

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Master Degree Program in Computer Science

Spring Semester, 2012

Open Access

Writer: Ming Hao

…………………………………………

(Ming Hao)

Faculty supervisor:
Chunming Rong (UiS)

Tomasz Wiktor Wlodarczyk (UiS)

External supervisor(s):

Title of thesis:

Performance Analysis and Optimization of Left Outer Join on Map Side

Credits (ECTS): 30

Key words:

MapReduce

HDFS

Left Out Join

Map Side Join

Performance Analysis and Optimization

Pages: 59

+ enclosure: CD

Stavanger

15th June, 2012

 2 / 59

Abstract

Ontologies are representations of the entities and relationships that structure an

application area. Ontologies are important for tasks such as data integration,

natural-language processing, information retrieval, and decision support.

NCBO Resource Index is a system for ontology based annotation and indexing of

biomedical data. With the increasing of its data, a distributed processing method

should be implemented, which can store, compute and inquire those large-scale data

in an efficient way.

This paper is based on the master thesis of B. Byambajav, Methods for Large-scale

Semantic Expansion on Hadoop Architecture, and going forward to seek a better

solution for process NCBO Resource Index data and forced on performance

optimization of left outer join on the Map side. In this paper, we researched and

contrasted different kinds of join algorithms.

In order to implement more effective experiments, we studied the characteristics of

HDFS and DistributedCache, then an algorithm of left outer join on map side had

been implemented on the Hadoop platform, and for the purpose of performance

optimization, we inspected several methods to control amount of map task.

Further, according to the result of the experiment, we adjusted critical parameters

and we got a lot of valuable conclusions. Based on these conclusions, we found the

map side join works well and got a better result in previous works.

 3 / 59

Acknowledgments

I would like to express my gratitude to my supervisor Professor Chunming Rong, who

is the head of CIPSI with very high achievements in cloud computing, for his

supervision. Also I would like to express my gratitude to PostDoc Tomasz Wiktor

Wlodarczyk. Tomasz is a clever and detailed tutor, gave me many proposals and

supports during my master's work.

I would like to express my gratitude to my parents for their support in my living and

study in the past two years. And my wife Fei Lin, if there is no support with her, I

could not accomplish well with my study.

Additionally I would like to thank the University of Stavanger for the opportunity of

learning the master study program, which gave me a lot of experiences and

memories of life.

Ming Hao

June 15, 2012, Stavanger

 4 / 59

Contents

ABSTRACT ... 2

ACKNOWLEDGMENTS ... 3

CONTENTS .. 4

LIST OF FIGURES .. 6

LIST OF TABLES ... 7

CHAPTER 1. INTRODUCTION .. 8

1.1 Motivation .. 8

1.2 The Thesis Outline .. 8

CHAPTER 2. BACKGROUND .. 9

2.1 NCBO Resource Index ... 9

2.1.1 OBR Resources ... 10

2.1.2 OBS Database ... 11

2.2 HDFS and DistributedCache ... 12

2.2.1 HDFS Features .. 12

2.2.2 DistributedCache in Brinf ... 13

2.3 Map and Reduce ... 14

2.3.1 MapReduce Programming Model .. 14

2.3.2 MapReduce Behaviors in A Cluster .. 15

2.4 Hadoop Job Scheduling .. 15

2.5 HashMap ... 16

CHAPTER 3. RELATED WORK .. 18

3.1 Classic Join on Hadoop ... 18

3.1.1 Default Join .. 18

3.1.2 Map Side Join ... 18

3.1.3 Pig and Hive Join .. 18

3.1.4 Other Joins ... 19

3.2 Previous Work .. 19

CHAPTER 4. IMPLEMENTATION .. 20

4.1 Datasets and Cluster Environment ... 20

4.1.1 Data Sets Used ... 20

4.1.2 Cluster Specification .. 21

4.1.3 Hadoop Configurations .. 21

4.2 Algorithm of Map Side Join .. 22

4.3 Control the Number of Mapper ... 23

4.4 Performance Experiments .. 24

4.4.1 Block Size and Split Size Test .. 24

 5 / 59

4.4.2 Replication Number Test ... 27

4.4.3 Relation Table Size Test ... 29

4.4.4 Split Table Size Test .. 30

4.4.5 DistributedCache Test .. 32

4.4.6 A Model Assumption .. 34

CHAPTER 5. DISCUSSION ON THE RESULTS ... 36

5.1 Strengths and Weaknesses of Map Side Join ... 36

5.2 The Usefulness of DistributedCache .. 37

5.3 Load Balancing in HDFS .. 37

CHAPTER 6. CONCLUSIONS AND FUTURE WORK ... 39

6.1 NCBO Resource Index Solution .. 39

6.2 Future Work.. 39

REFERENCE .. 41

APPENDIX .. 43

I. HDFS Common Commands.. 43

II. Usage of the Programs ... 45

III. Generation Methods of NCBO Resource Index ... 46

IV. Hadoop Configuration in Our Experiment .. 47

V. Source Codes .. 51

 6 / 59

List of Figures

Figure 1: NCBO Resource Index workflow ... 9

Figure 2: Population of the OBR tables .. 10

Figure 3: Population of the OBS database ... 11

Figure 4: HDFS Architecture ... 13

Figure 5: A general flow diagram of MapReduce .. 14

Figure 6: Job scheduling flow chart ... 16

Figure 7: Time components of different split size ... 25

Figure 8: Job cost of different split size ... 26

Figure 9: Speed of Join ... 27

Figure 10: A comparison of time cost by different number of replication 28

Figure 11: The cluster block distribution ... 29

Figure 12: Time cost on different size of the relation table 30

Figure 13: Time cost in scale of exponential distribution 31

Figure 14: Time cost in scale of linear distribution .. 31

Figure 15: Time cost by different size of split table ... 32

Figure 16: Speed of Join ... 33

Figure 17: A Comparison of time cost by using and without using

DistributedCache ... 33

Figure 18: Expected and actual time cost for different split size 35

Figure 19: Time cost comparison of the different Join methods 36

Figure 20: RAID 0 mode ... 40

 7 / 59

List of Tables

Table 1: Original files from NCBO Resources Index ... 20

Table 2: Generated R tables ... 20

Table 3: Generated S Tables by Exponential Growth .. 20

Table 4: Generated S Tables by Linear Growth ... 21

Table 5: Time cost of different split size .. 25

Table 6: Time cost of 1GB S Table .. 26

Table 7: Time cost by different size of split table .. 32

Table 8: Time contrast of expected and actual for different split size 34

 8 / 59

Chapter 1. Introduction

1.1 Motivation

What the NCBO Resource Index situation is, data is in the continuous growth,

traditional DBMS ways to storage and to process data is limited by the capacity of

the single machine. A scale-out solution, which fully uses of the power of cloud

computing should be utilized for the constantly changed biological world. [1]

The purpose of this thesis is trying to find a better situation to solve this problem,

which is processing the date of NCBO Resource Index.

Our project is based on the master thesis of B. Byambajav, Methods for Large-scale

Semantic Expansion on Hadoop Architecture, and going forward to analyze and

optimize the performance of left outer join, especially in Map side join.

In our project, we are going to study the classic join methods on Hadoop, the

features of HDFS, and we are going to explore Hadoop job scheduling, the

MapReduce behaviors in the cluster. For various aspects of experiments, we are

going to implement algorithms of Map side join, generate sufficient number of data

which based on the NCBO Resource Index and we will contrast the results.

1.2 The Thesis Outline

Chapter 1 is the introduction of our motivation and the thesis outline.

Chapter 2 is the background of resources and principles we used in our thesis.

Chapter 3 is the theories and previous work that related in our thesis.

Chapter 4 is the implementation of our project, which includes the algorithm,

hypothesis and experiments. Based on the experimental results, we got much

valuable knowledge.

Chapter 5 is the discussions of the work, we talked about the advantage and

disadvantage of our algorithm, also some experiences in our experiments.

Chapter 6 is the conclusions and future work. We proposed some proposals which

could be a good solution for the NCBO Resource Index.

