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Abstract

The consensus problem is one of the most central problems in distributed
system. Paxos, an algorithm that solves this problem, can be used to im-
plement replicated state machines (RSMs). By running Paxos for each of
the commands received by each of the state machines, the replicas making
up the system will maintain the same state. This architecture allows us to
create fault-tolerant systems. This thesis introduces ACROPOLIS, which takes
its inspiration from the Paxos algorithm and is used to create an RSM. In
ACROPOLIS, the clients are responsible for disseminating the request content,
while ACROPOLIS itself operates only on content metadata — making it a good
candidate in WAN situations. ACROPOLIS also pushes the proposers in Paxos
out to the clients, removing some of the leader bottleneck associated with
some Paxos-variants. Initial results show that ACROPOLIS provides good time
to execution latency — the time from a replica receiving a request to just
before it gets executed — an indicator that it will perform well in situations
where the replicas are spread over large distances.
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Introduction

A common problem in distributed systems is the consensus problem: Many
processes in a distributed system are allowed to propose a value, and the
system must ensure that only one of these values is eventually selected by
every correct process in the system. In other words, no two correct processes
in the system can decide on two different values.

This problem has many uses, one of the more prevalent being to imple-
ment a replicated state machine (RSM). A state machine is made up of a
set of state variables which can be modified by commands given as input to
the state machine. The idea behind RSMs is to have many separate state
machines. In this way, if one of the state machines crashes, it is still possible
for the others to handle commands. This is referred to as the state machine
approach [23].

The state machine approach and the consensus problem go hand-in-hand:
In order to ensure that each state machine making up the RSM receives the
inputs in the same order, they need to coordinate among themselves and
agree on an ordering for the inputs. This is exactly the consensus problem
discussed above.

There are many different algorithms that solve the consensus problem,
one of the more popular being the Paxos algorithm created by Leslie Lamport
[15, 16]. This algorithm employs three actor types (proposer, acceptor, and
learner) who play different roles all working towards the goal of reaching
consensus.

The Paxos algorithm is also the basis for the Goxos framework [11]. An
inital implementation of this framework was created at the University of
Stavanger in the Fall semester of 2012 as a part of the project course. One of
the goals of this framework is to be extensible enough to support testing of
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many different variants of Paxos — including Byzantine Proposer (BP) Fast
Paxos [19].

BP Fast Paxos [19] is a variant of the Paxos algorithm which can handle
malicious behaviour. One of the questions posed in the original BP Fast Paxos
paper is whether or not it is possible to move the proposers out to the clients
— in other words a situation where the clients are the proposers. While the
problem seems simple, there are many things that need to be taken into
account. This problem led to the creation of a new consensus algorithm,
ACROPOLIS.

1.1 Contributions

This thesis contributes the design, implementation, as well as the evaluation
of the ACROPOLIS architecture, which is built on the Goxos framework [11].
ACROPOLIS attempts to provide good performance on wide-area networks
(WANSs). It also removes the bottleneck at the leader, which occurs in Paxos
due to a majority of the communication being handled and initiated by the
leader.

In Chapter 2, we begin by discussing the background necessary to un-
derstand the ACROPOLIS algorithm, including the model in which we design
and build AcropoLIS. We also go into detail about the Paxos algorithm itself.
Finally we discuss some of the related works that we took inspiration from.

In Chapter 3, we go into detail about the design of AcroproLIiS. This
chapter discusses all of the concepts that we utilize to design ACROPOLIS. In
addition to this, Chapter 3 also discusses some of the essential algorithms
and sub-protocols associated with ACROPOLIS.

We also include a chapter illustrating the basic design of Goxos. In Chap-
ter 4 we give a brief overview of the Goxos framework [11] which helps to
understand how ACROPOLIS fits in, before we delve into the implementation
details.

The implementation details are discussed in Chapter 5. In this chapter,
we discuss some of the problems we ran into while implementing ACROPOLIS.
This chapter includes some code snippets to help the reader better understand
some of the difficulties associated with implementing a consensus protocol
such as ACROPOLIS.

Finally, in Chapter 6 we evaluate and discuss the ACROPOLIS protocol
in two different settings. We talk about how the system performs in these
settings, as well as why it performs in the way it does.



Background

The aim of this chapter is to provide the reader with all the necessary details
in order to understand the further chapters on design, implementation, and
evaluation of AcropoLIS. First we will discuss the model within which
we build AcropoLis, including the assumptions we make about processes,
communication, and fault-tolerance. Then we will discuss the consensus
problem in detail, which is at the heart of it all. Finally we will examine
other works related to ACROPOLIS.

Some of the content in this chapter related to the Paxos algorithm was
co-written with Tormod Erevik Lea as part of the project report in the Fall
2012 semester.

2.1 Model

When discussing distributed systems, it is useful to think about the model
that a distributed system uses. This refers to the assumptions we make about
the processes themselves, the communication medium that the processes
use, which types of faults can occur to a process, among other things. This
section will explore some of the options that are available when designing
a distributed system, as well as explaining what kind of model we will be
using in the design and implementation of ACROPOLIS.

2.1.1 Processes

A process is the most fundamental part of a distributed system. Each process
in the distributed system is an actor, who has a certain role to play. The
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processes are responsible for taking part in the computation of a distributed
algorithm which aims to achieve a certain set goal. Usually the distributed
algorithm is shared among the processes so that they are all performing the
same steps, but it is also possible for different processes to be executing
separate algorithms [4].

Processes are usually defined using an event-based model, wherein a
process advertises its interest in receiving messages of a certain type, as
well as any computation that occurs when such a message is retrieved. This
computation can modify the local state of the process, send messages to other
processes in the system, or broadcast to the whole system.

In addition to receiving messages from outside sources, other types of
events are supported such as timer events which occur once after a set period
of time, or periodic timer events which occur every so often ad infinitum.

As we will see in later chapters, ACROPOLIS utilizes this event-based
reception of messages as well as timeout events.

2.1.2 Communication

A distributed system is nothing without communication; indeed the definition
of a distributed algorithm is for a system made out of a set of processes that
work together to achieve a common goal. To achieve this goal, communica-
tion between the processes in the system is necessary.

There are, however, many different types of communication possible be-
tween processes in a system. There is the unreliable form of communication
where processes send a message and forget it, without verifying that the
receiving side has actually gotten the message, and there are more advanced
communication protocols that guarantee that the receiving side has received
the message successfully and without any errors.

In [4], they refer to these forms of communication as links. For a dis-
tributed system, it is very important that messages that are sent are received
at the other end. To do this, there must be an abstraction built on top of
the basic communication medium that retransmits messages in the case of
failure, checks that the received data is the same as what was sent, or that
no duplication occurs. This abstraction is referred to as perfect point-to-point
links [4]. Luckily for us, the properties required by perfect point-to-point
links are provided by TCP sockets available on nearly every operating system.

In ACROPOLIS we assume that we are communicating over perfect links,
which makes implementation simpler in that we don’t have to worry about
retransmission or many of the other problems that can occur with using a
lossy protocol such as UDP.
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2.1.3 Synchrony

Distributed algorithms usually have some assumptions about the synchrony
of the system, in other words whether operations and communication times
can be bounded by a constant amount of time. There are three different types
of timing models usually talked about when discussing distributed systems:
Synchronous, asynchronous, and partially-synchronous systems [4].

In a synchronous system, there is a certain maximum time limit for com-
putations and communication to occur. If you send a message to another
process in the system, then in a synchronous system there is a guarantee that
the message will get to the receiving node within a period of time. There is
also a guarantee that any computations at a node will complete within a set
period of time [4].

On the contrary, in an asynchronous system there exists no bound on
how long it takes for a communication step to occur, or how long it will
take to receive a reply to a request. Furthermore, the nodes themselves can
have computations that take an arbitrary amount of time to complete [4].
In further sections we will discuss the consensus problem, as well as some
algorithms which solve the problem. In an asynchronous system, however, it
has been proven that solving the consensus problem with at least a single
faulty process is impossible [8]. In order to solve consensus we need some
assumptions about the timing constraints of the system.

Real systems do not comply completely with the synchronized model.
However, most operations complete within a bounded time. This is referred
to as the partially-synchronous timing model. For the most part, the timing
of a distributed system is synchronous, but there are periods of asynchrony
that can occur where the timing guarantees are broken. For example there
could be a guarantee about the communication time between processes in
the system saying that it takes maximum 10ms to send a request and receive
a response. In a partially-synchronous system this time bound can be broken,
perhaps due to network congestion causing the reply to be received after
15ms. In a partially-synchronous system there can be periods of asynchronic-
ity but it must eventually become synchronous and the periods where it is
synchronous must be long enough that a substantial amount of work can be
done [4].

In the case of ACROPOLIS, we assume a partially-synchronous model
where periods of asynchronicity can occur, but eventually the system becomes
synchronous again.

2.1.4 Failures

One of the main reasons distributed systems are so prevalent in this day and
age is due to the fact that they can handle failures in the system. This fault
tolerance allows the distributed algorithm to continue on working in spite of
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all the bad things that can occur: Network failures, bugs in code, and even
malicious behaviour exhibited by clients or servers.

There are, however, many different types of failures that can occur [1].
A failure or crash is defined as being any event that stops the process from
executing as normally. This could be due to a power failure, hardware failure,
or a bug in the software implementation. In this section we will discuss some
of the most important types of failures.

A process is considered faulty if at some point it strays from the actual
definition of what the process is supposed to do. This could be caused
by things such as incorrect implementation of the algorithm, a bug in the
implementation causing incorrect results, or if the process crashes. A process
is considered to have crashed if it stops executing the steps of the algorithm,
which could occur due to power failure, hardware failure, or a bug [4].

However, there are many models which describe different types of faulty
behaviour that can occur. We will now discuss some of these categories and
how they relate to ACROPOLIS.

The most common category of faulty behaviour is a crash-stop — which
can occur in a process in one of two ways. The first, is the simple crash
fault, where a process can crash and never return. In this case, a process is
considered correct if it never crashes and continues executing forever. If it
crashes then the process is considered faulty [4].

The second fault is a crash-recovery fault which occurs when a process
can crash and return to system later. In this case, a process is considered
faulty if it crashes and never returns or if it keeps crashing and returning ad
infinitum. Otherwise the process is considered correct [4].

A third type of fault that is very important is a Byzantine fault — which can
occur due to many things. Byzantine faults are the hardest faults to tolerate,
and can arise due to bugs in the implementation or malicious activity from
other process in the system. A process in the system can lie about what it has
seen, or try and trick another process into performing an action [4].

2.2 Consensus

One of the most important problems in distributed systems is consensus:
Multiple separate agents reaching agreement on a single value [28]. The
consensus problem rears its head in many situations in distributed systems;
chances are if there is any form of synchronization or serialization of com-
mands, then a consensus protocol is needed. One of the most widely used
and implemented algorithms that solves the consensus problem is Paxos [15,
16]. Many variants of the original Paxos algorithm exist: Multi Paxos, which
extends the original Paxos algorithm to handle multiple commands; Fast
Paxos [14], which attempts to decrease the total amount of message delays;
and Byzantine Proposer Fast Paxos [19], which handles misbehaving clients.
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2.2.1 Paxos

The name Paxos comes from the original paper describing the distributed
algorithm, which is expressed in terms of a fictional parliamentary system on
the Greek island of Paxos [16]. Many people found this description of the
algorithm confusing, which led to Lamport creating a simpler explanation
[15].

The Paxos algorithm itself has become quite popular in recent years, with
many large companies and users of distributed systems having adopted it for
use in their own fault-tolerant architectures. Google in particular has found
a great use for Paxos, and has implemented it in their globally-distributed
database Spanner as well as in their distributed lock service Chubby [3, 7].
Microsoft in addition has been using Paxos in their Windows Azure Storage
architecture, which is a fault-tolerant cloud storage system. Other users
of Paxos include Apache in ZooKeeper, a popular distributed configuration
management system, and Heroku in Doozer, a distributed data store [5, 10,
20, 21].

As any distributed algorithm, Paxos is made up of a network of replicas.
Each replica in the system has the responsibility of performing one or more
of three possible roles. The first role is the proposer. The proposer is the
only role that has contact with clients to the system. The other roles — the
acceptor and the learner — do not communicate directly with clients but only
with other replicas. It’s also important to note that a replica can assume a
subset of any of the three roles, including every role if need be [15].

Another thing to note is that Paxos relies on the use of quorums to ensure
consistency between the replica set. Quorums are a very powerful tool when
it comes developing distributed algorithms. A quorum is defined as being
a subset of replicas fulfilling the following two properties: All non-faulty
replicas can form a quorum, and any two such quorums intersect in at least
one replica. Now, we can begin discussing the actual details of the Paxos
algorithm.

The actual Paxos algorithm itself, sometimes referred to as the Synod
algorithm, is built out of two phases, where each phase contains two parts.
For simplicity’s sake we will assume that there is a single leader or coordinator
who is responsible for handling the requests from clients and getting the
requests accepted. This is required for Paxos to guarantee progress [15]. The
properties for Paxos are separated into two categories, liveness and safety.
The safety properties state that the algorithm never does anything wrong,
while the liveness properties state that eventually something good happens
[4]. These properties are as follows, where CS is a safety property and CL is
a liveness property [15]:

CS1 Only a proposed value may be chosen.

