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Abstract

In recent years, the quantity of time series data generated in a wide variety of domains

have grown consistently. Analyzing time-series datasets at a massive scale is one of the

biggest challenges that data scientists are facing.

This thesis focuses on implementation of a tool for analyzing large time-series data.

It describes a way to analyze the data stored by OpenTSDB. OpenTSDB is an open

source distributed and scalable time series database. It has become a challenge for

statisticians and data scientists to analyze such massive data sets with the same level

of comprehensive details as is possible for smaller analyses.

Currently tools available for time-series analysis are time and memory consuming.

Moreover, no single tool exists that specializes on providing an efficient implementa-

tions of analyzing time-series data through MapReduce programming model at mas-

sive scale. For these reason, we have designed an efficient and distributed computing

framework - R2Time. R2Time integrates R open source project for statistical comput-

ing and visualization with the OpenTSDB [1] and RHIPE [2] based on the MapReduce

framework for the distributed processing of large data sets across a cluster. It creates

the programming environment by integrating R and HBase for the data scientists.

This thesis describes the architecture of R2Time framework. The usefulness of this

framework is verified by the performance analysis based on carefully choosen types

of statistical analysis for time-series data. With the increase in the time-series data

size and complexity of statistical functions, we have noticed supralinear nature in the

performance of R2Time framework. The performance of this framework is verified

by the performance analysis based on different configurations setting. Configuration

settings as scan cache and batch size plays vital role with the performances of time-

series data.
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CHAPTER 1

Introduction

Time series occur extensively in real world application domain, as diverse as epidemi-

ology, biostatistics, engineering, and computer science. A time series is a sequence of

data points measured at regular time intervals (e.g. every 1 seconds) [3]. Time series

may be defined as a high-dimensional data instance where dimensionality equals to

the number of observations. Huge time series databases are widely available and as

computing becomes faster and more reliable, analysis tools are receiving increased at-

tention. The high dimensionality time-series data poses many challenges for effective

analysis and visualization. In order to increase measurement accuracy the sampling

period of time-series plays an important role.

The data coming from sensors, power grid, stock exchange, social networking or

cloud monitoring (logging) system is stored and processed in the cloud environment.

The sequential, monotonously increasing nature of time series data has became a big

challenge for data analytics to analyze. There should be an efficient way to process

a tremendous amount of complex information in a short time. There is a need for a

solution that is able to analyze data at different level of details while simultaneously

collecting thousand metrics from various physical or logical sensors. It has become a

challenge to data scientists to analyze such massive data sets with the same level of

comprehensive details as is possible for smaller analyses.

It is time and memory consuming to deal directly with high-dimensional time-series

data. Many techniques have been proposed for representing time series with reduced

dimensionality: Discrete Fourier Transformation (DFT) [4], Singular Value Decomposi-

tion (SVD) [4], Discrete Wavelet Transf.(DWT) [5], Piecewise Aggregate Approxima-

tion (PAA) [6], Symbolic Aggregate approX.(SAX) [7] etc. There is a lack of tools that

can analyze time-series data in an efficient and scalable way. With the development of

MapReduce [8]( and related techniques), it became easier to analyze large amounts of
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CHAPTER 1: INTRODUCTION

data in a distributed environment.

R is a programming language and a software suite used for data analysis, statistical

computing and data visualization that is used by companies like Google and Face-

book. There are more than 4188 packages available for R, which makes R a powerful

for statistical analysis. R and Hadoop can complement each other very well. They are

considered to be natural match in big data analytics and visualization. There are frame-

works like RHadoop and RHIPE(R and Hadoop Integrated Processing Environment)

that integrate with R to analyze data within MapReduce workflows.

OpenTSDB is an open source distributed and scalable time series database used for

storage and indexing of time-series metrics that works on top of HBase [1]. HBase is an

open-source distributed database that runs on Hadoop [9]. OpenTSDB provides basic

statistical functionalities like mean, sum, maximum and minimum. To perform ad-

vanced statistical analysis for high-dimensional time-series data, we need good statis-

tical tool, which is R as suggested by most of statistician and mathematician. There is a

lack of research about connecting R with OpenTSDB (time-series distributed database).

This thesis focuses on the development of a framework (R2Time) that connect R with

OpenTSDB(time-series distributed database) for statistical analysis.

There exist R connectors like rbase and rhbase which can connect with HBase. How-

ever, this connectors provide basic operations like getting and putting data in HBase.

OpenTSDB or time-series database have special key format that is used to store data.

R connectors, like rbase and rhbase cannot be used easily with time-series database

because of the key format.

Being motivated by these observations we have designed a R2Time- framework for

distributed time-series data analysis and visualization. R2Time provides R users to

interact directly with time-series databases and to perform statistical analysis using

MapReduce programming model.

R2Time framework supports efficient computation of typical statistical analysis for

time-series data. It allows users to query large time-series data directly from HBase via

MapReduce programming model. R2Time uses of distributed computing model for

statistical analysis. We verify an efficiency of R2Time by applying statistical analysis of

real-world datasets: trend of data, seasonal variation, systematic pattern and random

noise, cyclical and irregular variation.

3



CHAPTER 1: INTRODUCTION

1.1 Related work

Because of importance and usefulness of time series data, there are large numbers of

applications that deal with time series, based on different approaches. Most of these

approaches are traditional approaches which require huge memory and are time con-

suming.

There are several tools specialized for analysis of time series. R is a statistics soft-

ware that has extensive features for analyzing time series data. In the Open Source

community, there are two popular tools: opentsdbr [10] and StatsD OpenTSDB pub-

lisher backend [11]. Both tools uses OpenTSDB HTTP/JSON API to query data from

OpenTSDB. This API is only useful for small scale analysis due to its non distributed

implementation that creates performance bottlenecks for real world applications. It

requires huge memory to store time-series data at client side. Moreover, it is time con-

suming due to transfering of data through network interface. For visual analysis, both

systems use third party packages in R for displaying high dimensional time series data.

Some of the most common time-series analysis tools are: GRETL (GNU Regression,

Econometrics and Time-series Library) [12], TimeSearcher [13], Calendar-Based Visu-

alisation [14] and Spiral [15] etc., but they are not specialised for real-world time-series

analysis. These tools are not designed to work with distributed programming model.

These tools works with single node, so the tasks are not distributed. If users want to

do statistical analysis on massive amounts of data using these tools, it will take couple

of days.

There are many packages in R [16] available for time-series analysis such as astsa,

tsa3, tseries, tempr etc. [17] but none of them support distributed programming model

to analyze data. These tools download data at client side and then perform statistical

analysis which makes it time and memory consuming. There are a few R packages

like rbase and rhbase available that work on HBase. R packages like rbase [18] and

rhbase [19] provide basic connectivity to HBase. To run MapReduce on rbase data need

to be read from HBase and stored in HDFS which is time and memory consuming.

RHIPE [2] provides possibility to analyze simple time-series data that is stored in

HDFS. But the problem is it can not read data from HBase directly. RHIPE can read

data from HBase with a help of third library rbase, developed by the same author (Dr.

Saptarishi Guha). Still time-series data stored by OpenTSDB can not be read by rbase

because of composite row key concept maintained by time-series data storage [20].

Our time series data analysis differs from related work in two main points. Firstly,

4



CHAPTER 1: INTRODUCTION

it allows users to query time-series data stored in HBase directly using composite key

of OpenTSDB via MapReduce programming model. Secondly, it allows users to per-

form advanced statistical analysis such as trend of data, seasonal variation, systematic

pattern and random noise, cyclical and irregular variation, using MapReduce program-

ming model. This provides an efficient and scalable way to analyse high dimensional

time-series data.

In this thesis, a thorough study has been done on performance analysis of time-

series data at massive scale using R2Time. It presents the strengths and weaknesses

of the approach. Different performance tests were performed. Therefore, we hope

that the insights and experimental results presented in this thesis will be useful for the

future development of time-series analysis at a massive scale. A paper on this thesis is

submitted in the IEEE International Conference on Cloud Computing Technology and

Science (IEEE CloudCom 2013) under Big Data track.

1.2 Organization of the Thesis

The thesis is organized in the following way

Chapter 2 presents basic background theory needed to understand this thesis.

Chapter 3 has a detailed discussion on the approaches needed to build frameworks

to analyze time-series data.

Chapter 4 describes the experiment setup for verification of the result.

Chapter 5 discusses about the results obtained from the R2Time framework. It also

discusses about some performance analysis tests. Detail explanations on each result

can be obtained in this chapter.

Chapter 6 concludes the thesis, also indicating some future enhancements.

5



CHAPTER 2

Background

2.1 Hadoop

Hadoop is an open source programming model that provides both distributed storage

and computational capabilities across cluster of computers using simple programming

model [21][22][8]. Being developed mainly by Yahoo, it is now a Apache project. It is

mostly inspired by Google published paper [23][24] that describes it’s novel distributed

filesystem, the Google File System (GFS), and MapReduce. Hadoop is currently used

by big companies like Yahoo, Facebook, Cloudera and Amazon.

Hadoop is designed to scale up from single servers to thousands of machines, each

offering local computation and storage. Rather than relying on hardware to deliver

high-availability, the library itself is designed to detect and handle failures at the appli-

cation layer.

Hadoop platform generally consist of

• Hadoop common

• MapReduce and

• Hadoop Distributed File System (HDFS)

2.2 Hadoop Distributed File System(HDFS)

HDFS is a distributed, scalable, and portable file system written in Java for the Hadoop

framework. It is a model based on Google File System(GFS) paper [23][24]. A dis-

tributed file system (DFS) is the storage of a computer in a cluster of one unified file

6



CHAPTER 2: BACKGROUND

system. When file is stored on the DFS, it is partitioned into blocks and each block is

replicated across the clusters. It provides a measure of fault-tolerance.

HDFS is designed to store big data in terabytes and stream them in an efficient way.

It is inspired by the Google file system (GFS). Each node in a Hadoop has a single na-

menode and a cluster of datanodes to form the HDFS cluster. A Hadoop cluster will

include master and multiple worker nodes. The master node consists of a JobTracker,

TaskTracker, NameNode and DataNode. Clients use RPC to communicate each other.

