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Summary and conclusions 
 

Gassco has developed a barrier KPI model. After some use, there was a need to evaluate the 

model. Delimitations have been made, and the aim with this report was to answer the 

following questions:  

 

1. Does Gassco‗s barrier KPI reflect learning from recent major accidents, or should 

more indicators be included in the model? 

2. Do changes in the barrier KPI model equal changes in the risk level? 

3. Is the information regarding failure rate in the model presented in an adequate way? 

 

The answers were mainly sought by studying a selection of previously major accidents, work 

done in other industries in regards to these subjects and performing sensitivity calculations in 

the model. The methods have limitations, but in a practical view they all seemed reasonable 

and they could all be performed within the given time period of this thesis. 

 

Similarities in several major accidents that have occurred in the time period 1998 – 2010 are 

that the underlying causes can all be addressed as management elements. These elements 

should be presented better in the barrier KPI model. Since Gassco‘s management is located at 

Bygnes, the model should implement an indicator placing Bygnes at the barrier KPI chart. 

This indicator should represent several management elements dealt with by the management 

in Gassco, as well as the work done to prevent a major accident within Gassco‘s portfolio.  

Implementing an indicator is not enough if the aim is to learn from previous major accidents. 

More effort must be put in trying to manage human factors; to have a `human factor 

manager`, develop a data base with experience data regarding human failures and work 

towards implementing the key element of a high reliability organisation.  

 

The barrier KPI model does not reflect changes in the risk level sufficient enough to be used 

as an indicator reflecting the risk level at a given installation. To improve the risk 

management in the organisation, the aim must be to have an updated risk overview at all times 

at a given installation. Work and effort in developing an experience database on human 

factors will give a hug benefit when developing a new QRA model, which take into account 

dependencies between barriers and changes in the failure rate. Also, the work done with the 

barrier KPI model will become useful. This should be the ultimate goal in the industry should 

be to have a more dynamic QRA model. A lot can be learned from the work done in the 

nuclear industry regarding human factors and in building a more dynamic QRA model. Such a 

model could give a risk indicator and a risk graph updated on a regular basis. This would give 

important information when trying to manage the risk within Gassco‘s portfolio. 

 

As of today, the failure rate of safety critical equipment is displayed as a 12 month moving 

average in the model. To calculate the trend, prevailing reporting period is compared up 

against the previous, to determine whether or not the failure rate stays unchanged or 

decreased/increased. The requirement to the failure rate is based on a probability distribution, 

and a 12 month moving average does not contain enough data to give a ―correct‖ picture of 

the failure rate. Changing the presentation of the failure rate to include all reported data in the 

model will give a more correct basis of comparison. One should use the Bayesian approach 

when aggregating the data, then it will make more sense to compare the failure rate to the 

requirement even if there are few reported data available. Presenting the trend as a 
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comparison between the failure rate reported the last 24 months and the aggregated value, will 

ensure sensitivity in the model.     

 

 

Chapter 1. Introduction 

1.1 Background 
 

In 2002 the Norwegian government introduced a new set of laws through the management 

regulations. Among other things, Operators were demanded to keep an overview of 

established barriers and their function. A complete overview of all non function barriers or 

barriers with impairment should be kept. In 2011 these regulations were also introduced for 

facilities onshore.  

 

Implementation of new regulations has contributed to innovative thinking in the oil and gas 

industry. Different projects intended to meet the new requirements have been carried out.  

Statoil started the project Teknisk Tilstand Sikkerhet – TTS (Technical Condition Safety) in 

the year 2000. This is a continuous process where all facilities are evaluated on a regular basis 

to ensure a high level of safety. The goals for TTS is to map conditions, build competence 

within technical safety, keep a focus on the risk for major accidents and follow the rules and 

legislations. ConocoPhillips has developed a comprehensive description of technical barriers 

trough their barrier panel concept 
[1]

. The barrier panel facilitates a performance measurement 

system for monitoring preventive maintenance activities and the barrier systems for all 

installations. The objective of the barrier panel is to establish an effective management system 

to secure control of barriers to prevent major accident. Other offshore companies have other 

initiatives, all with the same goal: to reduce the risk of major accidents. 

 

In 2008 Gassco started to work with the development of a barrier KPI model. The goal was to 

get an overview and control of all safety critical barriers, including inspection, maintenance 

and testing of safety critical equipment at installations within Gassco`s area of responsibility. 

 

1.2 Purpose 
 

The purpose of this thesis is to evaluate the Gassco barrier KPI model. The model will be 

assessed against lessons learned from major accidents occurring the last decade. A selection 

of major accidents and their investigation reports and studies performed subsequently, are 

thoroughly examined to determine what went wrong. Similarities in the accident sequences 

are then mapped and evaluated against Gassco`s barrier KPI model. The purpose is to locate 

any gaps between the model and lesson learned from previous major accident. If gaps are 

identified, suggestion on how to close them will be evaluated. The model should reflect 

lessons learned and ensure management focus on areas that are important to reduce the major 

accident potential.  

 

Afterwards, it is of interest to evaluate the connection between the barrier KPI model and the 

risk level at a given installation. Do changes in the barrier KPI model equal changes in the 

risk level? It is also of interest to evaluate the reported data already present in the model. Are 

they presented in an adequate way?  
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Trying to answer these questions a litterateur study will be carried out. The aim is to figure 

out how other industries have approached equivalent challenges. 

To summarise the purpose of this report: it is to evaluate the model and recommend how it 

could be further developed to reach its full potential.  

 

1.3 Problem description 
 

When evaluating Gassco`s barrier KPI model the following will be assessed: 

 

Does Gassco`s barrier KPI reflect learning from recent major accidents, or should more 

indicators be included in the model? 

 

Do changes in the barrier KPI model equal changes in the risk level? 

 

Is the information regarding failure rate in the model presented in an adequate way? 

 

These questions will be answered by studying what went wrong in a selection of major 

accidents which occurred in the last decade. The need new indicators and development of the 

model will be assessed and discussed. Sensitivities in the barrier KPI model will be evaluated 

and dependencies between the barrier model and the quantitative risk analysis (QRA) for a 

given installation will be assessed. A literature study will be conducted to get ideas on how 

the barrier KPI model can be further developed. Based on the reported data in the pilot tests, 

the 12 month moving average used when presenting the results in the model will be assessed.  

 

1.4 Delimitations 
 

Delimitations are necessary in every project. Clear delimitations give a good foundation for 

achieving a good result. Some delimitations fall naturally, while others must be set prior to 

start up. When working and focusing on a problem, elements that are not relevant must be 

excluded. Other limiting aspects are available time and the level of knowledge of the 

person(s) working on the project. 

Delimitations made in this report are:  

- only a selection of major accidents is reviewed. Another selection could have 

resulted in another outcome/conclusion. The chosen accidents have been 

thoroughly investigated and are well known 

- the sources related to an accident are often limited to one investigation report 

or one person‘s presentation/approach to the accident. There could be several 

aspects to the accidents that, for this reason, are not reflected in this report. 

- only the causes and barrier breaches in the accidents are presented in this 

report. There is limited focus in regards to the consequences for the 

companies/local society etc. involved in the accidents.   

- the description of the accidents varies due to the quality of the investigations 

performed 

- there are several things to evaluate in the barrier KPI, but this report is limited 

to evaluate areas described in chapter 1.3 

- reported data in the model will not be analysed, neither will the distribution of 

status/trend lights 

- it is not just the offshore industry that fails to learn, probably other industries 

do too. This will not be assessed or discussed in this report 
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- whether or not indicators already implemented in the barrier KPI model are 

good indicators or not, will not be assessed. Neither will the uncertainty 

regarding choosing and labelling of safety critical equipment 

- suggestions of new indicators are based on experiences of what went wrong in 

previous accidents. What could go wrong in the future independently of this is 

not evaluated 

- only personnel risk is presented in this report (not environmental and assets 

risk) 

- figures used are from an existing risk analysis, but the installation is 

mentioned as installation x due to anonymity 

- all risk calculations in this report contain the same amount of uncertainties as 

the risk analysis itself. The uncertainties are not listed and evaluated in this 

report due to the time limitation. Reference is made to the risk analysis 

performed for installation X 

- the risk calculations in this report are very simplified. The point is not the 

figures used, but the way they affect the result and the dependence 

- when assessing the sensitivity to the barrier KPI model, a selection of 5 

indicators is chosen. These are indicators that probably would contribute the 

most to increasing the risk level at an installation if they fail. 

- when calculating status values, all indicators other than the ones evaluated, are 

given a value that equals a green status. This is done to see how much the 

overall status will be affected if only indicators that contribute most to a 

higher level of risk change. If the installation status changes when the 

majority of indicators are green, the model is sensitive enough to reflect 

changes in the risk level. If the changes are not reflected in the overall status, 

the model is probably not sensitive enough to reflect the changes in the risk 

level 

- in the scenario where the distribution off all other indicators are set to 50% 

yellow and 50% green, the indicators with the highest weighting are given 

yellow value 

- only one emergency shutdown indicator and one deluge indicator are chosen 

to limit possible combinations (the model separates between emergency 

shutdown valve and logic and deluge valve and nozzle) 

- only one indicator with the weight 3 is chosen to limit the number of 

combinations. Only 4 of 18 indicators are weighted 3, so the delimitation 

seems reasonable 

- assessment of the 12 month moving average is only done for indicators that 

have status based on test data. The 12 month moving average used on number 

of inspection findings is not assessed 
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1.5 Report structure 
 

Chapter 1 - Introduction 

The introduction is contains background, purpose, problem description, 

delimitations and report structure as topic headings.  

 

Chapter 2 - Theory and regulation 

Chapter 2 explains terms such as barriers, indicators, risk and risk analysis. 

Prevailing regulations in the industry are also presented. The purpose with this 

chapter is to give the reader an introduction to the theory behind the subjects 

presented. Based on this chapter the reader should gain enough background 

information to understand the subsequent discussions in the following chapters. 

 

Chapter 3 - Gassco`s barrier KPI model 

Description of Gassco and the development of Gassco`s barrier KPI model are 

presented.  

 

Chapter 4 - Does the barrier KPI model reflect learning from recently major 

accidents in the industry? 

In this chapter recent major accidents are presented. The most important 

learning‘s from the investigation reports are emphasised. The aim is to see if 

the barrier KPI model reflects this knowledge. If not, in which areas could the 

model be further improved based on the learning from recent major accidents?  

 

Chapter 5 - Do the changes in the barrier KPI model equal changes in the risk level? 

The aim of this chapter is to see if there is dependence between the status given 

in the barrier KPI model and the QRA model at a given installation. The 

sensitivity for a selection of indicators in the barrier KPI model is assessed. 

How will the failure rate affect the input data in the QRA model? Is it possible 

to make a more ―dynamic‖ barrier KPI model? The 12 month moving average 

is also evaluated in this chapter.  

 

Chapter 6 - Discussion 

Choices made in the report and results from previous chapters are discussed. 

The discussion is divided into parts and is then summarized into one overall 

discussion. The discussion gives the basis for the conclusion. 

 

Chapter 7 - Conclusion 

The overall conclusion is made in this chapter. 

 

Chapter 8 - References 

An overview of sources and references used when writing the report is 

presented. The references are presented chronological and are marked as 

following in the report: 
[1],[2],[3]...etc

  

 

Chapter 9 - Appendices 

The appendices contain information regarding regulations, the barrier KPI 

model, previous major accidents and research done in the industry regarding 

indicators. The appendices are needed to create an independent document. 
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1.6 Terms and definitions 
 

Accident:  An unexpected and undesirable event resulting in damage or 

harm. 

 

Barriers:  Physical and/or non-physical means planned to prevent, control, 

or mitigate undesired events or accidents 
[2]

. 

 

Cumulative risk:  Related risks that increase in effect with each added risk 
[3]

. 

 

Deterministic risk   Risk evaluation involving the calculation and expression of risks  

assessment    as single numerical values or ―single point‖ estimates of risk, 

with uncertainty and variability discussed qualitatively
[4]

. 

  

Failure fraction (FF): The number of failures (x) divided by the corresponding number 

of test (n) 
[5]

. 

 

Human factors:  Environmental, organisational and job factors, and human and 

individual characteristics, which influence behaviour at work in 

a way that can affect health and safety 
[6]

. 

 

Indicator:  Measurable variable used as a representation of an associated 

(but non-measured or non-measurable) factor or quantity
 [7]

. 

In the KPI model, input data on the lowest level is denoted 

indicators. 

 

Management elements: A ―lump category‖ for non physical barriers. Interact with both 

preventive and reactive barriers an can be looked upon as 

barriers to follow up the physical barriers
 [8]

 

 

Non-conformities:   Failure to comply with requirements
 [9]

. 

 

Preventive barriers/elements: Measure to reduce the probability of a top-event to occur
 [8]

  

 

Proactive: Acting in advance to deal with an expected difficulty
 [10]

 

    

Procedure:    A given method to perform an activity 
[11]

 

 

Probabilistic risk:   is a systematic and comprehensive methodology to evaluate   

assessment   risks associated with a complex engineered technological 

system.  

Risk is characterized by two quantities: the likelihood and the 

consequence 
[12]

. 

 

Reactive barrier/elements: Measure to reduce the effect of a top event and to prevent 

escalation 
[8]

 
 

 

http://www.businessdictionary.com/definition/variable.html
http://www.businessdictionary.com/definition/representation.html
http://www.businessdictionary.com/definition/associated.html
http://www.businessdictionary.com/definition/quantity.html
http://en.wikipedia.org/wiki/Risk
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Risk:  Classification of the most probable consequences/losses and the 

most probable frequency of recurrence in connection with an 

undesirable event/condition 
[13]

. 

 

Risk analysis:  use of available information to identify hazards and to estimate 

the risk
 [14]

.  

 

Risk assessment:  Overall process of risk analysis and risk evaluation
 [14]

. 

 

Safety critical equipment: Safety critical equipment refers to all equipment defines as 

safety barriers which reduces the probability of a situation of 

hazard and accident occurring, or which limit the consequences 

of an accident 
[5]

. 

 

Seveso installation:  The Seveso II Directive aims to ensure high levels of protection 

against accidents involving dangerous substances. Operators of 

establishments where certain quantities of dangerous substances 

are present (called Seveso plants or Seveso installations) are 

requested to notify the competent authorities and to establish 

and implement a major implement prevention policy 
[15].

 

 

Undesirable events:  Event that has caused, or could have caused injury, work-related 

illness and/or damage to/loss of assets, or harm to the 

environment or to a third party. This includes accidents, 

hazardous conditions and near-miss incidents 
[13]

. 

Qualitative approach:  An approach that refers to situations where data are collected in 

an unstructured way. Often qualitative data will form the basis 

of a pilot study, where the aim is to get the best possible feel for 

the situation through broadly defined data 
[16]

.   

Quantitative approach: An approach where relatively well-defined measurement tool is 

used 
[16]

.   
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1.7 Shortenings 
 

BOP   Blow Out Preventer 

 

CBS  Chemical Safety Board 

 

COMAH Control Of Major Accident Hazard 

 

ESD  Emergency Shout Down 

 

ETA  Event Tree Analysis 

 

FTA  Fault Tree Analysis 

 

HRA   Human Reliability Analysis  

 

HSE  Health and Safety Executive 

 

INERIS Institut National de l‘Environnement Industriel et des Risques (French National 

Instiute for Industrial Environment and Risks) 

 

KPI  Key Performance Indicator 

 

PMG  Performance Management in Gasso 

 

PSA  Petroleum Safety Authority 

 

RNNP Risikonivå norsk petroleumsvirksomhet (Risk level Norwgian Petroleum 

Industry) 

 

TNT  Trinitrotoluene, an explosive 

 

QRA  Quantitative Risk Assessment 
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Chapter 2. Theory and regulation 
 

This chapter present relevant theory and regulation prevailing for the subjects discussed in 

this report. 

 

Theory regarding barrier approach and performance indicators is relevant for assessing 

lessons learned by the offshore industry. To give a basis for understanding the discussion 

concerning the barrier KPI model, extract from the most relevant theory regarding these 

subjects are presented in this chapter. Relevant regulations are presented briefly in this 

chapter. They are also presented fully in appendix A. 

 

Theory concerning risk, risk analysis and QRA models are presented briefly to give a basis 

for understanding the discussion regarding whether or not the barrier KPI model could be 

linked to a installations risk assessment and risk level. Assessing the data reported in the 

Gassco`s barrier KPI model is done based on a Bayesian framework. The Bayesian 

methodology is therefore also presented in this chapter.   

 

The driving force behind the barrier KPI model is the continuous work on reducing the major 

accident potential. The desire is to be able to foresee a major accident and prevent it from 

happening by the help of indicators. A lot of work has been carried out, in the industry, on this 

highly complex problem, trying to develop a methodology for developing suitable indicators.  

 

2.1 Barriers 
 

When reading this report it is crucial to understand what is meant by barriers, and their 

significance in a chain of events leading towards an accident. There are also other terms 

following the barrier expression that needs to be emphasised, such as undesirable event and 

accident. These terms are explained in chapter 1.6 and they can be placed in a chain of event 

leading towards an accident, as illustrated in figure 1: 

 
Figure 1: Chain of events leading to an accident [17] 
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To prevent an accident the chain of events must be broken. This could be done by 

implementing a barrier that reduces the likelihood for an undesirable event or reduces the 

consequences of the undesirable event. Implementation of actions/initiatives will affect the 

chain of events, either by reducing the development or the consequence of an undesirable 

event. The actions/initiatives could be obstructions, fences or blockade (barriers). The main 

principle is that obstructions which are difficult or impossible to get past are established. For 

the undesired event to happen, these obstructions must be breached.    

 

According to Hollnagel there are four types of barrier systems 
[17]

: 

- physical or material barrier systems; prevent an event from taking place or 

mitigate the effects of an unexpected event by blocking the transportation of 

mass, energy or information from one place to another. Examples: building, 

containers etc. 

- functional barrier system; create one or more pre-conditions that have to be 

met before an action can be carried out. Examples: automatic or human 

obstruction of events) 

- symbolic barrier systems; work indirectly through their meaning. Requires an 

act of interpretation of someone. Examples: signs and signals 

- incorporeal barrier system; largely synonymous with the so-called 

organisational barriers, i.e., rules for actions that are imposed by the 

organisation. 

 

Whereas the barrier system seem consist of just four types, barrier functions are not as easily 

categorised. One possibility is to distinguish whether the barrier function is active or passive, 

i.e. whether it does something, such as sprinkler (functional barrier system) that extinguishes 

a fire, or whether it simply is, such as a wall (physical barrier system) which blocks the 

transportation of matter and energy. But the classification of barriers is unfortunately not 

always as simple as the previous example. How does one characterise a procedure? A 

procedure is an instruction on how to do an action and is therefore an example of facilitation 

rather than prevention. Procedures do, however, often include both cautions and conditional 

actions (if-then rules). The procedures also work by virtue of its contents or meaning rather 

than by virtue of its physical characteristics. For that reason, it is warranted to classify a 

procedure as a symbolic barrier system 
[17]

.  