 9 / 59

Chapter 2. Background

2.1 NCBO Resource Index

The National Center for Biomedical Ontology Resource Index is a system for ontology

based annotation and indexing of biomedical data. The fundamental functionality of

the system is to enable users to locate biomedical data resources related to

particular concepts. That functionality is based on semantically enhanced search. The

Resource Index currently includes 22 different data resources comprising over 3.5

million data elements resulting in 16.4 billion annotations stored in a 1.5 terabyte

MySQL database. [3]

Figure 1: NCBO Resource Index workflow

 10 / 59

Population of OBR and OBS tables using properties files and shell script is described

in document Technical_Instructions_for_Configuring_OBR_Workflow. [18]

2.1.1 OBR Resources

OBR Resources is the workflow executions in the biomedical resources.

The figure shows below is the population of the OBR tables. [18]

Figure 2: Population of the OBR tables

 11 / 59

2.1.2 OBS Database

The OBS database contains the data used by the OBA/OBR workflow. It contains the

concepts and terms used for direct annotations as well as the relations between

concepts used during the semantic expansion step. [21]

Figure 3: Population of the OBS database

 12 / 59

2.2 HDFS and DistributedCache

2.2.1 HDFS Features

HDFS is designed to support large data sets, same as the programs. Write data only

once, read data once or several times for a better streaming read speed demand.

The feature is for batch processing, rather than for the user-interactive. Hence, the

application should access the data set in a streaming way. It is not a typical operation

in a conventional file system because HDFS is focused on data throughput, rather

than data access response time. So it will not be necessary enforced rigidly demand

by POSIX. [9] [11] [17]

Due to the rule of accessing HDFS files is Write-Once Read-Many, and HDFS file is

strict compliance with only one write operation in any time, once a file is created and

written, the file will not be modified after the closure. This rule can simplify the data

consistency and make high throughput data access.

HDFS can support hundreds of nodes in a cluster of millions of files and large data

sets. A typical HDFS file may have the size of GBs to TBs. It should reliably store a

large number of files in a large number of nodes, by the form of a block sequence for

each file. Except for the last block, other blocks have a same size. One should be

noted is that the block size and replication number can be specified for each file in

the file created or later.

Each block can locate in different data nodes. The strategy of how to choice the

replication placement seriously affects the reliability and performance of HDFS,

because HDFS tries to satisfy a reading operation from the nearest replication. If

there is replication on the same rack with the read node, it will directly read it. The

HDFS can read replications in the cluster across racks. Nodes communication in two

different racks will go through the switch, in most cases, bandwidth is worse than

transfer in the same rack. [11]

Actually in the ideal situation, the data blocks uniformly distributed in every node

can make clients loading evenly. A great influence on the performance will occur if

the unbalanced load. It will ultimately affect the efficiency of the program.

Once a client request to create a file, it will not immediately request to the

NameNode. The fact is that the HDFS client cached data in the local file at the first,

the application will write to the temporary local file until the accumulative size of

local files is reached to the HDFS block size, the client contact NameNode and then

refresh it. [11]

The application requires streaming write files. If the client is written directly to the

remote file system, without a local buffer, will have a considerable impact on the

speed and network throughput. When the client needs to write data to the HDFS,

 13 / 59

like said before, the data first write to a local file, assuming that the HDFS replication

factor is 3, when the accumulation of a local file up to the block size, the client

requests the list of DataNodes. This list describes the DataNodes which take over the

blocks copy. The client is to refresh the data block to a DataNode. The first DataNode

start to receive data to a small position (4kb), write them to the local disk, and

transfer to the list in the second DataNode, so turn to the second data node, the

second DataNode transfer data to the third. A DataNode can accept data from the

former DataNode, but also the data flow transfer to the next DataNode, therefore,

the data flowing style is passed from one data node to the next. [17]

Figure 4: HDFS Architecture

2.2.2 DistributedCache in Brinf

DistributedCache can download the file to the local machine from HDFS. Using

DistributedCache to copy files to each node could be a potential improvement in the

performance. [6]

The use of the DistributedCache is in the Appendix.

Like the Hadoop's slogan, "Moving Computation is Cheaper than Moving Data". The

main purpose is to reduce congestion caused by the data transmit in the Map phase,

and as much as possible to calculate the arrangement at this stage. The final copy of

the data process postponed to the Reduce phase.

 14 / 59

However, in our Map side join, it will not have the data transmitted during the data

processing, so the distributed cache will not be reflected in its advantage.

We got some instances to prove our viewpoint in Chapter 4.

2.3 Map and Reduce

MapReduce is a distributed programming model for large-scale data processing,

which has been proposed by Google in OSDI '04 (Operating Systems Design and

Implementation).

It abstracts the large-scale distributed data processing to one platform and two

user-defined functions, Map and Reduce. The Map function is responsible for

processing sub-data sets and produce intermediate results, and the Reduce function

is responsible for reduction of the intermediate results and generates the final

results of processing. The platform is responsible for scheduling, fault tolerance and

data management. [10]

2.3.1 MapReduce Programming Model

split0

split1

split2

Map()

Map()

Map()

Reduce()

Reduce()

part0

part1

Input Mappers Intermediate data Reducers Output

Figure 5: A general flow diagram of MapReduce

From the figure we can see the core of the model is function map and reduce. There

are both user defined, which can be customized for their own needs. Transforming

the input <key, value> to output, which is one or a group of <key, value>.

In Map phase, MapReduce Framework segmented the input data to the fixed-size

splits. Then each of the split further decomposed as key/value pairs. After that,

Hadoop established a map task for every split, which is Mapper we called, to execute

the user-defined map function. The function used <K1, V1> in split as input,

calculated the intermediate result <K2, V2>. Sorted the intermediate results by using

K2, and generated a new list which the value had the same key, <K2, list(V2)>. Finally,

 15 / 59

these tuples are grouped by the range of key value, and distributed to the different

Reduce tasks.

In Reduce phase, Reducer sorted the received date, which came from the different

Mappers, then invoked the user defined reduce function, to process the input <K2,

list(V2)>. Then calculated and generated <K3, V3>. Finally, output them and stored in

HDFS.

2.3.2 MapReduce Behaviors in A Cluster

A MapReduce job includes one JobTracker and several TaskTrackers. The JobTracker

as the governor of all TaskTrackers, which responsible for scheduling and

management, running on the master node as usual. JobTracker assigned the

Mappers and Reducers to the idle TaskTrackers. The TaskTrackers performed these

tasks so they should be run on the DataNode. DataNode stored the date also

calculated the data. If any of the TaskTracker failure, the JobTracker assigned

another TaskTracker to reprocess the data.

One of the most important features of MapReduce is the local computing. One

DataNode is the node of data storing also the data processing. The framework of

MapReduce made the greatest efforts to store and process data on the same node.

This approach can effectively reduce the transmission of data in the network, in

order to reduce the demand of the network. " Moving Computation is Cheaper than

Moving Data ". [17]

Because of this, size of split is equal to or less than the size of HDFS, in order to

prevent one split stored crossed the two nodes.

Another most important feature of MapReduce is the output of the Mappers was

stored in the local disks, rather than HDFS, under normal circumstances. Because in

the model, the output of mapper is the intermediate result, and will be deleted after

the task finished. It will lead to loss of performance if the output stored in HDFS, due

to the backup mechanism of HDFS.

2.4 Hadoop Job Scheduling

The JobTracker is running on the master node, and the TaskTrackers are running on

the slave nodes.

