
Faculty of Science and Technology

MASTER’S THESIS

Study program/Specialization:

Master Degree Program in Computer Science.
Spring semester, 2012

Open / Restricted access

Writer:
Sanjeev Khatiwada …………………………………………

(Writer’s signature)

Faculty supervisor: Professor Chunming Rong, (UiS)

External supervisor(s): Dr. Demissie Bediye Aredo, (Bouvet ASA)

Titel of thesis:

Architectural Issues in Real-time Business Intelligence

Credits (ECTS): 30

Key words:

Business Intelligence (BI), Real-time BI,
Architecture

 Pages: 89

 + enclosure: CD

 Stavanger, 15/06/2012

Frontpage for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Architectural Issues in Real-time Business
Intelligence

Sanjeev Khatiwada
Department of Electrical and Computer Engineering

University of Stavanger
E-mail: s.khatiwada@stud.uis.no

Thesis submitted in partial fulfillment of the
Requirements for MASTER DEGREE

In Computer Science

June 14, 2012

Contents

1 Introduction 1
1.1 Motivation and Problem Description 2
1.2 Background . 4

1.2.1 Components of Business Intelligence 4
1.2.2 Latency problem in BI 5
1.2.3 Data Latency . 8
1.2.4 Analysis latency . 10
1.2.5 RTBI . 11
1.2.6 Thesis Outline . 12

2 Literature Reviews 13
2.1 Data Warehouse . 13

2.1.1 Process of building Data Warehouse 13
2.2 Data Warehouse Architectures 17
2.3 Architecture of BI that supports Real Time 22

2.3.1 Business Performance Management 22
2.3.2 Complex Event Processing 27
2.3.3 NoSQL . 35

3 Analysis, Design and Implementation 44
3.1 Technologies overview . 44
3.2 Architecture Analysis for RTBI 46

3.2.1 Identification of Important Components for RTBI . . . 47
3.3 Architecture Overview . 49

3.3.1 Architecture diagrams and its descriptions 51

i

3.3.2 Layers of MBCFRTR 53
3.3.3 Data Model . 54

3.4 Additional Features . 57
3.5 Algorithms . 58

4 Results and Analysis 63
4.1 Experiment Scenario . 63
4.2 Benchmark Results . 64

4.2.1 Data Insertion . 65
4.2.2 Data Select . 66
4.2.3 Random Select . 67
4.2.4 Join Operation . 67

4.3 Analysis on Results . 68
4.4 Differences between MBCFRTR with the existing solutions. . 69

4.4.1 MBCFRTR Vs Complex Event Processing 69
4.4.2 MBCFRTR Vs Amazons key-value 70
4.4.3 MBCFRTR Vs Cloud Computing 70

5 Conclusion and Future Work 71
5.1 Conclusion . 71
5.2 Future Work . 72
5.3 Limitations . 72

ii

List of Figures

1.1 Components of BI . 1
1.2 Components of BI . 4
1.3 The Value-Time Curve . 6
1.4 Latency Problem in BI . 7
1.5 Data Latency Problem in BI 8
1.6 ETL Processes . 9

2.1 The SALE fact schema . 15
2.2 Star Schema . 16
2.3 Snowflake Schema . 17
2.4 Independent Data Marts . 18
2.5 Data Mart Bus Architecture 19
2.6 Hub and Spoke Architecture 19
2.7 Hub and Spoke architecture with staging area, data warehouse

and data marts . 20
2.8 Federated DW . 21
2.9 Centralized Data Warehouse Architecture 21
2.10 Centralized Architecture with staging area and data warehouse 22
2.11 The closed-loop in the BPM approach 23
2.12 BPM Architecture . 24
2.13 Layers on Business Intelligence 26
2.14 Concept of SQLStream . 28
2.15 Stream Insight . 31
2.16 Oracle Complex Event Processing 32
2.17 Triggers-based CDC . 33

iii

2.18 Streams based CDC . 33
2.19 Golden Gate based CDC . 34
2.20 The ODI Journalizing Framework uses publish-and-subscribe

architecture . 35
2.21 Consistent Hashing With Replication 36
2.22 Row-Oriented Vs Column-Oriented DBMS 37
2.23 Big Table Architecture . 38
2.24 Hbase Architecture . 39
2.25 Cassandra Replication Architecture 40
2.26 DataStax’s Brisk Architecture 41
2.27 RainBird Architecture . 42

3.1 Flow Diagram for Real time BI 50
3.2 Architectural diagram for RTBI 51
3.3 Detail View of Real time BI 52
3.4 Layers on Real time BI . 54
3.5 Data Models used for MBCFRTR 54
3.6 Example table: Product . 55
3.7 Example table : Product in table Form 56
3.8 Product Table in in-memory data model 57
3.9 Insert table data into memory on MBCFRTR 60

4.1 Data insertion in memory on MBCFRTR : for 400 to 4000 keys 65
4.2 Data Insertion in memory on MBCFRTR : for 1000 to 100000

keys . 65
4.3 Select All data from Memory buffer in MBCFRTR - Small

Range . 66
4.4 Select All data from Memory buffer in MBCFRTR - Big Range 66
4.5 Join operation with Sets on MBCFRTR 67
4.6 Conversion time in Microsoft SQL Server Integration Services 69
4.7 Comparison when data flow from existing ETL and fromMBCFRTR 69

iv

List of Tables

3.1 Redis Vs Memcache . 45

4.1 System Configuration for testing the architecture 64
4.2 System Configuration for testing the ETL 64

v

Acronyms

API Application Programming Interface

BI Business Intelligence

BIT Business Intelligence Tools

BPM Business Performance Management

CEP Complex Event Processing

CQL Continuous Query Language

DB Database

DBA Data mart bus architecture

DIM Dimensional modeling

DM Data Mining

DS Data Sources

DSMS Data Stream Management System

DW Data Warehouse

EAI Enterprise Application Integration

EPL Event Processing Language

ETL Extract Transform and Load

FED Federated architecture

GFS Google File System

HAS Hub and Spoke Architecture

HDFS Hadoops Distributed File System

IDM Independent data marts

vi

JKM Journalizing Knowledge Module

KPI Key Performance Indicator

LINQ .Net Language Integrated Query

MBCFRTR Memory Based Component for Real-time Reporting

OCEP Oracle Complex Event Processing

ODI Oracle Data Integrator

ODS Operational Data Store

OLAP OnLine Analytical Processing

OS Operational Sources

POJO Plain Old Java Object

PQL Physical Query Plan

RDBMS Relational Database Management System

Redis Remote Dictionary Server

RTBI Real-time Business Intelligence

RTI Right Time Integrator

RT Real Time

SSDT SQL Server Data Tools

vii

Abstract

Business organizations are always in need of fast and intelligent decision sup-
port system. Today’s Business environment is dynamic so data every minute
are valuable. Real time Business intelligence (RTBI) is intelligence in busi-
ness system which can make decision with minimum data latency from the
time it is created to the time it is presented. The integration layer in Busi-
ness Intelligence(BI) that extracts, transforms and loads(ETL) data in to
data warehouse(DW) is the main component that adds data latency in BI.
A new architecture to support RTBI along with the existing functionality
is suggested in this thesis work. A prototype is made and implemented.
Through the implemented prototype, tests are done to measure the perfor-
mance of the architecture. A memory based processing component which is
implemented in the architecture has better performance on report generation
for critical real time data.

Acknowledgements

I would like to express my sincere gratitude to my supervisors Professor
Chunming Rong and Dr. Demissie Bediye Aredo for their continuous support
and motivation that has encouraged me to propose and complete with this
thesis work. I would also like to thank to Dr. Son Thanh Nguyen and Dr.
Tomasz Wiktor Wlodarczyk for their valuable suggestions and for organizing
regular weekly meetings. I would also like to acknowledge Joar Ulversφy,
who works in Bouvet, for demonstrating how DW and ETL are managed in
the existing architecture that is used in BI projects he is working on.

Finally, I would like to thank all my friends and family for their support
during the thesis work.

Chapter 1

Introduction

Business Intelligence (BI) is the intelligence in business aided by software
programs which help in decision support system. The main purpose of this
added intelligence is for fast analysis and action. "It is a business management
term used to describe applications and technologies which are used to gather,
provide access to and analyze data and information about the organization,
to help in making better business decisions" [1]. BI has mainly components
for gathering data from data source, extracting information from data and
converting them to knowledge as shown in the Fig. 1.1 [2].

Figure 1.1: Components of BI

The first stage would be to prepare information from the raw data and
then through data mining required knowledge is obtained. Raw data are
extracted and transformed to the desired format through ETL functions and

1

Chapter 1. Introduction

stored as information in DW. Knowledge can be in the form of reports, charts
and graphs that help business analysts in making decision.

1.1 Motivation and Problem Description

BI should cope with the need of enterprises to deal with the dynamic and
continuously changing business environments. In the real-world settings,
business conditions and environments are in constant state of flux: sales pat-
terns change from place-to-place and from time-to-time; currency valuations
shift and affect profit margins; suppliers change delivery schedules and their
prices; and customers become more aware about business conditions and
therefore become more demanding. Hence there is a need for a BI system
that is adaptive to accommodate the dynamics of the business environments.

Extracting, transforming and loading information from the ever increas-
ing magnitude of source data also adds to the complexity of BI architecture
and tools. A BI needs to access data from a variety of sources, transforms
data into information and knowledge using sophisticated analytical and sta-
tistical tools, and provide a graphical interface to present the results in a
user friendly way. A complete BI system integrates the following categories
of technology: data warehousing to archive historical data; analytical/data
mining tools; and tools for generating reports and dashboards. A next gener-
ation BI should enable users, for instance, to decide dynamically the source
of data from which information is extracted based on their needs and other
factors such as spatial and temporal parameters. Traditional BIs are built
for archiving and retrieving static historical data and are not adequate to
handle the dynamics of contemporary enterprises. There are many business
sectors that require business analysis reports in real-time, possibly, with near
zero latency.

Advances in the information technologies make real-time BI seemingly
achievable: Internet has revolutionized information sharing; large quantity of
data is available; almost any company’s data sources can be made accessible
over an intranet; capturing all sorts of data and storing them is effective and
cheap; and a process can provide information whenever it is required by the

2

Chapter 1. Introduction

management; RTBIs have the ability to derive key performance measures
that relate to the situation at the current point in time and not just some
historic situation. The future of BI lies in the development of systems that
can autonomously and continuously improve decision-making process within
the changing business environment in real time.

The thesis work is done in association with Bouvet ASA. Bouvet is a
leading Norwegian provider of consultancy and system development services
within information technology sector. Business analysis is one of the major
areas of its focus in overall market strategic plan. In order to provide these
consultancy services in business analysis It is working towards improvement
of the business intelligence technology and supporting tools. Bouvet provide
BI solutions in three platforms: Oracle, Microsoft and SAP and focuses on
this research that will contribute to the improvement of the BI approaches
and come up with suitable architecture which they can implement for its
ongoing BI systems to support RTBI. The work done in this thesis project
will have a significant contribution to the improvement of the services in BI
and the area of business analysis.

