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Abstract

K-means is the most commonly known partitioning algorithm used for data

clustering [5]. It was originally designed to run on a single processor. There-

fore, this created a limitation on dealing with large amounts of data because

of the requirement to have data resident in memory. However, the advent of

distributed systems has led to the design of parallel versions of the algorithm.

This is done with the intention to allow the algorithm to work with large sets

of data that would otherwise be impossible to handle on a single machine,

due to limited processing power and memory.

Since there are currently many applications that are generating large sets

of data, for example in oil exploration, social media and image processing,

research in parallel clustering algorithms has received a great deal of atten-

tion so as to find efficient ways of data analysis. Clustering algorithms that

can be formulated according to the MapReduce framework such as K-means

provide a great opportunity for data analysis. This is because the actual data

is used to get statistics. Otherwise, statistics would only be obtained by ap-

plying sampling methods on the original data.

Running a parallel algorithm on a distributed platform to handle large data

sets, requires alot of data transfer on the network. This exchange of data

could choke the network if it is beyond the capacity of the network. There-

fore, there is a way of reducing the amount of traffic on the network and that

is by partial aggregation. Reducing traffic on the network has been known to

increase efficiency [13].

In this thesis, we look at two things. First, how partial aggregation impacts

the K-means algorithm running on a distributed system. Second, we compare

two implementations of the K-means algorithm, Java and R.
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Chapter 1

Introduction

Clustering algorithms have a wide application in different fields of science.

For example, they are used for machine learning and data analysis. One

such algorithm is the K-means. This algorithm is simple yet powerful and

practically efficient. It was first proposed as a serial algorithm that is to

run on a single processor. This created a limitation on how much data it

could be applied because the data had to be resident in memory. However,

with great magnitudes of data being generated by various applications the

algorithm had to be adjusted and a parallel version was proposed. The par-

allel version was adapted to run on distributed systems such as Hadoop that

make use of commodity computers.

In a distributed system, the computers are connected by a network and

so the capacity of the network, and delays associated with it, becomes a

factor. Some of the cases that arise from the network include situations

where the data being worked on is larger than the capacity of the network

or individual pieces of data that have to be tranferred between computers

become too many. In both cases the computer making the final computation

would spend considerable time on communication more than computation.

However, the solution to these cases is to do what is called partial aggre-

gation [13]. It is an approach that is acknowledged to increase efficiency of

parallel algorithms. We will therefore explore how partial aggregation affects

the K-means algorithm.

Hadoop [7] is a software framework for distributed computing for han-
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K-means Algorithm Introduction

dling large data sets and it is based on MapReduce. The MapReduce

[1] approach first maps values to keys in the map phase and outputs <

key, value > pairs that are input to the reduce phase that reduces groups

of values with similar keys.

The K-means algorithm naturally fits into the MapReduce model because

its most intensive part, the distance calculations, can be carried out inde-

pendently.

1.1 K-means Algorithm

The K-means algorithm’s application would be identified in the category of

unsupervised learning. The training or input data is not labelled and so the

algorithm partitions data into K clusters or groups based on the similarity

that exists within the data. The K is predetermined by the user. Besides,

the algorithm works by repeatedly calculating a number of K means or av-

erages, hence the name of the algorithm, from the training data. The initial

means are input to the algorithm by e.g randomly selecting K elements from

the training data. In every iteration the traininig data is assigned to the

closest mean called centroid. Closeness is determined by calculating the

distance between every element in the training data and all the current cen-

troids. After the training data is partitioned into K groups, a new centroid is

calculated per group. The centroid is calculated by determining the mean of

the elements in a cluster. Therefore, the new centroids are used in the next

iteration to partition the training data in order to form new clusters. When

the algorithm converges to some objective function, or if the means stop

changing, it stops. At this point, the training data is partitioned into the

final clusters. However, different initial centres will produce clusters with

different contents therefore the algorithm does not produce unique clusters

if the initial centres are changed. Therefore, the algorithm just works to

group the data that is more similar together.

1.1.1 Serial Approach

The K-means algorithm was originally designed to run serially on a sin-

gle processor. This had an implication that the data had to be resident
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in memory in order to be clustered. The requirement to have the data

present in memory is in itself a bottleneck because when the data is too

large the algorithm fails to work. The serial approach would further be

lendered impractical in the face of large data sets that would need to be

clustered. Currently there are applications that produce large datasets that

are in magnitudes beyond the capacity of memory on a single machine hence

making this approach of data clustering not an option to consider. Besides,

a single machine may not suffice to provide the processing power necessary.

1.1.2 Message Passing Interface[MPI] Approach

The MPI standard allows applications to take advantage of distributed mem-

ory on the network. Therefore, with this approach the K-means algorithm

can work with larger data sets because the data is divided among the nodes

in the network cluster. Furthermore, this approach also takes advantage of

the multicore processors and therefore the computation time should be ex-

pected to be reduced by a factor equal the total number of processor cores.

However, the collective memory capacity of the nodes is still a limiting fac-

tor.