 

Human, technology and organisation approach: 

When investigating an accident, it is primarily to understand what went wrong and identify 

lessons to be learned. To prevent recurrence, indirect and underlying causes need to be 

identified and the chain of events needs to be analysed. The human, technology and 

organisation approach (HTO) is often used as the main tool in the offshore industry when 

investigating the cause of an accident. Using a tool, such as the human, technology and 

organisation method, helps map the course of events together with identifying non-

conformities and barrier failures. Triggering and underlying causes are mapped and 

categorised. When investigating an undesired event, it is of interest to see if a barrier could 

have been implemented to prevent the event or a subsequent escalation of the event. When 

using the HTO approach during investigations the event is seen in relation to all human, 

technology and organisational aspects leading towards the event. Underlying causes 

accounted for, explaining the cause for actions, which could be mutually dependent on 

training, work routines, risk awareness, regulations, ergonomics and so on. All are important 
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barriers in preventing an event. Using this approach can also contribute with comparable data 

to use in statistics and trend analysis in the industry.  

 

2.2 Performance indicators 
 

Performance indicators provide the company‗s management with information used to monitor 

the status and development of one or a set of activities or conditions. In industry and business, 

quantitative indicators are used to monitor performance in areas such as finance, efficiency, 

customer satisfaction and safety. The term indicator may be used in several ways, which 

means that many definitions exist. A broad definition used in the offshore industry, that also 

covers several other definitions, are: 

 

“An indicator is a measurable/operational variable that can be used to describe the condition 

of a broader phenomenon or aspect of reality”
[18] 

 

Well known indicators are called key performance indicators (KPIs). They are used for 

achieving different strategic purposes. Commonly used expressions are leading and lagging 

indicators. In the literature these expressions are defined in several ways in the offshore 

industry, and the precise definition of leading and lagging continues to be a source of 

discussion 
[20]

. In this report, from a practical viewpoint, this is not given a lot of attention. 

Still, some of the discussion and different definition of leading and lagging will be presented 

in this chapter, so that the reader is aware of them. Organisations require indicators to monitor 

the results of failures (e.g. accidents, incidents) and indicators of precursors to these accidents 

and incidents, which might be used to prompt corrective action before these accidents are 

realized. The concept of leading and lagging indicators has been around for a long time in 

economic and financial performance 
[20]

. The definition in the economic and financial 

performance is: 

 

Lagging indicator:  ―A measurable economic factor that changes after the economy has 

already begun to follow a particular pattern or trend” 
[21]

.  Changes after the occurrence.  
 

Leading indicator: ―A measurable economic factor that changes before the economy has 

begun to follow a particular pattern or trend” 
[22]

. Changes before the occurrence. 

 

A leading safety performance indicator is, in this interpretation, an indicator that changes 

before the actual risk level has changed. This interpretation is consistent with the definition of 

leading indicators in economy but deviates from the interpretation discussed by Hopkins in 

the article ―thinking about process safety indicators‖ 
[23]

. In this article the HSE‗s guide 

definition of leading and lagging indicators are presented 
[23]

: 

 

The leading indicator identifies failings or „holes‟ in vital aspects of the risk control system 

discovered during routine checks on the operation of a critical activity within the risk control 

system. The lagging indicator reveals failings or „holes‟ in that barrier discovered following 

an incident or adverse event. The incident does not necessarily have to result in injury or 

environmental damage and can be a near miss, precursor event or undesired outcome 

attributable to a failing in that risk control system. 
 

http://www.investorwords.com/7046/change.html
http://www.investorwords.com/1652/economy.html
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Hopkins concludes in his article 
[23]

 that in the quest for process safety, the important thing is 

to identify measures of how well the process safety controls are functioning. Whether they are 

called lead or lag indicators is a secondary matter.  

 

According to Andrews Hale article 
[24] 

the HSE guidance document 
[25]

 fails to communicate a 

clear, explicit and well-articulated model forming the basis for defining and using indicators, 

and it is therefore confusing. The document uses the Reason model (1997, or more known as 

the swiss cheese model) 
[25]

, but presents it with the idea that an indicator is leading or lagging 

in respect of the working of a barrier, rather than the much more commonly used definition 

that it leads or lags the occurrence of harm, or at least the loss of control in the scenario 

leading to harm. In the article it is also stated that Hopkins dismisses too lightly the 

distinction between leading and lagging indicators. To gain more information of the 

discussion concerning leading or lagging indicators references is made to Safety Science 

volume 47, 2009 
[26]

. A potentially useful distinction between types of indicators has emerged 

recently 
[5]

; drive indicators (that represent input to the safety management process and 

correspond closely to leading or activity indicators), monitor indicators (that present the 

current level of safety in the organisation) and feedback indicators (that correspond closely to 

lagging or outcome indicators. These definitions also correspond to the use of indicators in 

economic, which in addition to leading and lagging indicators also have coincident indicators 
[27]

. A coincident indicator changes at approximately the same time as the whole economy, 

thereby providing information about the current state of the economy. 

 

Safety performance indicators are needed for three different uses 
[24]

; 

1. Monitoring the level of safety in a system (whether that is a department, a site, or an 

industry). This answers the question: is the level of safety OK as we are managing 

things, or should extra action be taken to improve it? This requires data which shows 

reliable and valid trends in safety. The indicators do not need to be causally linked to 

safety outcomes, as long as the correlation is and stays high and the numbers are big 

enough to show trends. 

2. Deciding where and how to take action if the answer to question 1 is that action is 

needed. This requires indicators deeper in the system showing the state of those causal 

links to the harm which have been proven to exist (or at least are strongly believed). 

3. Motivating those in position to take the necessary action to take it.  

 

In the offshore industry today there are several common HSE indicators, such as gas leaks, 

critical incidents, personal injuries etc. However, these indicators do not help when trying to 

evaluate the performance of barriers meant to prevent a major accident. It is said that “You 

can‟t manage what you can‟t measure,‖
 [28]

 and much work has been invested in trying to 

establish proactive indicators of safety performance.  
 

One strategy to avoid accidents is to be continuously vigilant through the use of indicators 
[29]

. 

Often, hindsight has shown that if signals or early warnings had been detected and managed 

in advanced, the unwanted event could have been prevented (e.g. Longford accident, chapter 

4.1 and Texas City accident, chapter 4.4). Building Safety
1
 is a research project which 

addresses safety opportunities and challenges in petroleum exploration and production in the 

northern regions, with emphasis on the Goliat field outside the northern coast of Norway. One 

                                                 
1
 http://www.sintef.no/buildingsafety 

 

http://www.sintef.no/buildingsafety
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of the main research issues in Building Safety is to develop new models and methods for the 

establishment of indicators, which can unveil early warnings of major accidents 
[29]

.  

 

Development of early warning indicators to prevent major accidents can, from a theoretical 

foundation, be done from two different perspectives. There is a close connection between 

safety and risk, but it is important to distinguish between the concepts and their indicators, as 

shown in figure 2: 

 

 

Figure 2: Distinction between the safety approach and the probabilistic risk approach[30] 

However, the safety approach is not purely qualitative, and the risk approach is not purely 

quantitative. Safety indicators (second quadrant) are often quantitative, and the 

quantitative/probabilistic treatment of organisational factors (third quadrant) also include 

qualitative aspects 
[30]

. 

 

It makes a big difference whether trying to predict the possibility of having a major accident 

―tomorrow‖ or if ―only‖ trying to establish the causes after the event (in retrospect).  For the 

prediction of risk, as for accident investigation, it makes sense to talk about a development 

from technical, to human, and even to organisational causes. This does not imply that all 

features of risk assessment can be classified according to a technical-human and 

organisational ―scheme‖. There are features that cut across these aspects, such as dependent 

failure analysis and uncertainty analysis. However, some aspects can be attached to primarily 

one of the causal categories, for example, human reliability analysis (HRA) attached to the 

human causes of accidents. Based on the two presented perspectives; the technical-human-

organisational, and the predictive-versus-retrospective, a conceptual model to structure and 

illustrate the previous is presented in the building safety project 
[29]

:  

 
Figure 3: Retrospective investigation versus predictive assessment [29] 

 

A risk influencing factor (RIF) is defined as “an aspect (event/condition) of a system or an 

activity that affects the risk level of this system or an activity”
 [29]

.  A given risk RIF (e.g., an 
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organisational factor) might not be directly measurable. Instead we need an operational 

definition of the RIF, that represents the theoretical variable, as illustrated in figure 4
[29]

: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The operational variable is an indicator. The indicator is not a RIF itself, just a measurable 

representation of the RIF. Measurement of one RIF may be performed by a set of indicators. 

Making a (theoretical) variable operational means giving instruction on how to measure the 

theoretically defined variable – this transformation is both controversial and a possible source 

of errors. It is stated that ‗the basic, inherent difficulty with indicators is that they are 

selective. They each represent one measure of one aspect of any situation 
[29]

. This means that 

there is always room for discussion and even disagreement about whether they really 

represent what one wants to measure. Even though this may be of theoretical interest, it can 

be counterproductive in practice. Discussion and disagreement regarding indicators should not 

be allowed to impede the development of early warning indicators to help prevent a major 

accident. 

 

The terms safety indicator and risk indicator are sometimes used interchangeably in the 

literature, but the difference between these two indicators are: if the RIFs are included in a 

risk model, such as a probabilistic risk assessment, then it is possible to determine the effect 

on risk because of a change in the indicator value of a given RIF. If we do not have such a 

risk model, we can still identify some of the same factors and also establish some of the same 

indicators. However, the effect on safety has to be related to some other measures than risk 

metrics, e.g. number of accident or purely qualitatively without quantifying safety. The 

indicators and the corresponding factors are then often selected, based on either an assumed 

effect on safety, or through correlation. These indicators should be denoted safety indicators 
[29]

.  

 

To summarize the above discussion; when developing indicators, different approaches for the 

development of indicators may be classified into 
[31]

: 

- safety performance-based indicators 

- event indicators 

- barrier indicators 

(Indicator) Operational 

variable 

Figure 4: General measurement model [29] 
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- activity indicators 

- programmatic
2
 indicators 

- risk-based indicators: 

- technical indicators 

- organisational indicators 

- incident-based indicators 

- resilience-based indicators 

 

Research on indicators started with the need to measure safety or risk. The main function of a 

measure of safety/risk performance is to describe the safety/risk level within an organisation, 

establishment or work unit. An indicator is a measurable representation of an aspect of reality, 

e.g., safety or risk. Safety and risk indicators represent two different perspective; one based on 

assumed relations, or the use of correlation, and the other on causal connection through a risk 

model. The major hazard industries can benefit substantially from increased utilisation of 

existing methods for the development of risk or safety indicators. However, there is no such 

thing as a universal model or method for the development of indicators 
[29]

. A risk indicator is 

dependent on quality data, and criterion for assessment of major accident hazard risk 

indicators are 
[34]

: 

- observable and quantifiable 

- sensitive to change 

- transparent and easily understood 

- robust against manipulation 

- valid 

 

The importance of management and organisational factors of the risk of major accidents in 

high-hazard industries has been demonstrated through accident investigations in the last 

couple of decades 
[33]

. This will also be presented in chapter 4. But what about predicting the 

impact of organisational factors on risk in advance, and to use this insight proactively to avoid 

or reduce risk of new disasters?  

 

In the oil and gas industry risk-based decision-making is used and performing risk analysis 

before carrying through an operation helps identify what might go wrong. ‗QRA‗ is used as 

the abbreviation for ‗Quantified Risk Analysis‗. If one wants to predict the impact of 

organisational factors on risk in advance, this could be done as an extension of the QRA. It 

could be performed as a part of, or as add-on to the QRA. However, QRAs are updated rather 

infrequently, and in the meantime, parameters and assumptions in the QRA change, which 

means that the value of QRA as a risk control tool diminishes. It has been attempted to 

measure the safety performance of organisations qualitatively trough so-called safety audit 

methods 
[33]

, and quantitative tools have rarely been linked to a risk assessment. A framework 

for establishment of organisational risk indicators has been developed and was presented in 

Reliability engineering & system safety volume 74
[33]

. The framework was developed based 

on a review of existing organisational factor frameworks, research on safety performance 

indicators, and previous work on QRA-based indicators. No single field of research covers 

both the quantitative impact of organisational factors on risk and measuring of the quality of 

the organisational factors utilizing indicator measurements. It has been carried out as two 

separate research areas.  

 

                                                 
2
 Programmatic performance indicators (PPIs) are indicators that assist in assessing the quality and performance 

of various programs, functions, and activities relating to the safety of the plant. 
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When developing an organisational model, there are both theoretical and practical concerns 

regarding an adequate organisational model. On the theoretical side the model should 

preferably be 
[33]

:  

- theoretically founded, i.e. having a sound of basis from organisational theory, 

management theory, safety management theory, etc. 

- structured, i.e consist of a network of relations, not just a classification of 

factors 

- substantiated through incident and accident data. Alternatively, the 

factors/model may be validated based on comparison of high and low accident 

companies or based on studies of high reliability organizations.  

On the practical side, the model must be comprehensible and usable both qualitatively and 

quantitatively. The qualitative organisational model, as shown in figure 5 (Bayesian network), 

was the basis for developing a quantitative model. In figure 6 the quantitative part in relation 

to the starting point for the development of organisational risk indicators is illustrated: 

 

 
 

Figure 5: Organisational model [33] 
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Figure 6: Overview of the quantification process in the project [33] 

 

The overview of the outcome of work done to develop a framework for establishment of 

organisational risk indicators is shown in figure 7. 

 
 

Figure 7: Framework for establishment of organisational risk indicators [33] 

 

The model only cover one specific parameter; the leak frequency. If the aim is to capture the 

total effect on risk of one specific organisational factor explicitly, similar models as done for 
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the leak frequency for all parameters must be built. However, this model illustrates the 

relation between risk influence factors at a given installation and how they can be monitored 

by developing suitable indicators.  

 

The framework described above is very similar to the methodology developed in the Barrier 

and Operational Risk analysis project (BORA). In the BORA project the aim was to model 

and analyse barriers, both physical, non – physical, threats and consequence barriers on 

offshore production installations. The project developed a methodology that has three main 

processes 
[34]

: 

- qualitative analysis of scenarios, basic causes and risk influencing factors 

- quantification of average frequencies/probabilities 

- quantification of installation specific frequencies/probabilities. 

 

The purpose of developing a framework of organisational risk indicators is that the tool can be 

used to control the risk during operation. The risk indicators (direct, indirect and 

organisational) measure changes in important risk influencing factors. Based on this 

measurement, the relative change in risk can be estimated. However, the challenge is to 

develop indicators with the ability to predict future safety performance.  

 

2.4 Regulations 
 

The Petroleum Safety Authority (PSA) framework gives superior requirements that the 

industry has to correspond with. Section II in the Management regulation is called Risk 

Management and gives an account for regulation regarding risk reduction and barriers. 

Section V deals with analyses, such as risk and preparedness analyses. In appendix A the full 

contents of the sections are presented. 

 

2.5 Risk analysis 
 

A risk-based approach treats risk as a product of likelihood and consequence; the more likely 

the event is or more severe the possible consequence is, the greater the risk.  

 

It is important to emphasize the signification of safety thinking and preventive safety work to 

avoid accidents. Performing a risk analysis before carrying through an operation helps 

identify what might go wrong and barriers and routines can be established to prevent 

occurrence of an undesired event. 

 

A risk analysis is defined in the NORSOK standard 
[14]  

as: 

 

“An analysis which includes a systematic identification and description of risk to personnel, 

environment, and assets” 

 

A quantified risk analysis (QRA) has to be focused on 
[34]

: 

- identification of applicable hazards 

- description (including quantification) of applicable risks to personnel, 

environment, and assets 

The practical execution of a risk assessment is often described as 
[34]

: 

- identification of critical events 
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- coarse consequence analysis  

- cause analysis (qualitative: intended to identify cause/conditions/combinations 

that may lead to the occurrence of initiating events and establish the basis for 

later quantitative analysis) 

- quantitative cause analysis (intended to establish the probability of occurrence 

of initiating events) 

- detailed consequence analysis 

- risk calculations 

 
Figure 8: Model for representation of the process risk assessment [34] 

 

Each of these steps may include extensive studies and modeling. Some examples on how to 

perform each step is presented here 
[34]

: 

 

     -  Identification of Initiating Event by using Hazard identification (HAZID):  

o check list  

o accident and failure statistics 

o Hazard and Operability (HAZOP) studies 

o comparison with detailed studies 

o experience from previous similar projects, concepts, systems, equipment and 

operations. 

 

 - Cause analysis 

o identification of the combination of causes that may lead to initiating events 

o assessment of probability of initiating events 

 

     -   Qualitative Cause Analysis Techniques  

o Hazard and Operability analysis (HAZOP) 

o Fault Tree Analysis (FTA) 

o Preliminary Hazard Analysis (PHA) 

o Failure Mode and Effect Analysis (FMEA) 

o Human Error Analysis techniques, such as task analysis and error mode 

analysis 

 

     -   Quantitative Cause Analysis Techniques 

o Fault Tree Analysis (FTA) 

o Event Tree Analysis (ETA) 

o synthesis models 

o Monte Carlo simulation 

o human error quantification techniques 
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o calculation of frequency of initiating events from historical statistical data 

o BORA methodology for analysis of hydrocarbon leaks and consequence 

barriers. 

 

     -   Consequence Analysis 

o Event Tree Analysis (ETA) 

o cause consequence diagrams 

o influence diagrams 

o HTO analysis 

Risk calculations are done with a basis in frequencies and consequences from the analysis.  

The term ‗risk‗ is according to international standard Risk Management – principle and 

guideline, defined as 
[35]

: 

 

“the effect of uncertainty on objectives” 

 

The 2002 definition of risk “combination of the probability or an event and its consequence” 

is note to the definition given in ISO 31000 
[36]

. 

 

Risk is often expressed in several ways, by probability distribution, expected values, single 

probabilities of specific consequence, etc. Most commonly used in the offshore industry is the 

expected value. An operational expression for practical calculation of risk is 
[34]

: 

 

R = ∑ (pi × Ci)                                    (Formula 2.1) 

 

where p equals the probability of an accident and C equals the consequence of the accident. 

 

One important aspect though, which is not accounted for when expressing risk as mentioned 

above, is the uncertainties. When calculating risk a lot of assumptions are made and the 

probability calculation is a tool used to express this uncertainty. When expressing risk as a 

function of uncertainties and consequences another presentation of risk is the (A, C, U) 

perspective 
[37]

:  

 

R = (A, C, U)                                        (Formula 2.2) 

 

where  

A equals the event,  

C equals the consequence of an event, and  

U equals the uncertainty.  

 

By risk is meant the two-dimensional combination of events A and the consequences of these 

events C, and the associated uncertainties U (will A occur and what value will C take) 

Consequences may be related to personnel, to the environment, or to assets and production 

capacity. Personnel risk can be expressed as fatality risk.  
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Fatality risk: 

Fatality risks have a number of expressions, such as individual risk, group risk and f-N curve.  

PLL value can, based on a QRA, be expressed 
[34]

: 

 

PLL = ∑n ∑j (fnj × Cnj)                                (Formula 2.3) 

where 

fnj  =  the annual frequency of accident scenario n with personnel consequence j. 

Cnj = expected number of fatalities for accident scenario n with personnel consequence j.  

N = total number of accident scenarios in all event trees 

J = total number of personnel consequence types, usually immediate,   

 

The annual frequency of an accidental scenario, related to hydrocarbon leakage and ignition, 

fnj, may be expressed as follows, if it assumed that the factors are related
 [34]

: 

 

fnj = fleka,n × Pign,n × Pprotfail,n × Pescal,n × nnj                 (Formula 2.4) 

where 

fleka,n   = frequency of leak 

Pign,n    = conditional probability of ignition, given leak 

Pprotfail,n   = conditional probability of failure of the safety protective systems, such as ESD,   

                     blow down, deluge, passive fire protection, etc. given that ignition has occurred. 

