-right, down-right and down-left; they

are relative to the center of the screen. The starting direction is set to up-left due

to the V-shape of the hand above the wrist. The search for a new contour pixel will

begin in the same direction as the last pixel was found in. If we don't �nd a new pixel

in this direction, we begin searching in the next most probable direction. The most

probable direction after up-left is up-right: After we search up along a �nger we will

hit the beginning of the �ngertip; here the contour direction changes to go up-right. At

the apex of the �ngertip it curves down-right, making this direction the most probable

direction after up-right. After we traverse down to a �nger valley a new �nger begins,

making the next most probable direction up-right. If the algorithm doesn't �nd a new

pixel in the next most probable direction, it will search in all the directions, beginning

8



3.3 Tracking the contour

at the last found pixel direction and moving clockwise. The search will stop when a

valid pixel is found.

With this method we can run into the problem of discovering a pixel that has already

been found. If we found a pixel that has previously been discovered we begin to search

from the last found pixel direction, but this time moving counterclockwise. If we still

�nd a previously discovered pixel we check if we are on a single, vertical or horizontal,

pixel line. If we are not on a single pixel line, we can assume that there are no more

contour pixels to discover and terminate the search.

(a) SearchUpLeft algorithm. (b) SearchUpRight algorithm.

(c) SearchDownLeft algorithm. (d) SearchDownRight algorithm.

Figure 3.1: Local search grid.
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3. CONTOUR TRACKING

Figure 3.1 shows the local grid pattern used by the contour searching algorithm.

Figure 3.1a displays where the algorithm SearchUpLeft will search for new contour

pixels. It will �rst check pixel 1 (in �gure 3.1a) if it's a valid contour pixel. If not, the

search continues to pixel 2 and then 3. Figure 3.1b, 3.1c and 3.1d also displays pixel

search order, where 1 is the �rst pixel it checks.

In �gure 3.1 we can see that the algorithms overlap pixel searching in the vertical

direction. With a hand contour we will be mostly searching in the vertical direction.

The overlap enables all algorithms to search directly vertically. By overlapping we save

time by not changing search directions too often.

3.3.2 Single pixel lines

One problem with the four search direction algorithms is; If we traverse up a single pixel

line we are unable to traverse down again and continue searching. Therefore if we cant

�nd any new pixels using all four search direction algorithms, we must check if we are

on a single pixel line. This is done by checking the pixel above and under the current

pixel. If both of them are not valid pixels we have a horizontal pixel line. To check if

we are on a vertical single pixel line we check the left and right pixels.

Once we have established that we are on a single pixel line the single pixel line

algorithm will traverse down to the base. It will break o� the search for the base if

we �nd a valid pixel on the other side of the line from where we came from. It has

then successfully found the base. When it is �nished it will return a new direction to

continue the search.

Including the newly found pixel it will also return a search direction to continue the

search in.

Figure 3.2 demonstrates how the single pixel line algorithm works. In 3.2a the

SearchUpLeft algorithm �nds contour pixels 1 to 5. After it has found pixel 5 it will

search in the next most probable search direction, up-right. This leads to �nding pixel

4, which has already been discovered. It will then try to �nd a new pixel by searching

counterclockwise. This leads to �nding pixel 4, again. It will now �nd if we are on a

horizontal or vertical single pixel line by checking which neighbor pixel is a valid pixel.

In this case we �nd that the right pixel is our valid neighbor, this means we are on a

horizontal line. The algorithm also checks which general direction we are searching in;

10



3.3 Tracking the contour

(a) Horizontal single pixel line. (b) Vertical single pixel line.

Figure 3.2: Single pixel lines.

These are up, down, left and right, and determines in which direction we must traverse

to �nd the base.

In �gure 3.2a the single pixel line algorithm will traverse to the right, discovering

contour pixels 7, 8 and 9. Note that the algorithm will not break the search when we

�nd pixel 8 because it knows the general search direction is up and will therefore only

break if there is a valid pixel above the pixel line. When it is on pixel 10, it will discover

pixel 11 and stop; this is the end of the line. The algorithm will return a new search

direction, up-right since the general search direction were up and right, and continue

local grid search from this direction.

In �gure 3.2b we have a vertical single pixel line. The only di�erences here are the

searching directions. When the algorithm is �nished the new searching direction will

be down left since the general directions were down and left.

3.3.3 Backtracking

We also have a backtracking algorithm to ensure continuous contour tracking even if

we encounter unknown valid pixel con�guration that would halt the tracking. The

backtracking algorithm will backtrack pixels up to a user speci�ed pixel count. This

algorithm utilizes the search clockwise algorithm with some additions; It will continue

until it �nds a new valid contour pixel or until it has reach its speci�ed pixel count

limit. If no new valid contour pixel is found, then we can say the contour tracking is

11



3. CONTOUR TRACKING

�nished. If the backtracking �nds a new contour pixel, it will return the newly found

pixel with the search direction it was found in. This enables us to continue normal

contour tracking from here.

Backtracking is used as a last resort to �nd new contour pixels. This algorithm

could also substitute the �nd single pixel lines algorithm (chapter 3.3.2), although it

would not perform as well.

3.3.4 Track two hands

For the contour tracking to work with two hands in the depth frame simultaneously, we

have to do two separate searches for the initial pixel. First we follow the steps described

in section 3.2 to �nd the initial pixel and track the contour of the left hand. If it did

not �nd any pixels we know there aren't any objects in the frame and don't need to

continue. If one or more valid pixels were discovered we continue to search for a second

hand.

The initial pixel scan for the second hand has some additional properties. Since we

started the scan from the left side it is reasonable to assume the discovered hand is on

the left side of the depth frame. With this in mind, it will be faster to detect the right

hand if we start the second scan from the right side. There is still the possibility to

�nd one of the contour pixels of the left hand. To avoid detecting the contour of the

same hand twice we check if the pixel has already been discovered. If the pixel is part

of the �rst hand we know the second hand must be higher up on the depth frame. The

algorithm will jump 20 pixel rows up and continue the scan from there.

If the pixel has not previously been discovered it must be a contour pixel on the

right hand. This pixel will be our second initial pixel and the contour tracking can

begin on the second hand.