The flow chart below shows the whole Hadoop Job Scheduling. [16]

 16 / 59

Configuration

Mapper

Reducer

Job

JobClient

JobId JobInProgress

TaskInProgress1

TaskInProgress2

Job Jar

Input

Output

Task

TaskTracker$TaskInProgress

MapTaskRunner

ReduceTaskRunner

TaskRunner

Mapper

Reducer

MapTask

ReduceTask

InputFormat OutputFormat

Submitjo
bId

Add new job

TaskInProgress2

TaskInProgress1

Create map

Cr
ea

te
 m

ap

C
re

a
te

re
d
u
ce

Create reduce

h
e
a
rt

b
e
a
t

TaskInProgress create Task

T
ra

n
sl

a
te

L
a
n
u
ch

T
a
sk

A
ct

io
n

U
p
lo

ad
 j
ar

 j
o
b
.x

m
l
sp

lit
s

to
 h

d
fs

cr
ea

te

creat

e

cr
e
a
te

Invoke

Invoke

In
v
o
k
e

In
vo

ke
 m

ap

Invoke

reduce

Invoke

In
v
o
k
e

In
vo

ke

Data

download

Data

Client Application JobTracker

HDFS TaskTracker

Process

Data

Invoke

Figure 6: Job scheduling flow chart

2.5 HashMap

Hash map is Hash table based implementation of the Map interface. This

implementation provides all of the optional map operations, and permits null values

and the null key. (The HashMap class is roughly equivalent to Hashtable, except that

it is unsynchronized and permits nulls.) This class makes no guarantees as to the

order of the map; in particular, it does not guarantee that the order will remain

constant over time. [7]

This implementation provides constant-time performance for the basic operations

(get and put), assuming the hash function disperses the elements properly among

the buckets. Iteration over collection views requires time proportional to the

"capacity" of the HashMap instance (the number of buckets) plus its size (the

 17 / 59

number of key-value mappings). Thus, it's very important not to set the initial

capacity too high (or the load factor too low) if iteration performance is important.

[7]

Due to the size of relation set is small enough, we can store it in each single node's

memory, however we cannot just copy the relation set into memory because it is

low efficiency to search based on text.

Depending on the characteristics of data and architecture, we keep it as key/value

pairs. In here, we choosing HashMap as the carrier of relation file is based on its

property.

As far as we know, an instance of hash map has two parameters that affect its

performance: initial capacity and load factor. To avoid rehash, we set initial capacity

= 25000000 and load factor = 0.99.

//build a Hash Map

private Map<Integer,Integer> obs_relation =

 new HashMap<Integer,Integer> (25000000, 0.99f);

//...

So, in our application the hash map instance will not rehash until the capacity is full,

in here is 25000000 * 0.99 = 24750000. And in our relation file, the number of row is

24153638.

 18 / 59

Chapter 3. Related Work

3.1 Classic Join on Hadoop

In traditional databases such as MySQL, the join-operation is very common and very

time consuming. Similarly, it is common and time consuming in Hadoop.

3.1.1 Default Join

Default join, or map reduce join, or simply said reduce join, is a two steps join which

can work well in most situations. It implements the MapReduce spirit very well.

For example, given two tables, R and S. In here, R is implied the relation table, and S

is the table for segmentation. In the map phase, Mappers read two types of table

and adding a custom tag, in order to distinguish the two types of table. The main

task is tagging the data files. In reduce phase, different Reducers got the <key, value>

pairs which had corresponding tag. Then, data join (Cartesian product) for those

have the same key. Join operation is in the reduce phase. [4] [10]

The default join can work well for most situations. One of the exceptions is that both

R and S tables are huge. It will cause a plenty of data there are lots of data

transmission over network from Mappers to Reducers. The network transfer will be

the bottleneck in this case.

3.1.2 Map Side Join

Map side join is one step join, which removed eliminating the reduce phase and thus

eliminating the transfer of data over the network between map phase and reduce

phase. Map join aims to use only the map phase so no data will be transferred on

network. It cannot be widely used based on the size of the R table, which is limited

by the size of memory.

We gave more details in Chapter 4.

3.1.3 Pig and Hive Join

Pig and hive are the frameworks which build on the top of Hadoop. The Java codes

are not required. Instead, users should write declarative (for Hive) or procedural (for

Pig) queries to perform tasks.

However, neither of these tools has addressed the problem of join. Pig has

implemented fragment-duplicate join (known as Map side join), and also skew join

that can handle skewed tables. The user may need to give some hints to the

 19 / 59

compiler, indicating what the join method the system should be used. This is not a

good way to handle the problem because the user may don't know what is the Map

Side Join. Furthermore, the user may give a wrong hint which could hurt the

performance. [4]

3.1.4 Other Joins

Semi Join

In Semi join, only the joined date will transmission in the network. It actually is the

map side join, which the R table is huge. Hence extracted the R table to a small and

can be totally stored in the memory. [19]

JDBM-based map join

JDBM is a transactional persistence engine for Java. It aims to be a fast and simple

persistence engine, can be used to store a mix of objects and BLOBs, and all updates

are done in a transitionally safe manner. As the name suggests, JDBM-based map

join will utilize JDBM to store the hash table so that memory wouldn't be an issue.

[20]

The question to ask about JDBM-based map join is the efficiency of look-ups in a

hash table that could reside on the disk. Furthermore, introducing a between-layer

will decrease the control over the performance of such a join plan. [4]

3.2 Previous Work

The previous paper Methods for Large-scale Semantic Expansion on Hadoop

Architecture is to scale out the semantic annotation data of NCBO Resource Index

that they have implemented on MySQL server on single machine. [2] [3]

And in order to improve the performance of the computation the author

implemented some algorithms for data-parallel computing and data combining.

In that thesis, several tests had been implemented. Included MapReduce Join and

Pig Join in HDFS and HBase, also the normal left join in MySQL.

In the thesis he said, the experimental results provide insights that are about the

MapReduce platform and comparisons of particular join algorithms on the Hadoop

platform. [2]

 20 / 59

Chapter 4. Implementation

4.1 Datasets and Cluster Environment

4.1.1 Data Sets Used

Original files from NCBO, they have the data size from MBs to GBs. In the NCBO

Resource Index, they include two types of table for join, OBS Database and OBR

Resources. In this paper, we note these two types are type R table and type S table.

R is for Relation and S is Split.

NCBO Resource

Index
Table Type File Name

Number

of Tuples
File Size

OBS Database R obs_relation.txt 24 M 658 MB

OBR Resource S obr_wp_annotation.txt 54 K 1.79 MB

OBR Resource S obr_ct_annotation.txt 165 M 6 ,073 MB

OBR Resource S obr_pm_annotation.txt 442 M 17.4 GB

Table 1: Original files from NCBO Resources Index

In order to facilitate the experiment and get more accurate results, we generated

the following data based on the original NCBO Resource Index files.

Generation method is in the Appendix.

obs_relation.25%.txt 6,038,410 lines 157 MB 25% of obs_relation.txt

obs_relation.50%.txt 12,076,819 lines 316 MB 50% of obs_relation.txt

obs_relation.75%.txt 18,115,229 lines 485 MB 75% of obs_relation.txt

obs_relation.txt 24,153,638 lines 658 MB 100% of obs_relation.txt

Table 2: Generated R tables

obr.1k.txt 1,000 lines 31.3 KB 1k tuples

obr.10k.txt 10,000 lines 328.58 KB 10 k tuples

obr.100k.txt 100,000 lines 3.28 MB 100 k tuples

obr.1M.txt 1,000,000 lines 33.99 MB 1m tuples

obr.10M.txt 10,000,000 lines 339.95 MB 10m tuples

obr.100M.txt 100,000,000 lines 3.32 GB 100m tuples

obr.1B.txt 1,000,000,000 lines 33.2 GB 1b tuples

Table 3: Generated S Tables by Exponential Growth

 21 / 59

obr.100M.txt 100,000,000 lines 3.32 GB 100m tuples

obr.200M.txt 200,000,000 lines 6.64 GB 200m tuples

obr.300M.txt 300,000,000 lines 9.96 GB 300m tuples

obr.400M.txt 400,000,000 lines 13.28 GB 400m tuples

obr.500M.txt 500,000,000 lines 16.6 GB 500m tuples

obr.600M.txt 600,000,000 lines 19.92 GB 600m tuples

obr.700M.txt 700,000,000 lines 23.24 GB 700m tuples

obr.800M.txt 800,000,000 lines 26.56 GB 800m tuples

obr.900M.txt 900,000,000 lines 29.88 GB 900m tuples

obr.1B.txt 1,000,000,000 lines 33.2 GB 1b tuples

Table 4: Generated S Tables by Linear Growth

4.1.2 Cluster Specification

Experiment was performed on a cluster of eleven nodes. One node is the Master

node and other ten nodes are slave nodes.

Each node was a HP server with one six-core AMD Phenom™ II X6 1090T Processor

and a 16GB ECC DDR-2 memory chip.

The storage of each node is 1TB SATA-2 drive running at 7200rpm.

Nodes are connected by an isolated HP Pro Curve 2650 100BaseTx-FD switch.

