
 

 

 
 

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET 
 

MASTEROPPGAVE  
 

Studieprogram/spesialisering: 
 
Informasjonsteknologi – 
kybernetikk/signalbehandling 
 

 
Vårsemesteret, 2012 

 
 

Åpen 
 

Forfatter:  
Espen Hatlestad 

 
………………………………………… 

(signatur forfatter) 
Fagansvarlig: Kjersti Engan 
 
Veileder: Kjersti Engan 
 
 
Tittel på masteroppgaven:  
Objekt Klassifisering ved bruk av LEGO Mindstorms NXT og MATLAB 
 
Engelsk tittel:  
Object Classification using LEGO Mindstorms NXT and MATLAB 
 
 
Studiepoeng: 30 
 
Emneord: 
LEGO Mindstorms NXT, background 
subtraction, background modelling, 
mathematical morphology, object 
representation, feature extraction, Maximum 
Likelihood estimation, Parzen Window 
estimation, kn-Nearest-Neighbor estimation, 
cross validation 
 
 

 
         Sidetall: 148 
     
     + vedlegg/annet: 64 + CD 

 
 

         Stavanger, 13.06.2012 
                                dato/år 
 

 



Summary

This master thesis involves further development of the physical sorter system
that was developed in the preliminary project (MIK110). The system is built
up by LEGO Technic parts and is controlled by MATLAB and LEGO Mind-
storms NXT. The system basically consist of a conveyor belt, a sorter arm,
a web camera and control system (MATLAB). The conveyor belt transfers
desired objects from one end to the other and are controlled by a servo. The
sorter arm can push a object off the conveyor belt and into a tray. The sorter
arm is also controlled by a servo. Both servos are connected to the NXT
Intelligent Brick (NXT). The web camera detect objects moving on the con-
veyor belt. This web camera is connected to a computer running MATLAB.
MATLAB runs the system (connected to NXT) and manages the handling
of detected objects. To get MATLAB and LEGO Mindstorms NXT to in-
teract, a toolbox called RWTH Toolbox is implemented. All computational
task are handled in MATLAB.

The web camera is controlled by a function called MOD. This function enables
the web camera to capture one frame at a time. To detect movement from
one frame to another a method called background subtraction (BS) is used.
Since MOD is intended to only detect moving objects and not the movement
of the conveyor belt, which creates a dynamic background, a method called
background modeling (BM) is implemented. The BM method creates a
model of the background and slowly updates the model when a new frame
is captured. This method suppresses movement and illumination/reflection
from the conveyor belt which can produce false positive detections.

The frame containing the object of interest (OOI) is then pre processed by a
function called ooi. This function is solely based on mathematical morphol-
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ogy and uses this to register, extract and represent the OOI. Representation
includes both internal (area) and external (boundary/signature) character-
istics, and these are used as features to describe the object. From a object,
four different features are computed and they are the area, the mean and
standard deviation computed from the signature and the amount of ver-
tices/peaks in the signature. All features are gathered in a feature vector X
and all features are normalized.

There are two different objects that the system have to detect. These are
two different types of LEGO Technic gears. Both have 24 teethes, but one
gear is crowned and the other is normal. The features collected from these
objects are very much a like. A classifier is implemented in the system to
distinguish between these two objects and solve this 2-class problem. A
method called Cross validation was used in the experiments to find the best
classifier. The cross validation was performed on a three different classifiers
which were based on Maximum Likelihood (ML) estimation, the Parzen
Window technique and kn-nearest-neighbor (kNN) technique. The data set
(consisting of gathered feature vectors from both objects) that each classifier
was trained on, was 2-, 3- and 4-dimensional for each experiment. Also, in
each experiment, raw and normalized data was used.

The classifier that was implemented in the system, based on the results from
the cross validation, was the kNN classifier for normalized 4-dimensional
data. From the cross validation results, this classifier had a error rate of
6.43%, but this error rate is affected by illumination. Experiments showed
that the error rate varies between 3 and 10% when the classifier was imple-
mented in the system and new feature data was gathered.

On YouTube there is a short video demonstration of the system when it is
running. The clip can be found via this URL: http://www.youtube.com/
watch?v=AAGNuTu7Tfk&feature=plcp.
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Notations

α Learning coefficient (adapt coefficient)
σ2
B Between-class variance

AT Average Threshold
BC Border Coordinates
Bi Current background model
Bi−1 Previous background model
BM Background Model
BS Background Subtraction
c Column vector
Comp Image Component (R, G or B)
D Data set
DET Detecting mode
ER Error Rate
Ffd Frame-result after frame differencing
Fi Current frame
Fi−1 Previous frame
FRGB RGB Frame
FOV Field Of View
GUI Graphical User Interface
imax Index to maximum value in a vector
junk Unwanted information (not used)
L Number of grayscale intensities (256)
LM Labelled Matrix
m Vertical pixel coordinate
M0 0-matrix (size: 350× 705)
Mrm Matrix containing RM (size: 360× 705)
MOD Moving Object Detection
n Horizontal pixel coordinate
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Notations

NOCC Number Of Correct Classifications
NoP Number of Peaks
NOWC Number Of Wrong Classifications
nrp Horizontal pixel coordinate reference point (image)
NXT NXT Intelligent Brick
OData Object Data (Area, centroid and bounding box)
OOI Object Of Interest
r Row vector
RM Reference Mask
ROI Region Of Interest
SE Structural Element
Std Standard Deviation
T Threshold
TS Training Set
UDT User-Defined Threshold
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Chapter 1

Introduction

This report presents further work that has been done based on the prelimi-
nary project, Objekt Sorterer - Egenskaps Uttrekning (MIK110).
The background for the preliminary project and this report is based on an
idea that Professor Kjersti Engan at the University of Stavanger presented
in the autumn of 2011. The idea was to combine MATLAB and LEGO
Mindstorms, and use it in a educational context to future students. To
make this idea useful, the issues concerning both reports had to be based on
subjects that are taught at Information Technology, cybernetics and signal
processing.

The solution was to develop a conveyor belt system which detects two dif-
ferent objects and sort them into different trays. A web camera is used to
detect the objects moving on the conveyor belt and capture an image con-
taining it. MATLAB is used to pre process the image, find the object of
interest, compute features and classify the object. MATLAB also controls
the NXT which runs the conveyor belt and controls the sorter arm, by two
servos.

Figure 1.1 shows the physical sorter system.
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Introduction

Figure 1.1: The developed sorter system.

In the preliminary project the main tasks was to

• Build a physical sorter system out of LEGO Technic parts.
• Get familiar with LEGO Mindstorms and the RWTH Toolbox.
• Implement connection between Mac OS X and NXT.
• Get familiar with the Image Acquisition and Image Processing Toolbox

in MATLAB.
• Preliminary work on how to detect objects in a image and gather useful

features from objects.

The main issues concerning this report deals with

1. Develop an algorithm that automatically detects moving objects on
the conveyor belt, by using the web camera as a frame grabber and as
a sensor.

2. Improving the preliminary work on how to extract an object from an
image/frame.

3. Develop/train a optimal classifier which is used to distinguish between
two objects.
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1.1 Overview

The first two issues, in this report, is based on image acquisition and image
processing theory. Image processing is a important course at Information
Technology and teaches students the fundamental methods/ideas about im-
age processing and image processing in MATLAB.
The last issue is based on pattern recognition theory which applies math and
probability methods to design/train classifiers. A random classifiers purpose
is to classify data to a class based on qualified guesses. Pattern recognition
was an optional course at Information Technology when the writer went here,
but it is highly recommended and a useful subject.

1.1 Overview

All chapters below are listed chronological and gives a short review of content.

Chapter 2 Basic Theory
A brief explanation of the fundamental theory that the work is based on.
Sections 2.3 and 2.4 is based on the work from the preliminary project, Ob-
jekt sorterer.

Chapter 3 A System Overview
A brief explanation of the systems physical and program-based (MATLAB)
modules.

Chapter 4 Moving Object Detection
This chapter presents the moving object detection module. It’s development,
the conducted experiments and results from the experiments.

Chapter 5 Object Representation and Feature Extraction
This chapter presents the object of interest module’s development, conducted
experiments and results. It also shows how objects are represented and how
features are extracted.

Chapter 6 Feature Classification and Object Recognition
A presentation of the experiments done on three different classifiers. The
final classifier is chosen from a set of criterias and from the result of cross
validation.
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1.1 Overview

Chapter 7 Explanation of System Functionalities
Flowcharts and explanation to main.m and functions included in main.m.

Chapter 8 Experiments & Results
A presentation of the results, experiments and adjustments to the whole sys-
tem.

Chapter 9 Conclusion & Further Development

Appendix A Content on CD

Appendix B Set Theory
Some basic concepts behind set theory which is the foundation for methods
like morphological erosion, dilation, opening and closing.

Appendix C Calculations
Some calculation examples.

Appendix D Implementation of Software and NXT
Step-by-step guides on how to get started with MATLAB and NXT on Mac.
This chapter is based on the work from the preliminary project, Objekt
sorterer.

Appendix E Implementations in MATLAB
A overview of all functions implemented in MATLAB.

Appendix F Data Collection from Cross Validation
Collected data from each classifier with normalized and unnormalized data.

4



Chapter 2

Basic Theory

This chapter presents some of the theory behind the work that is performed
in this report. Every section refers to the specific chapter that is based on
the current theory.
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2.1 Region Of Interest

2.1 Region Of Interest

Region of interest (ROI) is a area in an image that contains the information
that is relevant for further analyze and processing. By only focusing on this
area, the rest of the image isn’t used and is discarded. To enable ROI in an
image there are four constants that the user needs to declare and that is the
x- and y-offset, also called n0 and m0, and the width (n1) and height (m1)
of the ROI. Figure 2.1 shows an example.

Figure 2.1: Region of Interest. © 2012 The MathWorks, Inc. All rights
reserved.

The coordinates n0 andm0 decides the new image origin, or upper left corner,
and the width and height decides the resolution of the ROI.
This section only covers squared representation of an ROI. There are several
other techniques that can be implemented to shape the ROI in a arbitrary
user defined shape.

2.2 Thresholding

Thresholding are mainly used on grayscale images to distinguish and ex-
tract f.ex. an object from a background in the image scene. Each pixel in a
grayscale image contains information about the intensity and this intensity
can vary from black (0) to white (255). The area between black and white
contains different shades of grey. Every pixel are assigned a value based on
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2.2 Thresholding

their intensity level and these values can be between 0 and 255.
If a grayscale image contains a bright object in a dark environment, a his-
togram could group together intensity levels that have the same value and
give an impression of which values that are lighter and darker.
Figure 2.2 shows a histogram that clearly distinguishes two different sets of
intensity levels.

Figure 2.2: Intensity histogram. The intensity levels are lower for the left
group then for the right.

The x-axis contains the intensity levels from 0 to 255 and the y-axis sums
up each pixel in the image that have a given intensity value.
The group to the left in the figure above contains all the pixels in the image
that are dark and/or dark shades of grey. The group to the right contains
the pixels that are bright. Since the object is brighter than the background,
the group of intensity levels to the right in the image represents the object.
To extract the object from the background, the threshold (T) should be a
intensity value between the two grouped sets and the value is always between
0 and 1, because the value is divided by 255.
There are different ways to compute thresholds in grayscale images and one
of those is called Otsu’s method. This method is used by the MATLAB
function graythresh and are explained in the next section.
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2.3 Morphological Operations

2.2.1 Otsu’s method

According to [5] (page 561), a histogram of an image groups together pixels
that have the same intensity level from 0 to 255 (grayscale values). To classify
one set (S1) of pixels with values {0, 1, 2, ...., k} from another set (S2) with
values {k+1, k+2, ...., L-1}, where L equals 256, can be done by the threshold
k. Otsu’s method chooses the value of k that maximizes the between-class
variance σ2

B(k). The mathematical expression for the between-class variance
is defined as

σ2
B(k) =

[
mGP1(k)−m(k)

]2
P1(k)

[
1− P1(k)

] (2.1)

, where mG is the mean of all intensity levels in the image, P1(k) is the
probability of S1 occurring, m(k) is the mean intensity up to level k and
1− P1(k) is the probability of S2 occurring.
The larger σ2

B(k) is, the more likely it is that the threshold k will segment
the image properly.

Thresholding is used in Chapter 4 to convert grayscale images to binary.

2.3 Morphological Operations

Mathematical morphology (MM) is a technique that is used to analyze and
process geometrical structures in images. It is used to extract information
about objects in an image, but it is also used to pre- and post process im-
ages. The theory underlying this section mainly focuses on two fundamental
operations in MM which are dilation and erosion, and it’s solely based on
information from [5].

Chapter 5 are based on this theory.

Equations 2.2, 2.3, 2.4 and 2.5 are based on set theory. Some basic concepts
from this theory is presented in appendix B.
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2.3.1 Dilation

Dilation increases or thickens objects in a binary image. The extent of the
object growth after dilation is determined by a so called structural element
(SE) [5]. A SE may have many different shapes and some shapes are shown
in figure 2.3.

(a) Diamond (b) Disk (c) Line

(d) Octagon (e) Rectangle (f) Square

Figure 2.3: Structural elements. © 2012 The MathWorks, Inc. All rights
reserved.

The MATLAB function strel can be used to create these elements. The
user can determine the shape, radius, length, height and/or angle of the el-
ement.
When used with dilation, the SE is shifted across every pixel element in the
binary image and for every 1-valued pixel (foreground pixel) the SE’s origin
overlaps, it expands this element with the size/shape of the SE.

The mathematical expression [5] for dilation can be expressed as follows

A⊕B =
{
z
∣∣(B̂)z ∩A 6= ∅

}
(2.2)

, where A is a collection of connected 1-valued elements, B is the SE and ∅
is the empty set.
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2.3.2 Erosion

Erosion operates opposite of dilation by shrinking objects. To shrink an ob-
ject (a set of connected 1-valued elements) or a part of it, the whole SE must
overlap the object or this part. If a horizontal line shaped element with a
length of 3 pixels hits a single 1-valued element that is not connected to any
other 1-valued elements, the element is removed. But if it hits 3 connected
1-valued elements in the same direction as the SE, only the element that is
overlapped by the origin remains after erosion.

The mathematical expression [5] for erosion can be expressed as follows

A	B =
{
z
∣∣(B)z ∩Ac = ∅

}
(2.3)

, where the erosion of A by B is when all elements in B overlaps A.

2.3.3 Opening

Opening first performs erosion on a binary image and the result is then sub-
jected to dilation. The operation first remove objects that are smaller then
the SE and reduces objects that are larger, then it increases the remaining
objects to their original size.

The mathematical expression [5] for opening can be expressed as follows

A ◦B = (A	B)⊕B (2.4)

2.3.4 Closing

Closing first performs dilation on a binary image and the result is then
subjected to erosion. The result of closing smooths object perimeters, but
it doesn’t remove objects that are smaller than the SE, because dilation is
performed before erosion [5].
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The mathematical expression [5] for opening can be expressed as follows

A •B = (A⊕B)	B (2.5)

2.3.5 Labeling

Every pixel element in a binary image have the value 1 or 0. Foreground
pixels, or objects, have the value 1 and are white, background pixels have
the value 0 and are black. A set of foreground pixels in a neighborhood
are defined as connected components [5]. To determine which pixels that
are connected together as a component, the connection between each pixel
in the neighborhood have to be defined. The figure below shows 3-by-3
neighborhood of pixels and their coordinates.

Figure 2.4: A 3-by-3 pixel neighborhood. The text inside each square refers
to the pixel coordinate.

Pixel p(x, y) have two vertical and two horizontal neighbors, and this neigh-
borhood is defined as N4(p). Another neighborhood to p(x, y) is it’s diago-
nal neighbors; p(x+1, y-1), p(x-1, y+1), p(x-1, y-1) and p(x+1, y+1). This
neighborhood is defined as ND(p). There is also a defined a third neighbor-
hood that is a combination of the two others and it’s called N8(p). N8(p) is
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2.3 Morphological Operations

the union of N4(p) and ND(p).
All foreground pixels that have the specified connection (set by user) are
labelled with the same number. Figure 2.5 shows a matrix that represents a
binary image. Figure 2.6 and 2.7 show the labeling of this image with both
N4(p) and N8(p) connection.

0 0 0 0 0 1 1 1 0 0
1 0 0 0 1 0 0 0 1 1
0 1 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 1 0
1 0 0 0 1 0 0 1 0 0

Figure 2.5: Matrix representing a binary image. All 0-valued pixels is defined
as the background.

0 0 0 0 0 5 5 5 0 0
1 0 0 0 4 0 0 0 7 7
0 3 3 0 0 0 0 0 0 0
2 0 3 3 3 0 0 0 8 0
2 0 0 0 3 0 0 6 0 0

Figure 2.6: Labeling connected components with a 4-connected neighbor-
hood

(
N4(p)

)
.

0 0 0 0 0 2 2 2 0 0
1 0 0 0 2 0 0 0 2 2
0 1 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 3 0
1 0 0 0 1 0 0 3 0 0

Figure 2.7: Labeling connected components with a 8-connected neighbor-
hood

(
N8(p)

)
.

The different gray colors and numbers represents connected components
found in the image when using 4- and 8-connected neighborhood. When
using a 8-connected neighborhood, the labeling finds less objects in the im-
age.
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2.4 Object Representation

2.4 Object Representation

There are two common options on how to represent objects (also known as
image regions) mathematically. These are often used in MATLAB and are
called internal and external characteristics [5]. Chapter 5 is based on this
theory.

2.4.1 Internal Characteristics

Internal characteristics of an object focuses on regional properties [5] like

• Object color
• Surface texture
• Object area
• Object centroid (coordinate of the objects center of gravity)
• Length / height of object

The MATLAB function regionprops is used to extract some of these char-
acteristics from an object and it will be represented in section 5.2.1.

2.4.2 External Characteristics

The external characteristics of an object focuses on object shape. [5]. These
properties can be

• Object perimeter / boundary
• Signature
• Chain codes
• Skeletons

Finding the object perimeter / boundary is represented in section 5.2.2.
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2.4.2.1 Signature

A signature is a representation of an objects boundary in a one dimensional
room. One option to represent a signature is to plot the distance, D (Q-by-2
vector), from an objects centroid to it’s boundary as a function of the angle
θ [5]. Equation 2.6 shows the mathematical definition

~S = ~D(θ) (2.6)

The angle θ is rotated 360 degrees (one degree increment) and the signature
~S (360-by-2 vector) contains all distances from the centroid to the perimeter.
This approach makes the analysis of an object form easier to understand.
Figure 2.8 shows four common geometrical shapes and figure 2.9 shows their
respective signatures.

(a) Circle (b) Square

(c) Rectangle (d) Triangle

Figure 2.8: Four common geometrical shapes.
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(a) Circle signature (b) Square signature

(c) Rectangle signature (d) Triangle signature

Figure 2.9: The signatures for each of the four geometrical shapes presented
in figure 2.8.

The first and last point in all signatures is actually connected.
The signature for the circular object should in theory be a straight line be-
cause the distance from the object center to the boundary is the circles radius
(constant for any θ), but in practice it’s very difficult to extract a perfect
circle perimeter and hence the signature varies in figure 2.9a.
From figure 2.9b all four peaks, representing the square corners, in the sig-
nature are equal an the distance between each peak is approximately 90
degrees, which is two of the squares geometrical properties. The valleys be-
tween the peaks indicates that all sides in the square have the same length.
In figure 2.9c there are also four equal peaks (in height), the two small val-
leys are the two opposite sides (vertical) and the two large valleys are the
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2.5 Pattern Recognition

diagonal sides (horizontal) that represents a rectangle.
The last figure represents a triangle. There are three peaks in the signature
that is the triangle corners and three valleys that represent the sides / edges.
The value of the peak in the middle indicates that it is not a equilateral (all
the angles are 60◦) triangle, but a isosceles triangle (45-45-90◦).

All valleys in all signatures, in figure 2.9, refers to sides / edges of the object,
except for the circular object. The data gathered from the signature is used
as features that describes an object. This is presented in section 5.2.3.

2.5 Pattern Recognition

Pattern recognition provides techniques to classify input data to a number
of classes or categories. The authors in [3] defines pattern recognition as the
act of taking raw data and taking an action based on the ”category” of the
pattern.

This section provides fundamental and basic theory to explain some areas
of pattern recognition. All information in this section is mainly based on [3]
and the theory is fundamental to Chapter 6.

2.5.1 Bayes Decision Theory

For several pattern classification problems the Bayes decision theory is a
important statistical set of tools. To use this theory to solve a problem, all
probability values must be known [3]. This section describes some of the
Bayes decision theory’s fundamental definitions.

Class(es)
ω = {ω1, ω2, . . . , ωc} (2.7)

Example:
Two-class problem. Distinguish glass bottles (ω1) from plastic bottles (ω2).

A priori probability
Our prior knowledge about which bottle is more probable to come next.

16



2.5 Pattern Recognition

P (ω1) express the probability that the next bottle belongs to class one and
P (ω2) is the probability that the next bottle belongs to class two.
Independent of how many classes there are, all a priori probabilities sum to
one.
Decision rule:

Decide =

{
ω1 if P (ω1) > P (ω2)
ω2 otherwise

(2.8)

Class-conditional Probability Density Function (PDF)
If an observation is used to assist the decision of choosing which bootle is
next, an pdf can be used and it is defined as p(x|ωj).
p(x|ωj) is simply the probability density function for x given that the state of
nature is ωj . For the the bottle example, there are two pdf’s, one for ω1 and
one for ω2. The difference between these two pdf’s describes the difference
between a glass bottle and a plastic bottle.
Figure 2.10 shows an example of what the pdf’s for ω1 and ω2 might look
like.

Figure 2.10: Example: Two class-conditional pdf’s for ω1 and ω2.
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The observation x is a continuous random variable, also called a feature, and
in this case it can represent the light reflection from the bottles. There could
also be more features from each bottle that assist the choosing decision and
then the observation x gets a higher dimension.

x = [x1 x2 x4 . . . xd]T (2.9)

The subscript d represents the dimension of the feature vector x in equation
2.9. The observation x is not longer a scalar, but a feature vector in a
d-dimensional Euclidean space, Rd.

The class-conditional pdf can f. ex. be normally distributed, i.e. p(x|ωj) ∼
N(µj , σj).

Bayes Formula
The Bayes formula can be found by putting together the previous definitions.

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)
(2.10)

This formula is used when p(x|ωj) and P (ωj) is known. It expresses the
posteriori probability that the state of nature is ωj when the feature vector
x is measured.
p(x) is called the evidence factor, or scaling factor, and is defined as

p(x) =
c∑
j=1

p(x|ωj)P (ωj) (2.11)

A decision rule that minimizes the probability of error can be formulated
from equation 2.10.

P (error|x) =

{
P (ω1|x) if ω2 is choosen
P (ω2|x) if ω1 is choosen

(2.12)

and this formula supports the Bayes decision rule

Decide =

{
ω1 if P (ω1|x) > P (ω2|x)
ω2 if P (ω2|x) > P (ω1|x)

(2.13)

Both equation 2.12 and 2.13 is formulated for a two-class problem. Its not
necessary to include p(x) in the decision rule because this is just a scaling
factor and it doesn’t change the posteriori probability.
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2.5 Pattern Recognition

Decision Border and Error Probabilities
The decision border is a line that separates the two pfd’s where p(x|ω1) =
p(x|ω2). Figure 2.11 shows an example.

Figure 2.11: The figure shows an example of a computed decision border
between two pdf’s.

The area under ω1 and ω2 (R1 and R2) is the decision region of each class.
The dark grayed area is the error probability, P (error), that x falls into
R1 when ω2 is the true state of nature. The light grayed area is the error
probability that x falls into R2 when ω1 is the true state of nature.
The error probability is defined as

P (error) = P (x ∈ R2, ω1) + P (x ∈ R1, ω2)

=
∫
R2
p(x|ω1)P (ω1) dx+

∫
R1
p(x|ω2)P (ω2) dx (2.14)
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2.5 Pattern Recognition

2.5.2 Normal Density

If the observation x is one-dimensional and normal distributed the class-
conditional pdf is defined as,

p(x) =
1√
2πσ

· e−
1
2

(
x−µ
σ

)2
(2.15)

where µ is the expectation and σ is the standard deviation.
If x has more dimensions (d) the pdf is defines as,

p(x) =
1

(2π)
d
2 |
∑
|
1
2

· e−
1
2
(x−µ)T

P−1(x−µ) (2.16)

where µ is the expectation and
∑

is the covariance matrix which determines
the shape and orientation of the pdf.

2.5.3 Discriminant Functions for the Normal Density

Normally classifiers are represented by discriminant functions. The discrim-
inant for the Bayes formula is defined as

gj(x) = p(x|ωj)P (ωj)
= ln

(
p(x|ωj)

)
+ ln

(
P (ωj)

)
(2.17)

Equation 2.17 ensures minimum error classification.
For a two-category case the discriminant functions g1 and g2 are formulated
like

g(x) = g1(x)− g2(x) (2.18)

If g(x) > 0 ω1 is chosen, otherwise ω2.

Equation 2.17 can be evaluated for three different cases:

Case 1: Σj = σ2I

gj(x) =
1
σ2
− µ

j︸ ︷︷ ︸
wTj

x+
−1
2σ2

µT
j
µ
j

+ ln
(
P (ωj)

)
︸ ︷︷ ︸

wj0

= wjx+ wj0 (2.19)
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Case 2: Σj = Σ

gj(x) =
(
Σ−1µ

j

)T︸ ︷︷ ︸
wTj

x+−1
2
µT
j

Σ−1µ
j

+ ln
(
P (ωj)

)
︸ ︷︷ ︸

wj0

= wTj x+ wj0 (2.20)

Case 3: Σi arbitrary

gj(x) = xT
(
− 1

2
Σ−1
j

)T︸ ︷︷ ︸
Wj

x+
(
Σ−1
j µ

j

)T︸ ︷︷ ︸
wj

x

+
−1
2
µT
j

Σ−1
j µ

j
− 1

2
ln
(
|Σj |

)
+ ln

(
P (ωj)

)
︸ ︷︷ ︸

wj0

= xTWjx+ wjx+ wj0 (2.21)

2.5.4 Maximum Likelihood Estimation (Multivariate Case)

Often when working with pattern recognition problems, the data used for
training and testing has unknown prior probabilities and class-conditional
densities (p(x|ωj)). One way to solve this problem is to use the training
data to estimate the prior probabilities and pdf, and use them like they were
true values [3].
Maximum likelihood (ML) estimation assumes that the pdf is normal dis-
tributed with mean µ and covariance matrix Σ, and these are the parameters
that are estimated. The parameters are looked at as quantities with fixed
values. The value (θ̂) that maximizes the probability of obtaining the sam-
ples, in the training set, that are actually observed is defined as the best
estimate.

To perform a ML estimation on a set of class defined samples (training set
D), the vector θ has to be estimated. This parameter includes µ and Σ.

θ =
(
µ̂

Σ̂

)
=
(
θ1

θ2

)
(2.22)
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The likelihood ofD being explained by the parameter vector θ is then defined
as,

p(D|θ) =
n∏
k=1

p(xk|θ) (2.23)

Instead of working with the expression above, the log-likelihood is analyzed
because it is easier.

l(θ) = ln
(
p(D|θ)

)
(2.24)

The result is differentiated and set equal to zero by using the gradient.

∇θl =

(
∂
∂θ1
∂
∂θ2

)
(2.25)

The maximum likelihood estimation is then θ̂ = arg max l(θ) or ∇θ = 0.

