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Abstract 

 

Ontologies are representations of the entities and relationships that structure an 

application area. Ontologies are important for tasks such as data integration, 

natural-language processing, information retrieval, and decision support. 

NCBO Resource Index is a system for ontology based annotation and indexing of 

biomedical data. With the increasing of its data, a distributed processing method 

should be implemented, which can store, compute and inquire those large-scale data 

in an efficient way. 

This paper is based on the master thesis of B. Byambajav, Methods for Large-scale 

Semantic Expansion on Hadoop Architecture, and going forward to seek a better 

solution for process NCBO Resource Index data and forced on performance 

optimization of left outer join on the Map side. In this paper, we researched and 

contrasted different kinds of join algorithms. 

In order to implement more effective experiments, we studied the characteristics of 

HDFS and DistributedCache, then an algorithm of left outer join on map side had 

been implemented on the Hadoop platform, and for the purpose of performance 

optimization, we inspected several methods to control amount of map task. 

Further, according to the result of the experiment, we adjusted critical parameters 

and we got a lot of valuable conclusions. Based on these conclusions, we found the 

map side join works well and got a better result in previous works. 
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Chapter 1. Introduction 

 

1.1 Motivation 

What the NCBO Resource Index situation is, data is in the continuous growth, 

traditional DBMS ways to storage and to process data is limited by the capacity of 

the single machine. A scale-out solution, which fully uses of the power of cloud 

computing should be utilized for the constantly changed biological world. [1] 

The purpose of this thesis is trying to find a better situation to solve this problem, 

which is processing the date of NCBO Resource Index. 

Our project is based on the master thesis of B. Byambajav, Methods for Large-scale 

Semantic Expansion on Hadoop Architecture, and going forward to analyze and 

optimize the performance of left outer join, especially in Map side join. 

In our project, we are going to study the classic join methods on Hadoop, the 

features of HDFS, and we are going to explore Hadoop job scheduling, the 

MapReduce behaviors in the cluster. For various aspects of experiments, we are 

going to implement algorithms of Map side join, generate sufficient number of data 

which based on the NCBO Resource Index and we will contrast the results. 

 

1.2 The Thesis Outline 

Chapter 1 is the introduction of our motivation and the thesis outline. 

Chapter 2 is the background of resources and principles we used in our thesis. 

Chapter 3 is the theories and previous work that related in our thesis. 

Chapter 4 is the implementation of our project, which includes the algorithm, 

hypothesis and experiments. Based on the experimental results, we got much 

valuable knowledge. 

Chapter 5 is the discussions of the work, we talked about the advantage and 

disadvantage of our algorithm, also some experiences in our experiments. 

Chapter 6 is the conclusions and future work. We proposed some proposals which 

could be a good solution for the NCBO Resource Index. 
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Chapter 2. Background 

 

2.1 NCBO Resource Index 

The National Center for Biomedical Ontology Resource Index is a system for ontology 

based annotation and indexing of biomedical data. The fundamental functionality of 

the system is to enable users to locate biomedical data resources related to 

particular concepts. That functionality is based on semantically enhanced search. The 

Resource Index currently includes 22 different data resources comprising over 3.5 

million data elements resulting in 16.4 billion annotations stored in a 1.5 terabyte 

MySQL database. [3] 

 

 

Figure 1: NCBO Resource Index workflow 
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Population of OBR and OBS tables using properties files and shell script is described 

in document Technical_Instructions_for_Configuring_OBR_Workflow. [18] 

 

 

2.1.1 OBR Resources 

OBR Resources is the workflow executions in the biomedical resources. 

The figure shows below is the population of the OBR tables. [18] 

 

Figure 2: Population of the OBR tables 
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2.1.2 OBS Database 

The OBS database contains the data used by the OBA/OBR workflow. It contains the 

concepts and terms used for direct annotations as well as the relations between 

concepts used during the semantic expansion step. [21] 

 

Figure 3: Population of the OBS database 
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2.2 HDFS and DistributedCache 

2.2.1 HDFS Features 

HDFS is designed to support large data sets, same as the programs. Write data only 

once, read data once or several times for a better streaming read speed demand. 

The feature is for batch processing, rather than for the user-interactive. Hence, the 

application should access the data set in a streaming way. It is not a typical operation 

in a conventional file system because HDFS is focused on data throughput, rather 

than data access response time. So it will not be necessary enforced rigidly demand 

by POSIX. [9] [11] [17] 

Due to the rule of accessing HDFS files is Write-Once Read-Many, and HDFS file is 

strict compliance with only one write operation in any time, once a file is created and 

written, the file will not be modified after the closure. This rule can simplify the data 

consistency and make high throughput data access. 

HDFS can support hundreds of nodes in a cluster of millions of files and large data 

sets. A typical HDFS file may have the size of GBs to TBs. It should reliably store a 

large number of files in a large number of nodes, by the form of a block sequence for 

each file. Except for the last block, other blocks have a same size. One should be 

noted is that the block size and replication number can be specified for each file in 

the file created or later. 

Each block can locate in different data nodes. The strategy of how to choice the 

replication placement seriously affects the reliability and performance of HDFS, 

because HDFS tries to satisfy a reading operation from the nearest replication. If 

there is replication on the same rack with the read node, it will directly read it. The 

HDFS can read replications in the cluster across racks. Nodes communication in two 

different racks will go through the switch, in most cases, bandwidth is worse than 

transfer in the same rack. [11] 

Actually in the ideal situation, the data blocks uniformly distributed in every node 

can make clients loading evenly. A great influence on the performance will occur if 

the unbalanced load. It will ultimately affect the efficiency of the program. 

Once a client request to create a file, it will not immediately request to the 

NameNode. The fact is that the HDFS client cached data in the local file at the first, 

the application will write to the temporary local file until the accumulative size of 

local files is reached to the HDFS block size, the client contact NameNode and then 

refresh it. [11] 

The application requires streaming write files. If the client is written directly to the 

remote file system, without a local buffer, will have a considerable impact on the 

speed and network throughput. When the client needs to write data to the HDFS, 
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like said before, the data first write to a local file, assuming that the HDFS replication 

factor is 3, when the accumulation of a local file up to the block size, the client 

requests the list of DataNodes. This list describes the DataNodes which take over the 

blocks copy. The client is to refresh the data block to a DataNode. The first DataNode 

start to receive data to a small position (4kb), write them to the local disk, and 

transfer to the list in the second DataNode, so turn to the second data node, the 

second DataNode transfer data to the third. A DataNode can accept data from the 

former DataNode, but also the data flow transfer to the next DataNode, therefore, 

the data flowing style is passed from one data node to the next. [17] 

 

Figure 4: HDFS Architecture 

 

2.2.2 DistributedCache in Brinf 

DistributedCache can download the file to the local machine from HDFS. Using 

DistributedCache to copy files to each node could be a potential improvement in the 

performance. [6] 

The use of the DistributedCache is in the Appendix.  