Each node is running Linux version 2.6.18 - 194.32.1.el5.centos.plus (gcc version

4.1.2 20080704 (Red Hat 4.1.2-48)) and Java 1.6.0_23 for 64 bit.

The assignment of 11 nodes in the cluster is in the below.

haisen1: NameNode, JobTracker.

From haisen2 to haisen11: DataNode, TaskTracker.

4.1.3 Hadoop Configurations

The HDFS typical block size is 64MB. It could be modified up to 1GB. We found that

HDFS does not support blocks to 2GB or greater, it had been confirmed as a bug in

Hadoop 0.20.203.0 or previous versions. The size of the heap memory is 1.74 GB and

the maximum use of memory for child JVMs is 10,240 MB. Hadoop version in our

cluster is 0.20.203.0.

Configuration direction is in the Appendix.

 22 / 59

4.2 Algorithm of Map Side Join

The NCBO Resource Index currently includes 22 different data resources and

comprising over 3.5 million data elements in 16.4 billion annotations stored in a 1.5

TB MySQL database. [2]

And we can simply use SQL Syntax to get left outer join result. It is like this:

SELECT

 obs_relation_mem.parent_concept_id AS concept_id

 obs_relation_mem.level AS parent_level,

 obr_ct_annotation_cut.concept_id AS child_concept_id,

 obr_ct_annotation_cut.element_id AS element_id

FROM

 ncbo_test_1.obr_ct_annotation_cut

LEFT OUTER JOIN

 ncbo_test_1.obs_relation_mem

ON

 obr_ct_annotation_cut.concept_id = obs_relation_mem.concept_id

WHERE

 obs_relation_mem.parent_concept_id IS NOT NULL;

With the increasing of date, it will not be computed in an acceptable time on a single

machine. When scaling from 22 resources to 100 or more, the limitation of one

single machine will be appeared. A distributed processing method should be

implemented. Hence we are going to use a scale out method to solve this problem.

[2] [3] [12]

As far as we know, left join operation can be implemented in several ways depending

on the characteristics of data and architecture. One of such scenarios consists of one

main large dataset and one or more small datasets.

Map side join in our experiment aims to use only the map phase for a better

performance than map-reduce join. It is based on the experience that to integrate

the reduce phase function in map phase so there will no data transferred on the

network between the map and the reduce side.

In our algorithm, each map task is initialized for every split parts in S table, then the

job could include a plenty of map tasks, depends on the amount of split of S table.

One single task component is from task lunched to task finished, includes four

phases.

1. Map task set up,

2. Reading relation set from HDFS and build a HashMap in memory,

3. Reading split table line by line and seeking in the HashMap, output

results,

 23 / 59

4. Map task clean up.

In here, we keep the R table, or obs_relation_mem, in memory by using hash map,

which has the best searching efficiency.

Each map task will follow the steps bellow.

1. The algorithm divided the obs_relation_mem as two part. One part is

related to the obr_ct_annotation_cut, which is concept_id in here.

Another part is not related, in there are parent_concept_id and level.

2. Then we stored the irrelevant part as key/value pairs in the hash map in

memory. In here, we using concept_id as the keys and parent_concept_id

+ level as the corresponding values.

3. The initialization of Hash Map

4. After the initialization of Hash Map, a Map task reads one line of

Annotation_set_2 or, obr_ct_annotation_cut, then get the

obr_ct_annotation_cut.concept_id which is equal with

obs_relation_mem.concept_id. It can probe the value in the Hash Map,

combine the corresponding values of obr_ct_annotation_cut with the

same key.

5. Then, the task can figure out all data in obr_ct_annotation_cut one by

one. Assemble useful fields and get output.

4.3 Control the Number of Mapper

We can use mapred.tasktracker.map.tasks.maximum to control the maximum map

task slots on one node.

This value is depends on the hardware, such as the number of CPU and the size of

memory, also the demands of the map task itself.

In our experiment, we set the value is 2, it means one node can lunch two

synchronous map task, which is following the configuration of the previous thesis.

Based on 10 nodes we have, and each node can lunch 2 tasks. Theoretically optimal

is 20 as the maximum map tasks in the cluster. We can use mapred.map.tasks to set

this value. Therefore we have 20 map task slots in the cluster.

However, in some cases, the number of split block will be greater than the slots in a

cluster. Actually, there have a configuration method JobConf.setNumMapTasks(n) in

program to control the amount of map task. But it cannot work well because it is just

a hint to the Hadoop framework. The fact is the amount of map task is affected by

number of input split.

The default input split is 64 MB, same with block size of HDFS. It is not applicable if

input data was very big. In that case, hundreds of thousands of map tasks will cause

 24 / 59

the network of cluster congestion and to bear much pressure to Job Tracker. And

each split needs a map task to process, but the task initialization time is long. So

minimized the amount of map task is our primary task.

In another aspect, we also need to consider the best split size for the map. We will

get some test next.

To find the way to control the amount of map task, we inspected the Hadoop API [6],

in FileInputFormat.java, source code of Hadoop, we found that,

//..

splitSize = Math.max(minSize, Math.min(goalSize, blockSize));

//..

and we found that,

//..

goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);

minSize = Math.max(job.getLong("mapred.min.split.size", 1),

 minSplitSize);

//..

It means:

goalSize = totalSize / mapred.map.tasks

minSize = max (mapred.min.split.size, minSplitSize)

splitSize = max (minSize, min(goalSize, dfs.block.size))

Hence, there have three ways to control the input data size for map task.

1. Change the HDFS block size.

2. Change the MapReduce minimal split size.

3. Overwrite a custom MapReduce FileInputFormat to split the input data.

In this paper, we mainly focus on the first two methods, and we will find out which is

more suitable for our algorithm.

4.4 Performance Experiments

4.4.1 Block Size and Split Size Test

The default dfs.block.size is 64 MB, also same with the default mapred.min.split.size.

Generally, the amount of map task is equals the number of splits. And the number of

split is determined by dfs.block.size and mapred.min.split.size as we talked before.

In here, we test different block size and split size from 64 MB to 1024 MB.

 25 / 59

The graph showing below is the average task time components in each different split

size. In order to get a more meticulous result, we use 3 slots in 3 nodes in the test.

The data sets used are obs_relation.txt and obr_ct_annotation.txt

The following figure, we tested the composition of the different split size of the

average map task execution.

Each task includes three parts, task set up and clean up, read R table and initialized

to the HashMap in memory, left out join.

Figure 7: Time components of different split size

Seen from the figure, the proportion of join increased with the split size. And while

the split size is 1024 MB has the best capability.

Split size

(MB)

Task

amount
Task cost(s) Task other(s)

R table

init(s)
Join time(s)

64 95 42.3 3.9 28.3 10.1

128 48 47.4 3.8 28.5 15.1

256 24 57.8 3.6 28.7 25.5

512 12 78.2 3.5 28.4 46.3

1024 6 116.6 2.5 28.1 86

2048 3 not support not support not support not support

Table 5: Time cost of different split size

0 20 40 60 80 100 120 140

64

128

256

512

1024

Time Cost (Seconds)

Sp
lit

 S
iz

e
 (

M
B

)

task other (set up, clean up)

R table init

join time

Time components of different split size

 26 / 59

Assume to process 1 GB S table for join as one of our job. With the different split size,

here have a corresponded amount task.

Split size (MB) Task cost (s) Task amount Job cost (s)

64 42.3 16 676.8

128 47.4 8 379.2

256 57.8 4 231.2

512 78.2 2 156.4

1024 116.6 1 116.6

Table 6: Time cost of 1GB S Table

The figure shows below is the result of completed the 1GB join.

Figure 8: Job cost of different split size

In the figure, we see when the split size is 1024 MB, it has the fastest speed.

The figure below is the join speed (within the join phase) in the different size.

0

100

200

300

400

500

600

700

800

64 128 256 512 1024

Ti
m

e
 C

o
st

 (
Se

co
n

d
s)

Split Size (MB)

Job cost of different split sizes

 27 / 59

Figure 9: Speed of Join

It can be seen that when the split size is 1024 MB has the best performance.

From the above two aspects we both find that 1024 MB as the split size will have the

best efficiency of the job.