The following were major results that are expected from this thesis work:

1. To propose a BI architecture that addresses the limitations of contem-
porary real-time BI systems, and performance issues posed by accessing
to real-time enterprise data.

2. To develop a prototype of the proposed architecture in order to evaluate
its performance.

3. When information is extracted from several distributed and heteroge-
neous data sources, some kind of data integration is necessary. Proposal
of how such an integration should be performed, and discussion of the
impact of data pre-processing on the performance of the proposed ar-
chitecture.

3

Chapter 1. Introduction

1.2 Background

1.2.1 Components of Business Intelligence

The main components of BI are shown in Fig. 1.2 [3] and described below:

Figure 1.2: Components of BI

• Data Sources (DS) are systems that provide data. Generally, the DS
are operational data stores, which can Relational databases, spread-
sheets and query tools. The operational DS are kept on DW in regular
intervals: monthly, daily, hourly, etc.

• ETL refers to three separate functions. The Extract function extracts
desired subset of data from DS. The Transform function is used to
transform acquired data into a desired state, using rules or lookup ta-
bles, or creating combinations with other data. Finally, the Load func-
tion is used to write the resulting data to a target database. The most
time consuming of the ETL process is the transform function, especially
when the source databases are heterogeneous and distributed/decentralized.
Inconsistent codes, handling of incomplete data and changing codes to
meaningful terms are all part of the transform process[4]. Popular so-
lutions for ETL include: Informatica Power Center, IBM websphere

4

Chapter 1. Introduction

Data Stage, Oracle Data Integrator, Ab Initio and Microsoft Integra-
tion Services (a component of SQL server)[4].

• Data Warehouse (DW) are extracted from various sources and trans-
formed into a single consistent type and loaded for analysis.

• Data Mining (DM) is the analysis step of knowledge discovery by dis-
covering new patterns from large data sets and involves statistical and
artificial intelligence methods.

• Business Intelligence Tools (BIT) are software for presenting the busi-
ness intelligence as reports from data warehouses.

1.2.2 Latency problem in BI

Latency is the time taken from the event that is executed to the action taken
in response to that event. It is the major issue in BI architecture’s today.
Let me explain about latency and its types in the following section.

BI is basically used to analyse the performance of business. At times,
information is so critical that there is often frustrations in business users
stating ’information arrives just too late to be really useful’. In many cases
real insight is more important than large reports. Too much information can
lack real insight and there can be dificiency of time to make sense of it at all.

Let us consider the scenario in value-time curve to illustrate the relation-
ship between time and business value through Fig. 1.3[5] and Fig. 1.4 [6]
[7]

5

Chapter 1. Introduction

Figure 1.3: The Value-Time Curve

When any business event occurs, action is taken to respond to that event.
For instance, when a customer asks for an information on a specific product,
company provides information in response to his query within certain interval
of time. The assumptions on this decay curve Fig 1.4 is that the longer the
delay or latency to provide information, the less value accrues to the company.

In this example,

• Event is customers query for an information.

• Action is company provides information.

• Action time is the duration between the event and the action. In this
case the duration between customer’s query and company’s response.

• And the net value is the business value lost or gained over this duration.

In the context of DW, there are three latencies associated with this action
time as shown in Fig. 1.4 [6].

1. Data latency: It is the time required to capture data from the time it
is created to the time it reached to DW for analysis.

6

Chapter 1. Introduction

2. Analysis latency: It is the time required to analyze and disseminate
the results to the appropriate persons.

3. Decision latency: It is the time required for a person to understand the
situation and take decision based on the analysis.

Figure 1.4: Latency Problem in BI

If we closely analyze the graph, the vertical portion that takes much of
the value is data latency so the most critical part in BI is data latency. So,
architecture of real time reporting should address minimization of the data
latency.

7

Chapter 1. Introduction

1.2.3 Data Latency

Figure 1.5: Data Latency Problem in BI

The latency in the report generated from DWs are caused due to the latency
time that has incurred when transforming data from OS to DW. As shown in
the Fig. 1.5, there are different processes in ETL block which adds latencies
when data reach the DW.

If we express this mathematically, dE as the latency caused by extraction
function, dT as the latency caused by transformation function and dL as the
latency caused by loading function than the total latency caused through
ETL process is dE+dT+dL.

Now there can be question that if there is so much latency caused by
ETL, why we need the ETL and why is it so important in BI. Can’t there
be some sort of integration system and remove this layer.

Why we need ETL if it is causing latency?

The "main functionalities of ETL layers" can be summarized in the following
prominent tasks [8]:

1. Identification of relevant information at the source side.

2. Extraction of the information.

8

Chapter 1. Introduction

3. Customization and integration of the information into a common for-
mats.

4. Cleaning of the resulting data sets based on database and business rules.

5. Propagation of data into data marts and/or data warehouse.

Generally data is scattered in different sources like Relational database
management system (RDBMS), Flat files, mainframes, CSV and different
heterogeneous sources. Before they are loaded to DW for reporting, they
need to be cleansed and made available in common formats as well as to
make it efficient for report generation through DM. To facilitate this, we
need ETL. ETL flow is described in Fig. 1.6 from [9]

Figure 1.6: ETL Processes

Why we need OS and DW

Those who are new to BI may want to skip DW and deploy BI tools directly
against the operational system, which seems to be faster approach. But,
the need for DW is felt because of its functionalities that are important and
different from the functionalities of OS [4].

1. OS and DW have their own purposes where OS are used for process-
ing the transactions in real time and DW are used just for reporting
historical data. Hence the level of details that they contain also vary.

9

Chapter 1. Introduction

2. OS has real time data but DW has information extracted in periodic
intervals and has only read operation for analysis of data, whereas OS
can process the Read, Write, Delete and Update operations depending
on the requirements.

3. Since the table structure of OS and DW are different, their response
times also differ. For the inputs, OS is faster whereas queries are faster
in DW since it is tuned for fast queries. OS are generally in normal
form, whereas only parts of DW can be in normal form. But busi-
ness users’ queries are normally de-normalized and stored in snowflake
schema and contain less tables than OS.

1.2.4 Analysis latency

Even though Analysis latency is less critical as shown in Fig 1.4 [6], it is
equally important in some cases in connection with real time reporting.
When data is huge, it lacks real insights and at this time we need analy-
sis. Analysis of data in BI is the process of determining how comfortably
and efficiently data can be mined from the data storage. Analysis latency
becomes more important when the business problems are complex and there
is a need for analysis of the right action on it.

Complex business problems and need for analysis

There is always a large contrast between having the right knowledge and
making the right decision. Knowledge doesn’t guarantee the right decision.
Modern business firms are always in need of decision support systems for dy-
namic and ever-changing environments to make far-reaching decisions. Man-
agers always need to deal with predicting what is going to happen in the
future and what can be the best decision right now based on past knowledge.
On the other hand, business sectors like stock exchange require immediate
response on the changes that occurred in real data. Only up-to-a-minute
data can be of great importance in this case [2].

10

Chapter 1. Introduction

1.2.5 RTBI

BIT always analyze information from DW, where information is kept and
updated in regular intervals. Now there comes a question: What if we need
data in real time? Real time data means ongoing data. Ongoing data are
obtained from operational data sources, whereas DW is a collection of data
extracted from different operational systems and transformed and optimized
for data consistency and analysis.

RTBI is an approach in which up-to-a-minute data is analyzed, either
directly from OS or feeding business transactions into a real time DW and
BI system. RTBI analyzes real time data. As defined in [10], "Real time"
mean:

1. The requirement that a process to obtain near to zero latency.

2. The requirement that a process to have access to information whenever
it is required.

3. The requirement that a process provides information whenever it is
required by management.

4. The ability to derive key performance measures that relate to the sit-
uation at the current point in time and not just to some historical
situation.

In modern competitive businesses, up-to-a-minute analysis of data is the
price paid to realize the opportunities before the competitors do that, which
on the long run generate more business with higher sales and profit. The
importance of up-to-a-minute data analysis can be viewed on fraud detection
in credit card usage, stock exchange market, call center to provide best offer
or action as per sales and stock, analyze web page usage as per click, page
views, link views etc. And there is always a need for analysis based on this
real time data.

For RTBI, the most important component is DW, ETL layer and some in
the analysis phase through mining algorithm. In the literature review, I will
discuss different existing architectures of DW, existing solutions to address

11

Chapter 1. Introduction

ETL layers and reduce the time frame, some existing solutions to address
RTBI and some work on the analysis reviews.

1.2.6 Thesis Outline

The following chapter constitute the thesis:

• Chapter1: introduces RTBI and the cause of data latency. The scope
and motivation of the thesis is summarized.

• Chapter2: gives the background knowledge on DW, study of related
work on RTBI and study of components of BI in connection to RTBI.

• Chapter3: describes the technologies used in implementing suggested
architecture for RTBI, analyses the important components from the
solutions available for RTBI, describes the suggested architecture, its
flow, data model, algorithms, and implementation.

• Chapter4: gives result and analysis on the performance of the sug-
gested architecture and comparison with the existing BI.

• Chapter5: summarizes the major contributions and conclusions of this
work, and suggests the problems for further research.

12

Chapter 2

Literature Reviews

The preliminary literature review of the thesis was done on "Computer Sci-
ence Project" in autumn semester and some of the content are taken from
that report.

To address the problem of RTBI, since all reports are based on DWs,
study of the process of building DW and different architectures of DW are
done to find out the architectural issues of DW. For this, few prominent DW
and the architecture of the popular industrial BI system were also studied.
Furthermore, NoSQL databases that supports RTBI are studied.

2.1 Data Warehouse

Over periods, many companies consider DW as a basic foundation of De-
cision Support System (DSS) and are critical enablers for BI. Despite the
recognition of DW importance, relatively few studies have been conducted
to assess data warehousing practices in general and critical success factors in
particular [11].

2.1.1 Process of building Data Warehouse

There are many considerations in DW design that is different from OS
database design as the purpose of DW is different from OS database. Data
must be organized in DW as it is used for rapid access to information for

13

Chapter 2. Literature Reviews

analysis and reporting. The correctness of data from DS are very important
before it goes to DW since DW are used for decision making and incorrect
data can lead to wrong conclusions. For example, duplicate or missing infor-
mation will produce incorrect or misleading statistics. So, the most impor-
tant process during conversion of data from DS to DW is data cleaning. Data
are cleaned, consolidated, aggregated and accumulated in multidimensional
data structures to support direct querying and multidimensional analysis [4].

There is no defined methods of building complete and consistent DW
and it depends on institution to institution which approach they wants to
take [12]. Dimensional modeling(DIM) is the most common approach used
in the design of DW database to organize the data for efficiency of queries
that are intended to analyze and summarize large volumes of data. This
data warehouse making process causes data latency. Based on the work in
[13][14][12][15] [16], the following is the illustration of DIM fact schema.