Like the Hadoop's slogan, "Moving Computation is Cheaper than Moving Data". The 

main purpose is to reduce congestion caused by the data transmit in the Map phase, 

and as much as possible to calculate the arrangement at this stage. The final copy of 

the data process postponed to the Reduce phase. 
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However, in our Map side join, it will not have the data transmitted during the data 

processing, so the distributed cache will not be reflected in its advantage. 

We got some instances to prove our viewpoint in Chapter 4. 

 

2.3 Map and Reduce 

MapReduce is a distributed programming model for large-scale data processing, 

which has been proposed by Google in OSDI '04 (Operating Systems Design and 

Implementation). 

It abstracts the large-scale distributed data processing to one platform and two 

user-defined functions, Map and Reduce. The Map function is responsible for 

processing sub-data sets and produce intermediate results, and the Reduce function 

is responsible for reduction of the intermediate results and generates the final 

results of processing. The platform is responsible for scheduling, fault tolerance and 

data management. [10] 

2.3.1 MapReduce Programming Model 

split0

split1

split2

Map()

Map()

Map()

Reduce()

Reduce()

part0

part1

Input Mappers Intermediate  data Reducers Output

 

Figure 5: A general flow diagram of MapReduce 

 

From the figure we can see the core of the model is function map and reduce. There 

are both user defined, which can be customized for their own needs. Transforming 

the input <key, value> to output, which is one or a group of <key, value>. 

In Map phase, MapReduce Framework segmented the input data to the fixed-size 

splits. Then each of the split further decomposed as key/value pairs. After that, 

Hadoop established a map task for every split, which is Mapper we called, to execute 

the user-defined map function. The function used <K1, V1> in split as input, 

calculated the intermediate result <K2, V2>. Sorted the intermediate results by using 

K2, and generated a new list which the value had the same key, <K2, list(V2)>. Finally, 
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these tuples are grouped by the range of key value, and distributed to the different 

Reduce tasks. 

In Reduce phase, Reducer sorted the received date, which came from the different 

Mappers, then invoked the user defined reduce function, to process the input <K2, 

list(V2)>. Then calculated and generated <K3, V3>. Finally, output them and stored in 

HDFS. 

 

2.3.2 MapReduce Behaviors in A Cluster 

A MapReduce job includes one JobTracker and several TaskTrackers. The JobTracker 

as the governor of all TaskTrackers, which responsible for scheduling and 

management, running on the master node as usual. JobTracker assigned the 

Mappers and Reducers to the idle TaskTrackers. The TaskTrackers performed these 

tasks so they should be run on the DataNode. DataNode stored the date also 

calculated the data. If any of the TaskTracker failure, the JobTracker assigned 

another TaskTracker to reprocess the data. 

One of the most important features of MapReduce is the local computing. One 

DataNode is the node of data storing also the data processing. The framework of 

MapReduce made the greatest efforts to store and process data on the same node. 

This approach can effectively reduce the transmission of data in the network, in 

order to reduce the demand of the network. " Moving Computation is Cheaper than 

Moving Data ". [17] 

Because of this, size of split is equal to or less than the size of HDFS, in order to 

prevent one split stored crossed the two nodes. 

Another most important feature of MapReduce is the output of the Mappers was 

stored in the local disks, rather than HDFS, under normal circumstances. Because in 

the model, the output of mapper is the intermediate result, and will be deleted after 

the task finished. It will lead to loss of performance if the output stored in HDFS, due 

to the backup mechanism of HDFS. 

 

2.4 Hadoop Job Scheduling 

The JobTracker is running on the master node, and the TaskTrackers are running on 

the slave nodes. 

The flow chart below shows the whole Hadoop Job Scheduling. [16] 
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Figure 6: Job scheduling flow chart 

 

2.5 HashMap 

Hash map is Hash table based implementation of the Map interface. This 

implementation provides all of the optional map operations, and permits null values 

and the null key. (The HashMap class is roughly equivalent to Hashtable, except that 

it is unsynchronized and permits nulls.) This class makes no guarantees as to the 

order of the map; in particular, it does not guarantee that the order will remain 

constant over time. [7] 

This implementation provides constant-time performance for the basic operations 

(get and put), assuming the hash function disperses the elements properly among 

the buckets. Iteration over collection views requires time proportional to the 

"capacity" of the HashMap instance (the number of buckets) plus its size (the 
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number of key-value mappings). Thus, it's very important not to set the initial 

capacity too high (or the load factor too low) if iteration performance is important. 

[7] 

Due to the size of relation set is small enough, we can store it in each single node's 

memory, however we cannot just copy the relation set into memory because it is 

low efficiency to search based on text. 

Depending on the characteristics of data and architecture, we keep it as key/value 

pairs. In here, we choosing HashMap as the carrier of relation file is based on its 

property. 

As far as we know, an instance of hash map has two parameters that affect its 

performance: initial capacity and load factor. To avoid rehash, we set initial capacity 

= 25000000 and load factor = 0.99. 

//build a Hash Map 

private Map<Integer,Integer> obs_relation =  

  new HashMap<Integer,Integer> (25000000, 0.99f); 

//... 

So, in our application the hash map instance will not rehash until the capacity is full, 

in here is 25000000 * 0.99 = 24750000. And in our relation file, the number of row is 

24153638. 
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Chapter 3. Related Work 

 

3.1 Classic Join on Hadoop 

In traditional databases such as MySQL, the join-operation is very common and very 

time consuming. Similarly, it is common and time consuming in Hadoop. 

3.1.1 Default Join 

Default join, or map reduce join, or simply said reduce join, is a two steps join which 

can work well in most situations. It implements the MapReduce spirit very well. 

For example, given two tables, R and S. In here, R is implied the relation table, and S 

is the table for segmentation. In the map phase, Mappers read two types of table 

and adding a custom tag, in order to distinguish the two types of table. The main 

task is tagging the data files. In reduce phase, different Reducers got the <key, value> 

pairs which had corresponding tag. Then, data join (Cartesian product) for those 

have the same key. Join operation is in the reduce phase. [4] [10]  

The default join can work well for most situations. One of the exceptions is that both 

R and S tables are huge. It will cause a plenty of data there are lots of data 

transmission over network from Mappers to Reducers. The network transfer will be 

the bottleneck in this case. 

 

3.1.2 Map Side Join 

Map side join is one step join, which removed eliminating the reduce phase and thus 

eliminating the transfer of data over the network between map phase and reduce 

phase. Map join aims to use only the map phase so no data will be transferred on 

network. It cannot be widely used based on the size of the R table, which is limited 

by the size of memory. 

We gave more details in Chapter 4. 