3.4 Termination states

The algorithm has two termination states; if it �nds a pixel that has already been

discovered or a �xed number of pixels have been discovered.
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3.4 Termination states

3.4.1 Termination state 1: A pixel was discovered twice.

We can make two assumptions if we �nd a pixel that has previously been discovered.

The �rst assumption we make is that the algorithm has tracked the whole contour

and found the initial pixel that began the tracking. If this is the case we can say the

tracking was successful and the whole contour was found. The other assumption is that

the algorithm is stuck and can't �nd any new contour pixels in its local search grid. It

can become stuck if the pixel con�guration that make up the contour has undiscovered

edge cases that were not accounted for. Although this is unlikely, there is a possibility

for this to occur.

To provide a fast and easy method to check if a pixel has previously been discovered,

we also store all discovered pixels in a hash table. Hash tables has O(1) lookup and

insertion time and is an unordered collection; making it good for duplicate checking

but unusable to use as the primary collection of discovered pixels since we need to have

them sorted in the order they were found.

3.4.2 Termination state 2: A �xed number of pixels were discovered.

Since we only are interested to �nd the contour around the �ngers, we only need to

discover a limited number of pixels. At the closest detection range of the Kinect for

Xbox sensor all �ngers is made up of about 450 pixels total, see �gure 3.3. If we

were to move further away from the Kinect sensor this value would decrease. With

this information we can stop the tracking algorithm after a �xed number of pixels are

discovered.

There is also a risk with this method. The tracking could be terminated too early,

before �nding all the �nger contours. Other body parts could also be included in the

picture, such as the forearm, using most of the available pixels. The algorithm is set to

discover max 700 pixels per hand.

The termination value is also important to the performance of the algorithm. The

more pixels it need to discover the more time the algorithm will use. By limiting the

number of pixels the algorithm can discover we can calculate the worst case running

time. This way we can make adjustments to meet the maximum expected running time.
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3. CONTOUR TRACKING

Figure 3.3: Minimum hand contour pixels (the red colored pixels).
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4

Finger recognition

Finger recognition consists of three steps. Step one is to �nd curves on the hand contour.

Step two is to �nd which curves are �ngertips and the last step is to �nd the middle of

the �ngertip curves. In addition we will also get the pointing direction of the �ngertips.

Figure 4.1b shows the results of these algorithms. The red pixels are the extracted hand

contour, the yellow pixels are the curve points and the blue pixels indicate where the

�ngertip are located.

(a) Raw depth image. (b) Hand contour with curve points and

�ngertip location.

Figure 4.1: The raw and processed images.
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4. FINGER RECOGNITION

4.1 Related works

A group at Massachusetts Institute of Technology (MIT) has developed an open source

graphical interface with the use of �nger tracking with the Kinect. They have however

used a di�erent approach to the �nger tracking problem; They use point clouds to �nd

the hand and �ngers (9).

In the paper (10) they use the k-curvature algorithm to �nd curves. They have

used this approach to �nd the �ngertip from binary images. We have used the same

approach to curve detection in this thesis.

4.2 Curve detection

The curve detection is implemented using the k-curvature algorithm. The k-curvature

algorithm detects the angle between two vectors.

The implemented version of the algorithm takes in three parameters; An ordered list

of contour points, a constant k and an angle ω, in radians. The constant k and the angle

ω values are application speci�c, k was found by trail and error. In the application k is

set to 20 and ω to 0.95993 radians, or 55 degrees. The angle ω was found by measuring

�ngertip angles in depth frames. The average �ngertip angle was measured to 39 degrees

and the lowest �ngertip angle was measured to 25 degrees.

The algorithm works by creating two vector at each contour point. One vector,

vector ~a, points to a contour point k points in front of the current point in the list. The

other vector, vector ~b, points to a contour point k points behind the current point. If

the contour point list is cyclic, i.e. the contour closes on itself, we can create vectors

across the start and end boundary of the list. If the list is not cyclic we set ~a to point

to the �rst contour point in the list when the index of the current point is less than k.

We must also do the same at the end; We set ~b to point to the last contour point if we

are less than k points from the end of the list. See algorithm A.0.1 in the appendix.

We also create a third vector, ~c, between ~a and ~b.

After the vectors are created we need to �nd the angle between ~a and ~b. If this angle

is less than ω we have a curve point. The screen coordinates of the current contour point

and the three vectors, ~a, ~b and ~c are stored in a list.
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4.3 Finger detection

4.3 Finger detection

To �nd the �ngertips we iterate through the curve point list and try to �nd curve point

segments. Curve point segments consists of points that are next to each other.

When the start and end point of a curve segment is found we �nd the middle point

of the segment. This will be the �ngertip location. However, not all segments are

�ngertips, they can also be �nger valleys. To �nd if the segment is a �ngertip we create

a bisect between ~a and ~b. If the bisect points to a pixel that is in the speci�ed depth

range we know that it must be a �ngertip otherwise it is a �nger valley, see �gure 4.2b

and 4.2c.

We use ~c to �nd the pointing direction of the �nger. We create a new vector

between the curve point and the middle of ~c and reverse the vector. This vector will be

the pointing direction of the �nger. See �gure 4.2a. The curve point and the pointing

direction is stored in a list.
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4. FINGER RECOGNITION

(a) Fingertip direction.

(b) Fingertip with bisect. (c) Finger valley with bisect.

Figure 4.2: Finding the �ngertips and their pointing direction.
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5

Gesture Recognition

To recognize gestures, we have implemented a variant of the dynamic time warping

algorithm - DTW.

The DTW algorithm recognizes similarities between two time series. The two time

series do not need to be synchronized in time, enabling a user to do gestures slower or

faster than the recorded gesture speed.

5.1 Related works

A group of researchers at Microsoft Research used dynamic time warping to recognize

dance gestures using the Kinect. Their gesture classi�er has an average accurace of

96.9%. This shows that DTW can be used to achieve high accuracy with data from the

Kinect (11).

5.2 Note

From here on a frame implies that we have processed the depth frame and found the

�nger positions in the frame.

When we say cost, we mean the total euclidean distance in one frame. See equation

5.2 for calculating total euclidean distance between two frames. In equation 5.2 we

assume only one hand will be used for gestures, although gestures with multiple hands

are possible with our solution. We also assume that the �nger count n throughout a

gesture is 1 ≤ n ≤ 5.
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5. GESTURE RECOGNITION

In equation 5.1, p and q denotes a �nger position in a reference gesture frame and

in a input gesture frame.