DIM uses star or snowflake design, which would be easy to understand,
supports simplified business queries and provides superior query performance
by minimizing table join [16]. The principal characteristic of DIM is a set
of detailed business facts, surrounded by multiple dimensions that describe
those facts. These are described in DIM Fact Schema. A "fact schema" is
defined in [12] as,

Definition: A fact scheme is a six-tuple

f = (M,A,N,R,O, S)

where:

1. M is a set of measures; each measure miεM is defined by a numerical or
Boolean expression which involves values acquired from the operational
information system.

2. A is a set of dimension attributes. Each dimension attribute aiεA is
characterized by a discrete domain of values, Dom(ai).

3. N is a set of non-dimension attributes.

14

Chapter 2. Literature Reviews

4. R is a set of ordered couples, each having the form (ai,aj) where aiεA ∪ a0
and ajεA ∪N(ai 6= aj), such that the graph qt(f) = (AUN ∪ {a0}, R)
is a quasi-tree with root a0. a0 is a dummy attribute playing the role
of the fact on which the scheme is centred. The couple (ai,aj) models
a-to-one relationship between attributes ai and aj. We call dimension
pattern the set Dim(f) = {aiεA|∃(a0, ai)εR}; each element in Dim(f)
is called a dimension. When we need to emphasize that a dimension
attribute ai is a dimension, we will denote it as di. We call hierarchy
on dimension diεDim(f) the quasi-tree sub (di).

5. O ⊂ R is a set of optional relationships.

6. S is a set of aggregation statements, each consisting of a triple (mj, di,
W) where mjεM, diεDim(f) and Wis an aggregation operator. State-
ment (mj, di, W)εS declares that measure mj can be aggregated along
dimension di by means of W. If no aggregation statement exists for a
given pair (mj, di), then mj cannot be aggregated at all along di.

Graphically, Fact Schema with dimensions and measures can be repre-
sented as in Fig. 2.1 from [12]

Figure 2.1: The SALE fact schema

15

Chapter 2. Literature Reviews

As shown in example in Fig 2.1, Sale is the fact which is represented
by a box with one or more numeric or continuous valued measures (quan-
tity sold, revenue and no of customer in this case). Dimension attributes
are represented by circles and each connected directly with fact are called
dimensions. Dimension pattern of the sale schema is {date,product,store}.
Hierarchy are the sub-trees rooted in dimensions as shown in the Fig. 2.1.
There is a -to-one relationships between the arc connecting two attributes
(for example, there is many-to-one relationship between city and country).
Non-dimensional attributes are represented by lines instead of circles (for
instance, address in Fig. 2.1), which contains additional information about
an attribute of the hierarchy. The arc marked by a dash express optional
relationships between pairs of attributes (for instance, attribute diet takes a
value only for the food products).

If dimension tables can be joined directly to the fact table, this type of
schema is called Star Schema. Whereas, if one or more dimension tables do
not join directly to the fact table but join through other dimensions than
this type of schema is called snowflake schema. Fig. 2.2 and Fig. 2.3 from
[16] illustrates these two schema:

Figure 2.2: Star Schema

16

Chapter 2. Literature Reviews

Figure 2.3: Snowflake Schema

2.2 Data Warehouse Architectures

There is still a considerable discussion and disagreement over which archi-
tecture of DW to use. The most common are Hub and spoke architecture
(i.e. Centralized data warehouses with dependent marts), advocated by Bill
Inmon, commonly referred to as the father of data warehousing and Data
Marts Bus Architecture with linked dimensional data marts (i.e. bus archi-
tecture), advocated by Ralmp Kimball. In [17], Watson and Ariyachandra
refer to four different data warehouse reference architectures which identify
alternative ways in which data can be extracted, transformed, loaded, and
stored in a data warehouse. They also studied some factors that affect selec-
tion of data warehouses and used metrics to compare and determine success
of various architectures.

A multi-phased research done on various DW architecture in [17], which
was the best for me to understand the different DW architecture present
and also the factors that effect the architecture gave me the idea on what
effects the architecture of DW and what is best for which scenario. The four
architectures that were identified in [17] are:

1. Independent data marts (IDM) are independent of other data stores
and are good for their own units. It doesn’t give "a single version of

17

Chapter 2. Literature Reviews

truth" since they are not integrated with other data marts and may have
inconsistent data definitions. Independent data marts are described in
Fig. 2.4 from [17]. Problems of Independent data marts:

Figure 2.4: Independent Data Marts

• Since each data marts are independent, there are lots of redundant
data.

• Since data marts are built independently by separate teams, there
is a great deal of rework and analysis required.

• Independent data marts directly read operational system files and/or
tables which limits decision support systems ability to scale.

• High level authorities and managers always want a combined re-
port from all department irrespective of individual department.
Since IDM is not integrated it cannot provide this function.

2. Data mart bus architecture with linked dimensional data marts (DBA):
In this architecture, one mart is linked with another where the first
contains common elements used by data marts such as conformed di-
mensions and measures that will be used with other marts. A logical
integration of other marts is done to the first as they are developed
based on the conformed dimensions of first mart. The demerits of this
architecture is that it requires conformed dimensions across the sys-
tem, in scalability and doesn’t support RTBI. It is organized in a star
schema to provide dimensional view of data, atomic and summarized
data’s are maintained. DBA is described in Fig. 2.5 [17].

18

Chapter 2. Literature Reviews

Figure 2.5: Data Mart Bus Architecture

3. Hub and Spoke Architecture (HAS) : In this Architecture, atomic level
data is maintained in data warehouse in third normal form. Dependent
data marts, whose source is data warehouse itself are developed for the
departmental functional area or for special purposes like data mining
as per the requirement. These data marts may be normalized, de-
normalized or summarized/atomic. HAS is described on Fig. 2.6 from
[17] and Fig. 2.7 from [18].

Figure 2.6: Hub and Spoke Architecture

19

Chapter 2. Literature Reviews

Figure 2.7: Hub and Spoke architecture with staging area, data warehouse
and data marts

4. Federated architecture (FED): In this type of architecture all exist-
ing decision support structures(like operational systems, data marts
and data warehouses) are in place and no modifications are done on
preexisting environment. Data are accessed through these sources as
per the requirement and are integrated either logically or physically
using shared keys, global meta data, distributed queries or other meth-
ods. This architecture is also used in Oracle BI EE, SAP/BW. It
requires conformed dimensions across systems, updates must be coor-
dinated(between OLTP, DW, caches etc.), has sophisticated SQL gen-
eration and execution engine and requires high availability and problem
diagnosis are hampered by multiple systems [19]. FED is described in
Fig. 2.8 from [17].

20

Chapter 2. Literature Reviews

Figure 2.8: Federated DW

There is also one more architecture, which Watson discussed in [20]:

5. Centralized Architecture: It has no dependent data marts like hub and
spoke architecture. It contains only one centralized data warehouse
which contains summarized/atomic data and logical dimensional views.
Here since DW is centralized, department may lose control of their
data and difficult to support high volume, low latency ETL along with
complex ad-hoc decision support [19]. In some cases this is also defined
as Enterprise data marts. Centralized Architecture is described in Fig.
2.9 and Fig. 2.10 from [17] [18].

Figure 2.9: Centralized Data Warehouse Architecture

21

Chapter 2. Literature Reviews

Figure 2.10: Centralized Architecture with staging area and data warehouse

With the advancement of the technology and the need for the business
firms to have more robust DW architecture to support RTBI, different archi-
tectures come in light. Based on the five architecture we discussed, different
alternative approaches to build the architecture were done.

2.3 Architecture of BI that supports Real Time

There are different architectures that are built to address RTBI. I categorized
these solutions into following groups. Study of these work is done to find out
the important components required for RTBI architectures.

2.3.1 Business Performance Management

The work in [21] presents a different approach to BI, called Business Per-
formance Management(BPM). It includes DW but also requires a reactive

22

Chapter 2. Literature Reviews

component capable of monitoring the time-critical operational processes to
allow tactical and operational decision-makers to tune their actions accord-
ing to the company strategy. Business scenarios are always changing and the
new requirement of the managers is to ensure that all processes are effective
by continuously measuring their performance through Key Performance In-
dicators (KPI) and score cards. The paper describes the approach for metric
driven management as shown in Fig. 2.11 below from [21].

Figure 2.11: The closed-loop in the BPM approach

The organization structure with Operational level at the bottom, Tac-
tical level in the middle and Strategic level on the top. All core activities
are carried out on operational level and their decision power is limited in
accordance with the main strategy. For example, optimizing specific produc-
tion activities. Tactical level can have multiple divisions and they control
the operational level, they controls set of functions and decision are taken
in accordance with these functions. And the strategic level has the respon-
sibility of making global strategy of the enterprise. BPM system supports
decision making in right time but not in real time and is targeted not only
to strategic but also to tactical and operational level users. If some piece
of information is cannot be delivered on right time, then it is useless in the
BPM context. The delivery time is faster in BPM since the operational level

23

Chapter 2. Literature Reviews

always need fast decision supports. The technology implementing BPM is
called Business Activity Monitoring (BAM). BPM has BAM along with DW,
which is illustrated as in the Figure 2.12 from [21].

Figure 2.12: BPM Architecture

The "main components" introduced by BPM are [21]:

1. A Right time integrator (RTI) integrates data from operational databases,
the DW, Enterprise Application Integration (EAI) systems and from
real-time data streams at right-time.

2. A KPI manager computes all the indicators necessary at different levels
to feed dashboards and reports.

3. A set of mining tools capable of extracting relevant patterns out of the
data streams.

24

Chapter 2. Literature Reviews

4. A rule engine continuously monitors the events filtered by the RTI or
detected by the mining tools to deliver timely alerts to the users.

The strategic management analyzes medium and long term trends through
OLAP tools and checks the effectiveness of strategy pursued in the short pe-
riod through KPIs and dashboards whereas tactical and operational decision
makers use other KPIs and dashboards to tune their actions to the company
strategy. BAM emphasize in reducing the data latency by providing the tool
capable of right-time filtering/cleaning/transforming/integrating the relevant
data coming from OLTP/OLAP databases as well as from data streams [21].
This demand of right time data analysis made classical ETL and Operational
Data Store (ODS) approaches unfeasible, as it raises problems in terms of
data quality and integration, so we are in need of on the fly techniques. This
on the fly integration has been investigated in some research prototypes [21],
but still there are challenges:

• Most of the cleaning techniques used so far are in the presence of ma-
terialized integration level (purge/merge problem and duplicate dele-
tion). Now, the expectation is to modify some of these techniques and
re-implemented on proper data structures in main memory, in absence
of this integration level.

• There are still many challenges on manipulating data streams and so
complex queries are restricted to the offline and real queries are used
only in simple filters.

The paper Real Time Business Intelligence for the Adaptive Enterprise
describes business intelligence in three layers and the requirement for these
layers to support RTBI. These layers are illustrated in Figure 2.13 from [10]

25

Chapter 2. Literature Reviews

Figure 2.13: Layers on Business Intelligence

1. Analytic layer: BI requires expert analysts in between BI software that
operates on the data and information used by the management, which
prevents RTBI as it represents a time lag that can’t be overcome. RTBI
will require a high degree of automation. It must be able to select
appropriate analysis methods and apply them automatically.