 

3.1.3 Pig and Hive Join 

Pig and hive are the frameworks which build on the top of Hadoop. The Java codes 

are not required. Instead, users should write declarative (for Hive) or procedural (for 

Pig) queries to perform tasks. 

However, neither of these tools has addressed the problem of join. Pig has 

implemented fragment-duplicate join (known as Map side join), and also skew join 

that can handle skewed tables. The user may need to give some hints to the 
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compiler, indicating what the join method the system should be used. This is not a 

good way to handle the problem because the user may don't know what is the Map 

Side Join. Furthermore, the user may give a wrong hint which could hurt the 

performance. [4] 

 

3.1.4 Other Joins 

Semi Join 

In Semi join, only the joined date will transmission in the network. It actually is the 

map side join, which the R table is huge. Hence extracted the R table to a small and 

can be totally stored in the memory. [19] 

JDBM-based map join 

JDBM is a transactional persistence engine for Java. It aims to be a fast and simple 

persistence engine, can be used to store a mix of objects and BLOBs, and all updates 

are done in a transitionally safe manner. As the name suggests, JDBM-based map 

join will utilize JDBM to store the hash table so that memory wouldn't be an issue. 

[20] 

The question to ask about JDBM-based map join is the efficiency of look-ups in a 

hash table that could reside on the disk. Furthermore, introducing a between-layer 

will decrease the control over the performance of such a join plan. [4] 

 

3.2 Previous Work 

The previous paper Methods for Large-scale Semantic Expansion on Hadoop 

Architecture is to scale out the semantic annotation data of NCBO Resource Index 

that they have implemented on MySQL server on single machine. [2] [3] 

And in order to improve the performance of the computation the author 

implemented some algorithms for data-parallel computing and data combining. 

In that thesis, several tests had been implemented. Included MapReduce Join and 

Pig Join in HDFS and HBase, also the normal left join in MySQL. 

In the thesis he said, the experimental results provide insights that are about the 

MapReduce platform and comparisons of particular join algorithms on the Hadoop 

platform. [2] 
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Chapter 4. Implementation 

 

4.1 Datasets and Cluster Environment 

4.1.1 Data Sets Used 

Original files from NCBO, they have the data size from MBs to GBs. In the NCBO 

Resource Index, they include two types of table for join, OBS Database and OBR 

Resources. In this paper, we note these two types are type R table and type S table. 

R is for Relation and S is Split. 

NCBO Resource 

Index 
Table Type File Name 

Number 

of Tuples 
File Size 

OBS Database R obs_relation.txt 24 M 658 MB 

OBR Resource S obr_wp_annotation.txt 54 K 1.79 MB 

OBR Resource S obr_ct_annotation.txt 165 M 6 ,073 MB 

OBR Resource S obr_pm_annotation.txt 442 M 17.4 GB 

Table 1: Original files from NCBO Resources Index 

 

In order to facilitate the experiment and get more accurate results, we generated 

the following data based on the original NCBO Resource Index files. 

Generation method is in the Appendix. 

obs_relation.25%.txt 6,038,410 lines 157 MB 25% of obs_relation.txt 

obs_relation.50%.txt 12,076,819 lines 316 MB 50% of obs_relation.txt 

obs_relation.75%.txt 18,115,229 lines 485 MB 75% of obs_relation.txt 

obs_relation.txt 24,153,638 lines 658 MB 100% of obs_relation.txt 

Table 2: Generated R tables 

 

obr.1k.txt 1,000 lines 31.3 KB 1k tuples 

obr.10k.txt 10,000 lines 328.58 KB 10 k tuples 

obr.100k.txt 100,000 lines 3.28 MB 100 k tuples 

obr.1M.txt 1,000,000 lines 33.99 MB 1m tuples 

obr.10M.txt 10,000,000 lines 339.95 MB 10m tuples 

obr.100M.txt 100,000,000 lines 3.32 GB 100m tuples 

obr.1B.txt 1,000,000,000 lines 33.2 GB 1b tuples 

Table 3: Generated S Tables by Exponential Growth 
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obr.100M.txt 100,000,000 lines 3.32 GB 100m tuples 

obr.200M.txt 200,000,000 lines 6.64 GB 200m tuples 

obr.300M.txt 300,000,000 lines 9.96 GB 300m tuples 

obr.400M.txt 400,000,000 lines 13.28 GB 400m tuples 

obr.500M.txt 500,000,000 lines 16.6 GB 500m tuples 

obr.600M.txt 600,000,000 lines 19.92 GB 600m tuples 

obr.700M.txt 700,000,000 lines 23.24 GB 700m tuples 

obr.800M.txt 800,000,000 lines 26.56 GB 800m tuples 

obr.900M.txt 900,000,000 lines 29.88 GB 900m tuples 

obr.1B.txt 1,000,000,000 lines 33.2 GB 1b tuples 

Table 4: Generated S Tables by Linear Growth 

 

4.1.2 Cluster Specification 

Experiment was performed on a cluster of eleven nodes. One node is the Master 

node and other ten nodes are slave nodes. 

Each node was a HP server with one six-core AMD Phenom™ II X6 1090T Processor 

and a 16GB ECC DDR-2 memory chip. 

The storage of each node is 1TB SATA-2 drive running at 7200rpm.  

Nodes are connected by an isolated HP Pro Curve 2650 100BaseTx-FD switch. 

Each node is running Linux version 2.6.18 - 194.32.1.el5.centos.plus (gcc version 

4.1.2 20080704 (Red Hat 4.1.2-48)) and Java 1.6.0_23 for 64 bit. 

The assignment of 11 nodes in the cluster is in the below. 

haisen1: NameNode, JobTracker. 

From haisen2 to haisen11: DataNode, TaskTracker. 

 

4.1.3 Hadoop Configurations 

The HDFS typical block size is 64MB. It could be modified up to 1GB. We found that 

HDFS does not support blocks to 2GB or greater, it had been confirmed as a bug in 

Hadoop 0.20.203.0 or previous versions. The size of the heap memory is 1.74 GB and 

the maximum use of memory for child JVMs is 10,240 MB. Hadoop version in our 

cluster is 0.20.203.0. 

Configuration direction is in the Appendix. 
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4.2 Algorithm of Map Side Join  

The NCBO Resource Index currently includes 22 different data resources and 

comprising over 3.5 million data elements in 16.4 billion annotations stored in a 1.5 

TB MySQL database. [2] 

And we can simply use SQL Syntax to get left outer join result. It is like this: 

SELECT 

  obs_relation_mem.parent_concept_id AS concept_id 

  obs_relation_mem.level AS parent_level, 

  obr_ct_annotation_cut.concept_id AS child_concept_id, 

  obr_ct_annotation_cut.element_id AS element_id 

FROM  

  ncbo_test_1.obr_ct_annotation_cut 

LEFT OUTER JOIN  

  ncbo_test_1.obs_relation_mem 

ON 

  obr_ct_annotation_cut.concept_id = obs_relation_mem.concept_id 

WHERE  

  obs_relation_mem.parent_concept_id IS NOT NULL; 

With the increasing of date, it will not be computed in an acceptable time on a single 

machine. When scaling from 22 resources to 100 or more, the limitation of one 

single machine will be appeared. A distributed processing method should be 

implemented. Hence we are going to use a scale out method to solve this problem. 