Pescal,n  = conditional probability of escalation, given ignited leak and failure protective   

                      systems response.  

nnj   = fatality contribution of the accident scenario (fraction of scenarios that result in  

                     fatalities. 

 

Principally there are two options when expression individual risk; FAR (Fatal Accident Rate) 

and AIR (Average Individual Risk). Far value is the number of fatalities in a group per 100 

million exposed hours, whereas AIR value is the average number of fatalities per exposed 

individual. Following equations define how the individual risk expressions are computed 
[34]

: 

 

                                               FAR =                            (Formula 2.5) 

 

 

                                            AIR =                           (Formula 2.6) 

 

 

Bayesian approach to risk: 

The Bayesian thinking is not that different from the probability of frequency approach. The 

point is that the Bayesian approach, as presented in the literature 
[37]

, allows for fictional 

parameters, based on thought experiments. These parameters are introduced and the 

uncertainty in them is assessed. Bayesians would not speak about true, objective risks and 
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probabilities. The predictive form is seen as the most important one. Risk analysis introduces 

two level of uncertainty: the value of observable quantities such as number of failures of a 

system, and the `correct` value of the risk. Both the analysis and the results of the analysis are 

considered uncertain 
[38]

, which does not provide a good basis for communication and 

decision-making.  

 Bayes formula 
[39]

: 

 

 

          

                                                                                                                   (Formula 2.7) 

Where 

(θ|x) = posterior distribution 

(x|θ) = likelihood function 

(x) = the probability distribution of x 

(θ)  = prior distribution 

The Bayes principle is to update a given probability distribution based on new 

knowledge/observed data. As can be seen from formula 2.7, there are some differences 

between classical and Bayesian statistics. First, the idea of prior information does not exist in 

classical statistics. All inferences in classical statistics are based on the sample data. In the 

Bayesian framework, prior information constitutes the basis of the theory. Another difference 

is in the overall approach of making inferences and their interpretation. For example, in 

Bayesian analysis the parameters of the distribution to be ―fitted‖ are the random variables. In 

reality, there is no distribution fitted to the data in the Bayesian case. By applying formula 

2.7, the posterior distribution of the shape parameter will be obtained. Thus, we end up with a 

distribution for the parameter rather than a estimate of the parameter, as in classical statistics. 
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Chapter 3. Gasscos„s barrier KPI model 
 

Gassco and the start up of the barrier KPI project, the development and the use of the model 

are described in this chapter. 

 

3.1 Description of Gassco AS and the barrier KPI project  
 

The creation of Gassco forms part of an extensive reorganization of the Norwegian oil and gas 

sector. Gassco was founded by the Ministry of Petroleum and Energy (MPE) on 14 May 

2001, and took over the operatorship of all gas transport from the Norwegian continental shelf 

on 1 January 2002. The Gassled joint venture is the formal owner of the bulk of Norway‘s gas 

infrastructure. As Operator, Gassco is responsible for safe and efficient gas transport from the 

Norwegian continental shelf. Norway‗s gas pipelines have a total length of 7 975 kilometres. 

The gas flows from production installations to process plants, where natural gas liquid is 

separated out and exported by ship. The remaining dry gas is piped on to receiving terminals 

in continental Europe and the UK.  In addition to pipelines, Gassco also have an operator 

responsibility for offshore installations, land based facilities and receiving terminals in the UK 

and at the continent. 

 

Gassco operates the receiving terminals at the continent with own employees. At the receiving 

terminals in the UK, offshore installations and land based facilities daily operation are carried 

out by technical service providers (TSP`s). A potential for major accidents clearly exists in 

Gassco`s area of responsibility, and through its management systems the company must 

ensure that major accident potential is properly handled and minimised. Gassco have a well 

established set of KPIs for follow-up of HSE issues such as occupational injuries, frequency 

of critical incidents and gas leaks. However, these are lagging KPIs and do not give an 

overview of the potential for a major accident. Maintenance, testing, control etc. might be as 

important to the potential of major accidents as system design.   

 

Gassco`s management strategically focus in 2008 were among other things 
[40]

: 

o the highest priority shall be given to understanding, managing and reducing major 

risks on all facilities and during all operations 

o overview and control of all safety critical barriers, including inspection, maintenance 

and testing of safety critical equipment is essential to manage risks 

 

Furthermore, there is a requirement from the Petroleum Safety Authority in Norway to 

monitor the risk of major accidents 
[41]

. Development of a new KPI system for safety critical 

barriers was one of the activities that was included in Gassco‗s research and development 

program in 2008. DNV was contracted by Gassco to develop a KPI model with the objective 

of establishing a framework, define parameters and requirements to reporting for follow-up of 

the most important safety critical barriers at Gassco‗s installations. The suggested indicators 

were to reflect the status and control of barriers intended to prevent major accidents
 [7]

. 

 

3.2  Barrier KPI model 
 

When developing the model all relevant hazards subject to Gassco`s installations were 

evaluated. Mitigating measures in terms of barrier was identified and visualised in a bow tie 

model, exemplified in figure 9
 [8]

. 
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Figure 9: Bow-tie loss of containment [8]. 

The bow tie model forms the basis for the development of the barrier KPI model. Based on 

literature/industry review, workshops and discussions, a set of barriers were selected to be 

included in the model and sorted into three categories based on their functionality in line with 

the bow tie representation
 [8]

: 

- preventive barriers; mainly inspections activities 

- reactive barriers; technical safety barriers 

- management elements; non physical barriers such as closing processes, 

procedures and management systems. 

Further the model had to adapt to the following objectives and requirements: 

- ability to adapt to various types of installations (platforms, pipelines, 

processing facilities and receiving terminals) 

- provide useful information both on a facility level and on an aggregated level 

- allow for automatic transfer of information 

- minimum need for manually generated data 

- minimum need for collection of information not already being available in 

some form 

- model to be implemented in Gassco`s management tool – Performance 

Management Gassco, PMG. 

Measuring parameters was identified and indicators to follow-up the selected barriers was 

derived. The input data to the model is reported on a system (barrier) level and the results 

aggregated up in Gassco`s organisational hierarchy in PMG.  

 

Limitations and assumptions for the model are as follows 
[8]

:
 

- the model indicates how existing systems and function are followed up. 

Suitability of the safety systems in place or completely lack of safety system 

and/or preventive maintenance plans are not indicated in the model 
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- indicator rating indicates how the effort in prevention major accidents is 

carried out and how work develops over time, and is not directly correlated to 

the risk of major accidents at a certain installation 

- the model assumes that a suitable preventive maintenance program is in place, 

including testing of safety barriers and inspection of pressurised equipment 

- audit routines are assumed in place and audit outcomes are assumed to be 

documented properly. 

Some important topics that are left out in the model and justification for doing that is 
[8]

: 

- competence and training: hard to establish suitable measuring parameter due 

to low degree of systematic competence mapping and requirements 

- design and layout: handled by other means such as QRA on design, 

procedures and audits 

- safety culture: no unambiguous definition, hard to establish suitable 

measuring parameter 

- incidents: handled by other KPI‗s. Each incident handled separately 

- management of change: hard to establish suitable measuring parameter, 

include several topics that may affect safety to smaller or larger extent. 

It is well known that for some subjects it can be very difficult to establish suitable parameters, 

that also are effective. The justification for leaving several important topics out of the model 

is not good enough in the long run. But when the barrier KPI started, the aim was to get 

something done relative quickly without too much obstructions in the start. The aim with this 

report is to evaluate if it is possible to further develop the Barrier KPI model, including the 

topics mentioned above that were deliberately left out in the start of the project. 

 

3.3 Reporting and follow up 
 

According to Gassco`s procedure ―Reporting and follow up of barrier indicators‖ 
[42]

 the 

HSEQ Manager is responsible for maintenance and further development of the Barrier KPI 

model. The Director for Technical Operation is responsible for implementation of the Barrier 

KPI model. The Director Gas Terminals, Director Transportation Network and Director 

Processing Facilities are responsible for reporting of data from all facilities as required, and 

that required improvement initiatives and actions are identified and implemented based on 

reported performance. 

 

The input data to the model is reported on a barrier level and the results aggregated up in 

Gassco`s organisational hierarchy as illustrated in the figure below
 [8]:
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Figure 10: Illustration aggregation in Gassco`s hierarchy [8] 

Presentation of the Barrier KPI model on system level and corporate level in PMG are 

illustrated in the next two figures: 

 

 
Figure 11: System level 
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Figure 12: Illustration Corporate level 

Full indicator list and aggregation rules are presented in appendix B. 

 

One dedicated person in Gassco is responsible for the implementation and follow-up of the 

Barrier KPI model for each facility or plant. Typically the person in Technical Operation at 

Bygnes is responsible for daily follow-up of the respective asset. The asset responsible 

ensures that data is being reported regularly on a monthly basis. A schematic of the 

information flow and responsibility level is given in the following figure 
[42]

:  
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Figure 13: Reporting and follow-up work process [42] 

Results in the Barrier KPI model are presented on indicator level and aggregated results for 

level and trend according to a traffic light system with the interpretation and accompanying 

actions as outlined in the following figure 
[42]

:  

 

 
Figure 14: Explanation level, trend and colour rating [42] 

Note: Unsatisfying status should be interpreted as an indication of elevated risk where action is needed.    
         Unsatisfying status should however not be interpreted as unacceptable risk. 
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If an indicator is yellow or red in PMG a comment explaining the cause is required from 

Gassco`s installation responsible. 

 
Experience gained through the pilot test shows that by developing a barrier integrity indicator, 

the following experiences and conclusion have been made 
[43]

: 

 the ‖HTO‖ methodology gives a good foundation for the Barrier KPI. 

 the Barrier KPI work has improved the focus and the understanding of barriers within 

the organisation 

 ‖TTS‖ findings have been repaired and avoided as a consequence of this work 

 as a result of the reporting, an annual verification of the A10 report is established 

 an useful tool and a good indicator 

 provides a good picture of the technical integrity on safety critical systems and covers 

up the  organisations barriers well 

 the greatest gain is that it puts the focus on barriers as a totality and development of 

good safety culture at the assets. Focus is put on the area with weakness and therefore 

also has the biggest improvement potential 

 it is a good monitoring tool and it is useful when it comes to following up the daily 

work. 
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Chapter 4. Does Gasscos„s barrier KPI model reflect learning 

from recently major accident in the industry? 
 

The Petroleum Authority in Norway definition of a major accident is 
[44]

: 

 

“ An acute incident, such as a major spill, fire or explosion, which immediately or later 

causes a number of serious personal injuries and/or loss of human life, serious harm to the 

environment and/or loss of large material assets.” 

 

The history of major accidents goes way back 
[45]

. Several accidents have resulted in new 

regulations and increased focus on barriers, such as the Seveso accident in 1976, which lead 

to the Seveso directive (approved in European Union 1982). The Alexander Kielland accident 

in 1980 and the Piper Alpha accident in 1988 resulted in a change in the safety regime and 

new regulations in Norway and the UK. 

 

Unfortunately, the history of the process industries shows that many accidents are repeated 

after a lap of few years. People move on and take their knowledge with them and the lessons 

are forgotten. Trevor Kletz, who has studied petrochemical industry disasters for many years, 

said that: “organisations have no memory, only individuals do”
 [46]

. 

 

In the following chapters, a selection of major accidents occurring in the period 1998 – 2010 

will be studied. Triggering and underlying causes for the accidents will be compared against 

each other. The aim is to identify similarities. Does the industry learn from other major 

accidents? Are the learnings implemented in Gassco‗s barrier KPI model? 

 

Description of the accident and what went wrong are in some chapters limited due to few 

public reports. The quality of the investigations report also vary, some are very thorough and 

look at several aspects in the human technology and organisation method, while others do not.  

 

4.1 Longford 1998  
 

Reference for the bulk of information in this chapter is made to the book ―Lessons from 

Longford‖ by Hopkins 
[47]

. Findings presented in the book are from the Royal Commission
3
 

and the book is written by an expert witness at the Commission hearings. When other sources 

are used beside this book, reference is made in the text. 

 

In September 1998, a heat exchanger in the Esso (subsidiary of Exxon) gas plant in Longford, 

Victoria, Australia, fractured and released hydrocarbon vapors and liquids. An explosion and 

fire followed, killing two employees and injuring eight. It took more than 2 days before the 

fires were fully extinguished. Supplies of natural gas were interrupted throughout the state of 

Victoria and were not fully restored until October. Most of Melbourne‗s 3.2 million residents 

were affected in some way and many thousands of people were laid off because their 

                                                 

3
 Royal Commissions are called to look into matters of great importance and usually controversy. These can be 

matters such as government structure, the treatment of minorities, events of considerable public concern or 

economic questions. 
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employers relied on gas. Many industrial and domestic users were without fuel for all or part 

of the time the plant was shut down.  

The direct cause was that a pump supplying heated oil to a heat exchanger stopped and was 

offline for several hours. No flow of warm oil through the heat exchanger, causing the 

temperature to drop to a value below normal operating temperature. The low temperature 

resulted in a formation of ice on the heat exchanger nozzle. When restarting the oil pump 

warm lean oil flowed into the exchanger, causing stress in the vessel (due to temperature 

differential) and fracture. A vapour cloud of 10 tones of hydrocarbons was released and 

ignited by heaters 170 meters away, leading to a series of explosions and vessel ruptures. 

Although the direct causes of the explosion were operational and engineering issues, the 

government Royal Commision blamed Esso and its management. The reason why will be 

explained in this chapter.  

 

The operators and their supervisors made a critical error when deciding to reintroduce the 

warm oil into the heat exchanger after it had become super cold. Esso claimed that the 

operators had received adequate training and did know about the dangers of cold temperature 

embrittlement, and that they should have known better. They should have allowed the heat 

exchanger to thaw out before they began to re-establish the warm liquid flow. Still Esso was 

blamed and not the individual operators. The Royal Commision claimed that the accident 

could have been prevented.   

 

Operators at Longford did make mistakes and Esso was to blame for faulty training. There 

were a number of root causes of the training failure 
[47]

; ‗Competence-based training‗: the 

operators were given written tests for which they were able to memories answers. Test results 

were used to determine job classification and pay level. This gives intensive to answer 

correctly. It was possible to answer all the questions correctly, but not understand the reason. 

The training did not test for understanding. An operator that was almost answered correctly 

was given coaching by the assessor. The person was then asked if the answer was understood 

– if they said `yes` they passed. But did they really understand? One could assume that it took 

―gumption‖ to ask for a re- explanation. If they said that they didn‗t understand, it could 

implicate that the explanation given by the assessor was inadequate. And given the pay 

increase intensive, there was no guarantee that the operator really understood the question. 

One operator admitted that it was `normal practice` for operators to give answers that they 

didn‗t understand. The view was that it is not generally required to get 100% correct answer 

to pass an exam. 

 

Personnel should be provided with training in the limitation of plant equipment. One of the 

reasons of insufficient training is failure to identify the hazards. Longford gas plant changed 

over time, the plant grew and evolved. These changes invalidate prior risk assessments and 

created new risk that needed to be managed diligently. Significant changes in operating 

processes, staffing and procedures at Longford plant were carried out without thorough risk 

assessments. As plant 2 and 3 were added to the Longford site without any consideration of 

the risk of interconnectedness. Two other management of change failures were that changes in 

the process upset of gas plant 1 was done without proper assessment of the risks involved, and 

engineering staff was moved from the plant to the head office without assessing possible risks 

involved. Problems at Longford were too complex for operators and their supervisors to 

manage and there was no engineering staff on site on the day of the accident. Until 1991 

engineers had been employed at Longford. They knew the plant and had worked with the 
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operators. Due to cost cutting, the engineers were moved from the plant. The relocation was 

implemented without performing any risk assessment and evaluation.  

A Hazard and Operability study (HAZOP) which could have identified the potential hazards 

was not carried out. The Commission‗s view was that a HAZOP would have identified the 

need for written procedures for dealing with the loss of warm oil flow, as well as procedures 

for plant shutdown and restart (which occurred infrequently and may present special dangers 

not faced during normal operation). 

 

When something was wrong at the plant an alarm would go off. In this case, the operator 

failed to respond to the alarm that went off, and subsequent failed to control the upset in the 

process and return the plant to normal. The result of these continuing abnormal conditions 

was an automatic shutdown of the warm oil pumps next morning. But why did the operator 

failed to react to the alarm? Variations in operating conditions might affect the quality of the 

gas produced, causing it to go `off speck` and causing alarms. It was easier sometimes to 

maintain the quality of the outgoing gas by allowing processing to occur outside the specific 

limits, resulting in that the operators cancelled the audible alarm. When experiencing many 

alarms on a daily basis, humans often start ignoring alarms. The condensate transfer system 

which had been installed in gas plant 1 in 1992 required the system to operate outside its 

normal temperature limits when condensate transfer was occurring. This disturbed the whole 

system and meant that certain other alarms occurred routinely and had to be tolerated.  

 

Also, lack of good communication between shifts was a problem at Longford. Problems were 

not passed up to the right person and critical information was unrecognized, ignored or buried 

until something occurred to resurrect it. This is a common problem in several other industries 

as well, such as the space travel industry. The failure to pass information up the line is 

exemplified in the Challenger disaster (1986, 7 people lost their lives). Information that earlier 

shuttle rockets had experienced technical problems was confined to one person at NASA and 

neutralized by a process of reinterpretation. Had the information passed upwards to the 

highest ranking, a different set of decisions would have been made 
[49]

. At Longford there 

were two major reporting systems; the routine reporting system and incident or near miss 

reporting system.  

 

The routine systems` reporting log was supposed to contain information about process upsets 

and significant alarms. In practice, very little of this information found its way into the log 

books. However, for all their defects, the logs did contain numerous entries- which should 

have alerted a careful reader. Unfortunately, management did not read these reports. 

Inadequate communications between the shifts resulted in the incoming shift not knowing 

about the alarms regarding the high level of condensate. The reporting system for non-routine 

incidents required all incidents, no matter how minor to be reported to a supervisor and 

recorded on a hard copy incident form. The definition of incidents was wide enough to 

encompass serious process upsets such as leaks and unexpectedly cold temperatures. But such 

matters almost never found their way into the reporting system and failed to trigger any 

investigations. Even process upsets, which was serious enough to lead to temporary shutdown 

of the plant, failed to enter the reporting system. Nor were any of the process upsets, which 

operators recorded in the control room logs, reported in this way. Management‗s view was 

that it was up to the operators to report matters if they thought they had an escalation 

potential. 

 



Evaluating Gassco`s barrier KPI model 

 

 

  
Page 39 

 
Stavanger 2011 Lene Østrem 

Another major problem at Longford was corporate culture. The Royal Commission found that 

management at Esso had not demonstrated an uncompromising commitment to identify and 

control every hazard at Longford. The Longford accident was a deficiency in the safety 

culture of management. At Esso, the focus on lost time injuries and minor injuries lead the 

company to become complacent about their management of major hazards. Clearly, personnel 

safety and process safety is two very different things, and need to be handled accordingly. A 

good illustration of this is the airline industry. An airline would not make the mistake of 

measuring air safety by looking at the number of routine injuries occurring to staff. Moreover, 

the incident and near miss reporting systems operated in the industry are concerned with 

incidents which have the potential for multiple fatalities, no lost-time injuries. 