HDFS stores large files (ideally 64MB), across the clusters. It mainly separates file’s

metadata and application data. Metadata is stored in master(NameNode) and applica-

tion data is store in workers(DataNode).

Figure 2.1: Overview of the HDFS Architecture [25].

• NameNode:

The NameNode is the master node. The NameNode is responsible for managing

the filesystem namespace tree and map the location of all blocks to the DataN-

odes. When a client wants to read a file located in the system, it first contacts

NameNode for the location of data block comprising the file and then read block

contents from the DataNode closer to the client. Similarly, when the client wants

to write data, it first queries NameNode to nominate a suite of three DataNodes

to host block replicas. The client then writes data to the DataNodes in a pipeline

fashion. The replication number three is by default. It can be changed to any

numbers. For HBase NameNode is also know as Region Server.

7
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• DataNode:

DataNodes are the workers node. They store real application data. They have to

periodically send report the NameNode about the information on which blocks

they are storing the data. So, that NameNode can update meta data.

• Secondary NameNode:

The Secondary NameNode is an assistant to NameNode for monitoring the state

of the cluster’s file system. Its main task is to take snapshots of the HDFS meta-

data from the NameNode memory structures. By doing this, it helps in prevent-

ing file system corruption and reducing loss of data, and thus overcomes failures.

• Job Tracker:

Job tracker accepts jobs from client and submit the jobs in clusters. It also helps

to pipleline and distribute job across the cluster.

• TaskTracker:

It maintains map and reduces task in DataNode.

2.3 Map and Reduce

MapReduce is parallel programming model introduced by Google in 2004 that pro-

cesses very large data on clusters of computers. It has proven to be very attractive for

parallel processing of arbitrary data [26]. It consists of two user-defined functions,

Map and Reduce. The Map function is responsible for processing sub-data sets and

produces intermediate results, and the Reduce function is responsible for reduction of

the intermediate results and generates the final results of processing. MapReduce man-

ages scheduling of the task across clusters, fault-tolerance, splitting the input data and

managing communication between nodes.

1 Map Function: map(k1,v1) => list(k2,v2)

2 Reduce Function: reduce (k2, list (v2)) => list (k3,v3)

3 Map function get input key/value pairs and output is new key/value (k2/v2) pairs. This new key/

value pairs is input to reduce function, reduce function produce new key/value pair as ouput.

Example 2.1: Pseudocode for MapReduce.

MapReduce is similar to SQL statement "Select * from table group by id", where

select * from table is map function and group by id can be similar to reduce function. A

MapReduce program usually takes a set of key/value pairs as input and produce a set

of key/value pairs as output. It splits input file into independent fixed-sized chunks

8



CHAPTER 2: BACKGROUND

Figure 2.2: MapReduce execution overview [27].

called input splits. A set of key/value pairs is read from each chunks of data. Each

chunks of data are processed by the map task in parallel manner. A map function is

user defined function, which reads key/value pairs from input file. A map function

generates another intermediate key/value pairs. This intermediate key/value pairs

(output of map function) is written to a local disk. The values obtained are associated

with the intermediate key and are grouped together by MapReduce and are fed into the

reduce function. The reduce function then merges the values and finally outputs a set

of key/value pairs as shown in figure 2.2. The sample code snapshot for MapReduce

is explained in example 2.1.

1 function map(int key, float values[]) :

2 key: filename

3 values: list of values in file

4 for each word w in document:

5 emit (1, mean(values))

6

7 function reduce(int key, float values[]) :

8 emit (1, mean(values))

Example 2.2: Pseudocode for MapReduce arithmetic mean calculation.

For example, consider calculation of mean value from two file using MapReduce

program. File1 contains list of values as "10,20,30,20,20,20", similarly file2 contains list

9



CHAPTER 2: BACKGROUND

of values as "10,20,30,20,20". Mean is calculated for these values using MapReduce? A

Map function will output <1,mean(values)>, where 1 is key and values is list of value

in map function. Considering two file as two chunk of data, 2 Map task is executed.

On each map task, user calculates mean and store in local disk. Output of maptask is:

<1,mean(10,20,30,20,20,20)> =><1,20>

<1,mean(10,20,30,20,20)> =><1,50>

All these ones/values pairs are then an input to the reducer function. Reducer func-

tion is responsible to calculate final mean of all input values. So final output is as:

<1,mean(20,50)> =><1,35>

Thus, mean calculated using MapReduce is 35. MapReduce user defined function is

shown in example 2.2.

2.4 HBase

HBase is a distributed column-oriented and NoSQL database built on top of HDFS.

HBase is the Hadoop application to use when we requires real-time read/write random-

access to very large datasets[9]. It is modelled after Google’s BigTable [28]. In HBase,

a table is physically divided into many regions, which are in turn served by different

RegionServers. One of the biggest utility is the one that is able to combine real-time

HBase queries with batch MapReduce Hadoop jobs, using HDFS as a shared storage

platform. HBase is extensively used by big companies like Facebook [29], FireFox and

others.

HBase can be efficient to use if we have millions or billions of rows. All rows in

HBase are always sorted lexicographically by their row key. In lexicographical sorting,

each key is compared on a binary level, byte by byte, from left to right. HBase provides

java API for client interaction. Using java API, user can create HTable instance. Creat-

ing HBase table instance is time consuming. Because each instance of HTable involves

scanning the .META. table to check if the table actually exists and is enabled. So, it is

always better to reuse the HTable instance and close the HTable instance after comple-

tion of the task. The .META. and -ROOT- tables are internal system tables. The -ROOT-

table keeps list of all regions in the .META. table whereas the .META. table keeps list of

all regions in the system.

10
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Schema Row Family:Column Version

2D metricID - timestamp varying properties current times-

tamp

3D metricID varying properties timestamps

Table 2.1: Different type of schema to store time-series data in HBase [20].

2.4.1 Schema in HBase

Data stored in HBase is grouped into tables. Conceptually, a table is a collection of rows

and columns. Each row in HBase data has a unique row key and multiple column keys.

The values are associated with column keys. Client can create an arbitrary number of

columns using new column qualifier on the fly. Columns in HBase is the combination

of the column family name and the column qualifier (column key), separated by colon:

column family:column qualifier

Figure 2.3: HBase table schema.

Column family name must be printable characters. The column qualifier can be

composed of arbitrary binary characters. The reason why column family name must

be character is: it is used as directory name by the lower-level storage layer. User can

also have empty column qualifier. That is why it is called a column-family-oriented store.

Data can be organized in different ways in HBase. HBase is more like a multi-

dimensional sorted map:(Row Key, Family:Column, Timestamp) value as shown in figure

2.4. It can be organized as 3D format (Row, family:column, version) which can be denoted

by (X,Y,Z) of the cube in figure 2.5. It can be designed as 2D format (Row, family:column)

which can be represented by (X,Y) axis of rectangle as show in figure 2.5 and table

2.1 [20]. With 3D model for same column qualifier, it can store multiple values. This

values is identified uniquely by timestamp. For one row and column, there are multiple

timestamp.
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Row Key: Key1 {

Column Family T {

Column X:

Timestamp1 Valuel

Timestamp2 Value2

Timestamp3 Value3

Column Y:

Timestamp4 Value4

}

Column Family P {

Column Z:

Timestamp5 Value5

}

}

Figure 2.4: HBase data schema

Figure 2.5: Data organization in HBase.

2.4.2 Version

Versions in HBase specify a number of versions for each value, a user can keep. By de-

fault maximum version value is 3. User can change this number. HBase also provides

java API to change this value. HBase actually stores key-values written into columns.

User can specify many versions of value to be stored. Version is referred to number

of times value can be stored for particular row and column. This row and columns is

distinguish by timestamp.

2.4.3 HBase Region Splitting

HBase achieves load balancing by evenly splitting across the number of regions. Tables

are splitted into chunks of data rows called "regions". A region is a continuous range

within the row key. All rows in the table are sorted between the region’s start key and

end key. Regions are unique and non-overlapping. That means particular row key

12
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belongs to one region. Together with -ROOT-, .META. regions, and a table’s region

provide 3 levels of B-Tree for the purpose of searching row within a table as shown

in figure 3.2. A table contains many regions which are hosted in many region servers.

Using HBase API, user can create split of huge data, but the splitting of data depends

on the number of region servers. For example, if we have 1000 record and 10 region

servers, number of records on each region server is 100.

When a table is first created, HBase allocates only one region for the table. This

causes all the request to go to a single region server, regardless of the number of region

servers. As the data size goes on increasing, splitting is done by default. That is why

it is not good to use HBase with small data. It cannot utilize the whole capacity of the

cluster.

There are 3 type of splitting done:

• Pre-splitting

• Auto splitting

• Forced Splits

2.4.4 Pre-splitting

By default, HBase creates only one region for the table, it is possible that HBase may

not know how to create the split points within the row key space. HBase provides

client API/tools to manage splitting. The process of supplying splits point at the time

of table creation to ensure initial load is evenly distributed throughout the cluster, is

defined as pre-splitting. Pre-splitting is better if we know key distribution before hand.

Pre-splitting also has a risk of creating regions that do not truly distribute the load

evenly because of data skew or because of very large rows. Sometimes, choosing of

splitting point is poor, which can end up with heterogeneous load distribution and

poor cluster performance.

Major issue with pre-splitting is: choosing the split points for the table. There is a

class call RegionSplitter that creates the split points, by using a SplitAlgorithm. For

optimal load distribution, user should think about data model and key distribution.

User can start loading data into the table using pre-splitting ( defining lower multiple

of the number of region servers as number of splits) and later on automate splitting to

handle the rest.
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2.4.5 Auto splitting

It is generally recommended to have auto splitting on. Auto splitting depends on con-

figuration of HBase. We can configure HBase for making decisions of splitting a region.

The default split policy for HBase 0.94 is IncreasingToUpperBoundRegionSplitPol-

icy. Splitting is done based on the number of regions hosted in the same region server.

"This split policy uses the maximum store file size based on

Min (R2*”hbase.hregion.memstore. f lush.size”, ”hbase.hregion.max. f ilesize”),

where R is the number of regions of the same table hosted on the same regionserver."