[2] [3] [12] 

As far as we know, left join operation can be implemented in several ways depending 

on the characteristics of data and architecture. One of such scenarios consists of one 

main large dataset and one or more small datasets. 

Map side join in our experiment aims to use only the map phase for a better 

performance than map-reduce join. It is based on the experience that to integrate 

the reduce phase function in map phase so there will no data transferred on the 

network between the map and the reduce side. 

In our algorithm, each map task is initialized for every split parts in S table, then the 

job could include a plenty of map tasks, depends on the amount of split of S table. 

One single task component is from task lunched to task finished, includes four 

phases. 

1. Map task set up, 

2. Reading relation set from HDFS and build a HashMap in memory, 

3. Reading split table line by line and seeking in the HashMap, output 

results, 
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4. Map task clean up. 

In here, we keep the R table, or obs_relation_mem, in memory by using hash map, 

which has the best searching efficiency. 

Each map task will follow the steps bellow. 

1. The algorithm divided the obs_relation_mem as two part. One part is 

related to the obr_ct_annotation_cut, which is concept_id in here. 

Another part is not related, in there are parent_concept_id and level. 

2. Then we stored the irrelevant part as key/value pairs in the hash map in 

memory. In here, we using concept_id as the keys and parent_concept_id 

+ level as the corresponding values. 

3. The initialization of Hash Map 

4. After the initialization of Hash Map, a Map task reads one line of 

Annotation_set_2 or, obr_ct_annotation_cut, then get the 

obr_ct_annotation_cut.concept_id which is equal with 

obs_relation_mem.concept_id. It can probe the value in the Hash Map, 

combine the corresponding values of obr_ct_annotation_cut with the 

same key. 

5. Then, the task can figure out all data in obr_ct_annotation_cut one by 

one. Assemble useful fields and get output. 

 

4.3 Control the Number of Mapper 

We can use mapred.tasktracker.map.tasks.maximum to control the maximum map 

task slots on one node. 

This value is depends on the hardware, such as the number of CPU and the size of 

memory, also the demands of the map task itself. 

In our experiment, we set the value is 2, it means one node can lunch two 

synchronous map task, which is following the configuration of the previous thesis. 

Based on 10 nodes we have, and each node can lunch 2 tasks. Theoretically optimal 

is 20 as the maximum map tasks in the cluster. We can use mapred.map.tasks to set 

this value. Therefore we have 20 map task slots in the cluster. 

However, in some cases, the number of split block will be greater than the slots in a 

cluster. Actually, there have a configuration method JobConf.setNumMapTasks(n) in 

program to control the amount of map task. But it cannot work well because it is just 

a hint to the Hadoop framework. The fact is the amount of map task is affected by 

number of input split. 

The default input split is 64 MB, same with block size of HDFS. It is not applicable if 

input data was very big. In that case, hundreds of thousands of map tasks will cause 



 24 / 59 

the network of cluster congestion and to bear much pressure to Job Tracker. And 

each split needs a map task to process, but the task initialization time is long. So 

minimized the amount of map task is our primary task. 

In another aspect, we also need to consider the best split size for the map. We will 

get some test next. 

To find the way to control the amount of map task, we inspected the Hadoop API [6], 

in FileInputFormat.java, source code of Hadoop, we found that, 

//.. 

splitSize = Math.max(minSize, Math.min(goalSize, blockSize)); 

//.. 

and we found that, 

//.. 

goalSize = totalSize / (numSplits == 0 ? 1 : numSplits); 

minSize = Math.max(job.getLong("mapred.min.split.size", 1), 

            minSplitSize);  

//.. 

It means: 

goalSize = totalSize / mapred.map.tasks 

minSize = max (mapred.min.split.size, minSplitSize) 

splitSize = max (minSize, min(goalSize, dfs.block.size)) 

Hence, there have three ways to control the input data size for map task. 

1. Change the HDFS block size. 

2. Change the MapReduce minimal split size. 

3. Overwrite a custom MapReduce FileInputFormat to split the input data. 

In this paper, we mainly focus on the first two methods, and we will find out which is 

more suitable for our algorithm. 

 

4.4 Performance Experiments 

4.4.1 Block Size and Split Size Test 

The default dfs.block.size is 64 MB, also same with the default mapred.min.split.size. 

Generally, the amount of map task is equals the number of splits. And the number of 

split is determined by dfs.block.size and mapred.min.split.size as we talked before. 

In here, we test different block size and split size from 64 MB to 1024 MB. 
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The graph showing below is the average task time components in each different split 

size. In order to get a more meticulous result, we use 3 slots in 3 nodes in the test. 

The data sets used are obs_relation.txt and obr_ct_annotation.txt 

The following figure, we tested the composition of the different split size of the 

average map task execution. 

Each task includes three parts, task set up and clean up, read R table and initialized 

to the HashMap in memory, left out join. 

 

Figure 7: Time components of different split size 

Seen from the figure, the proportion of join increased with the split size. And while 

the split size is 1024 MB has the best capability. 

Split size 

(MB) 

Task 

amount 
Task cost(s) Task other(s) 

R table 

init(s) 
Join time(s) 

64 95 42.3 3.9 28.3 10.1 

128 48 47.4 3.8 28.5 15.1 

256 24 57.8 3.6 28.7 25.5 

512 12 78.2 3.5 28.4 46.3 

1024 6 116.6 2.5 28.1 86 

2048 3 not support not support not support not support 

Table 5: Time cost of different split size 
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Assume to process 1 GB S table for join as one of our job. With the different split size, 

here have a corresponded amount task. 

Split size (MB) Task cost (s) Task amount Job cost (s) 

64 42.3 16 676.8 

128 47.4 8 379.2 

256 57.8 4 231.2 

512 78.2 2 156.4 

1024 116.6 1 116.6 

Table 6: Time cost of 1GB S Table 

 

The figure shows below is the result of completed the 1GB join. 

 

Figure 8: Job cost of different split size 

In the figure, we see when the split size is 1024 MB, it has the fastest speed. 

 

The figure below is the join speed (within the join phase) in the different size. 
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Figure 9: Speed of Join 

 

It can be seen that when the split size is 1024 MB has the best performance. 

From the above two aspects we both find that 1024 MB as the split size will have the 

best efficiency of the job. 