CS2 Only a single value is chosen.
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Phase 1 Phase 2
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Figure 2.1: A sequence diagram showing the client interaction (sending the
request and receiving a reply) as well as the two phases of Paxos that take
place. The first phase consists of the leader (Ry) broadcasting a PREPARE, and
then receiving a PROMISE from the replicas. The second phase consists of the
leader broadcasting an ACCEPT, and then an all-to-all LEARN broadcast takes
place. Note that in this case, each replica takes on all roles.

CS3 Only a chosen value may be learned by a correct learner.
CL1 Some proposed value is eventually chosen.

CL2 Once a value is chosen, correct learners eventually learn it.

Now we can discuss the actual Paxos algorithm itself. The action begins
when a client sends a request to the leader, as shown in Figure 2.1.

Phase 1a — PREPARE

The leader initiates the algorithm by broadcasting a PREPARE message con-
taining the leader’s current round n.

Phase 1b — PROMISE

When an acceptor receives a PREPARE message, it checks if it has seen any
previous PREPARE or ACCEPT messages with a round number greater than
n. If it has, then it ignores the message. If it hasn’t then it responds to the
leader with a PROMISE message, promising not to respond to any PREPARE
messages with a lower round number. This PROMISE message contains the
round in the original PREPARE message, as well as any round and value that
this acceptor previously voted for.
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Phase 1 Phase 2
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Figure 2.2: A sequence diagram similar to the one in Figure 2.1, except with a
distinguished learner (who also happens to be the leader). This optimization
can be useful if there are a large amount of replicas in the RSM as it cuts down
on the amount of messages. However, it introduces a message delay after the
second phase due to having to inform the other learners of a value being chosen.

Phase 2a — ACCEPT

In this phase the leader is receiving PROMISE messages from the acceptors.
When the leader receives a quorum of PROMISE messages for round n, it
sends an ACCEPT message to the set of acceptors containing n and the value
associated with the highest previous voted round in the PROMISE messages,
or the original request from the client if no acceptor has previously voted.

Phase 2b — LEARN

In the final phase, when an acceptor receives an ACCEPT message with n
greater than or equal to any it has previously received in a PREPARE message,
it broadcasts a LEARN message containing n and the value associated with it
to the set of learners.

When a learner receives a quorum of these LEARN messages, it signifies
that the command can be executed.

Optimizations

There are many possibilities for optimizing the Paxos algorithm, including
using a single, distinguished learner (as shown in Figure 2.2) who informs all
other learners if it receives a quorum. This reduces the number of messages
transferred over the network. Also note that a proposer only needs to send
its PREPARE message to a quorum of acceptors, as long as the quorum is
functioning correctly. The same goes for the ACCEPT message broadcast from
the proposer.
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2.2.2 Replicated State Machines

While a consensus protocol such as Paxos is used to decide upon a single value,
it can also be used to implement a replicated state machine (RSM) using the
state machine approach [23]. In this approach, we have a distributed system
made up of many separate replicas which are connected over a network. The
RSM takes input from clients in the form of commands, which modify the
state of the system. The RSM then reports back to the client with the result
of running the command.

Paxos is required because each replica has to run the commands in
the same order, so as to keep the same internal state, thus keeping the
state of the whole RSM consistent. It’s easy to see that if two replicas
execute different commands in a different order (assuming the commands
are non-commutable), the state will end up different on both of the replicas,
leaving the RSM in an inconsistent state.

In order to solve this we need to extend the Paxos algorithm to Multi
Paxos — a variant of Paxos that supports running a sequence of commands
instead of just a single command.

2.2.3 Multi Paxos

The way to extend the Paxos protocol to handle multiple commands from
clients, and thus implement an RSM is outlined in [15]. The simplest way to
do this is to run multiple instances of Paxos. In this way, if the leader receives
a command, it can just create a new instance and assign the command to
it. The same steps used in Paxos are also used within each instance of Multi
Paxos.

This also assumes that, since a client request could be received while
previous instances of Paxos are still running, there needs to be an additional
rule to ensure that the command associated with instance ¢ 4+ 1 cannot be
executed until all the previous instances 0, 1, ..., ¢ have been decided and
executed first [15].

There are also further optimizations that can be used to make Multi
Paxos perform better. One of these optimizations is to eschew the first phase
altogether. The first phase is only needed to ensure there is a single leader.
When a leader is elected, it can run the first phase for an infinite number of
instances, and not have to worry about the first phase at all. When the leader
receives a request from a client, it can directly send an ACCEPT message to
the RSM. This cuts down the number of message delays greatly [15].

2.3 Related Work

In this section we will discuss works that inspired ACROPOLIS as well as
works that have similar goals or properties as ACROPOLIS.
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Phase 2
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Figure 2.3: An example of how a batching implementation would work. Note
that each of the client requests doesn’t trigger its own Paxos instance, but in-
stead the leader waits for a sufficient number of requests and puts them into a
batch. Then a single instance of Paxos is run for all three requests. We assume
the leader is stable in this case, which is why there is no first phase of Paxos.

2.3.1 Batching

Batching is an important optimization for Paxos-based RSMs. It is one of
the simplest optimizations to implement, and also provides one of the best
performance boosts [22].

Batching works by having the leader collect a series of client requests
and batching them into a single batched request. The leader can then treat
these requests as a single value and runs an instance of Paxos to get the batch
executed. To execute a batch, the replica can simply execute each request
inside the batch in some specified order [22].

As mentioned in [22], the main difficulties with batching is tuning the
parameters needed to batch. How many requests should be in a batch? If
the batch size is too big, it may not get filled up. Conversely, if the batch size
is too small, then you don’t get as much benefit in throughput from batching.
One way to solve this issue is to introduce a timeout, where if the batch isn’t
filled up within a certain time limit, the commands that have been received
are still packed up in a batch and agreed upon with Paxos.

The important point to note about the batching, as discussed in [22],
is that the leader is the one who is responsible for collecting the requests
and getting them accepted. As we will see later, in ACROPOLIS, the client
broadcasts to the RSM and the whole replica set does the batching operation.
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2.3.2 Mencius

Mencius is a protocol for creating a replicated state machine [17], which
shares much the same goals as ACROPOLIS does. Just like ACROPOLIS, Men-
cius aims to have good WAN performance, and it does this by trying to
remove the bottleneck of the leader.

The Mencius protocol takes a lot of its inspiration from Paxos. However,
in the Paxos protocol there is a single leader who is responsible for ordering
incoming commands and getting them accepted. Conversely, in Mencius the
replicas are numbered Ry, Ri, ..., R,. Then the leader of the system is
chosen based on the instance number. For example, for instance 0, Ry will
be the leader, for instance 1, Ry will be the leader, and so on.

One of the main goals of Mencius is removing the bottleneck of the leader
[17]. By this they refer to the fact that in Paxos, a large proportion of the data
has to go through the leader. Client requests all must go through the leader
who is responsible for sequencing them. The leader is also responsible for
processing quorums of messages from the replicas. By rotating the leader in
the fashion done by Mencius, the workload gets spread out and each replica
gets its turn in doing the sequencing of client requests, which can lead to
greater network utilization [17].

2.3.3 BP Fast Paxos

In the traditional Paxos algorithm, processes are allowed to crash and then
recover [15]. However, this crash-recovery model doesn’t take into account
the real world failures that can occur due to, for example, malicious users of
the system.

Byzantine Proposer (BP) Fast Paxos [19] is a Paxos-based consensus pro-
tocol for a hybrid failure model where the clients and proposers (also called
proxies) can be Byzantine faulty and the servers (acceptors and learners) are
crash faulty.

The architecture of the BP Fast Paxos system is split up into multiple
layers. The replicas are assumed to be in the same administrative domain,
and thus they can trust one another more than they can the clients or proxies
who are outside of the domain or at the edge of the domain respectively. The
proxy nodes are located at the boundary of the cloud, and interact with the
clients who can be malicious. Since the proxies communicate directly with
the clients it is possible for them to be compromised. The replicas (acceptors
and learners) within the cloud assume that the proxies may be Byzantine
faulty due to their interaction with the clients. BP Fast Paxos uses a hybrid
failure model due to this dichotomy between the insider and outsider nodes
[19].

While keeping servers safe from malicious, possibly compromised proxies,
BP Fast Paxos still manages to offer a low latency for client requests. It can
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protect from things such as denial of service attacks waged by the clients or
the proxies. It does this while tolerating 1/3 crash faulty servers, and any
number of Byzantine faulty proxies.

One of the questions posed in the original [19] paper is whether or not the
proposers can be pushed out to the clients. In other words if it is possible for
the clients to be proposers themselves. However, Paxos usually requires there
to be a single leader who proposes commands in order to ensure progress
[15]. If there are multiple proposers proposing at the same time, it is very
difficult to figure out how all the proposers can sequence their commands
into Paxos instances so that there are no collisions with the other proposers.

This problem with sequencing of commands is one of the problems
that lead to the development of ACROPOLIS. With ACROPOLIS, the clients
themselves are given the responsibility of disseminating the request content
to the RSM which is stored in a fashion that doesn’t require the leader to do
any sequencing of commands itself.



Design

As with most distributed systems, the underlying design of ACROPOLIS is
non-trivial. In this chapter we aim to closely examine the structure of
ACROPOLIS starting from the basic design of the protocol and all of the
structures surrounding the actual algorithm. After having covered the basic
protocol and concepts, we will move on to discussing the changes needed to
support view change, which occurs when the leader crashes.

3.1 Concepts

Some of the main goals of ACROPOLIS are to be able to solve the consensus
problem in situations where replicas are connected over a wide-area network
(WAN) in a high-performing manner, as well as to remove the responsibility of
the leader to have to sequence incoming requests from clients, which is done
in Paxos. This is where most of the intuition for the design of ACROPOLIS
came into focus.

Algorithms such as Fast Paxos [14] try to remove the leader from most of
the computation by having the clients broadcast to the replica set. However,
because there is no leader to apply sequence to the requests, collisions
can occur where replicas see the requests in different orders. ACROPOLIS
attempts to solve this by using a combination of client request multiplexing
and batching to efficiently agree on what all the replicas have seen.

There are many consensus protocols in existence, but most of them
concentrate on getting the best possible performance in a local-area net-
work (LAN) setting. With ACROPOLIS we are more interested in creating a
consensus protocol that can be used in a WAN setting.

14
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Figure 3.1: A visual representation of the client map. Each C; is the client ID
and everything to the right of the client ID is the client log dedicated to that
client. Note that all requests are stored by the sequence number. The bottom
field (V}) is the actual value the client is proposing. In this instance, the clients
have sent 5, 3, 1, and 4 commands respectively.

Now we will begin discussing the concepts needed to understand the
ACROPOLIS protocol.

3.1.1 Client Logs

Due to the nature of network communication it is difficult to reason about
ordering of commands broadcast from clients — specially in cases of heavy
load where many clients are broadcasting to the replica set.

In Goxos [11], the client IDs are uniquely generated using a cryptograph-
ically secure hash function. This allows us, with very high probability, to
consider each client ID as being unique. Therefore, it’s possible to multiplex
each of the requests into a specific log dedicated to each client in the system.
In ACROPOLIS terminology, we call each of these a client log.

By doing this, we no longer have to worry about one client’s requests
interfering or colliding with another client’s requests, such as the case in Fast
Paxos [14]. To do this, we use the ID in the client request to figure out which
client log the request belongs in, and then within each client log we use the
sequence number to figure out which position the request should be stored.
Note that it is possible for the entries of a client log to be empty in the case
the client’s message is lost.

Of course, in a system with many clients sending requests, we will have
more than a single client log. The set of all client logs is referred to as the
client map, and is one of the central data structures of ACROPOLIS. The most
central data structure, however, is the batch.
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3.1.2 Batches

Our main goal is to implement an RSM and get the same commands to run
on each of our replicas in the same order. So far we've discussed how to
avoid collisions by multiplexing the client requests into separate logs, but
this still won’t help us because we need to provide an ordering to all of these
commands.

Take the case in Figure 3.1 for example. In this case, it would be simple to
say we should run all the requests from C( ordered by their sequence number,
and then all the requests from (1, and so on for all the clients. Another
option would be to order all requests with sequence number 0 ordered by
client ID, then all requests with sequence number 1, and so on. Both of these
techniques will work, but there is still one problem: We need to communicate
to the other replicas that we wish to execute some commands. We can’t wait
indefinitely to see if there are more requests on the way from a client.

This is where the second important data structure comes in, which we
will refer to as the batch. This structure is not to be confused with batches as
referred to in [22], however, it is somewhat related.

Before we get into the specifics of a batch, it is useful to describe a client
range. There will come a time when we have received a bunch of requests
from a client, and they need to be executed. We can use a client range to
describe this set of requests, which describes the starting sequence number
and stopping sequence number. In other words, a client range is simply an
inclusive range [a, b] for a specific client.