 

Auditing at Longford also failed to uncover any significant problems and only provided good 

news. There had been plenty of auditing, but evidence was given at the Royal Commision that 

Esso‗s auditing process was not effective. An audit was held just six months prior to the 

explosion by a team from Esso`s corporate owner Exxcon. The audit had shown that the most 

elements of the safety management system were functioning at level three or better which 

basically said that everything was very good (level four was the highest assessment level). But 

as described earlier in this chapter, there were bad news in the company, which a good audit 

might have been expected to pick up. Accident investigators quickly highlighted that a 

HAZOP had not been carried out, the external audit failed to notice this. Also, it was no secret 

that operators had grown accustomed to managing the plant for long periods without 

responding to alarms triggered by abnormal situations. A thorough audit should have detected 

this. A thorough audit should also have picked up the fact that the near miss reporting system 

was not being used to report significant gas processing problems. The external assessment did 

not pick this up. Instead it concluded that “there was a good understanding of and high 

discipline in safe work routines and procedures”
 [47] 

and that “near-miss reporting was 

actively encouraged by management and supported by Esso personnel” 
[47]

. The sum up from 

the audit stated that the company‗s safety management system was extensively utilized and 

well understood within Esso. The Commission found it otherwise and stated that the 

methodology employed by the assessment team was flawed.  

 

Another issue at Longford was that the maintenance staff had been progressively reduced over 

the period from 1992 to 1998, as a cost-cutting measure. There was a backlog of work orders 

– items which had been reported and were waiting to be repaired. To deal with this Esso had 

introduced a system for deciding an order of priority. Matters in need for repair had to be 

assessed based on the urgency of the matters and a risk assessment number was assigned. 

Matters which workers assessed as safety-related were reviewed at a daily plant management 

meeting. The management could change the priority if they disagreed with the original 

assessment. The failure to effectively control the condensate level began the accident 

sequence at Longford. A valve known as TRC3B enabled some control to be exercised over 

the condensate level. Some weeks prior to the accident the valve was not functioning properly 

and operators had to manipulate a bypass valve manually to achieve an effect which would 

normally have been achieved automatically. A work order request was issued two weeks prior 

to the accident, but the valve was not regarded as a safety issue and was not prioritised. Still it 

was relevant to the accident. Since the valve was not working properly, operators had to make 

manual adjustments. As described earlier, a communication failure at the shift change before 

the accident resulted in the operator on the fatal shift not carrying out these adjustment in an 

appropriate way. This failure resulted in the spill-over of condensate into other parts of the 



Evaluating Gassco`s barrier KPI model 

 

 

  
Page 40 

 
Stavanger 2011 Lene Østrem 

system which initiated the accident sequence. Had there been maintenance on the valve, the 

valve would have been operating automatically. 

 

The emergency shutdown procedure did not effectively isolate gas plant 1 from gas plant 2 

and 3. One of the obvious lessons from the Piper Alpha accident (1988, 167 men lost their 

lives) was the importance of being able to isolate a plant quickly and effectively. 

 

When summarizing issues mentioned above, they can be categorised as followed: 

 

Supervision and monitoring: 

- culture of ―causal compliance‖, procedures were not followed – operating in 

alarm mode 

- failed to respond to alarms 

- insufficient auditing 

Policies and procedures: 

- procedures were repetitive, circular and contained unnecessary cross- 

referencing 

- inadequate procedures and lack of procedures (operating procedures) 

- deviation from procedures; it was easier at times to maintain the quality of the 

outgoing gas by allowing processing to occur outside the specific limits  

- lack of management of change policy and procedures 

Physical devices and instrumentation: 

- ESD failed to isolate gas plant 1 

- inadequately maintenance of equipment (indirect cause; valve) 

Communication: 

- insufficient communication between shifts 

- problems were not passed up to the right person 

- management failed to communicate the importance of process safety to the 

workforce 

Training: 

- lack of operator training for abnormal conditions 

- lack of operator awareness of risk  

- inadequate training 

Several of the causes could be placed in more than one category, such as maintenance issues. 

However, it is chosen to categorise as above to easily compare and summarize the causes later 

in the report. 

 

There were many lessons to learn from this accident and the most serious lessons were for 

management. As shown above there were several underlying causes regarding management 

and organisational elements leading to the Longford accident. When revealing these, it seems 

a little hasty to just make the Operators accountable for the accident.  
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4.2 Texas City 2005  
 

Reference for the bulk of information in this is made to the book ―Failure to learn‖ by 

Hopkins 
[50]

. The book‗s basis is the investigation done by the US Chemical Safety and 

Hazard Investigation Board (CBS) 
[51]

. Professor A. Hopkins is a world renowned safety 

culture expert and the book helps to give an understanding in why the explosion occurred 

based on insight in the safety culture at Texas City. 

 

In 2005 there was an explosion at BP‗s Texas City Refinery, located on the outskirts of 

Houston. A total of 15 people died and nearly 200 were injured in the worst industrial disaster 

in the United States in more than a decade.
 

The accident sequence began when operators overfilled a 170-foot distillation column. As a 

result of this mistake, a mixture of liquid and gas flowed out of the gas line at the top of the 

column, travelled through emergency overflow piping and was discharged from a tall vent, 

which was located hundreds of feet away. No flare system resulted in that a vapor cloud 

accumulated and was ignited by a vehicle that had been left in the area. A number of mobile 

offices that had been located far too close to the plant were destroyed by the explosion, killing 

and injuring their occupants. 

 

After this accident, the CBS for the first time conducted an examination of corporate safety 

culture. Therefore, this accident and the following investigation, is particularly of interest 

regarding this report and the chain of events leading to the accident will be described 

thoroughly.  

 

The first step in the chain of events leading to the explosion at Texas City was a failure done 

by operators when the plant was being brought back into operation after a period of 

maintenance. Procedures specifying the required liquid level in the column had been totally 

ignored, the rate of heating was faster than specified in the startup procedures and pre-startup 

checks were not performed although employees had signed documents stating that they were. 

Also, the supervisor had absented himself for some hours during the startup. The question 

Andrew Hopkin asks is: why did operators do as they did? 

 

Texas City had a culture of ―casual compliance‖. Management had developed a so-called 

―compliance delivery process‖ to confirm compliance. This involved processes of auditing 

and, if necessary, discipline. Unfortunately the site did not have the necessary supervisory 

resources to carry this through and there was no attempt by management to ensure compliance 

with startup procedures for the distillation column. In one way BP inadvertently encouraged 

an attitude of causal compliance. The startup procedures were not updated, even though the 

process had evolved. Various critical events were simply not covered by the procedures 
[50]

.
 
In 

short, the procedures were at times inappropriate and workers necessarily developed their 

own. When procedures are written with little consideration for those who must apply them, it 

is almost inevitable that they will be ignored or interpreted in ways that fail to take account of 

the hazards which they are intended to control. Despite inappropriate procedures, Texas City 

managers certified the procedures annually as up-to-date and complete. Prior to startup 

workers had also identified and reported various pieces of equipment on the column as 

malfunctioning 
[50]

.  Due to insufficient time available, these were not rectified prior to 

startup. Furthermore, the startup was to occur even though technicians had not the time to 

carry out checks on all of the instrumentation, as required by the procedures.  
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The preceding can explain why workers seemed relatively unconcerned about written 

procedures. But why did they depart from the procedures in the way that they did? Operators 

were aware of the negative consequences of underfilling the column, but they were quite 

unaware of the risk of overfilling the column.
 
The operators had developed a practice that 

reflected their understanding of the risks involved. There are various ways BP could have 

discovered such significant and sustained non-compliance. Best practice is to define safe 

operating limits or critical operating parameters for all equipment. It also requires that 

equipment is installed to monitor compliance with these limits. Unfortunately BP‗s incident 

reporting system that would have highlighted this exceedences was not operational. 

 

Next question is – how was it physically possible to make this mistake? Should there not be a 

cut-out device, preventing the operators from overfilling the column? The company view was 

that if operators followed procedures, there should not be a need for a backup safety 

mechanism. With this policy, BP was ignoring an abundance of evidence from other accident 

investigations that systematic deviation from stated procedures is the norm, rather than the 

expectation. Procedures are only effective if complied with. This requires supervisory 

resources. Had a cut-out device been in operation, the accident could not have happened. 

 

Inadequate instrumentation contributed to the extent of the mistake – the operators were 

unaware of how full the distillation column was. Instruments on the column were designed to 

indicate where the liquid level was in the range from 4 to 9 feet. Once the level went above 

the upper level, there was no instrumentation to tell operators how full the column was. Also, 

a crucial instrument failure was the level measuring instrument showing that the level was 

slowly declining in the hours before the accident, from just under 9 feet to just under 8 feet. 

This very instrument was earlier reported as malfunctioning, but had not been fixed. There 

were two alarms designed to warn the operators and one of them was not working at the time. 

But since the operators were intending to fill the column above the level, whether or not it 

was functioning is beside the point. The liquid level in the column could be seen trough glass.  

However, there was a build-up of residue on the glass and requests that the glass be cleaned 

during maintenance periods had gone unheeded. 

 

Operation routines are important. Efficient and good communication among employees is 

crucial. Short and inadequate communication is one of the causes in this accident. At a 

management meeting held on the morning the startup was scheduled to take place, the 

decision was made not to proceed, precisely because the storage tanks that received the heavy 

liquid were full. Operators were not told of this decision and went ahead with the startup as 

originally planned. Further, the control room operator believed that he had been instructed to 

not open the heavy liquid outflow valve because the storage tanks where the liquid would be 

held were full. The startup also occurred over two shifts. At Texas City the operators‗ log 

book was brief and uninformative and there was no face-to-face communication between 

shifts. The incoming shift did not realise the extent to which the column and all of the 

associated pipework already ―packed‖ with liquid, had he understood that the earlier operator 

had already completely filled the system to the required level in readiness for heating, he 

would probably behaved differently and the accident would not have happened. 

 

Another factor that contributed to this accident, was the lack of awareness by operators of the 

danger of overfilling the distillation column. This is in part due to the inadequacies in the 

training they had received.
 
It did not provide in-depth understanding of the process, or what 
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might go wrong, or why certain alarms or procedures might be critical. Most importantly, 

there was no training on how to handle abnormal situations.
  

 

Questioning why the operators were not more alert to the warning signs, the answer could be 

that the problem-solving ability of the operators was degraded by fatigue. At the time of the 

accident, the day control room operator had been working 12-hour shifts, 7 days a week for 

29 consecutive days. The control room operator reported that he routinely got only five or six 

hours of sleep per night.
 
There is good experimental evidence that fatigue reduces 

performance, and good statistical evidence that fatigue causes accidents. For instance, there 

are data showing that accident rates increase markedly in the last 4 hours of a 12-hour shift
 

[50]
. 

 

There was also inadequate staffing of the control room. On several previous occasions 

internal analyses had drawn attention to the need for two operators when managing for 

instance a startup process and workers themselves had campaigned for improved staffing.   

There was a prolonged failure to upgrade the vent to a flare at Texas City. In the US the 

legislation is not explicitly based on any concept of risk reduction, it requires employers to 

provide a work place that is ―free from recognized hazards that are causing or are likely to 

cause death or serious physical harm‖ 
[50]

. There was no specific regulatory requirement that 

Texas City replace vents with flares, all that was required was that it manage the risk. Since 

process safety management was ultimately a matter of risk management rather than rule of 

compliance, Texas City was able to avoid the expense of implementing best practice.
  

 

Also, BP`s budget priorities worked against risk reduction. Even though continuous risk 

reduction was a part of BP‗s stated philosophy, it had no place in BP`s budget priorities, and 

risk-reduction proposals stood little chance of success in the cost cutting environment that BP 

had created at Texas City. This helps explain why BP failed to give priority to improving the 

instrumentation on the distillation column or even repairing defective instrumentation. All 

capital investment that affected the ―license to operate‖ was regarded as essential, other 

spending was discretionary. It seems like repairing defective instrumentation was not 

prioritized because it didn‗t seem necessary to ensure the continuation of the license to 

operate, ensure reliability of production or to take advantage of new commercial 

opportunities. This insight in the safety culture is helpful when trying to understand why the 

operators did as they did. Their actions just reflected the overall management prioritizing of 

safety at the plant. 

 

When the gas cloud ignited an explosion was inevitable. The source was a vehicle parked 25 

feet away with is engine idling. BP`s policy was that no vehicle could be left unattended with 

the motor operating. For maintenance shutdowns and capital projects a traffic control plan 

was required. Managers have freely admitted at interviews that there was no effective vehicle 

control policy at Texas City. This indicates a lack of awareness of the risks associated with 

refinery processing. Had no ignition source been present, the explosion would not have 

happened. 

 

Another sign that indicates lack of awareness of the risk associated with refinery processing is 

the location of the trailers (mobile offices blocks). At the time of the accident there were 22 

people gathered inside a trailer located 120 feet away from the vent. Two trailers located 

within 136 feet from the vent were demolished by the explosion. The trailers did not need to 

be located there, it was in principal for reasons of convenience
 [50]

. Had they been located 
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further away, no one would have died. So why were they located there? Texas City had a 

management of change process, governing the location of trailers. If a trailer was to be located 

closer than 350 feet to a process unit, one had to proceed further in the workbook in order to 

perform risk calculations and evaluate the explosion risks. However, the people engaged in 

the risk assessment were not safety engineers and had no training in the use of the workbook 
[50]

. They were unable to complete the required analysis and the management of change 

process was inadequate. 

 

Summing up the factors that contributed to Texas City accident, they can be grouped into the 

following categories
 [50]

: 
 

Supervision and monitoring: 

- Culture of ―causal compliance‖ in which operators and supervisors treated 

procedures as guidelines that they were free to ignore rather than regulations 

- BP did not audit operator compliance with start-up procedures 

- BP failed to monitor and react to electronic data on previous start-ups. 

- insufficient management of change 

 

Policies and procedures: 

- The procedures were incomplete and out of date 

- Operators did reasonable belief that deviation from procedures was necessary 

to protect against level fluctuations 

- Lack of fatigue management policy 

- Lack of management of change policy/procedure 

Physical devices and instrumentation: 

- Lack of any physical cut-out device to prevent overfilling 

- Instruments that only read liquid levels in the bottom of the column 

- Inadequately maintained instruments 

- Misleading instrument 

- Lack of any display in the control room comparing inflow with outflow 

Communication: 

- Communication failure between shifts 

- Management failed to communicate startup instructions 

- Failed to communicate the importance of process safety to the workforce 

Training: 

- Lack of operator training for abnormal conditions 

- Lack of operator awareness of risk (consequences of action, 350 feet rule, 

ignition control) 

Most of the subjects mentioned above are management elements. The lack of preventing 

barriers such as instrumentation and cut of device was due to lack of focusing on maintenance 

and process safety from the management. The fact that the ignition source control at the site 

was insufficient (due to inadequate policy) reflects back on the prioritizing by the 

management. 
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4.3 Deep WaterHorizon 2010  
 

Reference to the information presented in this chapter is BPs` own investigation report 
[53]

 and 

the report made to the President 
[54]

. 

 

On April 20, 2010, an explosion and fire erupted on the drilling rig Deepwater Horizon in the 

Gulf of Mexico. Hydrocarbons escaped from the Macondo well onto Transocean‗s Deepwater 

Horizon, resulting in explosions and fire on the rig. Eleven people lost their lives, and 

seventeen others were injured. The fire, which was fed by hydrocarbons from the well, 

continued for 36 hours until the rig sank. The accident involved a well integrity failure, 

followed by a loss of hydrostatic control of the well. The causes of the accident were related 

to some key findings, each described thoroughly in this report. The rig was owned by 

Transocean and operated by BP. 

 

The day before the accident cement had been pumped down to the wellbore annulus to 

prevent hydrocarbons from entering the wellbore from the reservoir. This annulus cement 

probably experienced nitrogen breakout and migration, allowing hydrocarbons to enter the 

wellbore annulus. BP‗s team had some concerns regarding Halliburton‗s cementing design, 

which led them to place a number of significant constraints. The first compromise in BP‘s 

plan was to limit the circulation of drilling mud through the wellbore before cementing. BP 

compromised again by deciding to pump cement down the well at the relatively low rate of 4 

barrels or less per minute. Higher flow rates tend to increase the efficiency with which cement 

displaces mud from the annular space. But the increased pump pressure required to move the 

cement quickly would mean more pressure on the formation and an increased risk of lost 

returns. BP decided to reduce the risk of lost returns in exchange for a less-than-optimal rate 

of cement flow. BP made a third compromise by limiting the volume of cement that 

Halliburton would pump down the well. Pumping more cement is a standard industry practice 

to insure against uncertain cementing conditions. But more cement at Macondo would mean a 

higher cement column in the annulus, which in turn would exert more pressure on the fragile 

formation below. BP determined that the annular cement column should extend only 500 feet 

above the uppermost hydrocarbon-bearing zone (and 800 feet above the main hydrocarbon 

zones), and that this would be sufficient to fulfill regulations of ―500 feet above the 

uppermost hydrocarbon-bearing zone.‖ However, it did not satisfy BP‘s own internal 

guidelines, which specify that the top of the annular cement should be 1,000 feet above the 

uppermost hydrocarbon zone. As designed, BP would have Halliburton pump a total of 

approximately 60 barrels of cement down the well—a volume that its own engineers 

recognized would provide little margin for error. Finally, in close consultation with 

Halliburton, BP chose to use ―nitrogen foam cement‖.  This formula was chosen to lighten the 

resulting slurry and thereby reducing the pressure the cement would exert on the fragile 

formation. In theory, this would help to balance the pore pressure in the formation and clear 

the annular space of mud as the cement flowed upward. The investigation report concluded 

that there were weaknesses in cement design and testing, quality assurance and risk 

assessment.  

 

It appears that Halliburton never reported the results of the February test to BP. Halliburton 

conducted another round of tests in mid-April, just before pumping the final cement job. By 

then, the BP team had given Halliburton more accurate information about the temperatures 

and pressures at the bottom of the Macondo well, and Halliburton had progressed further with 

its cementing plan. Using this information, the laboratory personnel conducted several tests, 



Evaluating Gassco`s barrier KPI model 

 

 

  
Page 46 

 
Stavanger 2011 Lene Østrem 

including a foam stability test on April 13. The first test Halliburton conducted showed once 

again that the cement slurry would be unstable. The Commission does not believe that 

Halliburton ever reported this information to BP. Instead, it appears that Halliburton 

personnel subsequently ran a second foam stability test, this time doubling the pre-test 

`conditioning time` to three hours.  

 

The shoe track barriers did not isolate the hydrocarbons. Both barriers in the shoe track must 

have failed to prevent hydrocarbon entry into the production casing. The first barrier was the 

cement in the shoe track, and the second was a device at the top of the shoe track designed to 

prevent fluid ingress into the casing. The investigation team identified potential failure modes 

that could explain how the shoe track cement and the float collar allowed hydrocarbon ingress 

into the production chasing. 

 

The negative-pressure test was accepted although well integrity had not been established. The 

test involved replacing heavy drilling mud with lighter seawater to place the well in a 

controlled underbalanced condition. In retrospect, pressure readings and volume bled at the 

time of the negative-pressure test were indications of flow-path communication with the 

reservoir, signifying that the integrity of these barriers had not been achieved. The Transocean 

rig crew and BP well site leaders reached the incorrect view that the test was successful and 

that well integrity had been established. 