1.1.3 MapReduce Approach

MapReduce is a programming model and implementation that is originally

found in functional languages, e.g Common Lisp and Scheme though it has

now been popularised by Google[1]. The software framework and imple-

mentation based on this concept is the Hadoop MapReduce[3] that provides

the distributed environment for parallel programs. The approach offered by

MapReduce would allow K-means to cluster very large datasets of high mag-

nitudes because the data does not need to be resident in memory. Therefore,

this approach somehow waives the memory limitation evident in the previ-

ous approaches because the training data is kept on local disks that provide

cheaper and higher storage capacity.

The MapReduce approach requires first that a user defines a map func-

tion that assigns keys to values which then outputs < key, value > pairs as

intermediate values. Another function that a user defines is a reduce func-
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tion that takes the intermediate values from the map function and merges

the values with similar keys. The output of the reduce function contains

unique < key, value > pairs as final group computations. However, an op-

tional function called a combiner can be defined by the user, in some cases

similar to the reduce function, to do some computations on the local com-

puter before any data transfer can take place. It is the combiner function

that performs partial aggregation.

1.2 Partial Aggregation

In the K-means algorithm, the new centroids are calculated by determining

the means which involves mainly aggregation. Training data belonging to

the same group maybe residing on different machines within the distributed

system. Therefore, partial sums can be done on the local machine per group,

identified by similar keys, and then the partial sums along side the count

of the summed up data can be sent to the machine calculating the cen-

troids since the centroids have to be global. Hence, every machine in the

distributed system can send these values in the form, as below:

struct PartialCountAndSum{
int partialCountG

int partialSumG

}

1.3 Hadoop

Apache Hadoop is a software framework and programming model for de-

veloping programs to be executed in parallel using MapReduce[1] on a dis-

tributed file system. It provides high availability, reliability and scalability.

This makes it favourable for analysing large data sets.

1.3.1 Hadoop Distributed File System[HDFS]

HDFS[2] stores file contents across the datanodes [2] in the network cluster

and it works as a file system component of Hadoop. The blocks of each file
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are replicated so that in an event that a node containing a particular file

block becomes inaccessible, the computations should not stop. The storing

of blocks of data across multiple nodes allows the file system to store larger

files that would otherwise not be able to fit on any single node’s local disk

in the cluster.

HDFS separates metadata, a description of data, from data itself. It

keeps the metadata on a node configured as namenode[2] and the data is

itself stored on the nodes configured as datanodes[2]. So the data is basically

replicated on several datanodes.

1.4 Motivation

Partial aggregation is known to have a postive effect on the performance

of parallel algorithms running on distributed systems [17]. Therefore, the

motivation of this work is to establish how partial aggregation impacts the

K-means algorithm that is designed to run on a distributed system. There

is a general acknowledgement that partial aggregation improves performance

in distributed systems as observed from some work done on aggregation in

distributed systems [13], and also most work related to algorithms running

on distributed systems [17].

R [19] is a statistical programming language. Therefore, it allows easier

expression of data analysis problems. However, the recent past has seen

the development of packages that allow problems to be expressed in the

MapReduce model from R. We would therefore like to compare the K-means

implementations in Java and R. This is particularly because R like Java can

connect to distributed systems such as Hadoop though using Streaming [21].

1.5 Goals

1. To evaluate how partial aggregation impacts the K-means algorithm

running on a distributed system. This will help understand why it is

necessary to use it in algorithms running on distributed systems.

2. To compare the Java and R implementations of the basic K-means

algorithm on Hadoop. The Hadoop system is implemented in Java
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and so the Java implementation is expected to run faster because it

directly connects to Hadoop while R only connects using Streaming

[21].

The above goals define the contribution presented in this thesis.
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Chapter 2

Preliminaries

2.1 Data Presentation

In order to manipulate input data in a distributed system, a way to represent

it must be sought. Therefore, data presentation is very critical to parallel

clustering algorithms. The pattern matrix and proximity matrix described

in [4] were used for data presentation in this work. [4] refers to a data

point as a pattern or d-place vector where d is the number of attributes or

dimensions. So both data points and patterns will be used interchangeably.

Given a pattern x, it would be described by a vector as: (x1, x2, x3.......xd)

and each xh represents an attribute where h = 1,2,3...d. If there are n

patterns to be represented in a pattern matrix, the pattern matrix to use

would be a n x d matrix. The value of d can also be looked at as a dimension

of the given data point. Therefore, each ith row of a single column pattern

matrix represents a single attribute and every row with d columns represents

a pattern, where i = 1,2,3...n.

In the K-means algorithm, the patterns are clustered based on the closeness

to cluster centroids. How close a pattern is to a centroid is measured by

a distance metric. Therefore, the closeness of patterns to the centroids

can be represented by a proxity matrix. Let us take a set of centroids

C = {C1, C2, C3....Cp} where p in the number of cluster centroids and Cj ,

j=1,2,3...p, is a single cluster centroid, we can generate n x p proximity

matrix, with n being equal to the number of rows in the pattern matrix
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described above. Each Cj can be described by a vector:(c1, c2, c3.......cd)

and therefore the dimension of Cj must be equal to the dimension of the

entries of the corresponding pattern matrix.

Therefore, every entry dij in the proximity matrix, where i=1,2,3....n and

j=1,2,3......p, is a distance measure between the ith row entry in the pattern

matrix and the jth entry in C. Hence, the number of entries in the proximity

matrix is equal to the number of distance computations.