Therefore, we could to set mapred.min.split.size 1024 MB to achieve our goal.

In here, dfs.block.size theoretically can also be set as the same purpose, but it may

cause a performance problem, we will explain in the next.

4.4.2 Replication Number Test

The default number of replication is 3 in normal Hadoop cluster.

We found that in some cases, if a file is accessed by many other nodes

simultaneously and the number of replication is less (for example, the replication

factor is 2 in here), it will occur an additional replication event, and takes extra time

to the copy operations.

We also found that in some cases, while the dfs.block.size is increasing or the

dfs.replication is decreasing, it will both have a greater likelihood of occurrence of a

sharp decline in performance when read a file in HDFS.

The reason is the file blocks are not very evenly distributed in nodes of a cluster.

0

2

4

6

8

10

12

14

64 128 256 512 1024

Sp
e

e
d

 (
M

B
/s

)

Split Size (MB)

Speed of join (MB/s)

 28 / 59

From the figure shows below, we can see when the replication factor is 2 and 3, the

job cost will have a large difference.

Figure 10: A comparison of time cost by different number of replication

In general, more replications will cause the more time cost in data copy operations

and more transmission in the network. As the results in 500M and 1B, it shows

clearly the Rep = 2 time cost is faster than Rep = 3.

However, due to the presence of some blocks which belong to one file may too

concentrated in one DataNode, it will cause performance degradation while the

other DataNode read the file at the same time.

In the figure, the reason of unstable for Rep = 2 in 400M, 600M, 700M, 800M, 900M

is because the file blocks heavily concentrated in one node's disk.

An example, the S table file obr.400M.txt (13.28 GB) is stored in the HDFS and has 54

*2 = 108 blocks as the whole when the replication factor is 2, the block size is 256

MB.

We found that it has 54 blocks stored in the node 152.94.1.122 in totally 108 blocks.

That is one case of the uneven distribution and can cause the bad performance.

The figure 11 shows the uneven distribution phenomenon in a cluster.

0:00:00

0:01:26

0:02:53

0:04:19

0:05:46

0:07:12

0:08:38

0:10:05

A comparison of time cost by different number
of replication

Rep=2

Rep=3

 29 / 59

Figure 11: The cluster block distribution

In order to increase the number of blocks and to avoid performance degradation, we

set dfs.block.size = 64 MB, and dfs.replication = 3 at the same time. Another optional

method is to use the load balancing tool to eliminate the problem.

To avoid the additional replication event we can set the R table replication number is

10.

Configuration method is in the Appendix.

4.4.3 Relation Table Size Test

It is the time cost for load relation file. Include read file from HDFS and build as a

HashMap in the memory for the split files. (It is the initialization time previously

mentioned)

 30 / 59

Figure 12: Time cost on different size of the relation table

We just have one relation table and the NCBO should have different size of relation

table, so we test different size of relation files. The test results show that it almost

linearly proportional to table size.

In another word, with different size of relation table, it will cost proportionate

initialization time.

4.4.4 Split Table Size Test

Exponential distribution is from 1k to 1b.

25% 50% 75% 100%

1 8.1 14.6 21.2 27.5

0

5

10

15

20

25

30

Ti
m

e

Time spent on different size of the relation
tables

0:00:00

0:01:26

0:02:53

0:04:19

0:05:46

0:07:12

0:08:38

1 K 10 K 100 K 1 M 10 M 100 M 1 B

Time cost in scale of exponential
distribution

 31 / 59

Figure 13: Time cost in scale of exponential distribution

As we set 1GB in mapred.min.split.size, the number of the task is the same 1 from 1K

to 10 M. With a long initialization time, time cost seems nearly from 1K to 1M.

Linear distribution is from 100m to 1b.

Figure 14: Time cost in scale of linear distribution

From the following table, the task number is 20 when the number of tuples is 600M,

and the task number is 24 when the number of tuples is 700M.

Because we have 20 slots in the cluster (the cluster can lunch 20 map task at the

same time. Based on 10 nodes multiply 2 map task per node).

When the number of task is 24, it will launch 20 map tasks at the first time, and

other 4 tasks will be waited in the queue. It is due to the job scheduling mechanism

of Hadoop. After one previously task finished and then launch the new task. It will

have a long initialization time, so it means extra time gap in the figure.

Number of tuples File size Task amount Time cost (s)

1 K 31.3 KB 1 49

10 K 328.58 KB 1 49

100 K 3.28 MB 1 47

1 M 33.99 MB 1 51

10 M 339.95 MB 1 78

100 M 3.32 GB 4 152

200 M 6.64 GB 7 175

0:00:00

0:01:26

0:02:53

0:04:19

0:05:46

0:07:12

0:08:38

100 M 200 M 300 M 400 M 500 M 600 M 700 M 800 M 900 M 1 B

Time cost in scale of linear distribution

 32 / 59

300 M 9.96 GB 10 190

400 M 13.28 GB 14 215

500 M 16.6 GB 17 234

600 M 19.92 GB 20 22

700 M 23.24 GB 24 376

800 M 26.56 GB 27 418

900 M 29.88 GB 30 454

1 B 33.2 GB 34 473

Table 7: Time cost by different size of split table

Figure 15: Time cost by different size of split table

4.4.5 DistributedCache Test

Whether or not to use the DistributedCache has been a place of concern in this

paper. Because of the advantage of DistributedCache is referred by a lot of

references. Therefore, in our experiments also tested it.

Usage is in the Appendix.

0:00:00

0:01:26

0:02:53

0:04:19

0:05:46

0:07:12

0:08:38

Time cost on different size of split table

 33 / 59

Figure 16: Speed of Join

Figure 17: A Comparison of time cost by using and without using DistributedCache

According to the experiment results, DistributedCache did not prove its value.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

64 128 256 512 1024

Speed of join (MB/s)

With Cache

Without Cache

0:00:00

0:01:26

0:02:53

0:04:19

0:05:46

0:07:12

0:08:38

Ti
m

e

Number of Tuples

A comparison of time spent for using and
without using DistributedCache

With Cache

Without Cache

 34 / 59

The reason is, in our Map side join, it will not have the data transmitted during the

data processing, so the distributed cache will not be reflected in its advantage.

However, the use of DistributedCache is still to be recommended.

4.4.6 A Model Assumption

We have a model assumption for the Map side join in an ideal world.

If we ignore the setup and cleanup time of job, just focus on the job itself:

task_costtime = task_othertime + R_table_inittime + jointime

and

job_costtime = task_costtime × tasknum ÷ slotnum

There is the result with the expected and actual time cost:

Split size

(MB)

Task

amount
Task cost(s)

Speed of

join(MB/s)

Expected

cost(s)

Actual

cost(s)

64 95 42.3 6.4 1352 1253.1

128 48 47.4 8.5 757.6 726.7

256 24 57.8 10 462 455.4

512 12 78.2 11.1 312.8 321.8

1024 6 116.6 11.9 233.1 248.8

Table 8: Time contrast of expected and actual for different split size

Here is the time contrast of expected and actual for different split size.

 35 / 59

Figure 18: Expected and actual time cost for different split size

From the test result, we think our model assumption is valid. We can estimate the

time spent on a job by using this assumption.

0

200

400

600

800

1000

1200

1400

1600

64 128 256 512 1024

Ti
m

e
 c

o
st

 (
se

co
n

d
s)

split size (MB)

Expected and actual time cost for different
split size

Expected time

Actual time

 36 / 59

Chapter 5. Discussion on the Results

5.1 Strengths and Weaknesses of Map Side Join

One of the advantages is computation locally. In the experiments, the Map side join

works well and got a better result in previous works.