5.3 Recording a gesture

To record gestures we store �nger positions and direction from all frames within a user

speci�ed time frame or until a max frame count has been reached. When a user starts

recording a gesture, �nger positions and direction from each frame is stored in a queue

collection. A queue collection was chosen for the removal speed of the �rst inserted

data, which is O(1). Fast removal speed is needed if a maximum frame count is set

together with a time limit, where in the time limit a greater number of frames will be

produced than the maximum frame count number. If this should happen, the oldest

frame will be removed before inserting the new frame. This can be seen as a safety

property to avoid using too much memory if the time limit is too large.

A likely scenario where this could happen is when the recording is set to start and

end by a button click. If the button for stopping the recording is never pressed, we have

a way to prevent memory leak.

After the recording time has passed, all the data from the queue collection is ex-

tracted and stored in an array in its own object.

5.4 Recognizing a gesture

We have divided the DTW recognizing algorithm down to several steps for easy under-

standing and explanation.

5.4.1 Step 1: Finding a candidate gesture

We �nd the cost (euclidean distance) of the current frame and compare it to the last

frame from all the gestures. The cost indicates how similar the two frames are. If the

two frames are identical, the cost will be zero. The more di�erence between the frames

the higher the cost will be.

To �nd a candidate gesture we calculate the cost of the current frame and the last

frame from all the gestures. The lowest of the calculated costs will be our candidate

gesture for full DTW processing. However, if the lowest cost is too great, we don't select
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5.4 Recognizing a gesture

any candidate. As the gesture might be the closest match but the cost di�erence is too

high.

This is an performance optimization so we don't need to do full DTW calculations

that would yield a not recognized gesture.

5.4.2 Step 2: Euclidean distance matrix

We now have our two gestures, a prerecorded gesture (reference gesture) and the newly

performed gesture (input gesture), to do DTW calculations. The �rst thing we have

to do is to calculate the cost between each reference and input frames. This can be

visualized by using a matrix, see �gure 5.1a.

The matrix will show how similar each frame is to another between the two gestures.

Euclidean distance = d(p, q) =
√

(px − qx)2 + (py − qy)2 + (pz − qz)2 (5.1)

Total euclidean distance =
5∑

i=1

d(pi, qi) (5.2)

5.4.3 Step 3: Accumulated distance matrix

After the matrix is �lled with the cost, we can begin computing the lowest accumulated

cost matrix. In this matrix we compute the lowest cost to reach a cell. There are three

di�erent ways we can reach a cell; From the left, bottom or the diagonal down cell, see

�gure 5.1b. In �gure 5.1b we see that c can only be reached by cell 1, 2 and 3. The

accumulated cost for these cells must be calculated before we can calculate it for c.

The cost to reach a cell c is the accumulated cost of the one of the three cells that

can reach c plus the existing cost in c (calculated in section 5.4.2). The lowest of the

three calculated accumulated cost for c gives us the �nal accumulated cost for c, see

equation 5.3. We have to do this for all the cells, except for cell [0,0] which we will

explain later.

In �gure 5.3, c is the cell we want to calculate the accumulated cost (ac) for and c
′

is one of the three cells that can reach c. The lowest of the three cac will be chosen as

the �nal value for c.
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5. GESTURE RECOGNITION

The left most column and the bottom row must have their accumulated cost cal-

culated �rst. These cells can only be reached from the bellow cell and the left cell,

respectively, and thus only depend on cell [0,0] to have an initial accumulated cost. The

accumulated cost of cell [0,0] is set to zero since it is not reachable by any cell.

cac = c
′
ac + ccost (5.3)

5.4.4 Step 4: Lowest distance path

We now need to �nd the lowest accumulated cost path from the last cell ([m,n]) to the

�rst cell ([0,0]). Beginning at the last cell, we always choose the cheapest cell of the

three we can choose from (left, down and the diagonal down cell) as the next cell. The

accumulated cost for each cell in the path is added together to be the total path cost.

(a) (b)

Figure 5.1: Hand frame matrix.

5.4.5 Optimizations and improvements

To get a more desirable result we can apply some optimizations to the steps above.
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5.4 Recognizing a gesture

5.4.5.1 Euclidean distance

To make movement along a certain axis more important than other, we can apply

weighing to the euclidean distance calculation. We modify equation 5.1 by multiplying

each axis with a weight w{x,y,z}, where 0 ≤ w{x,y,z} ≤ 1. Equation 5.4 shows the

modi�ed euclidean distance with weighting.

Weighted euclidean distance = dw(p, q) =
√
wx(px − qx)2 + wy(py − qy)2 + wz(pz − qz)2

(5.4)

With this improvement we can better recognize gestures that do not rely on all three

axis. Such a gesture could be a swiping gesture from left to right as this gesture would

mainly use the x-axis. It is therefore desirable to let the other axis have a lower impact

on the cost.

A weighting value of zero on a axis would be to not take the axis into consideration

when calculating the cost.

5.4.5.2 Accumulated cost matrix

Since our goal is to �nd the lowest accumulated cost path and optimally that would be a

straight diagonal line from [m,n] to [0,0], we can do a small optimization to the diagonal

cost in section 5.4.3. Instead of adding the cost of c to the diagonal cells accumulated

cost, we add c
2 , thus making going diagonal more desirable. See equation 5.5.

cac = cdac +
ccost
2

(5.5)

To make things clear; we use equation 5.3 to calculate the accumulated cost to c

from the left and bellow cell and equation 5.5 for the diagonal down cell.

To generalize the equations we can use a weighting factor w for each direction e.g

wh for horizontal movement (left cell), wv for vertical movement (below cell) and wd

for diagonal movement (diagonal down cell). This gives us equation 5.6.

cac = c
′
ac + w

′
ccost (5.6)

To use equation 5.6 to get a bonus to the diagonal cell, as shown in equation 5.5,

and no bonus to the left or bottom cell, we set w{h,v,d} to w = {1, 1, 0.5}.
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5. GESTURE RECOGNITION

5.4.5.3 Lowest distance path

We can optimize the path �nding by constructing some constraints, such as the Sakoe-

Chiba band (12) (�gure 5.2a) or the Itakura parallelogram (13) (�gure 5.2b).