2.2 MapReduce Based K-means Algorithm

Below is a general description of an algorithm that is based on MapRe-

duce as described both by [6] and [5]. It consists of three phases namely

map,combine and reduce.

2.2.1 Map Phase

This phase proceeds as below:

1. Calculate the distance between the K centroids and the N input pat-

terns.

2. Based on the calculated distances from step 1, each pattern will be

assigned to the nearest centroid.

3. The output of this phase will be pairs of < centroidID, pattern >

2.2.2 Combine Phase

In this phase, the partial sums are calculated and an associated counter for

each group updated.The input is < centroidID, pattern > pairs from the

map phase. The output is pairs of < centroidID,R > where R is a datas-

tructure containing a partial sum and the count of summed up patterns.

The phase proceeds as below:

1. Add up pairs according to their corresponding centroid identifiers.
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2. Update the counters and partial sums in the R datastructure for each

unique centroid identifier.

3. The output is < centroidID,R > pairs.

2.2.3 Reduce Phase

In this phase, the means are calculated per centroid identifier. The input is

< centroidID,R > pairs from the combine phase.

1. Add the partial sums per centroid identifier.

2. Calculate the means per centroid identifier using the respective coun-

ters.

3. The output is < centroidID,mean > K pairs. Where K is the number

of centroids.

2.3 Mean and Distance Calculations

The two calculations involved in the K-Means are; distance between patterns

and centroids, and the means for each group. Let Xi represent the patterns

in the ith cluster, where i=1,2,3...K and K is the number of clusters. Then

let ni be the number of data points in the ith group. Therefore, to find the

mean, mi, for a group whose data points are represented by Xi, we use the

equation as below:

1

ni

ni∑
a=1

xia (2.1)

Thus the above equation can allow us to calculate the required means and

in this case the number of means is K.

However, the calculation of distance would be done according to the

equation given below. The distance measure being considered here is eu-

clidean. Otherwise, a different formula would be applicable.

Given that n is the total number of data points to be clustered into K groups.

The distance, d, between each data point, x, and a centroid mi would be
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calculated as follows: √√√√ n∑
j=1

(mi − xj)2 (2.2)

The above formula can therefore be used to calculate the distance between

each single data point and all the K means before the data point is clustered

to its closest mean, centroid.

2.4 Decomposition and Independence

Decomposition allows for intractable computational problems to be broken

down into smaller and more tractable problems. The solutions to smaller

problems can however be merged so that collectively they can form a solution

to the original problem. This approach to complex computational problems

traces its roots in the principle of divide and conquer. However, for any

given problem to be divided into subproblems, the condition that must be

fulfilled is that the resultant subproblems have to be independent. This is

because the complete solution to the problem must come from the individual

subproblems.

The MapReduce model takes on problems that can be decomposed and

also whose smaller divisions exhibit independence.To take a comparative

example we can look at summation and the fibonacci series. When summing

up numbers, the order in which that is done does not matter and therefore

summing up many numbers can be divided into groups whose sums can be

put together to come up with a final sum. But when we consider the case

of fibonacci series it obvious that decomposition cannot work because every

nth term is dependent on the n-1th term. Consequently, fibonacci cannot

be implemented in the MapReduce model though K-means can be.

2.4.1 Formalization

The most intensive part of the K-Means algorithm is the calculation of dis-

tances. Therefore, distributing these calculations across machines is very

necessary to handling large datasets.

We can define distance calculation C by using the triple: C = ( Rd, R, sodp
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) where Rd denotes the euclidean space of dimension d and sodp: Rd → R,

is a function. Given a , b ∈ Rd we can calculate distance dis as dis = sodp(

a , b ). However, the computation, dis’ = sodp( a’, b’ ) where a’, b’ ∈ Rd

can take place simultaneously because it is independent of the preceeding

calculation. Therefore, when the centroids are global, the distance calcula-

tions can be parallelised.

In addition to distance calculations, the means of the algorithm also have

to be calculated iteratively. The means are calculated by collecting all data

points belonging to the same cluster and then finding their mean on group

basis. This implies sending data points across the network to the respective

reducers that calculate the group means. However, network communication

cost can be minimised by doing local sums of the points and then send-

ing across the network only the partial sums and their associated counters,

recording the data points added up per group. Therefore, in this case the

reducer has to add up the values of the counters and partial sums and then

determine the mean per group basis. The partial sums are representing

the combine phase of the algorithm described above. The combine phase is

realised because of both the associative and commutative properties of ad-

dition. These properties demonstrate independence when applying addition

to any given terms. Therefore, independence is very important to realising

parallelism because it allows for decomposition of complex problems.

We can now look at the two important properties in mathematics that we

have just alluded to. Given x, y, z ∈ R, associativity can be described as; (

x + y ) + z = x + ( y + z ) and commutative for two variables as; x + y =

y + x or z + y = y + z or x + z = z + x.

2.4.2 Discussion

The above section has shown that the properties of addition, that is as-

sociative and commutative, are very important to the parallelising of the

computations across machines. Furthermore, the properties allow for par-

tial summations to be executed on the local machines thereby reducing on

network traffic. Consequently, the time taken for computation exceeds the

communication time and this makes the running time for the algorithm bet-
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ter.

We have seen how two distance computations can be carried out in parallel

since they are independent in nature. The distribution of distance compu-

tations is important because this the most intensive part of the algorithm.