[30] For example, hbase.hregion.memstore.flush.size is 128 MB and the hbase.hregion.

max.filesize is 10GB. The first region in the region server will be splitted just after the

first flush at 128 MB. As number of regions in the region server increases, it will use the

increasing split sizes: 512MB, 1152MB, 2GB, 3.2GB, 4.6GB, 6.2GB and so on until the

split size reaches almost 10 GB. No further increase on split size takes place.

We can configure split policy in HBASE by configuring hbase.regionserver.region.

split.policy. There are many splitting policies available in HBASE. They are : Con-

stantSizeRegionSplitPolicy, IncreasingToUpperBoundRegionSplitPolicy, and KeyPre-

fixRegionSplitPolicy. We can also implement our own custom split policy too.

2.4.6 Forced splits

HBase also enables clients to force split a table from the client side. Users needs to

supply a split point to do forced split, similar as pre-splitting. But difference between

pre-splitting and forced splitting is: force split is done only after table creation, but

pre-splitting is done when we are creating a table. Forced splitting is done, if the user

found that HBase load distribution is uneven and some regions are getting uneven

loads. User can use force splitting to balance and improve throughput. Sometimes,

automated split is suboptiomal and under such condition, user can disable automated

splits and can use manual split.

2.5 OpenTSDB

OpenTSDB is a distributed and scalable Time Series Database (TSDB), written on top

of HBase. OpenTSDB was written to store, index, and serve metrics, collected from

computer systems at a large scale. OpenTSDB also provides users to easily access mas-

sive data and provide visualization via graphicable representation.[1]. OpenTSDB is
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developed by StumbleUpon. OpenTSDB allows us to collect thousands and thousands

of metrics from thousands of hosts and applications, at a high rate (every 1 seconds).

All the data is stored in HBase, and the simplified web user interface (WUI), enables

users to query various metrics in a real time. OpenTSDB generally create two special

tables in HBase: tsdb and tsdb-uid.

Figure 2.6: OpenTSDB architecture: The three areas of concern are data collection,

data storage, and serving queries.User specify query parameters. TSD con-

struct filter and reuest range scan, HBase scan key range and filter the tags

and return result. tsd visualized data point [31].

OpenTSDB schema promotes the metric ID into the row key, forming the following

structure:

<metric-id><base-timestamp>...

Since, a production system will have a considerable number of metrics and their IDs

will be spread across a range, and all updates occurring across them, we end up with

an access pattern akin to the salted prefix: the reads and writes are spread across the

metric IDs. This approach is ideal for a system that queries primarily by the leading

field of the composite key [31].

OpenTSDB goes further by "bucketing" values into rows using a base timestamp

in the row key and offset timestamps in the column qualifiers, for more efficiency to

form composite row key, so that data can be uniquely stored. OpenTSDB follows 2D

time-series data storage schema as shown in figure 2.5. The tsdb-uid table is kind of

meta-data. In tsdb table is a place where the actual time-series data is stored. When
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trying to import huge amount of data in to HBase, it is better to have HBase table is

pre-split.

OpenTSDB does not hit the disk for every query, it has its own query cache called

Varnish [32]. OpenTSDB also uses HBase caching mechanism (called the Block Cache)

which provides quick access to fetch data point. OpenTSDB provide Java API and

HTTP API (JSON). OpenTSDB is built using Java library and Asynchronous HBase

(an alternative Java library to interact HBase in applications that require a fully asyn-

chronous, non-blocking, thread-safe, high-performance HBase API). OpenTSDB is bet-

ter option to be used for time-series as mention on [33] [34].

2.5.1 OpenTSDB Schema

The row key is composite and combination of: the metric ID, a timestamp, the tags.

Each tag is combination of tag key ID and tag value ID.

<metric-id><base-timestamp><tag-key-id><tag-value-id>.....

Row key is combination of metric-id is 3 byte, base-timestamp is 4 byte, tag key is

3 byte and tag value is 3 byte. The column qualifier is of the value 2 bytes. The first

12 bits are used to store an integer which is a delta in seconds from the timestamp in

the row key, and the remaining 4 bits are flags. In 4 bit flag, the first bit indicates, the

value is an integer value or a floating point value, the remaining 3 bits aren’t really

used at this time at version 1.0 but they are to be used for variable-length encoding in

the future. The value in the cell is 8 bytes.

Figure 2.7: OpenTSDB Schema.

The problem with OpenTSDB is: it provides basic statistical functionality like aver-

age, maximum..etc. Advanced statistical analysis to reduce dimensionality time-series

data is also needed.
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2.6 Time Series

A time series is a collection of observations of well-defined data points obtained through

repeated measurements over time. For example, collecting data from smart meter in

every 15 minutes. Data are collected at regular intervals. [3]

Time series analysis is a method for analyzing time series data in order to extract

meaningful statistics characteristics of the data.

2.7 R Statistical Computing

R is a language and environment for statistical computing and graphics [16]. It is a

open source project which is similar to the S language and environment which was de-

veloped by John Chambers at Bell Laboratories. The current version of R is 3.0.1 and

runs on several operating systems. R provides a wide range of statistical analysis (lin-

ear and nonlinear modelling, classical statistical tests, time-series analysis, clustering,

etc) and graphical techniques.

For extra performance and interfacing to libraries in other languages, R provides an

API for interacting with the R language from C. There is a package called rJava to inter-

act R with Java. There are more than 4188 packages available like linear and nonlinear

modelling, classical statistical tests, time-series analysis, clustering, etc. Nowadays, R

is used by companies like Google and Facebook for data analysis, statistical comput-

ing and data visualization. R consists of several packages for parallel computing and

time-series data analysis.

2.8 RHIPE

RHIPE, R and Hadoop Integrated Processing Environment is developed Dr. Saptarshi

Guha. Rhipe development history begins from year 2009 and still is actively main-

tained by the author. The R and Hadoop Integrated Programming Environment is R

package to compute massive data sets using the HDFS and MapReduce framework.

This is accomplished from within the R environment, using standard R programming

idioms.[35]

Using RHIPE, we just need little knowledge of hadoop map reduce. On R environ-

ment, users can do any type of statistical analysis. RHIPE consists of several functions
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to interact with the HDFS, for e.g. save data sets, read data by MapReduce, delete files.

RHIPE composes and launches MapReduce jobs from R using the command rhwatch.

It monitors the status using rhstatus which returns an R object. RHIPE has three com-

ponents: the R interface, the Java to R bridge and the engine written in C. The R inter-

face has R functions that interact with HDFS.

RHIPE communicates with Hadoop via Java API. The serialization format used by

RHIPE (converting R objects to binary data) uses Googles Protocol Buffers which is

very fast and creates compact representations for R objects. The output of a RHIPE job

is stored in HDFS.

2.8.1 rbase

This R package provides basic connectivity to HBase, using RHIPE. To run MapReduce

on rbase, data need to be read from hbase and store in HDFS. But Rhipe 0.73 provides

feature to send custom input format for MapReduce task.

This project provides the way to interact R with HBase which is helpful for develop-

ment of R2Time framework. To store output of rhwatch()( MapReduce Task), we using

rbase to store in HBase. In future, R2Time will have it’s own method for storage too.

2.8.2 RhipeHbaseMozilla

This is an experimental project for Mozilla’s socorro crash reporting done by Dr. Sap-

tarshi Guha( author of RHIPE), specially designed for telemetry and crash−reports

HBase table. This project is specially designed for mozilla crash reporting, not for time-

series data. It fetches data from HBase and run MapReduce via RHIPE. The problem

with this is, time-series have special composite row key combination. We need to de-

sign algorithm that can generate composite row key. Another problem with this is we

need to specify column family to get data from HBase. In case of OpenTSDB column

qualifier is unknown, it is generated automatically using bit operation.

This project provides the way to interact RHIPE with custom input format, which is

useful for the development of R2Time.
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Design and Methodology

To interpret, analyze and visualize large time-series data, first it is necessary to under-

stand how data is stored in HBase. Time-series data can be stored in different ways.

HBase provides multi-dimensional storage as shown in the figure 2.5. Time-series data

is stored with unique row key. Unique row key can be achieved by designing compos-

ite row key. Composite row key is similar to RDMS primary key. Composite row key

consists of timestamp to uniquely distinguish each row. In this thesis, we have devel-

oped a framework, that helps to analyze time-series data. There already exists an open

source framework RHIPE, which helps to do statistical analysis in R. But RHIPE works

with HDFS, that is why it is needed to develop R2Time. R2Time has been developed,

which acts as a bridge between RHIPE and OpenTSDB as shown in figure 3.1.

Figure 3.1: R2Time acts as a bridge between OpenTSDB and RHIPE.

Before, we discuss the design of OpenTSDB-RHIPE bridge, we have outlined OpenTSDB

and RHIPE task.
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3.1 Data structure in OpenTSDB

OpenTSDB is a distributed, scalable Time Series Database (TSDB) which is written on

top of HBase [1]. OpenTSDB maintains two special tables in HBase, that is tsdb and

tsdb-uid. OpenTSDB facilitates to collect many thousand and thousand of metrics from

thousands of hosts and applications, at a high rate (every 1 seconds).

The TSDB table is the heart of the time-series database, that stores measurement of

time series points. Tsdb-uid is a look-up table for metrics and tags. Tags mean anything

we can use further for identify a measurement recorded.

3.1.1 Row key design in OpenTSDB

The sequentially, monotonically increasing nature of time-series data causes data to be

written in same region. This causes hotspotting [9]. To avoid this issue, it is better to

design composite row key as a row key that represents the event time.

OpenTSDB promotes the metric ID into the row key as shown in the figure below.

<metric-id><base-timestamp><tags>....

Metric UID base-timestamp Tag Key Tag Value ....

3 Bytes 4 Bytes 3 Bytes 3 Bytes ....

Table 3.1: OpenTSDB row key format [1].