Constraints as those will force the warping path to not deviate too much from the

straight diagonal path. The path �nding can also be aborted should it go beyond the

constraints. A problem can arise if the optimal path has some cells outside of the

constraints. This would lead to a higher total path cost that could impact our decision

if the gesture should be seen as recognized.

Generally constraints will speed up the DTW algorithm since we do not need to

calculate the cells outside of the constraint. This could lead to a signi�cant performance

gain.

(a) Sakoe-Chiba band (b) Itakura parallelogram

Figure 5.2: Warping Constraints.

5.5 Store gestures

The recorded gestures can also be stored to disk. It is saved as a XML-�le to make it

available to be used in other applications or to be read by humans. The XML-�le will

contain �nger positions and direction for each frame in a gesture. One �le can contain

multiple gestures.
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5.6 Retrieve stored gestures

5.6 Retrieve stored gestures

Since we can store gestures to disk, we can also retrieve them. It will read a XML-�le

with �nger positions and direction and add each gesture from the �le to the list of active

gestures to be recognized.
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6

Auto depth interval detection

The auto depth range calibration will create a depth interval that is limited by two

hands. When the depth interval is found it will discard all data outside this range, only

allowing objects to be detected in the newly found depth interval. The algorithm works

by detecting the �ngers of the hand closest to the sensor and then detecting the �ngers

of the second hand; which is further away from the sensor. The depth interval is set

from the position of the �rst hand to the second hand. After the scan is complete we

can freely move our hands in the depth interval.

The algorithm works by detecting how many �ngers were found at a determined

depth interval. It will start the scan from the minimum possible distance from the

sensor. In our case with the Kinect for Xbox sensor it is at 800 millimeters. The �rst

pass of the auto scan will start at 800 millimeters with an interval, b, of 150 millimeters.

The interval value is based on how wide a hand is from the tip of the thumb to the

tip of the little �nger when all the �ngers are spread out. We need the interval to be

at least this wide because the hand could be rotated around the y-axis and we need

to be able to detect all the �ngers in at least one pass. At the subsequent passes the

interval will begin at prevStart + b
2 millimeters and end at prevStart + b

2 × 3, where

prevStart is the previous start depth. This will overlap the previous interval, allowing

us to correctly detect the number of �ngers if the hand should be split in half at the

end depth.

When we correctly �nd the �rst hand we set the �nal start depth p to be the start

depth of the current pass. Then in the next pass the start depth will be p + b, this is to

avoid detecting the found �ngers twice. When we then correctly �nd the second hand
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6. AUTO DEPTH INTERVAL DETECTION

we set the �nal end depth q to be the end depth of the current pass. The algorithm will

return p and q, which in turn will be used as the depth interval for the range �nder.

If only one hand was found, or none at all, it will return default values for p and q.

The default start depth is the minimum detection distance of the sensor. The default

end depth is the default start depth + b.

We encounter some problems if we go beyond 1500 millimeters from the Kinect

for Xbox sensor. At this range there will be a signi�cant amount of artifacts around

objects. This leads to poor �nger detection quality and that will impact the ability to

correctly �nd the depth interval. To make the algorithm more �exible we only require

four �ngers to be detected for a hand to be correctly detected. This will give a higher

rate of correct detections.

There is also support to use only one hand to create a depth interval. After it

correctly detects the closest hand it will set the �nal start depth to the start value of

the current pass. The �nal end depth is then the start depth + u, where u is a user

speci�ed value in millimeters.

Figure 6.1: Example of a scan sequence.

In �gure 6.1 we see an example of how the auto scanning would �nd the depth

interval between two hands. The �rst hand is found in the second pass and we set the

�nal start depth to the current pass start depth, p = 875mm. At the next pass we skip

the overlap to avoid the possibility of detecting the �rst hand again. In the seventh

pass we �nd the second hand and set the �nal end depth to the current end depth,

q = 1475mm. The algorithm is now �nished and we will only be able to detect objects
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that are in the interval p to q. Figure 6.2 shows the actual depth data from the scan.

The �rst hand is found in 6.2b and the second hand in 6.2g.

(a) 800 - 950 mm. (b) 875 - 1025 mm. (c) 950 - 1100 mm.

(d) 1100 - 1250 mm. (e) 1175 - 1325 mm. (f) 1250 - 1400 mm.

(g) 1325 - 1475 mm.

Figure 6.2: Depth frames from an auto interval scan.
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7

Enhancements

The depth images from the Kinect produces jitter and artifacts. This makes the result

from contour tracking unpredictable. This e�ect is cascading, meaning other algorithms

depending on contour data will also be negatively a�ected.

To counter these e�ects we have created some algorithms that will help give more

consistent results.

7.1 Smoothing

To make the �ngers position more consistent when jitter occurs, we can apply a smooth-

ing algorithm to the �ngers positions. A smoothing algorithm reduces the change be-

tween the new and old point.

p
′
= q + s(p− q) (7.1)

We have implemented exponential smoothing, as shown in equation 7.1. In equation

7.1 we have the current point p, the previous point q, the new point with smoothing

applied p
′
and the smoothing factor s, where 0 ≤ s ≤ 1.

7.2 Prediction

We have also implemented an algorithm that enables us to predict where a �ngertip is

going to be in the next frame. The algorithm detects if one or more �nger positions has

been missing in up to n frames, where n is a small number, and replaces them with a

predicted �nger position.
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7. ENHANCEMENTS

7.2.1 Exponential moving average

We use exponential moving average (EMA) to predict where a �nger is going to be in the

next frame. The equation is shown in equation 7.2, where t is the frame number (time

period), y is the observation, s is the prediction and w is the weight factor (0 < w < 1).

st = wyt + (1− w)st−1 (7.2)

The EMA algorithm needs a set of values to produce a good prediction. Every

correct frame is stored in a queue collection that holds 30 frames. When the queue

is saturated and an inconsistent �nger count has been detected, all the frames in the

queue is passed to the EMA algorithm. It will then produce the next frame and use

those values for the missing �ngers.