Therefore, we could to set mapred.min.split.size 1024 MB to achieve our goal. 

In here, dfs.block.size theoretically can also be set as the same purpose, but it may 

cause a performance problem, we will explain in the next. 

 

4.4.2 Replication Number Test 

The default number of replication is 3 in normal Hadoop cluster. 

We found that in some cases, if a file is accessed by many other nodes 

simultaneously and the number of replication is less (for example, the replication 

factor is 2 in here), it will occur an additional replication event, and takes extra time 

to the copy operations. 

We also found that in some cases, while the dfs.block.size is increasing or the 

dfs.replication is decreasing, it will both have a greater likelihood of occurrence of a 

sharp decline in performance when read a file in HDFS. 

The reason is the file blocks are not very evenly distributed in nodes of a cluster. 
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From the figure shows below, we can see when the replication factor is 2 and 3, the 

job cost will have a large difference. 

 

Figure 10: A comparison of time cost by different number of replication 

 

In general, more replications will cause the more time cost in data copy operations 

and more transmission in the network. As the results in 500M and 1B, it shows 

clearly the Rep = 2 time cost is faster than Rep = 3. 

However, due to the presence of some blocks which belong to one file may too 

concentrated in one DataNode, it will cause performance degradation while the 

other DataNode read the file at the same time. 

In the figure, the reason of unstable for Rep = 2 in 400M, 600M, 700M, 800M, 900M 

is because the file blocks heavily concentrated in one node's disk. 

An example, the S table file obr.400M.txt (13.28 GB) is stored in the HDFS and has 54 

*2 = 108 blocks as the whole when the replication factor is 2, the block size is 256 

MB. 

We found that it has 54 blocks stored in the node 152.94.1.122 in totally 108 blocks. 

That is one case of the uneven distribution and can cause the bad performance. 

The figure 11 shows the uneven distribution phenomenon in a cluster. 
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Figure 11: The cluster block distribution 

 

In order to increase the number of blocks and to avoid performance degradation, we 

set dfs.block.size = 64 MB, and dfs.replication = 3 at the same time. Another optional 

method is to use the load balancing tool to eliminate the problem. 

To avoid the additional replication event we can set the R table replication number is 

10. 

Configuration method is in the Appendix. 

 

4.4.3 Relation Table Size Test 

It is the time cost for load relation file. Include read file from HDFS and build as a 

HashMap in the memory for the split files. (It is the initialization time previously 

mentioned) 
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Figure 12: Time cost on different size of the relation table 

 

We just have one relation table and the NCBO should have different size of relation 

table, so we test different size of relation files. The test results show that it almost 

linearly proportional to table size. 

In another word, with different size of relation table, it will cost proportionate 

initialization time. 

 

4.4.4 Split Table Size Test 

Exponential distribution is from 1k to 1b. 
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Figure 13: Time cost in scale of exponential distribution 

 

As we set 1GB in mapred.min.split.size, the number of the task is the same 1 from 1K 

to 10 M. With a long initialization time, time cost seems nearly from 1K to 1M. 

Linear distribution is from 100m to 1b. 

 

Figure 14: Time cost in scale of linear distribution 

 

From the following table, the task number is 20 when the number of tuples is 600M, 

and the task number is 24 when the number of tuples is 700M. 

Because we have 20 slots in the cluster (the cluster can lunch 20 map task at the 

same time. Based on 10 nodes multiply 2 map task per node). 

When the number of task is 24, it will launch 20 map tasks at the first time, and 

other 4 tasks will be waited in the queue. It is due to the job scheduling mechanism 

of Hadoop. After one previously task finished and then launch the new task. It will 

have a long initialization time, so it means extra time gap in the figure. 

Number of tuples File size Task amount Time cost (s) 

1 K 31.3 KB 1 49 

10 K 328.58 KB 1 49 

100 K 3.28 MB 1 47 
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300 M 9.96 GB 10 190 

400 M 13.28 GB 14 215 

500 M 16.6 GB 17 234 

600 M 19.92 GB 20 22 

700 M 23.24 GB 24 376 

800 M 26.56 GB 27 418 

900 M 29.88 GB 30 454 

1 B 33.2 GB 34 473 

Table 7: Time cost by different size of split table 

 

 

Figure 15: Time cost by different size of split table 

 

4.4.5 DistributedCache Test 

Whether or not to use the DistributedCache has been a place of concern in this 

paper. Because of the advantage of DistributedCache is referred by a lot of 

references. Therefore, in our experiments also tested it. 

Usage is in the Appendix. 
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Figure 16: Speed of Join 

 

 

Figure 17: A Comparison of time cost by using and without using DistributedCache 

 

According to the experiment results, DistributedCache did not prove its value. 
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The reason is, in our Map side join, it will not have the data transmitted during the 

data processing, so the distributed cache will not be reflected in its advantage. 

However, the use of DistributedCache is still to be recommended. 

 

4.4.6 A Model Assumption 

We have a model assumption for the Map side join in an ideal world. 

If we ignore the setup and cleanup time of job, just focus on the job itself: 

task_costtime = task_othertime + R_table_inittime + jointime  

and  

job_costtime = task_costtime ×  tasknum  ÷ slotnum   

There is the result with the expected and actual time cost: 

 

Split size 

(MB) 

Task 

amount 
Task cost(s) 

Speed of 

join(MB/s) 

Expected 

cost(s) 

Actual 

cost(s) 

64 95 42.3 6.4 1352 1253.1 

128 48 47.4 8.5 757.6 726.7 

256 24 57.8 10 462 455.4 

512 12 78.2 11.1 312.8 321.8 

1024 6 116.6 11.9 233.1 248.8 

Table 8: Time contrast of expected and actual for different split size 

 

Here is the time contrast of expected and actual for different split size. 
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Figure 18: Expected and actual time cost for different split size 

 

From the test result, we think our model assumption is valid. We can estimate the 

time spent on a job by using this assumption. 
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Chapter 5. Discussion on the Results 

 

5.1 Strengths and Weaknesses of Map Side Join 

One of the advantages is computation locally. In the experiments, the Map side join 

works well and got a better result in previous works. 

The Hadoop environment of Map side join is: 

dfs.replication = 3 

dfs.block.size = 67108864 

mapred.min.split.size = 1073741824 

mapred.tasktracker.map.tasks.maximum = 2 

mapred.map.tasks = 20 

mapred.child.java.opts = -Xmx10240m -XX:+UseGCOverheadLimit 

 

 

Figure 19: Time cost comparison of the different Join methods 
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The DataNode is also the computing node. Based on the framework characteristics, 

MapReduce always trying to ensure that calculating in the same node with the data 

stored. In this way, to effectively reduce the transmission of data in the network. 

However, it is also has very obvious disadvantages. 