 

With the negative-pressure test having been accepted, the well was returned to an 

overbalanced condition, preventing further influx into the wellbore. Later, as a part of the 

normal operations, heavy drilling mud was again replaced with seawater, under balancing the 

well. This allowed hydrocarbons to flow up to the production casing and passed the blow 

down preventer (BOP). The rig crew did not recognize the influx and did not act to control the 

well until hydrocarbons had passed through the BOP and into the riser. The rig crew‗s first 

apparent well control actions occurred after hydrocarbons were rapidly flowing to the surface. 

Indications of influx with an increase in drill pipe pressure are discernable in real-time data 

from approximately 40 minutes before the rig crew to action to control the well. 

 

The first well control actions were to close the BOP and diverter, routing the fluids exiting the 

riser to the mud gas separator. Nevertheless, the well control response actions failed to regain 

control of the well. Had the fluid been routed overboard instead, there may have been more 

time to respond, and the consequences of the accident may have been reduced. Once diverted 

to the mud gas separator, hydrocarbons were vented directly onto the rig, which increased the 

potential for the gas to reach an ignition source. Diversion to the mud gas separator resulted in 

gas venting onto the rig. The design of the mud gas separator allowed diversion of the riser 

contents to the mud gas separator vessel although the well was in a high flow condition. 

 

The fire and gas system did not prevent hydrocarbon ignition. Hydrocarbon migrated beyond 

areas that were electrically classified to areas where the potential for ignition was higher. The 

heating, ventilation and air condition system probably transferred a gas-rich mixture into the 

engine rooms, causing at least one engine to overspeed, creating a potential source of ignition.                                                                                                                                                                     

The BOP emergency mode did not seal the well. Three methods for operating the BOP in the 

emergency mode were unsuccessful in sealing the well. Through a review of a rig audit 

findings and maintenance records, the investigation team found indications of potential 

weaknesses in the testing regime and maintenance management system for the BOP.  
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Most, if not all, of the failures at Macondo can be traced back to underlying failures of 

management and communication. Better management of decision making processes within 

BP and other companies, better communication within and between BP and its contractors, 

and effective training of key engineering and rig personnel would have prevented the 

Macondo incident.  

 

Transocean failed to adequately communicate to its crew lessons learned from a similar near-

miss on one of its rigs in the North Sea four months prior to the Macondo 

blowout. On December 23, 2009, gas entered the riser on that rig while the crew was 

displacing a well with seawater during a completion operation. As with Macondo, the rig‘s 

crew had already run a negative-pressure test on the lone physical barrier between the 

pay zone and the rig, and had declared the test a success. The tested barrier nevertheless 

failed during displacement, resulting in an influx of hydrocarbons. Mud spewed onto 

the rig floor—but fortunately the crew was able to shut in the well before a blowout 

occurred. The basic facts of both incidents are the same. Had the rig crew been 

adequately informed of the prior event and trained on its lessons, events at Macondo may 

have unfolded differently.  

 

Decision-making processes at Macondo did not adequately ensure that personnel fully 

considered the risks created by time- and money-saving decisions. Many of the decisions that 

BP, Halliburton, and Transocean made that increased the risk of the Macondo blowout clearly 

saved significant time (and money). But in regard to BP`s Macondo team, there appears to 

have been no formal system for ensuring that alternative procedures were in fact equally safe. 

None of BP‘s (or the other companies‘) decisions appear to have been subject to a 

comprehensive and systematic risk-analysis, peer-review, or management of change process.  

 

A complex and interlinked series of mechanical failures, human judgments, engineering 

design, operational implementation and team interfaces came together and allowed the 

initiation and escalation of the accident. The causes can be categorized as followed: 

 

Supervision and monitoring: 

- Insufficient technical review of the cement slurry design 

- Need for strengthening BP`s rig audit process to improve the closure and 

verification of audit findings and actions across BP-owned and BP-contracted 

drillings rig 

 

Policies and procedures: 

- Insufficient guidelines for the negative-pressure test (a critical activity). No 

procedures containing detailed steps or minimum expectations for conducting 

a negative-pressure test 

- Insufficient risk management and management of change 

- Weaknesses in the testing regime and maintenance management system for 

BOP 

- Cement slurry was not fully tested prior to execution 

- Procedures stated that the well was to be monitored at all times, however the 

policy did not specify how to monitor the well during in-flow testing cleanup 

or other end-of-well activities 

- Transocean`s shut-in protocols did not fully address how to respond in high 

flow emergency situations after well controls have been lost. 
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Physical devices and instrumentation: 

- The float collar failed to prevent hydrocarbons ingress 

- The design of the mud gas separator allowed the riser fluids to be diverted to 

the mud gas separator vessel when the well was in high flow condition. 

- Fire and gas system did not prevent ignition 

- The BOP emergency mode did not seal the well 

Communication: 

- Interactions between BP and Halliburton in the planning, design, execution 

and conformation of the cement job 

- The rig crew and well site leaders believed that the negative-pressure test was 

successful 

- Transocean failed to communicate lesson learned from previously event in 

2009 

Training: 

- Lack of awareness of risk (shortcomings in the planning/design and execution 

of  the cement job, formal risk assessment of the annulus cement barriers were 

not conducted, personnel safety versus process safety) 

- The rig crew and mudloggers did not observe or did not recognize indications 

of flow (from 20:58 until 21:38 – simultaneous operations occurred that may 

have affected the effectiveness) 

- Rig crew was not sufficiently prepared to manage an escalating well control 

situation 

- Lack of competency of personnel in key operational and leaderships positions 

The well blew out because a number of separate risk factors, oversights and outright mistakes 

combined to overwhelmed the barriers meant to prevent such an event from happening. Most 

of the mistakes and oversights can be traced back to a single overarching failure - a failure of 

management. Better management by BP, Halliburton and Transocean would almost certainly 

have prevented the blowout by improving the ability of individuals involved to identify the 

risks they faced, and to properly evaluate, communicate and address them. 

 

A question that has been asked following the Deep Waterhoriozon accident is; could it occur 

in the North Sea? This will not be discussed in this report, but it seems very relevant to 

present an event that occurred at a platform operated by Statoil in the North Sea, described in 

the next chapter. Perhaps the description of the event will help to answer the question. 

 

4.4 Gullfaks 2010  
 

Reference regarding information in this chapter, is Statoils internal investigation report 
[55]

 

and a letter from the Petroleum Safety Authority submitted to Statoil regarding the 

investigation report 
[56]

.   

 

On May 19 2010 Norway could have experienced a major accident at Gullfaks C. The 

Petroleum Safety Authority claim 
[57] 

that under slightly altered circumstances, a well control 

incident on the Statoil-operated Gullfaks C platform in the North Sea could have developed 

into a major accident. 
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During the final circulation and hole cleaning of the reservoir (well 34/10-C-06 AT5) a hole 

occurred in the 13 3/8‖ casing, with subsequent loss of drilling fluid (mud) to the formation. 

The hole in the casing implied loss of both well barriers. Loss of back pressure lead to influx 

from the exposed reservoirs into the well, until solids or cuttings packed off the well by the 9 

5/8‖ liner shoe. The pack-off limited further influx of hydrocarbons into the well. The crew on 

the platform and the onshore organisation struggled to understand and handle the complex 

situation during the first twenty-four hours. Well control operation continued for almost two 

months before the well barriers were reinstated. 

 

The consequences of the event were implied gas release on the platform, compromised 

barriers and loss of reputation. The production on the platform was shut down for almost two 

months.  So, what caused this event? Statoils` own investigation report has concluded that the 

casing had insufficient technical integrity and that there was a lack of monitoring and follow-

up of the pressure in the C-annulus, causing the pressure to increase over weeks resulting in 

the leak. A cause contributing to the difficulties related to handling of the subsequent well 

control situation was that the managed pressure drilling operation was commenced and 

carried out with insufficient margin between the pore and fracture pressure. 

 

An underlying cause is considered to be the risk assessment related to application of the 13 

3/8‖ casing as a common well barrier element. The insufficient risk assessment was 

considered as the cause of using a casing with insufficient technical integrity and lack off 

follow-up and monitoring of pressure in the annulus outside the casing. The investigation 

team states that; the risk assessment performed in the planning phase was insufficient, the risk 

evaluation during execution of the managed pressure drilling operation was insufficient and 

the transfer of experience related to pressure control from the  managed pressure drilling 

operation in well C-01 in 2009 was insufficient. Other causes are related to insufficient 

planning of the operation, knowledge to and compliance with requirements, management 

pressure drilling knowledge and involvement of the Company‘s technical expertise. 

 

The Petroleum Safety Authority Norway (PSA) has closely followed up the loss of well 

control on Gullfaks C 
[59]

, and pursued various activities aimed at clarifying the causes of the 

incident. The work has focused on how Statoil handled the event, on its planning and 

execution of the well and Statoil‗s efforts to re-establish safety barriers and secure the well, as 

well as its internal investigation of the incident. 

 

The PSA regards the incident as very serious; it involved the lengthy loss of a barrier. Only 

chance averted a sub-surface blowout and/or explosion, and prevented the incident from 

developing into a major accident. This resulted in an audit carried out 8-15 October 2010. 

The PSA‘s finding is that the planning for the drilling and completion operation on well C-

06A featured serious and general deficiencies. These concerned such key factors as risk 

management and change control, experience transfer and use of expertise, knowledge of and 

compliance with governing documents, and documentation of decisions. 

Viewed overall, the PSA has concluded that serious deficiencies have been identified in 

Statoil‘s planning and in management checks that the work was being done in an acceptable 

manner. The audit resulted in a notification with orders. 

 

The PSA has assessed Statoil‘s own investigation of the incident, and has conveyed its 

comments, which among others were
 [56]

: 
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- that underlying causes related to control, management and other 

organisational factors were not discussed, so that factors which could have 

been relevant, such as lack of resources, pressure of time, 

changes/reorganisations, major replacements of personnel and inadequate 

training, are not identified 

- it is not considered in detail why risk assessments were not made and why no 

central specialist expertise was used. Further, why were not work processes 

familiar to personnel responsible for the activity and why did not internal 

control system, including responsible management, pick up the undesirable 

conditions 

- PSA assessment is that measures directed at organisational factors which lie 

further back in the causal chain have not been adequately identified 

- the estimated leak rates are based on important assumptions which have not 

been verified (uncertainty concerning ventilation conditions, for example), 

and are very uncertain. Nor is the ignition probability or consequences of a 

possible fire/explosion in the well area analysed or discussed 

- the investigation team notes that risk assessments were deficient, but does not 

clarify whether this reflected inadequacies in methods used, content, 

execution, participation or other conditions. Nor are specific recommendations 

made for measures related to this 

- similarities with the causes of events on other installations, such as the gas 

blowout on Snorre A, are not discussed 

- Statoils investigation report concludes that the possibility of sub-surface 

blowout was very low. PSA cannot see this conclusion is adequately 

supported 

 

These are all very important comments. How can an organization learn from an undesirable 

event if they do not find the actual root cause in the organisation?  

 

In an interview the PSA 
[58]

 criticises Staoil`s own investigation, due to the insufficient 

mapping of underlying causes, which may contribute to the lack of important learning and 

improvement measurements. 

 

On December 4 2010, there were a hydrocarbon leak on Gullfaks B
[59]

. The incident occurred 

during leak testing in connection with maintenance work with a choke valve on one of the 

wells, and the leak had a high initial rate of 1.3 kilograms per second and lasted for an hour. 

The PSA decided to investigate this event themselves and identified non-conformities were 

related to 
[60]

: 

- planning of the work – the isolating plan had deficiencies 

- testing of barrier valve identified in the isolating plan 

- planning, clearing and carrying through the reset including the leak testing 

- identifying risk related to pressure build up between subsurface safety valve 

and hydraulic main valve  

- maintenance of manual main valve 

- emergency shutdown system – can unintentionally be set out of function 

- securing adequate capacity and competence when planning and carrying 

through the reset work – lack of role clarification 

- strategy for barriers and establishing performance requirements for barrier 

elements  
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- update of risk analysis – no documentation stating that the risk associated with 

explosions had been reduced as low as possible 

 

Several things seem to repeat itself within the company; lack of risk understanding, 

insufficient planning and testing, insufficient barriers and lack of training/competence. If 

some circumstances were altered, a major accident could occurred in the North Sea in the year 

2010. 

 

4.5 Similarities – failure to learn 
 

More major accidents are presented in appendix C: Humber oil refinery in 2001, Touluse in 

2001 and Buncefield in 2005. 

 

Going through the accidents described in previous chapters and in appendix C, it is quite 

striking how many similarities there actually are between these accidents, regardless of 

company or country involved. Summing up the main triggering categories and underlying, 

they can be placed as followed in the bow tie model: 

 

 
Figure 15: Overview bow tie model 

As illustrated in figure 15 most of the underlying causes in the accidents described are 

management elements. The picture in figure 15 gives a simplified picture of a complex chain 

of events leading to an accident. But the essence is that most of the causes can be traced back 

to the management of the company. 

 

The triggering cause is most likely to be an Operator error, often connected to a 

physical/instrumentation failure. As seen in the accidents described earlier in this report the 

technical causes vary from one accident to another, but the organisational failures seem 

remarkably similar, such as insufficient maintenance, lack of risk understanding, insufficient 

training and a lack of safety culture. Some of the investigation reports devote little attention to 

the organisational causes and the management systems. By looking at the triggering causes 
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and the initiatives from the investigation, it is clear that there are conditions that are 

censurable regarding the organisation. For example, Buncefield accident: safety critical valve 

fails and goes unnoticed by the monitoring system, Toulouse accident; large amount of 

ammonium nitrate stored without proper knowledge regarding the consequence. These 

examples indicate insufficient maintenance management and a lack of risk understanding in 

the organisation. Insufficient maintenance and risk understanding, followed by insufficient 

monitoring and lack of procedures seem to repeat itself in all organisations represented in this 

report.   

 

In principle one could say that by getting the organisational factors right the technical causes 

of the accident will not come into play. For instance, if the instruments that read the liquid 

level at Texas City were maintained correctly and showed correct liquid level, the accident 

could have been avoided. Also, if the organisation had an understanding of the risk involved 

by overfilling the column, they might have installed a cut-out device to prevent overfilling. 

  

In the oil and gas industry risk-based decision-making is commonly used, and in the industry 

there will always be a level of risk, that is inevitable. The question is how much risk is 

acceptable? Another approach to risk is a consequence-based, which takes no account of the 

likelihood. The philosophy is that if the consequences are severe, people must be protected of 

them no matter how unlikely they may be. This principle cannot be universally applied and it 

is not possible to protect people from all risk. But, as illustrated in the Texas City accident, 

the risk to trailer occupants could have been eliminated. It was not an issue of cost, it was a 

question of convenience. Had the management understood the risk involved, the trailers 

would most likely be placed somewhere else.  

 

Most of the accidents described in this report had an ignition source which caused a 

fire/explosion. One could say that if the ignition source had not been present, none of the 

accidents would have occurred. But there are many potential ignition sources at a 

petrochemical plant and efforts must be focused on ensuring that flammable materials do not 

escape. In contrast, flammable gas is an ever-present problem and ignition control is therefore 

a vital safeguard against explosion. Barriers connected to ignition source control and loss of 

containment (inspections) must be focused on.  

 

One of the central conclusions of most disaster inquiries was that the auditing of safety 

management system was defective. Theoretically, the aim of safety auditing is not to identify 

uncontrolled or inadequately controlled hazards – it is to identify strengths and weaknesses in 

safety management systems. One finding, which emerged from every disaster inquiry, was 

that the company auditing provided only good news and failed to identify problems, which 

became very obvious after the event. Also, an effective management of change system, which 

consider both plant and process modifications, is essential to prevent major accidents. 

Especially care is needed to ensure that ―quick fix‖ modifications, during the commissioning 

and early operation phases of new plan, are covered. Again, just as quality in audit process, 

this is an organisational issue.    

 

Communication and training are also frequently repeated as an underlying cause. Effective 

communication is an important element of any safety management system. Another 

organisational issue which is hard to measure, safety culture, is also implicated in every 

disaster. Why is it that the organisational elements seem to repeat itself? Organisations change 
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and people move on, taking their knowledge with them. Aiming for the optimal organisation 

bring along several organisational changes that could result in draught of people in key roles. 

 

The industry is aiming for being capable of measuring management issues. When summing 

all up it seems very natural that this is the way to go, but as of today, this is not especially 

implemented in the industry. It has failed to implement ―lesson learned‖ regarding 

management elements.  

 

All accidents presented in the previous chapters are well known. One might say that by 

choosing other accidents the conclusion could be altered. It is not a given that these 

similarities are present in Gassco`s organisation. It is therefore chosen to evaluate the 

underlying causes of two randomly selected undesirable HSE events classified with a high 

degree of seriousness in Gassco`s portfolio in the period 2009 – 2010.  

 

In 2009 Gassco experienced a gas leak with a major accident potential at one of the land 

based facilities. The leak rate was 22 kg/sec and total amount of gas leaked were estimated to 

1200 kg. There were no injuries, but the leak resulted in 2.5 days with production stop. The 

triggering cause was insufficient stud pulling. The investigation report revealed that the 

underlying causes were
 [61]

:  

- insufficient management of change 

- procedures were not followed, insufficient implementation of work process 

requirements 

- lack of competence and training among installer (probably)  

All the underlying causes mentioned above have been repeated several times in this report 

already. In 2010 Gassco experienced another incident at a land based facility that 

demonstrates insufficient safety culture. A contractor drives with high speed into a curve and 

the car tips over (the road was slippery). Fortunately there were no injuries/damages to 

personnel or equipment. The investigation report revealed that the underlying causes were
 [62]

: 

- lack of risk understanding 

- insufficient HSE culture and lack of HSE competence 

- procedures and regulations were not followed 

The underlying causes in the events described above are the same as mentioned for all other 

accidents in this report, and they can be categorised as management elements in figure 15. 

Several other events within Gassco`s portefolio could have been presented, but by presenting 

these two the point seems to be underlined: the similarities between the accidents are also 

reflected in Gassco`s organisation. 

 

What is the industry doing wrong, since the accidents seem to repeat themselves? How should 

one learn? Another industry that has to perform flawlessly under each operation is the U.S. 

Navy aircraft. This is a large and formal organisation that perform complex, inherently 

hazardous, and highly technical tasks under conditions of tight coupling and severe time 

pressure. If they fail, there will be human and social costs of great severity. And it is all done 

by people who are on average 20 years old, and average experience is 2- 3 years 
[63]

. So, how 

do they do it? And why can the oil and gas industry not do the same? The key to the Nayv‗s 

success is
 
that there is no hierarchy during operations. Everyone has a duty to interrupt if they 

have a concern. Training is constant and relentless. There is a healthy challenge to constantly 
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improve, resulting in an active learning society. Communication throughout the team is far in 

excess of the norm. Turnover of people helps operations becoming stale
 [63]

. 

The U.S navy is a high reliability organisation (HRO). To become a high reliability 

organisation there are five key concepts, which are essential for any improvement initiative to 

succeed 
[64]

: 

- Sensitivity to operations: Preserving constant awareness by leaders and staff 

of the state of the systems and processes. This awareness is key to no risks and 

to prevent them. 

- Reluctance to simplify: Simple processes are good, but simplistic explanations 

for why things work or fail are risky. Avoiding overly simple explanations of 

failure (unqualified staff, inadequate training, communication failure, etc.) is 

essential in order to understand the true reasons for risk. 

- Preoccupation with failure: When near-misses occur, these are viewed as 

evidence of systems that should be improved to reduce potential harm. Rather 

than viewing near-misses as proof that the system has effective safeguards, 

they are viewed as symptomatic of areas in need of more attention. 