Example: Unknown µ and Σ:
The log-likelihood

l(θ) =
n∑
k=1

{
− 1

2
ln
(
2πθ2

)
− 1

2θ2
(xk − θ1)2

}
(2.26)

The gradient

∇θl =
n∑
k=1

∇θ ln
(
p(xk|θ

)
=

n∑
k=1

∇θ
{
− 1

2
ln
(
2πθ2

)
− 1

2θ2
(xk − θ1)2

}
=

n∑
k=1

(
∂
∂θ1

(−1
2 ln

(
2πθ2

)
− 1

2θ2
(xk − θ1)2)

∂
∂θ2

(−1
2 ln

(
2πθ2

)
− 1

2θ2
(xk − θ1)2)

)

=

( ∑n
k=1

1
θ2

(xk − θ1)∑n
k=1−

1
2θ2

+ (xk−θ1)2

2θ22

)
(2.27)

By letting equation 2.27 equal zero, the parameter θ̂ can be calculated

θ̂ =
(
µ̂

Σ̂

)
=
(

1
n

∑n
k=1 xk

1
n

∑n
k=1(xk − µ̂)(xk − µ̂)T

)
(2.28)
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2.5.5 Nonparametric Techniques

In nonparametric procedures the pdf is estimated from sample patterns
(training sets). The pdf can have a arbitrary distribution. Practical prob-
lems often don’t fit a parametric model, like ML, because the problem is
multimodal and ML is unimodal [3].

In nonparametric estimation the goal is to estimate the density in a local
region.
Imagine a region R. The probability of x being in the region is,

P =
∫
R
p(x′) dx′ ≈ p(x)V (2.29)

where V is the volume of R. If there is n samples (x1, . . . , xn) drawn from
p(x) the probability of k samples falling in R is,

Pk =
(
n

k

)
P k(1− P )n−k (2.30)

Pk is binomial distributed and the expectation of k is nP . In [3] the authors
shows that k/n is a good estimate for the probability P and this gives the
following estimate for p(x),

p(x) =
k/n

V
(2.31)

If n is a fixed number and V approaches zero, the region will become
small and enclose no samples. Then the estimate would approximately be-
come zero. Instead consider estimating the density of x for several regions,
R1, R2, . . . Rn and let the number of samples n be unlimited (R1 contains
one sample, R2 contains two samples and so on). pn(x) is then the nth
estimate of pn(x) and is defined as,

pn(x) =
kn/n

Vn
(2.32)

where kn is the number of samples in Rn and Vn is the volume of Rn.
To converge pn(x) to p(x), three criterias is required

lim
n→∞

Vn = 0 (2.33)

lim
n→∞

kn = 0 (2.34)

lim
n→∞

k/n = 0 (2.35)
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The Parzen Window technique and kn-Nearest-Neighbor Technique (kNN)
satisfies these criterias.

2.5.5.1 Parzen Window

Parzen Window assumes that Rn is a hypercube and that an edge on this
hypercube has the length hn. The volume V is then hdn (d - dimension). The
number of samples falling in Rn is defined as the window function, ϕ(u),

ϕ(u) =

{
1 if |uj | ≤ 0.5 j = 1, ..., d
0 otherwise

(2.36)

where ϕ(u) is a unit hypercubes centered at the origin because u is normal-
ized.

u =
x− xi
hn

(2.37)

The number of samples in the hypercube (Rn) is defined as,

kn =
n∑
i=1

ϕ
(x− xi

hn

)
(2.38)

With the help of equation 2.38 the expression for the estimate pn(x) can be
written as,

pn(x) =
1
n

n∑
i=1

ϕ
(x− xi

hn

) 1
Vn

(2.39)

These estimates is an average of functions of x and the sample xi. Each xi
contributes to the estimate according to it’s distance from x.

A hypercube window doesn’t produce a legitimate density function. To avoid
this, window functions are defined as density functions,

δn(x) =
1
Vn
ϕ
( x
hn

)
(2.40)

where Vn = hdn. hn is called the window width. Now the estimate is
espressed,

pn(x) =
1
n

n∑
i=1

δn(x− xi) (2.41)
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The window width is defined as,

hn =
h1√
n

(2.42)

where h1 is the variable the varies the window width and n is the number of
samples in x.

The window width affects the amplitude and and width of δn(x). Large hn
produces low amplitude and high width, and the distance between x and xi
must be large to make δn(x− xi) change a lot. If hn is small, the effect will
be a large peak in δn(x − xi) near x = xi and δn(x − xi) is narrow. The
figure below shows the effect of large and small window width.

Figure 2.12: The left plot shows the effect of large hn and the right plot
shows the effect of small hn. Both examples are for 1 dimensional data. The
purpose is only to give an image of the effect of using large and small window
width values.

The window function could also be Gaussian and this function is defined as,
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ϕ(u) =
1

(2π)
d
2

e
− (x−xi)

2

2h2
n (2.43)

The pn(x) estimate then becomes,

pn(x) =
1
n

n∑
i=1

1
Vn
ϕ(u)

=
1
n

n∑
i=1

1

(2π)
d
2hn

e
− (x−xi)

2

2h2
n (2.44)

2.5.5.2 kn-Nearest-Neighbor (kNN)

Imagine a set of n samples (training data) spread out in a plane. To estimate
p(x) a region (R) is centered around x (feature vector) and R grows until kn
samples are captured [3]. All captured samples are the kn-nearest-neighbors
to x. The estimate is defines as,

pn(x) =
kn/n

Vn
(2.45)

where kn is fixed and determines how many captured neighbors R shall
contain until it stops growing. n is the number of samples and Vn is the
distance from x to the kn-th nearest neighbor.
The region R is defined as a hypersphere and Vn decides it’s area. Vn is
defined as,

Vn = π||x− xi||2 (2.46)

where xi is the kn-nearest neighbor.
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Figure 2.13: The region radius is marked with an arrow. The figure shows
the area containing the kn-nearest-neighbors to x.

The a posteriori probability to the kNN can be expressed as,

Pn(ωi|x) =
pn(x|ωi)∑c
j=1 pn(x|ωj)

=
ki
k

(2.47)

where pn(x|ωi) is the probability estimate for x given that the state of nature
is ωi, ki is the number of samples belonging to ωi and k is the total number
of captured samples in the kNN. pn(x|ωi) is defined as,

pn(x|ωi) =
ki/n

V
(2.48)

Example: 2 class problem
A feature vector x is classified with kNN to a set of labeled samples that
belongs to ω1 and ω2. kn equals 3. The total number of samples captured
by the kNN is 71 (two or more samples can have the same distance to x).
Of these 7 samples, 3 belongs to ω1 and 4 belongs to ω2. The feature vector
x is therefore classified to ω2 since 4

7 >
3
7 (Pn(ω2|x) > Pn(ω1|x)).

1k = 7.
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Chapter 3

A System Overview

This Chapter presents a brief overview of the system modules. For the
physical system, the main parts are presented in section 3.1. Section 3.2
gives a brief presentation of MATLAB.

Figure 3.1 shows a block schematic structure of the system. The system
is divided into a physical module and a program module (MATLAB). The
physical module consists of a conveyor belt, a sorter arm, the NXT and a
camera. The MATLAB module is made up of three main functions; Moving
Object Detection (MOD), Object Recognition & Feature Extraction (OOI)
and Feature Classification.

The MOD function is used to detect moving objects on the conveyor belt
that passes under the camera. To detect an object, MOD uses two main
techniques; Background Subtraction and Background Modeling. MOD is in-
troduced in Chapter 4.

The OOI function extracts the object of interest from the image background
and finds features that describe the object. OOI is introduced in Chapter 5.

The feature vector is classified by a classifier in the Feature Classification
function. The result from this classification decides if the object belongs to
class 1 or class 2. This function is presented in Chapter 6.
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3.1 Physical System

Figure 3.1: The figure shows the main components of the Conveyor belt
system. The system is divided into to two main modules; physical and
MATLAB. The physical module is the mechanical parts of the system and
the MATLAB module is program that initiates and runs the system.

3.1 Physical System

This section presents some of the main mechanical modules on the object
sorter system.
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3.1 Physical System

3.1.1 NXT Intelligent Brick 2.0 (NXT)

NXT is the brain of the Lego Mindstorms robots. The device has four inputs
were sensors can be connected and three outputs which controls the servos.
It’s possible to connect a computer to the NXT by either USB or bluetooth.
The figure below shows the NXT device.

Figure 3.2: NXT Intelligent Brick. © 2012 LEGO. All rights reserved.

The NXT controls two servos on the sorter system. One servo controls the
conveyor belt and the other servo controls the sorter arm. Each servo has an
internal rotation-sensor which makes it possible to turn the servos precisely.
This sensor reads the rotation of the servo with an accuracy of ± 1 degree.
A full rotations of a servo is 360◦.
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3.1.2 The Conveyor Belt

The conveyor belt consists of three separate modules and is connected as a
set of steps. This shown in figure 3.3. The conveyor belts task is to transport
objects along the length of the belt.

Figure 3.3: Design of the conveyor belt. The conveyor belt modules are
placed in a tread pattern to prevent contact between each module.

There are two reasons for this implementation. First, if all three modules
are placed at the same height, the tracks on each conveyor module will be in
contact with each other when the conveyor belt is running and this creates
unstable movement. Secondly if the gap between them increases so that
the tracks isn’t in contact with one another, objects can fall through the gap
and possibly get stuck, making the conveyor belt crash. By creating a height
difference between the modules, no tracks is in contact and the gap between
each module is reduced, giving no room for an object to get through.
A NXT motor/servo which operates all modules and run the conveyor belt is
connected to the first module. The connection between each module is a set
of mechanical gears that is placed between the first and second module, and
between the second and third module. The mechanism is shown in figure
3.4.
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Figure 3.4: Mechanical gear module. The intermediate gear rotates in the
opposite direction of the first gear. This rotation affects the next gear that is
connected to another conveyor belt module and turns it in the same direction
as the previous module.

3.1.3 Sorter Arm

The sorter arms task is to push objects of the conveyor belt and into a sorting
tray. When an object is represented and recognized the sorter arm may be
asked to push the object of the conveyor belt if the developed program’s
directives for this object is declared to execute the sorter arm’s function.
Figure 3.5 shows the arm in stationary and working position.
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(a) Stationary position (b) Working position

Figure 3.5: Sorting arm in stationary and working position.

Figure 3.6 shows only the sorter arm.

Figure 3.6: An illustration of the mechanical sorter arm in stationary posi-
tion.
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The NXT servo, which controls the sorter arm, is connected to the vertical
beam shown in the figure 3.6. When the arm is in the stationary position
the motor is in position 0◦ and when the arm is in the working position the
motor rotates 90◦ (and stops) as shown in figure 3.7b.

3.1.4 Physical Objects

One of the problems was to find objects that was similar, but at the same
time different. The idea was to have minimum three different objects that
could be sorted. But because of limited space on the conveyor belt, the
selection of objects became limited as well. In the end, two objects was
chosen to be sorted. These two objects are very similar in size and shape.
This makes the classification problem a lot more difficult, but that was the
intention.

The objects are presented in the figure below.

(a) Technic Gear 24T (b) Technic Gear 24TC

Figure 3.7: The figure shows the two objects that the sorter system shall
distinguish between. Figure (a) shows a technic gear that consist of 24
teeth. Figure (b) shows a technic gear that also consist of 24 teeth, but the
gear is crowned.

For the classification problem, the objects have to be defined into two classes.
The Technic Gear 24T belongs to class 1 and the Technic Gear 24TC belongs
to class 2.
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3.1.5 Webcam

The webcam implemented on the object sorter system is a Creative Live!
Cam Chat HD. The video resolution is 720p and it can capture images up
to 5.7 megapixels.

Figure 3.8: Creative Live! Cam Chat HD. © 2012 Creative Technology Ltd.
All rights reserved.

Specifications:
Image Sensor HD 720p (1280 × 720)
Video resolution 720p HD
Image resolution 5.7 megapixels
Frame rate (max) 30fps (at HD 720p)
Connectivity USB 2.0 Hi-Speed

The main task of the webcam is to capture snapshots (frames) of the moving
conveyor belt that MATLAB analyzes for further processing. MATLAB
controls the webcam and decides when it should grab a frame. When a
object is in the webcams field of view (FOV), MATLAB detects the object.
This method is called Moving Object Detection and is presented in chapter
4.
The webcam is initialized in MATLAB by the Image Acquisition toolbox
and enables camera devices to communicate directly with MATLAB and
return frames automatically or manually to the MATLAB environment. The
toolbox also enables users to configure camera settings. This toolbox is
presented in section 3.2.3.
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3.1.5.1 Configuration of the Webcam

The webcam is configured to return RGB images that only contains the ROI.
The normal size of an frame that is captured by the webcam is 1280× 720,
but since the configuration is set to only return the ROI, the image size is
370× 705.
These configurations are enabled after the webcam is acquired by the Image
Acquisition toolbox and implemented by the MATLAB function set. The
webcam is initialized in global_var.m and at line 4 and 5 in the MATLAB
implementation in appendix E.9, these configurations are enabled.

3.2 Development Tools

This section gives a short presentation of the development tools used in
this report. Mainly MATLAB is used, but a important toolbox is also rep-
resented. This toolbox is called RWTH and is used to make MATLAB
communicate with the LEGO Mindstorms NXT.

3.2.1 MATLAB

MATLAB is an abbreviation for MAtrix LABoratory and is developed by
MathWorks. MATLAB is a numerical computing environment that inte-
grates computation, visualization and programming. It’s main uses are al-
gorithm development, modeling, simulation, analysis and data acquisition
[5]. An addition to MATLAB is a so called application-specific solution
called toolboxes. These toolboxes is a collection of MATLAB functions that
is used to solving different problems. A problem could perhaps be Image
Processing or Signal Processing related. Each toolbox give the users specific
functions that can be used to solve different problems concerning the sub-
ject. It also includes documentation and examples of use.
In this report the Image Acquisition and Image Processing toolboxes are
mainly used. There is also a third toolbox, called RWTH, that is used to
make MATLAB communicate with the LEGO Mindstorms NXT. A short
summary of the different toolboxes will be given in the next three sections.
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3.2.2 Image Acquisition Toolbox

This toolbox helps the user to acquire video and images from cameras di-
rectly into the MATLAB environment. It supports a wide range of camera
vendors and it can both be used by low cost web cameras and high-end de-
vices [11].
With the toolbox comes documentation that can be accessed on the Math-
Works homepage or in the Help function in MATLAB. This documentation
includes sections like getting started with the toolbox, a users guide, exam-
ples and more. There are also a list of MATLAB functions that are used
for initializing and running the acquisition devices. More information can
be found in [11]. The table below shows some common MATLAB Image
Acquisition functions.

closepreview Closes the the live video window
getsnapshot Returns a single captured frame immediately
imaqfind Finds video objects initialized in MATLAB
imaqhwinfo Returns information on available hardware devices
preview Previews live video data in a window
videoinput Creates a video input object

Table 3.1: Common functions in the Image Acquisition toolbox.

3.2.3 Image Processing Toolbox

The Image Processing toolbox offers the user a set of functions, algorithms
and graphical tools for image processing, analyzing and visualization. Some
of the functions / algorithms can convert images into different formats, like
RGB to grayscale, adjust contrast, do image registration and segmentation,
do morphological operations and more [11].
Like the Image Acquisition toolbox, this toolbox also offers the same kind
of documentation and can be found like mentioned in the previous section.
Table 3.2 shows some common MATLAB Image Processing functions.
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bwboundaries Finds the coordinates of the object perimeter
bwlabel Labels connected components (objects)
bwperim Finds the perimeter of an object
bwselect Finds and selects labelled objects
greythresh Computes global image threshold using Otsu’s method
imadjust Adjusts contrast in image
imclearborder Clears objects that is placed on the image border
imclose Morphological closing
imdilate Morphological dilation
imerode Morphological erotion
imfill Fills holes and image regions
imhist Shows histogram og image data
imopen Morphological opening
imshow Displays image in MATLAB
im2bw Converts grayscale image to binary image
regionprops Returns data on detected objects in image
rgb2gray Converts RGB image to grayscale image
strel Create a morphological structural element

Table 3.2: Common functions in the Image Process toolbox.

3.2.4 RWTH Mindstorms NXT Toolbox

The RWTH Toolbox is developed at the RWTH Aachen University in Ger-
many as a student project called MATLAB meets LEGO Mindstorms. The
background of the project was only for educational purposes for the students
at the Institute of Electrical and Computer Engineering at the mentioned
university [14].

The RWTH toolbox is a free open source product that makes MATLAB
available to interact directly with the NXT over a bluetooth or USB connec-
tion. MATLAB can compute time- and machine demanding tasks that the
NXT can’t handle because of it’s limited CPU- and memory capacity. [14]
argues that the biggest advantage of this toolbox is to combine MATLABs
complex mathematical computation with robot applications.
All functions in the toolbox is divided up into four different categories which
are:
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1. Low level functions: Convert parameters into bytes that is deter-
mined by the LEGO direct command documentation.

2. Direct NXT Commands

3. High Level Functions: Controls the NXT motors, sensors and blue-
tooth.

4. High Level Regulation / Utilities:
Provides accurate motor regulation.

Table 3.4 show some commonly used functions and commands from the
RWTH toolbox.

39



3.2 Development Tools

Low level functions
MOTOR_X Constant for motor X.

X can be A, B or C (outputs on NXT).
SENSOR_X Constant for sensor X.

X can be 1, 2, 3 or 4 (inputs on NXT).
Direct NXT Commands

NXT_GetBatteryLevel Return current battery level (mV).
COM_SetDefaultNXT(HNXT) Sets the handle HNXT to a global NXT han-

dle. This handle are used by all NXT func-
tions (default).

High Level Functions
COM_OpenNXT Opens a USB or bluetooth connection to the

NXT and returns a handle (HNXT) to MAT-
LAB.

COM_CloseNXT Closes and deletes a handle (HNXT) in MAT-
LAB.

High Level Regulation
NXTMotor(P) Makes an NXT motor object with mo-

tor port P (P can be MOTOR_X). Ex: mA =
NXTMotor(MOTOR_A).

ReadFromNXT Reads the current state from a motor via
NXT. Ex: mA.ReadFromNXT(). The func-
tion returns among other things the power
and position.

Stop Stops a specified motor. Ex: mA.Stop().
WaitFor Waits for a motor to stop. Ex:

mA.WaitFor().
ResetPosition Resets the position of a motor. Ex:

mA.ResetPosition().
COM_MakeBTConfigFile Creates a bluetooth configuration file.

Table 3.4: Common functions / commands in the RWTH toolbox.

When creating a motor object with the NXTMotor function, the user can ini-
tialize a set of properties that controls the motor. The different properties
besides motor port (P) are power, speed regulation (sync. two or more mo-
tors), tacho limit (angle of degrees the motor will turn), action at tacho limit
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and smooth start. More information about these functions and others can
be found in [13].
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Chapter 4

Moving Object Detection

To detect objects on a conveyor belt that is moving is a difficult task. In
a static environment the background doesn’t move particularly, except for
some movements of certain objects, like trees, because of the wind or that it
can rain or snow. These examples are based on a surveillance camera that is
positioned outside. A camera that is positioned inside wouldn’t have these
problems if the cameras field of view (FOV) didn’t contain a view to the
outside of the building. Then the background would be completely static
if no one was moving around in the cameras FOV or that the illumination
suddenly changes.
The video recording from this camera could use a basic technique called
background subtraction (BS) [8], also known as frame differencing or tempo-
ral difference [4], to compare the i-th frame (the frame captured now) with
the (i-1)-th frame (the frame captured before) or with a reference frame to
check for movements in the cameras FOV. If there are no movement, the two
frames are identical and no movement is detected. But if the i-th frame con-
tains movement (a person walking by for an example) and the frame before
contained the background without the person, the frame differencing would
detect movement. An example is shown in the figure 4.1.
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(a) Frame number (i-1) (b) Frame number (i) (c) Result of frame differenc-
ing

(d) Frame number (i-1) (e) Frame number (i) (f) Result of frame differenc-
ing

Figure 4.1: Result of BS in a given environment for two different situations.

The result of frame differencing between the images shown in figure 4.1a
and 4.1b detects no movement as shown in 4.1c, since the two frames are
identical. While the frames in figure 4.1d and 4.1e shows a change in scene,
the frame differencing detects movement and the result is shown in figure 4.1f.

Frame differencing subtracts two grayscale images pixel-by-pixel from an-
other and the result is a image (of the same size) that contains the differ-
ence. For each pixel subtraction the result is compared with a threshold to
determine which pixels that is a foreground pixel (detected object) or is a
background pixel (static environment) [8]. A mathematical expression for
frame differencing is as follows,

Ffd(m,n) =
{

1 if |Fi(m,n)− Fi−1(m,n)| > T
0 otherwise (4.1)

where Ffd(m,n) is the result of frame differencing, Fi(m,n) is the current
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frame, Fi−1(m,n) is the previous frame (or background reference) and T is
the threshold. This expression is based on formula (1) in [8].

One way of implementing the BS technique in MATLAB can be done by the
following simplified pseudocode:

Algorithm 1 Moving Object Detection using BS
i & DET = 1
while DET == 1 do

get RGB frame from camera
convert frame to grayscale
save frame i in F{i}(m, n)
if i == 1 then
i← 1

else
Ffd(m,n) = F{i}(m,n)− F{i− 1}(m,n)
convert Ffd(m,n) to binary image
if Ffd(m,n) > T then
return F{i}(m,n)
DET = 0

else
i← 1

end if
end if

end while

The variable DET tells the while-loop that an object is either found from
frame differencing or not. When it is 1 no object is found. The variable i is
used to increment F{i} and save each frame separately.

The BS technique operates well for moving object detection (MOD) when
the background is static, but what happens when the background is dynamic,
like for example with the conveyor belt that always is in motion?

The basic structure of the conveyor belt / camera setup is that the conveyor
belt moves horizontally while the camera’s position is perpendicular and
above the conveyor belt with the camera lens pointing down on the belt, as
shown in figure 4.2.
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Figure 4.2: A simple sketch of the camera and conveyor belt layout. Note
that this sketch isn’t similar to the model in reality, in terms of FOV and
dimensions. The conveyor belt is also not smooth. The surface of the con-
veyor belt consists of tags that go across the belt. Between each tag there’s
a gap.

Since the material that the surface of the conveyor belt is made from isn’t
non reflective, it may reflect light that hits the conveyor belt depending on
the current illumination, while moving. When one frame (i) is captured
by the camera without any object in the FOV, the reflection from the belt
caused by illumination from the lights in the room may be present in this
frame. In the next frame (i+1 ) the same thing happens, but the conveyor
belt isn’t positioned identical as it was in frame i and the reflection will
be different because of the non reflective surface and the tags on the belt.
When calculating the frame difference from the two mentioned frames, the
system will detect movement and produces a so called false positive object
detection. This makes the BS technique unsuitable for this purpose. An
example of this is shown in figure 4.3 where the (i-1)-th and i-th frame is
shown and figure 4.4 shows the result of the false positive object detection
on a binary image.
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(a) Frame number i-1 (b) Frame number i

Figure 4.3: The dynamic background of the conveyor belt for two frames
captured at different times.

The difference in the two frames in figure 4.3 is the positioning of the tags
on the conveyor belt.

Figure 4.4: False positive object detection on the conveyor belt due to il-
lumination. The figure shows the difference between the (i-1)-th and i-th
frame as an binary image.

In this situation the conveyer belt / camera setup was position directly below
a light fixture in the ceiling. When the unit was moved and placed away from
the fixture, the illumination from the fixture wasn’t directly above. The
reflection from the belt was less than in the situation before. In terms of
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using the same pseudocode in algorithm 1 at the current placement produced
the same result as before.

4.1 Enhancing the Current Pseudocode

The current pseudocode for the basic BS technique is always detecting false
positives because the conveyor belt is reflecting illumination, from light
sources that are present in the environment, differently in every frame the
camera captures. The conveyor belt movement and light reflection creates a
dynamic background. One idea for suppressing the dynamic background and
ignore false positives came when studying the different thresholds that the
MATLAB function graythresh computed for some captured frames with no
object and frames with an object present, in the dynamic background. This
function uses Otsu’s method to determine the threshold [5].

To ensure for sudden light reflections that could affect the threshold in one
frame and compute a high threshold value, the average threshold from the
last ten captured frames are computed. Table 4.1 shows twenty computed
average thresholds without an object in the cameras FOV.

Frame 1 2 3 4 5
Threshold 0.0533 0.0494 0.0478 0.0537 0.0529
Frame 6 7 8 9 10
Threshold 0.0478 0.0486 0.0514 0.0482 0.0447
Frame 11 12 13 14 15
Threshold 0.0463 0.0443 0.0416 0.0388 0.0373
Frame 16 17 18 19 20
Threshold 0.0369 0.0337 0.0349 0.0329 0.0337

Table 4.1: Computed average thresholds for the dynamic background using
the MATLAB function graythresh.

The average thresholds that are computed from the dynamic background
(without any object in the scene) are small, but they may differ from these
results and be larger values depending on the light conditions.

47



4.1 Enhancing the Current Pseudocode

The next table shows the average thresholds right before an object entered
in the cameras FOV and when it is in the FOV. Table 4.2 shows the result
of the computed average thresholds.

Frame 1 2 3 4 5
Threshold 0.0271 0.0267 0.0353 0.0427 0.0518
Frame 6 7 8 9 10
Threshold 0.0624 0.0714 0.0804 0.0902 0.1012
Frame 11 12 13 14 15
Threshold 0.1118 0.1129 0.1133 0.1137 0.1145
Frame 16 17 18 19 20
Threshold 0.1157 0.1173 0.1192 0.1212 0.1227

Table 4.2: Computed average thresholds for the dynamic background when
object was in FOV, using the MATLAB function graythresh.

In the two first frames the object isn’t inside the cameras FOV, but from
the third frame the object enters it and the average thresholds starts to rise.
At frame 7 the whole object is inside the FOV.

From this information the pseudocode was altered so that the code would
only recognize an object if the average threshold computed by the graythresh-
function exceeded a user-defined threshold (UDT). The UDT value couldn’t
be to small because then the code would detect reflection movement, and it
also couldn’t be to high since then it wouldn’t detect nothing at all. Some
experiments where done that concluded that UDT was set to 0.09. The value
is higher than the average threshold values computed when a object wasn’t
in the FOV. Sudden light reflections may affect the average threshold to get
even higher values than shown in table 4.1 and by letting UDT be 0.09, it
can handle these situations. The algorithm ran for a long period with no
objects passing the FOV and it didn’t detect any false positives with this
UDT value.
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4.1.1 Ensuring the Whole Object Within the FOV

The frame that is returned in the end of the pseudocode must contain the
whole object within the FOV so that later image pre processing applications
can extract information about the object. Half an object in the FOV isn’t
sufficient enough for further feature extraction.
A easy way of implementing this is by using the MATLAB function
imclearborder. This function removes all objects that touches the image
border [5]. If a captured frame with part of an object in the FOV is compared
with a previous frame containing no object at all, the average threshold that
is computed will increase and may exceed UDT, resulting in returning a
image showing only a part of the object. The imclearborder function needs
an additional application that ensures that the whole object is in the FOV
before the algorithm returns the resulting image. This application is a matrix
(Mrm) of the same size as the image (370×705 pixels) containing zeros except
for a area that is positioned on the left side in the image. This area contains
only ones (1-valued pixels) and is called the reference mask (RM). Mrm is
shown in figure 4.5.

Figure 4.5: Matrix containing a reference mask (Mrm).

The reference mask is positioned further to the left then to the right because
the objects on the conveyor belt enters the FOV from the right in figure 4.5
and leaves the FOV on the left. This ensures that longer objects (in the
horizontal direction) is fully inside the FOV. Figure 4.6 shows the reference
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mask in the cameras FOV.

Figure 4.6: The reference mask shown in the FOV.