The Hadoop environment of Map side join is:

dfs.replication = 3

dfs.block.size = 67108864

mapred.min.split.size = 1073741824

mapred.tasktracker.map.tasks.maximum = 2

mapred.map.tasks = 20

mapred.child.java.opts = -Xmx10240m -XX:+UseGCOverheadLimit

Figure 19: Time cost comparison of the different Join methods

Replicat
ed Join
in HDFS

Replicat
ed Join

in
HBase

Hash
Join in
HDFS

Hash
Join in
HBase

MR
Reduce

Side
Join

MR
Joins
with

Singlet
on

MR in
HDFS
and

HBase

MR
Map
Side
Join

obr_wp_ann. 29 50 32 43 36 19 41 49

obr_ct_ann. 799 523 350 482 108 69 2780 178

obr_pm_ann. 1794 707 454 583 548 138 3650 241

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
n

e
 C

o
st

 (
Se

co
n

d
s)

Time Cost Comparison of the Different Join
Methods

 37 / 59

The DataNode is also the computing node. Based on the framework characteristics,

MapReduce always trying to ensure that calculating in the same node with the data

stored. In this way, to effectively reduce the transmission of data in the network.

However, it is also has very obvious disadvantages.

One disadvantage is the output of the Map Side Join is the final result, rather than

the result of intermediate data. Hence, the data should be stored in HDFS. It caused

the loss of performance due to the mechanism of HDFS backup.

Another disadvantage is that the Map Side Join is limited by the size of the R table.

According to the algorithm, R table should completely place into the memory. If R

table is huge, or the node's memory is small, it will existence such a risk that failure

of load the R table.

5.2 The Usefulness of DistributedCache

DistributedCache lowers the total amount of data transmission demand to each task

by specified that only one data copy will be sent to each node and all the tasks

running on that node share this copy. However, this benefit comes at the cost of the

overhead introduced by converting data from HDFS to local disk. [4]

Its function is used to save bandwidth, rather than save time. As the result in Figure

17, we can see not much difference between the use and without use the

DistributedCache. The DistributedCache did not show its advantages in our

experiments is because the Map side join eliminated the data transmission from

intermediate data to the Reduce side. Hence, the network bandwidth is not the

bottleneck in our scenario any more.

5.3 Load Balancing in HDFS

The load balancing problem is a most important issue in many systems. In HDFS, the

NameNode supervised the load balance of the whole cluster, according to the

heartbeat mechanism and the location of blocks stored. It could allocate the new

block stored in the DataNode which has low load situation and high write

performance.

In addition, a tool of load balancing is existed in Hadoop which can be launched by

the administrator, to balance the blocks in HDFS. The main function of the tool is to

calculate the load state and migrate blocks in the cluster.

We use the tool while the new DataNode adding in the cluster, or we found the

cluster is not had a good load balance situation. An instance is the figure 11.

 38 / 59

The tool should not be used when the load of the cluster is high. Because if used the

tool, it will cause network congestion and high delay for the client.

The usage is in the Appendix.

 39 / 59

Chapter 6. Conclusions and Future Work

6.1 NCBO Resource Index Solution

In our master project, we studied the classic join methods on Hadoop, and the

features of HDFS, include HDFS accessing, block characteristics, load balancing,

replication strategy, also the DistributedCache function.

We explored the Hadoop job scheduling, and the MapReduce behaviors in the

cluster, also includes the split size, replication and number of Mapper control.

For various aspects of experiments, we implemented an algorithm of Map side join,

generated sufficient number of data which based on the NCBO Resource Index and

we contrasted the results also made distinctions of them. At the end, we proposed a

hypothetical model of the job time cost calculating.

Based on the result of the experiments, we adjusted the various parameters and we

got the solution of NCBO Resource Index. In the final experiment, the Map side join

works well and got a better result in previous works.

6.2 Future Work

In our Map side join, we found that the network transfer will not be the bottleneck,

but the hard disk drivers.

To improve the throughput of the hard disk, one assumption is to add more hard

disks and use RAID 0 (Redundant Array of Independent Disk) method to assemble

them as an array.

We think the RAID 0 mode not only can greatly improve hard disk speed in a node,

but also without sacrificing the hard disk capacity. And because we use HDFS to store

data, we do not need to consider the problem of data loss.

 40 / 59

Figure 20: RAID 0 mode

Although we think that the Map side join should be one of the good solutions for the

NCBO Resource Index at present. However, things are always changing. With the

development and renewal of data structures, someday the method we are using may

be failure. New and more easy method will be used.

For example, the Pig and Hive that tools to manipulate data on Hadoop may have

greater developments in the future. Actually, Hadoop 2.0.0-alpha is released at this

moment, many bugs fixed and more functions are supported.

We believe that more and more, better and better methods are waiting for us to

discovery. New technologies are constantly emerging, accompanied by the

emergence of new problems.

"No the best but only better" is what we are pursuing.

 41 / 59

Reference

[1] NCBO Project http://bmir.stanford.edu/projects/view.php/ncbo

[2] B. Byambajav, "Methods for Large-scale Semantic Expansion on Hadoop

Architecture.", UiS, Stavanger, Norway

[3] T. W. Wlodarczyk, P. LePendu, N. Shah, C. Rong, "Scaling-out the NCBO Resource

Index Processing and Maintenance", UiS, Stavanger, Norway

[4] G. Luo, L. Dong, "Adaptive Join Plan Generation in Hadoop", Duke University,

Durham NC, USA

[5] F. N. Afrati and J. D. Ullman, "Optimizing joins in a map-reduce environment",

Lausanne, Switzerland

[6] Hadoop API document,

http://Hadoop.apache.org/common/docs/r0.20.203.0/api/

[7] Java API document, http://docs.oracle.com/javase/6/docs/api/

[8] Yahoo! Hadoop Tutorial http://developer.yahoo.com/Hadoop/tutorial/

[9] Liu Peng, "Actual Hadoop - Open a shortcut leading to cloud computing",

Electronics Industry Pub. Date: (2011), ISBN-13: 978-7121144752

[10] J. Dean, S. Ghemawat, "MapReduce: Simplified Data Processing on Large

Clusters", Google Inc.

[11] HDFS http://wiki.huihoo.com/wiki/HDFS

[12] B. Byambajav, T. W. Wlodarczyk, C. Rong, "Performance of Left Outer Join on

Hadoop with Right Side within Single Node Memory Size", UiS, Stavanger, Norway

[13] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian, "A

comparison of join algorithms for log processing in MapReduce", Indianapolis,

Indiana, USA

[14] Hadoop Technology Forum http://www.Hadoopor.com

[15] Hadoop.apache.org lists

http://mail-archives.apache.org/mod_mbox/Hadoop-general/

[16] Hadoop Source and Process Analysis

https://www.google.com/search?ie=UTF-8&q=Hadoop%E6%BA%90%E7%A0%81%E4

%BB%A5%E5%8F%8A%E6%B5%81%E7%A8%8B%E8%A7%A3%E6%9E%90

http://bmir.stanford.edu/projects/view.php/ncbo
http://hadoop.apache.org/common/docs/r0.20.203.0/api/
http://docs.oracle.com/javase/6/docs/api/
http://developer.yahoo.com/hadoop/tutorial/
http://wiki.huihoo.com/wiki/HDFS
http://www.hadoopor.com/
http://mail-archives.apache.org/mod_mbox/hadoop-general/
https://www.google.com/search?ie=UTF-8&q=Hadoop%E6%BA%90%E7%A0%81%E4%BB%A5%E5%8F%8A%E6%B5%81%E7%A8%8B%E8%A7%A3%E6%9E%90
https://www.google.com/search?ie=UTF-8&q=Hadoop%E6%BA%90%E7%A0%81%E4%BB%A5%E5%8F%8A%E6%B5%81%E7%A8%8B%E8%A7%A3%E6%9E%90

 42 / 59

[17] HDFS Architecture Guide

http://Hadoop.apache.org/common/docs/r0.20.203.0/hdfs_design.html

[18] Technical Instructions for Configuring OBR Workflow

http://www.bioontology.org/wiki/images/5/5f/Population_And_Maintenance_Of_T

he_OBR_Index.doc

[19] Semijoin-based distributed database query optimization research

http://wenku.baidu.com/view/ae7442db7f1922791688e877.html

[20] JDBM project http://jdbm.sourceforge.net/

[21] Populating OBS database

http://www.bioontology.org/wiki/index.php/Populating_OBS_database

http://hadoop.apache.org/common/docs/r0.20.203.0/hdfs_design.html
http://www.bioontology.org/wiki/images/5/5f/Population_And_Maintenance_Of_The_OBR_Index.doc
http://www.bioontology.org/wiki/images/5/5f/Population_And_Maintenance_Of_The_OBR_Index.doc
http://wenku.baidu.com/view/ae7442db7f1922791688e877.html
http://jdbm.sourceforge.net/
http://www.bioontology.org/wiki/index.php/Populating_OBS_database