- Deference to expertise: If leaders and supervisors are not willing to listen and 

respond to the insights of staff who know how processes really work and the 

risks one really face, you will not have a culture in which high reliability is 

possible. 

- Resilience: Leaders and staff need to be trained and prepared to know how to 

respond when system failures do occur.  

High reliability organisations will be further discussed in chapter 6. 

 

4.6 How to implement “lesson learned” in Gassco`s barrier KPI model 
 

As shown in figure 15 and described in the preceding chapters there are a lot of similarities in 

the causes leading to the major accidents. The majority is categorised as management 

elements.   

 

Gassco`s barrier model has several indicators on reactive and proactive barriers such as 

technical equipment, these will not be discussed further in this chapter. The reason for this is 

the fact that the area of physical and instrumental causes for an accident seems to be covered 

in a good way by monitoring defined safety critical equipment in the model. The elements 

that need to be further assessed in the model are proactive elements other than technical and 

management indicators. For a complete list of indicators see appendix B. Proactive and 

management elements indicators used in the model are
 [8]

: 

- Inspection finding (measurement: number of findings) 

- PSV (pressure shutdown valve, measurement: # of failures/ # of test) 

- Preventive backlog on safety critical equipment (measurement: # of works 

orders in backlog) 

- Corrective backlog on safety critical equipment (measurement: # of works 

orders in backlog) 

- Critical audit findings ( measurement: # of critical open findings) 

- Overdue actions on critical audit findings (measurement: # of overdue actions) 

- Override indicator (measurement: # of critical safety barriers overridden a 

specific time) 
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- Open corrective work order related to safety critical failure modes 

(measurement: # of open orders) 

The indicators mentioned above show that Gassco understands the importance of management 

elements in preventing a major accident. Inspection findings, critical audit findings, PM and 

CM backlog (maintenance) and overrides are all getting focus from the management in 

Gassco. But the quality of the inspections and audits are not reflected in the barrier KPI 

model. There are no indicators regarding competence and training, design and layout, safety 

culture, incidents and management of change. Incidents at Gassco are handled by other KPI‗s 

(each incident handled separately) and design and layout are handled by other means such as 

QRA on design, procedures and audits. However, competence and training, safety culture and 

management of change are left out due to the fact that it is hard to establish suitable 

measuring parameters. The importance of policies and procedures are not reflected in the 

model. Is it possible to implement indicators that give an overview and management focus on 

these barriers? 

 

Human factors are important in the barrier thinking and the Health and Safety Executive 

(HSE) states that 
[65]

:  

 

“Human factors is a professional discipline concerned with improving the integration of 

human issues into the analysis, design, development, implementation, and the operational use 

of work systems.” 

 

A research report from the HSE regarding human factors 
[65] 

states that for systems to operate 

safely and effectively, they must be designed to support the people who operate them. It is 

increasingly recognised that human factors issues must be considered as a central part of 

development thinking. Experience shows that it is ineffective to address them as an 

afterthought. The risks associated with poor human factors can best be avoided by starting 

human factors activities as early as possible in the design process and continuing them 

throughout.  The report indicates the scope of human factors and addresses both the technical 

and human parts of the system. Good management is needed to address human factors 

comprehensively. Human factors is a barrier that should be monitored and focused on by the 

management at all times.  

Another research report from the HSE regarding humans factors performance indicators for 

the energy and related process industries
 [6] 

present the human factors key topics and gives 

suggestion on how to select an appropriate set of indicators. The human factors key topics are 

summarised to be:
 

- Managing human failures 

- Procedures 

- Training and competence  

- Staffing 

- Organisational change 

- Safety critical communications 

- Human factors in design 

- Fatigue and shift work 

- Organisational culture 

- Maintenance, inspection and testing 

Suggested indicators for these topics are presented in appendix D.  
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Gassco has already implemented some of the indicators suggested in appendix D regarding 

maintenance, inspections and testing, and also some of the indicators suggested for staffing. 

When the aim is to learn from previous major accidents, the model could be used to include 

indicators that reflect the status of human factors regarding training, competence, 

organisational change and culture, communication and procedures. One way of doing this is 

sketched in the following section. 

 

Gassco‗s management is located in the head offices at Bygnes. As of today there is no 

indicator in the model presenting Gasscos‗s main office, due to no technical barriers etc. 

operated at this location. Learning from previous major accidents shows that management 

system and management focus are crucial when managing the major accident potential. The 

work by the management is crucial prevent a major accident. This is evident by going through 

the major accident history. To highlight this, Gassco should consider to implement an 

indicator prevailing for management elements at the offices at Bygnes. This indicator could 

reflect the status of some of the management elements prevailing at Bygnes. If the selection 

and implementation of management indicators are useful and successful, Gassco should insist 

implementation of several management indicators at installations within their area of 

responsibility.  

 

The management indicator aim must be to represent many of the already ongoing initiatives at 

Bygnes in the work done to prevent a major accident, for example information gained from 

the new Management of Change and audit tool Smart (implemented 2010), audits, Gassled 

top 10 action plan etc. Gathering all systems and presenting them as a barrier to prevent a 

major accident will enhance the message, and contribute in building a good safety culture. 

The indicator will be visible to all employees in Gassco. The barrier model itself is an 

important contribution to the safety culture, and is guiding the management in keeping the 

right focus.   

 

The indicator should be presented at the barrier chart as several management indicators 

aggregated into one overall status at Gassco Bygnes, as illustrated in figure 16: 

 

 
Figure 16: Illustration Barrier KPI chart 

        Bygnes 
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When ―clicking‖ on the Bygnes indicator a list with status on all the selected management 

element indicators could occur as exemplified in figure 17. The management elements 

displayed in figure 17 are the ones that are already implemented in the model. The list 

connected to the indicator at Bygnes should contain a different selection of indicators, as 

discussed in the next section. 

 

 
Figure 17: Example management element list 

Some indicators chosen from the research report from HSE 60 
[6] 

(listed in appendix D), 

assessed as underlying indicators in the management element indicator representing Gassco 

Bygnes, are presented in the subsequent sections. The main reason for choosing these is the 

gap between lesson learned from previous major accidents.Other indicators than the one 

represented in this chapter could also be of interest, but the one chosen for discussion are the 

ones most suitable for Gassco‘s organisation at Bygnes.  

 

Human failures are very often the triggering causes of a major accident (ref. chapter 4). 

Before it is possible to implement a leading indicator on human failures, a system for 

registering risk assessment/HAZOPs including human failure must be developed in Gassco. 

Human failures are limited to only discussing the probability of Operator failure in risk 

assessments. In HAZOP‗s it is very rare to include assessments of human factors. This area 

must be further developed before implementing an indicator saying something regarding risk 

assessment/HAZOP‗s.  Since the office at Bygnes does not perform work at the different 

plants directly and on a daily basis, one indicator that could be implemented and which do not 

require a lot of work to carry out, is to measure “Number or percentage of plants/sites in the 

organisation that have designated champion to help manage human performance risk”.  

When it comes to managing human errors, the number of installations that have a designated 

champion is not seen as the ultimate way of handling this subject. The reason for this is that 

the installations can then choose whether or not to have a dedicated responsible person. It is 

also easy to report a name, without having a decent work program. Gasscos‗s management 

should decide whether or not it should be a requirement to have one champion to help manage 

human risk at each plant, which specialises in managing human error. If it becomes a 

requirement, and a part of someone‘s work instruction, there is no need for an indicator. 

Alternatively, one person in the Gassco organisation could be responsible for this subject. So 

when it comes to managing human errors, the recommendation is that there should be a 

requirement in the organisation demanding that a ‗human factors manager‗ in an 

operation/project should be appointed rather than just implementing an indicator. This is seen 
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in connection with the discussion in chapter 6 regarding communication and safety culture. A 

requirement of a dedicated person to work with these issues seems to be far more sufficient 

than an indicator.    

Also, inadequate procedures are often one of the root causes to a major accident (ref. chapter 

4). The leading indicator most fitted for the organisation at Bygnes regarding procedures is 

“Number or percentage of procedures documented /up-to-date/within scheduled review date, 

or compared with total number of procedures”, “Number or percentage of procedures 

meeting quality criteria/number of errors found in procedures (based on procedural 

„walkthroughs„ undertaken by managers and operators to confirm appropriateness)” or 

“Number or percentage of safety critical tasks for which appropriate (scope, critical tasks, 

emergency actions) procedures are in place”. As a minimum, there should be an overview of 

number/percentage of procedures documented up-to-date within schedule. But this indicator 

does not say anything about the quality of the update and the procedure. There should be a 

quality criteria, such as number of errors found based on procedural ‗walkthroughs‗. Doing 

this for all procedures requires a lot of work, and all procedures are not as important. A 

suggestion could be to have an indicator that measures the number/percentage of safety 

critical tasks for which appropriate (scope, critical tasks, emergency actions) procedures are in 

place. It is a requirement for Gassco that procedures are updated every third year and it is 

expected that a proper job is done. Every procedure has an owner. So if it is not updated 

according to the requirements, there is an employee that has not done the required job. 

Arguments for not implementing an indicator regarding procedures is that this job is a part of 

someone‘s job description and should be an issue between the leader and the employee. An 

indicator on this subject could easily just become a number which does not provide 

meaningful information for decisions on a high level. 

 

Training and competence also seem to be a repeated underlying cause of major accidents (ref. 

chapter 4). There are several indicators that could be relevant to implement as an underlying 

indicator for Gassco Bygnes. An indicator measuring “Number or percentage of employees 

trained per period as compared with schedule” could be seen together with the new e-

learning system implemented and emergency preparedness exercises‘, and will in some 

degree reflect the organisations focus on training and learning. Gassco Bygnes has already 

developed an e-learning system and performs emergency preparedness exercises regularly.  

The emergency exercises and the new e-learning system are required. So an indicator saying 

something regarding this will probably nearly always be green. It could be evaluated whether 

or not the indicator “Frequency with which supervisors actively check staff competence 

(based on audit interviews with supervisors”) based on spot check audits” is suitable. The 

indicator will increase management focus on competence and will help unveil and keep an 

overview of lack of qualifications among personnel – with the aim to improve their 

qualifications. Gassco Bygnes is not direct involved in the daily work at the installations. 

Because it is more or less the same personnel year after year at Gassco Bygnes and each 

position has requirements that need to be fulfilled in order to get hired, an indicator checking 

the staff competence does not seem to be adequate for the organisation. When it come to 

training, Operators in Gassco`s portfolio should be trained in handling abnormal situations by 

using a simulator. An indicator saying something regarding the performance in the simulator 

training could give useful information. But as of today it is not common to perform regular 

simulator training.   

 

Maintenance backlog on safety critical equipment is already included in the‖ Barrier KPI 

model at installation level. For the management at the top level it could be of interest to have 
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an overall critical maintenance backlog for Gassco`s portfolio. After all, they are responsible 

for getting the job done, and it is important for everyone in the management to know the 

extent of the critical maintenance backlog. For the organisation at Bygnes, an appropriate 

indicator could be CM backlog on safety critical equipment aggregated. The major accident 

history shows that the quality of supervision is very important (ref. chapter 4). “Number or 

percentage of audits that are undertaken for contractor activities, versus targets” is an 

indicator that could be seen in connection with the indicator ―critical audit findings‖ and 

―overdue actions on critical audit findings‖ already implemented at installation specific level. 

But these numbers does not say anything about the quality of the audit performed. No critical 

findings do not mean that they do not exist – it might just be that they have not been 

discovered. Further numbers of audits undertaken are included in the organisations work 

program, and will be displayed if all initiatives done to prevent a major accident becomes an 

indicator. This is already a part of the Gassled top 10 action plan. These initiatives should be 

visible in the barrier KPI model.  

 

Insufficient Management of Change is repeated very often as an underlying cause in the major 

accident history (ref. chapter 4). Gassco has developed a new system (in 2010) called 

SMART to register audits and management of change processes. This should simplify the 

implementation of  an indicator regarding organisational change. An indicator on 

organisational change, which measures “number/percentage of MoC requests closed out or 

signed off versus number remaining alive for a given period”, should due to the new system, 

be easily implemented without requiring a lot of work. But this is just a number saying 

something about the changes that are under control, and has management focus as a result of 

the new SMART system. But the management should be aware of and keep a close attention 

to, which is not highlighted in the SMART system, the number of exceptions/aberrations from 

the regulations  regarding safety equipment within Gassco`s portfolio. How many high 

classified (for example rated red according to the TTS scale) exemptions are present in a 

given time period?  

 

Regarding human factors in design and fatigue in shift work, “Number/percentage of alarms 

that the operators fail to acknowledge per shift” could be a human factor indicator at the 

control room at Bygnes. This is probably a very difficult indicator to measure. How should 

one register them and how should one set limits? It is also important to not mix what is 

important regarding a major accident potential and regular operation. An indicator showing 

the “average number of hours worked for the shift personnel‖ at Bygnes could be 

implemented. A trend towards more overtime might suggest increased potential for reduced 

alertness. In several major accidents the personnel involved have been working over a long 

period of time (ref. chapter 4). On the other hand, Gassco`s TCC is 3
rd

 line in the emergency 

preparedness organisation and such an indicator would probably be of more interest on 

installation level. 

 

Organisational safety is a very important factor. In several major accidents there has been a 

poorly safety culture (ref. chapter 4). Gassco`s management is not present at the plants on a 

daily basis, therefore it is very important to have a good safety culture in the company. There 

are 3 indicators that should be fairly easy to implement at Gassco Bygnes: 

- ―Measure of visibility of senior executives in the workplace (number of site 

visits, etc.‖), 

- “Number or percentage of reported events that are process safety related 

versus behavioural safety related” 
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- “Results from HSE safety climate surveys (or other safety culture/climate 

surveys or external audits), undertaken every 12 or 18 months, involving 

questionnaires, team interviews and individual interviews. Provide a snapshot 

of the organisation„s culture (compare results against industry 

benchmark/changes over time”.  

Out of these three indicators, it is probably the results from a HSE safety climate survey that 

would give the most valuable information. The other two could easily just become one 

number, expressing what has been done but not anything about what should be done. The 

PSA regular conducts a survey to map the risk level in the petroleum activity (RNNP)  
[66]

. 

Gassco could benefit from this survey and use some of the answers in an indicator on safety 

culture at each installation. For the terminals abroad, a similar survey could be developed. A 

survey made especially for Gassco`s organisation could also be made from scratch (probably 

the best solution).  Either way, a HSE safety climate survey should once a year be performed 

to provide a snapshot of the organisation`s HSE culture.  

 

Number/percentage of reported events that are process safety related could easily be 

implemented and helps to sort out and focuse on incidents with a major accident potential.  

An indicator stating how many events/accidents that are repeated could help measure whether 

or not the organisation is learning. This is a lagging indicator, but it is useful in determining 

whether or not lessons are learned. An option could be to have an indicator measuring 

percentage/number of implemented initiatives following lessons learned from other major 

accidents in the industry.  

 

It is important to keep in mind that the first step in the process to get good non technical 

measurements, is to find some useful indicators that are meaningful for the management and 

that are efficient. Implementing too many indicators at once could work the opposite way and 

give little motivation for doing so, especially if the indicators are not very good. Several of 

the indicators mentioned in the sections above give us some numbers. But what purpose do 

the numbers have other than getting the management focus? For example: implementing an 

indicator that shows number of employees that have conducted the new e-learning system will 

probably always be green, due to the fact that it is a requirement to undergo the courses.  Will 

such an indicator be efficient? Probably not. It is also a requirement that all procedures shall 

be kept up to date. It is probably more efficient to perform good quality audits to state that 

requirements are fulfilled, rather than having indicators on the subject. The discussion of why 

several indicators are left out deliberately will continue in chapter 6. 

 

 Underlying indicators to the management element indicator, placing the Bygnes offices at the 

barrier KPI chart, are suggested in table 1. These indicators are the ones left after evaluating 

the efficiency and meaning of each indicator. It is also taken into consideration that there 

should not be too many new indicators introduced in the beginning. The model needs to build 

trust among the employees and gain a good reputation. If it does not do so, the effect of it 

could be ruined.  

 
Table 1: Suggested indicators 

Suggested 

indicators: 

Advantage: Disadvantage: Unit: 

Ongoing initiatives 

to reduce the major 

Already present in the top 10 

action plan: managing major 

The limits can be 

experienced somewhat 

% 

fulfilled 
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Suggested 

indicators: 

Advantage: Disadvantage: Unit: 

accident potential accident hazard potential.  

 

Highlights the work done at 

Bygnes when trying to prevent 

a major accident. Makes it easy 

to present to others what the 

management focuses on.  

 

Audits/verifications are 

included in this indicator. 

 

Motivates the employees to get 

the work done, especially when 

the work is set in perspective 

and linked up against a major 

accident.   

unfair since people 

work in different 

ways. But they should 

be decided in the same 

way as the top 10 

action plan and 

HSE&Q program. 

up against 

the target.  

CM backlog on 

safety critical 

equipment 

aggregated 

Tells something about Gassco`s 

capability of handling the 

maintenance work.  

 

Insufficient maintenance 

management is one underlying 

cause of several major 

accidents, ref. chapter 4. Gassco 

need to show that they take this 

very serious, and that foucse is 

keept on this subject at all 

times. 

 

Maintenance is often affected 

when trying to save costs. 

Having focus on it will make 

the consequences more visible. 

Gives the opportunity to follow 

the trend development.  

 

On installation level it is only 

possible to see the development 

at one installation at a time. 

Aggregating it shows Gassco`s 

backlog portoflio and the 

development of it. 

 

Information already available in 

PMG – one only needs to 

aggregate values from the 

installations. 

Could be hard to 

establish suitable 

limits, but it is 

important that the 

management decides 

what it is acceptable 

backlog on safety 

critical equipment. 

Number 

of orders 
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Suggested 

indicators: 

Advantage: Disadvantage: Unit: 

 

HSE safety climate 

surveys. 

Provides a snapshot of the 

organisations safety culture – at 

all levels and at all installations. 

 

Makes it possible to monitor the 

trend in safety culture 

development. 

 

Experiences from RNNP could 

be used in the development. 

 

The survey should be modelled 

in a way that employees with 

safety critical tasks are 

supplemented with more work 

related questions. 

 

Already present in Statoil 

(GPS). 

 

Several surveys already 

developed and on the marked. 

Manual reporting  

 

Surveys must be 

developed. 

Depends 

on how 

the survey 

is 

developed  

Exception on safety 

critical equipment 

It is the management 

responsibility to know what is 

not in accordance with 

prevailing regulations and the 

reasons why.  

 

Insufficient management of 

change is one underlying cause 

of several major accidents, ref. 

chapter 4. The new system 

SMART makes it possible to 

register and get information 

regarding this subject.  

 

Number and type of exception 

tell us something regarding the 

state of the installations. 

 

The management is responsible 

for the budget. It is important 

that safety matters of great 

importance are lifted up in the 

hierarchy to the one responsible 

for the allocation of resources .  

Difficult to set limits 

on what is acceptable.  

 

Mapping all the 

exception must 

probably be done 

manually for each 

installation. 

Numbers 
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The aim with the indicators suggested in table 1 is to focus on areas that have proven to be 

very significant in previous major accidents in the industry. The indicators must also give 

meaning and give the management in Gassco important information which can be used when 

determining new initiatives and making decisions. There are also other indicators/measures 

that are suitable for Gassco as an organisation than the ones mentioned in table 1. But there is 

a balance in introducing new elements and trying to keep it simple to make the idea sellable. 