Every Ffd{i} (that have been processed by the imclearborder function) and
the Mrm are multiplied together. If the object overlaps RM, the result is a
matrix containing 1’s where the object overlapped the mask. If the object
doesn’t overlap the mask, the result is a matrix containing only 0’s. Figure
4.7 shows the result of multiplyingMrm and a frame differencing image when
the object overlaps the mask.
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Figure 4.7: The result of multiplying Ffd{i} and the Mrm when object
overlaps RM.

The result in figure 4.7 shows that a portion of the object is overlapping RM.
To let the algorithm know that the object is either overlapping RM or not,
the MATLAB functions find and isempty are used. The find function
finds nonzero elements in a matrix and returns the row (r) and column (c)
indices for these elements in two vectors. If the matrix contains only 0’s the
row and column vectors are empty (in MATLAB this is indicated with []).
The isempty function returns a logical 1 if a vector or matrix contains no
nonzero elements and logical 0 otherwise. By inverting this function (∼) it
gives a logical 1 if the vectors contains nonzero element and this is used to
determine if the object is overlapping the mask.
The area of RM is defined as Mrm(66 : 264, 180 : 200) = 1.

The enhanced pseudocode is shown in algorithm 2
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Algorithm 2 Enhanced Moving Object Detection using BS

i & DET = 1
while DET == 1 do

get RGB frame from camera
convert frame to grayscale
save frame i in F{i}(m, n)
if i <= 10 then
if i == 1 then
i← 1

else
Ffd(m,n) = F{i}(m,n) −
F{i− 1}(m,n)
compute T{i-1} from
Ffd(m,n)
i← 1

end if
else
Ffd(m,n) = F{i}(m,n) −
F{i− 1}(m,n)
compute T{i-1} from
Ffd(m,n)
convert Ffd(m,n) to binary

image using T
clear objects that are con-
nected to the border
AT{i− 10} = 0
for j = 0→ 9 do
AT{i-10} = AT{i-10} +
(T{(i-1)-j}/10)

end for
multiply Mrm and Ffd(m,n)
find r and c vectors in Mrm ×
Ffd(m,n)
if !isempty(c) & !isempty(c) & AT{i−
10} > UDT then
return F{i}(m,n)
DET = 0

else
i← 1

end if
end if

end while

4.1.2 Results from the Current Setup

The pseudocode for algorithm 2 was implemented in MATLAB (see Ap-
pendix E.11) and tested. The test was to detect different objects when the
camera / conveyor belt setup wasn’t placed directly below a light source.
The next figure shows some results of the MOD.
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(a) 2× 2 LEGO brick (b) 2× 4 LEGO brick

(c) 2× 2 Round LEGO brick (d) Technic Gear 16 tooth

Figure 4.8: Some results from the enhanced pseudocode (algorithm 2) im-
plemented in MATLAB.

From the images in figure 4.8 there are some noise present in the frame, but
this can be handled in a later stage. The algorithm doesn’t return a binary
image, but the RGB version to pre-processed further.
The current setup was tested by running the pseudocode for algorithm 2 for
10-20 minutes without having an object passing through under the camera.
This was done to check the robustness against the current light conditions
in the environment. The result of this test gave no false positive detections.

Another test was also performed to check the pseudocode’s ability to detect
different types of objects. By letting objects pass through under the camera,
the goal was to see how many, of a set of twenty objects, the algorithm could
detect on the first try. Figure 4.9 shows the objects that was used in the
test.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 4.9: Objects used in the test set. The objects was used to test
algorithm 2 failure rate.

Every object was tested five times, so the total number of times the objects
passed through, below, the camera was one hundred. Table 4.3 shows the
result of the moving object detection for every object.
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Object (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Attempt 1 X X X X X X X X X X
Attempt 2 X X X X X X X X X X
Attempt 3 X X X X X X X X X X
Attempt 4 X X X X X X X X X X
Attempt 5 X X X X X X X X X X
Object (k) (l) (m) (n) (o) (p) (q) (r) (s) (t)
Attempt 1 X X X X X X X X X X
Attempt 2 X X X X X X X X X X
Attempt 3 X X X X X X X X X X
Attempt 4 X X X X X X X X X X
Attempt 5 X X X X X X X X X X

Table 4.3: Result of moving object detection on a test set of objects, for
algorithm 2.

A checkmark (X) indicates that the implemented pseudocode detected the
object on the first try, and the X indicates that it didn’t detect the object
on the first try.
From this result, the system has a failure rate of 5% with the earlier men-
tioned light environment, for detecting moving objects. The object identifi-
cation in table 4.3 refers to the different objects in figure 4.9.

4.1.3 Current Illumination Issues

In the current light scenario the camera / conveyor belt setup is not placed
directly under a light source. This placement ensures less light reflection and
only gives a fail rate of 5% for moving object detection. Otherwise, the room
lighting environment is normal fluorescent light (warm).
If the current setup is introduced to a another light source (more intensity or
a closer light source) the moving object detection may be affected and detect
more false positives. The main enemy for this setup is strong illumination.
A pitch black environment is also not desirable.
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4.2 Reducing the Illumination Problem

One way to reduce the illumination from affecting the system and make it
detect false positives, is to generate a background model (BM) based on the
running average. This an adaptive approach. Instead of only doing back-
ground subtraction with the i-th and (i-1)-th frame, the idea is to generate
a BM which can adapt to small changes in the background of an image [7].
This helps both for reducing small changes with illumination and it sup-
presses some of the movement from the conveyor belt, that can generate
false positive detections.
A mathematical expression for BM, based on the running average is as fol-
lows,

Bi(m,n) = Bi−1(m,n) + α
(
Fi(m,n)−Bi−1(m,n)

)
, (4.2)

where Bi(m,n) is the current background model, Bi−1 is the previous back-
ground model, α is the learning coefficient (also known as the adapt coeffi-
cient) and Fi(m,n) is the current frame. This expression is based on formula
11 in [2] and 1 in [18]. When initialized B0 equals F0.

For every new frame that the camera captures, the background model is
updated. Afterwards the current frame and the newly updated BM is sub-
jected to frame differencing, as shown in equation 4.1. Bi(m,n) replaces
Fi−1 in this case.
This implementation can handle slow illumination changes and it even makes
the system operate under a light source (in the previous sections the system
wasn’t placed directly under a light source), but it can’t handle sudden light
changes if a light source is turned off and on again. [2] also proposes a method
that does a illumination evaluation that can detect these kind of situations.
This report will not rely on or use this method, because the environment
the system is intended for should be illuminated at all times with close to
normal lighting.
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4.2.1 The Learning Coefficient - α

The learning coefficient as mentioned before is also called the adapt coeffi-
cient. This coefficient can have a value between 0 and 1, α ∈ [0 ,1] [1].
α determines how fast new changes in newer frames can be implemented in
the background model [18]. Large α values allows new changes to be imple-
mented faster in the BM and low values are intended for slow implementation
of changes [7] [18]. Both [7] and [18] mentions that α can’t be too large be-
cause this can produce artificial tails behind the moving objects. A typically
used value for α is 0.05 [16] and this value is used in the implementation of
the BM based on the running average for updating the model, in this report.

[9] uses another algorithm for BM and it’s mathematical expression, shown
below, is based on [9] (formula 1).

Bi+1(m,n) = Bi(m,n) +
(
α1(1−Mi) + α2Mi

)
Di, (4.3)

where Bi+1 is the current background model, Bi is the previous background
model, Mi is the binary moving objects hypothesis mask, Di is the differ-
ence between the current frame and background model and the learning
coefficients α1 and α2 are based on an estimate of the rate of change in the
background. In [9] these learning coefficients are estimated using Kalman
filter, but the article mentions that small values for both α1 and α2 gave
good results.
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4.2.2 The Final Algorithm

In the final algorithm the BM based on the running average is implemented.
The algorithm is shown below.

Algorithm 3 Enhanced Moving Object Detection using BS and BM - MOD()
i & DET = 1
while DET == 1 do

get RGB frame from camera and save frame in FRGB{i}(m,n)
convert frame to grayscale and adjust contrast
save frame i in F{i}(m,n)
if i <= 30 then
if i == 1 then
B{i}(m,n) = F{i}(m,n)

else
B{i}(m,n) = B{i− 1}(m,n) + α

(
F{i}(m,n)−B{i− 1}(m,n)

)
Ffd(m,n) = F{i}(m,n)−B{i}(m,n)
compute T{i− 1} from Ffd(m,n)

end if
i← 1

else
B{i}(m,n) = B{i− 1}(m,n) + α

(
F{i}(m,n)−B{i− 1}(m,n)

)
Ffd(m,n) = F{i}(m,n)−B{i− 1}(m,n)
compute T{i-1} from Ffd(m,n)
convert Ffd(m,n) to binary image using T{i-1}
clear objects that are connected to the border and fill holes
AT{i-30} = 0;
for j = 0→ 9 do
AT{i-30} = AT{i-30} + (T{(i-1)-j}/10)

end for
multiply Mrm and Ffd(m,n) and find r and c
if !isempty(r) & !isempty(c) & AT{i− 1} > UDT then
return FRGB{i}(m,n)
DET = 0

else
i← 1

end if
end if

end while
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B{i}(m,n) is the current background model and B{i− 1}(m,n) is the pre-
vious background model. The learning coefficient α is initialized as 0.05.
The purpose of the thirty first frames is to generate the BM and compute
the thresholds from the frame differencing expression.

4.3 Mechanical Adjustments

The conveyor belt unit shown in figure 4.10 is placed above a dark surface
to create less contrast between the moving conveyor belt and it’s underlying
surroundings.

Figure 4.10: The conveyor belt unit.

In the figure 4.10, the surface that the unit is placed on can be to bright in
some circumstances, especially if there is a light source right above. Easy
mechanical enhancements, like placing the unit on a dark surface, can ensure

59



4.4 Conveyor Belt Speed

a better result of detecting an object. Also the beams that is place along the
conveyor belt at both sides produces light reflections where the camera is
placed. These beams are covered with a dark material to reduces this effect.

4.4 Conveyor Belt Speed

The speed of the conveyor belt is controlled by the LEGO Mindstorms motor
/ servo. The motor properties and settings are implemented in MATLAB
using the RWTH - Mindstorms NXT toolbox. To initialize the power /
speed of the servo, first create a motor object in MATLAB which contains
the motor properties. One of these properties is to set the power of the
motor. This can be done by giving the power property a integer from -100
to 100, or 0 to 100%. Positive and negative values determines the direction
of rotation (one rotation on the motor is 360°) [13].
If the power property are set to a high value, the camera detects the object,
but because of the fast movement the captured and return frame, containing
the object, can be bit blurry. An example is shown in the figure below.

(a) Captured frame (b) Binary version

Figure 4.11: Resulting images from the moving object detection when the
conveyor belt speed is set to 20.

From figure 4.11a the image that is captured are blurry and details from the
object shape is lost. Both images in 4.11 shows this. To prevent the result
from the MOD to lose object details, the conveyor belt speed is reduced.
A simple test was performed to find an optimal parameter for deciding the
speed by only reducing it until the result from the detection was satisfying.
Figure 4.12 show some results from this test.
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(a) Captured frame (15) (b) Binary version (15)

(c) Captured frame (13) (d) Binary version (13)

(e) Captured frame (10) (f) Binary version (10)

Figure 4.12: Resulting images from the moving object detection when the
conveyor belt speed is set to 15, 13 and 10.

From figure 4.12 the best result is when the conveyor belt speed is set to 10.

4.5 Results from the Final Setup

The pseudocode for algorithm 3 was implemented in MATLAB (see Ap-
pendix E.2). Now the camera / conveyor belt setup is placed directly under
a light source while it was tested. In figure 4.13 the same objects that was
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tested in section 4.1.2 is again being looked at.

(a) 2× 2 LEGO brick (b) 2× 4 LEGO brick

(c) 2× 2 Round LEGO brick (d) Technic Gear 16 tooth

Figure 4.13: Some results from the final pseudocode (algorithm 3) imple-
mented in MATLAB.

As the images show in the figure above, the background noise is reduced and
the objects are more detailed because of the BM and lowering the speed of
the conveyor belt.
The UDT value had to be changed in this experiment because of more illu-
mination. A similar test like the one presented in section 4.1 was performed
and UDT was set to 0.18.

4.5.1 Test: Ability to Detect Objects with the Final Algo-
rithm

Figure 4.9 presented all the objects that was used to test the ability to detect
different types of objects on the first try for algorithm 2 . Now the same
test set will be used on the final algorithm (3). The results are shown in the
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table below.

Object (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Attempt 1 X X X X X X X X X X
Attempt 2 X X X X X X X X X X
Attempt 3 X X X X X X X X X X
Attempt 4 X X X X X X X X X X
Attempt 5 X X X X X X X X X X
Object (k) (l) (m) (n) (o) (p) (q) (r) (s) (t)
Attempt 1 X X X X X X X X X X
Attempt 2 X X X X X X X X X X
Attempt 3 X X X X X X X X X X
Attempt 4 X X X X X X X X X X
Attempt 5 X X X X X X X X X X

Table 4.4: Result of moving object detection on a test set of objects, for
algorithm 3.

From table 4.4 there was only one incident were object (m) wasn’t detected
the first time, but on the second. The result is better with the new algorithm
and the failure rate has gone from 5 to 1%. It can also be mentioned that
the test was performed while the camera / conveyor belt setup was placed
directly below a light source and this placement wasn’t used when the last
test was performed.
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Chapter 5

Object Representation and
Feature Extraction

For a human it is easy to detect and recognize objects in the environment,
even if the object is partially hidden behind a obstacle. The human brain
keeps track of different objects and knows the difference between them. It’s
like a hard drive that contains a template for each object, that has been
learned from early childhood to the present, and information about them.
When a known object is detected, it is matched up against the templates,
and the information is given. To implement this in a system would require
a database that contain the templates and information about every object
that the system should recognize. The system that includes a camera could
capture a image of the object and compare it to the templates until the best
match is found and then return the stored information about the current
object. A simpler way of doing this is to segment the image into regions.
These regions consists of connected components, also known as pixels, and
could be a object in the image scene. There are two ways of representing
these regions and that is by external and internal representation. An external
representation focuses on shape and an internal focuses on color and texture
[5]. These characteristics are among the first thing a human would look
for when recognizing a object. When looking at an apple, the first thing a
human may detect is that the apple is close to being round, the color is red
or green and the apples texture is smooth. In the same way a system could
detect these characteristics from the segmented regions in an image. It could
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look for corners, length, width, areal, shape and even color and use this to
describe an object. The mentioned characteristics is also called features,
and can be extracted from the regions and used to describe and represent
the object.

5.1 Preparing the Image Received from MOD

When the MOD detects an object the function will end and return the frame
containing the whole object within the FOV. This frame is a RGB version
and it’s converted to a binary image because further image pre processing, in
this report, are based on binary mathematical morphology (MM) operations.

A RGB image contains three components; Red, Green and Blue. These
components can be extracted from a RGB image and produce three new
grayscale images that separately contain information about the three colors.
An algorithm was developed to determine which component had the most
information about the object color in the frame and was best suited to extract
the object from. This algorithm receives the RGB frame from MOD() and
finds the best possible image-component that can extract the object from the
background. It compares the computed thresholds (uses graythresh) from
each component and returns the binary version of the image-component with
the highest threshold value.
Algorithm 4 shows the pseudocode of this function.

Algorithm 4 Segmenting Object from Background using Information about
RGB Components - rgbComp().
Input: FRGB
for i = 1→ 3 do
Comp{i} = FRGB(:, :, i)
T [i] = graythresh(Comp{i})

end for
find the index (imax) for the largest threshold value in T [i]
convert Comp{imax} to binary using T [imax]
return binary image

Comp{i} is a cell containing each component and thr[i] is a vector containing
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each components computed threshold. Algorithm 4 was implemented in
MATLAB and can be found in E.3.

After some testing it was found that adjusting the contrast in each compo-
nent before computing the threshold gave the best result. Some of the RGB
images with an object that had a yellow color, contained much of the same
color information as the background (the three components also contained
very similar color information) and had the largest computed threshold value.
When this image was chosen, it couldn’t extract the object from the back-
ground and the result was meaningless. This didn’t happen every time, but it
is dependent on the illumination and it’s implemented as a safeguard. When
the contrast is adjusted the object stands more out in the image and it is
more brighter than the background, making it easier to extract the object
without including noise from the background. Table 5.1 shows computed
threshold values for each component for four different objects (shape and
color) with and without adjusting the image contrast.

Object color Threshold w/o imadjust Threshold w/ imadjust
R G B R G B

RED 0.6784 0.3882 0.3451 0.6078 0.3549 0.4196
GREEN 0.3608 0.6627 0.3686 0.4118 0.5843 0.3784
BLUE 0.3608 0.3961 0.6667 0.4412 0.2961 0.6000
YELLOW 0.6823 0.6823 0.5804 0.6098 0.6078 0.5020

Table 5.1: Computed threshold values for each R, G and B component with
and without adjusting the image contrasts for four different color and shaped
objects. The MATLAB function imadjust adjusts the contrast.

The gray cells in the table indicates the maximum threshold values computed
by the MATLAB function graythresh for each component.

When comparing all the threshold values in table 5.1, it shows that all the
maximum computed thresholds are lower when the image is contrast ad-
justed. In the case with the yellow object the R and G component are equal
when the image isn’t exposed to contrast adjustment. In some cases (dif-
ferent light environment) with a yellow object all the components can be of
approximately the same value and especially the B component contains a lot
of the background information. By using the threshold values computed by
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each contrast adjusted component, rgbComp() extracted and separated the
object from the background in every experiment.
Figure 5.1 shows the best RGB components and the binary version of it, w/
and w/o adjusting the contrast, from the objects in table 5.1.

(a) Red object (R) (b) Binary w/o imadjust (c) Binary w/ imadjust

(d) Green object (G) (e) Binary w/o imadjust (f) Binary w/ imadjust

(g) Blue object (B) (h) Binary w/o imadjust (i) Binary w/ imadjust

(j) Yellow object (R) (k) Binary w/o imadjust (l) Binary w/ imadjust

Figure 5.1: Objects extracted from RGB components w/ and w/o adjusting
the contrast.

Algorithm 4 was implemented because the result from converting a RGB
image to grayscale, compute the threshold value from this image and then
convert it into a binary image gave varying results. The results sometimes
contained just a part of the object. Other times the reflection from the
conveyor belt surrounding the physical object could be added as part of
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the object in the binary image. In the experiments performed on algorithm
4, the object was always extracted without being affected by the varying
illumination.

After algorithm 4 has returned the binary image with the best result, the
next stage is to prepare the image for further preprocessing by doing noise
reduction and labeling the object of interest (OOI). Figure 5.2 shows an
image component that have been selected by the function in E.3 to be further
pre processed.

Figure 5.2: Image received from rgbComp().

When the image in figure 5.2 is received it is first processed by two MATLAB
functions. The first one is the imfill function that ensure to close/fill holes
in an binary image. A hole in a binary image is defined as a dark area
surrounded by lighter pixels [5]. This function is intended to close the object
surface and make it whole if the object contains holes.
The second function is used to clear objects that are on the image border and
it is called imclearborder. This function is also mentioned in section 4.1.1
where it was used to ensure that the whole object was in the cameras FOV.
Figure 5.3 shows the result after the imfill and imclearborder functions
have been used on the image.
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Figure 5.3: Result of closing holes and clearing unwanted objects on the
image border.

From the figure above there are still some noise left in the image. The next
section explains how to remove or reduce this noise.

5.1.1 Noise Reduction

In binary images, objects are represented by ones (white) and the background
are represented by zeros (black), so that each pixel in a binary image has
the value 1 (foreground pixel) or 0 (background pixel) [5]. Every foreground
pixel can be considered as an object or as noise in the image. Often single
foreground pixels or small groups of foreground pixels are noise.
Morphological opening is used to reduce the noise. The OOI is assumed
to be larger than noise objects. The structural element (SE), used in the
opening, is a diamond shaped element with a radius equal to 4 pixels. This
element reduces the noise and doesn’t deform the OOI’s contour too much.
Figure 5.4 shows the result of opening.
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Figure 5.4: Result of morphological opening on the test image.

From the image above all noise have been removed and only the OOI re-
mains, but this doesn’t have to be the case every time. It depends on the
illumination. A bright environment causes more reflection from the conveyor
belt and this can affect the noise in the image. Due to illumination variations
the opening function can’t remove all noise, but the function reduces it.
After reducing noise in the image, erosion is performed on the object to
smooth the contour. A smaller diamond shaped SE are used when perform-
ing the erosion (radius = 1 pixel).
The functions for performing morphological opening and erosion in MAT-
LAB are imopen and imerode.

5.1.2 Labeling the Object

When performing labeling, the idea is to give an object in a image a refer-
ence or name. As mentioned in section 2.3.5 a object is a set of connected
components. The connectivity between the components can be either a 4-
or 8-connected neighborhood. When labeling objects in MATLAB a func-
tion called bwlabel are used. This function uses 8-connected connectivity
as default and returns the number of objects found in a binary image and a
label matrix (LM) containing the reference to every object.
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If an image containing the OOI also contains noise, it will affect the labeling.
Noise, that’s in the image, will be perceived as an object and bwlabel will
find more than one object. If there is more than one object the algorithm has
to find the OOI and this can be done by the MATLAB function bwselect
and earlier information about the area of the reference mask (RM) as defined
in section 4.1.1.
The steps listed below explains how the algorithm finds and extracts the
OOI.

• bwselect finds a object in a user defined coordinate and returns a
binary matrix containing only this object.

• The function searches for a object in two different coordinates in and
around RMs area.

• Coordinates (n, m): 180, 160 (in RM) and 220, 160 (to the right of
RM).

• Worst scenario: object is detected by MOD when the right part of the
object overlaps n-coordinate 180. The object is then on it’s way out of
RM and out of the image on the left side.

• Best scenario: MOD detects the object when it’s left side is overlapping
n-coordinate 200. Then the object has only just overlapped RM.

• Objects with uneven contours (gear) might not overlap the coordinate
200, 160. Therefor the n-coordinate is set to 220.

• If the result from the first coordinate does not contain the OOI (con-
tains only zeros), the next coordinate are checked.

Figure 5.5 shows two images. The first image shows a labelled image without
using bwlabel and the second images shows the result of using bwselect.
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(a) Labelled objects using bwlabel

(b) Labelled object using bwselect

Figure 5.5: Result from using bwlabel and bwselect.

Figure 5.5a shows six labelled objects in the image and figure 5.5b shows
just the labelled OOI after using bwselect on the mentioned coordinates.
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5.2 Representation of the Object

MATLABs interpretation of a binary image is a matrix that contains zeros
(background) and ones (objects and/or noise). Except from this information
MATLAB doesn’t know much about the OOI because the object isn’t repre-
sented. As mentioned in section 2.4 internal and external characteristics can
describe the OOI. These characteristics can be used as object features and
provides MATLAB with data describing the OOI. The object representation
can also help MATLAB find more features.

5.2.1 Finding Internal Characteristics

To represent a object with internal characteristics the MATLAB function
regionprops is used. The syntax for use of regionprops in MATLAB is as
follows [11]:

Data = regionprops(LM, properties)

This function finds properties in image regions [11].
The regionprops function needs the labelled matrix (LM) as an input pa-
rameter and the user can define what kind of data the function will return
as a second input parameter. If only LM is used as a input parameter,
regionprops returns a structure array containing object area, centroid and
bounding box. The structure array containing object data will have more
indices than one if LM contains two or more objects.
The parameter properties can be defined as ’all’, ’basic’ or ,as men-
tioned before, not be defined at all. When ’all’ is defined, Data returns all
shape measurements [11]. A list of measurements can be found in [5] (page
643) or in [11] (Image Processing Toolbox → regionprops).
Defining ’basic’ or not defining the properties parameter at all does the
same thing and makes the function return only area, centroid and bounding
box. The internal characteristics that are interesting in this report will be
the area and the centroid, which is the coordinate in the objects center of
gravity. The bounding box is a vector containing the upper left coordinate
for n and m, and the length and width of the box. The bounding box rep-
resents the smallest rectangle containing a object [5]. Figure 5.6 shows the
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bounding box containing an object.

Figure 5.6: Image containing the objects bounding box.

5.2.2 Finding External Characteristics

The object perimeter, or boundary, can be an useful external characteristic.
This information and the coordinate for the centroid is used when finding
the objects signature. The signature operation will be explained in section
5.2.3 and this section will focus on how to find the perimeter / coordinates.
The MATLAB function bwperim is used to find and extract an object perime-
ter and the result is a binary image that only contains the perimeter (white
pixels) [11]. An example is shown in figure 5.7.
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Figure 5.7: Result of using the MATLAB function bwperim on a binary
image containing an object.

The function defines a pixel as part of the perimeter if the value of it is
nonzero and it’s connected to at least one zero valued pixel [11].

The figure above shows the result from using bwperim on a binary image, but
it doesn’t return the coordinates of the boundary. To extract the coordinates
from this result, another MATLAB function is needed. This function is called
bwboundaries and it traces an object perimeter [11]. The result is an Q-
by-2 vector containing all the coordinates for the object perimeter. Q is the
number of coordinates found on the perimeter.
The general syntax for using this function in MATLAB can be written as,

BC = bwboundaries(IBW, conn, options)

where BC is the Q-by-2 vector, IBW is the binary image containing object(s),
conn specifies the connectivity (4- or 8-connected neighborhood) between
perimeter pixels and options is an optional parameter that the user defines
as either ’holes’ or ’noholes’. If an object has a hallow area (containing
only 0 valued pixels) inside it’s own perimeter and this area contains another
object like in figure 5.8, the outer object is defined as the parent object and
the inner object is the child.
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Figure 5.8: Binary image with an parent object and a child.

If the option ’holes’ is defined, bwboundaries will return the coordinates
for the outer and inner parent object perimeter. Are ’noholes’ defined
it will only return the outer perimeter of the parent and the child. If the
object surface contains no holes and does not have a child, both ’holes’
and ’noholes’ can be used, but [11] prefers the second option because it
provides better performance than the option ’holes’.

Vector BC is organized so that BC(Q, 1) contains all m-points (y axis) and
BC(Q, 2) all n-points (x axis) of the perimeter. The function signature.m
needs both boundary coordinates and the coordinate of the objects centroid
as inputs when it computes the signature and it requires BC to be organized
so that all n-points are in BC(Q, 1) and m-points are in BC(Q, 2). This is
done by extracting each column in BC separately and rearrange them so that
it meets signature.m requirements, as shown below.

1 Iperimeter = bwperim(IBW, 8);
2 BC = bwboundaries(Iperimeter, 'noholes');
3 m = BC{1}(:, 1);
4 n = BC{1}(:, 2);
5 BC(:, 1) = n;
6 BC(:, 2) = m;
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5.2.2.1 Algorithm for the Object Of Interest

The following algorithm was developed for the OOI and implemented in
MATLAB. The implementation can be found in appendix E.4.

Algorithm 5 Finding the Object Of Interest - ooi().
Input: Comp{imax}
Fill any holes in the binary image using imfill.
Clear unwanted objects on image border using imclearborder
Perform opening and then erotion using imdilate and imerode
[LM junk] = bwlabel

(
Comp{imax}

)
img = bwselect(LM, 180, 160)
if img == M0 then
img = bwselect(LM, 220, 160)
if img == M0 then
img = M0
OData = [ ]
BC = [ ]

else
OData = regionprops(img == 1)
BC = object border coordinates

end if
else
OData = regionprops(img == 1)
BC = object border coordinates

end if
return img, Odata and BC

The algorithm returns a binary image containing only the OOI, object data
and the coordinates of the boundary.
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5.2.3 Object Signature

In [5] the authors presents a function called signature.m, which is based on
the theory in section 2.4.2.1. The m-file is shown in appendix E.5.
The MATLAB syntax [5] for the signature function is as follows,

[sign, angle] = signature(BC, n0, m0)

where sign and angle is a 360-by-1 vector containing the distances and
angles, BC is the earlier mentioned coordinates of the object border and n0
/ m0 is the coordinate of the objects center of gravity.