Therefore, in general the nature of the K-means algorithm allows it to fit

into the MapReduce model.
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Chapter 3

Literature Review

3.1 Introduction

The K-means algorithm naturally fits into the MapReduce framework, and

has therefore attracted a lot of research interest. This is because of the

need to make it run in parallel or on distributed systems. This is, in part,

because of the wide appeal of the K-means algorithm to different fields of

science. However, this is also because of the huge amounts of data that

cannot be comprehensively analysed on a single machine without resorting

to sampling methods. Sampling methods allow only sampled population of

data to be analysed. However, distributed systems are capable of addressing

this limitation. The algorithm is used in document clustering, data analy-

sis and classification of data among many other applications handling large

amounts of data. In this chapter we make a review of various aspects in-

volved in making the most of this simple yet powerful algorithm. We will

get some perspectives on different approaches to distributed computing and

other related issues. The choice of which approach to use hinges on the

amount of data being considered since the advantages of some architectures

are only realised when there are huge margins of data involved.

3.2 Different Approaches To Parallelizing K-means

Message Passing Interface(MPI) is a specifications standard that makes it

possible for processes running on different processors to commmunicate us-
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ing the message passing model. The processors maybe either be connected

on the same board or by a network on different machines. There are K-means

algorithm implementations that are based on MPI and they therefore take

advantage of main memory accessible to the processors. Such algorithms

are bound to be faster because the data is stored in memory compared to

those that have to access data stored on disk.

MPI was used by [9] to run a parallel K-means algorithm. They evalu-

ated both scaleup and speedup. In the case of scaleup, they demonstrated

that it was constant with respect to the number of dimensions of the data

points, the number of centroids and the number of data points. For speedup,

it was observed that as the number of data points increased there was a cor-

responding increase. This also implied a good sizeup. Furthermore, [9]

showed that the time required to synchronise data points and calculate new

centroids is inversely proportional to both speedup and scaleup. They also

described a linear relationship between communication cost and the process

of calculating new centroids per interation.

Another MPI implementation is demonstrated in [10] where they com-

pare the serial and parallel versions of the algorithm. They observed that

with 100,000 - 600,000 number of data points, there was no speedup recorded.

This was attributed to the fact that the communication time was more than

the computation time. However, between 700,000 - 900,000 number of data

points speedup was recorded because of the computation time being greater

than the communication time. Their parallel algorithm was not scalable

because the number of machines in the cluster defined the possible num-

ber of centroids that were considered. There was also another limitation of

not using partial aggregation because they reported it could further hamper

scalability.

CUDA architecture [12] allows the application developers to write dis-

tributed applications that can run on GPUs. This approach was used by [11]

to implement the K-means algorithm and they recorded fast computation

times.

MapReduce [1] is another programming model that distributes compu-

tations across commodity machines in a cluster. It is most favourable for ap-

plications meant for handling very large data sets that cannot fit in memory.
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This model is simple yet very powerful. [5] describe a K-means algorithm

based on MapReduce. They concluded that the algorithm was scalable and

also that it demonstrated speedup. The implementation was carried out on

Hadoop and they made use of a combiner to introduce partial aggregation.

FREERIDE [17] is another framework that is also used for writing data

mining applications. It takes advantage of both the shared and distributed

memory archictures. It provides the programmers with an option to reduce

network traffic by doing local reductions or partial aggregation of data before

the global reduction which involves movement of data between machines can

be executed. This framework is viable for both grid and cluster computing.

Scalability was demonstrated in this framework as well as speedup.

Phoenix [18] implements MapReduce in a way that takes advantage of

the available shared memory in both multicore and multiprocessor archite-

cures. It is another platform that allows programmers to write parallel

applications.

3.3 Partial Aggregation In Parallel Computing

Distributed computing is very suitable for data intensive applications, which

are very common today and examples being applications used in oil explo-

ration and social networks. This is because it allows the load of computing

to be shared among many machines. However, most setups of distributed

environments have machines connected by a network. This brings another

concern as how to handle large amounts of data being transferred between

machines. If the amount of data crossing the network is too much, it will

have an impact on the computing time. In the case where the communica-

tion time of data is more than the computing time it is difficult to realise

the advantage of parallel computing. To deal with this challenge, there is

an option to do local aggregation at different levels ranging from machine

to rack to cluster level. This consequently helps reduce network traffic.

The MapReduce model [1] has been used widely in analysing large data

sets because it allows for parallelizing of computations. There is also work

that has been done to address aggregation in this model for example in

[13]. Partial aggregation has been used in [13] to describe the data reduc-
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tion at various local levels, at rack and computer, however the conditions

for such are also well outlined and formalised. In MapReduce [1] a user

defined function, called a combiner, can be used to perform such data re-

duction. The I/O reduction, which is an optimisation strategy that ensures

that I/O requests are minimised, is based on data reduction, here referred

to as partial aggregation, for example as used in systems like DryadLINQ

[14]. Further, [13] suggests that aggregation can be expressed in parallel

database systems that support MapReduce. Besides, the iterator and accu-

mulator based interfaces are also discussed as an approach to aggregation

in distributed systems.