A batch is then simply a set of client ranges, one for each client we wish
to include in the batch. We receive a different amount of requests from each
client, so it’s highly likely that the batch can look similar to Figure 3.1 with
some jagged lines denoting the ranges.

As shown in Figure 3.2, a batch can be constructed for a set of client
ranges that the current replica has seen, while further requests (received
after the batch was created) are placed outside of the batch. In this case,
these commands are V5 from Cy and Vjg_12 from C5. These commands can
be included in the next batch. The client ranges for the batch shown in
Figure 3.2 are [0, 4], [0, 1], [0, 0], and [0, O] respectively for clients Cyp_3. After
this batch was made, requests were received from both clients C; and Cs.

Now, let’s assume that we receive some additional requests from client
(5. These requests will modify the client map, but will only affect the client
log for client Cy. Note that there is no modification of batches, a batch is
simply a snapshot of ranges inside the client map.

As shown in Figure 3.3, a batch will not necessarily contain a client for
every range that the system has seen, but only a range for clients that we
have received requests from since the previous batch was created. After all,
there is no point in including empty ranges for clients who are idle.

With Figure 3.3, it becomes easier to see how the actual batches can be
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Figure 3.2: A visual representation of a batch, a set of client ranges. The first
dotted line on the left is the beginning of each of the client ranges, and the
jagged dotted line on the right is the end of each range.
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Figure 3.3: Snapshot after two batches have been created. Note that client Co
has sent two new requests since the last batch operation. In this figure we also
show the demarcating batch points (denoted BP,, BP;, and BP,).



CHAPTER 3. DESIGN 18

Client BP, BDP,

Co 4 4
Ch 1 2
Co 0 2
Cs 0 3

Table 3.1: Table describing batch points BP, and BPs.

constructed. We first note that a batch contains all the requests between the
previous batch point BP; and the next batch point BP, ;. In other words,
batch B;,1 contains all the requests between BP; and B P;,1. Thus, checking
if a batch can be made, all we need to do is see if there are any requests
between the two batch points. If there are, then we can successfully batch,
otherwise we must wait.

In the specific case of Figure 3.3, we see that our batch points BP; and
BP, look as described in Table 3.1. From this description it is easy to see
that the values for C4, C5, and Cj5 are greater than their previous values in
BP,, thus we can create a batch containing all these clients’ requests after
BP,;. That’s to say for client ranges [1 4+ 1,2] = [2,2], [0+ 1,2] = [1,2], and
[0+ 1,3] = [1, 3] for these clients respectively.

3.2 Replication

Now that we have covered the major concepts we need to build ACROPOLIS,
we can talk about the most important objective: Replication. The whole goal
is to create an RSM that maintains the same state in spite of all the potential
problems. In this section we will discuss some of the things that need to be
solved in order to use the aforementioned concepts in a replicated manner.

In our architecture we can’t rely on the leader to serialize the commands
as is done in Paxos [15]. However, we still require a leader to initiate the
ACROPOLIS protocol in order to reach consensus. The clients are expected to
broadcast their requests to all of the replicas in the system. However, we still
need to agree on requests that are to be executed in a batch.

The first key to understanding the ACROPOLIS protocol is to understand
how the different types of initiation occur that allow the non-leader replicas to
inform the leader with information about which requests they have received.
We refer to this initiation as a batch trigger.

3.2.1 Batch Triggers

When does the leader get informed about the state at each of the replicas?
The operation could conceivably be done for every single client request, or
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during periods of inactivity where a replica doesn’t receive any command for
a certain period of time. However, the most sensible choice is to make all
replicas do a batching operation after a set period of time, ad infinitum.

This will solve the problem, but is not a good solution since there can
be periods where the replica set is receiving client requests at a very high
rate, allowing the batch size to grow enormously. Another drawback is the
fact that periodic batching can result in slow response times for the client
requests. Imagine if we set the batching period to 1 second. The clients who
send a request immediately after the previous batching operation completes
will have to wait at least 1 second to receive a response.

The best solution is a hybrid solution where we use the periodic batching
solution above, but we also set a maximum size for the batch. If we receive a
certain number of requests since the last batching operation, then we should
batch immediately and not wait. This can help the efficiency of the system
during periods of high activity.

Another possible solution is an extension of the hybrid solution discussed
above. Instead of having a constant maximum size for a batch, it can adapt
to the current conditions. If we receive a lot of requests very quickly, it could
increase to take this into account. If we receive only a single request and
then timeout, then the maximum batch size could shrink to decrease the
round-trip time in cases of low activity.

3.2.2 Roles

There is one main role for each actor in the system, an acceptor. However, it
is possible for an acceptor to be elected as the leader of the system, we will
call this replica the leader acceptor or simply the leader.

Leader Acceptor

The leader’s main job, as hinted at in previous sections, is to coordinate the
information obtained from all the replicas and figure out which commands
can be executed. In order to do this, it keeps track of which commands
the whole system has, in terms of batches and their associated batchpoints.
When the leader finds out that there are commands that can be executed on
a majority of the replicas, it is tasked with informing the RSM to run these
commands.

Acceptor

The role of the acceptor is very simple. An acceptor receives requests from
clients, and appends them to the local client map. It then uses the batch
trigger techniques described above to inform the leader that it has new
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their requests to each replica in the RSM. In this case, Ry is the leader of the
RSM. These requests trigger a batching operation and the associated agreement
protocol. Also shown is the response from the leader back to each of the clients.
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commands that should be taken into account. Either the replica will hit the
threshold of commands it can accept in a batch, or a timeout will occur.

3.3 Communication

What is the point of a distributed system without communication? The clients
of course need to communicate their desire to run a command on the RSM,
and the replicas need to communicate between themselves to ensure safety of
the system. In this section we will explain the client and RSM communication
patterns, as well as some of the potential problems that can occur.

3.3.1 Client

The client communication pattern is very simple: Each client in the system
maintains a network connection to all of the replicas in the RSM. When a
client wishes to run a command on the system, it broadcasts the request to
all of the replicas.

When the agreement protocol comes to an end, and a batch has been
decided upon, any client requests in the batch will be executed and then
replied to with the response from the application. This is shown in Figure 3.4
as a blue line from R». In this case, since R; is the leader, it is the only replica
that sends the response to the client, to avoid duplicate responses.
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3.3.2 Replica

Communication between the replicas that make up the RSM is equally as
important as the client-replica communication described above.

The replicas in the RSM are pairwise connected and maintain a full-duplex
communication channel, allowing replicas to communicate with one another.
The two communication patterns supported are a unicast send to a single
replica, and a broadcast to every replica in the system (including the replica
broadcasting itself).

Using the unicast and broadcast primitive is essential in creating the
actual agreement protocol which we will now go into further detail about.

3.4 Agreement Protocol

Now that we have covered the major concepts and had a discussion about
who initiates batching and when, we can begin to discuss how the replicas
agree on the requests in a batch.

The agreement phase of ACROPOLIS is really at the heart of it all. This
phase is needed to ensure that all the replicas agree on the same set of
requests and execute them in the same order.

In this section, we will explain how the basic agreement protocol works,
through discussing in-depth the communication that takes place between all
of the replicas, in addition to some of the problems that can occur and how
we overcome them. First, we will go into detail about what actually occurs
when a replica creates a batch, and what it does with it.

There are two main message types that make up the basic ACROPOLIS
agreement protocol: BATCHLEARN and BATCHCOMMIT. Each BATCHLEARN
message contains a batch ID, signifying which batch this message belongs to
and a mapping from client ID to client range telling the leader which ranges
this replica has seen. Each BATCHCOMMIT message contains a batch ID and
a mapping from client ID to client range signifying which ranges a majority
of the replicas have, and thus can be executed.

When a replica initiates batching, the first thing it does is compute the
necessary information to send to the leader. The leader needs to know
which requests the replica has seen, so the replicas must send a BATCHLEARN
message to the leader containing the ranges in the batch.

If we take Figure 3.3 as an example of the state at one of the replicas,
and a trigger occurs to initiate batching and sending this information to the
leader, the subsequent BATCHLEARN message looks as in Table 3.2. Note that
the replica only sends a range for those clients for which it has received new
requests from.

On reception of a quorum of BATCHLEARN messages associated with
batch B;, the leader will take the intersection of all the messages received.
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Figure 3.5: The leader must collect a quorum of BATCHLEARN messages in
order to get a picture of what the whole RSM state is.

Client Range

Ci 2, 2]
Cs [1,2]
Cs 1, 3]

Table 3.2: A possible BATCHLEARN message sent to the leader. Client Cy isn’t
included because this particular replica hasn’t received any new requests from
it since the last batch.

In other words, for each client range that exists in all of the messages that
make up the quorum, it will take the intersection of these ranges to figure
out what the quorum has in common. Once it does this, it will know that
these client intersections are able to be executed on the quorum.

Once the leader finds the intersection of the client ranges in the quorum
of messages, he can broadcast a BATCHCOMMIT message to all the replicas
as shown in Figure 3.6.

When a replica receives a BATCHCOMMIT message, it can execute the
client ranges contained in the message, as long as it applies a correct ordering
to them. Within a BATCHCOMMIT message, there is a mapping from client
IDs to ranges. One possible way of applying an ordering to these is to use
the rule that you must execute the range from client Cj, then C4, and so on
until C,,. However, there may be missing client IDs if a client hasn’t sent a

Client Range Ry Range R; Intersection

C [0, 3] 1, 3] 1, 3]
Cs [1,4] [1,2] [1,2]
Cs [0, 5] [1,7] [1,5]

Table 3.3: Computing the intersection of client ranges at the leader. If there
are 3 replicas in the system and Ry is the leader collecting these messages, Ry
and Ry make up a quorum and the leader can computer the intersection from
these.



CHAPTER 3. DESIGN 23

Ry }—W—)
Rl f / \:
Ry ¢t —
Figure 3.6: The full agreement phase of ACROPOLIS. Includes initial collection

of BATCHLEARNS from a quorum of replicas, and the subsequent BATCHCOM-
MIT telling the replicas to execute a set of client ranges.

request since the last BATCHCOMMIT message. To solve this, we just sort by
the client IDs and execute in that order.

Within each client range, the order is set by the range itself. For example,
if client C; has a range [a, b] then we execute requests in the order a, a + 1,
a+2,...,0b.

3.5 Algorithm

In this section we will take a look at a very basic implementation of the
ACROPOLIS algorithm in pseudocode. To limit the complexity of the pseu-
docode, it will just be describing the operations for a single batch. After
this section, we will discuss some of the problems that arise with this simple
algorithm, and how to modify it to handle these exceptional circumstances.

One thing to note is that the leader acceptor has the same role as all
the other acceptors, with the additional role of being the leader. Therefore,
the events that occur on a normal acceptor will also occur on the leader
as well. In other words, the leader also handles client requests just as the
normal acceptors do in Algorithm 2. The leader also handles BATCHCOMMIT
messages as well as handling inactivity in the system through using timeouts.

As can be seen in Algorithm 1, the leader acceptor’s main responsibility is
the handling of the BATCHLEARN messages from all of the acceptors (includ-
ing itself). On Line 17 the leader checks whether it has received a quorum of
these BATCHLEARN messages. If it has then it has a good view of what the
state of the whole RSM is. It can then intersect each of the client ranges, and
broadcast a BATCHCOMMIT containing the ranges that are common for the
whole quorum. This is done on Line 19.

The helper routine on Line 8 is responsible for computing the intersection
of the client ranges. It does this first by using another helper routine on
Line 1 which first checks that a majority of the responses contain ranges for
a particular client. All of these clients that we have a majority of responses
for will be used in the computation. This intersection is computed on Line 12
by finding the largest range that all of the messages in the quorum contain.
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Algorithm 1 Event handling procedures for the leader acceptor

1 procedure FINDMAJORITYCLIENTS(R)

2 count < {}
3 for r € R do > For each client range mapping
4 for c € r do > For each client id
5 count|c] + count[c] + 1
6 return {c | count[c] = |[N/2] + 1} > Majority have seen this client
7
8 procedure INTERSECTRANGES(R)
9 maj < FINDMAJORITYCLIENTS(R)
10 int < {}
11 for c € maj do > For each majority client
12 int[c] < Rol[c] N Rife] N ...N Ryc]
13 return int
14
15 event BATCHLEARN(R) > R: Client range mapping
16 MV «+~ MV UR
17 if MV| > |N/2| + 1 then > Quorum exists
18 i < INTERSECTRANGES(M V)
19 broadcast BATCHCOMMIT (%)

Algorithm 2 Event handling procedures for acceptors

1 event TIMEOUT > Inactivity timeout
2 batch <+ GETBATCH()
3 send BATCHLEARN (batch) to L

5 event CLIENTREQUEST(C;, V) > Request received from client
6 ADDTOCLIENTLOG(C;, V)
7 bs +— BATCHLIMITHIT()

8 if bs then > If we hit the batch size limit
9 batch + GETBATCH()
10 send BATCHLEARN (batch) to L > Send to leader
11
12 event BATCHCOMMIT(R) > R: Client range mapping to commit
13 sk <+ SORT(R) > Sort client IDs
14 for c € sk do
15 EXECUTE(R][c]) > Execute the range for this client

In Algorithm 2, the main things of interest are what occurs during inactiv-
ity as well as the reception of the client requests. When a request is received
on Line 5 it is put into the client log structure and then there is a check to see
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Figure 3.7: Gaps can occur in a client map which need to be taken care of as
a part of the agreement protocol. In this case, clients Cy and Co are exhibiting
faulty behaviour since this replica has gaps for these clients. Client Cy did not
successfully broadcast requests with sequence numbers 3,4 and client Cy did
not successfully broadcast a request with sequence number 1.

if we've seen enough requests since the last time we created a batch. If we
have, it means we’ve hit the limit on the batch size and send a BATCHLEARN
to the leader. A similar thing occurs when a timeout event is received on
Line 1. In this case, the batch is created due to a period of inactivity which
has occurred.