2. Data Integration layer: Traditional BI system has this layer for inte-
grating different operational DS which causes data latency. However,
for the RTBI to succeed, there should either be continuous real time
data feed from operational DS to the data warehouses or has access to
OS through some integration layer. There are many technology chal-
lenges such as platform, syntax, semantics and data quality metrics
as well as many products and initiatives [10]. XML seems to have de
facto syntax standard, J2EE and .NET as main platforms and the W3C
Semantic Web initiative proposes to use ontology to address the data
semantic problem.

3. Operational Layer: These layer must provide two functions for a com-

26

Chapter 2. Literature Reviews

plete RTBI approach: BAM and real-time process tuning and change.
The challenge for RTBI is to facilitate automated mapping of exist-
ing business processes within an organization and re-engineering, and
monitor people and system for process conformance [10].

2.3.2 Complex Event Processing

Event processing is a form of computing that performs operations on events.
Complex event processing(CEP) is the technology that deals with pro-

cessing of continuous arriving events with the goal of identifying meaningful
patterns of the complex events [22]. It supports on the fly, real time pro-
cessing of huge event streams. If we get an event, we do not immediately
want to dispatch that to receiver but possibly want to filter these events,
enrich them, combine them and run certain processing so that the receiver
gets some useful output out of the system. So we have sender of events,
receiver of events and in the middle event processing to do something useful
to that data. CEP supports SQL language and pattern detection is one of
the notable function of the event processing [22].

Following are the solutions based on complex event processing:

Concepts of Streaming SQL

Traditional Integration and business intelligence solutions can not address
real time business models as queries are done on historical data, whereas in
Streaming SQL queries and transforms data on the wire without any prior
staging in a database. It is similar to database queries on how it analyze
the data but differ by operating continuously on data as they arrive and by
updating results in real time. It performs the same function as the ETL tool
but differ as ETL process is a sequence of steps involved as a batch job. SQL
Stream described in [23] is shown in Fig. 2.14.

27

Chapter 2. Literature Reviews

Figure 2.14: Concept of SQLStream

The diagram shows the architecture of a real-time business intelligence
system. In addition to performing continuous ETL, the streaming query
system populates a dashboard of business metrics, generates alerts if metrics
fall outside acceptable bounds, and pro-actively maintains the cache of an
OLAP server that is based upon the data warehouse [23]. Here are the
"simple example", involving in which the SQL query delivers all orders from
New York that are shipped within the time window of their service-level
agreement (in this case, one hour) taken from [23].

SELECT STREAM *
FROM orders OVER sla
JOIN shipments OVER sla
ON orders.id = shipments.orderid
WHERE city = ’New York’
WINDOW sla AS

(RANGE INTERVAL ’1’ HOUR PRECEDING)

Several research works have been done on SQL Streaming. Microsoft

28

Chapter 2. Literature Reviews

and Oracle build a module before ETL layer and it works based on SQL
Streaming. The work in [24] build a general purpose prototype for data
stream management system (DSMS), also called STREAM. While building
a general purpose, DSMS poses many interesting challenges [24]:

1. Standard relation semantics cannot be applied to complex continuous
stream of queries over data so they developed their own semantics and
language for continuous queries over streams and relations called Con-
tinuous Query Language (CQL).

2. A physical query plan (PQL) composed of operators, queues and syn-
opses are made from declarative queries, PQL are flexible enough to
support optimizations and fine-grained scheduling decisions.

3. For high performance in DSMS, there should be possibilities of sharing
state and computation within and across query plans. Furthermore,
constrains in stream of data can be inferred and may reduce resource
usage. Some of the techniques used to improve performance are by
eliminating data redundancy, selectively discarding data that will not
be used, and scheduling operators to most efficiently reduce intermedi-
ate state [24].

4. There can be change in data, system characteristics and query load may
fluctuate over lifetime of a single continuous query so an adaptive ap-
proach where continuous monitoring and re optimization of subsystem
is developed.

5. There can be more load incoming than the system‘s capacity which
hinders exact result of the active queries. This problem is addressed
through load-shedding by introducing approximations with some com-
promise in accuracy.

6. A graphical interface was developed to monitor and manipulate query
plans as they run.

29

Chapter 2. Literature Reviews

Real Time Business Intelligence Support by Commercial BI

Microsoft’s and Oracle’s solutions for real time BI are based on complex
Event processing where Microsoft introduced a technology called StreamIn-
sight and oracle introduced a technology called CDC.

Microsoft support for Real-Time BI[25]: Real time BI are event based
irrespective of traditional BI which are batched processing. Event processing
was missing things before SQL Server 2008 R2. Now, SQL Server 2008 R2 in-
cludes several technologies such as PowerPivot and StreamInsight that facil-
itate the implementation of real-time BI solutions. In the presentation paper
published by Microsoft for sql server R2, Microsoft StreamInsight is defined
as a platform that we use to develop and deploy complex event processing
(CEP) applications. Its high-throughput stream processing architecture and
the Microsoft .NET Framework-based development platform enable you to
quickly implement robust and highly efficient event processing applications
[25]. In a presentation session provided by Microsoft, Real-time Business In-
telligence with Microsoft SQL Server 2008 R2, illustrates a series of real-time
BI scenarios powered by the use of Microsoft StreamInsight, Powerpivot and
Microsoft Sharepoint Server 2010. Queries in StreamInsight are written in
.NET Language-Integrated Query (LINQ) and we use windows concept if we
need to know what is happening over a period of time.

30

Chapter 2. Literature Reviews

Figure 2.15: Stream Insight

Oracle’s solution to Real-Time BI through Oracle Complex Event Process-
ing (OCEP) OCEP [7] is Java based light weight application server specially
designed to support event-driven application. As described in Fig. 2.3.2 from
[7], the incoming data goes to the adapter module and is converted into an
internal event representation. This event representation can be app defined
java object or java-map. These event object created by the adapter goes to
Stream Components, which are registered to "listen" to the adapter. The next
component in the dataflow is an instance of CEP engine called a processor
which hosts a set of queries written in EPL(Event processing language). The
output of these configured EPL queries is send to POJO, which can perform
additional processing and triggers action or send the output data to external
system.

31

Chapter 2. Literature Reviews

Figure 2.16: Oracle Complex Event Processing

Oracle’s Solutions for Real-Time BI Reporting [26]: Oracle provides ODI
to integrate data from various heterogeneous DS and perform integration in
real time. Real time integration is possible through ODI’s Changed data
capture (CDC) feature. CDC as a concept is abstracted into a journalizing
framework with Journalizing Knowledge Module (JKM) and Journalizing
infrastructure at its core. Different methods for tracking changes using CDC
are:

1. Database Triggers: When there is some table change, defined proce-
dures are executed inside the source database. Procedures are defined
by JKMs based on database triggers. Disadvantages of this method are
limited scalability and performance of triggers produced. It is described
in Fig. 2.17 from [26]:

32

Chapter 2. Literature Reviews

Figure 2.17: Triggers-based CDC

2. Database log-facilities: Log entries are processed and stored in separate
table through Stream interface. These log-based JKMs have better
scalability than trigger based. Some databases also provide API to
process table change programmatically. It is described in Fig. 2.18
from [26]:

Figure 2.18: Streams based CDC

3. Non-invasive CDC through oracle GoldenGate: This architecture en-
ables real time reporting in staging area and also loads and transforms
data into analytical data warehouse. CDC mechanism provided by or-
acle goldengate can process changes in source by processing log files.
It then stores captured changes in trial files independent of database

33

Chapter 2. Literature Reviews

which are later transformed to staging area. JKM uses meta data man-
aged by ODI to generate configuration file and process detected changes
in staging area. These changes are then loaded to target data ware-
house using ODI’s declarative transformation mapping. It is described
in Fig. 2.19 [26]:

Figure 2.19: Golden Gate based CDC

The ODI Journalizing framework uses the publish-and-subscribe model.
The framework has the following three step that are described in [26]:

• An identified subscriber, subscribes to changes that might occur in a
data store. There can be multiple subscribers to these changes.

• Changes in the data stores are captured by the CDC framework and
publish them for the subscriber.

• The tracked changes can be processed by the subscriber’s at any time.
The events are then consumed and no longer available for this sub-
scriber.

Data Changes can be processed by ODI in two different ways. Pull mode,
processes regularly in batch and Push mode, which processes in real time as
the change occurs. The ODI journalizing framework using a publish-and-
subscribe architecture is shown in Figure 2.20 from [26]:

34

Chapter 2. Literature Reviews

Figure 2.20: The ODI Journalizing Framework uses publish-and-subscribe
architecture

2.3.3 NoSQL

NoSQL also called not only SQL is non-relational, semi structured data
models where the query languages are MapReduce [27] unlike SQL in tra-
ditional SQL and can be used in Social data, data processing(Hadoop),
search(lucene), caching, data warehousing and logging. NoSQL is defined
in [28] as Next Generation Databases mostly addressing some of the points:
being non-relational, distributed, open-source, horizontally scalable, schema-
free, easy replication support, simple API, eventually consistent/BASE (not
ACID), a huge data amount, and more.

Amazon Dynamo DB Amazon Dynamo is basically a simple key-value
storage. Key-value stores have a simple data model in common, it is a
map/dictionary allowing clients to put and request values per key. Dynamo
provides only two operations to client applications: -get(key), returning a
list of objects and a context. -put (key,context,object), with no return value.

Incremental hashing is maintained through consistent hashing which dy-
namically partition data across the storage hosts present in the system at
given time. Dynamo also uses the concept of virtual hosts to overcome the
problem of unbalanced distribution of data and load. Since, component fail-
ure is the standard mode of operation in dynamo, availability and durability
is maintained through replication of data among nodes. Each data item is
replicated N-times (where N can be configured per-instance of Dynamo). The
storage mode which is in charge of storing a tuple with key k2, is also respon-

35

Chapter 2. Literature Reviews

sible for replicating updated version of tuple with key k to its N-1 successors
[29] [30] [31]. The replication mechanism is illustrated in Fig. 2.21 from [29]
[31]

Figure 2.21: Consistent Hashing With Replication

The need of low latency big data infrastructure were addressed by Google
with BigTable [32] and at Amazon with Dynamo [31]. Hbase [33] is known
as the open source solution of BigTable. At its core, HBase/BigTable is a
map like associative array in PHP or dictionary in Python. Map is a type of
datatype with collection of keys and a collection of values where each key is
associated with one value.

for example:

Key=>value
{’1’=>"apple",
’2’=>’orange" }

36

Chapter 2. Literature Reviews

Hbase and BigTable are built upon distributed file system so that the
underlying file storage can be spread out among an array of independent
machines. Hbase sits atop either Hadoop’s Distributed File System (HDFS)
or Amazon’s simple storage service (S3), while BigTable makes use of the
Google File System (GFS).