The middleware in [17] was designed to help programmers write appli-

cations for data mining. The data mining algorithms, of which K-means is,

have a common general structure and therefore [17] describes a framework

that allows developers to do local reduction [17], which is just another ter-

minology used for partial aggregation, in order to minimise network traffic.

3.4 Communication In Distributed Computing

Communication between elements of the distributed systems is very central.

However, communication happens at different levels which can be broadly

categorised as intra-node and inter-node communication. These two cate-

gories are addressed differently depending on the architecture being consid-

ered. In architectures like CUDA, the intra-node communication is of more

importance but in other frameworks both are very important. In MPI, for

instance, it is very important that both levels of communication are optimal

because the processes are spread across processors on the same node as well

as processors across different nodes. This is necessary for the synchronisa-

tion of activities as well as data.

The Hadoop[7] project has a distributed file system called Hadoop Dis-

tributed File System(HDFS)[2]. This file system manages data in a dis-

tributed environment. In a distributed system, there must be fault tolerance

because failures will definitely occur as some machines may become unavail-

able due to network problems or the local disk on the machine may crash.

HDFS addresses such problems by replicating data on different machines so
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that if one machine is inaccessible the computations will still continue on a

different machine with the same data stored on other machines. In order

to achieve such fault tolerance, there must be constant communication be-

tween machines and also availability of information about where each replica

of the data is stored. In the HDFS architecture there are two main elements

namely the namenode and the datanode. The namenode maintains informa-

tion about the datanodes containing respective replicas. This is necessary in

the face of failure so that the system remains functional. The data replicas

are stored on the datanodes. Each datanode has to perform a handshake

with the namenode, to prove its credence, upon startup so as to ensure in-

tegrity of the data in the cluster. When the datanode starts running, it

will periodically send messages, called heartbeats, to the namenode to sig-

nal its availability. In the absense of the heartbeats after a specific period,

the namenode determines that the respective datanode is non-functional.

Therefore, when the datanode is rendered to be non-functional, the namen-

ode reschedules the jobs that were assigned to that particular datanode and

assigns them to the datanodes storing the same data stored on the failed

node. The namenode is the focal point of the HDFS architecture because

it has to co-ordinate the operations of the datanodes in a cluster. However,

this happens to be the single point of failure.

Processor speed is very important to executing tasks very fast and moreso

in multiprocessor systems when handling distributed tasks. However, how

fast the processors communicate in multiprocessor systems with each other

is very critical to efficiently coordinate activities. With respect to this,

[15] looks at the MPI intra-node communication with particular emphasis

on using the user space memory copy scheme though the drawback of this

approach is that it could make the processor achieve less computation com-

pared to the NIC-based loopback approach. However, the NIC-loopback

based approach cannot distinguish intra-node traffic. The only way it can

tell between the inter-node, destined for another node, and intra-node traffic

is by looking at the source and destination processes. In their work [16] eval-

uated different mechanisms of intra-node communication. They used several

metrics, among them were latency and bandwidth, to determine efficiency.

However, they suggested that in the NIC-loopback based approach band-
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width and latency is a major drawback because the data being transferred

has to traverse the I/O bus before it can get to the destination process. The

I/O bus is much slower than the system bus.

In Phoenix [18] the buffers in shared-memory are used as a means of com-

munication between processes running on the different processors and/or

cores.
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Chapter 4

Experimental Evaluation

4.1 Introduction

In this chapter we will look at the results of the experiments that were con-

ducted and then make an analysis. The servers were configured in sets of

3, 5 and 7 on the cluster on which the K-means algorithm was run. The

single processor speed was 2.6GHz and of type AMD Opteron 6-Core 4180.

Therefore, each server had six processors and each processor had six cores.

The servers were running Centos OS and each had 32 GB memory.

For the purpose of the experiments undertaken, the data sets used were

integers with two dimensions. The number of data points in the data sets

used were 200,000, 400,000, 600,000, 800,000 and 1,000,000. Each data set

was run on the three different cluster configurations mentioned above. How-

ever, with 1,000,000 data points the algorithm was taking too long to run

without the combiner and so the time could not be recorded.

The time taken by the K-means algorithm was recorded in minutes and

each value recorded was an average of three repeated trials for a given data

set on a particular cluster configuration. The number of iterations for all

the experiments was 10, with four centres or clusters (K=4), and none of

the data sets used converged within those iterations.

The program used for the experiments was implemented in the R [19]

statistical programming language. In addition, Hadoop was used as the

framework for distributing the computations on the cluster. However, R
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needs a programming framwork to connect to the Hadoop framework. In

the experiments, the RHadoop [20] programming framework was used to

provide the needed connectivity. Its component packages allow access to

the MapReduce and the distributed file system of Hadoop. Eventually, the

R implementation is compared to the K-means algorithm implemented in

Java from the Mahout framework.

4.2 Results

In order to describe how fast the algorithms were running two terms were

introduced. The terms were used to compare running times when the num-

ber of servers in the cluster was adjusted and when the combiner in the

algorithm was introduced. The two terms were Server Speed Ratio(SSR)

and Combine Speed Ratio(CSR), and are defined as below.

SSR: This is a factor that indicates how fast the algorithm runs for a given

data set on different cluster configurations and particularly when the num-

ber of servers is increased. It is a ratio of time taken by the algorithm to

run on a given cluster configuration to the time taken on the base cluster

configuration, in this case 3 servers, for the same data set.