 43 / 59

Appendix

I. HDFS Common Commands

List the HDFS files

$ bin/Hadoop fs -ls

List files in one folder

$ bin/Hadoop fs -ls <folder directory>

Upload files to the HDFS

$ bin/Hadoop fs -put <source file> <destination file>

Download files from the HDFS

$ bin/Hadoop fs -get <source file> <destination file>

Delete files in the HDFS

$ bin/Hadoop fs -rmr <target file(s)>

View the contents of the file in the HDFS

$ bin/Hadoop fs -cat <target file(s)>

Report basic information of the HDFS

$ bin/Hadoop dfsadmin -report

Exit the safe mode

$ bin/Hadoop dfsadmin -safemode leave

 44 / 59

Enter the safe mode

$ bin/Hadoop dfsadmin -safemode enter

Balanced the load in the cluster

$ bin/start-balancer.sh

Change the size of the block of a file

$ bin/Hadoop distcp -D dfs.block.size=<block size> <source file>

<destination file>

Change the replication of a file

$ bin/Hadoop distcp -D dfs.replication=<replication amount> <source file>

<destination file>

 45 / 59

II. Usage of the Programs

Left Out Join With DistributedCache

$ bin/Hadoop jar JoinWithCache.jar <input> <output> <relation set>

Left Out Join Without DistributedCache

$ bin/Hadoop jar JoinWithoutCache.jar <input> <output>

 46 / 59

III. Generation Methods of NCBO Resource Index

Generate the files

$ java FillData <source file> <destination file> <number of line>

Count the lines of a file

$ java CountLine <target file>

 47 / 59

IV. Hadoop Configuration in Our Experiment

File: core-site.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>

<!-- In: conf/core-site.xml -->

<property>

 <name>Hadoop.tmp.dir</name>

 <value>/local/ming/dfs/tmp</value>

 <description>A base for other temporary directories.</description>

</property>

<property>

 <name>fs.default.name</name>

 <value>hdfs://haisen1:54310</value>

 <description>The name of the default file system. A URI whose

 scheme and authority determine the FileSystem implementation.

</description>

</property>

<!-- more generic optimizations -->

</configuration>

File: hdfs-site.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>

<!-- In: conf/hdfs-site.xml -->

<property>

 <name>dfs.replication</name>

 48 / 59

 <value>3</value>

 <description>Default block replication.

 The actual number of replications can be specified when the file is

created.

 </description>

</property>

<property>

 <name>dfs.name.dir</name>

 <value>/local/ming/dfs/name</value>

 <description> </description>

</property>

<property>

 <name>dfs.data.dir</name>

 <value>/local/ming/dfs/data</value>

 <description> </description>

</property>

<property>

 <name>dfs.block.size</name>

 <value>67108864</value>

 <description>HDFS blocksize of 64MB for large file-systems. Default is

64M </description>

</property>

</configuration>

File: mapred-site.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>

<!-- In: conf/mapred-site.xml -->

<property>

 <name>mapred.job.tracker</name>

 49 / 59

 <value>haisen1:54311</value>

 <description>The host and port that the MapReduce job tracker runs at.

 If "local", then jobs are run in-process as a single map and reduce task.

 </description>

</property>

<property>

 <name>mapred.tasktracker.map.tasks.maximum</name>

 <value>2</value>

 <description>Should be the number of processors - 1.

 </description>

</property>

<property>

 <name>mapred.map.tasks</name>

 <value>20</value>

 <description>Should be 10x the number of slaves or more.

 </description>

</property>

<property>

 <name>mapred.min.split.size</name>

 <value>1073741824</value>

 <description>1GB</description>

</property>

<property>

 <name>mapred.child.java.opts</name>

 <value>-Xmx10240m -XX:+UseGCOverheadLimit</value>

</property>

</configuration>

File: masters

haisen1

File: slaves

 50 / 59

haisen2

haisen3

haisen4

haisen5

haisen6

haisen7

haisen8

haisen9

haisen10

haisen11

 51 / 59

V. Source Codes

File: JoinWithCache.java

// Usage : JoinWithCache <input> <output> <cachefile>

import java.util.Calendar; //for test

import java.util.Date;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.Hadoop.conf.*;

import org.apache.Hadoop.filecache.DistributedCache;

import org.apache.Hadoop.fs.Path;

import org.apache.Hadoop.io.*;

import org.apache.Hadoop.mapred.*;

import org.apache.Hadoop.util.Tool;

import org.apache.Hadoop.util.ToolRunner;

public class JoinWithCache extends Configured implements Tool {

 public static class JoinMapper extends MapReduceBase implements

Mapper<LongWritable, Text, Text, Text> {

 private Map<Integer,Integer> obs_relation = new

HashMap<Integer,Integer>(25000000, 0.99f); //build hashmap for

obs_relation, stored in memory

 private Text annotations = new Text();

 private Text others = new Text();

 public void configure(JobConf job) {

 Path[] cacheFiles = new Path[0];

 try {

 cacheFiles = DistributedCache.getLocalCacheFiles(job);

 for (Path cacheFile : cacheFiles){

 //if

(cacheFile.getName().indexOf("obs_relation.txt") != -1){

 BufferedReader fis = new BufferedReader(new

FileReader(cacheFile.toString()));

 String line = null;

 52 / 59

 printTime("Start to read the relation file @ ");

 while ((line = fis.readLine()) != null) { //read

obs_relation file

 String[] field = line.split(",", 4);

 if (field[1] != null){

 obs_relation.put(Integer.valueOf(field[1]),

Integer.valueOf(field[2])); //"59133273", "4865045,4866938,1"

 //System.out.println(Integer.valueOf(field[1]));

 }

 }

 printTime("Finish to read the relation file @ ");

 //}

 }

 }catch(Exception e){

 System.err.println(e.toString());

 }

 }

 public void map(LongWritable key, Text value,

OutputCollector<Text, Text> output, Reporter reporter) throws

IOException {

 String line = value.toString(); //read

obr_**_annotation_cut file

 String[] record = line.split(",", 3);

 if (record.length == 3){

 String concept_id = record[1];

 String other1 = record[0];

 String other2 = record[2];

 int index_id = Integer.parseInt(concept_id);

 if (obs_relation.get(index_id) != null){

 annotations.set(obs_relation.get(Integer.parseInt(concept_id)).to

String()); //

 others.set(other1+other2);

 output.collect(annotations, others); //collect(K

key, V value) Adds a key/value pair to the output.

 }

 }

 }

 }

 static void printTime(String note) {

 53 / 59

 Calendar rightNow = Calendar.getInstance();

 Date time = rightNow.getTime();

 System.out.println(note + time.toString());

 }

 static int printUsage() {

 System.out.println("JoinWithCache <input> <output>

<cachefile>");

 ToolRunner.printGenericCommandUsage(System.out);

 return -1;

 }

 @Override

 public int run(String[] arg0) throws Exception {

 // TODO Auto-generated method stub

 JobConf jobConf = new JobConf(getConf(),JoinWithCache.class);

 jobConf.setJobName("join with distribute");

 jobConf.setMapperClass(JoinMapper.class);

 jobConf.setInputFormat(TextInputFormat.class);

 jobConf.setOutputFormat(TextOutputFormat.class);

 jobConf.setMapOutputKeyClass(Text.class);

 jobConf.setMapOutputValueClass(Text.class);

 jobConf.setNumReduceTasks(0);

 // Make sure there are exactly 3 parameters left.

 if (arg0.length != 3) {

 System.out.println("ERROR: Wrong number of parameters: " +

arg0.length + " instead of 3.");

 return printUsage();

 }

 DistributedCache.addCacheFile(new Path(arg0[2]).toUri(),

jobConf);

 FileInputFormat.setInputPaths(jobConf,new Path(arg0[0]));

 FileOutputFormat.setOutputPath(jobConf, new Path(arg0[1]));

 JobClient.runJob(jobConf);

 return 0;