The function extracts the Cartesian coordinates from BC by defining them as
xcart = BC(:, 2) and ycart = -BC(:, 1), or in other words xcart = m
and ycart = −n and then converts them to polar coordinates using the
MATLAB function cart2pol. This function returns the signature and angle
for all distances. The angles are then converted to degrees and some safety
measurements are done so that duplicate angles are deleted [5].

An example of converting Cartesian coordinates to polar is shown in ap-
pendix C.1.

5.3 Extracting Features

All features extracted from an object will be stored in a feature vector x and
be used by a pattern classifier. Chapter 6 conducts experiments on three
different classifiers with three different combinations of features. The data
gathered to this experiment contained four different descriptors in the feature
vector; area, mean value of signature, standard deviation of signature and
the number of vertices / peaks in the signature. This 4-dimensional vector
is defined as follows,

x =
[
x1 x2 x3 x4

]T
=
[
A M Std NoP

]T (5.1)
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where A is the area, M and Std is the mean and std value of the signature
and NoP is the number of peaks in the signature. The area is computed by
the regionprops function, the mean and standard deviation is computed by
the two MATLAB function mean and std2. The number of vertices is found
by analyzing the signature.

The dimensionality of the final feature vector depends on which combination
of features that gives the lowest classification error rate. The combinations
of features are presented in Chapter 6.

5.3.1 Mean and Standard Deviation

The values computed from the mean and std2 can describe a signatures form
and variation.
The mean values gives an impression of the average distance from an objects
center to it’s boundary. For objects that have a similar geometric shape like
the rectangular object in figure 5.9c, the mean value would be higher than
an more compact object that is as long as it is wide.
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(a) Circular object (b) Squared object

(c) Rectangular object (d) Triangular object

Figure 5.9: The figure shows the signature for four different objects. In
addition the mean is marked with a red line in each signature.

Very low std values indicates that the distance from the object center to
the boundary is similar for all 360 increments and that the object is near
to having a circular shape, like the signature in figure 5.9a. In table 5.2 the
values of these objects can be found and the std value of an circular object
is very low.
If an object is not circular shaped, but is still compact indicating that the
object is approximately as high as it is wide, like a square, the std value is
still low if comparing it to the rectangular or even the triangular shape.
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Objects
Circular Squared Rectangular Triangular

Mean 133.2631 112.2056 156.3376 145.8192
Std. 0.0548 11.6228 19.6697 31.3234

Table 5.2: Mean and std values for the objects in figure 5.9.

5.3.2 Finding Vertices in Signature

Peaks / vertices in the signature is also a source of information about an
object. If an object has a geometric shape the number of vertices in the
signature can indicate what kind of object it is. The table below shows
the most likely shape of an object based on the amount of vertices in the
signature.

Vertices Object Description
3 Most likely a triangular shape.

4
Most likely a square shape. If the distance between each
peak is approx. 90◦, the shape is more likely a square than
a rectangle.

5 Pentagon.

≥ 6
Hexagon / octagon, etc., but it could also be a circle because
the boundary isn’t perfect and is varying a lot (low variation,
but many vertices).

Table 5.3: Object description based on the amount of vertices in a signature
for geometric shaped objects.

Beside from these shapes, where the amount of peaks on the signature indi-
cates which geometric shape the object has, the amount of peaks can give
information about other objects as well. E.g the number of teeth on a me-
chanical gear.
To detect peaks in signatures algorithm 6 was developed.
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Algorithm 6 Detect Peaks in Signature - peaks().
Input: sign, angle
i← 2
while i < length(angle) do
sign(i)
if sign(i) > sign(i− 1) & sign(i) > sign(i+ 1) then
if sign(k) > ¯sign(i) then
peak ← 1
p(peak) = angle(i)

end if
end if
i← 1

end while
if sign(1) > sign(p(1)) then
peak ← 1

end if
NoP = peak
return NoP

This algorithm compares the ith element with the (i-1)-th and (i+1)-th el-
ement in the sign vector. Only if the i-th element is bigger than both the
(i-1)-th and (i+1)-th element a peak is detected.
Objects on the conveyor belt could be placed like the object in figure 5.6
and then the first and last element in the sign vector indicates a peak. The
MATLAB function signature always starts computing the distance from an
objects centroid to the boundary on the left side (angle = 0◦) of the object
in an image.
Algorithm 6 always checks the first element in the vector and compares it to
the first peak found in position p(1). If the value of this element is bigger
than sign(p(1)), it indicates a peak and peak is incremented. The signature
of the object in figure 5.6 is shown in figure 5.10.
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Figure 5.10: The signature to the object in figure 5.6.

From the figure above, both the first and last element in the signature are
bigger then the first peak, indicating a fourth peak.

Algorithm 6 is implemented in MATLAB and the code can be found in
appendix E.6.
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5.4 Results from ooi()

Figure 5.11 shows a set of objects that was used to test the ooi() function.

(a) Tech. Gear 24 (b) Tech. Gear 24C (c) Tech. Gear 20DB (d) Tech. Beam Arm

(e) Tech. Beam 5 (f) Lego Figure (g) 2× 2 Brick (h) 2× 4 Brick

Figure 5.11: Test objects for the OOI function.

The data in table 5.5 shows the result from the ooi() on all the objects in
figure 5.11. These objects was only tested once. The data is stored in the
feature vector X. Also shown are the computational time it took MATLAB
after the object was detected by MOD() to the object was represented and
the data was stored in the feature vector.
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Object Area Mean Std. NoP Computational Time
a) 61378 139 7 23 3.1431∗

b) 60190 138 5 20 0.6305
c) 43876 117 7 19 0.4485
d) 46995 106 60 4 0.4569
e) 44337 102 66 2 0.4333
f) 83876 157 42 8 0.4391
g) 43160 116 12 4 0.4460
h) 83537 155 48 4 0.4484

Table 5.5: Results from the OOI on the objects presented in figure 5.11.

* The computational time for object a) is a lot longer because it’s the first
object that is introduced to the system and it has to run through all the
functions for the first time. After this test the system was stopped and then
started again. A object was placed on the conveyor belt and registered by
the system. The time it took was closer to the computational times found
in table 5.5 (except for a)).

Figure 5.12 shows all eight object of interest with an outlined border.

Figure 5.13 shows their respective signatures.
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(a) Tech. Gear 24 (b) Tech. Gear 24C

(c) Tech. Gear 20DB (d) Tech. Beam Arm

(e) Tech. Beam 5 (f) Lego Figure

(g) 2× 2 Brick (h) 2× 4 Brick

Figure 5.12: The result from algorithm 6 on each object in figure 5.11. The
object of interest in each image is outlined.
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(a) Tech. Gear 24 (b) Tech. Gear 24C

(c) Tech. Gear 20DB (d) Tech. Beam Arm

(e) Tech. Beam 5 (f) Lego Figure

(g) 2× 2 Brick (h) 2× 4 Brick

Figure 5.13: Computed signatures for each object from the test set in figure
5.11.
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The borders in figure 5.13a, 5.13b and 5.13c, upper and lower part, are diffuse
and does not contain all the information about the objects real contour.

This system was also used when the data from the Technical Gear 24 (class
1) and the Technical Gear 24C (class 2) was gathered. In all, 140 feature
vectors (1× 4) from each object was gathered. This data is used in the next
Chapter to train and test three different classifiers.
When the data was collected the system had 7 incidents of false positive
detection due to reflections on the conveyor belt. These incidents gave a
failure rate of 2.5% which is close to the failure rate of 1% found in section
4.5.1.
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Chapter 6

Feature Classification and
Object Recognition

In this Chapter all experiments and results from the classification problem
are presented. Data are logged from the physical objects, Technic Gear 24T
and Technic Gear 24TC, and are labelled as class 1 and 2. This data is
stored in a .mat-file called Data.
The conducted experiments examines three classifiers based on different
techniques; Maximum Likelihood (ML) estimation, Parzen Window and kn-
Nearest-Neighbor (kNN) technique. The training technique that is used is
called Cross Validation and this is presented in section 6.2.
From the collected data, different combinations are used to train the classi-
fiers. Raw and normalized data with three different dimensions (2-, 3- and
4-dimension) of data are compared.
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6.1 Data Sets

For both objects that are classified, it is done an experiment where the
feature vector was logged 140 times. This produced two 4 × 140 vectors
containing data for both objects/classes (Data).
For each class the data is randomly picked and divided into four datasets
of equal size, d × 35 (0 < d ≤ 4). Each dataset (D1 for class 1 and D2 for
class 2) contains different data and a single data point do not occur in two or
more datasets. The way the data is randomly picked and divided into four
different datasets is done in MATLAB with the help of two functions called
randn and sort. The function randn generates 140 different numbers and
the function sort sorts the numbers in ascending order and stores a vector
containing the original index of each sorted number. This vector is then used
to pick 35 random data points from a class and produce four dataset. Figure
6.1 shows a schematic layout of the division of datasets.

Figure 6.1: The figure shows an illustration of how the data from class 1 and
2 are divided into 8 different datasets. The size of each dataset is d× 35.

As mentioned before, class 1 and 2 contains four different features extracted
from the OOI, and these can be combined in many combinations when gener-
ating the randomly picked datasets. Table 6.1 shows different combinations
for 2-, 3- and 4-dimensional data.
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Dimensionality (d) Combinations

2D

Area, Mean
Area, Std
Area, NoP
Mean, Std
Mean, NoP
Std, NoP

3D

Area, Mean, Std
Area, Mean, NoP
Area, Std, NoP
Mean, Std, NoP

4D Area, Mean, Std, NoP

Table 6.1: Combination of different features extracted from the OOI.

This report only focuses on one combination for each dimension to determine
the best classifier. The combinations are:

1) Std, NoP (2D)
2) Mean, Std, NoP (3D)
3) Area, Mean, Std, NoP (4D)

The 4-dimensional data containing all the features extracted from the OOI
was a natural choice to do experiments on. Since the 2D data contains Std
and NoP it was important that these two features also was a part of the
3D data. All three data sets contain common data and are more valid to
compare.
Because of limited time, it was not possible to conduct an experiment on
each combination.

6.1.1 Determining Test Sets and Training Sets

After class 1 and 2 are divided into eight different datasets, like in figure
6.1, the next step is to define which dataset is for training and which is for
testing. The way this has been done is to define four different training sets
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and four different test sets of the four data sets for each class. The four test
sets are like the four data sets; D11, D12, D13 and D14 for class 1, and D21,
D22, D23 and D24 for class 2. The four trainings sets (TS1 for class 1 and
TS2 for class 2) then become a combination of the other three data sets. A
overview of the combinations are listed in table 6.2.

Class Test set Size (test) Training set Size (train.)
1 D11 d× 35 { D12, D13, D14 } d× 105
1 D12 d× 35 { D11, D13, D14 } d× 105
1 D13 d× 35 { D11, D12, D14 } d× 105
1 D14 d× 35 { D11, D12, D13 } d× 105
2 D21 d× 35 { D22, D23, D24 } d× 105
2 D22 d× 35 { D21, D23, D24 } d× 105
2 D23 d× 35 { D21, D22, D24 } d× 105
2 D24 d× 35 { D21, D22, D23 } d× 105

Table 6.2: An overview of test and training sets for class 1 and 2.

Each training set has three times more data than each test set and this
achieves the criteria given in Chapter 9 in [3], where the portion of data that
is declared as a test set should be less then half of all data. This criterion
is mainly used for a method called Cross validation. This method will be
introduced in section 6.2.

6.1.2 Normalization of Data

The values of the raw data (features) in the feature vector lies within different
ranges/scales in both classes. The range for each class is listed below.

• Area: 50000 - 70000
• Mean: 129 - 150
• Std: 4 - 9
• NoP: 14 - 26

According to [12] a feature with a larger range, or scale/value, will contribute
more than a feature that’s in a smaller range. This will suppress the smaller
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valued features and make them less important when creating a classifier and
classifying the feature vector.
By normalizing the data, the contribution from each feature are equalized
[12]. Normalization achieves equal scales among different data with zero
mean and unit variance. There are several different ways to normalize data,
but this report only focuses on the common normalization method. The
mathematical expression for this normalization is shown below

X̂k =
Xk − µk
σk

(6.1)

, where X̂k is the normalized data, Xk is the raw data, µ
k
is the calculated

expectation from the raw data and σk is the calculated standard deviation
from the raw data. 68% of all values in the normalized data will lie within
the [-1, 1] range [12].

Example of normalization for a test set and it’s corresponding
training set

From table 6.2, the test set D11 will be classified to {D12, D13, D14} (TS11)
and {D22, D23, D24} (TS21). The mean (M) and standard deviation (S) is
computed from TS11 and TS21 in MATLAB. M and S are used to normalize
TS11 and TS21, and the training set D11. The MATLAB code below shows
how this is done.

1 % Test set.
2 D11;
3

4 % Training set
5 TS11 = {D12 D13 D14};
6 TS21 = {D22 D23 D24};
7

8 T = [TS11 TS21];
9

10 % Compute M and S.
11 M = mean(T,2);
12 S = (std(T'))';
13

14 % Normalize training and test sets.
15 TS11 = (TS11−repmat(M,1,105))./repmat(S,1,105);
16 TS21 = (TS21−repmat(M,1,105))./repmat(S,1,105);
17 D11 = (D11−repmat(M,1,35))./repmat(S,1,35);
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Both raw and normalized data will compared for the three classifiers based
on Maximum Likelihood, Parzen and kn-Nearest-Neighbor techniques.

6.2 Cross Validation

Cross validation is an technique that is introduced in Chapter 9 in [3]. First
the dataset containing the two labelled classes is randomly divided into two
parts. The first part is used for training and adjusting model parameters in
the classifier and the second part (test set), also known as the validation set,
is used to estimate the error rate of the classifier. Also the data in the training
set is classified and the error rate from this reclassification is compared to
the error rate from the validation set. The purpose is to train the classifier
until the error rate from the validation set is low and the generalization
between the validation set and training set is good. Good generalization, in
this report, is defined as the difference between the validation and training
error, and this difference should not exceed 2%.
Figure 6.2 shows an example of cross validation.
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Figure 6.2: An example of cross validation. The arrow in the figure points to
the best generalization between the validation and training error, at a given
parameter.

The behaviour of the training and validation error varies from problem to
problem. A thumb rule is to stop the training of the classifier where a good
generalization is achieved at the lowest validation error before it starts in-
creasing again. In figure 6.2, after the indication of good generalization, the
validation error increases and this can indicate that the classifier is over-
trained [3].

According to [3], cross validation can be applied to almost every classification
method. An example can the Parzen Window technique where the adjusting
parameter that trains the classifier is the window width parameter, h1.
This method will be applied on each of the three classifier with raw and
normalized data to determine the best classifier. Except from only using
good generalization as a criterion for choosing the best classifier, some other
criterias have to be emphasized as well. In section 6.2.2 all criterias will be
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listed and explained. The next section will explain how the validation and
training errors are found, and how they are calculated.

6.2.1 Finding the Validation and Training Error

Each of the three classifiers are implemented in MATLAB as functions with
inputs and outputs.
For the ML and Parzen Window classifier the inputs are the test sets and
training sets for class 1 and 2. The training sets are used to generate the
classifier, but they are also used for reclassification. Each test set and train-
ing set (for class 1 and 2) are then classified individually. For each set thats
being classified, the classifier computes the discriminant value for every dat-
apoint in the set for class 1 and 2. The discriminant value for each class is
then compared against each other, e. q. the first discriminant value for class
1 is compared to the first discriminant value in class 2, and so on. The result
is a 1 × N vector containing the integers 1 or 2, where N is the length of
the set thats being classified (N = 35 for test sets and N = 105 for training
sets).
If the integer is 1, the discriminant value for a datapoint is bigger for class 1
than class 2, and the point is classified to class 1. Opposite if the integer is
2. If a random set belongs to class 1 (f. ex. D11), the number of wrong clas-
sifications (NOWC) can be found by adding up each element in the 1 × N
vector which belongs to class 2 (each element that contains 2). Then the
number of correct classifications (NOCC) is N − NOWC. An example for
2D data is shown in figure 6.3.
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Figure 6.3: Finding NOCC and NOWC for random test set. D11 is classified
to both training sets for class 1 and 2. The result is a 1×35 vector containing
1s and 2s. The number 1 indicate that a sample in D11 is classified to class
1, and the number 2 indicate that a sample is classified to class 2.

The other classifications for this example is shown below.

Classification set Training set (generates the classifier) N

D21 {D12, D13, D14} & {D22, D23, D24} 35
{D12, D13, D14} {D12, D13, D14} & {D22, D23, D24} 105
{D22, D23, D24} {D12, D13, D14} & {D22, D23, D24} 105

Table 6.3: Classifications for random 2D test and training sets.

The result is four different 1×N vectors containing the NOCC and NOWC
for each set. To compute the validation and training error a matrix called
the Confusion Matrix is used. The confusion matrix is used to evaluate the
performance of a classification system [17]. The confussion matrix is defined
like this,

A =
(
A11 A12

A21 A22

)
(6.2)

where
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• A11 is the NOCC for class 1, given class 1
• A12 is the NOWC for class 1, given class 2
• A21 is the NOWC for class 2, given class 1
• A22 is the NOCC for class 2, given class 2

The correct classification rate for the classifier, also known as Overall Accu-
racy (Ac) [17], is calculated as

Ac =
A11 +A22

A11 +A12 +A21 +A22
(6.3)

and the test and/or training error is then calculated as

E = 1−Ac (6.4)

The error is calculated for every validation and training set (four times),
at each adjusted parameter, and the mean of these four errors is the mean
validation and mean training error, which is compared in the cross validation.
Appendix C.2 gives an example of calculating these errors from a set of data.

6.2.2 Criterias for Choosing the Best Classifier

There are three criterias that have to be achieved before determining which
classifier that is best. The criterias are

1) Good generalization (max 2%)
2) Low mean error rate
3) Low spread in data (low standard deviation)

Good generalization
As mentioned before, good generalization should not exceed 2%. For every
classifier with raw and normalized data a plot of the validation and training
error will be produced, like in figure 6.2. In every plot there may be several
points where the generalization is equal or lower than 2%. Each point refers
to a adjusted parameter in the classifier and this parameter is different for
each classifier.
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ML Classifier
For the ML classifier the parameter is the covariance matrix. Adjusting this
parameter is done by adjusting the elements in the matrix. The covariance
matrix is calculated from the training data and it will be of size 2× 2, 3× 3
or 4× 4 depending on the dimensionality of the actual data (2D, 3D or 4D),
and this is the first parameter used in the cross validation. In the second
parameter the non diagonal elements are set equal to zero and in the third
parameter the covariance matrix is a unit matrix. Below is an example of
the three different parameters for 2D data.

∑
=
(
σ2

11 σ2
12

σ2
21 σ2

22

) ∑
=
(
σ2

11 0
0 σ2

22

) ∑
=
(

1 0
0 1

)
General Diagonal Unit

Parzen Window Classifier
For the Parzen Window classifier the window width parameter, h1, of the
Gaussian window is the parameter that will be adjusted. For each cross
validation the test starts with a very low value of h1, which produces a narrow
window, and often gives 100% correct classifications for the reclassification of
the training set. This implies that the classifier is overtrained for the training
set. The parameter is adjusted until good generalization is achieved.

kn-Nearest-Neighbor Classifier
For the kn-Nearest-Neighbor classifier the kn parameter is adjusted. This
parameter can only be a integer and the lowest value possible is 1.

Low mean error rate
The difference between the mean validation error and the mean training
error decides if the generalization is good or bad. In the points where this
difference is equal or lower than 2%, the point (adjusted parameter) which
has the lowest mean validation error should be picked as the best solution.
This error is the lowest error rate for the classifier when good generalization
is achieved, but this choice may be affected by the next criteria.

Low spread in data
From the four different validation errors (both class 1 and 2) at a parameter,
the mean validation error is calculated. These four values can also be used
to calculated the standard deviation at the parameter. If the value of the
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standard deviation is high the spread in data is also high and more uncertain.
This can be examined by plotting a 95% confidence interval for the mean
validation error. This confidence interval gives a 95% probability that the
interval contains the mean validation error [6]. This interval is plotted by
using the following mathematical expression

Ē ± 1.96SD(E) (6.5)

, where Ē is the mean validation error and SD(E) is the standard devia-
tion for this point. The number 1.96 is a key factor for calculating a 95%
confidence interval [6] (table for normal distribution - N(0, 1)).

If the value of the standard deviation is low, the interval is smaller and the
spread in data is less, and this gives an indication of more certain data. If
this is taken into account when choosing the lowest error rate, it can affect
this choice. Consider two error rates within good generalization. One mean
error rate is bigger than the other, and the highest valued error rate has the
lowest standard deviation. Since the data is more certain (less spread) for
the higher valued mean validation error, this one will be picked.
Every cross validation plot for each classifier will also contain a plot of the
95% confidence interval for the mean validation error.

6.3 Comparing Cross Validations & Gather Data

In this experiment, all three classifiers are analyzed with cross validation on
raw and normalized 2D, 3D and 4D data. The purpose is to find the best
possible classifier with good generalization, low error rate (mean validation
error rate) and low spread in data for each classifier. In this section all cross
validations of each classifier is presented with plots. In the each plot the 95%
confidence interval is also plotted (marked as - - -).
All the data that has been collected from each classifier experiment is pre-
sented in appendix F.
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6.3.1 Maximum Likelihood Estimation

In this section, all cross validations for the ML estimation are presented with
plots. Also a table is presented in the end which lists up the criterias for the
best classifier (best found parameter) for each type of data.

Figure 6.4: Cross validation for the ML classifier with 2D, 3D and 4D data.
Each row shows the cross validation for 2D, 3D and 4D data. Each column
shows the cross validation for raw and normalized data. The red graph
represents the validation, the blue graph represents the training and the
black dotted lines represent the confidence interval.
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The table below lists up the best classifier from each ML experiment.

Data Best parameter Mean val. Data Generalization
(cov. matrix) error (%) spread (%) (%)

2D Unit 35.36 44.02 - 26.79 0.12
N 2D Unit 30.36 48.57 - 12.15 0.47
3D General 9.29 15.95 - 2.63 0.36

N 3D General 11.43 18.29 - 4.57 1.43
4D General 13.57 21.65 - 5.50 0.12

N 4D General 13.93 22.59 - 5.27 0.95

Table 6.4: Gathered data from each ML classifier experiment. The data is
gathered from the best adjusted parameter in each cross validation.
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6.3.2 Parzen Window Technique

In this section, all cross validations for the Parzen Window technique are
presented with plots. Also a table is presented in the end which lists up the
criterias for the best classifier (best found parameter) for each type of data.

Figure 6.5: Cross validation for the Parzen Window classifier with 2D, 3D
and 4D data. Each row shows the cross validation for 2D, 3D and 4D data.
Each column shows the cross validation for raw and normalized data. The
red graph represents the validation, the blue graph represents the training
and the black dotted lines represent the confidence interval.
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The table below lists up the best classifier from each Parzen Window exper-
iment.

Data Best parameter Mean val. Data Generalization
(h1) error (%) spread (%) (%)

2D 7 16.07 22.28 - 9.86 0.59
N 2D 3 22.86 48.10 - (-2.38) 1.79
3D 12 8.93 12.46 - 5.4 1.19

N 3D 4 9.64 14.42 - 4.86 1.78
4D 2000 12.14 22.49 - 1.79 0.59

N 4D 9 10.36 16.98 - 3.74 1.55

Table 6.5: Gathered data from each Parzen Window classifier experiment.
The data is gathered from the best adjusted parameter in each cross valida-
tion.
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6.3.3 kn-Nearest-Neighbor

In this section, all cross validations for the kNN technique are presented with
plots. Also a table is presented in the end which lists up the criterias for the
best classifier (best found parameter) for each type of data.

Figure 6.6: Cross validation for the kNN classifier with 2D, 3D and 4D
data. Each row shows the cross validation for 2D, 3D and 4D data. Each
column shows the cross validation for raw and normalized data. The red
graph represents the validation, the blue graph represents the training and
the black dotted lines represent the confidence interval.
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6.4 Conclusion

The table below lists up the best classifier from each kNN experiment.

Data Best parameter Mean val. Data Generalization
(kn) error (%) spread (%) (%)

2D 12 13.21 20.58 - 5.84 1.54
N 2D 4 9.64 13.17 - 6.11 0.95
3D 10 10.00 15.12 - 4.88 1.67

N 3D 12 8.21 10.90 - 4.82 1.19
4D 20 12.86 15.15 - 10.57 0.96

N 4D 3 6.43 8.04 - 4.82 0.95

Table 6.6: Gathered data from each kNN classifier experiment. The data is
gathered from the best adjusted parameter in each cross validation.

6.4 Conclusion

Based on the given criterias, presented in section 6.2.2, the best classifier for
each method is picked out and in the end compared against each other.

The data for the ML classifier in table 6.4 gives an indication that the classi-
fier for the raw 3D data, with a general covariance matrix, is the best solution
for this experiment. It has the lowest mean validation error and least spread
in data, which indicates less uncertainty in the data.

In the case, with the Parzen Window classifier data in table 6.5, the data
suggests that the classifier with raw 3D data (h1 = 12) is the best solution.
Also, in this case, the classifier for the raw 3D data have the lowest mean
validation error and least spread in data. For every experiment done with
normalized data, the window width parameter, h1, is lower than for the
experiments done with raw data.

In the last case, with the kNN experiments, the classifier for the normalized
4D data stands out from the rest (kn = 3). Of the three criterias mentioned
in section 6.2.2, the kNN classifier for the normalized 4D data has the best
generalization, the lowest mean validation error and least uncertain data,
compared to all other experiments done with kNN classifiers.
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When comparing and choosing the best classifier from the best result in
each method, the same criterias are used as before. The ML classifier has
the highest mean validation error and the most uncertainty in data compared
to the Parzen and kNN classifiers. Even if this is the simplest method to
implement and the less time consuming algorithm, it will not be chosen.
The kNN classifier has lower mean validation error, better generalization and
least spread in data, compared to the Parzen classifier for the raw 3D data.
All of the three criterias are better for the kNN classifier than for the Parzen,
and the kNN classifier will be implemented in the system.

Since the kNN classifier with normalized 4D data gave the best result, the
ooi() algorithm will not be changed, and will still find four features from
an object.

6.5 Development of the kNN Classifier

The kNN classifier is implemented in MATLAB on the bases of algorithm 7.

Algorithm 7 kNN Classifier for 4D features
Input: D, x, kn, C
for i = 1→ length(D) do
δ = x−D(:, i)
R(1, i) = δT × δ

end for
[junk idx] = sort(R)
g(1, 1) = sum(C(1, idx(1 : kn)) == 1)/length(find(R ≤ R(1, idx(kn))))
g(1, 2) = sum(C(1, idx(1 : kn)) == 2)/length(find(R ≤ R(1, idx(kn))))
[junkCx] = max(g)
return Cx

Explanations of variables:

• D is the collected data from class 1 and 2. D’s size is 4×280, where the
first 140 samples belong to class 1, and the last 140 samples belongs
to class 2.
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• x is the feature vector.
• kn is the nearest neighbor parameter.
• C is a vector that contains the labels for D. The first 140 indices are

1 and this indicates to the program that the first 140 samples in D
belongs to class one. The last 140 indices in C are 2.

• δ is the distance between each feature in x and in D. This distance is
computed for every sample in D to x.

• R contains the Euclidian distance between x and every sample in D.
• sort(R) sorts the Euclidean distances in ascending order. idx contain

the original indices to each of the sorted distances.
• g(1, 1) and g(1, 2) computes the a posteriori probability for class 1 and

for class 2.
• Cx is 1 if g(1, 1) ≥ g(1, 2) or 2 if g(1, 2) > g(1, 1).