CSR: This is a factor that indicates how fast the algorithm runs for a given

data set on a particular cluster configuration with respect to the presence or

absence of the combiner. It is a ratio of time taken by the algorithm when

using a combiner to the time taken when the combiner is not used.

The above ratios are as expressed as below: Given a data set N. Let a =

Time taken to cluster N without a combiner and b = Time taken to cluster

N using a combiner,

then:

CSR =
a

b

Now let d = Time taken to cluster N with/without a combiner on 3

servers and c = Time taken to cluster N on x servers,
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where

x ≥ 5

then:

SSR =
c

d

In order to compare running times between the R and Java implemen-

tations, a ratio called Speed Ratio(SR) was introduced. It is expressed as

below. Given a data set N and that; a = Time taken to cluster N using R

implementation and b = Time taken to cluster N using Java implementa-

tion,

then:

SR =
a

b

The experimental results are presented in two sets. The first set of results

was obtained from the algorithm implemented in R, as in tables 4.1 4.2 4.3 4.4 4.5,

and the second set was obtained from an algorithm implemented in Java

which is part of the Mahout framework, tables 4.6 4.7 4.8 4.9 4.10. In addi-

tion, tables 4.11 4.12 4.13 show the comparison, defined as a ratio, of running

times between the Mahout based algorithm and the R implementation that

was using a combiner.

N= With Combiner[min] No Combiner[min] Combine Speed Ratio

200,000 16.93438 30.43843 1.797433978

400,000 21.2594 67.8969 3.193735477

600,000 25.40931333 144.78928 5.698275986

800,000 29.82498 200.13228 6.710223444

1,000,000 34.28722 Nil Nil

Table 4.1: Time and CSR on Three Servers
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N= With Combiner[min] No Combiner[min] Combine Speed Ratio

200,000 11.07024667 25.63153333 2.315353407

400,000 13.58591333 60.74878 4.47145352

600,000 16.47119667 121.06808 7.350290477

800,000 19.10741333 194.05322 10.15591261

1,000,000 23.51826333 Nil Nil

Table 4.2: Time and CSR on Five Servers

N= With Combiner[min] No Combiner[min] Combine Speed Ratio

200,000 9.210451667 23.77025333 2.580791279

400,000 10.70146333 57.86763333 5.407450508

600,000 12.86491 116.27462 9.038121526

800,000 14.57861667 185.02874 12.69178992

1,000,000 18.40605333 Nil Nil

Table 4.3: Time and CSR on Seven Servers

N= No Combiner With Combiner

200,000 1.187538397 1.529720205

400,000 1.11766689 1.564811984

600,000 1.195932735 1.542651323

800,000 1.031326767 1.560911437

1,000,000 Nil 1.457897614

Table 4.4: SSR values for Five Servers
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N= No Combiner With Combiner

200,000 1.280526109 1.83860473

400,000 1.173313925 1.986588127

600,000 1.245235461 1.975086754

800,000 1.081628076 2.045803157

1,000,000 Nil 1.862823028

Table 4.5: SSR values for Seven Servers

N= Time[min]

200,000 4.900694444

400,000 5.149455556

600,000 5.3558

800,000 5.697561111

Table 4.6: Time on Three Servers[Mahout]

N= Time[min]

200,000 4.666377778

400,000 4.84155

600,000 5.159672222

800,000 5.426011111

Table 4.7: Time on Five Servers[Mahout]

N= Time[min]

200,000 3.335461111

400,000 3.530977778

600,000 3.829127778

800,000 4.129677778

Table 4.8: Time on Seven Servers[Mahout]
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N= Server Speed Ratio

200,000 1.050213823

400,000 1.063596484

600,000 1.038011674

800,000 1.050045972

Table 4.9: SSR values on Five Servers[Mahout]

N= Server Speed Ratio

200,000 1.469270449

400,000 1.458365325

600,000 1.398699733

800,000 1.37966239

Table 4.10: SSR values on Seven Servers[Mahout]

N= R With Combiner[min] Mahout[min] Speed Ratio

200,000 16.93438 4.900694444 3.455506192

400,000 21.2594 5.149455556 4.128475286

600,000 25.40931333 5.3558 4.74426105

800,000 29.82498 5.697561111 5.234692427

Table 4.11: Time and SR on Three Servers

N= R With Combiner[min] Mahout[min] Ratio

200,000 11.07024667 4.666377778 2.372342574

400,000 13.58591333 4.84155 2.806108237

600,000 16.47119667 5.159672222 3.192295161

800,000 19.10741333 5.426011111 3.521447513

Table 4.12: Time and SR on Five Servers
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N= R With Combiner[min] Mahout[min] Ratio

200,000 9.210451667 3.335461111 2.761372824

400,000 10.70146333 3.530977778 3.030736529

600,000 12.86491 3.829127778 3.359749464

800,000 14.57861667 4.129677778 3.530206823

Table 4.13: Time and SR on Seven Servers

4.3 Analysis

In this section, we will delve into looking at the relationships observed from

the data collected in the tables 4.1 to 4.10. The data was plotted in the

graphs shown in the figures 4.1 4.2 4.3 4.4 4.5 4.6 4.7.