One disadvantage is the output of the Map Side Join is the final result, rather than 

the result of intermediate data. Hence, the data should be stored in HDFS. It caused 

the loss of performance due to the mechanism of HDFS backup. 

Another disadvantage is that the Map Side Join is limited by the size of the R table. 

According to the algorithm, R table should completely place into the memory. If R 

table is huge, or the node's memory is small, it will existence such a risk that failure 

of load the R table. 

 

5.2 The Usefulness of DistributedCache 

DistributedCache lowers the total amount of data transmission demand to each task 

by specified that only one data copy will be sent to each node and all the tasks 

running on that node share this copy. However, this benefit comes at the cost of the 

overhead introduced by converting data from HDFS to local disk. [4] 

Its function is used to save bandwidth, rather than save time. As the result in Figure 

17, we can see not much difference between the use and without use the 

DistributedCache. The DistributedCache did not show its advantages in our 

experiments is because the Map side join eliminated the data transmission from 

intermediate data to the Reduce side. Hence, the network bandwidth is not the 

bottleneck in our scenario any more. 

 

5.3 Load Balancing in HDFS 

The load balancing problem is a most important issue in many systems. In HDFS, the 

NameNode supervised the load balance of the whole cluster, according to the 

heartbeat mechanism and the location of blocks stored. It could allocate the new 

block stored in the DataNode which has low load situation and high write 

performance. 

In addition, a tool of load balancing is existed in Hadoop which can be launched by 

the administrator, to balance the blocks in HDFS. The main function of the tool is to 

calculate the load state and migrate blocks in the cluster. 

We use the tool while the new DataNode adding in the cluster, or we found the 

cluster is not had a good load balance situation. An instance is the figure 11. 
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The tool should not be used when the load of the cluster is high. Because if used the 

tool, it will cause network congestion and high delay for the client. 

The usage is in the Appendix. 
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Chapter 6. Conclusions and Future Work 

 

6.1 NCBO Resource Index Solution 

In our master project, we studied the classic join methods on Hadoop, and the 

features of HDFS, include HDFS accessing, block characteristics, load balancing, 

replication strategy, also the DistributedCache function. 

We explored the Hadoop job scheduling, and the MapReduce behaviors in the 

cluster, also includes the split size, replication and number of Mapper control. 

For various aspects of experiments, we implemented an algorithm of Map side join, 

generated sufficient number of data which based on the NCBO Resource Index and 

we contrasted the results also made distinctions of them. At the end, we proposed a 

hypothetical model of the job time cost calculating. 

Based on the result of the experiments, we adjusted the various parameters and we 

got the solution of NCBO Resource Index. In the final experiment, the Map side join 

works well and got a better result in previous works. 

 

6.2 Future Work 

In our Map side join, we found that the network transfer will not be the bottleneck, 

but the hard disk drivers. 

To improve the throughput of the hard disk, one assumption is to add more hard 

disks and use RAID 0 (Redundant Array of Independent Disk) method to assemble 

them as an array. 

We think the RAID 0 mode not only can greatly improve hard disk speed in a node, 

but also without sacrificing the hard disk capacity. And because we use HDFS to store 

data, we do not need to consider the problem of data loss. 
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Figure 20: RAID 0 mode 

Although we think that the Map side join should be one of the good solutions for the 

NCBO Resource Index at present. However, things are always changing. With the 

development and renewal of data structures, someday the method we are using may 

be failure. New and more easy method will be used. 

For example, the Pig and Hive that tools to manipulate data on Hadoop may have 

greater developments in the future. Actually, Hadoop 2.0.0-alpha is released at this 

moment, many bugs fixed and more functions are supported. 

We believe that more and more, better and better methods are waiting for us to 

discovery. New technologies are constantly emerging, accompanied by the 

emergence of new problems. 

"No the best but only better" is what we are pursuing. 
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Appendix 

 

I. HDFS Common Commands 

List the HDFS files 

$ bin/Hadoop fs -ls 

 

List files in one folder 

$ bin/Hadoop fs -ls <folder directory> 

 

Upload files to the HDFS 

$ bin/Hadoop fs -put <source file> <destination file> 

 

Download files from the HDFS 

$ bin/Hadoop fs -get <source file> <destination file> 

 

Delete files in the HDFS 

$ bin/Hadoop fs -rmr <target file(s)> 

 

View the contents of the file in the HDFS 

$ bin/Hadoop fs -cat <target file(s)> 

 

Report basic information of the HDFS 

$ bin/Hadoop dfsadmin -report 

 

Exit the safe mode 

$ bin/Hadoop dfsadmin -safemode leave 
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Enter the safe mode 

$ bin/Hadoop dfsadmin -safemode enter 

 

Balanced the load in the cluster 

$ bin/start-balancer.sh 

 

Change the size of the block of a file 

$ bin/Hadoop distcp -D dfs.block.size=<block size>  <source file> 

<destination file> 

 

Change the replication of a file 

$ bin/Hadoop distcp -D dfs.replication=<replication amount> <source file> 

<destination file> 
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II. Usage of the Programs 

Left Out Join With DistributedCache 

$ bin/Hadoop jar JoinWithCache.jar <input> <output> <relation set> 

 

Left Out Join Without DistributedCache 

$ bin/Hadoop jar JoinWithoutCache.jar <input> <output> 
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III. Generation Methods of NCBO Resource Index 

Generate the files 

$ java FillData <source file> <destination file> <number of line> 

 

Count the lines of a file 

$ java CountLine <target file> 
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IV. Hadoop Configuration in Our Experiment 

 

File: core-site.xml 

<?xml version="1.0"?> 

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

 

<!-- Put site-specific property overrides in this file. --> 

 

<configuration> 

 

<!-- In: conf/core-site.xml --> 

<property> 

  <name>Hadoop.tmp.dir</name> 

  <value>/local/ming/dfs/tmp</value> 

  <description>A base for other temporary directories.</description> 

</property> 

 

<property> 

  <name>fs.default.name</name> 

  <value>hdfs://haisen1:54310</value> 

  <description>The name of the default file system.  A URI whose 

  scheme and authority determine the FileSystem implementation.  

</description> 

</property> 

 

<!-- more generic optimizations --> 

</configuration> 

 

 

File: hdfs-site.xml 

<?xml version="1.0"?> 

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

 

<!-- Put site-specific property overrides in this file. --> 

 

<configuration> 

 

<!-- In: conf/hdfs-site.xml --> 

<property> 

  <name>dfs.replication</name> 
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  <value>3</value> 

  <description>Default block replication. 

  The actual number of replications can be specified when the file is  

created. 