R contains each Euclidean distance from x to every sample in D. The order
of the distances in R is the same as for every sample in D. This means that
the Euclidean distance for the first sample in D is stored in the first index in
R, and so on. When R is sorted in ascending order, the vector idx contains
the original index of each distance in R.

idx(1 : kn) finds the original indices to the kn-nearest neighbors and
sum(C(1, idx(1 : kn)) == 1) computes which of the kn-nearest neighbors
that belongs to class 1. sum(C(1, idx(1 : kn)) == 2) computes which of the
kn-nearest neighbors that belongs to class 2.

length(find(R ≤ R(1, idx(kn)))) finds the total amount of kn-nearest neigh-
bors to x.

The a posteriori probability for class 1 and for class 2 is computed by using
the equation 2.47, presented in section 2.5.5.2.

The MATLAB implementation of algorithm 7 can be found in appendix E.7.

The MATLAB implementation of the ML and ParzenWindow classifier, used
in the experiments, are shown in appendix E.10. Since the Parzen Window
classifier is based on a Gaussian window, the ML classifier are implemented
in the Parzen as well.
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Chapter 7

Explanation of System
Functionalities

In this Chapter, the functions MOD(), ooi() and kNN_classifier are im-
plemented in main.m. main.m is the main program that runs the whole
system. A part from the mentioned functions, other functionalities will be
implemented as well. Section 7.1 presents main.m and it’s functionalities.

The other sections presents all the functions that is included in main.m.
Each function/program are presented with flowcharts. Each step in all the
flowcharts are numbered and explained.
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7.1 Main Function - main()

As mentioned the main program main.m runs the system and contains all
the functions that are developed. This section presents main.m and explains
it’s structure.

Figure 7.1: Flowchart for main.m.
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Step Elaboration

1

global_var initializes global variables that the functions use. It
creates a video input object and connects the web camera to
MATLAB. It also creates NXT motor objects for the conveyor
belt and the sorter arm. The collected data that feature vectors
are classified to are also initialized and normalized in this m-file.
global_var.m can be looked at in appendix E.9.

2

Connects to NXT. The variables log is set to 1 and i is set to
0. While log is 1, the system runs. The variable i is a help
variable that is increments each time a object has been detected
and classified. Class and Img uses this variable.

3 WHILE-loop. Runs as long as log equals 1.

4 The camera starts logging frames and motor object mA is trans-
ferred to NXT, and the conveyor belt starts moving.

5

’handle’ is a figure that opens when it’s initialized. This figure is
used to exit the while(1)-loop. If the ’q’ button is pressed after
an object is classified, MATLAB interprets this as closing the figure
and MATLAB jumps out of the while(1)-loop by executing the
break command.

6

The MOD() function runs until a object is detected on the conveyor
belt. The rgbComp() function converts the RGB frame captured
by MOD() to a binary image. It computes the threshold from every
RGB component and converts the component having the highest
threshold to a binary image.

7

The ooi() function finds and extracts the object of interest (OOI)
in the binary image received from rgbComp(). It also finds some of
the objects internal (area, centroid) and external (border and bor-
der coordinates) characteristics. The function returns an binary
image containing only the OOI and the internal and external data
from the object. The signature() function computes the signa-
ture of the objects border using the objects centroid and border
coordinates.

8 The mean (MSign) and standard deviation (StdSign) of the signa-
ture is computed with the MATLAB commands mean and std.

9 The peaks() functions computes the amount of peaks/vertices
(NoP) in the signature.

10 The feature vector for the OOI, X, is initialized. The features are
the OOIs area, MSign, StdSign and NoP.
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11 X is normalized by using the mean and standard deviation com-
puted from the collected data (line 80-81 in E.9).

12

X is classified with kn-nearest-neighbor technique
(kNN_classifier()). The classifier returns Cx to main. Cx
is 1 if the OOI belongs to class 1. Else it’s 2 and the OOI belongs
to class 2.

13 IF-loop. If Cx equals 1, the arm is moved across the conveyor belt
and the object is pushed off the belt and into a tray.

14 It saves the i-th OOIs class number and the RGB frame containing
the OOI in Class(i) and in Img{i}.

15 IF-loop. Checks if ’q’ is pressed. If it is not pressed, the
while(1)-loop restarts.

16 ’q’ is pressed. The camera stops logging and the conveyor belt
stops.

17
Displays the number of objects that have passed through the sys-
tem and how many objects that are classified to class 1 and class
2. This is presented in MATLABs command window.

18

The program then asks if the user wants to continue and restart
the system without deleting i, Class(i) and Img{i}. The user
needs to enter Y or N. If the users wants to continue, the program
starts over and jumps back to step 4.

19 User doesn’t want to continue. The program ask if the user wants
to save Class(i) and Img{i}.

20
If the user wants to save the results, they are saved in the current
MATLAB workspace as two separate .mat files. The current date
and time are added to the filenames.

21 The program disconnects from NXT and clears all variables in the
workspace.
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7.2 Connect to NXT - con2NXT()

This function opens a bluetooth connection to the NXT. If the connection
fails it will try the USB connection, if the cable is connected.

Figure 7.2: Flowchart for con2NXT().

Step Elaboration

1 Looks for and connects to the NXT. In the process it creates the
handle HNXT.

2 Sets HNXT to a global handle. HNXT is used by all the RWTH
functions to communicate with the NXT.
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7.3 Moving Object Detection - MOD()

This functions detects an object on the moving conveyor belt and returns
the image containing the whole object within the FOV.

Figure 7.3: Flowchart for MOD().
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Step Elaboration

1
First the camera takes a snapshot of the conveyor belt and saves
the image in iRGB(i). Then it converts the image to grayscale,
adjusts the contrast and saves this version in im(i).

2 IF-loop. Goes through this loop 30 times.
3 Another IF-loop that only is executed one time.

4 IF i equals 1, the first background image B(1) is the the first
grayscale image im(1).

5

For i equals 2 to 30 the background model is updated using equa-
tion 4.2. Then it computes the background subtraction between
im(i) and B(i). This is done to generate a BM before starting to
detect objects. For every BS the threshold is also computed using
the MATLAB function graythresh.

6

In this segment the function starts to look for changes in the result
from BS. The BM is still updated and the threshold is computed
from the BS result and stored in thr(i). The image computed
from the BS is converted to a binary image and stored in img(i).
Every binary image is exposed to a morphological operation that
clear objects on the image border and fill any gaps in remaining
objects.

7
A FOR-loop that computes the average threshold for the last ten
computed thr(i). The result is stored in avgthr(i-30). This
result is used in step 9.

8

Every img(i) is multiplied with Mrm. Mrm is a matrix (same size
as img) containing only zeros except in a area called RM, where
the elements have value 1. If an object is present in img(i) and is
overlapping RM, the result would be a matrix that only contains
value 1 where the object overlapped RM. By using the MATLAB
function find on this result will return a row and a col vector
that contains indexes for all 1-valued pixels. If an objects doesn’t
overlap RM the result is a zero matrix, and row and col would be
empty.

9
If row = col = [ ] (empty) the function starts over. If they are
not empty and avgthr(i-30) is bigger than UDT, the function
continues.

10 The variable imres is set equal to iRGB and is returned to main.
The function then ends.
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7.4 Extract and Separate Object from Background
- rgbComp()

This function analyses each R, G and B component in the image and deter-
mines which component the object is extracted from.

Figure 7.4: Flowchart for rgbComp().
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Step Elaboration
1 Input image: iRGB received from MOD().

2

FOR-loop. Extracts each RGB component from iRGB and stores
them in img(i). For each component the threshold value is com-
puted using the MATLAB function graythresh, but each compo-
nents intensity level is adjusted (imadjust) beforehand to make
the object stand more out in all components. Each threshold is
saved in the 1-by-3 vector thr(i).

3

The MATLAB function max returns the index of the highest valued
threshold in thr(i) and uses this to determine which component
that has the best result of extracting the object from the back-
ground. The best component is converted to the binary image
BWres and returned to main.
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7.5 Object of Interest - ooi()

The ooi() function finds the object of interest in a binary image and reduces
noise. It then returns the object perimeter as an binary image, the object
border coordinates and object data.

Figure 7.5: Flowchart for ooi().

Step Elaboration

1 Inputs: Binary image - imC and structural element for morpho-
logical opening and erosion - seO and seE.

2
Reduce noise by morphological opening and smooth the object
contour by erosion. Label (result: LM) remaining objects with the
MATLAB function bwlabel.

3 Select object that overlaps coordinate (n, m): 180, 160. The result
is stored in imres.

4 IF-loop. Compares imres with a zero matrix (of the same size).
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5

If they are not equal, the object is extracted from LM. Then ob-
ject data is found from the object using the MATLAB function
regionprops (area, centroid and bounding box), the perimeter is
extracted from imres using bwperim and the boundary coordinates
are computed using bwboundaries.

6
If they are equal, the object isn’t extracted from LM and the func-
tion tries to select the object at coordinates 220, 160 (in LM) in-
stead. imres is overwritten.

7 IF-loop. Compares imres with a zero matrix (of the same size).
Not equal: See step 5.

8 Equal. No object is in LM and the result from MOD() is a false
positive detection. All values are set empty / zero.

9 Returns ObjectData, imres, BC (boundary coordinates) and
perimeter to main. The function then ends.
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7.6 Signature - signature()

Computes an objects signature and returns all distances and angles.

Figure 7.6: Flowchart for signature().

Step Elaboration

1 Inputs: Boundary coordinates - BC (np-by-2 vector) and object
centroid coordinates - nC and mC.

2 Sets nC and mC as the origin to all boundary coordinates in BC.

3 Converts the coordinates in BC to Cartesian coordinates (xcart
and ycart) that MATLAB uses.

4 Converts xcart and ycart to Polar coordinates by using the MAT-
LAB cart2pol. Result: theta (angle) and rho (distance).

5 Converts theta from radians to degrees.

6
All angles in theta is converted to nonnegative angles. All angles
are also rounded so that there is 1 increment (degree) between
them. theta and rho is stored in tr.
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7 If some of the angles in theta is equal the duplicates are deleted.
8 IF-loop. Checks if the first and last angle in theta is equal.
9 Equal. Deletes last angle in theta.

10 angle = tr(:, 1) and sign = tr(:, 2). Returns angle and
sign.

121



7.7 Detect Vertices in Signature - peaks()

7.7 Detect Vertices in Signature - peaks()

The function peaks() analysis the signature and returns the number of peaks
detected.

Figure 7.7: Flowchart for peaks().
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7.7 Detect Vertices in Signature - peaks()

Step Elaboration
1 Inputs: sign and angle computed by signature().

2 WHILE-loop. Continues until all values in the sign vector have
been analyzed.

3 IF-loop. Is sign(i) bigger than sign(i-1)? If not, increment i
and start over.

4 IF-loop. Is sign(i) bigger than sign(i+1)? If not, increment i
and start over.

5 sign(i) is bigger than both sign(i-1) and sign(i+1). Increment
peak and store the peaks position in p(peak). Increment and start
over if i < length(sign).

6
IF-loop. Compares the value in the first element in sign with the
value of the first peak. If sign(1) is smaller than sign(p(1)),
jump out of the IF-loop.

7 sign(1) is larger than sign(p(1)). Increment peak.
8 NoP equals peak. Return NoP and end function.
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7.8 The kNN Classifier - kNN_classifier()

Figure 7.8: Flowchart for kNN_classifier().

The explanation for this flowchart is explained in Chapter 6, section 6.5.
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7.9 Sorter Arm - arm()

This function controls the arm that pushes objects of the conveyor belt.

Figure 7.9: Flowchart for arm().
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7.9 Sorter Arm - arm()

Step Elaboration

1

Inputs: mUp and mDown are motor objects created from the NXT
motor B (line in 52-55 E.9). mUp positions the arm in stationary
position and mDown positions the arm in working position. The
variable deg is short for degrees and is set to 90.

2 When reseting the motor position, the current position of the mo-
tor is automatically set to 0. This value is saved in pos.

3

Motor object mDown is sent to the NXT motor to move the arm
across the conveyor belt. The movement of the motor is decided
by the RWTH function TachoLimit, which is set to deg + pos, in
this case 90◦.

4
The RWTH function WaitFor makes sure that MATLAB waits
until the motor is across the conveyor belt and has stopped before
taking on a new task.

5 Finds the new position of the motor and saves this in pos.

6 Updates TachoLimit (set equal to pos) and sends the motor object
mUp to NXT, which moves the arm to stationary position.

7 Waits until the arm is in stationary position and the motor has
stopped before ending the function.

The MATLAB implementation can be found in appendix E.8.
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Chapter 8

Experiments & Results

In this Chapter, the kNN classifier is implemented in main.m and both the
software (MATLAB) and the physical system are tested, with class 1 and
class 2 objects. Issues that have arisen in the course of these experiments are
also presented. Results are presented in tables for every experiment. The
systems overall experiment are discussed in the last section in this Chapter.
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8.1 Implement the kNN Classifier to the System

The collected data (Data) included data from class 1 and 2, and it contained
280 different samples (140 samples per class). The data for each class was
divided into four random data sets (D). A combination of three of these D’s
was defined as the training set (TS) and the remaining D, that is left out of
TS, was defined as the test/validation set. This was used when performing
cross validation experiments on the different classifiers.

From section 6.4 it was concluded that the kNN classifier with normalized
4D data and kn equal 3 gave the best result from the cross validation ex-
periements, because all criterias, presented in section 6.2.2, was met. Com-
pared to other classifiers that met the criterias, it had the lowest mean
validation error and least spread in data.
All collected data from class 1 and 2 was used when implementing the fi-
nal kNN classifier in the system. The features from an object that passed
through the system was normalized using the mean and standard deviation
computed from Data. The feature vector is then classified to Data, with the
kNN classifier.

8.1.1 Results from Current Setup

To test the final kNN classifier, the following steps was decided.

• A minimum of two separate experiments
• The object from each class will be classified 30 times

(total attempts: 60)
• Objects will be classified in random order
• Number of correct and wrong classifications (NOCC and NOWC) are

logged
• After the experiment, the error rate are computed

The expectation before the experiments was to have a error rate close to
6-10%. Results from the cross validation performed on the kNN classifier
indicated a mean validation error of 6.43% when 35 data features was clas-
sified to 2 × 105 (class1 and class 2). In the system, one feature is classified
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8.1 Implement the kNN Classifier to the System

to the 280 previously logged samples in Data, and this will affect the result.
At the same time the current illumination will also affect the result. Light
and reflections can either distort or better the captured frame containing the
object of interest, and affect the feature values.

The table below shows the result from two separate experiments performed
on the final kNN classifier that was implemented in the system.

Experiment NOWC for class 1 NOWC for class 2 Error Rate [%]
1 18 0 30.00
2 23 0 38.33

Table 8.1: Two separate experiments performed on the kNN classifier for
normalized 4D data and kn equal 3. Features are classified to Data.

The error rate is a lot higher then expected for both experiments. One
reason for this may be illumination. The light environment were most likely
different when the experiments was conducted compared to when the data
was collected and stored in Data.mat. This can affect the system and give
a higher error rate because the values in the computed feature vector is
different from the values in Data.

It can also be mentioned that it is only the class 1 object that is wrongly
classified. This can indicate that the data from class 1 and 2 are very similar,
but also that the data from class 2 are more spread then for class 1. When a
feature computed from the class 1 object is classified to Data, the probability
of classifying it to class 2 is higher because of the spread.
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8.1 Implement the kNN Classifier to the System

Figure 8.1: Example: kNN with kn equal 3. The feature vector indicated by
a cross belongs to class 1 and are being classified. The red samples are class
1 and the blue samples are class 2. Because of more spread in the class 2
samples, the feature vector is classified to class 2.

In the next section, new and previously collected data are compared and
examined.

8.1.2 Comparing New Captured Features with the Current
Data Set (Data.mat)

Ten new features from both classes was collected and was compared to Data.
The reason for this was to see if the current features had changed compared
to previously collected data. The comparison is shown in figure 8.2.
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8.1 Implement the kNN Classifier to the System

Figure 8.2: Comparison of new and old data. All images shows 2D data. The
axes are organized as follows: [Area, Mean], [Area, Std] and [Area, NoP].
The top three images are for class 1 and the bottom three images are for
class 2. The red dots are the new features.

The images in figure 8.2 shows that the new data is similar to the old data.
There are some small deviations and this is because of varying illuminations.
For class 2 there are two outliers in the data set. The first outlier is shown
in all images for class 2. The area exceeds 1.5 × 104. The second outliers
is shown in the last images for class 2 ([Area, NoP]). The number of peaks
detected are less then 5.
The two outliers in Data are most likely data calculated from a false posi-
tive detection in MOD(). A change in light may have been reflected by the
conveyor belt and been detected by MOD(). The area of the false positive de-
tected object is part of the conveyor belt were the reflection is brightest. As
the outliers show, all feature values except from NoP becomes much larger
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8.1 Implement the kNN Classifier to the System

than normal.

8.1.3 Removing Outliers from the Current Data Set

Since the two outliers, detected in class 2, have been part of training sets
that have been used when training classifiers with cross validation, they may
have affected the result. To examine this, the outliers are removed from
Data and the kNN classifier are tested again. The data for each class has
been reduced to 4 × 136 (four features are removed from each class). The
new and reduced data set is called Data2.mat. The kn parameter is still set
to 3. This parameter value gave the best result when cross validation was
performed in section 6.3.3, on the kNN classifier with normalized 4D data.

Two separate experiments was performed on the system with Data2. The
experiments was performed with the same steps as for the test in section
8.1.1. The results is shown in the table below.

Experiment NOWC for class 1 NOWC for class 2 Error Rate [%]
1 17 0 28.33
2 19 0 31.67

Table 8.2: Results from the kNN experiments with Data2 and kn equal 3.

The results are a little better after removing the outliers, but still not good
enough. Since the data in Data2 is reduced, compared to Data, and the kn
parameter isn’t changed, a new cross validation was performed to check if
another parameter value could improve the system. Figure 8.3 shows the
cross validation for the kNN classifier with normalized 4D data.
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8.1 Implement the kNN Classifier to the System

Figure 8.3: Cross validation for the kNN classifier and Data2 (normalized
4D).

From the cross validation, kn equals 29 was chosen. It has good generaliza-
tion, but not the lowest mean validation error. This parameter was chosen
since the data has least uncertainty for this parameter value. The kNN clas-
sifier was tested with the new kn value. The result is shown in the table
below.

Experiment NOWC for class 1 NOWC for class 2 Error Rate [%]
1 12 0 20.00
2 15 0 25.00

Table 8.3: Results from the kNN experiments with Data2 and kn equal 29.

133



8.1 Implement the kNN Classifier to the System

By changing the kn value, the result has improved, but not as much as
expected. This suggests that the deviation between new and old data, pre-
sented in figure 8.2, could affect the result.

8.1.4 Collect New Data

Since the error rate of the classifier implemented in the system didn’t produce
a satisfying result, it was decided to collect new data from both classes. The
amount of data collected was 52 features from each class. This data set is
called Data3.mat. The reason for collecting new data was to confirm that
the deviation between data (new and old) in figure 8.2 really affected the
classifier and produced a higher error rate than expected.

8.1.4.1 Cross Validation

Data3 is pre processed and divided into randomly data sets. It was done in
the same manner as described in section 6.1. The cross validation was only
performed on the kNN classifier for normalized 4D data. Each of the data
sets that is randomly picked from Data3 is 4× 13 in size. Figure 8.4 shows
the result from the cross validation.
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8.1 Implement the kNN Classifier to the System

Figure 8.4: Cross validation for the kNN classifier and Data3 (normalized
4D).

For every kn parameter the cross validation indicates constant uncertainty in
the data. The mean validation error is also constant and the generalization
is acceptable in every case. kn equals 6 was chosen as the parameter.

8.1.4.2 Result

This experiment was done four times with the same starting point as all the
other experiments. The result is shown in the table 8.4.
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8.2 Mechanical Adjustments

Experiment NOWC for class 1 NOWC for class 2 Error Rate [%]
1 4 0 6.67
2 2 0 3.33
3 6 0 10.00
4 6 0 10.00

Table 8.4: Results from the kNN experiments with Data3 and kn equal 6.

The results from the kNN classifier with the new data set has significantly
improved from previously experiments with Data and Data2. This indicates
that the deviations in data from figure 8.2 has affected the classifier. The
error rate isn’t constant for each experiment, but this is due to illumination
that affects the values computed in the feature vector. As long as the illu-
mination varies, so will the values. The system is placed in a room that has
low illumination variations. The windows are blinded with dark curtains,
but there is still changes in light.
To reduce the effect of light variations, the system have to be placed in a
room that always have constant illumination and preferably no windows.
Another measure is to improve the moving object detection algorithm and
make it more robust against light and reflections.

Data, Data2 and Data3 has one thing in common. The data for the class 2
object is more spread than the data for class 1, in both sets. It’s only the
class 1 object that is wrongly classified in every case for both data sets.

The kNN classifier with kn equal 6 are implemented in the system with
Data3.

8.2 Mechanical Adjustments

There were made three mechanical adjustments on the physical system while
performing the final testing.
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8.2 Mechanical Adjustments

Sorter Arm
The first adjustment was to the sorter arm. When the arm was in it’s
working position across the conveyor belt, both objects went under the arm.
The vertical position of the arm was too high. This was adjusted and the
figure below shows the arm before and after the adjustment.

(a) Before (b) After

Figure 8.5: The sorter arm before and after adjusting it’s vertical position.
The red ring, in both images, indicates the part that was adjusted.

Seal holes/openings surrounding the conveyor belt
The two last adjustments was to seal holes and openings surrounding the
conveyor belt. Both objects was transported the whole length of the belt
to look for areas were they could slip through a opening and fall outside.
Figure 8.6 shows two areas on the conveyor belt that was adjusted.
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8.2 Mechanical Adjustments

(a) Before (b) After

(c) Before (d) After

Figure 8.6: Mechanical adjustments made on areas surrounding the conveyor
belt. This prevents the objects from falling off the conveyor belt and possibly
get stuck in gears that runs the conveyor belt forward.
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8.3 Timing the Sorter Arm

8.3 Timing the Sorter Arm

When the class 1 object is detected and classified, the sorter arm will move
to it’s working position and push the object off the conveyor belt, and into
tray 1.

Figure 8.7: The image show tray 1 and 2, which collects the sorted objects.
When the sorter arm is in it’s working position, class 1 objects are pushed
into tray 1. Class 2 objects are collected in tray 2.

When a class 1 object is recognized and classified, the sorter move to it’s
working position. It needs to stay out long enough so that the object can
move along the conveyor belt and get pushed into tray 1. The solution was
to use a pause function in MATLAB, which is invoked after the arm is moved
across the belt. This time delay is set to 7 seconds . After the delay, the
arm is moved back to it’s stationary position. The delay is added between
step 5 and 6 in the sorter arms flowchart, which is presented in section 7.9.
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8.4 Overall Performance

For every experiment carried out in this Chapter, the system has not had
any false positive detections. The illumination from the lights have been
constant, but because of windows in the room, the overall illumination has
varied. This shows that the work and development of the moving object
detection algorithm (MOD()) has made it more robust against light and re-
flections from the conveyor belt. The algorithm is still affected by the light.
The computed feature values are different from one experiment to another
because of it, but also because an object will never be placed in the exact
same place on the conveyor belt.
A part from not having any false positive detections during the experiments,
MATLAB have crashed a couple of times. It’s mainly the camera and MAT-
LABs video input that stops logging frames. A quick restart solves the
problem. The crashes may occur after detecting and classifying 50-100 ob-
jects. These implications seem to be random. It may be the web camera
that don’t always respond to MATLABs inquiry to start logging frames.

The last cross validation experiment, presented in section 8.1.4.1, gave a
mean validation error below 0.5%, but this isn’t the case when it was tested.
The result show a varying error rate between 3 and 10%. It is still an
acceptable result. The illumination affects these results as well, but the
deviations between the data in Data3.mat and the features extracted from
the passing objects isn’t as big as it was while using Data.mat.

Results and experiments from the moving object detection and for finding /
extracting the object of interest is presented in Chapter 4 and 5.
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Chapter 9

Conclusion & Further
Development

9.1 Conclusion

The physical sorter system was designed in the preliminary project Objekt
sorterer - Egenskaps uttrekning (MIK110), but it was made three important
mechanical adjustments to the system in this report.
The first one was to reduce the effect of reflection around the conveyor belt
where the web camera is located, to avoid false positive detections. This
was done by using black tape on the areas where the reflection was high
and affected the resulting frame containing the object of interest in the form
of noise. The second adjustment was to secure / seal areas where objects
could fall off the conveyor belt along the entire transport stage. The last
adjustments involved lowering the sorter so that the objects didn’t travel
beneath it.
These three adjustments made the system both more secure and stable. The
mechanical reduction of reflection especially made it easier to pre process
captured frames in MATLAB.

The development of the moving object detection was one of the most cru-
cial and most important tasks performed in this report. The research area
concerning moving object detection is big and introduced me to several so-
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9.1 Conclusion

lutions. This field is constantly evolving, but a final solution seems yet to
be found. There was no tangible theory to commit to. One common factor
for all research, was of course, the problem concerning illumination. This
was no exception in my work. Typically, in a industrialized situation, illumi-
nation is avoided by placing systems handling detection of objects, sorting
packages, etc. in a space that is not exposed to constantly change in light.
The illumination is constant and other light sources, that can affect the sys-
tem, is excluded. For my part, this was not possible. The system had to
tolerate small light changes. This was made possible by using two methods
called background subtraction (BS) and background modeling (BM). Both
BS and BM are basic methods that is used for moving object detection.
Beside from these two methods, the developed moving object detection al-
gorithm compares computed thresholds from a grayscale version from the
BS, to determine if the object is in the frame field of view (FOV). Experi-
ments showed that this threshold value became bigger when a object entered
the FOV. This was then utilized as security measurement to confirm that the
object of interest actually was present in a frame. It also supports the BM
in reducing the effect of reflection, which produces false positive detections.

All in all, the results that are presented in this report are satisfying. The
main theory behind the solution is based on the image processing and pat-
tern recognition subjects, as intended. The report also focuses on moving
object detection which I found out was a relatively interesting part of image
processing theory. Further research within this field of work could be very
beneficial for future students, as well as for my self. Working with methods
based on the pattern recognition subject was also intriguing. When I was
introduced to this subject in the spring of 2011, I couldn’t imagine how to
transform the theory behind it into a practical example. I wasn’t the only
one having this problem. The work behind this reports classification problem
has really been a eye opener and has given me more understanding about
this field and it’s potential. It has been an obligatory subject for earlier stu-
dents attending Information Technology (IT) at the University of Stavanger.
In my time at IT it was only a optional course, but as for next semester (fall
2012) it will once again be obligatory and I truly support this decision.

The solution also gives a good fundament for further development. There is
still a lot that can be improved and there’s the possibility of scaling up or
expand the system. It could be used as an practical example on how image
processing and pattern recognition can be used in real life. Students can use
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the model and work on it as an assignment or project.

9.2 Further Development

This section mention some suggestions for further development.

9.2.1 Improving the Moving Object Detection Algorithm

The moving object detection algorithm, MOD(), is based on background sub-
traction (BS) and background modeling (BM). The BM and the user defined
threshold (UDT) is used to adapt to gradual illumination changes, and pre-
vent illumination from causing false positive detections. The BM only adapts
to slow changes in illumination. It’s robustness against dynamic backgrounds
is also a issue.

[4] mentions several different background models that are more adaptable to
dynamic backgrounds. One of the models mentioned is the Mixture of Gaus-
sian (MoG). The pixels in a frame containing a dynamic background varies
from another frame. MoG models these variations with K1 Gaussian distri-
bution, for each captured frame and compares them to existing models at
the same location in the frame. Matched models are updated with a learning
factor and unmatched models are discarded, and replaced by new Gaussian
models [4]. MoG has been used to model complex dynamic backgrounds.