Figure 4.1 shows a plot between data points and the Server Speed Ratio.

When the combiner was used in the algorithm, the Server Speed Ratio was

fairly constant and otherwise the ratio was decreasing as the number of data

points increased. The former behaviour was observed even in the Mahout al-

gorithm that also uses a combiner as observed in figure 4.2. Therefore, when

a combiner is used it can be suggested that regardless of the number of data

points under consideration the running time of the algorithm is changed by

a constant when the number of computing elements is adjusted. However, in

the absence of a combiner as the number of data points increased the Server

Speed Ratio dropped because the communication time between computing

elements increased [9].

In figure 4.3 is a plot between the Combine Speed Ratio and data points.

The graph reveals that the introduction of a combiner in the algorithm

significantly reduces the running time and that this effect is linearly pro-

portional to the number of data points. As already defined, Combine Speed

Ratio is simply a ratio of the running time taken with a combiner to when

the combiner is absent, for a particular number of data points, by the al-

gorithm. However, this graph could only be done for the R implemented

algorithm because there was an option to run the algorithm with and with-

out a combiner while the Mahout algorithm could only run with a combiner

in place.
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When the algorithm was run without a combiner, the running times ob-

tained were plotted against the data points and the figure 4.4 depicts the

graph obtained. There seems much more like a linear relationship between

time and the number of data points. However, in figure 4.5 the running times

of the algorithm, with a combiner used, were plotted against the number of

data points. By observation, it could be seen that the graph in figure 4.4

had lines that were steeper than the graph in figure 4.5. The lines in the

graph in figure 4.5 were more gentle and it was observed that as the num-

ber of processing elements [servers] increased the lines became gentler. The

contrast between the figures 4.4 and 4.5 was well demonstrated in the plot

of Combine Speed Ratio and data points as shown in figure 4.3. This is be-

cause Combine Speed Ratio simply compares the running times in figures 4.4

and 4.5. Besides, 4.3 demonstrates that CSP is linearly proportional to data

points. When the combiner is absent the algorithm does not gain much in

speed as is the case when the combiner is present. The difference between

running times increases as data points increase.

The figure 4.6 shows a plot using the Mahout algorithm similar to fig-

ure 4.5, graph of time against data points. The main difference is that the

R based algorithm depicted in 4.5 has steeper lines than those in 4.6. In

figure 4.5, as the number of processing elements, i.e. servers, increased there

was a significant reduction in running time hence the corresponding reduc-

tion in the steepness of the lines. However, the reduction in steepness in 4.6

was not so much as the number of servers increased because the change

in running time was relatively smaller. However, the ratios between the

running times in figure 4.5 to the running times in figure 4.6 were plotted

against data points as in the graph of figure 4.7. The relationship established

in figure 4.7 was linear.
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Figure 4.1: SSR for Five and Seven Servers. WithX means using a combiner

and WithoutX means the combiner is not used on X servers.

31



Analysis Experimental Evaluation

● ● ● ●

Data Points

S
er

ve
r 

S
pe

ed
 R

at
io

200000 400000 600000 800000

0.0

0.5

1.0

1.5

2.0

●

● ●
●

● ● ● ●

● ●
● ●

R5
R7
M5
M7

Figure 4.2: SSR for Five and Seven Servers using the combiner. RX repe-

sents R implementation and MX represents Mahout implementation and X

is the number of servers.

32



Analysis Experimental Evaluation

●

●

●

●

Data Points

C
om

bi
ne

 S
pe

ed
 R

at
io

200000 400000 600000 800000

0

2

4

6

8

10

12

●

●

●

●

●

●

●

●

Three Servers

Five Servers
Seven 
Servers
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Figure 4.4: Time for R implementation without a combiner . The X in

WithoutX is the number of servers.

34



Analysis Experimental Evaluation

●

●

●

●

Data Points

T
im

e(
m

in
)

200000 400000 600000 800000

0

5

10

15

20

25

30

●

●

●

●

●
●

●

●

R3
R5
R7

Figure 4.5: Time for R implementation using a combiner. The X in RX is
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4.4 Related Work

In most implementations of parallel algorithms there has been an acknowl-

edgement of the positive impact of partial aggregation such as in [17]. How-

ever, the work presented here is very specific and focuses on the evaluation

of how partial aggregation impacts K-means running on a distributed sys-

tem. The other part of this work that draws a comparison between the R

and Java implementations could not be related to any other works done so

far as involving the distributed algorithms.

However, a relationship can be established between this work and other

works with respect to speedup , scaleup and sizeup since mostly these are

used to measure performance on distributed systems. The parallel KMeans

based on MapReduce in [5] used a combiner which effects partial aggregation.

The algorithm was reported to demonstrate the three qualities positively.

There is also another parallel implementation of K-means using MPI as de-
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scribed in [9], which uses a function that does partial aggregation at machine

level. They also demonstrated speedup , scaleup and sizeup in their imple-

mentation by varying dimensions and data set sizes. In addition, [10] show

another MPI implementation of a parallel K-means algorithm. On the con-

trary, the algorithm never used partial aggregation and so it was limited as

to how much input data it could be applied. The algorithm was reported to

had had its scalability negatively affected if the partial aggregation had been

used. The algorithm’s number of cluster centres was tied to the number of

servers.