  </description> 

</property> 

 

<property> 

  <name>dfs.name.dir</name> 

  <value>/local/ming/dfs/name</value> 

  <description> </description> 

</property> 

 

<property> 

  <name>dfs.data.dir</name> 

  <value>/local/ming/dfs/data</value> 

  <description> </description> 

</property> 

 

<property> 

  <name>dfs.block.size</name> 

  <value>67108864</value> 

  <description>HDFS blocksize of 64MB for large file-systems. Default is 

64M </description> 

</property> 

 

 

</configuration> 

 

 

File: mapred-site.xml 

<?xml version="1.0"?> 

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

 

<!-- Put site-specific property overrides in this file. --> 

 

<configuration> 

 

<!-- In: conf/mapred-site.xml --> 

<property> 

  <name>mapred.job.tracker</name> 
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  <value>haisen1:54311</value> 

  <description>The host and port that the MapReduce job tracker runs at. 

  If "local", then jobs are run in-process as a single map and reduce task. 

  </description> 

</property> 

 

<property> 

 <name>mapred.tasktracker.map.tasks.maximum</name> 

 <value>2</value> 

  <description>Should be the number of processors - 1. 

  </description> 

</property> 

 

<property> 

 <name>mapred.map.tasks</name> 

 <value>20</value> 

 <description>Should be 10x the number of slaves or more. 

  </description> 

</property> 

 

<property> 

 <name>mapred.min.split.size</name> 

 <value>1073741824</value> 

 <description>1GB</description> 

</property> 

 

<property> 

 <name>mapred.child.java.opts</name> 

 <value>-Xmx10240m -XX:+UseGCOverheadLimit</value> 

</property> 

 

</configuration> 

 

 

File: masters 

haisen1 

 

 

File: slaves 
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haisen2 

haisen3 

haisen4 

haisen5 

haisen6 

haisen7 

haisen8 

haisen9 

haisen10 

haisen11 
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V. Source Codes 

 

File: JoinWithCache.java 

// Usage : JoinWithCache <input> <output> <cachefile> 

import java.util.Calendar; //for test 

import java.util.Date; 

 

import java.io.BufferedReader; 

import java.io.FileReader; 

import java.io.IOException; 

import java.util.HashMap; 

import java.util.Map; 

 

import org.apache.Hadoop.conf.*; 

import org.apache.Hadoop.filecache.DistributedCache; 

import org.apache.Hadoop.fs.Path; 

import org.apache.Hadoop.io.*; 

import org.apache.Hadoop.mapred.*; 

import org.apache.Hadoop.util.Tool; 

import org.apache.Hadoop.util.ToolRunner; 

 

public class JoinWithCache extends Configured implements Tool { 

 

 public static class JoinMapper extends MapReduceBase implements 

Mapper<LongWritable, Text, Text, Text> { 

 

  private Map<Integer,Integer> obs_relation = new 

HashMap<Integer,Integer>(25000000, 0.99f); //build hashmap for 

obs_relation, stored in memory 

  private Text annotations = new Text(); 

  private Text others = new Text(); 

 

  public void configure(JobConf job) { 

   Path[] cacheFiles = new Path[0]; 

   try { 

    cacheFiles = DistributedCache.getLocalCacheFiles(job); 

    for (Path cacheFile : cacheFiles){ 

     //if 

(cacheFile.getName().indexOf("obs_relation.txt") != -1 ){ 

      BufferedReader fis = new BufferedReader(new 

FileReader(cacheFile.toString())); 

      String line = null; 
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      printTime("Start to read the relation file  @ "); 

      while ((line = fis.readLine()) != null) { //read 

obs_relation file 

       String[] field = line.split(",", 4); 

       if ( field[1] != null ){ 

       

 obs_relation.put(Integer.valueOf(field[1]), 

Integer.valueOf(field[2])); //"59133273", "4865045,4866938,1" 

       

 //System.out.println(Integer.valueOf(field[1])); 

       } 

      } 

      printTime("Finish to read the relation file @ "); 

     //} 

    } 

   }catch(Exception e){ 

    System.err.println(e.toString()); 

   } 

  } 

   

  public void map(LongWritable key, Text value, 

OutputCollector<Text, Text> output, Reporter reporter) throws 

IOException { 

   String line = value.toString(); //read 

obr_**_annotation_cut file 

   String[] record = line.split(",", 3); 

   if ( record.length == 3 ){ 

    String concept_id = record[1]; 

    String other1 = record[0]; 

    String other2 = record[2]; 

    int index_id = Integer.parseInt(concept_id); 

    if ( obs_relation.get(index_id) != null ){ 

    

 annotations.set(obs_relation.get(Integer.parseInt(concept_id)).to

String()); // 

     others.set(other1+other2); 

     output.collect(annotations, others); //collect(K 

key, V value) Adds a key/value pair to the output. 

    } 

   } 

  } 

 } 

  

 static void printTime(String note) { 
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  Calendar rightNow = Calendar.getInstance(); 

  Date time = rightNow.getTime(); 

  System.out.println(note + time.toString()); 

 } 

 

 static int printUsage() { 

  System.out.println("JoinWithCache <input> <output> 

<cachefile>"); 

  ToolRunner.printGenericCommandUsage(System.out); 

  return -1; 

 } 

 

 @Override 

 public int run(String[] arg0) throws Exception { 

  // TODO Auto-generated method stub 

  JobConf jobConf = new JobConf(getConf(),JoinWithCache.class); 

  jobConf.setJobName("join with distribute"); 

 

  jobConf.setMapperClass(JoinMapper.class); 

  jobConf.setInputFormat(TextInputFormat.class); 

  jobConf.setOutputFormat(TextOutputFormat.class); 

  jobConf.setMapOutputKeyClass(Text.class); 

  jobConf.setMapOutputValueClass(Text.class); 

  jobConf.setNumReduceTasks(0); 

 

  // Make sure there are exactly 3 parameters left. 

  if (arg0.length != 3) { 

   System.out.println("ERROR: Wrong number of parameters: " + 

arg0.length + " instead of 3."); 

   return printUsage(); 

  } 

  DistributedCache.addCacheFile(new Path(arg0[2]).toUri(), 

jobConf); 

  FileInputFormat.setInputPaths(jobConf,new Path(arg0[0])); 

  FileOutputFormat.setOutputPath(jobConf, new Path(arg0[1])); 

  JobClient.runJob(jobConf); 

  return 0; 

 } 

 

 

 /** 

 * @param args 

 * @throws Exception 

 */ 
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 public static void main(String[] args) throws Exception { 

  // TODO Auto-generated method stub 

  int res = ToolRunner.run(new Configuration(), new 

JoinWithCache(), args); 

  System.exit(res); 

 } 

} 

 

File: JoinWithoutCache.java 

// Usage : JoinWithoutCache <input> <output> 

import java.util.Calendar; //for test 

import java.util.Date; 

 

import java.io.BufferedReader; 

import java.io.InputStreamReader; 

import java.io.IOException; 

import java.util.HashMap; 

import java.util.Map; 