 }

 /**

 * @param args

 * @throws Exception

 */

 54 / 59

 public static void main(String[] args) throws Exception {

 // TODO Auto-generated method stub

 int res = ToolRunner.run(new Configuration(), new

JoinWithCache(), args);

 System.exit(res);

 }

}

File: JoinWithoutCache.java

// Usage : JoinWithoutCache <input> <output>

import java.util.Calendar; //for test

import java.util.Date;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.Hadoop.conf.*;

import org.apache.Hadoop.fs.*;

import org.apache.Hadoop.io.*;

import org.apache.Hadoop.mapred.*;

import org.apache.Hadoop.util.Tool;

import org.apache.Hadoop.util.ToolRunner;

public class JoinWithoutCache extends Configured implements Tool {

 public static class MapClass extends MapReduceBase implements

Mapper<LongWritable, Text, Text, Text> {

 Map<Integer,Integer> obs_relation = new

HashMap<Integer,Integer>(25000000, 0.99f); //build hashmap for

obs_relation, stored in memory

 Text annotations = new Text();

 Text others = new Text();

 public void configure(JobConf job) {

 Path filePath = new

Path("hdfs://haisen1:54310/ming/res/obs_relation.txt");

 try {

 55 / 59

 FileSystem fs = FileSystem.get(job);

 BufferedReader fis = new BufferedReader(new

InputStreamReader(fs.open(filePath)));

 String line1 = null;

 printTime("Start to read the relation file @ ");

 while ((line1 = fis.readLine()) != null) { //read

obs_relation file

 String[] field = line1.split(",", 4);

 if (field[1] != null){

 obs_relation.put(Integer.valueOf(field[1]),

Integer.valueOf(field[2])); //"59133273", "4865045,4866938,1"

 //System.out.println(Integer.valueOf(field[1]));

 }

 }

 printTime("Finish to read the relation file @ ");

 }catch(Exception e){

 System.err.println(e.toString());

 }

 }

 public void map(LongWritable key, Text value,

OutputCollector<Text, Text> output, Reporter reporter) throws

IOException {

 String line2 = value.toString(); //read

obr_**_annotation_cut file

 String[] record = line2.split(",", 3);

 if (record.length == 3){

 String concept_id = record[1];

 String other1 = record[0];

 String other2 = record[2];

 int index_id = Integer.parseInt(concept_id);

 if (obs_relation.get(index_id) != null){

 annotations.set(obs_relation.get(Integer.parseInt(concept_id)).to

String()); //

 others.set(other1+other2);

 output.collect(annotations, others); //collect(K

key, V value) Adds a key/value pair to the output.

 }

 }

 }

 }

 56 / 59

 static void printTime(String note) {

 Calendar rightNow = Calendar.getInstance();

 Date time = rightNow.getTime();

 System.out.println(note + time.toString());

 }

 static int printUsage() {

 System.out.println("JoinWithoutCache <input> <output>");

 ToolRunner.printGenericCommandUsage(System.out);

 return -1;

 }

 @Override

 public int run(String[] arg) throws Exception {

 // TODO Auto-generated method stub

 JobConf jobConf = new JobConf(getConf(),JoinWithoutCache.class);

 jobConf.setJobName("Join withOUT distribute");

 jobConf.setMapperClass(MapClass.class);

 jobConf.setInputFormat(TextInputFormat.class);

 jobConf.setOutputFormat(TextOutputFormat.class);

 jobConf.setMapOutputKeyClass(Text.class);

 jobConf.setMapOutputValueClass(Text.class);

 jobConf.setNumReduceTasks(0);

 // Make sure there are exactly 2 parameters.

 if (arg.length != 2) {

 System.out.println("ERROR: Wrong number of parameters: " +

arg.length + " instead of 2.");

 return printUsage();

 }

 FileInputFormat.setInputPaths(jobConf,new Path(arg[0]));

 FileOutputFormat.setOutputPath(jobConf, new Path(arg[1]));

 JobClient.runJob(jobConf);

 return 0;

 }

 /**

 * @param args

 * @throws Exception

 */

 public static void main(String[] args) throws Exception {

 // TODO Auto-generated method stub

 57 / 59

 int res = ToolRunner.run(new Configuration(), new

JoinWithoutCache(), args);

 System.exit(res);

 }

}

File: FillData.java

import java.io.*;

public class FillData{

 public static void rwFileByLines(String inputFile, String outputFile,

long lineToWrite, boolean isRepeatRead){

 long line = 0;

 try {

 File in = new File(inputFile);

 BufferedReader reader = new BufferedReader(new

FileReader(inputFile));

 BufferedWriter writer = new BufferedWriter(new

FileWriter(outputFile));

 String tempLine = null;

 reader.mark((int) (in.length() + 1));

 while (line < lineToWrite) {

 tempLine = reader.readLine();

 if(tempLine == null){

 if(line == 0){

 System.out.println("Error: Input file is null.");

 break;

 }else{

 reader.reset();

 tempLine = reader.readLine();

 }

 }

 //write file data

 writer.write(tempLine);

 writer.newLine();

 if((line % 1000000)==0){

 writer.flush();

 // System.out.print("Writing: " + (line / 1000000) + "

million lines. \r");

 }

 line++;

 58 / 59

 }

 writer.close();

 reader.close();

 System.out.println("lines are written: " + line);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args) {

 if (args.length != 3) {

 System.out.println("ERROR: Wrong number of parameters: " +

args.length + " instead of 3.");

 System.out.println("FillData <input> <output>

<lineToWrite>");

 System.exit(-1);

 }

 String inputFile = args[0];

 String outputFile = args[1];

 long lineToWrite = Long.parseLong(args[2]);

 rwFileByLines(inputFile, outputFile,lineToWrite, true);

 }

}

File: CountLine.java

import java.io.*;

public class CountLine{

 public static void readByLines(String inputFile){

 long line = 0;

 try {

 BufferedReader reader = new BufferedReader(new

FileReader(inputFile));

 while (reader.readLine()!= null){

 line++;

 if((line % 1000000)==0){

 System.out.print("Reading: " + (line / 1000000) + "

million lines. \r");

 }

 }

 59 / 59

 reader.close();

 System.out.println("Finish. Lines are read: " + line);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args) {

 if (args.length != 1) {

 System.out.println("ERROR: Wrong number of parameters: " +

args.length + " instead of 1.");

 System.out.println("CountLine <input>");

 System.exit(-1);

 }

 String inputFile = args[0];

 readByLines(inputFile);

 }

}

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1 Motivation
	1.2 The Thesis Outline

	Chapter 2. Background
	2.1 NCBO Resource Index
	2.1.1 OBR Resources
	2.1.2 OBS Database

	2.2 HDFS and DistributedCache
	2.2.1 HDFS Features
	2.2.2 DistributedCache in Brinf

	2.3 Map and Reduce
	2.3.1 MapReduce Programming Model
	2.3.2 MapReduce Behaviors in A Cluster

	2.4 Hadoop Job Scheduling
	2.5 HashMap

	Chapter 3. Related Work
	3.1 Classic Join on Hadoop
	3.1.1 Default Join
	3.1.2 Map Side Join
	3.1.3 Pig and Hive Join
	3.1.4 Other Joins

	3.2 Previous Work

	Chapter 4. Implementation
	4.1 Datasets and Cluster Environment
	4.1.1 Data Sets Used
	4.1.2 Cluster Specification
	4.1.3 Hadoop Configurations

	4.2 Algorithm of Map Side Join
	4.3 Control the Number of Mapper
	4.4 Performance Experiments
	4.4.1 Block Size and Split Size Test
	4.4.2 Replication Number Test
	4.4.3 Relation Table Size Test
	4.4.4 Split Table Size Test
	4.4.5 DistributedCache Test
	4.4.6 A Model Assumption

	Chapter 5. Discussion on the Results
	5.1 Strengths and Weaknesses of Map Side Join
	5.2 The Usefulness of DistributedCache
	5.3 Load Balancing in HDFS

	Chapter 6. Conclusions and Future Work
	6.1 NCBO Resource Index Solution
	6.2 Future Work

	Reference
	Appendix
	I. HDFS Common Commands
	II. Usage of the Programs
	III. Generation Methods of NCBO Resource Index
	IV. Hadoop Configuration in Our Experiment
	V. Source Codes