In [14] partial aggregation is discussed in the context of DryadLink, which

is a system for managing distributed programs, and how it affects the choice

of execution plans [14] during runtime. Different approaches were employed

to evaluate partial aggregation in the system and a comparison was made

with equivalent other distributed systems such as MapReduce.

However, local reduction is another term used for partial aggregation in [17].

[17] describes a framework for distributed programming in which partial ag-

gregation’s advantage is highlighted as having a great impact on reducing

load on the network. That did not just apply to computers in a cluster but

also to computers in different geographical locations.

4.5 Future Work

The number of servers available for experiments was small and therefore for

large data sets the R implementation was taking too long. Hence, many

servers would be required for the algorithm’s performance to be tested on

larger data sets. The clustering algorithms have a common structure [17]

that would benefit from partial aggregation therefore it would be interesting

to see how other algorithms get impacted.
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Chapter 5

Concluding Remarks

In this thesis, we looked at the implementation of a parallel K-means algo-

rithm in a distributed environment. We had two goals to look at. First, we

wanted to establish how partial aggregation impacts the performance of the

algorithm. The second goal was to compare the performance of R and Java

implementations of the algorithm.

We showed that the presence of a combiner reduced the running time

of the algorithm by a factor that was linearly proportional to the size of

the data set. Furthermore, we showed that the combiner makes the algo-

rithm scale well with the distributed system. Therefore, partial aggregation

allowed the algorithm to run in shorter time when the number of servers in

the cluster increased.

In addition it became obvious that the Java implementation was much

faster than the R counterpart. The factor by which it was faster was linearly

proportional to the data set size.
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Appendix A

Code

The code for K-means provided in this chapter was adapted from the code in

[22]. The code was written in R. Below is the description of the parameters

used in the program:

1.dpoints: hdfs path to the file with data points.

2.disfunc: function for calculating distance between data points.

3.nofcents: number of clusters.

4.centroids: the initial centres otherwise the first four data points are con-

sidered as the initial centres.

5.dmns: the dimension of the data points.

6.iterations: is the number of iterations.

Below is the code:

library(rmr)

library(rhdfs)

kmeansfun =

function(dpoints, disfunc, nofcents = 4, centroids = NULL, dmns = 2 ) {
from.dfs( mapreduce (input = dpoints,

input.format=make.input.format( “csv” , sep = “,” ),

map = if ( is.null ( centroids ) ) {
function( k , v )

if( k <= nofcents )

keyval( k , v )

}
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else {
function( k , v ) {
dist = disfunc( centroids , v )

keyval( which.min( dist ) , v ) } },

#Combine function

combine = function( k , v )keyval( k , data.frame( lapply( do.call

( rbind , v ) , function(x){ colSums( as.matrix( x ) ) } ) , as.numeric( length(

v ) ) ) ),

#Reduce function reduce = function( k , vv ){
keyval ( k , redc( vv , dmns ) ) } ) , to.data.frame = T )}

#This function calls the above function implementing the KMeans

#according to the number of iterations. If the means converge, it will

#stop. Otherwise it runs the number of iterations provided.

kmeansitn = function( dpoints, iterations = 10, disfunc = distancef , cen-

troids = NULL ) {
start <- Sys.time()

newCentroids = kmeansfun( dpoints , disfunc )

for(i in 1:iterations) {
temp <- newCentroids

newCentroids = kmeansfun(dpoints , disfunc , centroids = newCentroids )

testd <- setdiff( as.matrix( temp ) , as.matrix( newCentroids ) )

testl <- length( testd )

print( i ) ; print( temp )

if( all( testl == 0 ) ){
print( “Running Time:” ) ;print( Sys.time() - start )

print( “Means not changing” )

break

}
}
newCentroids
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print( “Running Time:” ) ; print( Sys.time() - start )

}

#distance calculation function

distancef = function( cs , dps ) {
tcs <- cs[ -1 ]

temp <- rbind( tcs , dps )

d <- as.matrix( dist( temp, method= “euclidean” ) )

d[ nrow( tcs ) + 1:nrow( dps ) , 1:nrow( tcs ) ]

}

#Function part of the reduce function.

redc = function( xv , dmns ){

rs <- data.frame( lapply( do.call( rbind , xv ) , function( x ){
mat <- as.matrix( x );

colSums( mat ) } ) );

sweep( rs[ 1 : dmns ] , 1 , rs[ dmns + 1 ] , “/” )

}
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Execution

To run the code in the previous chapter, the Rhadoop [20] framework is

required. Two of the packages that are part of the framework are rhdfs and

rmr. The rmr package allows programmers to express their problems in the

form of MapReduce model in R while the rhdfs package allows access to the

HDFS. The Hadoop distribution used was Cloudera’s CDH3

The necessary information on how to install the packages together with

their dependencies can be accessed from [20]. And below is an example of

how the program can be run:

1. Provide the path to the file with the data points. The file must be

uploaded to hdfs e.g input = “/usr/local/hadoop/hadoop tmp/csv”.

2. Then call the function that repeatedly executes the function defining

kmeans like this: kmeansitn( input ).

The kmeansitn function accepts more parameters that are described in the

previous chapter. Also the user can define their own function for calculating

distance which can be used as a parameter in kmeansitn.
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