 

import org.apache.Hadoop.conf.*; 

import org.apache.Hadoop.fs.*; 

import org.apache.Hadoop.io.*; 

import org.apache.Hadoop.mapred.*; 

import org.apache.Hadoop.util.Tool; 

import org.apache.Hadoop.util.ToolRunner; 

 

public class JoinWithoutCache extends Configured implements Tool { 

 

 public static class MapClass extends MapReduceBase implements 

Mapper<LongWritable, Text, Text, Text> { 

 

  Map<Integer,Integer> obs_relation = new 

HashMap<Integer,Integer>(25000000, 0.99f); //build hashmap for 

obs_relation, stored in memory 

  Text annotations = new Text(); 

  Text others = new Text(); 

   

  public void configure(JobConf job) { 

 

   Path filePath = new 

Path("hdfs://haisen1:54310/ming/res/obs_relation.txt"); 

   try { 
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    FileSystem fs = FileSystem.get(job); 

    BufferedReader fis = new BufferedReader(new 

InputStreamReader(fs.open(filePath))); 

    String line1 = null; 

    printTime("Start to read the relation file  @ "); 

    while ((line1 = fis.readLine()) != null) { //read 

obs_relation file 

     String[] field = line1.split(",", 4); 

     if ( field[1] != null ){ 

      obs_relation.put(Integer.valueOf(field[1]), 

Integer.valueOf(field[2])); //"59133273", "4865045,4866938,1" 

      

 //System.out.println(Integer.valueOf(field[1])); 

     } 

    } 

    printTime("Finish to read the relation file @ "); 

   }catch(Exception e){ 

    System.err.println(e.toString()); 

   } 

  } 

 

  public void map(LongWritable key, Text value, 

OutputCollector<Text, Text> output, Reporter reporter) throws 

IOException { 

 

   String line2 = value.toString(); //read 

obr_**_annotation_cut file 

   String[] record = line2.split(",", 3); 

   if ( record.length == 3 ){ 

    String concept_id = record[1]; 

    String other1 = record[0]; 

    String other2 = record[2]; 

    int index_id = Integer.parseInt(concept_id); 

    if ( obs_relation.get(index_id) != null ){ 

    

 annotations.set(obs_relation.get(Integer.parseInt(concept_id)).to

String()); // 

     others.set(other1+other2); 

     output.collect(annotations, others); //collect(K 

key, V value) Adds a key/value pair to the output. 

    } 

   } 

  } 

 } 
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 static void printTime(String note) { 

  Calendar rightNow = Calendar.getInstance(); 

  Date time = rightNow.getTime(); 

  System.out.println(note + time.toString()); 

 } 

 

 static int printUsage() { 

  System.out.println("JoinWithoutCache <input> <output>"); 

  ToolRunner.printGenericCommandUsage(System.out); 

  return -1; 

 } 

 

 @Override 

 public int run(String[] arg) throws Exception { 

  // TODO Auto-generated method stub 

  JobConf jobConf = new JobConf(getConf(),JoinWithoutCache.class); 

  jobConf.setJobName("Join withOUT distribute"); 

 

  jobConf.setMapperClass(MapClass.class); 

  jobConf.setInputFormat(TextInputFormat.class); 

  jobConf.setOutputFormat(TextOutputFormat.class); 

  jobConf.setMapOutputKeyClass(Text.class); 

  jobConf.setMapOutputValueClass(Text.class); 

  jobConf.setNumReduceTasks(0); 

 

  // Make sure there are exactly 2 parameters. 

  if (arg.length != 2) { 

   System.out.println("ERROR: Wrong number of parameters: " + 

arg.length + " instead of 2."); 

   return printUsage(); 

  } 

  FileInputFormat.setInputPaths(jobConf,new Path(arg[0])); 

  FileOutputFormat.setOutputPath(jobConf, new Path(arg[1])); 

  JobClient.runJob(jobConf); 

  return 0; 

 } 

 

 /** 

 * @param args 

 * @throws Exception 

 */ 

 public static void main(String[] args) throws Exception { 

  // TODO Auto-generated method stub 
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  int res = ToolRunner.run(new Configuration(), new 

JoinWithoutCache(), args); 

  System.exit(res); 

 } 

} 

 

File: FillData.java 

import java.io.*; 

 

public class FillData{ 

 

 public static void rwFileByLines(String inputFile, String outputFile, 

long lineToWrite, boolean isRepeatRead){ 

  long line = 0; 

  try { 

   File in = new File(inputFile); 

   BufferedReader reader = new BufferedReader(new 

FileReader(inputFile));    

   BufferedWriter writer = new BufferedWriter(new 

FileWriter(outputFile)); 

   String tempLine = null; 

   reader.mark((int) (in.length() + 1)); 

   while (line < lineToWrite) { 

    tempLine = reader.readLine(); 

    if(tempLine == null){ 

     if(line == 0){ 

      System.out.println("Error: Input file is null."); 

      break; 

     }else{ 

      reader.reset(); 

      tempLine = reader.readLine(); 

     } 

    } 

    //write file data 

    writer.write(tempLine); 

    writer.newLine(); 

    if( (line % 1000000)==0){ 

     writer.flush(); 

   //  System.out.print("Writing: " + (line / 1000000) + " 

million lines. \r");   

    } 

    line++; 
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   } 

   writer.close(); 

   reader.close(); 

   System.out.println("lines are written: " + line); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

 } 

 

 public static void main(String[] args) { 

  if (args.length != 3) { 

   System.out.println("ERROR: Wrong number of parameters: " + 

args.length + " instead of 3."); 

   System.out.println("FillData <input> <output> 

<lineToWrite>"); 

   System.exit(-1); 

  } 

   

  String inputFile = args[0]; 

  String outputFile = args[1]; 

  long lineToWrite = Long.parseLong(args[2]); 

  rwFileByLines(inputFile, outputFile,lineToWrite, true); 

 } 

 

} 

 

File: CountLine.java 

import java.io.*; 

public class CountLine{ 

 

 public static void readByLines(String inputFile){ 

  long line = 0; 

  try { 

   BufferedReader reader = new BufferedReader(new 

FileReader(inputFile)); 

   while ( reader.readLine()!= null ){ 

    line++; 

    if( (line % 1000000)==0){ 

     System.out.print("Reading: " + (line / 1000000) + " 

million lines. \r");   

    } 

   } 
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   reader.close(); 

   System.out.println("Finish. Lines are read: " + line); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

 } 

 

 public static void main(String[] args) { 

  if (args.length != 1) { 

   System.out.println("ERROR: Wrong number of parameters: " + 

args.length + " instead of 1."); 

   System.out.println("CountLine <input>"); 

   System.exit(-1); 

  } 

   

  String inputFile = args[0]; 

  readByLines(inputFile); 

 } 

 

} 
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