Finally in Algorithm 2, we can receive a BATCHCOMMIT message from
the leader which tells us to execute a set of ranges due to these ranges being
common between the quorum. This execution occurs on Line 15. Also note
that the client IDs in the BATCHCOMMIT must be sorted to ensure that all of
the replicas execute in the same order.

3.5.1 Gaps

One problem that hasn’t yet been discussed is the problem of gaps. A gap can
occur in a client range if it is acting maliciously or the client is faulty. In this
case a replica may have a client log similar to the one shown in Figure 3.7.
The protocol can be simply modified to take these gaps into account. A
replica will be able to tell if it has a gap in a client range simply by checking
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Client Gaps

Co {3,4}
Co {1}

Table 3.4: The gap information contained in a possible BATCHLEARN sent to
the leader. The gaps shown are the same as shown in Figure 3.7.

each entry in the client log. If it finds a gap in the range then it can notify
the leader about this gap in the BATCHLEARN message.

The leader, upon receiving a quorum of these BATCHLEARN messages will
do the usual consolidation by intersecting the ranges, but it must now take
the gaps in the message into account as well. If one of the replicas has a gap
in one of the client ranges, we can do one of two things. If the leader himself
has the command to fill the gap, he can send this along in the BATCHCOMMIT
message. However, if the leader also has the gap, or the leader has a different
gap himself, this won’t be possible. In this case the leader cannot tell the
RSM to execute the gaps. It can do this by including gap locations in the
BATCHCOMMIT message.

Each BATCHLEARN message in addition to the client ranges can also have
a gap map which maps from client ID to a set of gaps for a specific client.
In the case of Figure 3.7, this map would include entries for C as well as
C3. When the leader receives a quorum of these messages, it can take the
union of all the gap sets for each client ID in the quorum. The leader can
then check and see if it can fill any of these gaps itself. If so, these requests
can be sent along as a part of the BATCHCOMMIT message. If it can’t, then it
has to include the gap unions it has in the BATCHCOMMIT so that the replicas
don’t execute these gaps.

Then, upon receiving a BATCHCOMMIT message, a replica can execute
the ranges as normal, except if there is information about a gap, which must
be skipped for execution.

3.6 Update Protocol

There is a problem when the leader sends the BATCHCOMMIT message to
the RSM. This is the case where the leader sends a BATCHCOMMIT message
that contains a range that a replica doesn’t currently have, or doesn’t have a
portion of it.

Consider the case where there are three replicas in the system, Ry, Ry,
and Rs. Suppose Ry is the leader and receives two BATCHLEARNS, one from
Ry and one from Ry (R receives a message from itself). The leader will
use these two replicas’ views of the state and find the intersection of what
they both have. However, this doesn’t take into account the state at replica
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R1, who could not be as up to date as the other replicas that made up the
majority.

This is a problem, because the BATCHCOMMIT cannot be executed until
the replica has all the commands defined by the client ranges in the message.
Thus, we need a sub-protocol that can handle this case and bring the replica
up to date so that it can execute the batch.

To do this we introduce two new message types, UPDATEREQUEST and
UPDATEREPLY. An UPDATEREQUEST is a request from one replica to another
asking for certain client commands to be filled. The corresponding Up-
DATEREPLY message contains the requested client commands.

3.7 View Change Protocol

In this section we will discuss the changes needed to the basic ACROPOLIS
protocol above if we wish to support view changes.

As with Paxos and many other distributed systems, there is always the
possibility of faulty behaviour. We require a number of different replicas in
AcroproLIS for a specific reason — fault tolerance. If a replica crashes, as long
as we have a quorum of replicas alive and working, the system should still
work as advertised.

In ACROPOLIS, if a replica crashes, it doesn’t matter as long as the replica
is not the current leader of the RSM. If it is the leader, then we have to do a
view change where a new leader is elected and is informed about the current
state of the RSM. This is done in a manner similar to how view change is
usually implemented in Paxos. In Paxos, when a view change occurs, replicas
send information about their state (including slots that aren’t fully decided)
to the new leader who can complete these slots and continue the execution
of the RSM. However, there is a bit more non-trivial work needed to be done
by ACROPOLIS.

To illustrate the pitfalls that occur when we use the exact same view
change procedure as Paxos, an example is in order. Suppose we have an RSM
containing 4 replicas. Also suppose all batches up to i have been successfully
completed — the leader has received the desired BATCHLEARN messages,
and sent the BATCHCOMMIT messages, and at least one of the replicas has
received this message. Now suppose in batch ¢ 4 1, the leader receives the
BATCHLEARN messages but then crashes. Then there are a few possibilities.

If any of the remaining replicas received a BATCHCOMMIT for batch i + 1,
then the new leader can simply rebroadcast this BATCHCOMMIT to the RSM
to ensure that everyone got this message.

However, if none of the replicas have received a BATCHCOMMIT for batch
7 + 1 but they have sent BATCHLEARNS to the leader, there is a problem. In
this case it is possible for the leader to have executed something and crashed
before sending the BATCHCOMMIT message to the RSM. The new leader is
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Figure 3.8: The batch information sent from each of the four replicas to the
leader (Ry).

then tasked with figuring out what the leader could have possibly executed.
It is possible the leader didn’t execute anything at all, but this is unknown.
One potential solution — which doesn’t end up working — is to do the same
as what is done in Paxos. The new leader requests the BATCHLEARN messages
that each of the replicas has sent, and when it receives a quorum of them, it
can do the usual intersection and send a BATCHCOMMIT for the intersection.
This doesn’t necessarily work if the new leader receives a different quorum
than the previous leader. In this case the new leader could have a different
intersection, possibly resulting in a different ordering than the old leader.
Take for example Figure 3.8. Suppose that R is the leader, and he gets
a quorum of 3 messages from Ry (itself), R;, and Rs. From these three
messages he is to do an intersection. In this case the intersection is the same
as what Ry itself has in Figure 3.8(a). R, will propagate this intersection
to the whole RSM by broadcasting a BATCHCOMMIT. However, suppose that
Ry gets its own BATCHCOMMIT message, and then crashes, and this occurs
before it has a chance to send the BATCHCOMMIT to any of the other replicas.
At this point, a new leader will be elected. Suppose that R; is the new
leader. R; will request the last BATCHLEARN messages for any outstanding
batches, and any BATCHCOMMITs if possible. If it sees a BATCHCOMMIT
for an outstanding batch, then it can do a retransmission of the message
since this implies a previous leader having committed. If it doesn’t see any
BATCHCOMMITS then it has to use the supplied BATCHLEARN messages from
the remaining replicas Ry, Rs, and Rj3.
The new leader R; will wait for the BATCHLEARN messages for the out-
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Figure 3.9: The intersections computed by the old leader and the new leader,
which is then sent to the RSM in the form of a BATCHCOMMIT message.

standing batch. When it receives them, it could take the intersection and
send a BATCHCOMMIT. But note that if it does this in the case of Figure 3.8,
it will commit a different intersection as shown in Figure 3.9.

If the old leader executed the intersection shown in Figure 3.9(a) and
crashed before propagating this information to any of the remaining replicas,
the new leader will send a BATCHCOMMIT for its intersection shown in
Figure 3.9(b). The old leader will have executed Vj, V5, V3. The new
leader will have executed Vy, V1, Vs, V3. Thus, the system can get into an
inconsistent state. How can this problem be solved?

To solve this problem we need to understand better why the problem
occurs in the first place. To make the solution easier to understand we
introduce a conversion from batches to sequences. The sequences are not
used in the implementation, and are merely a tool to simplify the explanation
of the problem.

To convert a batch to a sequence is simple. The sequence starts out
as an empty vector, and for each of the clients in the batch, we add this
client’s requests to the end of the sequence. In the case of Figure 3.9(a)
this would yield the sequence (14, , V2, V3). For Figure 3.9(b), however, the
sequence would be (Vp, V1, Va, V3). This formulation highlights the problem:
The original leader executes the former sequence and the sequence contains
a missing request. By hopping over the missing request, the leader allows
the future leader (when the older leader crashes) to possibly receive a
different quorum resulting in the latter sequence. This sequence contains
the previously missing request, resulting in inconsistency. One might argue
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Figure 3.10: The problem case for which we need a larger quorum size. The
batch information sent from each of the three replicas to the leader (Ry).

that if the old leader crashed, this won’t be a problem. However, because of
asynchrony we cannot distinguish between a slow old leader and a crashed
one.

The first step to coming to a solution is to not allow the replicas to hop
over missing requests like this. This can be done by simply having the leader
send a BATCHCOMMIT for a sequence where no missing requests exist. This
can be computed by going through the batch by each request, one by one,
adding requests to the sequence until a gap is found. At the gap the leader
must stop and no further commands can be executed. In this case the leader
would be able to commit for V{, only since the next request is missing. Note
that we could also do a round-robin execution pattern where we execute the
first request for every client, then the second, and so on. This would result in
Vo and V5 being accepted before the gap stops us.

The second thing that needs to be done to solve the view change problem
is to increase the size of the quorum. We will now need 3f + 1 replicas to
handle f failures. This is needed for a similar reason to why Fast Paxos [14]
needs a larger quorum.

To see why this is the case, consider the following example shown in Fig-
ure 3.10. Suppose that the leader (Ry) receives a quorum of BATCHLEARNS,
executes something, and then crashes before informing the others about this
with a BATCHCOMMIT message.

The new leader has to figure out what was possibly executed in this case,
but with just the information provided by R; and Ry, the new leader can’t
be sure what was executed. It could be that the leader had the same as R,
as shown in Figure 3.10(a). However, it could just as well have been that
the leader had the same as Rs. In the former case, the leader would have
executed (Vp, V2, V3) and in the latter case (Vj, V1, V2). So using a normal
quorum of 2 f + 1 replicas is not enough, and we need to increase it to 3f + 1.
This is similar to how in Fast Paxos the leader could have committed a value
and crashed, and during the view change the new leader receives multiple
different values in the PROMISE messages [14].

To explain how to solve this problem, we will switch back to using
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Ry|A B C _
Ri|A _ CD
Ry |A _ C _
Ry |A _ _ D
Ry | A D

Table 3.5: The quorum of sequences received by a potential new leader in the
case where 3f + 1 = 7. The _represents a missing value in the sequence.

Ri|/A _ CD
Ry|A _ C _
Rs|A _ _ D
Ry | A D

Table 3.6: The sequences left after throwing out Ry’s sequence due to not having
at least f + 1 = 3 B values. Note that this also causes the amount of Cs to go
below the f + 1 = 3 threshold needed for it to stay in the prefix.

sequences to make the concept simpler. Suppose we let f = 2, in which
case we need 3f + 1 = 7 replicas to support two failures. Furthermore
suppose that the leader crashes, and the new leader receives a quorum of 5
BATCHLEARN messages containing the sequences shown in Table 3.5.

What we can do is count the values in each column of Table 3.5. We
start with the first column, and see that we have 5 As, which is greater than
f+ 1 = 3, so this value could have been executed by the previous leader.
We then move on to the next column, and we see there are 4 missing values,
which is greater than 3 as well. However, there is a single B in Ry’s sequence,
but this could not have been executed by the previous leader, so we throw
Ry’s sequence away, leaving us with Table 3.6.

We move on to the next column in the new table after throwing Rg’s
sequence away. We now see that previously there were 3 Cs, enough to say
that the previous leader could have executed C. However, with the updated
table, there are only 2 Cs, which is not enough for the leader to have executed
it. When we get a count for a value less than f + 1 = 3 we stop the algorithm.

In this case, we have found that the maximum prefix that the leader
could have executed is (A, ). This can then be converted back into a batch
form and sent as a BATCHCOMMIT to the rest of the RSM while maintaining
consistency with the previous crashed leader.



Goxos

The Goxos framework [11] — a framework for building Paxos-based RSMs —
was designed during the Fall 2012 semester and improved as a part of this
master’s thesis. This framework forms the core of ACROPOLIS, providing it
with abstractions to implement all of the necessary features.

In this chapter, we will discuss the Goxos framework in more detail, in-
cluding some of the interesting design goals that we had. In addition, we will
discuss some of the implementation details concerning the Go programming
language which was used to implement Goxos. This content is adapted from
a project report completed in the Fall 2012 semester co-written with Tormod
Erevik Lea [11].