[2] mentions a method to reduce the affect of sudden illumination problems.
It’s based on entropy and exploits the fact that dark image scenes have low
entropy whereas light image scenes have high entropy.

9.2.2 Expand Number of Classes

If new objects that can be classified and sorted from each other are found
and the number of classes in the classification exceeds two, an expansion

1Usually K is between 3 and 5.
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is needed on the physical system. Figure 9.1 and 9.2 shows two possible
expansions of trays.

Figure 9.1: In this expansion, two trays are mounted at the end of the con-
veyor belt. The trays are controlled by a NXT servo and a gear mechanism
that can slide the trays left and right.

Figure 9.2: In this expansion, four trays are mounted at the end of the
conveyor belt. The trays are controlled by a NXT servo that rotates the
tray cluster 360◦. If tray 2, 3 or 4 is placed at the end of the conveyor belt,
the NXT servo have to rotate either 90◦, 180◦ or 270◦.
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9.2 Further Development

In addition to expand the physical system, new features may be needed as
well. New objects require new cross validation experiments and the features
that are used in this report might be inoperable to classify the new objects.
Other than the traditional classifiers that have been presented in this report
may also be considered.

A part from this, a new MATLAB function that controls the added trays
need to be programmed. If the total amount of servos are more than three
after the expansion, a second NXT needs to be implemented into the system.
The RWTH Toolbox supports multi-NXT use, but it requires two bluetooth
handles in MATLAB.
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Appendix A

Content on CD

Folder Content

Bibliography The folder contains some of the referred papers in
Bibliography.

Collected Data Contains Data.mat, Data2.mat and Data3.mat.

Master Thesis Contains a digital copy (.pdf) of the master thesis.

MATLAB Contains all m-files that are developed in MATLAB.Implementations

RWTH Contains a digital copy (.zip) of the RWTH toolbox v4.04.
Toolbox Used in this report.

Video
A short video of the system when it’s running. The video
is also on YouTube:
http://www.youtube.com/watch?v=AAGNuTu7Tfk&feature=plcp.

The CD is located on the last page of the report (back cover).
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Appendix B

Set Theory

This chapter looks at basic concepts behind set theory. Equations 2.2, 2.3,
2.4 and 2.5 in chapter 2 are based on set theory.

B.1 Basic Concepts

Consider the following two sets, A and B.

Figure B.1: Set A and B.

150



B.1 Basic Concepts

Definition Notation Explanation
Union A ∪B A and B.
Intersection A ∩B A or B.
Complement (A)c or (B)c Not A / Not B.
Difference A−B A minus B.
Empty set ∅ Contains no elements.
Reflection Â or B̂ Reflects A or B.
Translation (A)z or (B)z Move the sets origin.

Table B.1: Set theory definitions [5].

(a) Union (b) Intersection

(c) Complement (d) Difference

Figure B.2: Four basic concepts in set theory.
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Appendix C

Calculations

C.1 Example: Converting Cartesian Coordinates
to Polar

Consider the complex number z = a+ jb.
Definitions:

Re(z) = a a = r · cos(θ)
Im(z) = b b = r · sin(θ)
Arg(z) = θ = tan−1

(
b
a

)
|z| = r

(
cos(θ) + jsin(θ)

)︸ ︷︷ ︸
ejθ

Cartesian form: r =
√

(x− x1)2 + (y − y1)2, origin: (x1, y1)
Polar form: z = rejθ

Table C.1 show some border coordinates from an object, calculated from the
MATLAB function bwboundaries.
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C.1 Example: Converting Cartesian Coordinates to Polar

x BC(x, 1) - n-points BC(x, 2) - m-points
1 243 191
2 244 190
3 244 189
4 244 188
5 245 187

Table C.1: Some border coordinates computed by the function
bwboundaries.

Centroid coordinate (n0, m0): 373.9, 198.1.
Shift origin for each n- and m-point: BC(x, 1/2) = BC(x, 1/2) - n0/m0.
Table C.2 shows the result.

x BC(x, 1) - n-points BC(x, 2) - m-points
1 -130.9 -7.1
2 -129.9 -8.1
3 -129.9 -9.1
4 -129.9 -10.1
5 -128.9 -11.1

Table C.2: Coordinates after the origin is shifted.

To use the MATLAB function cart2pol the image coordinates have to be
converted to a coordinate system that MATLAB uses. The conversion is as
follows

xcart = BC(x, 2) = m (C.1)
ycart = −BC(x, 1) = −n (C.2)
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C.1 Example: Converting Cartesian Coordinates to Polar

Convert the Cartesian coordinates to polar:

Polar form
x r θ

1 131.00 0.0542
2 130.15 0.0623
3 130.22 0.070
4 130.29 0.0776
5 129.38 0.0852

Table C.3: Calculated polar coordinates.

θ is in radians. The function signature converts θ to degrees and saves the
first angle as 0 and the last angle as 359 (1◦ increment). Table C.4 shows
the computed r for x ε {1, 2, . . . , 5}.

x Computed r in MATLAB
1 129.8991
2 129.9288
3 130.9885
4 131.1357
5 130.2747

Table C.4: Computed distances (r) in MATLAB.
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C.2 Calculating the Validation and Training Error

C.2 Calculating the Validation and Training Error

The data in the tables below is from a Parzen Window classification exper-
iment. The first table shows the number of correct classifications (NOCC)
and the number of wrong classifications (NOWC), for the test sets. The
second table shows NOCC and NOWC for the training sets. D1 and D2 are
the test sets for class 1 and 2, and TS1 and TS2 are the training sets for
class 1 and 2.

Parzen Window Classification on normalized 2D data (h1 = 1)

i NOCC in NOWC in NOCC in NOWC in
D1{i} D1{i} D2{i} D2{i}

1 30 5 24 11
2 34 1 31 4
3 31 4 29 6
4 29 6 26 9

Table C.5: Data from test sets.

Parzen Window Classification on normalized 2D data (h1 = 1)

i NOCC in NOWC in NOCC in NOWC in
TS1{i} TS1{i} TS2{i} TS2{i}

1 92 13 82 23
2 99 6 92 13
3 93 12 79 26
4 91 14 80 25

Table C.6: Data from training sets.

Equations 6.3 and 6.4, extracted from the Confusion Matrix, is used to cal-
culate the error rate of each test and training set.
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C.2 Calculating the Validation and Training Error

The next two points show how to calculate the error rate for the first test
set (D1{1} and D2{1}):

1. Find the confusion matrix:

A =
(

30 5
11 24

)
(C.3)

2. Calculate Ac and E from the confusion matrix:

Ac =
30 + 24

70
≈ 0.7714

E = 1− 0.7714 = 0.2286

The error rate for the first test is 22.86%.

The error rate is calculated for all the other test and training sets in the
same way. The table below shows the result.

Correct classification (Ac) and error (E) rates (%)
i Actest(i) Etest(i) Actrain.(i) Etrain.(i)
1 77.14 22.86 82.86 17.14
2 92.86 7.14 92.38 7.62
3 85.71 14.29 81.9 18.10
4 78.57 21.43 81.42 18.58

Table C.7: The calculated Ac and E for each test and training set.

Mean validation error:

Ētest =
1
4

4∑
i=1

Etest(i) ≈ 16.43%

Mean training error:

Ētrain. =
1
4

4∑
i=1

Etrain.(i) ≈ 15.72%
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Appendix D

Implementation of Software
and NXT

This appendix presents the setup that have to be done to achieve commu-
nication between MATLAB and NXT. The setup was implemented on the
Mac OS X platform.
The guidelines shown in this appendix are based on a step by step guide
found on the internet [10], but it is shown in more detail in the coming
pages, in this report.

D.1 Add the RWTH Toolbox in the MATLAB En-
vironment

The RWTH toolbox is available for free download via [14] (Download). There
are several versions of the toolbox, but the version(s) marked with a star are
recommended, since these versions is the latest stable release.

The following guidelines shows how to add the RWTH toolbox to the MAT-
LAB environment.

1) Download the version of the toolbox marked with a star as mentioned
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D.1 Add the RWTH Toolbox in the MATLAB Environment

before (v4.04 is used in this setup).

2) Use a compression program, like WinRAR, to extract the downloaded zip-
compressed toolbox. The unzipped file is a folder containing the toolbox.

3) In the MATLAB folder, under Documents, make a new folder called
Toolbox. Place the RWTH toolbox in this folder.

4) Open MATLAB and select Set path... from the drop-down file menu.

5) Then choose Add with Subfolders... and find the folder containing
the RWTH toolbox. Mark the folder and click Open.
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D.2 USB Connection

6) Check the MATLAB search path and confirm that the path
to the toolbox are added to the list. If it isn’t, repeat from step 4.
When the toolbox is found in the list, click Save and then Close.

When step 6 is done, the toolbox should be added to the MATLAB environ-
ment. One way of checking this is to look in MATLABs help function for
the toolbox, or write help COM_OpenNXT in the command window. If MAT-
LAB prints the help text for this NXT function in the command window the
toolbox is added to the MATLAB environment.

D.2 USB Connection

The first connection between NXT and the Mac platform is the USB connec-
tion. This is used to set up the NXT and prepare the bluetooth connection.
Follow the next steps to initialize the USB.

1) Download the Fantom Driver from
http://mindstorms.lego.com/en-us/support/files/Driver.aspx.
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D.3 Update NXT Firmware

Remember to choose the Mac version!

2) Open the downloaded file, legodriver.pkg,
and follow the installation guidelines.

3) When this installation is completed the USB connection is ready for use.

D.3 Update NXT Firmware

Before preparing the bluetooth connection the NXT firmware should be
upgraded to the newest version. The next steps shows how to update the
NXT firmware.

1) Turn on the NXT by holding the orange button down.

2) Push the left arrow two times until the Settings icon is shown in the
NXT display and then push the orange button to access this menu.

3) Push the left arrow two times until the NXT Version icon is shown in
the NXT display and then push the orange button to access this menu.

4) Now the firmware version will be unveiled on the display.

5) If there is a newer firmware version it can be downloaded from http:
//mindstorms.lego.com/en-us/support/files/Firmware.aspx.

6) Regardless of whether the firmware version must be updated or not, a pro-
gram calledNeXT Tools have to be downloaded from http://bricxcc.
sourceforge.net/utilities.html.

7) Connect the NXT to the Mac with a USB cable.

8) Open NeXT Tools and choose usb when the program prompts Select
Port.
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D.4 Installing Motor Control on NXT

9) Choose Download firmware from the menu.

10) Find the downloaded firmware file and click Open.

11) Now the new firmware will be installed on the NXT and the window
below should appear.

12) When the new firmware is installed, go over step 1 to 4 again and confirm
it.

D.4 Installing Motor Control on NXT

Motor Control is a program that have to be transferred to the NXT via
NeXT Tools. While a MATLAB program is running the Motor Control
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D.4 Installing Motor Control on NXT

program receives commands from MATLAB. Then it controls the motors
/ servos precisely while the MATLAB program continues to run [14]. The
Motor Control program is included in the RWTH toolbox.
The following steps show how to install the Motor Control on NXT.

1) Connect the NXT to the Mac with a USB cable.

2) Turn on NXT.

3) Open NeXT Tools and choose usb as mentioned before.

4) Click on the NXT Explorer from the menu (globe icon).

5) Click on Download selected files to the NXT as shown in the next
figure and find the file MotorControl22.rxe in the RWTH toolbox folder
(RWTHMindstormsNXT/tools/Motor- Control/).
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D.4 Installing Motor Control on NXT

6) When step 5 is done the Motor Control file should be in the list as shown
in the next figure (marked file).

7) Check that the Motor Control program is transferred to the NXT by
choosing My Files and then Software Files on the NXT. The program
will be placed here if it’s successfully transferred.
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D.5 Initialize Bluetooth Connection Between Mac OS X 10.6
(Snow Leopard) and NXT

D.5 Initialize Bluetooth Connection Between Mac
OS X 10.6 (Snow Leopard) and NXT

Follow this setup to initiate the bluetooth communication.

1) Turn on the NXT.

2) Enter the Bluetooth menu on the NXT by pushing the left arrow three
times and then push the orange button.

3) Push the left arrow two times until the On/Off icon is displayed and
turn the bluetooth on (a icon will appear in the upper left corner of the
display).

4) In the Bluetooth menu, also check that the Visibility is turned on.

5) Turn on the bluetooth on the Mac by clicking on Settings and then
Bluetooth . A list will appear on the screen, like the one below.

6) Choose Konfigurer ny enhet and the Mac will search for bluetooth
units.

7) In the list of bluetooth units that appears on the screen, double click on
the right name (in this case; EXPLORER).
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D.6 Create a Bluetooth Configuration File

8) A password is needed to connect to the unit and it appears on the NXTs
display. The user needs to enter the password on the NXT (usually the
password is 0000) and finish by pressing X.

9) If the bluetooth connection is successful the window in the figure below
will appear.

D.6 Create a Bluetooth Configuration File

For MATLAB and NXT to communicate, one must use a so called SSP,
Serial Port Profile. In the RWTH toolbox documentation the user is told to
create a configuration file that can handle different bluetooth adaptors on
different computers, and contain settings for MATLAB functions. This file
is called bluetooth.ini and is created in MATLAB.
To create this file follow these steps.

1) Run MATLAB.

2) Enter COM_MakeBTConfigFile in the command window.
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D.6 Create a Bluetooth Configuration File

3) After a little while this window will appear on the screen. Click Yes.

4) MATLAB will now create the configuration file and the user have to
choose were to save the file on the hard drive. Save it in RWTH toolbox
folder. The window shown below will appear. Leave it be! It will be used
in later steps.

5) On the Mac, click on Settings and then Bluetooth . Mark the name of
the NXT and click on the gear icon. Click on Rediger serieporter...

6) Copy the address marked on the figure below.
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D.6 Create a Bluetooth Configuration File

7) Paste the address in the Serial Port text box in the window that appeared
in step 4, as shown in the next figure and then click OK.
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D.7 Example: Initiate Communication Between MATLAB and
NXT

Now the bluetooth connection should be successful. Follow the example in
the next section to ensure that it works.

D.7 Example: Initiate Communication Between MAT-
LAB and NXT

NOTE! Ensure that the motor / servo is connected to PORT A on the NXT
before performing the example.

Write the following in the MATLAB command window to initiate bluetooth
communication between MATLAB and NXT:

1 HNXT = COM_OpenNXT('bluetooth.ini');
2 COM_SetDefaultNXT(HNXT);

As mentioned in section 3.2.4, COM_OpenNXT opens the communication with
the help of the created configurations file bluetooth.ini and returns the handle
HNXT to MATLAB. COM_SetDefaultNXT sets HNXT to a global handle. Now
that the communication is ready, MATLAB can send and receive data to
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D.7 Example: Initiate Communication Between MATLAB and
NXT

the NXT. The lines of code below show how to create a motor object on the
NXTs port A and start / stop the motor.

1 % Constructs a motor object on port B with a power of 30.
2 motorA = NXTMotor('A', 'Power', 30);
3

4 % Sends the motor−settings to NXT and starts the motor.
5 motorA.SendToNXT();
6

7 % Pause for 3 seconds (MATLAB function).
8 pause(3);
9

10 % Stop motor.
11 motorA.Stop();

To end the bluetooth communication between MATLAB and NXT, simply
enter COM_CloseNXT(’all’) in the command window.
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Appendix E

Implementations in MATLAB

In this appendix all the algorithms that have been implemented in MATLAB
are presented. The developed MATLAB functions that are used to run the
system are also shown. These functions are based on and further developed
from the algorithms.
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E.1 Main Program - main.m

E.1 Main Program - main.m

1 % Declare variables.
2 global_var
3

4 % Connect to NXT.
5 HNXT = con2NXT();
6

7 % Variable used to store data in Class and Img.
8 i = 0;
9

10 % Used to restart or stop/clear program.
11 log = 1;
12

13 while(log == 1)
14 % Start logging on camera
15 start(Vid);
16 pause(3);
17

18 % Start motor.
19 mA.SendToNXT();
20

21 % Function to stop the infinite loop.
22 % Creates a figure and uses the handle
23 % to stop the loop.
24 handle = figure('position', [0 0 eps eps],...
25 'menubar', 'none');
26

27 % Infinite loop. User can end the loop
28 % by pressing 'q' in the command window.
29 while(1)
30 % Increments i each time a new object is
31 % detected.
32 i = i + 1;
33

34 % Moving Object Detection.
35 [imres] = MOD(Vid, UDT, alpha, Mrm);
36

37 % Selects the best component for
38 % extracting object out of imres.
39 % Returns the best binary version,
40 % imresBW.
41 imresBW = rgbComp(imres);
42

43 % Object Of Interest.
44 [BC Odata per img] = ooi(imresBW, seO, seE);
45
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E.1 Main Program - main.m

46 % Calculates the Signature.
47 [Sign, Angle] = signature(BC,...
48 Odata.Centroid(1),Odata.Centroid(2));
49

50 % The Signature is smoothed before finding
51 % the vertices/peaks.
52 SmoothSign = smooth(Sign, 0.1, 'loess');
53

54 % Find the mean value of the Signature.
55 MSign = mean(Sign);
56

57 % Find the standard deviation of
58 % the Signature.
59 StdSign = std2(Sign);
60

61 % Finds the number of vertices/peaks
62 % in the signature.
63 NoP = peaks(SmoothSign, Angle);
64

65 % Feature Vector. Saves each feature
66 % from every object
67 % in X.
68 X = [Odata.Area MSign StdSign NoP]';
69 X1{i} = X;
70 %disp(['Object number: ' num2str(i)])
71

72 % Normalize X. Uses M and Std calculated
73 % from Data.mat.
74 X = (X−repmat(M,1,1))./repmat(Std,1,1);
75

76 % Classify the feature vector, X, with Parzen.
77 [Cx] = kNN_classifier(data, C, kn, X);
78

79 % If object belongs to class 1, move the
80 % sorter arm across conveyor belt.
81 % If Cx == 2, the object falls of the
82 % conveyor belt at the end.
83 if(Cx == 1)
84 arm(mDown, mUp, deg);
85 end
86

87 % Collect data.
88 % Class indicates which class the ith object
89 % belongs to.
90 % Img stores all OOI.
91 Class(i) = Cx;
92 imres(per) = 0;
93 Img{i} = imres;
94
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E.1 Main Program - main.m

95 % If user enters 'q' in the command window,
96 % MATLAB interprets this as closing figure
97 % 'handle'. This again triggers 'break',
98 % which ends the loop.
99 if strcmp(get(handle,'currentcharacter'),'q')

100 close(handle)
101 break;
102 end
103 figure(handle)
104 drawnow
105 end
106

107 % Stop motor.
108 mA.Stop();
109

110 % Stop logging on camera.
111 stop(Vid);
112

113 % Shows the total number of objects that
114 % are classified and the number of objects
115 % classified to class 1 and 2, before user
116 % quit the program.
117 clc;
118 disp(['−−−−−−−−−−−−−−−−−−−−−−−−−'...
119 '−−−−−−−−−−−−−−−−−−−−−−−−−'])
120 disp(['Total number of objects classified: '...
121 num2str(i)])
122 disp(['Number of objects classified to class 1: '...
123 num2str(sum(Class == 1))])
124 disp(['Number of objects classified to class 2: '...
125 num2str(sum(Class == 2))])
126 disp(['−−−−−−−−−−−−−−−−−−−−−−−−−'...
127 '−−−−−−−−−−−−−−−−−−−−−−−−−'])
128 disp(['Img contains every OOI detected.'...
129 ' Object is highlighted with a border.'])
130

131 % Enter 'Y' to continue or 'N' to end. If user doesn't
132 % want to continue, but ends program, he/she may
133 % save the current results to two .mat files
134 % (optional).
135 rep = input(['Do you want to continue without'...
136 ' deleting the result? Y/N: '], 's');
137 if(strcmp(rep, 'Y'))
138 log = 1;
139 elseif(strcmp(rep, 'N'))
140 rep = input(['Save the result before'...
141 ' ending program? Y/N: '], 's');
142 if(strcmp(rep, 'Y'))
143 c = clock;

173



E.1 Main Program - main.m

144 pause(1);
145 file1 = ['Class' num2str(c(3))...
146 num2str(c(2)) num2str(c(4))...
147 num2str(c(5))];
148 file2 = ['Img' num2str(c(3))...
149 num2str(c(2)) num2str(c(4))...
150 num2str(c(5))];
151 save([file1 '.mat'], 'Class');
152 save([file2 '.mat'], 'Img');
153 COM_CloseNXT(HNXT);
154 else
155 COM_CloseNXT(HNXT);
156 end
157 log = 0;
158 end
159 end
160 clear all;
161 clc;
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E.2 Frame Differencing / Background Subtraction & Background
Modeling - MOD()

E.2 Frame Differencing / Background Subtraction
& Background Modeling - MOD()

This is the final algorithm for BS / BM and are implemented in the system.
Based on Algorithm 3.

1 function [imres] = MOD(Vid, UDT, alpha, mask)
2 % Compares (i)th image with (i)th BM by subtraction, and
3 % returns imres when object is in the camera Field Of
4 % View (FOV).
5 % INPUTS:
6 % Vid − video object.
7 % UDT − User−Defined Threshold. Used to detect
8 % object in FOV.
9 % alpha − adapt rate used in BM.

10 DET = 1; % DETecting mode ON.
11 i = 1;
12

13 while(DET) % While DET is true.
14 % Get snapshot.
15 im1 = getsnapshot(Vid);
16 % Saves the each RGB frame.
17 image{i} = im1;
18 % Converts im1 to grayscale.
19 im1 = rgb2gray(im1);
20 % Adjusts the image intensity.
21 % (this increases the contrast)
22 im1 = imadjust(im1);
23 % Saves the (i)th im1 in im{i}.
24 im{i} = im1;
25

26 % Generates a background model and computes
27 % the threshold of every img.
28 if(i <= 30)
29 if(i == 1)
30 B{i} = im{i};
31 else
32 B{i} = B{i−1} + alpha*(im{i} − B{i−1});
33 img = im{i} − B{i};
34 thr{i−1} = graythresh(img);
35 end
36 % Increment i.
37 i = i + 1;
38 else
39 % The background model adapts to gradual
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E.2 Frame Differencing / Background Subtraction & Background
Modeling - MOD()

40 % illumination changes (slow). Update BM.
41 B{i} = B{i−1} + alpha*(im{i} − B{i−1});
42

43 % Background subtraction/frame
44 % differencing (object detection).
45 img = im{i} − B{i};
46

47 % Convert to binary image.
48 % The function graythresh uses
49 % Otsu's method to compute the
50 % threshold.
51 thr{i−1} = graythresh(img);
52 img = im2bw(img, thr{i−1});
53

54 % Clear objects on image border.
55 img = imclearborder(img, 8);
56 % Fill holes.
57 img = imfill(img, 'holes');
58

59 % Computes the average threshold for the last
60 % 10 frames.
61 avgthr{i−30} = 0;
62 for j=0:9
63 avgthr{i−30} = avgthr{i−30} + (thr{(i−1)−j}/10);
64 end
65

66 % r and c is empty if object does not overlap
67 % mask.
68 [r c] = find((img & mask));
69

70 % Object detected?
71 if(~isempty(r) && ~isempty(c) && avgthr{i−30} > UDT)
72 % Returns imres.
73 imres = image{i};
74 % When an object is detected in FOV,
75 % the DETection mode is turned OFF.
76 DET = 0;
77 else
78 % Increment i.
79 i = i + 1;
80 end
81 end
82 end
83 % Deletes variables in the function that no longer
84 % are used when an object is detected. Frees up
85 % memory.
86 clearvars im1 im img B image thr avgthr r c;
87 end

176



E.3 Segmenting Objects from a Background using Information
from each RGB Component -
rgbComp()
E.3 Segmenting Objects from a Background using

Information from each RGB Component -
rgbComp()

This function is based on algorithm 4

1 function [BWres] = rgbComp(iRGB)
2 % Finds the best component to extract an object
3 % from the background in a RGB image by
4 % comparing the threshold values (computed
5 % by the graythresh function).
6 % Components:
7 % iR − iRGB(:, :, 1) (RED)
8 % iG − iRGB(:, :, 2) (GREEN)
9 % iB − iRGB(:, :, 3) (BLUE)

10

11 % Creates a 1−by−3 vector.
12 thr = zeros([1 3]);
13

14 % Extract each component from the RGB
15 % image and computes each threshold.
16 for i=1:3
17 img{i} = iRGB(:, :, i);
18 thr(i) = graythresh(imadjust(img{i}));
19 end
20

21 % Finds the maximum threshold value index.
22 [junk idx] = max(thr);
23

24 % Returns the binary version of the image (iR, iG or iB)
25 % that have the largest threshold value.
26 BWres = im2bw(img{idx}, graythresh(img{idx}));
27

28 % Clear variables/vectors/matrixes from memory.
29 clearvars img thr junk idx;
30 end
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E.4 Find and Label Object of Interest - ooi()

E.4 Find and Label Object of Interest - ooi()

This function is based on algorithm 5.

1 function [BC, ObjectData, perimeter, imres] = ooi2(imC, seO, seE)
2 % Finds and labels object of interest in the input
3 % image imC. Returns border coord., image data,
4 % object perimeter and image.
5

6 % INPUTS:
7 % imC − Binary image reveived from rgbComp.
8 % seO − Structural element used for opening.
9 % seE − Structural element used for erosion.

10 % OUTPUTS:
11 % BC − Coordinates for the object border.
12 % ObjectData − A cell containing area,
13 % centroid and boundingbox of the
14 % object.
15 % perimeter − Object perimeter as an binary image.
16 % imres − Binary image containg only the object.
17 % Could also be a 0−matrix if MOD has
18 % performed a false positive detection.
19 % Remove noise.
20 imC = imopen(imC, seO);
21

22 % Smooth the outer boundary of the object.
23 imC = imerode(imC, seE);
24

25 % Fill holes in object.
26 imC = imfill(imC, 'holes');
27

28 % Object data.
29 [LM junk] = bwlabel(imC);
30

31 % Find and extract the object using bwselect
32 imres = bwselect(LM,180,160,8);
33 % Does object overlap 180, 160?
34 if(isequal(imres, zeros(370,705)))
35 imres = bwselect(LM,220,160,8);
36 % Does object overlap 220, 160?
37 if(isequal(imres, zeros(360,705)))
38 imres = zeros([370 705]);
39 ObjectData = [];
40 BC = [];
41 perimeter = [];
42 else % Object overlaps 220, 160.