All the correct frames is also passed to the gesture algorithm. This ensures the

consistent �nger count needed for gesture recording and recognition. The gesture recog-

nition will however lag up to n frames.
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8

Virtual reality

The virtual reality we have created attempts to use the screen as a physical window to a

simulated environment. This chapter gives an basic overview on how we have achieved

this. More in depth explanation can be found in (14) and (15).

8.1 Related works

Johnny C. Lee brought the idea of virtual reality with head tracking and cheap consumer

hardware to the masses with a video he posted on YouTube in 2007. He used the Nitendo

Wii remote and a head mounted sensor to track the users head position. The perspective

on the screen changes with head movement to create a virtual environment inside the

screen (16).

8.2 Introduction

Our virtual reality works by creating an o�-axis perspective that follows the head move-

ment of a user.

8.2.1 On-axis perspective

On-axis perspective is the perspective most of us is know with. It is the perspective

used in most 3D computer and console games. This perspective is shown in �gure 8.1a.

There the users eyes, or the camera origin, p are always centered to the screen. The

view frustums size does not change if we move the virtual camera around.
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8. VIRTUAL REALITY

To visualize on-axis perspective we can think of us looking through a window. We

have our head centered and perpendicular to the center of the window. Now if we want

to view something else, that is outside of the view space we can see through the window,

we must also move the window to keep our head centered and perpendicular to it.

8.2.2 O�-axis perspective

O�-axis perspective is when the eye position does not need to be at the center of the

screen. This perspective is shown in �gure 8.1b. There we can see that the users eye

position, or the camera origin, p does not need to be centered to the screen. In this

perspective the size of the view frustum changes depending on the users head position.

To visualize o�-axis perspective we can think of us looking through a window. Now

the window is in a �xed position and does not move. If we want to see something

outside of the initial view space through the windows, we need only to move our head.

8.3 View frustum

In o�-axis perspective the view frustum size changes depending where we have our head

relative to the screen.

The major graphics library DirectX has built in support to create o�-axis perspec-

tive. This means that we don't have to manually create the projection matrix needed.

As XNA uses DirectX we have an easy way to create the matrix (17).

To create the matrix we need to determine the view frustum extents. The extents

that needs to be calculated is seen in �gure 8.2. There t, b, r and l are the top, bottom,

right and left extents, respectively. In addition we also need to choose a near and far

view plane.

The extents are calculated in equation 8.1. Where r is the aspect ratio of the screen,

v is the near view plane and p is the position of the users head. This equation is the
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8.3 View frustum

(a) On-axis perspective (b) O�-axis perspective

(c) On-axis perspective (d) O�-axis perspective

Figure 8.1: Perspective.

same used by (2).

top =
v(1/2 − py)

pz

bottom =
v(−1/2 − py)

pz

right =
v(1/2r − px)

pz

left =
v(−1/2r − px)

pz

(8.1)

Figure 8.3 displays an top down view of a user and a screen. We can see that the

screen works like a physical window into the virtual environment.
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8. VIRTUAL REALITY

Figure 8.2: Frustum extents.

(a) (b)

Figure 8.3: VR space.

8.4 Implementation

The head tracking is performed by the Kinect and the perspective camera is imple-

mented as a XNA game component. XNA was used since it simpli�es the implementa-

tion and allows the code to be used on di�erent .NET platforms, such as the Xbox 360

and Windows Phone.

VR can be used in combination with gesture recognition.

8.5 Limitations

A drawback with creating virtual reality this way is that it can only be used by one user

at a time. If someone else watches the screen, it will look weird as the objects appear

skewed.
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9

Results

The result is an easy to use and easy to understand API. A modular programming

technique with the use of interfaces was used to make the API to be �exible and easy

to use (18). Code examples in this chapter uses C# syntax.

9.1 Program �ow

An overview of the implemented application �ow can be seen in appendix B.2.

9.2 Events

The API is event-driven. This gives us complete control over when we want the algo-

rithms to run and what we want to do after it has �nished its task. This also matches

how we are noti�ed of new data from the Kinect with the Kinect for Windows SDK.

However, the API does not force a user to use events. All methods that starts

processing algorithms will also return the result. I.e instead of using the event triggered

to get contour data when contour tracking is �nished, a user can also get it directly

from the method call: contourData = IContourTracking.StartTracking(...).

9.2.1 DepthDistanceUpdated

The �rst event we use is from the Kinect SDK, DepthFrameReady. This �res every

time a new depth frame is produced from the Kinect; A new frame is produced every

33 milliseconds. From there we get the width and height of the depth image and �lter

the received depth data to only contain the depth for each pixel. After its done we
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�re our own event, DepthDistanceUpdated, to indicate new depth data is available.

DepthDistanceUpdated takes an array of depth distances and the width and height of

the depth image as parameters. See code block 9.1.

When DepthDistanceUpdated is triggered, we �lter the depth data to only con-

tain data in a speci�ed depth interval and begin contour tracking. The depth �lter

(RangeF inder.P ixelsInRange(...)) returns an array with a status for each pixel, telling

if a pixel is in the range interval or not. When the application is running we should

position our hands in the depth interval.

void DepthDistanceUpdated(depthDistanceData , width , height)

{

// Filter depth data to only contain data in a specified depth interval.

var pixelsInRange = RangeFinder.PixelsInRange(depthDistanceData ,

minDistance , maxDistance);

IContourTracking.StartTracking(pixelsInRange , width , height);

}

Code block 9.1: DepthDistanceUpdated event.

9.2.2 ContourDataReady

The event ContourDataReady is �red when contour tracking is completed; It has the

contour points and the �ltered depth image as parameters. The depth image is not

altered during contour tracking.

We perform curve and �nger detection when ContourDataReady is triggered. See

code block 9.2. ICurveDetection.F indCurves(contourPoints) has an event that �res

when curve detection has �nished, but we chose not to use it here. The code looks

cleaner when we use the direct reference. ICurveDetection.F indCurves(...) returns

a list with curve points and IF ingerRecognition.F indFingertipLocations(...) returns

a list of Fingertip objects. The Fingertip object contains the �ngertip position and

pointing direction of the �nger.

If we want to use the auto interval scan, the code for it should run when this event is

triggered as it uses the �ngertip count to determine when the interval starts and ends.