BigTable and Hbase both were meant to address big data solutions So,
they are fundamentally distributed. Data are stored in large number of
commodity hardware by partitioning and replications. Partitioning means
each data is partitioned by its keys in different servers and replication means
the same data element is replicated multiple times at different servers [34].
They are columnar database which means that each column is stored in disk
unlike RDBMS where each row is stored continuously in disk. Fig 2.22 from
[35] illustrates the difference between row based and column based:

Figure 2.22: Row-Oriented Vs Column-Oriented DBMS

37

Chapter 2. Literature Reviews

Figure 2.23: Big Table Architecture

As shown in the Fig 2.23 from [36] , write operation is sequential in
BigTable. Whenever write operation is done, it first append transaction
entry to the log file, followed by writing the data in an in-memory memtable.
All the latest entry will be stored in memtable until it is full. When memtable
reach to threshold, then data will be copied to disk as an SSTable (stored by
the string key).Over the period, there will be multiple SSTable which could
be inefficient for the read operation, so the system periodically merge two
SSTable.

In case of machine crash and all in-memory state is lost, recovery is done
by replaying the updates in the log file to memtable. For read operation,
the system will fist look at memtable by its rowkey to see if it contains
the data. If not, it will check the SSTable in disk. SSTable has a companion
called Bloom filter such that is can rapidly detect the absence of the row-key,
which speed up the detection in SSTable [36].

38

Chapter 2. Literature Reviews

Figure 2.24: Hbase Architecture

As data storage engine is maintained in HDFS, data replication, data
consistency and resiliency are all handled by HDFS. This is an advantage
for Hbase but in the other hand it also has to rely on constrained of HDFS
like it is not optimized for random read access and there is always an extra
network latency between the DB server to the file server(which is the data
node of hadoop).

39

Chapter 2. Literature Reviews

Figure 2.25: Cassandra Replication Architecture

Cassandra [37]: BigTable and Amazon Dynamo successfully meet the
goal of scalability and reliability but they were not released publicly. Face-
book on the other hand set out to build a technology that provide best of
both: the powerful data model of BigTable with simplicity and peer-based
replication and fault-tolerance of Dyanamo. This technology was made open-
source by Facebook in 2008 and named Cassandra [38]. It is in use at Digg,
Facebook, Twitter, Reddit, Rackspace, CloudKich, Cisco and more compa-
nies.

1. DataStax’s Brisk [39]: The work in [39] describes it as enhanced open-
source Hadoop and Hive distribution which provides integrated Hadoop
MapReduce, Hive and job tracking and task tracker functionalities,
while providing an HDFS (Hadoop File System)-compatible storage
layer powered by Casandra (i.e CassandraFS). The result is a simple
stack that eliminates the complexity of single-point-of-failure of the
HDFS layer where Cassandra provides the single layer in which every
node is pair of the other and automatically knows the position of the
cluster. On startup, all Brisk nodes automatically start a Hadoop task
tracker and one node is elected as the job tracker, if this node fails the
job tracker is automatically restarted on different node. Traditionally,
users were forced to move data in systems through complex ETL layer

40

Chapter 2. Literature Reviews

which adds data latency but with brisk, both take place in distributed
system but users have flexibility to assign resources so the analytical
work is not slowed down and add data latency. They simply define
one or more groups, and configure the role of each group one or more
of Cassandra, Hadoop or HDFS (i.e HDFS without job/task tracker).
DataStax’s Brisk Architecture is discussed in [39] and shown Fig. 2.26.

Figure 2.26: DataStax’s Brisk Architecture

2. Rainbird [40]: is a layer top of the distributed counters patch, Cassandra-
1072 to address low latency data requirement in twitter. It relies on
zookeeper, Cassandra, scribe, thrift and is written in Scala. The real
time data are kept in the aggregation buffers for one minute and they
also intelligently flush to Cassandra. Query serves all data read once
it is written. The architecture of RainBird is illustrated in Fig. 2.27

41

Chapter 2. Literature Reviews

from [40].

Figure 2.27: RainBird Architecture

The basic "Data Structure of RainBird" is specified as follows [40]:

struct Event
{
1: i32 timestamp,
2: string category,
3: list<string> key,
4: i64 value,
5: optional set<Property> properties,
6: optional map<Property, i64>

propertiesWithCounts
}

42

Chapter 2. Literature Reviews

Memory based Computing

There are different commercial memory based computing appliances devel-
oped by industries giants in BI to address RTBI. Some of them are:

SAP HANA [41] is a commercial product from SAP with an in-memory
computing appliance. It combines SAP database software with their own
hardware designed for memory storage. It has parallel processing data stores
which combines row-based, column-based and object-based storage tech-
niques to support real-time analytics and transactional processing’s [41].

Oracle Exalytics [42] is Oracle’s in-memory analytic appliance was intro-
duced at Oracle OpenWorld in October 2011.It is commercial product from
oracle and is designed to run on Sun-only hardware with mash-up of various
oracle technologies.

Memory Databases

The most popular memory based databases are Memcached [43] and Redis
[44]. Memcached is open source in-memory key-value store for small chunks
of arbitrary data (Strings, objects) [43]. Redis on the other hand is also
open source in-memory databases with slight additional functionalities than
memcached like disk-backing, replication and use of virtual memory. Redis
also supports datastructures like Hashes, Lists, Sets, Sorting etc in addition
to normal Key-value pair.

43

Chapter 3

Analysis, Design and
Implementation

3.1 Technologies overview

A program module is made to verify and test the architecture suggested in
Chapter 3 to measure the performance. To complete the program module
following technologies were used during implementations and testing.

1. Redis (REmote DIctionary Server) [44] is open source advanced key-
value store written in ANSI C. Redis claim outstanding performance
when it works with an in-memory dataset. But as per the use case,
data can be persisted either by dumping the dataset to disk or by
appending each command to a log. It is also referred as data structure
server as keys can contain strings, hashes, lists, sets and sorted sets [44].
Redis was first developed as key-value store by Salvatore Sanfilippo
in early 2009, to improve the performance of his own LLOOGG, an
analytics product. Redis is simple to learn, lightweight text-based TCP
protocol [45] [46]. Replication in Redis is maintained as Master-slave
configurations. Scalability in Redis can be maintained through the use
of disk virtual memory.

Theoretically, On-the-fly reporting of data is considered the fastest way
for real time reporting than any other disk storage as in this case it

44

Chapter 3. Analysis, Design and Implementation

Redis Memcache
Strings Yes Yes
Hashes Yes No
Lists Yes No
Sets Yes No
Disk-backed Yes No
Replication Yes No

Table 3.1: Redis Vs Memcache

saves a lot of extra time spend in fetching data from disk and writing
data to disk. To implement this the best choice would be RAM based
data storage. For this I chose Redis as it is open source, simple to learn
and supports many data structures like Hashs, Sets etc which makes
computation easy. Unlike normal key-value pair, Redis has many data
structures and as I have implemented mostly Hashes and SET in my
program, it is the best choice for my implementation. Hashes and Set
is implemented as it makes computation more efficient than normal
key-value pairs. As for instance, table below shows the comparison
between Redis and popular in-memory database called memcache.

What makes Redis unique choice is described in table 1

2. Jedis[47] is an open source Redis java client developed first by Jonathan
Leibiusky. Jedis was the unique choice for my implementation as it
supports all the features in Redis through its API, is compatible with
latest version of Redis and actively developed.

3. AdventureWorks Sample Database

AdventureWorks database is Microsoft sample databases shipped with
SQL server for education purpose. It has data which is like real scenar-
ios and are avaliable for different components of BI. For instance: OS
database, DW database etc. Following database samples were used in
the implementation to test the performance of ETL tool and to make
relative comparision with on-the-fly reporting managed in architecture
described in chapter 3.

45

Chapter 3. Analysis, Design and Implementation

(a) AdventureWorks OLTP database samples.

(b) AdventureWorks DW sample database.

AdventureWork refresh is the sample ETL layer used to convert from
OS to DW sample. This was the best choice for me as all databases
for OS,DW and as well ETL sample script is available in single pack.
Thus time taken for all the conversions can be done through already
available example sample. This is just tested to make an idea on how
the conversion process in ETL is going and how long it takes.

AdventureWorks for MySQL database was also used for the purpose of
testing in architecture described in chapter 3.

Microsoft integration Services (a component of SQL server) is the ETL
tools for microsoft which can be run on SQL server data tools(SSDT).
SSDT is the business intelligence tools of microsoft where ETL can be
made and run in Microsoft C] programming language. This was the
best choice for ETL testing as I am using Microsoft sample database
and SSDT is the one supporting it with readymade sample code to test.
Furthermore, it is the one suggested by Bouvet technical team for the
test of the architecture.

3.2 Architecture Analysis for RTBI

With different architectures and solutions discussed on Chapter 2, architec-
ture which can support RTBI is of our concern.

Data that reach to DW has latencies. Along with these latencies, time
is spend on querying and displaying data from DW to BIT and dashboards.
Most of the BI architecture used in Bouvet are RDBMS based so the focus
of this thesis is on improvement of RDBMS based BI architecture to support
real time analysis and reporting. It is also excepted to be suitably integrated
in the existing system which has ongoing DS,ETL and DW running on it.
Since, the improvement is expected to suitably integrated and not effect the
ongoing functionality that RDBMS based BI has, it is felt that real time

46

Chapter 3. Analysis, Design and Implementation

analysis and reporting should be dealt with separately. For this the cases
where real time intelligence are important is first identified and is processed
separately.

The implementation of new architecture also need to be plug and play so
it is easily integrated with the existing one. In short we need some component
to deal with real time data in BI architecture.

3.2.1 Identification of Important Components for RTBI

Now my first task was to identify the important components used by different
solutions to address RTBI.

1. In a Complex Business System, there are lot of DS available, and they
can be heterogeneous. The complexity of the heterogeneous are ad-
dressed in different DW architecture by Data sampling module as dis-
cussed on 2.2. This is one of the component we are searching for our
module.

2. To reduce the data latency for real time data analysis, can we build on
the fly techniques irrespective of offline data query from DW? There
are memory based databases evolving with noSQL vibes. Can we im-
plement any one of them for RTBI. These memory based databases are
noted.

3. Based on the study of CDC and oracles reporting services for RTBI,
CDC technology that oracle has implemented for capturing the new
data changes in DS and passing these data in the component for real
time processing is noted. All data are not required for real time pro-
cessing. There should be some mechanism to select some changed data
that are of our interest. For example in banking system, if credit card
data are only required for real time processing than data associated
with its change should only be captured. This filters huge amount of
data passing through the component and also helps in the real insight
focusing on the data we are interested on. Furthermore, if the compo-
nent for Real time intelligence can run continuously as the streaming

47

Chapter 3. Analysis, Design and Implementation

system, it can really reduce the amount of time it incurs in reporting
of real time data. Whereas, CDC technology runs all its stored queries
on the stream of data to check either they need it or not. If we can
keep all the real time changes of data in memory and process it in the
memory itself then we may increase the performance of the system.

4. If we closely analyze cloud based databases like Google’s Bigtable and
Hbase, both of them have temporary storage of data, memtable in
Google and memcache in Hbase. These are used as a cache until it is
full and then the data are transformed to ssTable in GFS in Google
and HDFS in Hbase. There is no temporary storage of data from
OS before it goes to DW in RDBMS. If a temporary storage and in-
memory approach can be taken as in these approach, this may help in
fast reporting. So, this component is noted for the new architecture.