OpenTSDB row key design consists of minimum 13 bytes with one tag. If there are

many tags, it goes on appending at the end of the row key. Table tsdb-uid is look-up

table for metric id, tag key and tag value. To design row key, it is needed to use tsdb-

uid to get value for metrics and tags. Timestamps in the row key are rounded down to

a 60 minute boundary, that means, for every 60 minutes, it creates new row key. The

column qualifier is of 2 bytes. The first 12 bits are used to store an integer value which

is delta (difference in time interval) in seconds from the timestamp in the rowkey, and

the remaining 4 bits are flags. For example, the data point is at time 3456123232 but the

timestamp in the row key is 3456123000, so the delta is 232. And out of the remaining

4 bits of flag, the first bit indicates whether the value is an integer or a floating point

number, the remaining 3 bits are not used for version 1.0 of OpenTSDB, but they are

used on the version 2.0 for variable-length encoding. Both an integer and floating point

value can be encoded in variable-length. The value in the cell is the value of data point,

which is of 8 bytes [1].
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1 function constructRowKey(start_data, end_date, metric) {

2 Const.metricsize = 3 bytes

3 /* it is configurable, there exist configuration file in R2Time. */

4 Const.timestamp = 4 bytes

5 /* it is configurable, there exist configuration file in R2Time. */

6 byte[] startRow = new byte[Const.metricsize + Const.timestamp]

7 byte[] endRow = new byte[Const.metricsize + Const.timestamp]

8 byte[] metricID = tsdb.metrics.getId(metric)

9 /*get metric value from tsdb-uid HBase table, using OpenTSDB java API. */

10 long starttimestamp = start_data.getTime() / 1000;

11 long endtimestamp = end_date.getTime() / 1000;

12 /* calculate timestamp from given date, return timestamp is in millisecond.*/

13 setInt(startRow, getScanStartTime(starttimestamp), metricsize)

14 setInt(endRow, getScanEndTime(endtimestamp), metricsize)

15 /* copy starttimestam/endtimestamp to 7 byte array, starting from 3 byte */

16 System.arraycopy(metricID, 0, startRow, 0, Const.metricsize);

17 /* copy metric ID byte to startRow byte array from index 0 to 3. */

18 System.arraycopy(metricID, 0, endRow, 0, Const.metricsize);

19 /* copy metric ID byte to endRow byte array from index 0 to 3. */

20 return startRow and endRow

21 }

Listing 1: Construct start rowkey and end rowkey from user input.

1 /*OpenTSDB maintains 60 minutes boundary. After 60 minutes it will generate

2 new row. MAX_TIMESPAN is 3600 seconds. Because it is the boundary limit

3 of the row. If the starttime=12:41:00. If we initialize the scanner to

4 look only 10 minutes before, we will start scanning at time = 12:31,

5 which will give us row starts at 12:40. But we need to start scanning

6 at least 1 row before, so we actually we are looking back by twice

7 MAX_TIMESPAN. */

8 function getScanStartTime(starttimestamp){

9 long ts = starttimestamp - Const.MAX_TIMESPAN * 2;

10 }

11 /* Suppose endtime =12:40:00, we will stop scanning when we get to 12:50,

12 but one again we need to look ahead one more row, so to avoid this problem

13 we add 1 second extra to endtime */

14 function getScanEndTime(endtimestamp) {

15 if(endtimestamp==null)

16 setEndTime(System.currentTimeMillis() / 1000);

17 return endtimestamp + Const.MAX_TIMESPAN + 1;

18 }

Listing 2: Generate start and end timestamp [1].

The above pseudocode listing 1 is used to create 7 byte (<metricID+timestamp>)
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start and end row key. It takes input from the user: start-date, end-date and metric.

OpenTSDB have fixed format of composite row key as show in figure 3.1. R2Time

provides configuration file, where all these constants are defined.

1 /*To find the rows with the relevant tags, we use a server-side filter

2 that matches a regular expression on the row key.

3 This function create 6 byte tag filter. */

4 /* Generate a regexp for tags. Say we have 2 tags: { 0 0 1 0 0 2 }

5 and { 002 004 }, the regexp will be:

6 "^.{7}(?:.{6})*\\Q\000\000\001\000\000\002\\E(?:.{6})*

7 \\Q\000\000\002\000\000\004\\E(?:.{6})*" */

8

9 function createfilter(){

10 Initialized tagsize = Const.tagvalue_size+ Const.tagkey_size

11 /* tag value size + tag key size i.e 3+3 for OpenTSDB */

12 StringBuilder filter = new StringBuilder(15+((13 + tagsize)

13 * (tags_width + (tags.size() * 3))));

14 /* allocate number of bit to create filter */

15

16 filter.append("(?s)" + "^.{").append(7).append("}");

17 /* start by skping metric ID and timestamp i.e 7 bytes */

18

19 /* build regular expression for each tags, bytes operation to

20 get bytes string for tags. */

21 if (isTagNext(tag)) {

22 for ( byte by : tag) {

23 filter.append((char) (by & 0xFF));

24 if (by == ’E’ && backslash) { .

25 filter.append("\\\\E\\Q");

26 } else {

27 backslash = by == ’\\’;

28 }

29 }

30 filter.append("\\E");

31 if(taghasnext)?tags = tags.next(): null;

32 }

33 /* Skip any number of tags before the end. */

34 filter.append("(?:.{").append(tagsize).append("})$*$");

35 return filter;

36 }

Listing 3: Creating Tags filter.

MetricUID can be found by looking at HBase tsdb-uid table, which creates first

3 byte of row key. The next 4 bytes represents base timestamp, as mentioned by
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OpenTSDB format in the figure 3.1. From users input start-date, timestamp of that

date is calculated as shown in listing 1. OpenTSDB maintains 60 minutes boundary.

After 60 minutes, new row are generated. For creating start row key from start times-

tamp, we need to scan one step previous record. For example, if start-date is 12:40:00

and if we initialize the scanner to look only 10 minutes before, it will start scanning

from 12:31. This will give row-start at 12:40. To initialize scanner, we need at least 1

row before, that is why we are looking back by twice MAXTIMESTAMP. MAXTIMES-

TAMP in OpenTSDB is 3600 seconds. Similarly for end row key, scanner is needed to

set ahead one more row as shown in the listing 2. If user end date is 12:20:00, we need

to stop when the scanner reaches 12:30:00. So, the scanner needs to set ahead of one

row [36].

As mentioned earlier, we have already created 7 bytes start row key and end row

key. From the OpenTSDB composite row key format shown in figure 3.1, still row key

consist of tags. If there are multiple tags present, row key keeps on increasing by 6

bytes for each tags as shown below:

<tag-key1-UID><tag-value1-UID><tag-key2-UID><tag-value2-UID>............

HBase provide regular expression filter API for row key as shown in listing 3. At first

we need to skip first 7 bytes of row key, because first 7 bytes consist of metric and times-

tamp. We need to create 6 bytes of regular expression for each tag. All the characters be-

tween the \Q and the \E are interpreted as literal characters. Example \Q*\bikas+*\E

matches the literal text *\bikas+*. The \E may be omitted at the end of the regex, so

\Q*\bikas+* is the same as \Q*\bikas+*\E [37]. For example we have 2 tags :0 0 1

0 0 2 and 0 0 2 0 0 4, the regexp will be as \Q\000\000\001\000\ 000\002\E and

\Q\000\000\002\000 \000\004\E [36].

3.2 Finding Row in HBase

HBase maintains two special tables, -ROOT- and .META., which help to find the regions

where various tables are hosted. -ROOT- does not split into more than one regions, but

.META. behaves like all other tables, that can be split into many regions as required, to

avoid hot-spotting.

When client wants to access a particular row, it goes to the -ROOT- table and asks

for the region that is responsible for that particular row. -ROOT- points it to the region

of the .META. table. The .META. table keeps a list of all regions in the system. The

.META. table holds keys and values. Key consists of name of table, region start key and

region id. Values consist of HRegionInfo, server:port of the RegionServer containing
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this region and start-time of the RegionServer process containing this region.The empty

key is used to denote table-start and table-end [9].

1 /* set scan object to get required block by data*/

2 ArrayList<Scan> scans = new ArrayList<Scan>();

3 Scan scan = new Scan();

4 scan.setCaching(caching);

5 scan.setCacheBlocks(cacheBlocks);

6 scan.setBatch(batch);

7 if(rhipe.hbase.start.key)

8 scan.setStopRow(decodeBase64(rhipe.hbase.rowlim.start));

9 /* set start rowkey to scan object */

10 if(rhipe.hbase.end.key)

11 scan.setStopRow(decodeBase64(rhipe.hbase.rowlim.end));

12 /* set end rowkey to scan object */

13 RowFilter rowFilterRegex = new RowFilter(

14 CompareFilter.CompareOp.EQUAL,new RegexStringComparator(

15 Bytes.toString(decodeBase64(filter))));

16 scan.setFilter(rowFilterRegex);

17 /* using regular expression filter to filter tags */

18 scans.add(scan);

Listing 4: Filter required data block in HBase by help of scan object.

A region with an empty start key is the first region. If region has both an empty start

and an empty end key, it is only the region. Basically .META. contains start and end

rowkey, which helps to find whether a particular row lies between the range or not. If

it lies within the range, then we are at right RegionServer. If particular row does not

lie on the range, then it looks at another RegionServer. RegionServer gives table name

and we can get particular row, check figure 3.2.

From figure 3.2, we need to find start rowkey ’00005’ and end rowkey ’00012’ from

tsdb HBase table. Zookeeper knows the location of the RegionServer holding -ROOT-

table. It is a RegionServer RS4. which .META. region can tell us about row ’00005’ and

row ’00012’. Now RegionServer RS1 looks into -ROOT- table and finds out .META.

table M1 at RegionServer RS2 and .META. table M3 at RegionServer RS3 is pointing to

the particular rows. Now client interacts with RegionServer RS2 and RegionServer RS3

and looks into M1 and M3 table. RegionServer RS2 contains two regions, M1 table gives

information which table contains row ’00005’. Similarly, row ’00012’ can be found.
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Pseudocode listing 4 sets start and end pointers on the scanner object, that is passed

through R2Time and RHIPE. Listing 4 shows how to use regular expression on the row

key to filter tags.

3.3 Create a custom input format for RHIPE MapReduce Task

Input format in the MapReduce is responsible for two things. First, the actual splitting

of the input data and returning a RecordReader instance that defines the classes of the

Keys and the Value objects and also provides a next() method that is used to iterate

over each input records.