4.1 Motivation

The Goxos framework was initially created to provide a simple base upon
which many of the Paxos variants can be built on. It is also meant to be
used as a test-bed for testing and benchmarking the different algorithms
and optimizations. This means that we need to provide the abstractions
necessary to expressively create these Paxos variants. Things like networking,
inter-process communication (IPC), client handling, failure detection, and
leader election need to be abstracted away.

These goals go hand in hand with one of the Tidal News project’s [27]
goals of researching possible fault-tolerant publish-subscribe (pub-sub) archi-
tectures. In cases like this, the Goxos architecture can be put to good use for
research and testing.

32
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4.2 The Go Programming Language

The Goxos framework is created using the Go programming language, de-
signed and created in 2007 by Google, but didn’t become publically available
until 2009 [24]. Go is licensed under a BSD-style open-source license, allow-
ing anyone to view and modify the code [25].

Go is a compiled language, and aims to be very efficient — both in terms of
developer efficiency as well as the generated machine code. Go also provides
very easy to reason about concurrency primitives. While other languages
use locking primitives such as mutexes, semaphores, or condition variables
to synchronize between threads, Go takes inspiration from communicating
sequential processes (CSP) [9].

In CSP, there are many processes executing at the same time, and they
can communicate with one another through the use of channels [9]. Go
takes the same approach, but refers to these processes as goroutines which
communicate and synchronize with one another by sending messages through
channels [24].

4.3 Modularization

As software grows and gets more complicated, one of the best techniques to
manage this is by using a modular approach [18]. By doing this, you benefit
greatly by separating your concerns which allows you to reason more easily
about what the system is actually doing. In addition to this, a modularized
system aids in debugging and testing since modules can be debugged and
tested separate from one another. However, the amount of modularity has to
be limited, because over-modularization can be a problem.

When it comes to frameworks that are based on RSMs, performance is
one of the most important attributes. By creating a modular framework, it
allows easy testing of performance of different optimizations to the Paxos
protocol as well as easy testing of different Paxos variants. This can be done
simply by plugging in different modules with optimizations or other features
and doing a performance analysis.

There are three main modules that make up the Goxos framework, each
of which is subdivided further into separate files. The three modules are the
Paxos module, the network module, and the liveness module. The Paxos
module is responsible for handling all of the Paxos communication. For
example, the Paxos module handles all of the PREPARE, PROMISE, ACCEPT,
and LEARN messages that are received over the network. The network module
is responsible for the sending and receiving of messages over the network.
Finally, the liveness module is responsible for doing failure detection of
other replicas as well as leader election, which is does by using the network
module to send and receive HEARTBEAT messages. A basic overview of how
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Figure 4.1: A partial view of the architecture of a single node of Goxos where
each separately colored layer is a module and each entity is a separate actor in
the system, sending and receiving messages. Each arrow represents a commu-
nication channel between two modules.

the system is designed is shown in Figure 4.1.

While Figure 4.1 might suggest that Goxos and the Paxos module go
hand in hand, it is not true. In the case of ACROPOLIS, the Paxos module
can be replaced with the AcropoLIS module which handles a different set
of messages such as shown in Figure 4.2. This simple method of extending
the Goxos framework to handle different Paxos variants or possibly even
other distributed algorithms altogether is one of the shining examples of how
important modularization is for an RSM framework.

There are many benefits to designing software while taking a very mod-
ular approach, including the ease of which the system can be extended in
the future by adding more Paxos variants and optimizations. One of the
trademarks of RSM frameworks is the fact that many things are happening
at the same time which tends to require the use of concurrency. By keeping a
very modular design, it helps to reason about the code in a way that would
be very difficult in a flat file-based architecture.

4.4 Concurrency Approach

Paxos requires many things to be occurring at around the same time. The
protocol must be running while the leader elector and failure detector are
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Figure 4.2: A partial view of the architecture of a single replica of Goxos when
running with the ACROPOLIS module instead of the Paxos module.

running. It needs to be handling the connections between replicas as well
as from clients to replicas. As well as being necessary, modern processors
can benefit from concurrency due to the prevalence of multi-core computing
these days.

The Go programming language provides us with goroutines, which are
basically very lightweight threads. We can spawn off different goroutines
for different modules in our system, and the Go scheduler will take care of
everything for us.

Due to the need for concurrency in our framework, we also need a way
to coordinate between the different goroutines. For example, the Paxos actor
goroutines displayed in Figure 4.1, as well as the ACROPOLIS actor goroutines
in Figure 4.2, need to communicate with the network goroutines in order to
send and receive messages from other replicas and clients.

The Go programming language gives us the ability to efficiently and
easily communicate and synchronize between the different goroutines in the
system by using channels. A channel is a method of performing inter-process
communication. When two goroutines are spawned off, they can both be
given a reference to a channel. One of the goroutines can put data onto the
channel, which can then be retrieved by the other goroutine. The channel
abstraction allows easy concurrency without having to worry about the
traditional concurrency methods such as locks or semaphores.

It should be noted that this approach of using concurrent threads or
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Figure 4.3: The Paxos modules must register their interest in certain types of
messages upon start up. Then when a message of one of these types is received
over the network, the network module knows which modules are interested and
can deliver them to the correct location. In this case, the dotted lines represent
a method call on the demuxer.

goroutines and channels to communicate between them is not a new con-
cept, but instead a renewal of an old concept. These ideas are based on
communicating sequential processes originally described in the 70s [9].

4.5 Network Communication

Each Goxos replica needs to communicate with the outside world, whether it
be with external clients or to other replicas within the RSM. The sending and
receiving of information is one of the most important parts of any distributed
system.

The network communication is split into two different modules: One
module to handle traffic for inter-replica communication, and one for han-
dling per-client connections. The inter-replica communication is handled
by the network module, which consists of sender and demuxer submodules.
Client communication is handled by the client handler module.

But how do these messages get to the correct destination? Using Go’s
reflection capabilities allows each module to register interest in a certain
type of message when it is initialized. This is shown in Figure 4.3 where
the Paxos modules register their interest with the demuxer. The same thing
would occur in ACROPOLIS where the batch acceptor would register interest
for BATCHLEARN and BATCHCOMMIT message types.

Before the messages can be delivered, however, they need to be sent on
the network. To send them on the network, they have to be serialized to some
binary format. This serializing and deserializing is handled by the sender
and demuxer modules. When a message is to be sent onto the network, it
is given to the sender module, who then encodes the message using Go’s
own serialization format called gob encoding [24, p. 363]. The demuxer
then reads these serialized values, deserializes them, and passes them to any
interested parties.
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This works fine for the inter-replica communication, but client commu-
nication is sufficiently different to warrant a separate design, and this is
done by the client handler module. This module is responsible for receiving
requests as well as sending replies back to the client.

Each client in the system must have a unique ID so that Goxos can
differentiate between requests from different clients. To do this, when a
client starts up it generates a unique ID using a cryptographic hash function
approach similar to the one seen in [13]. Once this is done, the client does
a handshake with Goxos, and assuming all of this goes as planned, then a
new goroutine can be spawned to handle the network communication for
this client.

Client communication could use the same approach for the inter-replica
communication whereby each request from the client is encoded using the
gob encoding. However, this assumes that each client will be built using the
Go programming language as well, which isn’t necessarily true. It makes
more sense to take a language-agnostic approach where the client can be
written using whichever languages are available. To support this in Goxos,
the network communication between Goxos and any clients must use a
serialization library that is available for many different languages. One such
library is Google’s protocol buffers. Libraries for serializing to and from
protocol buffers are widely available for many different languages, so the
client can be written in any language that supports protocol buffers.

For Paxos, the client only connects to the leader of the RSM, since the
leader is responsible for sequencing the commands from clients, it would
make no sense to send the command to the whole RSM. It does this by
connecting to the first replica in the configuration file, and waiting to see
if it gets a redirect reply from this replica telling it to connect to a different
replica which is currently the leader. However, in Fast Paxos [14] as well as
ACROPOLIS, the client needs to connect to every replica in the system so that
it can broadcast to the RSM.

4.6 Liveness

While the original descriptions of Paxos [15, 16] assume that there is a single
coordinator or leader of the system who is responsible for handling client
requests and getting them accepted, there is no description of how the leader
is actually selected.

The failure detection Goxos employs is based on heartbeats. One of
the central parts of the liveness module is the heartbeat emitter, which is
responsible for — as the name implies — sending heartbeats out onto the
network to every node. It does this periodically using a timeout. These
HEARTBEAT messages are used by the failure detector module to tell whether
or not a replica may have crashed.
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The failure detector (FD) is responsible for detecting failures of replicas
in the RSM, which is computed based on the aforementioned HEARTBEAT
messages which are sent and received. The algorithm used for failure detec-
tion is based on the eventually perfect failure detector, also known as ¢P
described in [4, p. 53]. The FD module is responsible for informing the leader
detector (LD) module when a replica hasn’t been heard from within a certain
amount of time. It does this by sending SUSPECT messages to the LD module
when the FD suspects a replica may have crashed. It is possible, however,
that the FD suspects a replica has crashed when it actually hasn’t. This can
occur due to a temporary increase in network latency. In this case the FD
will issue a RESTORE message to the LD module telling it that a replica has
come back online.

The leader detector module uses an algorithm based on the monarchical
eventual leader detection algorithm explained in [4, p. 57]. This algorithm
implements (2, a leader detector scheme where eventually all replicas trust
the same node as being the leader. The way it works is, if the leader detector
gets a SUSPECT message for the current leader of the system, it will elect
a new leader. The new leader will be selected based on its rank (which is
predefined based on the ID of the replica), and the highest rank node that is
currently alive will be the one elected.

Other modules in the framework can notify the leader detector that they
are interested in receiving information about which nodes are elected. In
particular, the Paxos or ACROPOLIS modules are required to know who the
current leader of the system is, so that they are aware of what their current
role in the system is.

4.7 Application

A replicated state machine framework is usually implemented with a certain
application in mind. The RSM itself is used to ensure consistency between
each of the replicas without having to worry about any application-specific
details. Some implementations of RSMs take a monolithic design approach
where the application is built into the actual RSM code. This may have
some performance benefits, but also suffers from the application code being
tightly coupled to state machine code — which can limit the flexibility of the
framework [18].

Goxos achieves the decoupling between application and RSM by making
Goxos a library. Anyone interested in creating an application which has RSM
backing can simply include the Goxos library in their code and write their ap-
plication using the interface provided by the Goxos library. In Go terminology;,
the application must implement an interface containing an Execute ([Jbyte)
method. This interface can be passed to the actual Goxos server who can call
this method on the application whenever a command is decided. Note that
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the method takes a byte array as its parameter. This furthers the decoupling
between the application and the replica, since the application must interpret
the byte array however it wants while the application doesn’t need to worry
about this application-specific data that has been decided upon by the RSM.



Implementation

In this chapter, we will discuss some of the implementation details that went
into building AcroPOLIS. Since Goxos is made of two distinct parts, the
client and the server, we will start by discussing the implementation of the
client. Then we will discuss some of the non-trivial details surrounding the
implementation of the server.

5.1 Client

The client-replica interaction in ACROPOLIS is sufficiently different to warrant
talking about some of the interesting difficulties that were run into during
development. The two problems had to do with making the client interaction
asynchronous as well as the maintenance of connections.

5.1.1 Futures

Many Paxos-based RSMs use a synchronous client-server communication
model [12, 13]. This means that the client sends a request, and awaits a
reply from the RSM before it sends any further requests. This works well for
Paxos since a request from the client should be tied to an instance and the
agreement protocol will initiate right away. Once the agreement protocol is
concluded, the reply can be sent back to the client.

This synchronous client-server model (shown in Listing 1) doesn’t make
any sense for ACROPOLIS, since the request reception at the replicas is decou-
pled from the actual agreement protocol. The reception of a request doesn’t
necessarily initiate the agreement protocol — unless the maximum batch

40
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size has been reached. Otherwise the agreement protocol of ACROPOLIS is
initiated by a timeout due to inactivity in the system.

func (c *Conn) SendRequest(req [lbyte) ([lbyte, error) {
var request = c.genReq(req)
var resp gxc.Response

// Send request ...
// Block until response ...

return resp.GetVal(), nil

}

Listing 1: The method signature for sending requests used by Paxos clients. The
response is returned directly from the method. This synchronous method of
sending requests is not applicable for ACROPOLIS.

If we have N clients in the system and we assume the maximum batch
size is greater than N — which should usually be the case — each client will
only get to send a single request per timeout. This is due to the fact that each
client will send a request, and wait for a reply to it. The batch, however, will
never fill up so a timeout will eventually be triggered, producing a response
to the requests. This will continue ad infinitum, hindering the performance
of the system.

The solution that ACROPOLIS takes is to use futures [2]. A future repre-
sents a parallel computation that returns a result. In Goxos, when a client
sends a request, the send procedure returns a result — the response from the
RSM. To make this work with ACROPOLIS, the send procedure doesn’t return
the response, but instead returns the future of the response. Furthermore,
it stores the future in a map which maps from sequence numbers to futures
so that the response can be inserted into the future later. A code snippet
showing the creation of a future for a request is shown in Listing 2.