After all, this is a subject that has been discussed quite a while in the industry. 

  

4.7 Human factors in the nuclear industry 
 

To learn and find good solutions on how to deal with human and organisational mistakes, it is 

important to seek information from other industries with the same challenges. In a complex 

industrial facility such as a nuclear power plant, the majority of the tasks are performed by 

machines. But man is involved to a great extent in their design, testing, maintenance and 

operation – just as in the process industry. The performance of a person working within a 

complex mechanical system depends on that person's capabilities, limitations and attitudes, as 

well as on the quality of instructions and training provided. 

 

Human error can occur at every stage in the life of a nuclear facility and a variety of methods 

must be used to detect and prevent this. In the nuclear industry following aspects are, 

regarding human errors, focused on 
[67]

: 

 Task analysis:  A task analysis can determine what kind of personnel are needed, how 

its members should be selected, what should be included in training programs, and 

other technical issues. In some countries, a specific data base to analyse operator tasks 

has been developed to assist management in selecting, testing and training personnel, 

and in evaluating control room instrumentation and procedures. 

 Personnel hiring and organisation:  A person's skills, personality and experience 

must be carefully reviewed during the hiring process to determine which candidates 

are best suited to operate and maintain a nuclear facility. Quality management of plant 

staff is also highly important, due to the way in which the work is organised, staffed, 

manned, supervised, evaluated and rewarded will determine the effectiveness, 

productivity and safety of the facility.  

 Operator training and testing: Lack of proper training, as well as operational 

procedures, has been a major cause of human error in the nuclear industry. Great 

emphasis is being placed on training issues as the use of simulators, case studies, 

computer-assisted training, team training techniques and better evaluation of training 

programmes. Examinations based on a task analysis can help ensure that all requisite 

skills and knowledge are included.  

 Procedures: Procedures for normal and emergency operations must be technically 

accurate, well-defined and entirely comprehensible. The presentation of procedures for 

routine maintenance, calibration and testing of equipment differs from operating 

procedures. For example, while maintaining clarity and conciseness, more detail 

should be included, especially if the task is not often repeated.  

 Control room design and layout: Errors by control room personnel have often been 

caused by designs that did not take human limitations into account. Improvements in 

control room design, layout, and work environment can lead to the prevention of 

accidents or better management of accidents if they occur. 
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 Reporting:  It is important to compile statistical data on the number and kind of 

human errors that occur in nuclear power plants through the proper use of a well-

designed reporting system. Each time an event out of the ordinary occurs, a form is 

completed describing the event, the probable cause and other pertinent information. If 

human error data is correctly entered on this form, it can help to assess the likelihood 

of accidents and to evaluate changes in control room procedures and training 

programmes.  

 Equipment design, maintenance and testing Human errors occur when machines 

are improperly designed or built or when they are poorly maintained. Errors in system 

design can only be eliminated by a thorough evaluation or testing prior to operation. 

Human error during test and calibration activities has also been attributed to 

inadequate organisation of these activities, design of the equipment or limitations of 

the maintenance personnel.  

 

Overall system reliability in a nuclear power plant is more often dependent on individuals 

than on the equipment. For human reliability assessment, there are no equivalent methods for 

identifying significant potential human failures on a purely logical basis. It is difficult to 

evaluate human performance qualitatively because a decision can be affected by many 

psychological factors. For example, individuals may vary in their performance of well-defined 

tasks, depending on their familiarity with the task, their state of fatigue, what other tasks have 

to be performed, a changing physical environment at work or a tense psychological 

environment at home, and many other factors. Member countries in the Nuclear Energy 

Agency (NEA) 
[67] 

have recognised the need for a classification system to identify and define 

human errors, and in 1983, the Group of Experts on human error data and assessment 

suggested the principal elements of such a system. A three-level model of human thought 

processes was developed, and different types of mental errors were identified for each level: 

errors in trained skills, such as clumsiness; errors in learned rules, such as forgetfulness; and 

errors in creative thinking, such as incorrect interpretation of an event. All of these can cause 

critical mistakes in operating a nuclear power plant.  

 

A probabilistic safety/risk assessment is the method used by the nuclear industry to calculate 

and compare different accident scenarios. A method has been developed by the nuclear 

industry to help estimate the probable occurrence of procedural errors, based on an extensive 

task analysis of each human action evaluated. This method concentrates on mechanical tasks, 

with little analysis of the thinking behind human actions. For example, it identifies errors in 

reading and implementing emergency operating procedures but not errors caused by faulty 

knowledge or reasoning during an event. Under accident conditions, an operator must first 

diagnose the nature of the accident before selecting the appropriate procedures and recovery 

action. Errors of diagnosis are more frequent than procedural errors or those which result from 

misread instruments. When an accident sequence occurs, operators may
[67]

:  

 fail to realise that an event has occurred,  

 fail to diagnose the event correctly and identify proper responses to it, or  

 fail to take timely or proper corrective actions.  

 

Designing systems so that they increase the time available for operators to respond to 

abnormal conditions can help resolve these problems
[67]

. When they realise that the plant is 

not responding as expected, they will have time to analyse the situation and implement the 

proper corrective actions. It is hard to assess these errors by the data bank approach used for 

procedural errors because of the difficulty of observing diagnostic and other hidden thought 
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processes. The alternative is to use the judgement of individuals who have experienced these 

errors in plant or simulator situations, or who have other appropriate knowledge. This can 

help assess the likelihood of human failure. Such individuals may be plant designers, 

operators, trainers, human factor specialists, risk analysts, or others who have expertise in the 

area and who are experienced in quantitative thinking. The need for qualitative information to 

support conventional statistical error analysis has been demonstrated. There are at least three 

ways to collect such information: by in-depth event reports submitted by plant personnel; by 

on-site investigation of significant abnormal events carried out by experienced human factor 

experts; and by the use of simulators.  

 

A NEA group of experts recommended a system of collecting information based on the use of 

detailed reports on the circumstances leading up to the incident, to be submitted by plant 

personnel, and the use of teams of specialists to analyse selected important events in greater 

detail. Among the categories of information recommended for inclusion in incident reports 

were 
[67]

: 

 the exact nature of the error (e.g., omission of task or action, wrong action, wrong 

piece of equipment);  

 factors relating to the general work situation (was the task routine or unfamiliar, 

performed under difficult physical working conditions, on night-shift, etc.);  

 which mental function failed (wrong decision made, wrong action taken);  

 why it failed (the person was distracted, had the wrong information, was ill); and  

 how it failed (describes the psychological mechanism involved, such as 

absentmindness).  

 

The NEA Working Group studied the methods used in Member countries to analyse events in 

nuclear power plants involving human error. The results showed
[67]

 that some countries have 

set up a specific system for analysing these incidents, and that site visits are the most effective 

way to gather information and identify root causes. Written reports seldom contain enough 

information for the purpose. In some countries, a human performance evaluation specialist is 

responsible for the analysis of unplanned reactor events, and for making recommendations to 

correct the root causes of human performance problems. Simulators are also used to 

accumulate human error data in the performance of individual tasks during abnormal events. 

In the nuclear industry human factor studies are advancing rapidly in many countries. Greater 

attention is being paid to human needs in designing equipment, and efforts are being made to 

learn from experience in order to correct past errors. Current NEA work in the human factor 

area is focussed on 
[67]

:  the need for operators to be better trained to understand what happens 

during plant emergencies, including the use of simulators, analysis of the misinterpretation of 

plant status by operators, and evaluating the use of digital computers in the control room.  

Using defined criteria, the United States Nuclear Regulatory Commision (NRC sorts the 

descriptions of human performance issues into the following eight categories and codes them 
[68]

: 

1. Training 

2. Procedures and Reference Documents 

3. Fitness for Duty  

4. Oversight 

5. Problem Identification & Resolution  

6. Communication 

7. Human-System Interface and Environment  

8. Work Planning and Practices  
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Chapter 5. Do changes in the barrier KPI model equal 

changes in the risk level? 
 

In this chapter it is of interest to evaluate how much the reliability of the barriers affect the 

risk level at a given installation. One goal is to figure out whether or not the barrier model can 

be used to state an increase in the risk level.  

Barrier function is defined as a function to prevent, control, or mitigate undesired events or 

accidents 
[32]

 Keeping this definition in mind, five technical barrier functions to prevent major 

accidents can be identified:  

 prevent leaks 

 prevent ignition 

 limit energy supply 

 limiting escalation of fire/explosion 

 secure personnel if major accidents occur 

 

Aggregation rules used in the barrier KPI model is thoroughly described in appendix B.  

Combining the QRA model at a given installation with the theory presented in chapter 2, can 

identify how the failure rate of selected barriers from the KPI model affects the risk level at a 

given installation.  

 

Figure 18: Reported figures at installation X, March 2011 

 

 

 

Each category is further divided into areas, and each area contains a series of details that 

describe the human performance issue. 

By describing the work done in the nuclear industry to prevent human mistakes, it makes it 

conspicuous that lesson from previous major accident can not only be learned by 

implementing some new indicators in Gassco barrier KPI. It contributes to a better safety 

culture and awareness of influencing factors, but more work is required. This will be further 

discussed in chapter 6.  
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5.1 QRA analysis 
 

Figures and risk values used in this report are from a performed QRA analysis at installation 

X 
[69]

 in Gassco`s portifolio. The software OHRAT is used in the QRA, and details regarding 

the software is given as an appendix in the performed risk analysis
[69]

. The program performs 

all consequence modelling and gives the risk results directly.  In the risk analysis only 

scenarios that can result in a major accident are evaluated. When a risk analysis is performed, 

a lot of assumptions are made and the results will always have some degree of uncertainty. 

Looking closer at the calculations performed in this risk analysis, only risk values from the 

process and storage area are assessed. Also, only estimated individual risk for 1. person 

(FAR-value) are assessed (not society risk, material damage and environmental risk).  

 

Leak frequencies: 

The Hydrocarbon process at the installation is divided in 75 ESD (Emergency Shut-Down) 

segments in total. Each segment is defined with help from ESD valves and blow down valves. 

In the QRA model frequencies calculations are performed using the programs LEAK version 

1.2 and VEREDA version 1.1 (Veritas recommended Data). For each representative event, 

three different leak rates have been modelled, as shown in table 1. 

Table 2: Representative leak rates for process events 

Leak size Representative initial 

leak rate 

Represented categories (kg/sec) 

 

  (kg/sec) Gas Fluid 

Small 0,5  0,1 - 2 0,1 - 1,2 

Medium 5 2 - 15 1,2 - 25 

Large 50 > 15 > 25 

 

The different leak rates are modelled differently regarding the escalation potential. Based on 

experiences, 13 leaks are estimated on the given installation per year in the QRA model. 

Estimated frequencies at the installation give a distribution between large, medium and small 

leaks in the ratio 1:6:12. A large leak covers more ignition sources than a small leak. A 

subsequent fire will then affect a much larger area than a subsequent fire following a small 

leak. 

 

Probability for ignition:  

Whether or not a gas leak ignites is crucial regarding the risk. Large leaks have a higher 

probability for igniting than medium and small leaks. In areas where large leaks reach the 

surrounding roads, the probability of ignition is dominated by passing cars. The probability of 

ignition in these areas is between 4% and 19%. All other areas the probability of ignition for 

larger leaks is around 1-2%. 

 

Typical ignition probability for small leaks is around 3*10
-4 

and for medium leaks between 

10
-3

 - 10
-2

. 

 

Fire frequencies: 

Estimated fire frequencies in the QRA shows that a medium leak will only contribute to 

fatality risk in a few areas. This is mainly due to the high probability for ignition of large 

leaks. Summarised the fire frequency is calculated to 0,05 per year – one fire every 20
th

 year. 
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Escalation probability: 

A total, average escalation probability is calculated to 30 % in the QRA. Escalation means  

that the initial fire escalates to other equipment, followed by subsequent larger fire. However, 

this will take time (10-15 min.), and in many cases it will not contribute to an increase in the 

consequences regarding fatality risk. This is because evacuation occurs before escalation. 

 

Risk result in the QRA: 

When combining fire frequencies and expected number of people killed in each scenario, an 

estimated number of yearly fatalities are calculated (Potential Loss of Life). The acceptance 

criterion is often given in Fatal Accident Rate (Far-value), and relates to PLL as shown in 

formula 2.5 in chapter 2. Total number of working hour at the installation in the QRA is 

1.150.000. 

 

In total a FAR value due to an accident in the process area is estimated to be around 2,0. The 

largest contributing factors are listed in table 3: 

 
Table 3: The most important contributions to FAR value from process event (all contributions > 1%) 

Scenario 

number 

Size and area Contribution to FAR value 

from process events 

  Value % of total 

1 Large leak, Train 100, south 0,51 25 

2 Large leak, Train 100, north 0,38 18 

3 Large leak, Train 300, south 0,35 17 

4 Large leak at the quay 0,19 9 

5 Large leak, Train 200, south 0,09 4 

6 Large leak at the metering station 0,08 4 

7 Medium leak at the metering 

station 

0,06 3 

8 Large leak at the gas metering 

station 

0,05 3 

9 Medium leak, Train 100, south 0,05 2 

10 Medium leak, Train 200, south 0,05 2 

11 Large leak, Train 200, north 0,05 2 

Sum 11 most important event (in total 45 modelled)  1,84 89 

 

Large leaks dominate the risk picture. Some important weaknesses must be emphasized in this 

risk presentation. In the calculation of FAR the risk from the process area is divided on all 

employees. This does not relate to how the risk, in reality, is divided. The risk from a process 

leak will only affect the people in the process area, which is about 350.000 work hours. The 

actual FAR- value is then 6,7. For employees, who spend a lot of time in the administration 
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building, the FAR contributions from process events equals close to 0. It is also worth 

mentioning that all values in the QRA have a certain amount of uncertainty. All frequencies 

and probabilities are based on experience and statistics. They say something about to history. 

None knows if history is telling us something about what is laying ahead. This illustrates the 

difference in the definition of risk given in equation 2.1 and 2.2 in chapter 2. This will not be 

further discussed in this report, since it is the barrier KPI model that is under evaluation and 

not the risk analysis. 

 

As shown in table 4 process risk is the largest contribution to the overall FAR value at the 

installation in the QRA. 

 
Table 4: Contribution to personnel risk  

Event: FAR-value % of total 

Fire and explosion in process and storage area 2,0 65 

Occupational accident 0,6-1,0 32 

BLEVE, tank fracture and explosion inside buildings 4,5 ·10
-2

 1,5 

Quay operations (risk only related to vessels)  4·10
-2

 < 1 

Propane filling station 2·10
-4

 < 1 

Total 2,7 - 3,1 100 

So, how will changes in the reliability to the chosen indicators influence the risk calculations? 

Fatality risk presented as PLL is calculated as in equation 2.3, and is the product of annual 

frequency of the event and number of fatalities. Further on, the frequency is calculated as in 

equation 2.4; the product of frequency of leak, probability of ignition, probability of failure of 

the safety protective system, probability of escalation and fatality contribution of the accident 

scenario. 

 

The gas detection system affects the consequence and fatality contribution of the accident 

scenario; people get the chance to evacuate. Ignition source control reduces the probability of 

ignition and thereby also effects the consequences. Safety critical PSD valves, ESD and 

deluge reduces the consequences and escalation potential and is regarded as a safety systems, 

mentioned as ―Pprotfail ― in equation 2.4 in chapter 2. There are a lot of dependences in 

equation 2.4. Several of the chosen barriers will affect several of the input data, such as the 

gas detection system, which will affect the consequence and the fatality contribution. The gas 

detection system will also affect the liability to the ESD system. For example, if a node in the 

QRA is stated as `closure of ESD valves`, it will include implicitly: ESD valves, ESD logic, 

auto gas detection and manual gas detection sub-functions. The probability of failure to shut 

the ESD valves can be calculated for this node in the following manner 
[34]

: 

 

                 PTOT = PESDv  + PESDl + (Pgasdet * Pmandet)     (Formula 5.1) 

 

where 

PTOT   = probability of failure to shut the ESD valve 

PESDv   = probability of failure of the actual ESD valve itself 
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PESDl   = probability of failure of the ESD logic 

Pgasdet                    = probability of failure of gas detection 

Pmandet     = probability of failure of manual gas detection 

 

By combining equation 5.1 with equation 2.4 the expression for the annual frequency of an 

accidental scenario were the ESD valve fails will become: 

 

 

fnj = fleka,n × Pign,n × (PESDv  + PESDl + (Pgasdet * Pmandet)) × Pescal,n × nnj                     (Formula 5.2)       

 

 

where 

fleka,n            = frequency of leak 

Pign,n              = conditional probability of ignition, given leak 

Pescal,n            = conditional probability of escalation, given ignited leak and failure  

                            protective  systems response.  

nnj           = fatality contribution of the accident scenario (fraction of scenarios that  

     result in fatalities). 

PESDv   = probability of failure of the actual ESD valve itself 

PESDl   = probability of failure of the ESD logic 

Pgasdet       = probability of failure of gas detection 

Pmandet     = probability of failure of manual gas detection 

 

In the QRA analysis the failure rate is calculated as followed: 

 

P P P P Pisol fail proc human esd2 1 1 1 1     . . ( )( )( )                     (Formula 5.3)       

 

Total failure probability for isolating failure given manually initiation is described as: 

 

       Pesd esd

Nesd   1 1 55 10 0 99976( . * * ) * .                        (Formula 5.4)       

 

where 

 

Pesd   = f ( Nesd, τesd) 

Nesd   = Number ESD valve to isolate the actual segment 

τesd   = test interval for valve (2190 hour) 

  

The failure rate for one ESD valve to close given a leak is set to be 0,062 in the QRA
 [69]

. 

Reported failure rate for ESD valve in March for the same installation is given in figure 18 

and is 0,087. How will changes in the failure rate affect the risk level at the installation 

expressed in FAR? 

As illustrated in figure 19, the annual frequency of an accidental scenario and the PLL value 

is proportional with the failure rate. For the PLL value the consequences are the 

proportionality coefficient. For the annual frequency there are several terms that determine the 

gradient, as shown in equation 2.4  
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Calculations are shown in appendix E. Most of the figures are from the QRA analysis. Figures 

stating the fatality contribution of the accident scenario and the consequences used when 

calculating the PLL were not available in the QRA document. Figures for these factors have 

been randomly selected, due to the fact that they will not affect the conclusion, which is that 

the frequency of an accidental scenario and the PLL value are proportional with the failure 

rate. 

 

Figure 19: PLL and Fnj as a function of the failure rate 

 

The FAR value is, as shown in equation 2.5, proportional with the PLL value.  

In figure 19 the PLL value for one possible outcome of a given scenario is proportional with 

the failure rate. But, as shown in equation 2.3, the PLL value for one scenario is the sum of all 

possible outcomes. Therefore the PLL value for one scenario with all possible outcomes is not 

proportional with the failure rate. This is illustrated in the event tree in figure 20 and figure 

21.  

In figure 20 the event tree given a medium gas leak, is sketched. In figure 21 the event tree of 

the same event is sketched, but with an increase in the failure rate.  
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Figure 21: Event tree 40 % increase failure rate 

An increase in the failure rate in this example will only affect 50 % of the possible outcomes. 

The result of an approximately 40% increase in the failure rate (from 0,062 to 0,087) will in 

this example result in a 20 % increase in the PLL value. This is still a significant number. But 

as shown in table 3, this scenario constitutes 3 % of the total FAR contribution from gas leaks. 