According to Dean and Ghemawat (2008), a MapReduce [27] is a program that takes

a set of input key-value pairs and returns a set of output key-value pairs. Key and value

can play different roles depending upon the problem. A MapReduce job usually splits

the input data-set into independent chunks which are processed by the map tasks, in a

completely parallel manner and returns a pairs <key, set<values>>.

RHIPE provides API to define Java class for input format. OpenTSDB stores data in

HBase. We need a tool that can read data from HBase and send to RHIPE MapReduce

task.

RHHBaseReader is a java class that reads data from HBase, define its own Recor-

dReader. Similar work has been done for mozilla crash reporting [38], which is still

under investigtion. HBase provides serveral inputformat API, which is useful to de-

sign own input format as mention in [22][9]. Just reading data from HBase will not

solve the task. Formatting the data in Key and Value pairs is also needed.

MetricUID<1371121000><001><001>

MetricUID<1371121000><001><002>

MetricUID<1371121000><001><003>

............................

MetricUID<1371792000><001><001>

MetricUID<1371792000><001><002>

MetricUID<1371792000><001><003>

Table 3.2: Data store in HBase is in sequential order.

In RHHBaseReader, R2Time send start row key, end row key, filter for tags and

cache information from R environment. At first, we need to create a scan[ ] object

which returns whole data block of tsdb table. On that scan[ ] object, we can set start
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row key and end row key to get range of required data block. Data stored in HBase is

in sequential order. For example, if there are multiple tags, say 001, 002, 003 data store

in HBase is shown in table 3.2. When we set pointer by the help of start and end row

key, we get block of required data within that range. If we want to fetch data of all the

tags, then we require block of data. But if we want to fetch data of tag value = 001, then

we need to create tag filter. HBase provides several API for filtering of data. HBase

filters have a powerful feature that can greatly enhance effectiveness in working with

data stored in tables. All the filters are actually applied at the server side, also called

predicate pushdown [9]. Some filter class provided by HBase are as follows:

• RowFilter

• FamilyFilter

• QualifierFilter

• ValueFilter

• DependentColumnFilter

• SingleColumnValueFilter

• SingleColumnValueExcludeFilter

• PrefixFilter

• PageFilter

• KeyOnlyFilter

• FirstKeyOnlyFilter

• FuzzyRowFilter

• InclusiveStopFilter

• TimestampsFilter

• ColumnCountGetFilter

• ColumnPaginationFilter

• ColumnPrefixFilter

• CompareFilter

• RandomRowFilter

• WhileMatchFilter . . .

For our implementation, we have chosen combination of RowFilter and Compare-

Filter along with RegexStringComparator for CompareFilter. CompareFilter is a class

based on FilterBase class, and add one more method named compare() operation. Each

comparator has a constructor that takes the comparison value. Some of these construc-

tors take a byte[], a byte array, to do the binary comparison. RowFilter is a comparison

filter that comes bundled and allows us to filter data based on row keys[9]. We need

to filter on row keys, that is why we need to use RowFilter. RegexStringComparator
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1 RegexStringComparator RegEx = new RegexStringComparator

2 (tags filter);

3 /* Create Regular expression filter */

4 RowFilter rowFilter = new RowFilter(CompareOp.EQUAL, RegEx);

5 /* compare if regular expression filter value is equal with

6 row filter value */

7 scan.setFilter(rowFilter)

Listing 5: RowFilter with CompareFilter using Regular Expression to filter required

tags.

compares the value with regular expression provided by the comparator. Regular ex-

pression for tags filter is explained above in the listing 3. Here is an example 5 of how

to we can use RowFilter:

1 /* Fuzzy filter is als know as fast forwarding filter.

2 It can skip lot of data, kind of fast algorithm */

3 FuzzyRowFilter rowFilter = new FuzzyRowFilter(

4 Arrays.asList(new Pair<byte[], byte[]>(

5 Bytes.toBytesBinary("\\x00\\x00\\x00\\x00\\x00\\

6 x00\\x00<tagkey><tagvalue>"),

7 new byte[] {1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0})));

8 scan.setFilter(rowFilter)

Listing 6: FuzzyRowFilter to filter required tags.

Filtering API is a powerful tool for finding exact data and allows us to optimize

disk seeks. FuzzyRowFilter is another powerful filter that can be used with our solu-

tion to filter tags from row keys. It performs fast-forwaring based on the fuzzy row

key mask provided by users. It is available for HBase version above 0.94. Fuzzy-

RowFilter takes as parameters row key and a mask info. In an example above, in

case we want to filter tags from row key, the fuzzy row key we are looking for is

"???????<tagkey><tagvalue>". From listing 6 , first 7 bytes are variable (i.e we don’t

care about it) and last 6 bytes are fixed. We need to supply <tagkey> and <tagvalue>

in our filter. The efficiency of using FuzzyRowFilter is determined by how many

records filter can actually skip and how many jumps it has to do to skip them. If we

need to do full table scan, then this filter is not suitable, however, regular expression

filter is the same. Detail about FuzzyRowFilter can be found on [39]
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Figure 3.3: RowFilter example, which is done at server side. The main benefit of server

side filtering reduce effort to loading unnecessary data, which increase per-

formance to fetch data [9].

3.3.1 Scanner Caching

The HBase API Scan class takes a setting called setCaching(int caching) which tells

the scanner about how many rows to fetch at a time from the server. The default is 1,

which is optimal for single gets, but is decidedly suboptimal for big scans like working

with large dataset. There is a property called hbase.client.

scanner.caching in the hbase-site.xml file that forms the configuration for the MapRe-

duce job. User can define caching size through R2Time. Default caching size is 1000 in

R2Time framework. We have done some performance testing on section 5 with differ-

ent cache size and their differences are visible in the results.

The HBase API Scan class takes another setting called setCacheBlocks( boolean

block) which allows to load the cache with a HBase block. By default setCacheBlock

is set true in the hbase-site.xml. User can define setCacheBlocks true/false through

R2Time framework. If the scan is using the block cache true then it loads the cache

with a block, reads the block, and then loads the next one; ignoring the first one for the

rest of the scan [40] [9].
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3.3.2 Batching

The HBase API Scan class takes a setting called setBatch(int batch) which tells the

scanner maximum number of values to return for each call to next(). Batch works

with the column cell of HBase.

For example, if we have 23 columns and we set batch as 5, we will get 5 results

instances with 5,5,5,5,3 [41]

RPCs =
(Row ∗ ColsperRow)

Min(ColsperRow, BatchSize)
∗
(

1
ScanCache

)

For example, Consider a case HBase table with 15 rows and 25 columns per row.

Consider batch size is 25 and scanner caching is 5.

From the above equation,

RPCs = (15*25)/Min(25,25)/5

= 375/25/5

= 3

From this example, we can concluded that it is requires 3 or 4 request for open/close

scanner.

3.3.3 InputSplit

An input-split is a chunk of the input data that is processed by a single map. Each

map processes a single split. Each split is divided into records, and each map processes

each record (key-value pairs) in turn. An input-split does not contain input data. It

is just a reference to the data. The storage locations are used by the MapReduce job

to place map tasks as close to the split’s data as possible, and the size is used to or-

der the splits so that the largest get processed first, in an attempt to minimize the job

runtime (Greedy approach) [22]. An InputFormat is responsible for creating the input

splits and dividing them into records. Generally, an InputFormat consists of two parts:

RecordReader and getSplits.

JobClient calls getSplits() method to fetch splits to run map tasks. Having num-

ber of splits, client sends to jobtracker information about which schedule map tasks to

process splits on the tasktrackers. On a tasktracker, map task passes the split to the

RecordReader to get the <key-value> pairs of that split. The map task uses getRecor-

dReader() method to generate record key-value pairs, which passes to map function.
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1 public class RHHBaseReader extends InputFormat<RHRaw, RHResult>

2 {

3 public RecordReader<RHRaw, RHResult>

4 createRecordReader(InputSplit split, TaskAttemptContext context)

5 /* Create RecordReader is to read key/value pairs from HBase table */

6 ..............

7 public List<InputSplit> getSplits(JobContext context)

8 /* Get the number of split to run map task, split is located in RegionServer*/

9 }

Listing 7: InputFormat with two method RecordReader and getSplits [22].

1 /* value sent to MapReduce task. value send is combination of

2 column qualifier and cell value. Each row in HBase contain many cell.*/

3 for(Map.Entry<byte[] , NavigableMap<byte[],byte[]> > entry: map.entrySet()){

4 String family = new String(entry.getKey());

5 for(Map.Entry<byte[], byte[]> columns : entry.getValue().entrySet()){

6 String column = new String(columns.getKey());

7 names.add( family +":"+column);

8 /* add column qualifier to R object */

9 REXP.Builder thevals = REXP.newBuilder();

10 /* Create R object */

11 thevals.setRawValue(columns.getValue());

12 /* add cell value to R object */

13 }

14 }

15 /*Final output is send as an array. */

Listing 8: Combination of column qualifier and value.

By default, in OpenTSDB, auto splitting is on to avoid hot-spotting [9]. Auto splitting

is highly recommended for better performance in distributed system. Table are splitted

around different region-servers as shown in figure 3.2. Method getSplits() checks

whether the calculated start row key and end row key lie in which RegionServer and

how many splits are needed for jobtracker to schedule task. If required, it performs

some logical splitting.

RecordReader’s nextKeyValue() method is called repeatedly to populate the key

and value objects for the map task. When the reader reaches the end of the stream,

the nextKeyValue() method returns false, and the map task completes. The nextKey-

Value() method is boolean method which returns true/false. We have custom created

RecordReader in R2Time, which fetches key as row key and value combination of col-

umn qualifier and value. In R2Time framework, value is of type RHResult, which is

combination of column qualifier and value as mentioned in listing 8. Column family
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is converted into string format and each value of cell is stored in byte format, which

is sent to R environment via REXP Class [16]. REXP is R class that encapsulates and

caches R objects as returned from Java. REXP class [16] is added to RHIPE library file.