Representing futures in Go turns out to be very simple: A future is nothing
more than a buffered channel of size one. When a client sends a request,
instead of waiting for the response from the RSM, a future is returned by
the client library. When the client wants to access the future and obtain
the actual response, it is a normal receive operation on the channel. This is
shown in Listing 3.

The client futures are created by the sending procedure, but how are they
filled with the actual response? The client library, when the connections are
made to the replicas, also spawns a goroutine handling data coming from
the replica. This data is deserialized as a response, which has a sequence
number associated with it — the same sequence number in the initial request.

Listing 4 shows how the worker goroutine handles each connection to
the replicas and receives responses which it then delivers to the future so
that the client can access it.
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type ResponseFuture chan Responselnfo

func (a *AcropolisConn) SendRequest(req [lbyte) (error, ResponseFuture) {
var request = c.genReq(req)

1
2
3
4
5
6 // Make buffered channel of size 1

7  future := make(ResponseFuture, 1)

8

9 // Register this future for later access

10 a.futures[request.GetSeq()] = future

11

12 // Send request ...

13

14 // Return future rather than watit for response
15 return nil, future

16 }

Listing 2: The interface for sending requests in ACROPOLIS, used by clients.
Note the return value is different from Listing 1. While this one returns a
future for a response not yet received, while Listing 1 waits for the response
right after sending.

// Get future for this command sent to the RSM
err, future := g.SendRequest([Ibyte(cmdString))

// Adccess future to get walue - may block if not ready yet!
resp := <-future

Listing 3: How futures are actually used on the client-side. A future is returned,
which can then be accessed. This may cause a blocking operation if the response
isn’t yet asynchronously received by the client library.
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// Read response from socket
var resp gxc.Response
err := read(conn, &resp)

/.

// Get future
future := c.futures[resp.GetSeq()]
senttime := c.send[resp.GetSeq()]

// Fill 4t with the response

future <- ResponseInfo{
Value: resp.GetVal(),
SendTime: senttime,
RecvTime: time.Now(),

}

Listing 4: A portion of the code involved with the worker goroutine for con-
nections to the RSM. The response is read off the connection, and then the
sequence number is used to look up the future associated with initial request.
This is filled with the response value, as well as information about when it was
sent and received.

5.1.2 Connections

In regular Paxos-based RSMs, the client only needs to maintain a connection
to the current leader of the system. This is due to the fact that the leader is
responsible for attaching the commands to an instance number and beginning
the Paxos protocol in order to get the command accepted by the state machine.
The leader is also responsible for replying to the client with a response
once the command has been executed. So, there only needs to be a single
communication channel between each client and the RSM.

In Goxos, a client connects to the first IP address in the configuration
file. It could be that this IP address represents the current leader replica. In
this case, the client connection is created and requests can be sent through
the connection. It could be possible that the IP is not the leader, in which
case the client will receive a redirect notification from the replica telling it
who the current leader is and the IP of that replica. The client can then
successfully connect to the leader replica and begin issuing requests.

However, for ACROPOLIS, the client communication pattern is a bit differ-
ent. Each client has to broadcast their requests to the RSM, since the client is
responsible for disseminating the data to each of the replicas.

In order to modify Goxos to handle broadcasts from clients, the client
handler module had to be changed to allow connections to all replicas even
if the replicas are not the leader.
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Replica Batch 0 Batch 1

Ry 0,10]  [11,15]
Ry 0,8 [9,12]
Ry 0,5 [6,10]

Table 5.1: Two consecutive batches showing the ranges of a single client at each
of the three replicas making up the RSM.

5.2 Replica

Now we can discuss some of the more complex tasks involved in implement-
ing ACROPOLIS from the point of view of the replica.

5.2.1 Intersection

One of the most important roles that the leader has in ACROPOLIS is comput-
ing the intersection of all of the received client ranges. The most obvious way
to do this is to have each of the replicas send the client ranges for all clients
from whom they have received new requests from since the last trigger.

However, this can lead to problems if one of the replicas receives a
client’s requests before the other replicas in the RSM. Take, for example, the
following table containing range information for two consecutive batches
shown in Table 5.1.

Note that the leader can do a successful intersection operation on each of
the ranges for this client in batch 0. The intersection will be computed as [0, 5]
since that is what all of the replicas are guaranteed to have seen. However,
on progression to the next batch a problem occurs. The computation of the
intersection for this batch will produce the empty set, (). The ranges for Ry
and R; have [11,12] in common, but intersecting this with the final range
from Ry produces () since they are totally disjoint.

Because the intersection computation for batch 1 produces (), nothing for
this client will get executed. This doesn’t, however, mean that the client will
never get any commands executed in the future. It is possible in batch 2 that
the intersection produces a valid range instead of the empty set. However,
because of the empty set in batch 1, it is possible for some of the commands
to be lost, and the client will have to retransmit them with new sequence
numbers to get them accepted.

One method to solve this is to use implicit ranges instead of explicit
ranges. When the leader sends a BATCHCOMMIT message, it is informing
the RSM what the actual intersection of the ranges were. The replicas can
store this information and send ranges starting from the end of the range in
the previous batch. In Table 5.1, the intersection for batch 0 is computed as
[0, 5], which the leader will propagate to the other replicas. So, when the
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other replicas trigger the next time, they will know to start their ranges from
5+ 1 = 6 instead of what they sent in the previous batch.

In fact, the replica doesn’t even need to send an explicit range in this
form, since the start of the range is no longer needed. Each replica can simply
inform the leader of the end of the range for all clients that it has received
from since the previous batch. Using this approach, the actual intersection
computation is simple: Find the minimum endpoint for each of the implicit
ranges given in all the BATCHLEARN messages for each client.

5.2.2 Batchpoints

One of the other interesting problems solved is the batchpointing done by
the leader. This also ties in with the previous problem of computing the
intersection. The leader needs to keep track of batchpoints in order to have
a picture of what the global RSM state is.

The batchpoints are also used to ensure that the servers are moving in
lock step with one another, and to check that the potentially new batchpoint
location is valid — that it is not the same as the previous batchpoint.

Batchpoints are computed passing the information about the intersection
to the batchpointer structure. This structure is dedicated to handling and
keeping track of all of the batchpoints.

func (bp *BatchPointer) TryBatchPoint(nbp map[stringluint32)
(bool, RangeMap) {
/7
}

Listing 5: The signature for the TryBatchPoint method, the central method in
computing batchpoints.

When actually computing the batchpoints, there are two cases that can
occur: The first case, when the batchpoint to be computed is BP,, the first
batchpoint. The second case is when we are computing BP; for some i > 0.

if len(mbp) > 0 {
bp.BatchPoints = append(bp.BatchPoints, nbp)
return true, makeRangeMap1l (nbp)

} else {
return false, nil

}

Listing 6: The first case when computing a batchpoint. In this case, all that
is done is check that the intersection given to us (nbp) allows us to extend the
batchpoint, and add the batchpoint to the list of batchpoints. Finally the ranges
are returned that describe the newly created batchpoint.
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Note that in Listing 6 the value returned from TryBatchPoint is a range
map, expressing the ranges for the batch. This is due to the fact that the
ranges are what is required to send in the BATCHCOMMIT message. Now we
can look at the second case, where there exists a previous batchpoint. In
this case, we have to use the previous batchpoint and the potentially new
batchpoint to create the ranges.

// Get the previous batchpoint

last := bp.BatchPoints[len(bp.BatchPoints)-1]
grtr := make(BatchPoint)

// Whether or nmot a batchpoint should be created
rmable := false

for cid, hs := range nbp {
phs, exist := last([cid]
if ltexist {
// New client, should batchpoint
grtrlcid] = hs
rmable = true
} else if hs > phs {
// 0ld client, but intersection contains greater than previous
grtr[cid] = hs
rmable = true
} else {
// 0ld client, with no growth
grtr[cid] = phs
}
}

// If we detect that we should batchpoint, then do it
if rmable {
bp.BatchPoints = append(bp.BatchPoints, grtr)
return true, makeRangeMap2(last, grtr)
} else {
return false, nil

}

Listing 7: The second case, where previous batchpoints exist. We must check
that at least one of the clients in the intersection expands the batch. In other
words, it ensures that the new batchpoint is strictly greater than the previous.

5.2.3 Triggers

One of the most essential parts of ACROPOLIS is the batch trigger. There are
two ways for a batch to be triggered: Either a timeout occurs due to inactivity,
or the maximum batch size was reached. While it seems trivial to implement,
there were some difficulties in implementing them in Go.

The main problem with using batch triggers is that there are two types,
and it is possible for one of them to trigger right after the other. For example,
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if the maximum batch size is reached, and we create a batch, then it is
still possible for the timeout trigger to occur right after. This is a problem,
since the timeout trigger should only be used after a period ¢ milliseconds
of inactivity in the system, and since we just created a batch there is no
inactivity.

What would make more sense is that the inactivity timeout should only
occur at least ¢ milliseconds after the last batch trigger occurred. This way;, if
a batch is triggered due to a maximum size being reached, then a timeout
cannot occur for another ¢ milliseconds after this.

Implementing the naive approach where we don’t have to worry about
when the timeout triggers occur is simple: Maintain a counter which counts
how many requests we have received. If this hits the maximum size of a
batch, then we do a batching operation. We also maintain a timer which
expires after ¢ milliseconds. When this happens, we try to do the same
batching operation — if there are requests available to be batched.

Go provides a ticker structure, which creates a separate goroutine and
returns a channel which it uses to send a tick value every so often. By reading
from this channel synchronously, we can use it to perform an operation every
t milliseconds. However, there is no safe way to reset the ticker so that the
problem discussed above doesn’t occur. To solve this problem we use plain
timers in Go.

func (ba *BatchAcceptor) Start() {
ba.registerChannels()
ba.resetTimer ()

go func() {
for {
select {
// ...
case <-ba.timeoutChan:
ba.handleBatchTimeout ()
// ...
}
¥
30O
}

func (ba *BatchAcceptor) resetTimer() {
ba.timeoutChan = time.After (ba.batchTimeout)
}

Listing 8: The reset timer procedure which uses Go’s time. After functionality.
The goroutine in Start is for handling incoming messages, in this case the
messages are received from the created timer channel.

As shown in Listing 8, the resetTimer method overwrites the previous
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timer channel. The timer channel can be read from, to figure out when to do
a batching operation. Note that these timers are one-shot timers that only
go off once. Thus in the handleBatchTimeout method we need to reset the
timer which will create a new channel and goroutine.

func (ba *BatchAcceptor) handleBatchTimeout() {
batcher := ba.batcher
// Try batching
batch := batcher.GetBatch()

if batch != nil {
// Batch was available, send a learn to the leader
ba.send(BatchLearnMsg{
Id: ba.id,
BatchId: batch.Id,
HSS: batch.HSS,
}, ba.leader)
}

// Start timer from beginning to avotd timeout right after
ba.resetTimer ()

Listing 9: The batch timeout procedure, which is responsible for checking if a
batch is available, and if so sending a BATCHLEARN message to the leader. Note
the end, where it resets the timer to avoid the problem discussed in this section.

5.2.4 Execution

Arguably the most important part of ACROPOLIS is the execution of the com-
mands. While seemingly simple, there are some snags that must be discussed.
Recall that the execution occurs when a replica receives a BATCHCOMMIT
message from the leader. The leader sends the ranges to be executed in this
message, in the form of a mapping from client ID to client range.

type ClientRange struct {
Start uint32
Stop uint32

}

type RangeMap map[string]ClientRange

Listing 10: The client range structure as well as the range map structure which
is sent from the leader to the RSM in the BATCHCOMMIT message.

The client range and the range map structures are shown in Listing 10.
Note that the range map structure is a type synonym for a Go map with the
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key being a string (the client ID) and the value being a client range. One
thing that must be kept in mind when dealing with Go’s maps is that they are
not sorted. So the order by which you loop over the map is non-deterministic
[26]. This causes problems if you want to loop over each client ID in the map
and execute the range for that client.

func SortedKeysRange(m RangeMap) [Istring {
ids := make([]string, 0)
for cid, _ := range m {
ids = append(ids, cid)
}
sort.Strings(ids)
return ids

Listing 11: Procedure for getting a sorted list of keys for a range map.

Solving the problem is done by first creating a sorted list of the keys in
the map as shown in Listing 11. Once this sorted list is created, we can loop
over each item in the sorted list, and use it to index into the map to get the
correct ranges ordered by client ID.

func (br *Batcher) ForEach(ranges RangeMap, fn func(client.Request)) {
ids := SortedKeysRange (ranges)

for _, id := range ids {
rng := ranges[id]
for i := rng.Start; i <= rng.Stop; i++ {
req := br.GetRequest(id, i)
fn(req)
}
}
}

Listing 12: Method which accesses the ranges in the range map in sorted order,
passing each client request in the range to a callback function.