5. There is need of on-the-fly reporting than from databases. When data
are saved to databases, it is saved in hard drive. Operations are all
done in RAM memory, so if real time data can be saved in-memory in
RAM and when required report can be dispatched from memory itself,
it will obviously be fast enough as it removes the overhead it has to go
when saving to hard disk from RAM memory and reading from hard
disk to RAM memory. This is noted for the new architecture.

6. The structure of the DW schema as described in 2.1, has some fact
based storage of the tables for quick reporting. Can we build similar
rule based storage in new architecture for better reporting as described
in chapter 2 section 2.1. For example, if sales in certain area(for in-
stance Stavanger) is intended to get than it will directly get from the
memory without need of any computations.

7. As per the solution of SAP Hana, which is commercial and includes
its own hardware to support memory based operation, what about if
commodity hardware can support this features and can be used in any
heterogeneous sources. This is noted.

48

Chapter 3. Analysis, Design and Implementation

Based on the problem description on 1.1 and the discussion on Section.
3.2, to address the problem of real time, modification in the architecture of
traditional BI is done and came up with the following overview.

1. A plug and play Memory based component for Real time reporting
(MBCFRTR) is made to address the problem of RTBI on existing BI
architecture.

2. Data once stored in DW is not real time. It is considered as static
data so for real time reporting, on the fly processing and storage is
necessary. I added a module to store data in the RAM memory itself,
for those data that are more critical for real time reporting. ETL has
best performance if it is executed in batch and run in periodic manner.
For the time until ETL is executed per period, most critical data are
stored in RAM memory.

3. For the data to be stored in-memory, it should be converted to data
models that is supported by RAM processing. Heterogeneity of the
data sources are addressed by conversion of all the source data to single
data model the architecture supports. It is the data kept in memory
in Hashes and key-value pair. Details of the data model is described in
3.3.3.

4. A programming API is made for CDC in real time at the time when
event is executed, as the real time data that should be captured is the
most important.

3.3 Architecture Overview

The basic flow diagram for the implementation of MBCFRTR is described
in Fig. 3.1. Critical data that are needed for the real time processing are
processed separately through MBCFRTR component and passed to the pre-
sentation layer as shown in Fig. 3.1. Detail description of how the processing
and reporting is done in MBCFRTR is described in the following sections.

49

Chapter 3. Analysis, Design and Implementation

Figure 3.1: Flow Diagram for Real time BI

50

Chapter 3. Analysis, Design and Implementation

3.3.1 Architecture diagrams and its descriptions

Figure 3.2: Architectural diagram for RTBI

51

Chapter 3. Analysis, Design and Implementation

The basic steps of operation for MBCFRTR is "everything is done in RAM
memory" as described in the Figure 3.3.1:

1. Transform in memory.

2. Compute in memory.

3. Store in memory.

When any event is executed, data are initially transformed into memory
through the functions created. These data while inserting in the memory,
are stored in various buffer, based on the rules made for this particular type
of event. Finally, when report is required, these are taken from these buffers.
If some kind of processing is required before reporting, this is done in RAM
itself and transformed into screen.

While inserting data in RAM memory, the expire time is also set through
the function setExpireTime. The expire time can be set as per the table.
The functionality of this expire time is to make the buffer free after certain
interval of time. This is because MBCFRTR is meant to address the real
time data that can be lost while the ETL process is executing and/or it is
waiting for its period to execute. MBCFRTR also intended to make the
system online while ETL and data transformation is in progress. But after
the ETL has already transformed data to DW, the value of data is no more
as Real time as it is already available in DW so deleting of this data would
be more efficient. This is done by freeing the buffer by checking the expire
time. Once expire time is set, it will automatically handle the deleting of the
data and making the buffer memory free.

Figure 3.3: Detail View of Real time BI

52

Chapter 3. Analysis, Design and Implementation

The detail view of MBCFRTR is described as shown in Fig. 3.3. Data are
captured from the data sources or in the program itself through some API.
For the testing of this architecture, data are captured from the data sources
and transformed into memory based data models, so am describing it based
on changes captured through data sources. These data are when transformed
into memory, they are stored in RAM through open source data structure
server called REDIS. Redis is described in detail in Section 1, Section 3.1.
Data model used to store data in memory is described in 3.3.3.

When real time reporting is required, they are just fetched from the mem-
ory buffer maintaning it and displayed to screen. For this SQL query is not
supported by MBCFRTR, since data models are different in both. So, differ-
ent functions are made just to replace the SQL statements to memory based
functions to test the report generated. Some of them are:

selectAll(String tableName)
selectWithJoin(String tableA,String tableB)

3.3.2 Layers of MBCFRTR

The layer for the buffer management used in the implementation are de-
scribed in Fig. 3.4. Data are stored in Redis data structure server. Data
in Redis are accessed to the programming module through Jedis, which is
Java API to access Redis Server. A programming module is developed which
can be used to communicate between RDBMS data storage and Redis data
storage. These are made in java to test the functionality of the MBCFRTR.

53

Chapter 3. Analysis, Design and Implementation

Figure 3.4: Layers on Real time BI

3.3.3 Data Model

Figure 3.5: Data Models used for MBCFRTR

Data are stored in RAM memory in data structures like key-value pair,
Hashes, Linked list etc. Therefore the first phase of the algorithm is to get
the critical data and store them in data structures.RAM memory is selected
for storage as it is considered the fastest in operating and our requirement is
to maintain near zero latency. Ram storage best fits with data modeled in

54

Chapter 3. Analysis, Design and Implementation

data structures. Therefore data structures like Strings, Hashes and Sets are
used to store data in the implementation.

Data are uniquely stored as a key-value pair. Key is the one that will
refer to the data and is unique. Modeling of tabular data to data strore in
RAM is done through unique key creation. The model of the key that is
implemented as a data model is as shown in Figure 3.5

Each row data is uniquely mapped as a key. This is done to maintain
the sequence of tabular structure. Let us take an example to illustrate key
model and how data is stored. For this let me take a table Product as shown
in Figure 3.6.

Figure 3.6: Example table: Product

Here Product table have productId,productName and productPrice at-
tributes. This can have thousands of rows. The implementation of data
model is done such a way that each data has its unique key as well as it can
represent its relation to which row it lies. This maintains the uniqueness of
each row. For instance, let us consider a data in product table as shown in
the Figure 3.7

55

Chapter 3. Analysis, Design and Implementation

Figure 3.7: Example table : Product in table Form

The memory representation of the Product table is done such a way that
each single data is represented as tableName:{primaryKey}:{attributeName}.
Product table represented in Figure 3.6 with data in it as shown in Figure
3.7 is represented in memory as shown in Figure 3.8.

56

Chapter 3. Analysis, Design and Implementation

Figure 3.8: Product Table in in-memory data model

3.4 Additional Features

As Data model is maintained in Redis server, Redis takes care of fault tol-
erance in the architecture and some level of scalability which are important
in times of fail of any nodes and bigger data. This solution is not intended
for big data but it can maintain some level of scalability when the rush of
data is too much. This is the feature of Redis which this architecture has
advantage automatically.

1. Fault tolerant is maintained through replication mechanism of Redis.
The implementation is very simple, all we need to do is change the

57

Chapter 3. Analysis, Design and Implementation

configuration file with slave of. eg. slaveof 192.168.0.1 6380, where
192.168.0.1 is the ip address of master node and 6380 is the port num-
ber.

2. Even though big data is not its target, memory of the system can be
increased with the addition of virtual memory. This can be done by
allowing Redis to use the disk space of the system as memory. eg.
vm-enabled yes in redis-conf file.

3.5 Algorithms

The First step of the algorithm is to store data in noSQL format
A function tableToMemory is made to store data into Hashs like an ob-

ject.In this case each row is stored in Hash table. And a function toMemory
is used to store the data like a key-value pair in Hash table.

1. Step]1. Data is retrieved from given table to NoSQL format.

2. Step]2. Primary key of the table is stored in SET with data model like
all:tanleName.

3. Step]3. Key is generated per row and data are stored in Hashs like
an object. It is like all the attributes are stored in fields of Hashs.
tableName:[primaryKey]:{attribute1,attribute2,attribute3} so here key
is tableName:[primarykey] in Redis hash, field is attribute1,attribute2...
and value is the value it holds.

4. Step]4. Expire time for the generated table is set, if and only if it is
already set previously for this table. With this, if data is not important
after certain interval of time, it is deleted automatically.

5. Step]4. Rules based on the tableNames are checked. If there are rules
defined and satisfies with the current value, they are kept in separate
SET, with primary key. For instance, Rules with product sold in district
Rogaland is kept in equalsto:district:in:rogaland.

58

Chapter 3. Analysis, Design and Implementation

The main purpose of storing data in rule based is for fast retrieval at the
time of reporting. For instance, very important data can be set in rules
when conditions are satisfied. This can be then retrieved directly when
data with that condition is satisfied. Like in case of we need product
sold with price equal to 765, rules are made and data are stored in
this rule buffer.This can than be retrieved directly from memory and
display on screen.

Note that another approach is also taken to store the data in normal
key-value pair in Hashs itself. For this new function toMemory is made and
all data are stored in single buffer. In this case, key is tableName, field is
[primaryKey]:attributeName, and value is the value it holds. Comparison on
both is done on Chapter 4.

The insertion of data from SQL to NoSQL format is also described in
flow diagram shown in Figure 3.9

59

Chapter 3. Analysis, Design and Implementation

Figure 3.9: Insert table data into memory on MBCFRTR

Data Acquisition Process

Data acquisition is done through custom functions created. It can be done
directly when event is executed in programming module or captured from
DS. To use directly from the programming module, simple functions can be
used. Example code snippet looks like:

RedisDataBase rdb = RedisDataBase.getInstance();
String[] shipmodeAttribute = {"productID","productName",
"productQuantity","price"};
String[] shipmodeValues = {"1","HP","23","2999"};

60

Chapter 3. Analysis, Design and Implementation

rdb.insertIntoRedis("Shipmode",shipmodeAttribute,shipmodeValues);

To use from the data sources, data can be captured through CDC like
mechanism in oracle. That is by using triggers and/or log updates or trans-
forming from table to memory based using custom functions. Simple example
snippet looks like:

MySqlToRedis mrd = new MySqlToRedis("root","root","adventureworks");
mrd.tableToMemory("product");
OR
mrd.toMemory("product");

Here complexity to deal heterogeneous data source is addressed by con-
verting all of the data into single format (i.e. in memory). I chose memory
approach rather than on other sources like file based, single database or xml,
rdf and ontology based because it is the fastest way since all the data that we
need is in memory and instantly available for processing. This approach is
best for real time processing rather than file or database based as it reduces
the time taken in reading and writing from file/database to memory.

Rule based Storage

Previously, certain rules are made for the storage of the data per table. And
while inserting data to the memory, if it satisfies, they are stored in separate
pattern. Patterns are set as per the rules defined. Simple rules are defined
initially targeting to a table. For example, when product price goes beyond
level1, keep in the rule based storage.