3.4 Sending HBase data to RHIPE MapReduce task

RHIPE version 0.73 provides an API to read custom input format. In an older version

of RHIPE, we need to specify input file which is store in HDFS. In RHIPE, we can

define custom input format along with key and value as shown in the listing 9. As

mentioned earlier RHHBaseReader is a Java class of R2Time for an input format, which

set start/end row key and filter to filter tags. RHBytesWritable is a Java class of RHIPE

package, which defines raw format. Key format is row key which is the combination of

metric ID, base timestamp and tags that is stored in raw byte format. Raw byte format

can be defined by RHBytesWritable Java class in the RHIPE package. Input format

for value class is RHResult. As mention in listing 8, value is a combination of column

qualifier and the data point which is store in the raw byte format. We need to define

zookeeper quorum as mentioned in section 3.1, HBase -ROOT- information is maintain

by zookeeper.

1 /* HBase has two extra table .META. and -ROOT-, -ROOT- location is

2 know to zookeeper, and then goes to .META. and final to actual

3 data. That’s why we need to set zookeeper quorum in RHIPE */

4 mapred$zookeeper.znode.parent <- zooinfo$"zookeeper.znode.parent"

5 mapred$hbase.zookeeper.quorum <- zooinfo$"hbase.zookeeper.quorum"

6 mapred$rhipe_inputformat_class <- "RHHBaseReader"

7 /* Java class to define custom <key,value> pairs from HBase*/

8 mapred$rhipe_inputformat_keyclass <- "org.godhuli.rhipe.RHBytesWritable"

9 /* Java class to define key format, which is raw byte */

10 mapred$rhipe_inputformat_valueclass <- "$RHResult"

11 /* Java class to define value format. This is bit tricky

12 value in HBase is send as <list(column qualifier,values)> */

13 return mapred

Listing 9: Defining inputformat in RHIPE.

At R environment any type of statistical calculation like mean, standard deviation,

regression etc can be perform.
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3.5 Storing output

The final stage is the OutputFormat class and its job is to store the output data in var-

ious locations. There are specific implementations that sends output to HDFS or to

HBase tables in case of the TableOutputFormat class. Writing to HBase table from

MapReduce as a data sink is similar as reading data from a HBase table in terms of

implementation. It is the final class that handles key/value pairs and writes them to a

HBase table or a file.

1 mapred$hbase.mapred.outputtable <- table

2 /* table name of output to be stored */

3 mapred$rhipe_outputformat_class <- "RHTableOutputFormat"

4 /* HBase table format java class, user can define custom format*/

5 mapred$rhipe_outputformat_keyclass <- "org.godhuli.rhipe.RHBytesWritable"

6 /* key is raw byte, which can be define by java class */

7 mapred$rhipe_outputformat_valueclass <- "org.godhuli.rhipe.RHBytesWritable"

8 /* value to be store in HBase table is also raw byte */

Listing 10: Storing output in HBase in RHIPE.

In RHIPE, by default, we can store output in a file. To store output into a HBase

table, we need to define output format, output format key and value class as men-

tioned in the listing 10. We need to define table name, where data are required to

be stored. RHTableOutputFormat is a Java class available in RHIPE package that con-

verts Map/Reduce output and writes it to an HBase table. RHTableOutputFormat uses

TableOutputFormat HBase API. RHTableOutputFormat class has TableRecordWriter

which writes key/value pairs as raw byte defined by RHBytesWritable [42].

3.6 Calculating data size in HBase

HBase stores the data in KeyValue format. From the figure 3.4, shows the details in-

cluding the data types and the size required by each field:

Figure 3.4: Key Value Format of HBase [43]

The difficult part is to calculate size of variable part. OpenTSDB has variable size
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row key. Column Family, Column Qualifier and Value are almost known in advance.

Value is of 8 bytes, Column Qualifier is of 2 bytes and Column Family is of 2 bytes.

Row key size is 13 byte if it has just one tag.

So to calculate the record size:

Key value consist of two part fixed part and variable part.

Fixed part needed by KeyValue format

= Key Length + Value Length + Row Length + CF Length + Key Value + Timestamp

= ( 4 + 4 + 2 + 1 + 1 + 8) = 20 Bytes

Variable part needed by KeyValue format

= Row + Column Family + Column Qualifier + Value

= 13+2+2+8 = 25 Bytes

Total bytes required = Fixed part + Variable part

Using above expression, we can calculate the record size:

column 1 = 20 + 25 = 45 Bytes.

Open TSDB consist of many column, if tcollector send data in every 15 second

then, we will have 240 columns in each row for 60 minute boundary as mention by

OpenTSDB [1]. Each row size is calculated as:

Row 1 = 240 * 45 = 10800 Bytes

To store 1 million records, the space required is 10GB.

= 10800 * 1000

= 10 GB

HBase provide API for calculating keyvalue length. Listing 11 shows the uses of

HBase API to calculate file size in HBase.

This method is not an efficient method. If record size is massive, it takes large

amount of time to calculate. The better solution to calculate size is to read metadata

from HFile [44] in HBase.
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1 int kvlen = 0;

2 int size = 0;

3 for(Result r:ss){

4 kvlen = 0;

5 for(KeyValue kv : r.raw()){

6 kvlen = kvlen+kv.getLength();

7 /* uses getLength API to calculate keyvalue length in HBase */

8 }

9 size = size + col;

10 /* keep on summing up the size for each row */

11 }

12 return size in byte

Listing 11: Caculation of file size in HBase.

3.7 R2Time

R2Time mainly consist of two components: the R interface, the Java to R bridge. The

R interface consists of several functions to interact with the HBase. The Java program

uses HBase API to fetch and put data in HBase. The R interface also has several func-

tions to connect HBase and submit computations across the cluster and monitor the

status of computations on the R enivornment.

R2Time communicates with HBase via Java code. HBase provides a lot of Java API,

which makes easier to interact HBase with other applications. Using Java API, we

can fetch data from hbase and launch jobs across the cluster. RHIPE provide users

functionality to write their own custom map and reduce function in the R enivronment.

Steps involved in visualizing data across the cluster using R2Time framework is as

shown in figure 3.5.

• Step 1: User sets range of date, metrics and tags to visualize data. By the help of

R2Time r2t.rhwatch() function. Users can supply start date, end date, and the

name of metric which is needed to evaluate. Users need to supply tag keys and

tag values.

• Step 2: Using OpenTSDB API and HBase Java API, R2Time calculate start/end

rowkey and filter to filter data, based on tag keys and tag values. R2Time receive

input from step 1. Using function createFilter() inside R2Time, It create reg-

ular expression for tag filter. Similarly, using function constructRowKey R2Time

calculate start/end row key. If users want to see intermediate value of these func-

tion, R2Time provide another function for R users to print start/end row key and
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filters: i.e r2t.getRowkeyFilter.

• Step 3: Using Rhipe and R2Time, we can define HBase as a source for MapRe-

duce tasks. getSplit() is an API, that will read splitted data across different region

servers. Internally, R2Time set start and end pointer, and use tags filter to get re-

quired block of data. Time-series data stored by OpenTSDB is distributed across

the cluster. Time-series data is splitted in small block of data and stored in evenly

distributed manner.

• Step 4: RHHBaseReader class has a RecordReader method, that returns <key,value>

pairs. R2Time sends RowKey as key, and combination of column qualifier and

it’s value as a value (<Rowkey,list(column quailifier, value>). R2Time also sup-

port another type of input format where key is row key and value is list of value

(<rowkey,list(value)>). R2Time provides flexible option for R users to choose

any of these two input format. Depending on the tasks of data analysis, users can

user any input formats.

• Step 5: MapReduce task is run with a help of RHIPE package. rhwatch() is used

to send job across the clusters. RHIPE provides API to invoke input format and

output format. R2Time define RHHBaseReader Java class to RHIPE. When users

submit task via R2Time, rhwatch() function of RHIPE is called. This function

trigger Hadoop MapReduce job.

• Step 6: On the R enivornment, users can define its own custom map and reduce

function. Users can perform any type of statistical analysis.

1 library(r2time)

2 r2t.init()

3 /**Load R2Time library and all jars file*/

4

5 r2t.job( start date, end date, metric,

6 tagKeys, tagValues,

7 table, caching, cacheBlocks,batch,

8 jars, zooinfo, output, jobname="MapReduce job")

9 /* Invoke other sub functions rhwatch for RHIPE and r2t.watch,

10 and function to read data from HBase via R2Time */

Listing 12: Pseudocode: Example of sending job to MapReduce via R2Time.

The final stage is the OutputFormat class and its job is to store the output data.

There are specific implementations that sends output to HDFS or to HBase tables in

R2Time we have defined the TableOutputFormat class. The output data can be stored

in HDFS, in the similar way as RHIPE.
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Listing 12 shows how tasks can be defined in R2Time. Users need to send start/end

date, metric, tags, table, cache information, zookeeper information and output storage.

When r2t.job is called from R, it invoke RHIPE to read data from HBase via R2Time.

Then it follow from step 1 to step 6 as mention earlier.
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Results and Analysis

Analysts, engineers, and scientists want to investigate how their information changes

over time in order to uncovering interesting and unknown spatial and temporal rela-

tionships, to detect patterns of change, major data trends, and outliers (i. e., anomalies)

in their data [45]. The goal of this thesis is to allows user to perform advance statistical

analysis on the time-series distributed data. The goal has been achieved by building

R2Time framework, which act as a bridge between OpenTSDB and RHIPE.

Various type of statistical analysis for time series distributed data can be performed

by the help of R2Time and RHIPE. There are four main goals for time series analysis

for performing those statistical analysis:

• Trend of data on particular time interval.

• Seasonal variation pattern in time.

• Systematic pattern and random noise.

• Cyclical and Irregular variation.

4.1 Experiment setup

All implementations and experiments were done on Hadoop cluster containing 15

nodes. Each node has a specification of AMD Opteron(tm) 4180 six-core 2.6GHz pro-

cessor, 16 GB of ECC DDR-2 RAM, 3x3TB secondary hard-disk. Each machines have

network card with specification of HP ProCurve 2650 at the network bandwidth of 100

BaseTx-FD. In addition to that, the cluster contains 3 racks including backup and UPS.

The racks are connected through a 1Gbps Realtek Semiconductor Co., Ltd. RTL8111/8168B

PCI Express Gigabit Ethernet link and a Gigabit Ethernet switch is used to interconnect
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all the nodes. All nodes are loaded with Linux CentOS Operating system. All the

experiments were conducted by using hadoop-0.20 release.