See code block B.1 in the appendix for how this can be done.
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void ContourDataReady(contourPoints , pixles)

{

var curves = ICurveDetection.FindCurves(contourPoints);

IFingerRecognition.FindFingertipLocations(curves , pixels , width , height);

}

Code block 9.2: ContourDataReady event.

9.2.3 FingertipLocationsReady

The event FingertipLocationsReady is �red when the �ngertip detection algorithm has

�nished. It has a list of �ngertips as parameter. See code block 9.3. When the event

is triggered the �ngertips are converted to a Hand object. By converting it to a Hand

object, we do additional processing within the object. This could be to determine exact

which �ngers are shown from the �ngertip points.

Here we can also try to enhance the result by enabling smoothing or the prediction

algorithm. If preventHandInconsitencies is set to false and the gesture recognition or

recording is enabled, we feed theHand object to the IGestureRecognition.AnalyzeFrame(...)

method. The method will analyze the frame and if it �nds a gesture match it will

�re the event GestureRecognized. If we have successfully recorded a gesture the

GestureRecorded event will �re.

If preventHandInconsitencies is set to true, the prediction module will handle the

passing of frames to the gesture recognizer. The prediction module has a reference to

the gesture recognizer.

9.2.4 GestureRecognized

The event GestureRecognized is triggered when a gesture has been recognized. It has

the recognized gesture as parameter. See code block 9.4.

9.2.5 GestureRecorded

When a gesture has been successfully recorded, the GestureRecorded event is triggered.

It has the recorded gesture as parameter. Here we can, if we wish, manipulate the

recordedGesture object before storing it, such as giving it a name. See code block 9.5.
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void FingertipLocationsReady(fingertips)

{

// Convert fingertips to a Hand object.

var currentHand = new Hand(fingertips);

if (EnableSmoothing)

currentHand = Smoothing.ExponentialSmoothing(currentHand , prevHand ,

smoothingFactor);

// This is the prediction algorithm.

if(preventHandInconsitencies)

HandEnhancements.PreventHandIncosistency(currentHand);

else if (IGestureRecognition.Recognizing || IGestureRecognition.Recording)

IGestureRecognition.AnalyzeFrame(currentHand);

prevHand = currentHand;

}

Code block 9.3: FingertipLocationsReady event.

void GestureRecognized(recognizedGesture)

{

// Here goes code that act upon the recognized gesture.

}

Code block 9.4: GestureRecognized event.

9.2.6 Performance

There is no noticeable performance gain or loss by using events over direct reference

calls (19).

9.3 Modularity

One of the key elements to making the API easy to use is to divide it into modules.

The functionality of the module should, preferably, be accessed with only one line of

code. I.e in code block 9.2 to �nd the �ngertips, we only need to call one method,

FindFingertipLocations, in the IF ingerRecognition module to get the �ngertip lo-

cations from a list of contour points. Thus all the complexity are inside the module,

hidden from the user. This makes the code look clean and also makes it easy to work
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void GestureRecorded(recordedGesture)

{

IGestureRecognition.StoreGesture(recordedGesture);

}

Code block 9.5: GestureRecorded event.

with.

9.3.1 Interfaces

The modules implements interfaces speci�c to its own module. This is also a object-

oriented design principle; Interface segregation principle (ISP) (20). This allows users

to create their own modules that can easily be interchanged with the existing one. The

user only needs to implement the interface. All interfaces use standard C# naming

convention; Interfaces are pre�xed with the letter "I" (21).

9.3.2 Modules

The main modules are: Kinect, ContourTracking, CurveDetection, FingerRecognition

and GestureRecognition. The main modules, interfaces and implementation, are shown

in the sub chapters.
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9.3.2.1 Kinect

Figure 9.1: IKinect and the implementation.
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9.3.2.2 ContourTracking

Figure 9.2: IContourTracking and the implementation.
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9.3.2.3 CurveDetection

Figure 9.3: ICurveDetection and the implementation.
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9.3.2.4 FingerRecognition

Figure 9.4: IFingerRecognition and the implementation.
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9.3.2.5 GestureRecognition

Figure 9.5: IGestureRecognition and the implementation.
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9.3.3 Tying modules together

An example on how the modules can come together in one class, is given in the appendix

B.3.

9.4 Virtual reality

The o�-center perspective camera is implemented as a XNA game component. To

use the camera one does only need to initialize the game component and add it to

the XNA game components list. To update the camera position, one can call the

IKinect.RelativeHeadPosition(...) method to get the head position relative to the

screen and the Kinect. See code block 9.6. If we lose the skeleton tracking the camera

will return to origin, which is at the middle of the screen. We use a smooth step function

from the XNA framework to achieve a more elegant return to the origin.

Code block 9.6 shows the update method in the main XNA class.

void Update(GameTime gameTime)

{

var origin = new Vector3(0, 0, 1);

var smoothWeighting = 0.1f;

if (IKinect.IsTrackingSkeleton)

PerspectiveCamera.Position =

IKinect.RelativeHeadPosition(horizontalOffset , floorToKinectOffset ,

screenToKinectOffset , screenWidth);

else

SmoothStepCameraPosition(origin , smoothWeighting); // Return to origin.

base.Update(gameTime);

}

Code block 9.6: O�-center perspective camera.

The virtual reality gives the user a feeling of real 3D inside the monitor. A demo

application was created for IT-Galla 2012, a IT conference in Stavanger Norway, to

showcase what can be done with the Kinect.
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9.5 Code

While writing the code, clean code principles were followed (22). This resulted in a code

base that is clean, easy to read and easy to follow. It should be easy for a programmer

to understand what the code does regardless of the programmers familiarity with the

algorithms. Method and variable names are descriptive, ensuring fast and easy reading.

Additional comments were added when necessary to further explain code intension and

�ow.

The main modules are divided into folders to keep the Visual Studio solution clean

and organized.

A class for holding debugging information was also created to make it easier and

cleaner to access relevant debugging information.
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Discussion

Currently the API does what we wanted it to do when we started the project. There

are room for improvements and new features that can enhance it capabilities. Due to

the time constraint of this project not all enhancements that is nice to have were imple-

mented. In this chapter we describe some of the enhancements that can be implemented

to improve to results from the API.

10.1 Contour tracking

This is were most of the work went into; To create a reliable contour tracking. It works

well, is reliable and e�cient in �nding the contour.