178



E.4 Find and Label Object of Interest - ooi()

43 % Get object data.
44 ObjectData = regionprops(imres == 1);
45 % Find the outer boundary of the object.
46 perimeter = bwperim(imres,8);
47 % Find the coordinates of the object border.
48 coord = bwboundaries(perimeter, 'noholes');
49 BC(:, 1) = coord{1}(:, 2); % x/n coordinates.
50 BC(:, 2) = coord{1}(:, 1); % y/m coordinates.
51 end
52 else % Object overlaps 180, 160.
53 % Get object data.
54 ObjectData = regionprops(imres == 1);
55 % Find the outer boundary of the object.
56 perimeter = bwperim(imres,8);
57 % Find the coordinates of the object border.
58 coord = bwboundaries(perimeter, 'noholes');
59 BC(:, 1) = coord{1}(:, 2); % x/n coordinates.
60 BC(:, 2) = coord{1}(:, 1); % y/m coordinates.
61 end
62 % Free up memory space.
63 clearvars imC L junk coord
64 end
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E.5 Signature - signature.m

1 function [dist, angle] = signature(b, x0, y0)
2 % SIGNATURE Computes the signature of a boundary
3 % [DIST, ANGLE, XC, YC] = SIGNATURE(B, X0, Y0) computes the
4 % signature of a given boundary. A signature is defined as
5 % the distance from (X0, Y0) to the boundary, as a function
6 % of angle (ANGLE). B is an np−by−2 array (np > 2) containing
7 % the (x, y) coordinates of the boundary ordered in a clock−
8 % wise or counterclockwise direction. If (X0, Y0) is not inc−
9 % luded in the input argument, the centroid of the boundary

10 % is used default. The maximum size of arrays DIST anf ANGLE
11 % is 360−by−1, indicating a maximum resolution of one degree.
12 % The input must be a one−pixel−thick boundary obtained, for
13 % example, by using function bwboundaries.
14 %
15 % If (X0, Y0) or the default centroid is outside the boundary,
16 % the signature is not defined and an error is issued.
17

18 % Check dimensions of b.
19 [np, nc] = size(b);
20 if (np < nc || nc ~= 2)
21 error('b must be of size np−by−2.');
22 end
23

24 % Some boundary tracing programs, such as boundaries.m, result
25 % in a sequence in which the coordinates of the first and last
26 % points are the same. If this is the case, in b, eliminate the
27 % last point.
28 if isequal(b(1, :), b(np, :))
29 b = b((1:np − 1), :);
30 np = np − 1;
31 end
32

33 % Compute the origin of vector as the centroid, or use the two
34 % values specified. Use the same symbol (xc, yc) in case the
35 % user includes (xc, yc) in the output call.
36 if nargin == 1
37 x0 = sum(b(:, 1))/np; % Coordinates of the centroid.
38 y0 = sum(b(:, 2));
39 end
40

41 % Check to see that (xc, yc) is inside boundary.
42 IN = inpolygon(x0, y0, b(:, 1), b(:, 2));
43 if ~IN
44 error('(x0, y0) or centroid is not inside the boundary.')
45 end
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46

47 % Shift origin of coordinate system to (x0, y0).
48 b(:, 1) = b(:, 1) − x0;
49 b(:, 2) = b(:, 2) − y0;
50

51 % Convert the coordinates to polar. But first have to convert
52 % the given image coordinates, (x, y), to the coordinate system
53 % used by MATLAB for conversion between Cartesian and polar
54 % coordinates. Designate these coordinates by (xcart, ycart).
55 % The two coordinate systems are related as follows:
56 % xcart = y and ycart = −x.
57 xcart = b(:, 2);
58 ycart = −b(:, 1);
59 [theta rho] = cart2pol(xcart, ycart);
60

61 % Convert angles to degrees.
62 theta = theta.*(180/pi);
63

64 % Convert to all nonnegative angles.
65 j = theta == 0; % Store the indices of theta = 0 for use below.
66 theta = theta.*(0.5*abs(1 + sign(theta)))...
67 − 0.5*(−1 + sign(theta)).*(360 + theta);
68 theta(j) = 0; % To preserve the 0 values.
69

70 % Round theta to 1 degree increments.
71 theta = round(theta);
72

73 % Keep theta and rho together for sorting purposes.
74 tr = [theta, rho];
75

76 % Delete duplicate angles. The unique operation also sorts the
77 % input in ascending order.
78 [w, u] = unique(tr(:, 1));
79 tr = tr(u, :); % u identifies the rows kept by unique.
80

81 % If the last angle equals 360 degrees plus the first angle,
82 % delete the last angle.
83 if tr(end, 1) == (tr(1) + 360)
84 tr = tr(1:end − 1, :);
85 end
86

87 % Output the angle values:
88 angle = tr(:, 1);
89

90 % Output the length values.
91 dist = tr(:, 2);
92 end

181



E.6 Detect Vertices / Peaks in Signature - peaks()

E.6 Detect Vertices / Peaks in Signature - peaks()

This function is based on algorithm 6.

1 function [NoP] = peaks(sign, angle)
2 % Finds the peaks in the signature by
3 % comparing sign(i) with sign(i−1) and
4 % sign(i+1). If sign(i−1) < sign(i) < sign(i+1),
5 % a peak is found. The variable sign is the
6 % signature and angle is the point for each
7 % signature.
8

9 % Starts comparing points in the signa−
10 % ture with the second point. Checks sign(1)
11 % in the end.
12 i = 2;
13

14 % When a peak is found the variable peak
15 % increments.
16 peak = 0;
17

18 % A vector that stores each point in the
19 % angle where a peak is found.
20 p = 0;
21

22 % Goes through the signature from the
23 % second point to the end.
24 while(i < length(angle))
25 sign(i);
26 % Detect corner (peak).
27 if((sign(i) > sign(i−1)) &&...
28 (sign(i) > sign(i+1)));
29 if(sign(i) > mean(sign))
30 peak = peak + 1;
31 p(peak) = angle(i);
32 end
33 end
34 % Increment. Check next point in
35 % the signature.
36 i = i + 1;
37 end
38

39 % Checks the first point in the sign−
40 % ture. If an object is turned so that
41 % the first point in the signature starts
42 % in a corner, it will detect all the other

182



E.6 Detect Vertices / Peaks in Signature - peaks()

43 % corners except at the first point. So if
44 % the value of sign(1) is higher than the
45 % value of the first peak, sign(1) is cons−
46 % idered a peak.
47 if(sign(1) > sign(p(1)))
48 peak = peak + 1;
49 end
50

51 % Number of Peaks that is returned
52 % to the main program.
53 NoP = peak;
54

55 % Free up memory space.
56 clearvars peak i p
57 end
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E.7 kNN Classifier - kNN_Classifier

1 function [Cx] = kNN_classifier(Data, C, kn, X)
2 for i = 1:length(Data)
3 delta = X − Data(:,i);
4 R(1,i) = delta'*delta;
5 end
6 [junk idx] = sort(R);
7 gx(1,1) = (sum(C(1,idx(1:kn)) == 1)./...
8 length(find(R <= R(1,idx(kn)))));
9 gx(1,2) = (sum(C(1,idx(1:kn)) == 2)./...

10 length(find(R <= R(1,idx(kn)))));
11 [tmp Cx] = max(gx);
12 end
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E.8 Move the Sorter Arm - arm()

This function is based on an example given in the documentation in [14],
under NXTMotor.

1 function arm(mDown, mUp, deg)
2 % Prepare motor:
3 % Stop prospective motor movement.
4 mUp.Stop('off');
5 % Reset motor position. Position set to 0.
6 mUp.ResetPosition();
7

8 % Find the initial position of the sorter arm
9 % and save this position in pos:

10 % Read data from motor.
11 data = mUp.ReadFromNXT();
12 % Find current position.
13 pos = data.Position;
14

15 % Position the arm across the conveyer belt:
16 % Set TachoLimit to 90 (deg) + pos.
17 mDown.TachoLimit = (deg + pos);
18 % Send settings to NXT and run motor.
19 mDown.SendToNXT();
20 % MATLAB waits until previous command is executed.
21 mDown.WaitFor();
22

23 % Find new position:
24 % Read data from motor.
25 data = mUp.ReadFromNXT();
26 % Find current position.
27 pos = abs(data.Position);
28

29 % Holds the arm out for 7 seconds.
30 pause(7);
31

32 % Position the arm in stationary position:
33 % Set TachoLimit to pos
34 % (equals total last movement of the motor).
35 mUp.TachoLimit = pos;
36 % Send settings to NXT and run motor.
37 mUp.SendToNXT();
38 % MATLAB waits until previous command is executed.
39 mDown.WaitFor();
40 end
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E.9 Declare Global Variables - global_var.m

1 %% Creates a video input object.
2 Vid = videoinput('macvideo',1);
3 triggerconfig(Vid,'manual');
4 set(Vid, 'ReturnedColorSpace', 'rgb');
5 set(Vid, 'ROIPosition', [325 220 705 370]);
6

7 %% Parameters used for Moving Object Detection (MOD).
8 % User−Defined Threshold (used in fdo.m).
9 UDT = 0.18;

10

11 % Adapt rate for the background modeling.
12 alpha = 0.05;
13

14 % Mask with reference mask.
15 Mrm = zeros([370 705]); % 0−matrix.
16 Mrm(66:264,180:200) = 1; % Reference mask.
17

18 %% Parameters used for Object of Interest (ooi.m).
19 nO = 0;
20 seO = strel('diamond',4);
21 seE = strel('diamond',1);
22

23 %% NXT Motor Control Setup.
24 % Motor A. Used to run the conveyor belt.
25 % Properties:
26 % * 'A' − selects motor A.
27 % * 'Power' − integer from −100 to 100 that sets
28 % the power level and direction of
29 % a motor.
30 % * −10 − power level 10.
31 % SmoothStart − lets the motor accelerate smoothly
32 % when it starts.
33

34 mA = NXTMotor('A', 'Power', −10);
35 mA.SmoothStart = true;
36

37 % Motor B. Used to control the sorter arm.
38 % Properties:
39 % % 'ActionAtTachoLimit' − Decides how the motor
40 % will react when it reaches
41 % the TachoLimit.
42 % 'Brake' − Smoothly slowing down the motor when it
43 % reaches the TachoLimit.
44 % TachoLimit − An integer that specifies the angle
45 % in degrees the motor will try to reach.
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46 % Setup for moving the arm up and down
47 % moveUp − moves the arm from working to
48 % stationary position.
49 % moveDown − moves the arm from stationary to
50 % working position.
51

52 mDown = NXTMotor('B', 'Power', −20,...
53 'ActionAtTachoLimit', 'Brake');
54

55 mUp = NXTMotor('B', 'Power', 20,...
56 'ActionAtTachoLimit', 'Brake');
57

58 % The angle of motor B's movement. Used in conjunction
59 % with TachoLimit.
60 deg = 90;
61

62 %% Preparing the Parzen Window Classifier (parzen_classifier).
63 % Data contains 104 samples for class 1 and class 2
64 % (52 for each class).
65 % This data was collected 14.05.2012 while doing
66 % experiments in the system.
67 % The first data set is Data.mat and it contains
68 % 280 samples (140 for each class).
69 % The reduced data set, Data2.mat, contains 272
70 % samples (136 for each class).
71 % Each data set can be found on the CD that
72 % follows the report.
73 % Data3{1} − Class 1.
74 % Data3{2} − Class 2.
75 load Data3.mat
76

77 D = [Data3{1} Data3{2}];
78

79 % Normalize Data.
80 M = mean(D,2);
81 Std = (std(D'))';
82 for i=1:2
83 Data3{i} = (Data3{i}−repmat(M,1,52))./repmat(Std,1,52);
84 end
85

86 data = [Data3{1} Data3{2}];
87

88 % Label vector C.
89 C = [ones([1 length(Data3{1})]) 2*ones([1 length(Data3{2})])];
90

91 % kn−nearest neighbor paramter.
92 kn = 6;
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E.10 Classifiers Used in Experiments

E.10.1 Parzen Window Classifier - parzen_classifier()

1 function [Cx] = parzen_classifier(Data, x, hn, Pw)
2 % Data − Data for class 1 and 2.
3 % x − Feature vector.
4 % hn − Window width.
5 % Pw − A priori probabilities.
6

7 for i=1:2
8 pn = 0;
9 for j=1:140

10 [delta(i, :)] = norm_classifier(Data{i}(:, j)...
11 , hn(i)^2.*eye(4), x);
12 pn = pn + delta(i, :);
13 end
14 gx(i,:) = (Pw(i)*pn)/140;
15 end
16 [tmp, c] = max(gx);
17 Cx = c;
18 end

E.10.2 ML Classifier - norm_classifier()

1 function [p] = norm_classifier(my, Sgm, X)
2 % my − Expectation.
3 % Sgm − Covariance matrix.
4 % X − Feature vector.
5

6 [d, n] = size(X);
7 % d − Dimension of X.
8 % n − The amount of samples in X.
9

10 % Compute pdf−values for X.
11 for i=1:n
12 x = X(:,i);
13 p(1 ,i) = 1/((2*pi)^(d/2)*det(Sgm)^(1/2))...
14 *exp(−1/2*((x−my)'*inv(Sgm)*(x−my)));
15 end
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E.11 Frame Differencing / Background Subtraction
- Alg2()

This function is based on algorithm 2.

1 function [imres] = Alg2(Vid, UDT, Mrm)
2 % Frame Differencing Operation/ Background subtration.
3 % Compares (i)th image with (i?1)th by subtraction, and
4 % returns imres when object is in the camera Field Of
5 % View (FOV).
6 % INPUTS:
7 % Vid − Video object.
8 % UDT − User−Defined Threshold.
9 % Mrm − Matrix containing Reference Mask.

10 % OUTPUT:
11 % imres − image with object in FOV.
12

13 i = 1;
14 DET = 1; % DETecting mode ON.
15

16 while(DET)
17 % Get frame from camera.
18 im1 = getsnapshot(Vid);
19 % Save RGB image.
20 imRGB{i} = im1;
21 % Convert to grayscale.
22 im1 = rgb2gray(im1);
23 % Adjust image contrast.
24 im1 = imadjust(im1);
25 % Save im1 in im{i}.
26 im{i} = im1;
27 if(i <= 10)
28 if(i == 1)
29 % Increment i.
30 i = i + 1;
31 else
32 % Do BS.
33 img = im{i} − im{i−1};
34 % Compute threshold.
35 thr{i−1} = graythresh(img);
36 % Increment i.
37 i = i + 1;
38 end
39 else
40 % Do BS.
41 img = im{i} − im{i−1};
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42 % Compute threshold.
43 thr{i−1} = graythresh(img);
44 % Convert to binary.
45 img = im2bw(img, thr{i−1});
46 % Clear objects on image border.
47 img = imclearborder(img, 8);
48 % Fill holes.
49 img = imfill(img, 'holes');
50 % Compute average threshold.
51 avgthr{i−10} = 0;
52 for j=0:9
53 avgthr{i−10} = avgthr{i−10} + (thr{(i−1)−j}/10);
54 end
55 % Multply img and Mrm.
56 % Find r and c.
57 [r c] = find((img & Mrm));
58 if(~isempty(c) && ~isempty(r) && avgthr{i−10} > UDT)
59 % Return last image.
60 imres = imRGB{i};
61 DET = 0; % DETecting mode OFF.
62 else
63 % Increment i.
64 i = i + 1;
65 end
66 end
67 end
68 % Delete vectors/matrixes from memory.
69 clearvars im1 imRGB im img thr avgthr r c
70 end
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Appendix F

Data Collection from Cross
Validation

F.1 Maximum Likelihood Estimation

2D data (Std, NoP)

i Cov. NOWC NOWC NOWC NOWC ER for ER for
Matrix in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 Gen. 2 16 3 48 25.71 24.29
2 Gen. 2 17 2 45 27.14 22.38
3 Gen. 2 7 17 26 12.86 20.48
4 Gen. 0 20 4 51 28.57 26.19

Mean Error Rate (test sets/training sets): 23.57 23.34
1 Diag. 2 27 8 72 41.43 38.10
2 Diag. 2 27 7 79 41.43 40.95
3 Diag. 5 9 11 43 20.00 21.43
4 Diag. 3 23 5 83 37.14 41.90

Mean Error Rate (test sets/training sets): 35.00 35.60
1 Unit 8 15 33 44 32.86 36.67
2 Unit 11 14 30 45 35.71 35.71
3 Unit 9 13 31 42 31.43 34.76
4 Unit 12 17 29 42 41.43 33.81

Mean Error Rate (test sets/training sets): 35.36 35.24

Table F.1: Unnormalized data for ML estimation (2D).
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Normalized 2D data (Std, NoP)

i Cov. NOWC NOWC NOWC NOWC ER for ER for
Matrix in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 Gen. 1 17 3 54 25.71 27.14
2 Gen. 3 9 16 23 17.14 18.57
3 Gen. 1 13 3 47 20.00 23.81
4 Gen. 1 16 3 52 24.29 26.19

Mean Error Rate (test sets/training sets): 21.79 23.93
1 Diag. 3 27 6 81 42.86 41.43
2 Diag. 2 11 14 33 18.57 22.38
3 Diag. 3 27 6 76 42.86 39.05
4 Diag. 2 24 6 81 37.14 41.43

Mean Error Rate (test sets/training sets): 35.60 36.07
1 Unit 10 17 31 41 38.57 34.29
2 Unit 4 8 14 21 17.14 16.67
3 Unit 9 15 32 43 34.29 35.71
4 Unit 11 11 30 47 31.43 36.67

Mean Error Rate (test sets/training sets): 30.36 30.83

Table F.2: Normalized data for ML estimation (2D).

3D data (Mean, Std, NoP)

i Cov. NOWC NOWC NOWC NOWC ER for ER for
Matrix in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 Gen. 3 7 4 18 14.29 10.48
2 Gen. 2 4 4 20 8.57 11.43
3 Gen. 3 2 11 8 7.14 9.05
4 Gen. 1 4 3 13 7.14 7.62

Mean Error Rate (test sets/training sets): 9.29 9.65
1 Diag. 2 23 5 52 35.71 27.14
2 Diag. 2 14 5 64 22.86 32.86
3 Diag. 5 2 12 10 10.00 10.48
4 Diag. 1 22 6 56 32.86 29.52

Mean Error Rate (test sets/training sets): 25.36 25.00
1 Unit 8 5 14 7 18.57 10.00
2 Unit 4 2 21 7 8.57 13.33
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3 Unit 5 4 12 13 12.86 11.91
4 Unit 5 2 19 9 10.00 13.33

Mean Error Rate (test sets/training sets): 12.50 12.14

Table F.3: Unnormalized data for ML estimation (3D).

Normalized 3D data (Std, NoP)

i Cov. NOWC NOWC NOWC NOWC ER for ER for
Matrix in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 Gen. 0 6 5 19 8.57 11.43
2 Gen. 1 8 2 17 12.86 9.05
3 Gen. 2 4 5 20 8.57 11.90
4 Gen. 8 3 8 8 15.71 7.62

Mean Error Rate (test sets/training sets): 11.43 10.00
1 Diag. 0 17 7 75 24.29 39.05
2 Diag. 2 24 5 61 37.14 31.43
3 Diag. 1 27 6 60 40.00 31.43
4 Diag. 10 3 10 8 18.57 8.57

Mean Error Rate (test sets/training sets): 30.00 27.62
1 Unit 7 10 24 27 24.29 24.29
2 Unit 6 7 29 30 18.57 28.10
3 Unit 9 15 23 31 34.29 25.71
4 Unit 6 3 8 7 12.86 7.14

Mean Error Rate (test sets/training sets): 22.50 21.31

Table F.4: Normalized data for ML estimation (3D).

4D data (Area, Mean, Std, NoP)

i Cov. NOWC NOWC NOWC NOWC ER for ER for
Matrix in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 Gen. 2 4 8 5 8.57 6.19
2 Gen. 4 6 3 24 14.29 12.86
3 Gen. 1 8 4 36 12.86 19.05
4 Gen. 0 13 4 31 18.57 16.67
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Mean Error Rate (test sets/training sets): 13.57 13.69
1 Diag. 5 4 10 8 12.86 8.57
2 Diag. 5 13 4 46 25.71 23.81
3 Diag. 1 6 7 57 24.29 30.48
4 Diag. 0 21 7 60 30.00 31.91

Mean Error Rate (test sets/training sets): 23.22 23.69
1 Unit 0 35 0 103 50.00 49.05
2 Unit 0 35 0 105 50.00 50.00
3 Unit 0 34 0 103 48.57 49.05
4 Unit 0 35 0 102 50.00 48.57

Mean Error Rate (test sets/training sets): 49.64 49.17

Table F.5: Unnormalized data for ML estimation (4D).

Normalized 4D data (Std, NoP)

i Cov. NOWC NOWC NOWC NOWC ER for ER for
Matrix in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 Gen. 2 12 5 29 20.00 16.19
2 Gen. 0 8 4 33 11.43 17.62
3 Gen. 2 8 3 36 14.29 18.57
4 Gen. 4 3 7 8 10.00 7.14

Mean Error Rate (test sets/training sets): 13.93 14.88
1 Diag. 3 16 5 51 27.14 26.67
2 Diag. 1 20 7 55 30.00 29.52
3 Diag. 1 17 6 63 25.71 32.86
4 Diag. 5 3 10 12 11.43 10.48

Mean Error Rate (test sets/training sets): 23.57 24.88
1 Unit 8 9 18 23 24.29 19.52
2 Unit 5 3 23 28 11.43 24.29
3 Unit 7 7 20 24 20.00 20.95
4 Unit 3 4 8 9 10.00 8.10

Mean Error Rate (test sets/training sets): 16.43 18.21

Table F.6: Normalized data for ML estimation (4D).
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F.2 Parzen Window Technique

2D data (Std, NoP)

i WW NOWC NOWC NOWC NOWC ER for ER for
(h1) in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 0.01 3 21 0 0 34.29 0.00
2 0.01 5 18 0 0 32.86 0.00
3 0.01 5 16 0 0 30.00 0.00
4 0.01 2 15 0 0 24.29 0.00

Mean Error Rate (test sets/training sets): 30.36 0.00
1 0.1 3 9 1 1 17.14 0.95
2 0.1 5 3 1 2 11.43 1.43
3 0.1 6 3 1 2 12.86 1.43
4 0.1 3 8 0 1 15.71 0.48

Mean Error Rate (test sets/training sets): 14.29 1.07
1 1 1 5 5 7 8.57 5.71
2 1 4 3 4 11 10.00 7.14
3 1 5 4 6 11 12.86 8.10
4 1 4 8 5 7 17.14 5.71

Mean Error Rate (test sets/training sets): 12.14 6.67
1 5 2 5 9 14 10.00 10.95
2 5 4 8 9 21 17.14 14.29
3 5 5 6 7 19 15.71 12.38
4 5 1 9 9 15 14.29 11.43

Mean Error Rate (test sets/training sets): 14.29 12.26
1 6 2 6 10 17 11.43 12.86
2 6 4 10 10 19 20.00 13.81
3 6 5 6 7 22 15.71 13.81
4 6 2 9 10 20 15.71 14.29

Mean Error Rate (test sets/training sets): 15.71 13.69
1 7 2 7 12 16 12.86 13.33
2 7 4 10 13 21 20.00 16.19
3 7 5 5 9 25 14.29 16.19
4 7 2 10 12 22 17.14 16.19

Mean Error Rate (test sets/training sets): 16.07 15.48
1 8 3 6 14 19 12.86 15.71
2 8 4 11 14 21 21.43 16.67
3 8 7 6 10 26 18.57 17.14
4 8 2 11 13 24 18.57 17.62

Mean Error Rate (test sets/training sets): 17.86 16.79

Table F.7: Unnormalized data (2D) for Parzen window estimation.
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Normalized 2D data (Std, NoP)

i WW NOWC NOWC NOWC NOWC ER for ER for
(h1) in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 0.01 1 24 0 0 35.71 0.00
2 0.01 5 4 0 1 12.86 0.48
3 0.01 6 10 1 2 22.86 1.43
4 0.01 6 4 0 1 14.29 0.48

Mean Error Rate (test sets/training sets): 21.43 0.60
1 0.1 3 8 1 1 15.71 0.95
2 0.1 6 3 4 4 12.86 3.81
3 0.1 6 7 4 5 18.57 4.29
4 0.1 6 2 4 8 11.43 5.71

Mean Error Rate (test sets/training sets): 14.64 3.69
1 1 4 6 7 8 14.29 7.14
2 1 4 4 9 18 11.43 12.86
3 1 2 12 9 17 20.00 12.38
4 1 5 7 9 18 17.14 12.86

Mean Error Rate (test sets/training sets): 15.71 11.31
1 2 1 6 7 12 10.00 9.05
2 2 6 4 15 24 14.29 18.57
3 2 7 15 17 30 31.43 22.38
4 2 9 10 15 25 27.14 19.05

Mean Error Rate (test sets/training sets): 20.71 17.26
1 3 0 5 7 14 7.14 10.00
2 3 10 5 27 27 21.43 25.71
3 3 11 16 23 33 38.57 26.67
4 3 9 8 20 26 24.29 21.90

Mean Error Rate (test sets/training sets): 22.86 21.07
1 4 0 6 7 15 8.57 10.48
2 4 14 5 41 28 27.14 32.86
3 4 12 16 26 36 40.00 29.52
4 4 12 8 34 25 28.57 28.10

Mean Error Rate (test sets/training sets): 26.07 25.24
1 5 0 8 7 16 11.43 10.95
2 5 18 5 48 28 32.86 36.19
3 5 13 16 28 39 41.43 31.90
4 5 17 8 38 25 35.71 30.00

Mean Error Rate (test sets/training sets): 30.36 27.26

Table F.8: Normalized data (2D) for Parzen window estimation.
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3D data (Mean, Std, NoP)

i WW NOWC NOWC NOWC NOWC ER for ER for
(h1) in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 1 3 3 0 0 8.57 0.00
2 1 2 5 0 0 10.00 0.00
3 1 3 2 0 0 7.14 0.00
4 1 3 3 0 0 8.57 0.00

Mean Error Rate (test sets/training sets): 8.57 0.00
1 5 2 3 3 3 7.14 2.86
2 5 2 5 2 3 10.00 2.38
3 5 5 1 3 4 8.57 3.33
4 5 2 2 3 2 5.71 2.38

Mean Error Rate (test sets/training sets): 7.86 2.74
1 10 4 2 7 6 8.57 6.19
2 10 2 6 8 4 11.43 5.71
3 10 4 1 5 8 7.14 6.19
4 10 3 2 8 6 7.14 6.67

Mean Error Rate (test sets/training sets): 8.57 6.19
1 11 4 2 7 5 8.57 5.71
2 11 2 6 9 5 11.43 6.67
3 11 4 1 6 8 7.14 6.67
4 11 3 2 9 6 7.14 7.14

Mean Error Rate (test sets/training sets): 8.57 6.55
1 12 4 2 9 5 8.57 6.67
2 12 2 6 10 5 11.43 7.14
3 12 4 2 8 9 8.57 8.10
4 12 3 2 9 10 7.14 9.05

Mean Error Rate (test sets/training sets): 8.93 7.74
1 13 4 2 9 7 8.57 7.62
2 13 2 7 11 5 12.86 7.62
3 13 6 2 9 11 11.43 9.52
4 13 3 2 9 10 7.14 9.05

Mean Error Rate (test sets/training sets): 10.00 8.45
1 14 5 2 9 7 10.00 7.62
2 14 2 8 13 5 14.29 8.57
3 14 6 2 9 11 11.43 9.52
4 14 3 2 9 10 7.14 9.05

Mean Error Rate (test sets/training sets): 10.71 8.69
1 15 5 2 11 8 10.00 9.05
2 15 3 8 13 5 15.71 8.57
3 15 6 2 10 11 11.43 10.00
4 15 3 2 12 10 7.14 10.48
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Mean Error Rate (test sets/training sets): 11.07 9.52
1 16 5 2 12 9 10.00 10.00
2 16 3 8 14 5 15.71 9.05
3 16 6 2 11 11 11.43 10.48
4 16 3 2 12 10 7.14 10.48

Mean Error Rate (test sets/training sets): 11.07 10.00
1 17 5 2 13 9 10.00 10.48
2 17 4 8 14 5 17.14 9.05
3 17 7 2 12 11 12.86 10.95
4 17 3 2 12 11 7.14 10.95

Mean Error Rate (test sets/training sets): 11.79 10.36
1 18 5 2 13 9 10.00 10.48
2 18 4 8 14 5 17.14 9.05
3 18 7 2 12 11 12.86 10.95
4 18 3 2 12 12 7.14 11.43

Mean Error Rate (test sets/training sets): 11.79 10.48
1 19 5 2 13 9 10.00 10.48
2 19 4 8 15 5 17.14 9.52
3 19 7 2 12 11 12.86 10.95
4 19 3 2 13 12 7.14 11.90

Mean Error Rate (test sets/training sets): 11.79 10.71
1 20 5 2 14 9 10.00 10.95
2 20 4 8 15 5 17.14 9.52
3 20 7 2 12 11 12.86 10.95
4 20 3 2 14 12 7.14 12.38

Mean Error Rate (test sets/training sets): 11.79 10.95
1 21 5 2 14 9 10.00 10.95
2 21 4 8 15 5 17.14 9.52
3 21 7 2 12 11 12.86 10.95
4 21 3 2 14 12 7.14 12.38

Mean Error Rate (test sets/training sets): 11.79 10.95
1 22 5 2 14 9 10.00 10.95
2 22 4 8 15 5 17.14 9.52
3 22 7 2 12 11 12.86 10.95
4 22 3 2 14 12 7.14 12.38

Mean Error Rate (test sets/training sets): 11.79 10.95
1 24 5 2 14 9 10.00 10.95
2 24 4 8 15 6 17.14 10.00
3 24 7 2 12 12 12.86 11.43
4 24 3 2 14 12 7.14 12.38

Mean Error Rate (test sets/training sets): 11.79 11.19
1 26 5 2 14 9 10.00 10.95
2 26 4 8 15 6 17.14 10.00
3 26 7 2 11 12 12.86 10.95
4 26 3 2 14 12 7.14 12.38

Mean Error Rate (test sets/training sets): 11.79 11.07
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Table F.9: Unnormalized data (3D) for Parzen window estimation.