Out of these 15-nodes, one was configured to serve as NameNode, and the rest were

used as DataNodes. The Namenode(Master) is responsible for coordinating the tasks

and the datanodes are the ones that actually perform the work.

Hadoop Parameter Value

Hadoop Version 0.20.2-cdh3u6

Replication 3

HDFS Block size 128 MB

io.file.buffer.size 128 MB

io.sort.factor 100

io.sort.mb 100

mapred.map.tasks 100

mapred.tasktracker.map.tasks.maximum 6

mapred.reduce.tasks 22

mapred.tasktracker.reduce.tasks.maximum 3

mapred.child.java.opts Xmx1024m

mapred.child.ulimit 4194304 bytes

dfs.block.size 134217728

dfs.replicaton 3

HBase Version 0.90.6-cdh3u6

Load average 121.4

Zookeeper Quorum haisen24.ux.uis.no

Zookeeper Port 2181

Table 4.1: Cloudera configuration.

Hadoop-0.20 Cloudera CH3 was installed in the cluster. Some configuration of

hadoop were overridden. In Hadoop, in order to override parameters with new values,

we must make changes in one of three files under the configuration folder. These files

are core-site.xml, mapred-site.xml and hdfs-site.xml.

HBase-0.90 Apache was installed in the cluster. Haisen23.ux.uis.no is master and

rest as datanode. Like Hadoop configuration, we make some changes with HBase con-

figuration. HBase configuration can be overridden by making changes to files (hbase-

site.xml) under configuration folder. Cloudera provide web interface to manage this

configuration.
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Zookeeper was installed in one of datanode (haisen24). When reading data from

HBase, we need to pass zookeeper quorum via R2Time framework.

4.2 Data Format

For this experiment, OpenTSDB is an input data source for time-series data (see ta-

ble 4.2). OpenTSDB used HBase for its data storage. OpenTSDB creates two table in

HBase, tsdb and tsdb-uid table. Table tsdb-uid is lookup table for metrics and tags

value. The tsdb table is the heart of the time-series database. This table stores time

series of measurements and metadata.

. T:0 T:10 T:20 T:30 .. timestamp

row1 14.44 15.44 17.24 34.34 ... 1368187868217

row2 13.65 12.44 15.04 24.44 ... 1368187868317

row3 12.22 14.44 15.40 14.34 ... 1368187868417

... ... ... .... ... ... ...

Table 4.2: OpenTSDB: ’tsdb’ table data format, Number of column T: depends upon

the time mention on the tcollector.

4.3 Performance based on different statistical functions

Different statistical function and there performances were tested with R2Time frame-

work. R2Time act as a bridge between RHIPE and OpenTSDB so, the performance

analysis is similar as RHIPE.

The figure 4.1 shows the time taken by different statistical functions with respect

to different file size using R2Time framework. The light green line in above figure 4.1

is a rowcounter, that counts number of rows present in tsdb HBase table. With simple

statistical function row counter job took 88 second to complete on 20 GB of data and 55

second with 2 GB of data size. The graph for green line is almost steady. The red line

in figure is used for the calculation of total number of data point present in tsdb table.

This job took 310 second to complete on 20 GB data size. If we see in term of statistical

analysis, both functions are using count, but still counting data point is taking almost

3 times that of row counter.

The figure 4.1 shows gradual increment in the computation time with the increment

in file size. R2Time is working with MapReduce model, that is why task are distributed
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Figure 4.1: Performance based on different statistical functions

between different nodes. Even with the increment in the file size, there was slight

change in performance because the task were equally distributed between different

nodes. Number of map and reduce was increased with different file size.

As mentioned in the listing 13, row counter is calculated directly by calculating

length of map key because number of row is equal to the number of input record inside

map function. Similarly listing 14, can explain why calculating total number of data

point is taking 3 times more than that of row counter. In this example we are using an

extra loop because at first we need to calculate data point present in each row, and then

sum up to get total number of data point in tsdb table. This extra loop lapply is more

time consuming compared to listing 13.

1 ### Map function to calculate number of Rows.

2 map <- expression({

3 rowcounter <- length(map.keys)

4 ### count number of rows.

5 rhcollect(1, rowcounter)

6 })

Listing 13: R psuedocode for row counter.
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From the figure 4.1, it can be seen that other statistical functions like mean, max and

min took almost 810 seconds for 20 GB data size.

1 ### Map function to calculate total number of data point.

2 map1 <- expression({

3 data <- lapply(seq_along(map.keys),function(i){

4 v <- length(unlist(map.values[[i]]))

5 ### count number of data point in each row.

6 })

7 datapoint <- sum(as.numeric(data))

8 ### add all the data point present in each row.

9 rhcollect(1, datapoint)

10 })

Listing 14: R psuedocode for counting data point.

As shown in listing 15, it is using two loops (lapply), which makes it more expen-

sive, compared to the above two functions (count). Line no. 8 is the most expensive

operation in this example which took 810 seconds. Function r2t.toFloat is used to

convert all serialized raw bytes to Float/Int numbers. There are billion of rows, and

each row contains many data point, approximately 240 or more. Function r2t.toFloat

is called billions of time. In terms of statistical analysis, functions like mean, max and

min need just one operation. From the 4.1, it can be seen that these statistical functions

took almost same time. The red and black line (under red line) had overlapped each

other.

Similarly, other statistical functions like regression and correlation, took a bit more

time compared to mean operation because regression and correlation need to do some

matrix multiplication and matrix transpose. We can use R2Time to do any type of

statistical operations.

Performance of R2Time framework was analyzed with different file size. The per-

formance was same as that of RHIPE. Only the difference is RHIPE work with HDFS,

while R2Time work with HBase. Figure 4.1, shows time taken to run Hadoop MapRe-

duce task with different file size on different type of statistical functions. As the size

of file increases, the graph gets almost steady. Time-series data is stored in column-

oriented form, we need to use loop to performance any analysis on this data. With

increase in size of data, there is also small increase in time for computation because it

needs to compute each column. From the figure 4.1, it was clear that with increases in

data size, the graph have supralinear performance.
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1 ### Map function to calculate maximum data point.

2 map1 <- expression({

3 library(r2time)

4 r2t.init()

5 val <- lapply(seq_along(map.keys),function(i){

6 v <- map.values[[i]]

7 m.1 <- lapply(seq_along(v), function(i) {

8 v <- as.numeric(r2t.toFloat(unlist(v[[i]])))

9 ### Convert raw bytes to float number

10 } )

11 m.4 <- max(unlist(m.1))

12 ### get max value

13 })

14 max <- max(unlist(val))

15 rhcollect(1, max)

16 })

Listing 15: R psuedocode for maximum data point.

4.4 Performance based on InputFormat(Key, Value)
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Figure 4.2: Performance based on input formats.
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1 #In this map function we are using three nested loop

2 # which is very expensive.

3 map1 <- expression({

4 # for each row key, there is list of column and cell value

5 val <- lapply(seq_along(map.keys),function(i){

6 v <- map.values[[i]]

7 # Each value consist of combination of column qualifer and value

8 m.1 <- lapply(seq_along(v), function(j) {

9 v.1<-v[[j]]

10 m.1 <- lapply(seq_along(v.1), function(i) {

11 v <- as.numeric(r2t.toFloat(v.1[[i]]))

12 }

13 } )

14 m.4 <- max(unlist(m.1))

15 })

16 max <- max(unlist(val))

17 rhcollect(1, max)

18 })

Listing 16: R psuedocode for input format <rowkey,list(column qualifier, value)> .

1 # In this map function we can see two nested loop

2 map1 <- expression({

3 val <- lapply(seq_along(map.keys),function(i){

4 v <- map.values[[i]]

5 m.1 <- lapply(seq_along(v), function(i) {

6 v <- as.numeric(r2t.toFloat(unlist(v[[i]])))

7 } )

8 m.4 <- max(unlist(m.1))

9 })

10 max <- max(unlist(val))

11 rhcollect(1, max)

12 })

Listing 17: R psuedocode for input format <rowkey,list(value)> .

RHHBaseReader is a Java class that reads data from HBase, defines its own Recor-

dReader. HBase provides several input format API, which is useful to design own

input format as mentioned in [22][9]. To perform MapReduce task, R2Time has de-
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fined its own custom input formats with row key as a key and value as a combination

of column qualifier and cell value (<rowkey,list(column qualifier, value)>. There is

another version of input format available in R2Time. In this input format we send row

key as key and value as list of cell value (<rowkey,list(value)>).

Input Format 1: <rowkey,list(column qualifier, value)>

Input Format 2: <rowkey,list(value)>

In the input format 1, it requires to use an extra loop to calculate data point for

particular column qualifier. But input format 2, it does not need to use this loop

because we don’t care about column qualifier. We send <key,list(value)> pairs, for

MapReduce task as we do for normal MapReduce operation. Only the difference is

that it requires multiple values for one key. From the figure 4.2, it is quite clear that

<rowkey,list(value)> format is much more faster than that of <rowkey,list(column

qualifier, value)>. As the size increases, the performance of input format 1 degrades.

Listing 16 shows that input format 1 uses three nested loops which is very expensive.

It is expensive because for example, if it needs to compute billions of data point then

these nested loops goes billion times.

R2Time provides flexible option for users to select any of the input formats. De-

pending on the type tasks, or data analysis, users can select required input format. The

performance of input format 1 was degraded exponentially with the increases in file

size. Because it required extra overload for the framework to read and process extra 2

bytes of data for every billions of data point.

4.5 Performance based on scan cache

We have been attempting to improve performance of HBase map-reduce using various

configuration setting for scan cache and batch. HBase table ’tsdb’ is used, which has 41

million rows. Each row of tsdb table have hundreds of columns. It has 25 GB of data

on HDFS, distributed on 15 different nodes/RegionServers.
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Figure 4.3: Performance based on scan cache

Scan cache determines how many rows were sent from a region server to a client at

the same time. The setBatch parameter will give us better control over the network

bandwidth. By tuning these settings, we have managed to go from processing 7,000 to

25,000 records per second. Scan cache control transfer of rows over the network at once,

and keep in memory for fast retrieval on the RegionServer [9]. Just increasing scan

cache to maximum will not solve the problem, because sometimes parallel scanning

gives us almost no improvement over serial scanning. If we are maxing out network,

parallel scanning will make worse. From the figure 4.3, three different curves denote

batch size used in this performance analysis, green line is for batch size 1, red line is

for batch size 100 and blue line is for batch size 1000. This graph is a plot between scan

cache vs time, x-axis denote different size of scan cache used during this experiment

and y-axis denote the time taken to complete the task.