10.1.1 Finding the initial pixel

To �nd the initial pixel we only scan every �fth line beginning from the bottom with

a height o�set of 20% of the image height (chapter 3.2). There are multiple ways the

initial pixel can be found. One alternative can be to start at the middle of the image

and probe up and down to �nd the edge of the object. With this alternative method

we eliminate the possibility that the object could be under the 20% height o�set and

rendering it invisible to the current method of �nding the initial pixel. However, with

the current Kinect hardware we are not able to produce a good enough interpretation

of the hand if it were to �t in 20% of the image height pixels.
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10.2 Curve detection

10.2.1 The k-curvature algorithm

The curve detection is implemented with the k-curvature algorithm (chapter 4.2). The

constant k in the algorithm determines the distance, in pixels, between the start and

end point of the line segments. If we were to hold our hand further from the Kinect,

the resolution will be lower; Reducing the number of pixels that a �ngertip is made up

of. If k is static we risk not correctly detecting the �ngertip because the line segments

will be too long. A solution to this problem is to let k dynamically change depending

on how far the hand is from the Kinect. Currently the user has the ability to change

k at runtime, it should not take too much e�ort to implement it to be dynamic. The

default k value works well with di�erent depth distances, but a dynamic value would

produce more reliable results.

10.3 Detecting Fingertips

The �ngertip detection works well when there are not too many artifacts in the image.

If there are too much artifacts around a �nger, it will have trouble detecting it correctly

due to deformation of the �nger.

10.3.1 False �ngertip

There is also a possibility that other curves might be mistaken for �ngertips if it has the

correct curvature. One solution to prevent false curves from being detected as correct

is to do some more calculation to determine if a curve is part of a �nger. This could be

to have a proximity constraint between the �ngertips; If a detected �ngertip is too far

from the others it will be discarded.

10.4 The Kinect

Everything is dependent on the depth image feed from the Kinect. With the Kinect for

Xbox 360 we only have a small interval where we will get good results from the depth

sensor. With the Kinect for Windows and its near mode we can have our hands closer

to the Kinect.
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A better sensor with higher resolution will greatly improve the range where one

can hold its hands and be detected by the API. The Kinect module in the API can be

changed to be used with other sensor hardware as long as it ful�lls the IKinect interface

properties. This makes the API more future proof as new hardware enters the marked.

10.5 Commercialization

GesturePak is a gesture recording and recognition toolkit that cost $99 for a single

developer license (23). It does gesture recording and recognition, and provides an API.

However, it utilizes the skeleton points from the Kinect, thus �nger recognition is not

supported.

This shows that there is a market for gesture recording and recognition API that is

based on the Kinect. Since we have created an API with �nger tracking capabilities, we

have the market to our selves. There is nothing that prevents us from selling our API.

However, if we open source the API we can give something back to the community for

free. Others may be inspired to create new and innovating applications and contribute

to the Kinect community with their �ndings.

51



10. DISCUSSION

52



11

Conclusion

We have created an API that extends the usage of the Kinect, making it possible to

create applications for a new �eld where �nger gestures play a signi�cant role. The

API is made to suit anyone, from amateur programmers with its ease of use, to the

professional programmer with the use of modularity and its �exibility. With better

sensor hardware, we will be able to increase the physical working limit of the API.

This shows what can be done with consumer hardware and a SDK in a relative short

time span. It really is only our imagination that limits what we can do with the Kinect.
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A. CREATE LINE SEGMENT

Algorithm A.0.1: CreateLineSegments(contourPoints, k, omega)

curvePoints = ∅
for icurrent ← 0 to contourPoints.Size

do



if contourPoints is cyclic

then



if icurrent < k

then ib = contourPoints.Size− k + icurrent

else

then ib = icurrent − k

~b = CreateV ector(contourPoints[icurrent], contourPoints[ib])

if icurrent > contourPoints.Size− k

then ia = k − contourPoints.Size+ icurrent

else ia = icurrent + k

~a = CreateV ector(contourPoints[icurrent], contourPoints[ia])

else

then



if icurrent < k

then ib = 0

else

then ib = icurrent − k

~b = CreateV ector(contourPoints[icurrent], contourPoints[ib])

if icurrent > contourPoints.Size− k

then ia = k − contourPoints.Size

else ia = icurrent + k

~a = CreateV ector(contourPoints[icurrent], contourPoints[ia])

~c = CreateV ector(~a,~b)

curvePoints = curvePoints ∩ {contourPoints[icurrent],~a,~b,~c}

return (curvePoints)
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B.1 ContourDataReady event with auto interval scan.

void ContourDataReady(contourPoints , pixles)

{

var curves = ICurveDetection.FindCurves(contourPoints);

var fingertips = IFingerRecognition.FindFingertipLocations(curves ,

pixels , width , height);

var fingerCount = fingertips.Count;

if (updateDepthDistaceThreshold)

{

AutoscanForDistanceThreshold(fingerCount);

return; // Don ’t do anything else while scan is in progress.

}

}

void AutoscanForDistanceThreshold(fingerCount)

{

// The DistanceThreshold object holds the min and max distance.

DistanceThreshold newDistanceThreshold;

bool scanFinished = DistanceScanner.TwoHandScan(fingerCount ,

distanceThreshold , out newDistanceThreshold);

// distanceThreshold is a global variable used by the range finder.

distanceThreshold = newDistanceThreshold;

updateDepthDistaceThreshold = !scanFinished;

}

Code block B.1: ContourDataReady event with auto interval scan.
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B.2 Program �ow

1. User is in front of Kinect

2. Depth stream

� Get depth data.

� Filter data to only contain objects that are in a certain interval.

3. Contour tracking

� Track contour of objects in the depth interval.

� Track up to two objects.

� Returns contour point.

4. Curve detection

� Find curves from the contour point.

� Return a set of curves.

5. Finger recognition

� Filter curves based on curve direction.

� Find center of curve; this is a �ngertip.

� Find pointing direction of �ngertip.

� Returns �ngertip position and direction.

6. Enhance processed data

� Smoothing.

� Apply smoothing to reduce jitter.

� Useful for better recognition of gestures.

� Prediction; Predict �nger positions and direction in the next frame.

� Used if one or more �ngers was not detected due to too many artifacts

in the depth stream.