Join of tables in memory.

Complex joins are not efficient when there is huge amount of data so to
speed up the join operation, possible patterns were matched and stored in
SETS during the time of insertion of data when any events were detected in

61

Chapter 3. Analysis, Design and Implementation

the system. This is done during the process of capturing the change events
in the system. These processing speeds are maintained with less overload
by creating some kind of pattern before and checking on those patters with
the identification of the conditions. These identified patterns are kept in
Redis’s SETS so there is easy operations like union, intersection and other
mathematical deviation of sets supported by Redis Server.

Steps of implementation.

1. Data converted from relational database format to key-value pair for-
mat. Datas tructures used are Hashes, Sets and Strings. This is imple-
mented in two approaches. One with all the data in one Hash buffer
and the another with single row of Tabular data to single hash buffer.
Comparison on the results and analysis is done on Chapter 4.

2. Assign rules based on which memory buffer will store data for faster
retrivel of data while reporting. This is to reduce data processing time
when the retrieval of data is demanded.

3. Testing done on reports generated directly from the data stored in data
store.

4. Testing done through some operations on data store and then the re-
porting.

62

Chapter 4

Results and Analysis

As described in 1.2.3,latency in BI is mainly caused due to dE+dT+dL func-
tion that is associated with the ETL layer. ETL layer has critical function-
alities as described in 1.2.3. For these functionalities to execute, the basic
operations of databases that are used will be Select, Insert statements and
select joins. Furthermore, for the reporting basic operations that need to be
fast enough is the select and insert statements so experiments were done on
insert and select statements to check the performance of the MBCFRTR.

4.1 Experiment Scenario

Tests are done to check the performance of the purposed architecture. The
purpose of the architecture is to reduce the latency time when the data are
presented in the dashboards.

The data used to verify the tests are:

1. AdventureWorks OLTP

2. AdventureWorks DW

Tests are done based on MySQL, SQL, SSDT and MBCFRTR approach I
have implemented.

Since, the window of the time that is intended for the data to populate is
very small, so it is assumed that there will be no big data. This approach is

63

Chapter 4. Results and Analysis

Component Technical Specification
Hardware platform 4 Quad-Core Intel(R) Core(TM) i5-2400 CPU @

3.10GHz
RAM Memory 16GB
Operating System Ubuntu
JVM jdk1.4
Redis 2.4.14 Stable version

Table 4.1: System Configuration for testing the architecture

Component Technical Specification
Hardware platform 4 Quad-Core Intel(R) Core(TM) i5-2400

CPU @ 3.10GHz
RAM Memory 16GB
Operating System Windows 7
Visual Studio Visual Studio 10
Business Intelligence tools SQL Server Data Tools
SQL Server SQL Server 2008 R2

Table 4.2: System Configuration for testing the ETL

to address the problem of data latency rather than to address the processing
of the big data. Tests are done for up to 100,000 of records (each row with 4
column). The data base schema used is of adventureWorks sample database.

Every test were ran three times, and the higher figure obtained is used.
Same machine was used as Redis client and Server to avoid network adding
latency in the result. Also, Same machine was used as OS, DW and ETL to
test the SQL integration system.

To test the functionality of the architecture with Redis Server, configu-
ration is used as shown in table 4.1:

To test the functionality of existing ETL tool from microsoft with adven-
tureWorks database, configurations is used as shown in table 4.1.

4.2 Benchmark Results

Tests are done on basic database operations on purposed architecture.

64

Chapter 4. Results and Analysis

4.2.1 Data Insertion

Figure 4.1: Data insertion in memory on MBCFRTR : for 400 to 4000 keys

Figure 4.2: Data Insertion in memory on MBCFRTR : for 1000 to 100000
keys

When data is inserted into MDCFRTR, they can be done in two ways, either
to store data on the fly when any event creates it in a programming module
or transfer data from OS to MBCFRTR. For my test, I transfer it from OS
and the time is recorded for the conversion as per the algorithm described
in 3.5. Data is transferred in two phases, one with a small range of data
and another with bigger data, up to 100,000 keys. Figure 4.1 is trend for
the small range of data, and Figure 4.2 is for big range of data. I compared
both approaches when whole data are kept in a single memory buffer or each
row data in OS kept in unique buffer. Buffer is maintained with Hashs data
structure of Redis.

65

Chapter 4. Results and Analysis

The X-axis of the graph contains the number of key Redis can hold as per
the time interval in Y-axis.The time interval represented is in Seconds. As we
can see from the graph above, storing data in single buffer works fine for the
small range of data but with the increase of data the performance of using
multiple buffer work efficiently. As described in the graph, the maximum key
the architecture can insert in one second is 3200 if single buffer is created for
single row. Storing data in single Hash is effective if the data range is low but
as the data range increases maintenence of multiple buffer looks effective.

Even though, data can be inserted with minimum time when data is
inserted in single buffer, data manipulation and processing is much easier
when it is in many hashes. This is inserting data as a object so in the
implementation I used one row to one hash buffer mechanism while reporting.

4.2.2 Data Select

Figure 4.3: Select All data from Memory buffer in MBCFRTR - Small Range

Figure 4.4: Select All data from Memory buffer in MBCFRTR - Big Range

66

Chapter 4. Results and Analysis

As shown in the graphical figure 4.3 and 4.4, the select time for the data
from memory is negligible as it is already in the memory and the time that
is attached is due to the API code running while displaying data in screen.
Time takes to display data in screen so time depends on how huge data it
contains.

4.2.3 Random Select

Random Selection from the Ram database ranged from 0.16 to 0.26 ms and
it does not show any dependency on the amount of data, buffer contains.

4.2.4 Join Operation

Figure 4.5: Join operation with Sets on MBCFRTR

Join operation is always complex as there are some kind of comparisons. For
the suggested architecture, I used the feature of Redis data structure SET
so the comparison became more easier and faster. The graph represented in
Figure 4.5 is the time taken for retrieving data through joining two tables
with the number of key represented in X-axis and time taken to do so in
Y-axis(in seconds). It is quite fast with 110880000000 key comparisons in
about 0.005 second. This join operation and also on processing other analysis
has direct effect on how data are stored in memory while data insertion. For
the operation of join, I stored the foreign key and primary key in different
sets and did the comparison based on its default functionality of Redis.

But this may be changed if there are more complex operations and joins
need to be calculated with complex computation.

67

Chapter 4. Results and Analysis

4.3 Analysis on Results

To compare the results, sample adventureWorks ETL function of SQL server
is executed and time is recorded for it to transform to DW. Generally, ETL is
executed periodically so there is latency added on the wait for it to execute.
Additionally, it requires time to execute query from DW and transforming
data from DW to RAM memory to display it in BIT.

Conversion of data from OS to DW is done in SQL Server Integration
Services of Microsoft to keep the record of the time taken to transform the
data. It is done in sample data base of microsoft called adventureworks.
These data are small, which may not be the same as real time scenario, where
data through ETL is large. The execution of sample ETL is just to test how
much time it takes in the conversion and the complexity of algorithms it
use in transforming whole table. If this wait is to be done for the real time
reporting than the data may lose its value. The purpose of this testing is
just to explain what advantage, the new added component can do. In my
test scenario it took 8.46 min to transform whole table.

The table schema of OS and DW are attached in the enclosed CD along
with the Integration codes The size of the table recorded is 192 MB.

The purpose of the additional MBCFRTR layer is not to replace the ex-
isting ETL layer, it is to address the data that loose its value while it has to
wait for the ETL layer to finish and/or wait for the ETL period to execute.
This is the way how ETL works and it works well for bigger data. During
these period and on periodic wait, data are generated and stored from OS or
with the event creation. These are kept in memory with MBCFRTR. Now
for a big data up to maximum 100,000 records, how much time it takes to
transform from event created to report in screen is of our concern, These
are compared on the following diagram. This is one of the scenario, which
illustrates that this memory storage will give robust performance when im-
plemented. As explained in Figure. 4.7, now the memory based storage of
data for real time can have expire time for not less than 8.46 minute. Af-
ter 8.46 minute OS data are reached to DW and hence the value of data in
MBCFRTR loses its value.

68

Chapter 4. Results and Analysis

Figure 4.6: Conversion time in Microsoft SQL Server Integration Services

Figure 4.7: Comparison when data flow from existing ETL and from
MBCFRTR

4.4 Differences between MBCFRTR with the
existing solutions.

4.4.1 MBCFRTR Vs Complex Event Processing

In CEP, there are a collection of query events that are executed in a stream
of data to check if the condition has satisfied for the required report. After-
wards, report is broadcasted to the reporting tools. On the other hand, in
MBCFRTR, whenever any condition is satisfied during the time of execution
of an event they are automatically stored in memory, if required computation
is done in memory and the system reports the query only when it is asked
to MBCFRTR for reports.

69

Chapter 4. Results and Analysis

4.4.2 MBCFRTR Vs Amazons key-value

Amazons dynamo has very simple data model with key-value pairs and it
can be used as a replacement of whole database. Therefore, data are saved
in the disk in regular intervals. Whereas in MBCFRTR, there are more
complex data structures in addition to simple key-value pair. In the imple-
mented architecture work, data are not saved to the disk as the purpose is
to use memory based storage for keeping records for the time interval up to
ETL layer finishes its functionality. MBCFRTR is not a replacement of the
whole database system but is an additional component of BI. Furthermore,
amazon key-value pair is used for parallel processing and cloud computing
so key-value pair is made to make the computation more simple. Whereas
MBCFRTR is not implemented for cloud computing.

4.4.3 MBCFRTR Vs Cloud Computing

Cloud computing is not suitable for all problems. As described in Hbase
website [33],

"If there are hundreds of millions or billions of rows, then HBase is a
good candidate whereas if there are a few thousand/million rows, then using
a traditional RDBMS might be a better choice due to the fact that all of
your data might wind up on a single node (or two) and the rest of the cluster
may be sitting idle."

This is the reason I didnt used cloud computing in my implementation
since my target is for real time reporting. This system is targetted for certain
amount of data and the time frame of running the system is almost continu-
ous. Hence for continuous running of the application, there is no probability
that the data will be too big upto millions to transfer. Furthermore, after
certain interval of time when the ETL has finished its performance and data
are already send to DW, the component deletes the data. So, cloud comput-
ing approach was not suitable for the implementation as the target of the
system was for continuous and almost real time and also the data in memory
buffer are in intervals flushed out. Therefore, there will never be very big
data to compute in the component.

70

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Real time BI is addressed through MBCFRTR and a plug and play archi-
tecture is suggested which supports the ongoing ETL functionalities of BI
as well as an additional System for real time data. Implementation is done
through open source in-memory data structure server to manage the buffer
for the storage of RT data. This implemented architecture is tested for per-
formance and compared with the time it saves if not going through the DW.
Reporting in this approach is done on the fly. This architecture is not a
replacement of the ongoing architecture as a whole but is an improvement
on the present architecture for Real time intelligence.