Green curve in the figure 4.3 denotes batch size 1 when scan cache size is 1, the time

taken to complete task is very high i.e 3700 second. Slowly increasing the size of scan

cache make the curve tend to be a straight line in certain range. Further, on increasing

scan cache size, increases the time taken to complete the task because sometime parallel
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scanning gives us almost no improvement over serial scanning. Similar behaviour can

be noticed with other two curve (red and blue). As increasing the size of scan cache,

there is a drastic change in performance. The scan caching avoids the rpc calls for each

invocation from the map task to the region-server. From the figure 4.3, when scan cache

size is increased from 1000 to 10000 and batch size is from 100 to 1000, a straight line

was observed. In this data range, the time taken to compute MapReduce task was less

compared to other data range. Approximately column present in the ’tsdb’ table is 240,

so, further increase of batch size from 100 to 1000 had definetly result in more efficient

performance.

If we further increase scan cache size from 10000 to 100000, the performance goes

on degraded because it had reached to the maximum client memory to hold rows in

buffer. To reduce number of parallel scans we need to make each scanner (object of

scan) read more rows by increasing size of scan cache. The perfect combination of

scan cache and batch size will result in better performance for reading data in HBase.

R2Time allows user to have custom setting for scan cache and batch size. The users can

place these parameter of their own will. It is necessary for the users to carefully select

these parameter, otherwise it may result in worst scenario.

Mathematically, RPC calls need for innovation from the map task to the region-

server is given by:

RPCs =
(Row ∗ ColsperRow)

Min(ColsperRow, BatchSize)
∗
(

1
ScanCache

)
Figure 4.4: Mathematical equation for calculating RPCs call.

From the above equation, users can calculate RPC call needed from given data. For

example, consider a case where total number of rows is 40000, each row have approxi-

mately 240 column. So, total data point is 9.6 million.

RPCs = (40000∗240)
Min(240,100) ∗

(
1

10000

)
RPCs = 10

So, 10 RPC call is needed. Similarly, if we use batch size = 240, then we can achieve best

result:

RPCs = (40000∗240)
Min(240,240) ∗

(
1

10000

)
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RPCs = 4

Using batch size = 240 and scan cache size = 10000 give us the best result.

From this analysis we have concluded that, it is always better to have same size

of batch as number of column. When the batch size is not specified but scan cache

is specified, the result of the call will contain complete rows, because each row will

contain one result instance because by default batch size is assume to be 1. Even users

can configure this setting through configuration file in HBase or for Cloudera users,

they can change values through web interface.
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Conclusions and Discussion

In this thesis, an R connector (R2Time) between OpenTSDB and RHIPE was imple-

mented and various statistical analyses were performed on time-series data.

The approach to implement a tool for the statistical analysis of time-series data was

driven by practical reasons. It is unfeasible to analyse large time-series datasets. So,

some sort of distributed computation model is required to reach a satisfiable perfor-

mance.

OpenTSDB works with large time-series data, but it does not provide advanced sta-

tistical functionality to analyze these data. Data scientists and statisticians to analyze

data extensively use R. RHIPE was already moving towards reading and analyzing

larger sets of data in HDFS. RHIPE allows R users to analyze large sets of data in a sim-

ilar manner as done by Java with Hadoop. HBase has the advantage of being closely

tied to Hadoop (HDFS), which means that there were already tools available for writ-

ing HBase MapReduce jobs in Hadoop. There are number of experimental projects

under going on to analyse time-series data. A number of different systems that fit the

requirements were tested but none of them proved to be efficient. RhipeHBaseMozilla

is an experimental project used for Mozilla crash reporting which provides the way to

connect HBase to RHIPE. The approach for developing R2Time is quite simple. HBase

provides a Java API. There are many different client frameworks like asynchbase writ-

ten to fetch data from HBase. R2Time was developed with the help of Java (to invoke

HBase API) and R.

In this thesis, we presented a framework R2Time that can read time-series data from

HBase and perform MapReduce tasks via R. R2Time allows users to write user defined

functions for map and reduce to perform any statistical analysis. The output of MapRe-

duce can be stored in HDFS or HBase. The performance analysis with different sizes of
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data read from HBase and performing some statistical analysis, gives us a clear view

that the task is scalable.

We evaluated the performance of HBase MapReduce through R with representa-

tive combinations of a different statistical functionality. The results shows that with

increases in the file size, the curve had supralinear nature as shown in figure 4.1. It

also shows that, there is a slight increment in time with the complexity of statistical

analysis. The results show that by carefully tuning each scan cache size and batch size,

the performance of MapReduce task can approach that of parallel database systems

for certain analytical tasks. R2Time provides two different type of input formats for

processing MapReduce tasks. Depending upon the tasks needed to analyse time-series

data, users can choose input format. With the input format 1 (<rowkey,list(column

qualifier, value)>), the performance is degraded with the increase in file size. The time

taken to complete MapReduce tasks increases exponentially with the increase in file

size compared to input format 2 as shown in figure 4.2. R2Time framework enables us

to reduce the processing time for one of the larger time-series datasets.

We hope that the insights and experimental results presented in this thesis would

be useful for the future development of time-series analysis at a massive scale.

5.1 Future Work

We are using rbase to store output data from MapReduce to HBase table. R2Time

framework functions can be elaborated to have this feature in the future. We need

to define one new function, which will put data into the HBase table. This Put opera-

tion is similar to the HBase Get operation. The Get operation was already implemented

in R2Time to read data from HBase.

The next important step for improvement of R2Time framework is to develop meth-

ods to read the file size of HBase table by the help of HFile [44] metadata. For the ex-

perimental purpose, we have used some temporary solution to know exact file size.

With large data sets, this method is time consuming. This method calculates keyvalue

length of each column and keeps on adding it, to get the overall file size. Looking at

HBase architecture, calculating file size from HFile is the best optimal solution.

Few default statistical functions like max, count, min, mean, linear regression etc.

were already implemented. In future, we can implement more complex statistical func-

tion by default, but still the user can do advanced statistical analysis with the help of

R programming. For advanced statistical analysis, the users need to have some basic
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concept of R.

R2Time sends value as a combination of column qualifier and value. In the map

function, we need to use three loop: first loop for each row, second loop for column

qualifier and third loop for value associated with that column qualifier. If we send the

value instead of combination of column qualifier and value, the performance is much

better. In the future, we can send column qualifier and value as a 2 dimensional array,

instead of sending in a one dimensional array. Sometimes it is necessary to know the

delta value to know timestamp of the data point. In the future, OpenTSDB is planning

to use variable length encoding, whose information is present in one of a bit in column

qualifier.
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Appendix A

A.1 Installation Prerequisites

For installating R2Time, it require some prerequisites environment is needed:

• A working Hadoop cluster

• HBase installed in the cluster

• R installed as a shared library

• Google protocol buffers

• RHIPE

• OpenTSDB

• set environment variables, HADOOP-HOME and HBASE-HOME

A.1.1 Installing R2Time

This R CMD INSTALL will install r2time in the cluster.

R CMD INSTALL r2time1.0.tar.gz

A.1.2 Uninstalling R2Time

This R CMD REMOVE will remove r2time package.

R CMD REMOVE r2time

53



APPENDIX A: APPENDIX A

A.1.3 Functions in R2Time

Function in R2Time is related to HBase java api functions. The detail of each function

is discuss below:

Function related to OpenTSDB

r2t.init()

This function initialize, all the jars file needed to run R2Time. Jar file like Hadoop

core, HBase, OpenTSDB, RHIPE and R2Time. It basically add all this jar file to rJava

classpath.

r2t.getBaseTimestamp(rowkey)

Get base timestamp from rowkey, which is 4 byte from the design in OpenTSDB.

r2t.getRowkeyFilter(startdate,enddate,meticid,tagkeys,tagvalues)

This function create composite row key, which matches with the design of OpenTSDB

row key. This function return 7 byte start/end row key and regular expression for tag

filter.

r2t.hbaseinput(table, colspec=NULL, rows = NULL,caching = 1000, batch = 100,

cacheBlocks=FALSE, jars="" ,zooinfo, filter = "", fulltable=0)

This function define all the java classes for RHIPE MapReduce task. It define R2Time

input format as well output format. Input format is define by java class RHHbaseReader.java

and Output format is define by RHIPE java class (RHTableOutputFormat). This func-

tion takes input parameter, table name, start/end row key, zookeeper information, tag

filter, full table scan. This function is a connector function for RHIPE with R2Time.

r2t.rhwatch(table, rows=row,caching = 1400L, cacheBlocks = FALSE,

autoReduceDetect = FALSE , batch=100 jars="" ,zooinfo, filter = "", fulltable=0,

output="", jobname="MapReduce job", mapred="")

This function is derived from RHIPE rhwatch function. This function is responsible

to submit job to MapReduce. This function read data from HBase via r2t.hbaseinput()
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function and submit this input to RHIPE rhwatch().

r2t.getMetrics()

This function help to get the name of all the metrics present in the ’tsdb’ table.

r2t.getTagKeys()

This function help to get the name of all the tag keys present in the ’tsdb-uid’ table.

r2t.getTagValue(tagkey)

This function help to get the name of tag value for particular tagkey present in the

’tsdb-uid’ table.

r2t.connect(table)

Connect the HBase table.

r2t.getTimeSereiesData(sdate,edate,tagk,tagv,metrics) This function return all

the data present in tsdb table.

Function related to Datatype conversion

r2t.toFloat(raw Bytes)

Convert raw bytes to floating-point number.

r2t.toInt(raw Bytes)

Convert raw bytes to integer number.

r2t.intBittoFloat(integer)

Convert integer to floating-point number.
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