Once the sorted list from the range map’s keys is created, executing the
ranges can be done simply by looping over the sorted list, accessing the
map with each of the lists elements. This gets us the correct range ordering,
and then we can use the range to access the client requests in the range,
passing each one to a callback function that does the actual execution of the
command. This is shown in Listing 12.

This sorting of range maps is necessary to ensure that each of the replicas
executes the ranges in the same order, which is likely not the case by default
since maps in Go are unordered [26].



Evaluation

In this chapter we will do an evaluation of the ACROPOLIS protocol, mainly
in two different settings: One setting is on a local area network (LAN), where
replicas are located closely together, allowing very quick communication
times. The other setting is a wide-area network (WAN) where the replicas
are very distant from one another — in this case located at various points
around the world. In both the LAN and WAN evaluations, the payload size of
client requests varies between around 10 and 15 bytes.

6.1 Local Area Network

In the first setting, we will evaluate the ACROPOLIS algorithm in the LAN
setting. This setting is where most traditional RSMs are used. In our case, the
replicas are located on different machines connected directly to one another
over a single switch.

6.1.1 Setup

These measurements and experiments are performed on the machines in the
Linux lab at the University of Stavanger. Each of the machines has the same
hardware, as shown in Table 6.1. Depending on the measurement, there are
between four and six of these machines in use, with each machine running a
single ACROPOLIS replica.

The clients making the requests are also running on the same machines,
though different machines than where the replicas themselves are located.
The amount of clients varies depending on the experiment.

50
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Operating System CentOS 6.4
Processor Intel 1.86GHz Core2 Duo
Network Card Intel 1GBps PRO/1000

Table 6.1: Hardware and software specifications for the machines used to run
the replicas and clients.

In experiments where only four replicas were required, the replicas were
run on the pitterl, pitter2, pitter3, pitter5 servers. In situations where
we require 5 or 6 replicas, pitter7 or pitter9 were also used respectively.

The clients were run on different machines. For example, if we wanted
to run 30 clients, then we would run 10 clients on three separate machines.

6.1.2 Throughput

One of the most important metrics when it comes to RSMs is the throughput
of the system, which is defined as being the total amount of requests which
are executed on the server per second. For these experiments we use 4
replicas. The minimum replicas we test is 4 due to the fact that it is the
minimum number we need in order to handle a single fault in the system.

Average Throughput vs. Number of Replicas
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Figure 6.1: Average throughput of the RSM in comparison to the number of
replicas making up the RSM. The higher the number of replicas, the more fault
tolerance. Average throughput computed with 45 clients each sending 2000
commands. Any ramp up or ramp down values were thrown away to give a
better idea about the typical throughput.

The first experiment was to figure out the relationship between through-
put and the number of replicas. The more replicas in the system, the more
fault tolerance we have, but usually this causes the performance of the sys-
tem to degrade due to the increased amount of messages needed. This is
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shown in Figure 6.1. The average throughput is computed by computing the
number of commands executed for each second during the run, and then
averaging this value over the number of seconds. In this case we see the
average throughput is 6632, 6092, and 5208 commands per second for 4, 5,
and 6 replicas respectively. As can be seen in Figure 6.1, it is a linear decrease
in the throughput of the system as we add more and more replicas.

One of the questions that came up while evaluating ACROPOLIS is how
tweaking some of the parameters, such as the batch size, would affect the
throughput of the system. This is answered with Figure 6.2. To test the affect
the batch size has on the throughput, we run the system with 4 replicas and
30 clients, where each client sends 2000 commands in total. We then record
the average throughput for different batch sizes.
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Figure 6.2: A plot of the average throughput of the RSM versus the size of the
batches. Run with 4 replicas, 30 clients, each client sending 2000 commands in
total.

In Figure 6.2 we see that the average throughput does seem to be de-
pendent on the size of the batch. Furthermore, there seems to be a sweet
spot in batch sizes, which makes sense. The larger the batch size, the longer
the replicas will have to wait to actually fill the batch, which will delay
the ACROPOLIS agreement protocol and thus lower the throughput to an
extent. If you decrease the batch size too much, then the replicas will reach
consensus and execute the commands faster, but the sizes of the batches —
and thus the sizes of the actual intersection — will be smaller, decreasing the
throughput. Therefore, the sweet spot for batch sizes should be calculated
for different settings.

In the case of Figure 6.2, the sweet spot is at a batch size of 300 requests.
With this batch size we got around 6821 commands per second throughput.

We can also take a look at one specific replica’s throughput in the RSM,
specifically for the case where we attempt to maximize the throughput by
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Figure 6.3: A plot of the throughput at one of the replicas, showing the stability
of the system in terms of the number of commands executed per second.

tweaking the batch size. We found in Figure 6.2 that for 4 replicas, the
optimal batch size is around 300. Figure 6.3 shows the throughput for
one of the replicas, with the initial ramp up occurring from 0 seconds to 1
second. The throughput then reaches a maximum of around 7000 commands
a second, and hovers around this point for around 8 seconds before ramping
back down due to the clients finishing their run.

One of the other tweakable parameters in ACROPOLIS is the batch timeout
period. We attempted to tweak this to figure out if there were any optimal
timeout periods, but in a LAN setting where the clients are sending commands
full throttle, the batch size will always fill up and no timeout triggers will
actually occur.

6.1.3 Latency

Besides throughput, one of the most interesting metrics is the latency of a
request. Also referred to as the round trip time (RTT), it measures the total
amount of time from when a client sends a request to when it receives a
response for the request.

If we take a look at the reported RTTs shown in Figure 6.4, we can see
the usual pattern expected with ACROPOLIS. The times form spikes in the
plot, which occur due to the fact that the RTT will be higher for requests
which get received at the start of a batch. Requests which come near the end
of a batch will have lower RTTs. This is due to the fact that these requests are
the ones that are closer to the actual batch trigger occurring. The requests
which come right after the batch trigger will have to wait for the replica to
receive enough requests to fill up the batch.

A lot of information can be gleaned from Figure 6.4. If we look at the
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Figure 6.4: The round trip times reported for a run with 6 replicas and 5 clients.
This shows the RTTs for one of the 5 clients.

lower valleys, these are RTTs for the requests that actually trigger the batch.
The upper spikes are the RTTs for the requests that are at the beginning of a
new batch. From the spikes we can even tell the batch size, in this case 100,
since the period between spikes is 100 commands. Also, the lower valleys
shown give us a clue about the actual time it takes the agreement protocol
to reach consensus. Since these valleys are at a height of about 10 — 15m:s,
this is approximately the time it takes for the leader to collect the required
amount of BATCHLEARNSs from the other replicas and commit the batch.
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Figure 6.5: The same setup as in Figure 6.4 except with 15 clients, each making
2000 requests to the RSM.

If we take a look at the same setup except with 15 clients as shown in
Figure 6.5, we see a few differences. The first difference one can note is that
the spikes are not as uniformly placed as in Figure 6.4. Instead of them being
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at a fairly uniform height, they are a bit less uniform. The same can be said
of the valleys. The reason for this is due to the increased load on the replicas,
who are handling more requests per second than with just 5 clients.

Round Trip Time & Time To Execution
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Figure 6.6: The same setup as in Figures 6.4 and 6.5, but with the time to
execution (TTE) metric included in addition the round trip time (RTT).

Increasing the number of clients to 30 yields even more interesting results
as shown in Figure 6.6. This figure also introduces the time to execution
(TTE) metric. While the round trip time (RTT) measures the period of time
between sending a request and receiving a response as observed by a client,
the TTE metric measures the time from which a replica receives a request
to the time just before it executes the request. We do not include the time
it takes for the application to execute the request in the TTE because this
depends on the type of application the RSM is running.

In Figure 6.6, we see the TTE is, in most cases, drastically lower than the
RTTs reported. The large spike at around the 1200 command is due to a
previous batch having a gap in it, which had to be filled by using the update
protocol discussed in Section 3.6. This caused the times for this batch, as
well as further batches to increase.

There is one question to be asked. What is making the RTT and TTE
times so different? It makes no sense that the difference between the RTT
and TTE is so high. So what is actually happening between the TTE and RTT
being recorded? At the replica side, after the TTE is recorded, we give the
command to the server to execute, generate a response, and respond to the
client. The most likely explanation for this difference is due to a bottleneck
in the server module or client handler module.

We can understand a bit more about the difference between the TTE and
RTT by looking at box plots [29] of these values for varying amounts of client
load. In Figure 6.7 we show a set of box plots for an increasing amount of
client load on the RSM. From this we can see that the bottleneck starts to be
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a hindrance at around a load of 20 clients.
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Figure 6.7: A set of box plots showing the variations in round trip time depend-
ing on the number of clients in the system. This was run with 6 replicas, and a
varying amount of clients from 5 to 60.

However, we can also take a look at the box plots for the TTE shown in
Figure 6.8. These plots confirm that the bottleneck problem starts occurring
at around a load of 20 clients. However, it also shows that the median time to
execution metric is relatively stable. The TTE median measurements starting
at a client load of 5 and increasing are 24ms, 18ms, 15ms, 34ms, 43ms, 41ms,
and 46ms. While the median does increase, it doesn’t increase as drastically
as the RTT does in Figure 6.7.
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Figure 6.8: Box plots for the time to execution, where the number of clients
varies from 5 to 60. Each client sends 2000 commands upon startup to each of
the 6 replicas in the RSM.

After running a linear regression test on the data used to make Figure 6.8,
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Batch Size vs. TTE/RTT
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Figure 6.9: A plot of the round-trip time (RTT) versus the time to execution
(TTE). Run with 4 replicas, 30 clients, each client sending 2000 commands in
total. The reported RTT and TTE times are averaged for each of the batch sizes.
The batch size is varying from 50 to 500 commands.

we found that the client load is a significant predictor of the TTE with the
equation 7' = 0.029¢+ 36.122 where c is the client load and T is the predicted
TTE for that client load. The p-value for this test is 2.2 - 10716, which is very
small. This tells us that there is a strong correlation between the dependent
variable T and the independent variable c.

One final interesting thing to look at is the relationship between the
TTE/RTT and the batch size, as shown in Figure 6.9. This figure reinforces
what we previously saw in Figure 6.3 where we looked at the average
throughput of the system for different batch sizes. This is backed up in this
figure as well, as we can clearly see that the sweet spot is around a batch
size of 300. This emphasizes the fact that the performance of ACROPOLIS is
highly dependent on tweaking the batch sizes for different network settings.

6.2 Wide Area Network

The second — and most important — setting is the WAN setting. In this setting,
we use Amazon EC2 virtual machines located at different areas around the
US. While traditional RSMs are usually deployed in a single data center and
connected over a LAN, more and more we are seeing consensus algorithms
being used in a WAN setting [7].

6.2.1 Setup

The measurements and experiments in this WAN setup are made using
Amazon EC2 instances. An EC2 instance is basically a virtual machine. Each



CHAPTER 6. EVALUATION 58

instance is located in a different part of the continental United States. In the
case of EC2, there are 3 availability zones in the US: Oregon (OR), Northern
California (CA), and Northern Virginia (VA). The real latency between these
locations is shown in Figure 6.10.
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Figure 6.10: The actual RTT (ping) from one of the replicas located in Northern
California to the two others. Not to be confused with request RTT in ACROPO-
LIS. These are generated by pinging the other replicas.

The times shown in Figure 6.10 are intuitive: Northern California and
Oregon are relatively close together, while the distance to Northern Virginia
is quite large.

Amazon has different classes of instances, in this case we are using the
t1l.micro instance tier. This tier allows us free use of any number of EC2
instances for 750 instance hours. While this instance tier doesn’t have the
best performance or bandwidth, they are still useful for getting an idea of
how AcropoLis would perform in a WAN setting.

The WAN replica setup is a bit different compared to the LAN setup. We
would like to run experiments with up to 6 different replicas, but with only 3
availability zones in the US, it isn’t possible to run all 6 replicas at different
locations. In order to solve this, we place more than a single replica at each
of the 3 locations. For example, if we want 6 replicas, then we put 2 replicas
at each location. If we want 4 replicas, then one of the locations will have 2
replicas, and the rest will have 1 replica.

6.2.2 Throughput

The first metric we measured in a WAN setting was the throughput of the
system. There were no really surprising results when looking at the through-
put for a single replica as shown in Figure 6.11. In this case there were 10
clients sending commands to the 6 replicas in the RSM. As expected in a
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WAN setting, the throughput is quite a bit lower than in a LAN setting. This
is explained by the higher latencies between the replicas.
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Figure 6.11: The throughput of our RSM in a WAN setup with 10 clients and 6
replicas. This shows the throughput at a single replica.

Also not surprisingly, the number of replicas affects the throughput of
the system. This is shown in Figure 6.12. With four replicas, we achieve
the highest average throughput with just over 1500 commands per second.
Both Figure 6.12 and the earlier Figure 6.1 illustrate that as you increase the
number of replicas in the RSM, the throughput will decrease due to the larger
quorum size as well as the increased amount of communication between
replicas.
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Figure 6.12: A comparison between the number of replicas in the RSM versus
the average throughput with that many replicas. We run 10 clients sending
2000 commands each.