As defined in the problem description 1.1, new architecture is made to
address the RTBI, prototype is developed and implemented to check the per-
formance of the proposed architecture. The heterogeneity of the data sources
which cause complexity in processing is addressed by converting all the data
in the form of memory based data structures. Data are then processed from
memory and stored in the memory for fast display in the computer screen
through dashboards or reports. This addresses the data latency in the sys-
tem. Furthermore, the performance of the architecture is made more robust
through some kind of pattern creation which address analysis latency in BI.

71

Chapter 5. Conclusion and Future Work

5.2 Future Work

1. Automatic conversion from SQL query to functions can make the SQL
administrator easy and feel like reports are displayed from the SQL.

2. Although simple replication is supported, Redis cluster is still on progress
and we have not implement our approach in Redis cluster so that it
can deal for big data as well through cloud computing.

3. Administrating the system so that it can deal with right data to right
people.

5.3 Limitations

1. The time frame to capture the changed data should be very small as
it is intended for real time. So, it is assumed that windows size will be
small which captures less data for the operation.

2. It is not intended for batch processing and is not a replacement of ETL.

3. This is a module to address RTBI. It is made in plug and play approach
and work together with existing ETL as described in Figure 3.1.

4. MBCFRTR is not for loading, processing and analyzing huge volumes
of data, commonly referred to as big data.

5. Does not support traditional SQL queries and functions are written
to get the report. So, those who are used to with sql query may feel
difference while generating reports.

6. Various database administrator works and access control mechanism
which is easy to maintain in RDBMS are not easy to maintain in
MBCFRTR component.

72

Bibliography

[1] L. Wu, G. Barash, and C. Bartolini, “A service-oriented architecture for
business intelligence,” in Proceedings of the IEEE International Con-
ference on Service-Oriented Computing and Applications, SOCA ’07,
(Washington, DC, USA), pp. 279–285, IEEE Computer Society, 2007. 1

[2] Z. Michalewicz and M. Michalewicz, Adaptive business intelligence /
Zbigniew Michalewicz ... [et al.]. Springer, Berlin :, 2007. 1, 10

[3] I. Ahmad, S. Azhar, and P. Lukauskis, “Development of a decision sup-
port system using data warehousing to assist builders/developers in site
selection,” Automation in Construction, vol. 13, no. 4, pp. 525 – 542,
2004. 4

[4] Cindi Howson, “Techno babble: Components of a business intelligence
architecture.” http://www.b-eye-network.com/view/7105. Components
of Business Intelligence Architectures, Mar. 2008. 4, 5, 9, 14

[5] Richard Hackathorn, “The bi watch:real-time to real-value.” DM Re-
view, January. 2004. 5

[6] Z. Panian, “Just-in-time business intelligence and real-time decisioning,”
in Proceedings of the 9th WSEAS international conference on Applied
informatics and communications, AIC’09, (Stevens Point, Wisconsin,
USA), pp. 106–111, World Scientific and Engineering Academy and So-
ciety (WSEAS), 2009. 5, 6, 10

73

Bibliography

[7] O. Corporation, “Real-time data integration for data warehousing and
operational business intelligence.” Oracle White paper, August. 2010. 5,
31

[8] A. Simitsis, P. Vassiliadis, and T. Sellis, “Optimizing etl processes
in data warehouses,” Data Engineering, International Conference on,
vol. 0, pp. 564–575, 2005. 8

[9] P. V. et al., “Data provenance in etl scenarios.” University of Ioannina.
9

[10] B. Azvine, Z. Cui, D. D. Nauck, and B. Majeed, “Real time business
intelligence for the adaptive enterprise,” E-Commerce Technology, IEEE
International Conference on, and Enterprise Computing, E-Commerce,
and E-Services, IEEE International Conference on, vol. 0, p. 29, 2006.
11, 25, 26, 27

[11] M. I. Hwang and H. Xul, “The effect of implementation factors on data
warehousing success : An exploratory study,” Journal of Information,
Information Technology, and Organizations, vol. 2, 2007. 13

[12] M. Golfarelli and S. Rizzi, “Designing the data warehouse: Key steps
and crucial issues,” Journal of Computer Science and Information Man-
agement, vol. 2, 1999. 14, 15

[13] I.-Y. Song and K. LeVan-Shultz, “Data warehouse design for e-commerce
environments,” in Proceedings of the Workshops on Evolution and
Change in Data Management, Reverse Engineering in Information Sys-
tems, and the World Wide Web and Conceptual Modeling, ER ’99, (Lon-
don, UK, UK), pp. 374–387, Springer-Verlag, 1999. 14

[14] M. Golfarelli, D. Maio, and S. Rizzi, “Conceptual design of data ware-
houses from e/r schemes,” pp. 334–343, 1998. 14

[15] M. Golfarelli and S. Rizzi, “A methodological framework for data ware-
house design,” in Proceedings of the 1st ACM international workshop

74

Bibliography

on Data warehousing and OLAP, DOLAP ’98, (New York, NY, USA),
pp. 3–9, ACM, 1998. 14

[16] Microsoft, “Data Warehouse Design Considerations .”
http://msdn.microsoft.com/en-us/library/aa902672(v=sql.80).aspx,
May. 2012. 14, 16

[17] T. Ariyachandra and H. Watson, “Key organizational factors in data
warehouse architecture selection,” Decision Support Systems, vol. 49,
pp. 200–212, May 2010. 17, 18, 19, 20, 21

[18] V. e. a. Lane, Pau;Schupmannl, Oracle9i Data Ware-
housing Guide, Release 2 (9.2). Oracle Corporation,
http://docs.oracle.com/cd/B10500_01/server.920/a96520/concept.htm,
2002. 19, 21

[19] D. A. Schneider, “Practical considerations for real-time business intelli-
gence,” in Proceedings of the 1st international conference on Business in-
telligence for the real-time enterprises, BIRTE’06, (Berlin, Heidelberg),
pp. 1–3, Springer-Verlag, 2007. 20, 21

[20] H. Watson and T. Ariyachandra, “Data warehouse architectures: Fac-
tors in the selection decision and the success of the architectures,” tech.
rep., Terry College of Business, University of Georgia, July 2005. 21

[21] M. Golfarelli, S. Rizzi, and I. Cella, “Beyond data warehousing: what’s
next in business intelligence?,” in Proceedings of the 7th ACM interna-
tional workshop on Data warehousing and OLAP, DOLAP ’04, (New
York, NY, USA), pp. 1–6, ACM, 2004. 22, 23, 24, 25

[22] N. Stojanovic, L. Stojanovic, D. Anicic, J. Ma, S. Sen, and R. Stühmer,
“Semantic complex event reasoning—beyond complex event processing,”
in Foundations for the Web of Information and Services (D. Fensel, ed.),
pp. 253–279, Springer Berlin Heidelberg, 2011. 27

75

Bibliography

[23] Team, The SQLstream, “Concepts in streaming sql, enabling real-time
business intelligence and data integration.” www.SQLstream.com, 2009.
27, 28

[24] A. e. a. Arasu, “Stream: The stanford data stream management sys-
tem.,” IEEE Data Engineering Bulletin, 26(1), 2003. 29

[25] Rodriguez, Jesus, “Real-time business intel-
ligence with microsoft sql server 2008 r2.”
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2010/BIE403,
June 2010. 30

[26] O. Corporation, “Best practice for real-time data warehousing.” Oracle
Corporation, World Head Quaters 500 Oracle Parkway, 2010. 32, 33, 34

[27] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008. 35

[28] S. Edlich, “Nosql databases.” http://www.nosql-database.org, 2011. 35

[29] C. S. (cs134@hdm stuttgart.de), “Nosql databases.” 36

[30] amazon.com, “Amazon dynamodb.” http://aws.amazon.com/dynamodb/,
2012. 36

[31] G. e. a. DeCandia, “Dynamo: Amazon’s highly available key-value
store.,” pp. 205–220, ACM, 2007. 36

[32] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed
storage system for structured data,” in Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume
7, OSDI ’06, (Berkeley, CA, USA), pp. 15–15, USENIX Association,
2006. 36

[33] “Hbase.” http://hbase.apache.org/, 2012. 36, 70

76

Bibliography

[34] R. Ho, “Pragmatic programming techniques: Bigtable model with
cassandra and hbase.” http://horicky.blogspot.com/2010/10/bigtable-
model-with-cassandra-and-hbase.html, October. 2010. 37

[35] D. Kellogg, “What’s a column-oriented dbms?.”
http://kellblog.com/2007/03/31/whats-a-column-oriented-dbms/,
March. 2007. 37

[36] R. Ho, “Bigtable model with cassandra and hbase | javalobby.”
http://java.dzone.com/news/bigtable-model-cassandra-and, December.
2010. 38

[37] “The apache cassandra project.” http://cassandra.apache.org/, 2012. 40

[38] P. Lakshman, A.;Malik, “Cassandra: a decentralized structured storage
system,” vol. 44, pp. 35–40, ACM SIGOPS Operating Systems Review,
2010. 40

[39] DataStax, “Evolving hadoop into a low-latency data infrastructure.”
DataStax, www.datastax.com, 2011. 40, 41

[40] K. Weil, “Rainbird: Real-time analytics @twitter.”
http://assets.en.oreilly.com/1/event/55/Realtime Analytics at Twitter
Presentation.pdf, 2011. 41, 42

[41] M. Bernard, “Sap high-performance analytic appliance 1.0 (sap hana),”
February. 2011. 43

[42] M. G. e. a. Vasu Murthy, “Oracle white paper – oracle exalytics in-
memory machine: A brief introduction,” October. 2011. 43

[43] M. Bernard, “Memcached.” http://memcached.org/, 2011. 43

[44] Redis, “Redis.” http://redis.io, April. 2012. 43, 44

[45] T. Macedo and F. Oliveira., Redis Cookbook. O’REILLY, 2011. 44

[46] K. Seguin, The Little Redis Book. 44

77

Bibliography

[47] Jonathan Leibiusky, “Jedis.” https://github.com/xetorthio/jedis, April.
2012. 45

78

	Introduction
	Motivation and Problem Description
	Background
	Components of Business Intelligence
	Latency problem in BI
	Data Latency
	Analysis latency
	RTBI
	Thesis Outline

	Literature Reviews
	Data Warehouse
	Process of building Data Warehouse

	Data Warehouse Architectures
	Architecture of BI that supports Real Time
	Business Performance Management
	Complex Event Processing
	NoSQL

	Analysis, Design and Implementation
	Technologies overview
	Architecture Analysis for RTBI
	Identification of Important Components for RTBI

	Architecture Overview
	Architecture diagrams and its descriptions
	Layers of MBCFRTR
	Data Model

	Additional Features
	Algorithms

	Results and Analysis
	Experiment Scenario
	Benchmark Results
	Data Insertion
	Data Select
	Random Select
	Join Operation

	Analysis on Results
	Differences between MBCFRTR with the existing solutions.
	MBCFRTR Vs Complex Event Processing
	MBCFRTR Vs Amazons key-value
	MBCFRTR Vs Cloud Computing

	Conclusion and Future Work
	Conclusion
	Future Work
	Limitations