� The missing �ngers are replaced with the predicted �ngers.
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7. Gesture recording and recognition

� Recording.

� Store �ngertip position and direction for each frame during recording.

� Recognition, using dynamic time warping (DTW).

� Store a set of processed frames from the Kinect in a queue.

� Check if the latest processed frame from the Kinect matches the last

frame in a gesture.

� If it does, we have a candidate gesture.

� Convert the frame queue to a gesture (input gesture).

� Do full DTW calculation on the candidate gesture and the input gesture.

� If they are reasonably similar, we have recognized a gesture.
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B.3 Main class

public sealed class Main

{

private readonly IKinect kinectDevice;

private readonly RangeFinder rangeFinder;

private readonly IContourTracking contourTracking;

private readonly ICurveDetection curveDetection;

private readonly IFingerRecognition fingerRecognition;

private readonly DistanceScanner distanceScanner;

private readonly IGestureRecognition gestureRecognition;

private readonly IPrediction prediction;

private readonly HandEnhancements handEnhancements;

private readonly DebugInfo debugInfo;

private Hand prevHand;

public Main(IKinect kinectDevice)

{

// Distances in millimeter.

const int minDepthDistance = 800; // The minimum distance where

the Kinect for Xbox 360 can detect objects.

const int maxDepthDistance = 4000;

this.kinectDevice = kinectDevice;

var sensorDepthRange = new DistanceThreshold { MinDistance =

minDepthDistance , MaxDistance = maxDepthDistance };

rangeFinder = new RangeFinder ();

contourTracking = new ContourTracking ();

curveDetection = new CurveDetection ();

fingerRecognition = new FingerRecognition(rangeFinder);

distanceScanner = new DistanceScanner(sensorDepthRange);

gestureRecognition = new GestureRecognition ();

prediction = new Prediction ();

handEnhancements = new HandEnhancements(prediction ,

gestureRecognition);

debugInfo = new DebugInfo ();

InitializeDistanceThreshold(minDepthDistance);

InitializeDebugInfo ();

CreateEvents ();

}
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public IContourTracking ContourTracking { get { return

contourTracking; } }

public ICurveDetection CurveDetection { get { return

curveDetection; } }

public IFingerRecognition FingerRecognition { get { return

fingerRecognition; } }

public IGestureRecognition GestureRecognition { get { return

gestureRecognition; } }

public DebugInfo DebugInfo { get { return debugInfo; } }

private void InitializeDistanceThreshold(int minDepthDistance)

{

const int distanceInterval = 150;

DistanceThreshold = new DistanceThreshold

{

MinDistance = minDepthDistance ,

MaxDistance = minDepthDistance +

distanceInterval

};

debugInfo.DistanceThreshold = DistanceThreshold;

}

private void InitializeDebugInfo ()

{

debugInfo.GestureDebugInfo = gestureRecognition as

IGestureRecognitionDebug;

}

private void CreateEvents ()

{

kinectDevice.DepthDistanceUpdated += new

DepthDistanceEventHandler(kinectDevice_DepthDistanceUpdated);

contourTracking.ContourDataReady += new

ContourReady(contourTracking_ContourDataReady);

fingerRecognition.FingertipLocationsReady += new

FingertipPoints(fingerRecognition_FingertipLocationsReady);

gestureRecognition.GestureRecognized += new

GestureReady(gestureRecognition_GestureRecognized);

gestureRecognition.GestureRecorded += new

GestureRecorded(gestureRecognition_GestureRecorded);

}

private void kinectDevice_DepthDistanceUpdated(short[]

depthDistanceData , int width , int height)
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{

Width = width;

Height = height;

Pixel[] pixelsInRange =

rangeFinder.PixelsInRange(depthDistanceData ,

DistanceThreshold.MinDistance ,

DistanceThreshold.MaxDistance);

debugInfo.RangeData = pixelsInRange;

contourTracking.StartTracking(pixelsInRange , width , height);

}

private void contourTracking_ContourDataReady(IEnumerable <Vector >

contourPoints , Pixel[] pixels)

{

IEnumerable <CurvePoint > curves =

curveDetection.FindCurves(contourPoints);

IEnumerable <Fingertip > points =

fingerRecognition.FindFingertipLocations(curves , pixels ,

Width , Height);

int fingerCount = ((IList <Fingertip >) points).Count;

if (UpdateDepthDistaceThreshold)

{

AutoscanForDistanceThreshold(fingerCount);

return; // Dont do anything else while scan is in progress.

}

}

private void AutoscanForDistanceThreshold(int fingerCount)

{

DistanceThreshold newDistanceThreshold;

bool scanFinished = distanceScanner.TwoHandScan(fingerCount ,

DistanceThreshold , out newDistanceThreshold);

DistanceThreshold = newDistanceThreshold;

UpdateDepthDistaceThreshold = !scanFinished;

debugInfo.AutoscanInProgress = UpdateDepthDistaceThreshold;

debugInfo.DistanceThreshold = DistanceThreshold;
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}

private void

fingerRecognition_FingertipLocationsReady(IEnumerable <Fingertip >

points)

{

Hand currentHand = new Hand(points);

if (EnableSmoothing)

currentHand = Smoothing.ExponentialSmoothing(currentHand ,

prevHand , SmoothingFactor);

if(PreventHandInconsitencies)

handEnhancements.PreventHandIncosistency(currentHand);

else if (gestureRecognition.Recognizing ||

gestureRecognition.Recording)

gestureRecognition.AnalyzeFrame(currentHand);

debugInfo.FoundHandInconsistencies =

handEnhancements.FixedInconsistencies;

debugInfo.FingertipLocationsReadyCounter ++;

prevHand = currentHand;

}

private void gestureRecognition_GestureRecognized(Gesture

recognizedGesture)

{

debugInfo.GestureRecognized = true;

}

private void gestureRecognition_GestureRecorded(Gesture

recordedGesture)

{

gestureRecognition.StoreGesture(recordedGesture);

}

public double SmoothingFactor { get; set; }

public bool EnableSmoothing { get; set; }

public bool PreventHandInconsitencies { get; set; }

private DistanceThreshold DistanceThreshold { get; set; }
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public bool UpdateDepthDistaceThreshold { get; set; }

private int Height { get; set; }

private int Width { get; set; }

}

Code block B.2: Main class.
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