We can also look at how the batch size affects the throughput of the
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system as we did in the previous section where we talked about the LAN
setting. This is shown in Figure 6.13. Compared to the LAN comparison
between batch size and throughput in Figure 6.2, Figure 6.13 shows that in
a WAN setting, a smaller batch size produces a greater throughput. As we
see in the plot, the average throughput is maximal with a batch size of 50.
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Figure 6.13: The average throughput of the RSM in comparison to the batch
size. These measurements were taken with 4 replicas and 10 clients sending
2000 commands each.

Why is it the case that a small batch size is better for WAN environ-
ments? Since the replicas aren’t exchanging the commands themselves in
the agreement protocol, it cannot be due to this. One explanation is that
the smaller batch sizes allow the clients to fill the batch quicker, since in a
WAN environment the client-replica communication is not as fast as in a LAN.
Another contributing factor could be that the update protocol is coming into
play. With large batch sizes, it is possible for the replicas to get more out of
sync, resulting in some replicas requesting updates which ultimately slow
down the average throughput of the RSM.

6.2.3 Latency

The second metric we will cover for ACROPOLIS in a WAN setting is the
latency of the system, in terms of the round trip time (RTT) and the time to
execution (TTE).

Figure 6.14 shows the RTT and TTE for a particular client as it is sending
2000 commands to the server. There are an additional 9 clients also sending
2000 commands at the same time, making a total of 10 clients. Similar to
with the LAN setting, we see that the RTT is significantly larger than the
TTE, due to the bottleneck discussed earlier. It is very useful to look at the
RTT and TTE data in the form of box plots and cumulative density functions,
which we will do next.
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Round Trip Time & Time To Execution
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Figure 6.14: The round trip time and time to execution for a single client in
a WAN setting. In this case, there were 10 clients sending 2000 commands to
each replica.

The box plots shown in Figure 6.15 show how big the bottleneck can
be, with the median RTT for 60 clients being around 4 seconds. In a WAN
situation the bottleneck still seems to manifest itself at around a load of
20 clients, the same as in the LAN experiments. But let’s look at the TTE
boxplots as well, which show that this isn’t actually the fault of the protocol.

The TTE box plots shown in Figure 6.16 show the time taken between
a command being received and the command actually being decided and
executed. For all of the client loads except 60 we see that the median load
is below 200ms, and in most cases is below 100ms. The median TTE for 45
clients, for example, is 84ms. In our WAN setup, the highest actual latency
(ping time) is to Northern Virginia, which has around an 86ms average ping
time. This suggests that, if the bottleneck in the response back to the client
is fixed, ACROPOLIS can provide RTTs that are reasonable in WAN situations.

6.3 Workloads

One thing that needs to be evaluated is how different types of workloads
affect the sizes of the batches that can be committed. This is discussed
in Section 3.7, where we explain why more needs to be done than just
computing the intersection of the client ranges. This section aims to evaluate
the difference between doing a simple intersection, and the more advanced
rule required to support view change. We will do this by evaluating two
different types of workloads.
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Figure 6.15: Box plot of the round trip time (RTT) for increasing amounts of
clients and request load. In this case there are 6 replicas spread out over the
Internet.

6.3.1 Full Throttle

In this workload, the clients fire their requests at the RSM full throttle,
without waiting any period of time between sending requests. As can be seen
in Figure 6.17, there is a lot of difference between the plain intersection and
the intersection needed to keep consistency during a view change (VC).

The plain intersection size tends to hover around 100, which happens to
be the configured batch size for this run. This can exceed the configured
batch size due to the fact that the leader’s last batchpoint could be lagging
behind. Now, take a look at the VC intersection sizes. In the best case, they
are the same as the plain intersection size, but usually they tend to be quite
a bit less. This is due to the fact that any jagged edges in the client ranges
collected by the leader need to be chopped off. If one client range is quite
large, and the others are small, then quite a few potential requests will be
lost in the VC intersection operation. This can result in an increased number
of protocol messages due to smaller overall batch sizes, and thus a slower
protocol.

6.3.2 Randomized

In this workload, the clients emulate real-world behaviour by waiting a
uniformly random period of time between sending requests. This type of
workload is shown in Figure 6.18. Note the stark difference between this
figure and the previous one, Figure 6.17.

While in the previous workload, the plain intersection size was hovering
around 100, but with quite a bit of variance, the random workload stays
exactly at 100 for the entire duration of the first 100 batches. Similarly, the
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Figure 6.16: Box plot of the time to execution (TTE) for increasing amounts of
clients and request load. In this case there are 6 replicas spread out over the
Internet. Note the smaller time axis range compared to Figure 6.15, specially
as the amount of client load increases.

VC intersection algorithm produces much cleaner results: Instead of the very
erratic behaviour with full throttle clients, the random waiting seems to make
the VC intersection sizes quite predictable.

One thing to note is that, due to the random waiting period after each
client sends a request, this throttles the client a bit, and allows nearly every
client to be a part of every batch. This explains why the VC intersection
size tends to change by factors of 20. In order to have a batch of exactly
100 requests, the replica would have to receive the same amount of requests
from every client. By consulting the log, we find out what is forcing the VC
intersection algorithm to max out at 80 requests. What tends to be happening
is a replica will receive 5 requests from every client except a few others who
only have 4 requests. This forces us to throw away the last request from all
the clients who the replica received 5 from. This gives us a total of 4 - 20 = 80
total requests.
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Figure 6.17: A visual description of the intersection sizes when doing a full
throttle workload with 20 clients sending 2000 commands. Each client sends
at full speed, with no waiting between each request. This figure shows the first
100 batches.
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Figure 6.18: A workload where the client waits a random amount of time
between sending each request. In this case, there were 20 clients sending 2000
commands. Each client sends a request, and then waits a random period of
time between 0 — 20ms before sending the next. This figure shows the first 100
batches.



Future Work

This section will discuss any possible future work that would be interesting to
research or look into in more depth. This includes things like optimizations
to ACROPOLIS, as well as variants to the basic ACROPOLIS protocol.

7.1 Optimizations

There are various optimizations that should be done. These range from
optimizations to the ACROPOLIS protocol or the structures used therein, to
changes to the Goxos architecture.

7.1.1 Protocol

One possible optimization has to do with the update protocol described
in Section 3.6. Currently, if a replica receives a BATCHCOMMIT message
for some ranges that it doesn’t have or only partially has, the replica will
broadcast a UPDATEREQUEST message to the RSM, requesting some of the
client requests that it is missing.

However, it would be better if the replica that is missing the commands
were able to choose a random replica to send this UPDATEREQUEST to. This
will minimize the number of messages that have to be processed as well as
balance the update load among all replicas in the system.

In order to do this, though, the replica who needs an update must know
which replicas were in the quorum that the leader received, and thus which
replicas are actually able to reply to the update for sure. There could be
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another replica also with a gap and it would make no sense to request from
this replica.

To solve this problem, the leader could include a list of replicas in the
BATCHCOMMIT that made up the quorum. Then the replica with a gap can
randomly choose one of these and request an update from them. If the
system is large and there are many replicas, it may be wise for the leader
to randomly choose one of the replicas that made up the quorum itself and
include just this single replica in the BATCHCOMMIT message.

7.1.2 Structures

Some of the structures should be optimized if ACROPOLIS is to be used in the
real world. Namely, the client log structure currently stores all of the client
requests throughout the lifetime of each replica. This results in quite a lot of
memory usage that isn’t really necessary.

In addition to the actual client log structures that exist, there is also some
duplication in keeping track of all the batchpoints as well as batches.

A technique such as snapshotting [6], a technique that is often used in
real world Paxos-based frameworks could be used. When a certain batch
B;1 is decided, a snapshot of the system state can be made and all previous
batches By, ..., B; can be garbage collected.

7.1.3 Goxos Architecture

The architecture of Goxos [11] could be changed to support ACROPOLIS
better. Currently, Goxos is built to support Paxos and its variants, but there
are various optimizations to Goxos that could be done to help with improving
the round trip times. The bottleneck discussed in Chapter 6 is one thing that
could be fixed. One possible method of fixing the bottleneck is to batch the
responses back to the client. Instead of sending individual responses to the
client handler module, all of the requests for each client in a batch could be
executed, and be sent back to the client as a group.

7.2 Adaptive Batching

There are penalties that requests have to pay if they are near the beginning
of a batch, or if not enough requests are received and we need a timeout to
trigger the batching operation.

It should be investigated how to minimize these penalties. One possible
approach is to use an adaptive batching method. One such way to do this
would be to start the maximum batch size at a certain value, and adjust the
value depending on what happens to the current batch.
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For instance, if the current maximum batch size is 100 requests, and
we actually timeout due to not receiving this amount of requests, then it
could be interesting to investigate how the performance of the system can be
improved by perhaps adaptively changing this value to half of the current
value, 50. Of course it would converge to something similar to the normal
Paxos algorithm if it keeps getting halved down to 1 for the maximum batch
size, so there would need to be adjustments in both directions: If we timeout,
then the maximum batch size should shrink, but if we get enough requests
to fill the batch, then it would be smart to increase the maximum batch size
as well.

There are a lot of possible methods for dynamically adjusting the size of
the batches. One simple method is to increase the batch size by a percent of
the current batch size if the current batch size is reached. In other words, if
for batch B;; the size for this batch is S; 1 = S; + pS; where 0 < p < 11is
the percentage of growth. If, however, we timeout then the current batch size
is too big for the current load on the system, and must be lowered using a
similar formula such as S;,; = S; — pS;. However, the growth and reduction
of the batch size should be limited to within a certain range so that it doesn’t
get too high or too low.

Another interesting possibility is to adaptively modify the timeout period
and batch size based on the amount of work being done by each replica.
For example, if a replica is experiencing a lot of client requests in rapid
succession, it could realize this and adaptively increase its batch size or
decrease its timeout. Metrics such as the amount of time it takes to execute
a request can be taken into account to adaptively tune these settings.

7.3 Byzantine Proposer Fast Paxos

As hinted at in previous chapters, the initial design and development of
ACROPOLIS came as a stepping stone to reach the ultimate goal of implement-
ing Byzantine Proposer (BP) Fast Paxos [19]. This variant of Paxos aims to
aims to handle misbehaving clients: Clients that are sending different values
to each replica, or clients that are trying to perform a denial of service attack
on the system.

AcropoLIs allows BP Fast Paxos to be developed with proposers at the
clients — in other words with client-proposers rather than separate clients
and proposers. However, ACROPOLIS currently only handles crash faulty
clients rather than malicious clients. The next step would be to integrate all
of the specifics needed for doing trust changes, as well as supporting using
cryptographic signatures or HMACs to verify that the clients are not lying.
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7.4 Byzantine Client ACROPOLIS

A preliminary version of ACROPOLIS had the support for detecting equiv-
ocating clients through the use of cryptographic hashes. This could be
implemented in the current version of ACROPOLIS as well, but there was in-
sufficient time due to a significant change in the protocol at the last minute.

One way to do this would be to simply include a hash along with the
client ranges in the BATCHLEARN messages and BATCHCOMMIT messages.
This hash value would be computed by hashing all of the client requests for
every client range in the message. Thus, the leader could detect whether any
of the replicas have seen any equivocation and disconnect the client from the
RSM.



Conclusion

This thesis presents new research in distributed systems, specifically related
to the consensus problem. Solving this problem is the key to implementing
replicated state machines (RSMs) using the state machine approach [23].
This research contributes the ACROPOLIS protocol, which is inspired by and
related to the Paxos algorithm by Leslie Lamport [15, 16]. ACROPOLIS can
be used to implement RSMs where each server is connected over a wide-area
network (WAN).

The research into ACROPOLIS started with the design of the protocol
itself, which was largely based on trying to solve a problem posed in a paper
describing Byzantine Proposer (BP) Fast Paxos, a variant of the Paxos protocol
that solves the consensus problem in spite of malicious clients and proposers
[19]. The problem was to push the proposer’s role in Paxos out to the clients.
Usually in Paxos, the proposer is responsible for serializing the incoming
client requests, but ACROPOLIS introduces a novel technique to avoid any
explicit serialization being done by the proposers.

The design of the ACROPOLIS protocol lead to an initial implementation
built on top of the Goxos [11] framework, which was built as a part of our
project course in the Fall 2012 semester.

The evaluation of ACROPOLIS shows that it is a viable solution, especially
when replicas are connected over WAN networks, as the time to execution
(TTE) metric is acceptably low. ACROPOLIS was evaluated on LAN, as well as
on WAN using Amazon EC2 with replicas located in each of the availability
zones in the US.

This thesis also discusses some of the future work that is available related
to ACROPOLIS, including optimizations to the protocol and the algorithms
that drive the protocol, as well as some variants to ACROPOLIS that could be
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implemented.

ACROPOLIS contributes a new way to look at implementing RSMs through
solving the consensus problem, while removing the bottleneck of the leader
associated with consensus protocols such as Paxos. Its specialty is achieving
consensus over WANs, and can be extended to handle malicious clients, or
used to implement Byzantine Proposer (BP) Fast Paxos [19].
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