Normalized 3D data (Mean, Std, NoP)

i WW NOWC NOWC NOWC NOWC ER for ER for
(h1) in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 0.1 0 15 0 0 21.43 0.00
2 0.1 4 4 0 0 11.43 0.00
3 0.1 4 2 0 0 8.57 0.00
4 0.1 4 4 0 0 11.43 0.00

Mean Error Rate (test sets/training sets): 13.21 0.00
1 1 1 6 0 1 10.00 0.48
2 1 4 3 1 3 10.00 1.90
3 1 3 0 4 4 4.29 3.81
4 1 4 3 2 2 10.00 1.9

Mean Error Rate (test sets/training sets): 8.57 2.02
1 2 1 5 0 1 8.57 0.48
2 2 5 3 7 5 11.43 5.71
3 2 4 2 9 4 8.57 6.19
4 2 2 3 7 2 7.14 4.29

Mean Error Rate (test sets/training sets): 8.93 4.17
1 3 1 5 2 2 8.57 1.90
2 3 7 3 11 6 14.29 8.10
3 3 3 1 10 5 5.71 7.14
4 3 2 3 11 4 7.14 7.14

Mean Error Rate (test sets/training sets): 8.93 6.07
1 4 1 5 3 2 8.57 2.38
2 4 7 2 14 6 12.86 9.52
3 4 4 1 15 6 7.14 10.00
4 4 4 3 15 5 10.00 9.52

Mean Error Rate (test sets/training sets): 9.64 7.86
1 4.5 1 5 3 2 8.57 2.38
2 4.5 8 2 15 6 14.29 10.00
3 4.5 4 1 17 5 7.14 10.48
4 4.5 5 3 16 4 11.43 9.52

Mean Error Rate (test sets/training sets): 10.36 8.10
1 5 0 5 3 2 7.14 2.38
2 5 10 4 15 7 20.00 10.48
3 5 4 1 18 5 7.14 10.95
4 5 5 3 17 4 11.43 10.00
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Mean Error Rate (test sets/training sets): 11.43 8.45

Table F.10: Normalized data (3D) for Parzen window estimation.

4D data (Area, Mean, Std, NoP)

i WW NOWC NOWC NOWC NOWC ER for ER for
(h1) in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 1 1 29 0 0 42.86 0.00
2 1 0 32 0 0 45.71 0.00
3 1 1 30 0 0 44.29 0.00
4 1 1 29 0 0 42.86 0.00

Mean Error Rate (test sets/training sets): 43.93 0.00
1 10 9 10 0 0 27.14 0.00
2 10 6 11 0 0 24.29 0.00
3 10 7 11 0 0 25.71 0.00
4 10 3 14 0 0 24.29 0.00

Mean Error Rate (test sets/training sets): 25.36 0.00
1 50 9 6 0 0 21.43 0.00
2 50 6 8 2 1 20.00 1.43
3 50 8 5 1 0 18.57 0.48
4 50 3 6 0 2 12.86 0.95

Mean Error Rate (test sets/training sets): 18.21 0.71
1 100 9 6 2 0 21.43 0.95
2 100 6 7 3 3 18.57 2.86
3 100 8 4 2 1 17.14 1.43
4 100 3 5 1 3 11.43 1.90

Mean Error Rate (test sets/training sets): 17.14 1.79
1 200 9 6 4 4 21.43 3.81
2 200 6 6 7 6 17.14 6.19
3 200 7 5 4 11 17.14 7.14
4 200 2 5 7 8 10.00 7.14

Mean Error Rate (test sets/training sets): 16.43 6.07
1 400 7 6 7 10 18.57 8.10
2 400 6 5 12 10 15.71 10.48
3 400 6 4 8 12 14.29 9.52
4 400 1 5 8 14 8.57 10.48

Mean Error Rate (test sets/training sets): 14.29 9.64
1 600 7 6 6 10 18.57 7.62
2 600 7 6 13 9 18.57 10.48
3 600 6 3 11 12 12.86 10.95
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4 600 1 5 11 12 8.57 10.95
Mean Error Rate (test sets/training sets): 14.64 10.00

1 800 7 7 7 12 20.00 9.05
2 800 7 5 13 12 17.14 11.90
3 800 6 3 11 13 12.86 11.43
4 800 1 5 14 12 8.57 12.38

Mean Error Rate (test sets/training sets): 14.64 11.19
1 1000 7 7 7 12 20.00 9.05
2 1000 6 4 13 11 14.29 11.43
3 1000 6 3 10 15 12.86 11.90
4 1000 1 5 15 11 8.57 12.38

Mean Error Rate (test sets/training sets): 13.93 11.19
1 1200 7 7 7 12 20.00 9.05
2 1200 4 4 12 11 11.43 10.95
3 1200 4 3 10 15 10.00 11.90
4 1200 1 5 14 11 8.57 11.90

Mean Error Rate (test sets/training sets): 12.50 10.95
1 1400 7 7 7 12 20.00 9.05
2 1400 3 4 11 14 10.00 11.90
3 1400 4 3 10 15 10.00 11.90
4 1400 0 6 13 14 8.57 12.86

Mean Error Rate (test sets/training sets): 12.14 11.43
1 1600 7 7 7 12 20.00 9.05
2 1600 3 4 11 14 10.00 11.90
3 1600 4 3 10 15 10.00 11.90
4 1600 0 6 13 14 8.57 12.86

Mean Error Rate (test sets/training sets): 12.14 11.43
1 1800 7 7 7 12 20.00 9.05
2 1800 3 4 11 14 10.00 11.90
3 1800 4 3 10 15 10.00 11.90
4 1800 0 6 13 14 8.57 12.86

Mean Error Rate (test sets/training sets): 12.14 11.43
1 2000 7 7 7 12 20.00 9.05
2 2000 3 4 11 14 10.00 11.90
3 2000 4 3 10 15 10.00 11.90
4 2000 0 6 13 15 8.57 13.33

Mean Error Rate (test sets/training sets): 12.14 11.55
1 2200 7 7 7 12 20.00 9.05
2 2200 3 4 11 14 10.00 11.90
3 2200 4 3 10 15 10.00 11.90
4 2200 0 6 13 15 8.57 13.33

Mean Error Rate (test sets/training sets): 12.14 11.55

Table F.11: Unnormalized data (4D) for Parzen window estimation.
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Normalized 4D data (Area, Mean, Std, NoP)

i WW NOWC NOWC NOWC NOWC ER for ER for
(h1) in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 1 4 6 1 2 14.29 1.43
2 1 2 4 0 1 8.57 0.48
3 1 1 4 2 2 7.14 1.90
4 1 4 1 3 4 7.14 3.33

Mean Error Rate (test sets/training sets): 9.29 1.79
1 2 4 4 8 2 11.43 4.76
2 2 2 3 0 2 7.14 0.95
3 2 2 3 7 5 7.14 5.71
4 2 5 2 8 4 10.00 5.71

Mean Error Rate (test sets/training sets): 8.93 4.29
1 3 4 4 10 4 11.43 6.67
2 3 1 3 2 2 5.71 1.90
3 3 2 3 11 4 7.14 7.14
4 3 5 2 10 4 10.00 6.67

Mean Error Rate (test sets/training sets): 8.57 5.60
1 4 6 3 12 4 12.86 7.62
2 4 1 3 2 5 5.71 3.33
3 4 3 2 16 4 7.14 9.52
4 4 6 2 14 4 11.43 8.57

Mean Error Rate (test sets/training sets): 9.29 7.26
1 5 7 2 14 4 12.86 8.57
2 5 1 2 3 6 4.29 4.29
3 5 4 2 18 5 8.57 10.95
4 5 6 1 16 4 10.00 9.52

Mean Error Rate (test sets/training sets): 8.93 8.33
1 5.5 7 2 15 5 12.86 9.52
2 5.5 1 2 4 7 4.29 5.24
3 5.5 4 3 18 4 10.00 10.48
4 5.5 7 1 16 5 11.43 10.00

Mean Error Rate (test sets/training sets): 9.64 8.81
1 6 7 3 15 5 14.29 9.52
2 6 1 2 4 8 4.29 5.71
3 6 4 3 19 4 10.00 10.95
4 6 7 1 16 5 11.43 10.00

Mean Error Rate (test sets/training sets): 10.00 9.05
1 6.5 6 3 16 5 12.86 10.00
2 6.5 1 2 5 8 4.29 6.19
3 6.5 4 3 19 4 10.00 10.95
4 6.5 7 1 16 5 11.43 10.00
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Mean Error Rate (test sets/training sets): 9.64 9.29
1 7 6 3 16 5 12.86 10.00
2 7 1 2 5 8 4.29 6.19
3 7 4 3 19 4 10.00 10.95
4 7 7 1 16 6 11.43 10.48

Mean Error Rate (test sets/training sets): 9.64 9.40
1 7.5 6 3 16 5 12.86 10.00
2 7.5 2 2 6 8 5.71 6.67
3 7.5 4 3 21 3 10.00 11.43
4 7.5 8 1 17 6 12.86 10.95

Mean Error Rate (test sets/training sets): 10.36 9.76
1 8 6 3 16 5 12.86 10.00
2 8 2 2 5 8 5.71 6.19
3 8 4 3 20 3 10.00 10.95
4 8 8 1 17 8 12.86 11.90

Mean Error Rate (test sets/training sets): 10.36 9.76
1 8.5 6 3 16 6 12.86 10.48
2 8.5 2 2 5 8 5.71 6.19
3 8.5 4 3 20 3 10.00 10.95
4 8.5 8 1 16 8 12.86 11.43

Mean Error Rate (test sets/training sets): 10.36 9.76
1 9 6 3 17 6 12.86 10.95
2 9 2 2 5 8 5.71 6.19
3 9 4 3 20 3 10.00 10.95
4 9 8 1 16 8 12.86 11.43

Mean Error Rate (test sets/training sets): 10.36 9.88
1 9.5 7 4 17 8 15.71 11.90
2 9.5 2 2 6 8 5.71 6.67
3 9.5 4 3 19 3 10.00 10.48
4 9.5 8 1 16 10 12.86 12.38

Mean Error Rate (test sets/training sets): 11.07 10.36
1 10 7 4 17 9 15.71 12.38
2 10 2 2 8 8 5.71 7.62
3 10 4 3 19 3 10.00 10.48
4 10 8 1 16 11 12.86 12.86

Mean Error Rate (test sets/training sets): 11.07 10.83

Table F.12: Normalized data (4D) for Parzen window estimation.
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F.3 kn-Nearest-Neighbor Estimation

2D data (Std, NoP)

i kn
NOWC NOWC NOWC NOWC ER for ER for
in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 1 6 5 0 0 15.71 0.00
2 1 5 3 0 0 11.43 0.00
3 1 3 6 0 0 12.86 0.00
4 1 2 6 0 0 11.43 0.00

Mean Error Rate (test sets/training sets): 12.86 0.00
1 2 1 7 0 18 11.43 8.57
2 2 4 3 0 15 10.00 7.14
3 2 2 8 0 14 14.29 6.67
4 2 1 10 0 15 15.71 7.14

Mean Error Rate (test sets/training sets): 12.86 7.38
1 3 2 5 5 9 10.00 6.67
2 3 6 3 5 10 12.86 7.14
3 3 2 5 4 11 10.00 7.14
4 3 3 6 7 9 12.86 7.62

Mean Error Rate (test sets/training sets): 11.43 7.14
1 4 0 8 4 15 11.43 9.05
2 4 5 3 5 11 11.43 7.62
3 4 2 8 3 14 14.29 8.10
4 4 2 12 5 13 20.00 8.57

Mean Error Rate (test sets/training sets): 14.29 8.33
1 6 1 7 5 16 11.43 10.00
2 6 5 3 4 15 11.43 9.05
3 6 1 7 5 14 11.43 9.05
4 6 2 11 4 13 18.57 8.10

Mean Error Rate (test sets/training sets): 12.50 9.05
1 8 1 4 7 15 7.14 10.48
2 8 5 3 5 19 11.43 11.43
3 8 1 7 7 17 11.43 11.43
4 8 2 11 5 13 18.57 8.57

Mean Error Rate (test sets/training sets): 12.14 10.48
1 10 2 6 6 20 11.43 12.38
2 10 5 3 7 19 11.43 12.38
3 10 2 5 5 15 10.00 9.52
4 10 2 11 6 13 18.57 9.05

Mean Error Rate (test sets/training sets): 12.86 10.83
1 12 2 5 8 18 10.00 12.38
2 12 5 3 8 19 11.43 12.86
3 12 3 6 5 20 12.86 11.90
4 12 1 12 7 13 18.57 9.52
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Mean Error Rate (test sets/training sets): 13.21 11.67
1 14 3 3 9 20 8.57 13.81
2 14 4 3 7 19 10.00 12.38
3 14 3 6 5 18 12.86 10.95
4 14 2 13 8 13 21.43 10.00

Mean Error Rate (test sets/training sets): 13.21 11.79
1 16 5 3 10 19 11.43 13.81
2 16 4 4 6 19 11.43 11.90
3 16 3 6 7 21 12.86 13.33
4 16 3 12 9 13 21.43 10.48

Mean Error Rate (test sets/training sets): 14.29 12.38
1 18 5 3 10 19 11.43 13.81
2 18 4 4 6 18 11.43 11.43
3 18 2 7 8 19 12.86 12.86
4 18 2 13 8 12 21.43 9.52

Mean Error Rate (test sets/training sets): 14.29 11.90

Table F.13: Unnormalized data (2D) for kn-Nearest-Neighbor estimation.
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Normalized 2D data (Std, NoP)

i kn
NOWC NOWC NOWC NOWC ER for ER for
in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 1 4 5 0 0 12.86 0.00
2 1 6 4 0 0 14.29 0.00
3 1 7 4 0 0 15.71 0.00
4 1 3 4 0 0 10.00 0.00

Mean Error Rate (test sets/training sets): 13.21 0.00
1 2 2 7 0 15 12.86 7.14
2 2 5 5 0 12 14.29 5.71
3 2 2 5 0 16 10.00 7.62
4 2 2 6 0 14 11.43 6.67

Mean Error Rate (test sets/training sets): 12.14 6.79
1 3 2 5 4 10 10.00 6.67
2 3 8 4 5 6 17.14 5.24
3 3 4 3 8 10 10.00 8.57
4 3 2 3 5 9 7.14 6.67

Mean Error Rate (test sets/training sets): 11.07 6.79
1 4 2 5 3 14 10.00 8.10
2 4 4 4 5 10 11.43 7.14
3 4 1 6 5 16 10.00 10.00
4 4 2 3 4 16 7.14 9.52

Mean Error Rate (test sets/training sets): 9.64 8.69
1 5 3 5 6 12 11.43 8.57
2 5 7 3 6 9 14.29 7.14
3 5 1 5 6 13 8.57 9.04
4 5 3 3 7 12 8.57 9.04

Mean Error Rate (test sets/training sets): 10.71 8.45
1 6 2 7 5 17 12.86 10.48
2 6 6 4 5 11 14.29 7.62
3 6 0 6 6 15 8.57 10.00
4 6 3 4 3 16 10.00 9.05

Mean Error Rate (test sets/training sets): 11.43 9.29
1 7 5 6 7 13 15.71 9.52
2 7 7 3 7 8 14.29 7.14
3 7 1 6 8 13 10.00 10.00
4 7 3 4 7 11 10.00 8.57

Mean Error Rate (test sets/training sets): 12.50 8.81

Table F.14: Normalized data (2D) for kn-Nearest-Neighbor estimation.
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3D data (Mean, Std, NoP)

i kn
NOWC NOWC NOWC NOWC ER for ER for
in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 1 3 1 0 0 5.71 0.00
2 1 2 3 0 0 7.14 0.00
3 1 2 6 0 0 11.43 0.00
4 1 3 5 0 0 11.43 0.00

Mean Error Rate (test sets/training sets): 8.93 0.00
1 2 2 3 0 11 7.14 5.24
2 2 1 3 0 11 5.71 5.24
3 2 1 6 0 7 10.00 3.33
4 2 2 5 0 8 10.00 3.81

Mean Error Rate (test sets/training sets): 8.21 4.40
1 4 4 2 2 7 8.57 4.29
2 4 1 3 2 9 5.71 5.24
3 4 0 6 1 8 8.57 4.29
4 4 2 6 2 7 11.43 4.29

Mean Error Rate (test sets/training sets): 8.57 4.52
1 8 4 2 5 7 8.57 5.71
2 8 2 2 7 11 5.71 8.57
3 8 1 8 6 11 12.86 8.10
4 8 1 5 8 10 8.57 8.57

Mean Error Rate (test sets/training sets): 8.93 7.74
1 9 7 1 7 7 11.43 6.67
2 9 3 2 8 10 7.14 8.57
3 9 1 8 8 10 12.86 8.57
4 9 4 5 9 8 12.86 8.10

Mean Error Rate (test sets/training sets): 11.07 7.98
1 10 5 1 7 9 8.57 7.62
2 10 2 3 6 13 7.14 9.05
3 10 1 8 7 11 12.86 8.57
4 10 2 6 8 9 11.43 8.10

Mean Error Rate (test sets/training sets): 10.00 8.33
1 12 4 1 7 8 7.14 7.14
2 12 3 2 7 11 7.14 8.57
3 12 1 8 8 12 12.86 9.52
4 12 3 6 8 9 12.86 8.10

Mean Error Rate (test sets/training sets): 10.00 8.33
1 14 8 2 7 8 14.29 7.14
2 14 3 2 8 10 7.14 8.57
3 14 2 7 8 11 12.86 9.05
4 14 3 6 8 9 12.86 8.10

Mean Error Rate (test sets/training sets): 11.79 8.21

Table F.15: Unnormalized data (3D) for kn-Nearest-Neighbor estimation.
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Normalized 3D data (Mean, Std, NoP)

i kn
NOWC NOWC NOWC NOWC ER for ER for
in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 1 2 3 0 0 7.14 0.00
2 1 3 4 0 0 10.00 0.00
3 1 4 3 0 0 10.00 0.00
4 1 5 0 0 0 7.14 0.00

Mean Error Rate (test sets/training sets): 8.57 0.00
1 2 0 6 0 7 8.57 3.33
2 2 2 4 0 8 8.57 3.81
3 2 3 5 0 8 11.43 3.81
4 2 2 2 0 8 5.71 3.81

Mean Error Rate (test sets/training sets): 8.57 3.69
1 3 0 5 1 6 7.14 3.33
2 3 3 4 4 6 10.00 4.76
3 3 5 3 7 4 11.43 5.24
4 3 4 1 8 6 7.14 6.67

Mean Error Rate (test sets/training sets): 8.93 5.00
1 4 0 5 1 7 7.14 3.81
2 4 3 4 3 7 10.00 4.76
3 4 5 3 4 8 11.43 5.71
4 4 2 3 4 8 7.14 5.71

Mean Error Rate (test sets/training sets): 8.93 5.00
1 5 1 5 3 6 8.57 4.29
2 5 4 3 5 4 10.00 4.29
3 5 5 3 7 4 11.43 5.24
4 5 3 1 6 5 5.71 5.24

Mean Error Rate (test sets/training sets): 8.93 4.76
1 6 1 5 2 6 8.57 3.81
2 6 3 5 4 7 11.43 5.24
3 6 3 3 5 6 8.57 5.24
4 6 3 3 5 10 8.57 7.14

Mean Error Rate (test sets/training sets): 9.29 5.36
1 7 1 5 2 6 8.57 3.81
2 7 3 2 10 6 7.14 7.62
3 7 6 3 8 6 12.86 6.67
4 7 3 2 8 9 7.14 8.10

Mean Error Rate (test sets/training sets): 8.93 6.55
1 8 1 5 2 6 8.57 3.81
2 8 3 4 9 9 10.00 8.57
3 8 5 3 6 7 11.43 6.19
4 8 2 3 8 10 7.14 8.57
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Mean Error Rate (test sets/training sets): 9.29 6.79
1 9 1 5 2 5 8.57 3.33
2 9 4 2 10 5 8.57 7.14
3 9 6 3 8 6 12.86 6.67
4 9 2 1 9 10 4.29 9.05

Mean Error Rate (test sets/training sets): 8.57 6.55
1 10 1 5 2 6 8.57 3.81
2 10 3 2 10 5 7.14 7.14
3 10 4 3 7 7 10.00 6.67
4 10 2 2 9 10 5.71 9.05

Mean Error Rate (test sets/training sets): 7.86 6.67
1 11 1 5 2 5 8.57 3.33
2 11 3 2 10 5 7.14 7.14
3 11 5 3 8 6 11.43 6.67
4 11 3 1 9 10 5.71 9.05

Mean Error Rate (test sets/training sets): 8.21 6.55
1 12 1 5 2 5 8.57 3.33
2 12 3 2 9 7 7.14 7.62
3 12 4 3 8 8 10.00 7.62
4 12 3 2 8 12 7.14 9.52

Mean Error Rate (test sets/training sets): 8.21 7.02
1 13 1 5 2 5 8.57 3.33
2 13 5 2 10 4 10.00 6.67
3 13 4 3 9 7 10.00 7.62
4 13 3 2 9 10 7.14 9.05

Mean Error Rate (test sets/training sets): 8.93 6.67

Table F.16: Normalized data (3D) for kn-Nearest-Neighbor estimation.

4D data (Area, Mean, Std, NoP)

i kn
NOWC NOWC NOWC NOWC ER for ER for
in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 1 5 5 0 0 14.29 0.00
2 1 7 3 0 0 14.29 0.00
3 1 7 7 0 0 20.00 0.00
4 1 8 6 0 0 20.00 0.00

Mean Error Rate (test sets/training sets): 17.14 0.00
1 2 3 9 0 21 17.14 10.00
2 2 6 5 0 17 15.71 8.10
3 2 2 11 0 18 18.57 8.57
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4 2 3 12 0 19 21.43 9.05
Mean Error Rate (test sets/training sets): 18.21 8.93

1 4 3 5 7 14 11.43 10.00
2 4 4 5 7 13 12.86 9.52
3 4 2 10 6 14 17.14 9.52
4 4 3 5 7 14 11.43 10.00

Mean Error Rate (test sets/training sets): 13.21 9.76
1 8 5 5 11 13 14.29 11.43
2 8 8 2 14 13 14.29 12.86
3 8 3 7 11 12 14.29 10.95
4 8 4 4 10 15 11.43 11.90

Mean Error Rate (test sets/training sets): 13.57 11.79
1 12 3 5 11 14 11.43 11.90
2 12 7 3 14 13 14.29 12.86
3 12 3 7 11 12 14.29 10.95
4 12 4 4 10 15 11.43 11.90

Mean Error Rate (test sets/training sets): 12.86 11.90
1 16 3 5 11 14 11.43 11.90
2 16 4 3 11 14 10.00 11.90
3 16 3 7 11 12 14.29 10.95
4 16 3 5 7 17 11.43 11.43

Mean Error Rate (test sets/training sets): 11.79 11.55
1 20 3 5 10 15 11.43 11.90
2 20 6 3 13 14 12.86 12.86
3 20 2 8 8 14 14.29 10.48
4 20 4 5 9 17 12.86 12.38

Mean Error Rate (test sets/training sets): 12.86 11.90
1 24 3 5 11 15 11.43 12.38
2 24 4 3 12 16 10.00 13.33
3 24 3 7 11 12 14.29 10.95
4 24 4 4 10 16 11.43 12.38

Mean Error Rate (test sets/training sets): 11.79 12.26

Table F.17: Unnormalized data (4D) for kn-Nearest-Neighbor estimation.
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F.3 kn-Nearest-Neighbor Estimation

Normalized 4D data (Area, Mean, Std, NoP)

i kn
NOWC NOWC NOWC NOWC ER for ER for
in D1(i) in D2(i) in TS1(i) in TS2(i) test sets tr. sets

1 1 2 2 0 0 5.71 0.00
2 1 4 4 0 0 11.43 0.00
3 1 2 3 0 0 7.14 0.00
4 1 4 1 0 0 7.14 0.00

Mean Error Rate (test sets/training sets): 7.86 0.00
1 2 2 4 0 11 8.57 5.24
2 2 1 4 0 9 7.14 4.29
3 2 0 4 0 5 5.71 2.38
4 2 4 2 0 11 8.57 5.24

Mean Error Rate (test sets/training sets): 7.50 4.29
1 3 2 2 7 6 5.71 6.19
2 3 2 3 8 4 7.14 5.71
3 3 2 2 2 4 5.71 2.86
4 3 5 0 8 7 7.14 7.14

Mean Error Rate (test sets/training sets): 6.43 5.48
1 4 2 3 4 9 7.14 6.19
2 4 2 4 4 7 8.57 5.24
3 4 2 4 1 8 8.57 4.29
4 4 5 1 4 8 8.57 5.71

Mean Error Rate (test sets/training sets): 8.21 5.36
1 5 2 2 8 8 5.71 7.62
2 5 2 3 9 5 7.14 6.67
3 5 2 4 1 7 8.57 3.81
4 5 7 1 7 8 11.43 7.14

Mean Error Rate (test sets/training sets): 8.21 6.31
1 6 2 2 4 11 5.71 7.14
2 6 2 5 6 7 10.00 6.19
3 6 1 5 1 9 8.57 4.76
4 6 6 1 5 10 10.00 7.14

Mean Error Rate (test sets/training sets): 8.57 6.31
1 7 2 1 9 8 4.29 8.10
2 7 2 5 11 7 10.00 8.57
3 7 1 3 1 8 5.71 4.29
4 7 8 1 9 9 12.86 8.57

Mean Error Rate (test sets/training sets): 8.21 7.38
1 8 2 1 8 10 4.29 8.57
2 8 2 5 11 10 10.00 10.00
3 8 1 3 1 9 5.71 4.76
4 8 6 1 7 9 10.00 7.62

Mean Error Rate (test sets/training sets): 7.50 7.74
1 9 3 1 10 9 5.71 9.05
2 9 2 4 11 8 8.57 9.05
3 9 1 3 4 6 5.71 4.76
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F.3 kn-Nearest-Neighbor Estimation

4 9 8 1 9 8 12.86 8.10
Mean Error Rate (test sets/training sets): 8.21 7.74

1 10 3 2 9 12 7.14 10.00
2 10 2 4 11 9 8.57 9.52
3 10 1 3 2 9 5.71 5.24
4 10 5 1 8 10 8.57 8.57

Mean Error Rate (test sets/training sets): 7.50 8.33

Table F.18: Normalized data (4D) for kn-Nearest-Neighbor estimation.
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