Figure 20: Event tree 
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As shown in table 4 the FAR contribution from gas leaks constitute 65 % of the total FAR 

value for the installation. So a 20 % increase in the scenario 7 would only affect the total FAR 

value 0,74 %. But, a higher failure rate in the ESD valve would affect more scenarios than 

just scenario 7 in table 3. An 20% increase in the PLL value for all scenarios listed in table 3, 

would result in an almost 15 % increase in the total FAR value at the installation (from 2,7 – 

3,1 to 3,1 – 3,5). The failure rate of a barrier early in the chain of event would affect many 

scenarios in the QRA analysis.  

 

The calculations in this report are very simplified (appendix E). There are many dependencies 

related to barriers. As mentioned earlier in this report, the human and organisational risk also 

play very significant roles in the risk level at an installation. This is however very difficult to 

quantify. The calculations show that the failure rate affects the risk level at an installation. 

The more dependencies between the barrier and different scenarios – the greater the impact 

from the failure rate on the total FAR value. If the barrier affects only a couple outcomes of a 

scenario it will hardly be reflected in the FAR value at all. This brings up some questions  

regarding the QRA analysis. A QRA analysis is presented as a document stating the risk level 

at a given installation. The documents are update in interval, usually a couple of years. 

Detailed modelling regarding barriers are not performed. By evaluating the calculations 

performed in this report, barriers such as for example ESD valves, HIPPS and ignition source 

control will contribute in the overall FAR value, due to dependencies and the fact that they 

will be present in several scenarios. In a QRA the failure rate is calculated by using equation 

5.2 and 5.3.  In the barrier KPI model all failure rates are reported number of test divided on 

reported number of tests. The reported number will change as a result of amount of reported 

data. As shown from the calculations done above, the failure rates of barriers early in the 

chain of event does affect the risk level to some degree. If the QRA analysis is updated once 

in every second or third year, the changes in the risk level as a result of the condition to the 

safety critical equipment will not be visible.  

 

There must be a way to combine all information regarding the risk level and present it in a 

informative and logical way. It seems reasonable to ―connect‖ the barrier KPI model and the 

QRA analysis, thus both providing important information regarding the risk level. This could 

result in a more ―dynamic QRA model‖, which could further perhaps be presented as a risk 

indicator? This will be further assessed in chapter 5.3. First, there is a need to evaluate 

whether or not the barrier KPI model reflects the risk level. This will be done in the following 

chapter. 

 

5.2 Sensitivity at installation level in the barrier KPI model 
 

As shown in previous chapter, an increase in the failure rate of for example ESD valve will in 

some degree affect the risk level. But how will an increase in the failure rate of important 

reactive barriers in the KPI model be reflected? Will the overall status on reactive barriers 

become red when important barriers that affect the risk level have a red status (see figure 14 

for colour interpretation)? 

Following indicators and their sensitivity in the model will be assessed in this chapter: 

 Gas detection (detect leaks) 

 Ignition source (prevent ignition) 

 Safety critical PSD valve (limit energy supply/escalation) 

 ESD valve (limit energy supply/escalation) 
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 Deluge valve (limit escalation) 

These five technical barrier functions cover the functions: to prevent, to control, or to mitigate 

an undesired event or accident. Logically, failure of these barriers will affect the risk level at 

the installation. But is the model sensitive enough to intercept changes in the risk level at the 

installation? Sensitivity analysis is particularly important if the data basis has an insufficient 

number of occurrences.  

 

Delimitations when calculating the status sensitivity at installation level are listed in chapter 

1.4.  

 
Figure 22: Illustration aggregation 

Figure 22 illustrates the calculation scenarios assessed in this chapter. At first all reactive 

elements are aggregated into one overall status for reactive elements.  Second, the overall 

status for reactive elements, proactive elements and management elements are aggregated into 

one installation status.  

 

Calculations are presented in appendix F and aggregation rules are presented in appendix B.  

 

Changing the status for the five selected indicators and giving all other reactive indicators to 

green status, results in that of 240 possible scenarios none of them will give an overall red 

status for the reactive elements (0%). 43 scenarios will give an overall yellow status for 

reactive elements (17,34%) and 205 will give an overall green status for all reactive indicators 

(82,66%). Even if all chosen indicators (gas detection, ignition source, safety critical PSD 

valve and ESD valve) have a higher failure rate than acceptable, the aggregated status on all 

reactive elements will be yellow. To get a red overall status for reactive indicators, all the five 

selected indicators must be red and at least 50% of the other indicators must be yellow (50% 

yellow and 50% green). Of 240 possible scenarios, one will give an overall red status 

(0,40%),  177 will give an overall yellow status (71,37%) and 70 will give an overall green 

status for all reactive indicators (28,23%).   

Reactive indicators, proactive indicators and management indicators are all aggregated up to 

one installation status. So, even if the status on reactive elements is red, the overall 

installation status will only be red in 2 of 8 possible scenarios (25%). So the possibility of 

getting a red installation status, given the scenario that first give a red status on reactive 

elements (all five selected indicators are red, distribution other indicators: 50 % yellow and 

50% green) is only approximately 0,1%. 

1 

2 
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Table 5: Status as a result of reported data for installation X in January, February and March 2011. 

Reactive 

indicator 

Weight January February March 

Gas detection 2 Green  Green Green 

Ignition source 

control 

2 No data input No data input No data input 

HVAC 1 Green  Green Green 

ESD valve 3 Red Red Red 

ESD pushbutton 3 Green  Green Green 

Safety critical 

PSD valve 

2 ESD valve also 

have PSD 

function 

ESD valve also 

have PSD 

function 

ESD valve also 

have PSD 

function 

Blowdown 3 Green  Green Green 

Fire detection 2 Green  Green Green 

Deluge valve 2 Red Red Red 

Deluge nozzel 2 Red Red Red 

Fire water 

pumps 

2 Red Yellow Yellow 

PA system 1 Yellow Green Green 

Emergency 

power generator 

2 Red Red Red 

UPC capacity 2 Green Green Green 

Emergency 

lighting 

1 Green Green Yellow 

Overall status 

reactive 

indicators 

 Yellow Yellow Yellow 

 

The installation status was yellow in January, February and March. In the same time period 

the failure rate for the ESD valve was higher than acceptable. This is shown as red in the 

model and requires imitate actions. As shown in previous chapter, the failure rate did affect 

the risk level. But in the barrier KPI model, the aggregated status for reactive elements is 

yellow. Yellow on installation level requires evaluating the underlying KPIs to identify cause. 

Trend should be monitored closely. When the status on installation level is red, the need for 

an overall risk assessment is required. So, based on this, it is reasonable to assume that when 

the overall installation status is red, there has been an increase in the risk level at the 

installation. The risk level will increase before the overall status is red, but the model is not 

sensitive enough to capture all risk changes. The model could be more sensitive if barriers 

that affect the risk level, were given a higher weight.  
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The QRA lacks a detailed model for barriers and dependences. Some barriers early in the 

chain of event, which affects leak, ignition and escalations probabilities will be evaluated in 

the QRA and affect the risk level. A red status on some of these barriers in the barrier KPI 

model will probably not give an red overall status on installation level, which would result in 

a new overall risk assessment. The conclusion is that the barrier KPI model is not sensitive 

enough to capture an increase in the overall risk level at an installation when the indicators are 

aggregated to an overall status. Due to this, the barriers that have the most effect on the risk 

level is not weighted enough in the aggregation. But still, by evaluating each indicator at 

system level as required by the installation responsible, the status gives very important 

information regarding the risk at the installation. This helps in getting important barriers 

repaired faster, and decreasing the risk level.  

 

5.3 How to monitor the risk level more frequently? 
 

Being able to monitor the risk level at all times must be the ultimate goal. Previous chapters 

showed that neither the QRA model nor the barrier KPI model have this function as of today. 

The barrier KPI model gives useful information when it comes to identifying weak barriers in 

operation and it helps getting them repaired faster if they fail due to the management focus. 

The QRA analysis gives the overall risk picture at the installations at a given time. But the 

risk level is not constant. It changes as a function of several aspects, amongst the failure rate 

of safety critical equipment. A solution could be to combine the information gained by these 

two models. A way this could be done is suggested in this chapter, after presenting what is 

already been done on this subject in the nuclear industry.  

It is common to perform extensive event tree and fault tree analysis for QRA studies in the 

nuclear industry 
[34]. 

The analysis is performed to an extent where dependencies can be 

analyzed in detail. The most common used tool is RiskSpectrum (Relcon, 2006), which has 

event trees and fault trees in a common manner, but also is able to transform event trees to 

fault trees, so that all fault trees for barriers may be integrated into a huge common fault tree. 

Advantages gained by using the RiskSpectrum analysis tool are; 

- dependencies may be identified, together with common mode failures 

- importance measures may be calculated for components, systems and failures 

- the analysis may be used to identify requirements for barriers to be effective 

- the analysis may be used in order to identify what compensating measures are 

required if barrier systems are unavailable. 

A study aimed for mapping what could be learnt from nuclear industry regarding process 

safety has been performed by Scandpower 
[70]

. Reference for the information presented 

regarding the nuclear industry in the following sections is made to the article Process safety, 

instrumented safety barriers – what can we learn from the nuclear industry? 
[70

  

 

A major difference between the nuclear and oil and gas industries regarding basic design 

principles, is that in the oil and gas industry, the operator may play a more active role as a 

"barrier" in the early stages of an accident, e.g. in some cases it may be up to operators to 

initiate depressurisation of a plant within 5 minutes after the onset of the hazardous situation. 

Still, both industries need to control risks in processes that involve high pressures and 

temperature. Loss of confinement may lead to severe consequences related to health and 

environment. This has resulted in a high focus on safety in both industries, on strict 

requirements for the implementation and follow-up of safety, on safety during all life cycle 

phases, on defence in depth and barrier integrity, etc. 
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In the nuclear industry a safety analysis is based both on deterministic safety analysis (DSA) 

and human factor analysis. The DSA analyses the evolvement of postulated incidents or 

accidents, including design accidents. Barriers are analysed one by one. Probabilistic safety 

analysis (PSA), or QRA as they are usually called in the oil and gas industry, are performed in 

order to systematically identify, model and evaluate scenarios that might potentially lead to 

unwanted consequences, e.g., core damage or an unacceptable release of radioactive material. 

The analysis explicitly models all safety systems, including both the frontline part (pumping 

water, shutting down, etc.) and all support functions (electrical power supply, activation 

signals, interaction with cooling system, etc.). The analysis also identifies and considers the 

impact from human error. The actual model consists of an extensive and complex structure of 

linked fault trees and event trees – as mentioned earlier in this chapter. Boolean logic (a 

logical calculus of truth values) is used in the evaluation and quantification of the model. 

Quantitative data is included on initiating event frequencies, component failure data, test and 

maintenance data and human error probabilities. An important part of  PSA activities is what 

is called ―living PSA‖, i.e., activities aimed at keeping the plant PSA model continuously 

updated with regard to plant changes, changes in failure data and initiating event frequencies. 

In order to fulfil the requirements of living PSA, nuclear utilities in Sweden now updates PSA 

on a yearly basis. 

 

Human factor analyses aim at analysing the importance of personnel and of work organisation 

on plant safety. The analysis may be both qualitative and quantitative. Quantitative analysis is 

performed to support PSA, and are called human reliability analysis (HRA). An HRA aims at 

quantifying operator actions and maintenance activities. This is done for three types of human 

error; errors before an incident, errors that initiate an incident and errors during the handling 

of an incident. The general methodology involves detailed scenario analysis that are 

performed together with plant personnel, and that are quantified using a set of performance 

shaping factors (PFS), which may include, e.g., the complexity of a task, the stress level, the 

competence level of the operator, and the time available. 

 

Performing the safety analysis in this way makes it possible to assess quantitatively the over-

all safety of the installation. Also, a risk profile, i.e., what types of incidents and accidents 

dominate the risk, what maintenance activities are most important, what safety systems, 

components and human actions are most important to plant safety, is also possible to assess 

when performing the safety analysis in such a way.  The safety analysis can then be used for 

various kinds or risk informed applications, including identification of plant vulnerabilities, 

evaluation of design alternatives for plant upgrades and modifications, planning of major 

maintenance activities, including complete planning of the yearly refuelling outage, risk-

based definition of pipe inspection and testing activities, risk follow-up and detailed 

evaluation of incidents, etc. 
 

PSA models are beginning to be integrated into so-called risk monitors in the nuclear 

industry. A risk monitor is a tool that is used by plant personnel, including but not limited to 

control room personnel, maintenance planning personnel, and personnel at the safety 

department. Thus, a risk monitor is an on-line tool, where information about the current status 

of plant systems and components, including both planned tests and outages and failures 

detected, is fed into the PSA model to provide a risk profile. The input can be based both on 

on-line data transmission and on manual input. In the nuclear industry risk monitors are 

typically used for: risk optimisation, risk follow-up, risk monitoring and risk planning. 
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A risk graph from the PSA is shown in figure 23: 

 

 
Figure 23: Risk monitor applications - example of an on-line risk graph [70] 

The graph includes both current and past information. The colour areas indicate relation to 

predefine acceptance levels, which can be associated with an ALARP approach (as low as 

reasonably practicable), with green indicating a broadly acceptable risk level and red an 

unacceptable level. The yellow region in-between is the ALARP region, which is basically 

acceptable, but where reasonable measures are required be taken to try to reduce the risk level 

into the green area. An on-line use is mainly for plant operators, and allows them to input 

information about present and planned status. This allows both qualitative and quantitative 

monitoring of risk levels. Users involved in over-all safety assessment and in planning and 

follow-up of maintenance are mainly using the risk monitor off-line. This allows planning of 

coming outages, long-term follow up of the plant risk profile including analysis of cumulative 

risk during the operating year, evaluation of disturbances and failures as well as experience 

feedback. 

 

It seems there is a more active approach within the nuclear industry, and the differences from 

the oil and gas industry are
 [70]

:  

 Quantitative and qualitative analysis of human factors. This is becoming more and 

more focused in the oil and gas industry, and there should be a lot to learn from the 

nuclear industry in this context. 

 Defence against dependencies both in design, maintenance and analysis. The methods 

applied in the nuclear industry are highly developed within this area. As the oil and 

gas industry becomes increasingly dependent on instrumented safety systems there 

should be significant benefits to learn from other industries within this area. 
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 Extensive usage of risk informed applications in the nuclear industry  to supervise, 

plan and follow up safety. Done by using on-line risk monitors. 

 Dynamic PSA used in the nuclear industry , i.e., activities aimed at keeping the plant 

PSA model continuously updated with regard to plant changes, changes in failure 

data and in initiating event frequencies. 

In the oil and gas industry online risk monitors and living PSAs are hardly used today. The 

QRAs should be further developed by use of tools and methods from the nuclear industry. 

This could open the possibility for a more active use of risk modelling in the operational 

phases of the installation. Risk based inspection (RBI) and Reliability Centred Maintenance 

(RCM) are being applied to some extent in the oil and gas industry today, and this is 

considered to be a growing field. 

 

In general, the study performed by Scandpower concludes that 
[70]

: even if there are 

considerable differences between the two industries, many of the basic challenges to safety 

are the same. There are several areas of interest where the oil and gas industry could benefit 

from the experience gained within the nuclear industry when it comes to instrumented safety 

system. 

 

Gassco can benefit from the experience gained in the nuclear industry. Reported figures to the 

barrier KPI could be used in a more ―dynamic QRA model‖, more similar to the one used in 

the nuclear industry. Suggested process flow is illustrated in figure 24: 

 

 
 
Figure 24: Suggestion process flow 



Evaluating Gassco`s barrier KPI model 

 

 

  
Page 80 

 
Stavanger 2011 Lene Østrem 

 

1. Step 1: test data reported from different installations: already implemented at Gassco. 

2. Step 2: development of new ‖dynamic QRA model‖- the big challenge, a new model 

must be developed.  

3. Step 3: presentation of the risk level – presentation tool should be PMG which is 

already implemented and used as the management tool in Gassco. A potential risk 

graph could also be displayed in PMG. 

The big challenge is to build a more ―dynamic QRA model‖. But by using experiences made 

in the nuclear industry, this should be a practicable assignment. Building the model illustrated 

in figure 24 will make Gassco able to manage and control risk in several ways: 

 

1. A risk indicator showing whether the risk level in Gassco portfolio increases or 

decreases. The indicator should be built in the same way as the barrier KPI (as regards 

aggregation rules etc.) 

2. A barrier KPI model which shows the status on important safety critical barriers and 

management elements that are effecting the risk level. If the risk level increases, the 

barrier KPI will show where the effort must be laid down to decrease the risk. 

3. The live QRA model allows for planning of coming outages, long-term follow up of 

the installations risk profile including analysis of cumulative risk during the operating 

year, evaluation of disturbances and failures as well as experience feedback. 

The risk indicator, the barrier KPI and the dynamic QRA model can be used separately and 

combined. The risk indicator is one possible way to present the dynamic QRA model to the 

Gassco management and to the board. The barrier KPI model will be the supporting 

management tool to the risk indicator, stating where effort must be laid down to reduce risk. 

The dynamic QRA model will be an update of the QRA as we know it in the oil and gas 

industry as of today, and gradually replace the old version of QRA.  

Gassco has already several distributors that speak for developing such a model. It is a relative 

young company (10 years) that slowly has grown and gained more responsibility.  In the 

barrier KPI model the work has started with gathering test data. If Gassco follow in the steps 

of the nuclear industry and starts gathering data regarding human factors, this could be used 

when trying to quantify human barriers in a new and more dynamic version of the QRA 

model. This will be further discussed in chapter 6. 

 

5.4 Moving average and status/trend description 
 

In Gassco`s barrier KPI model all indicators, except the status on critical audit findings, are 

shown as a 12 month moving average. The status indicates the actual level of the indicator 

and the trend shows development over time. The colours; red, yellow or green state if the 

status is unsatisfying, improvement needed or satisfying. Regarding the trend the colour 

interpretation equals deterioration, unchanged or improvement.  
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Gassco`s procedure ‖Safety critical failures‖ 
[5]

 states quantitative requirements for safety 

critical failures in terms of ―acceptable failure fractions‖. The failure fraction is defined as the 

ration between the number of safety critical failures and the corresponding number of tests 

performed. In the event of a significant deviation in the performance of the safety critical 

equipment, when compared to the acceptance criteria, the results must be reviewed assessing 

issues like the test intervals, inspection and maintenance activities and the conditions of the 

components used. As a guide to decide what is ―significantly different‖, the procedure refers 

to use the following Bayesian approach: 

 

The maximum allowed failure fraction is denoted FFmax. The prior distribution is a gamma-

distribution based on one failure in 1/ FFmax tests, which means that one starts by assuming 

that the component is as good as it should be. The idea behind this is to make the approach 

less sensitive during the first few tests. The expectation in the posterior distribution E(FF) is 

calculated by the equation: 

 

    E(FF) =                                                              (Formula 5.5) 

 

where 

 

x = number of failures 

n = number of tests 

 

If the posterior expectation E (FF) is larger than 2FFmax  or smaller than 2FFmax/2, it is 

―significantly different‖ from the requirement. 

 

If reported failure rate differs significantly from the acceptance criteria, a change in the test 

intervals should be evaluated as a measure together with an assessment of other relevant 

actions: 

Limits in the model for reactive elements are decided as illustrated in 25: 

 

 

Figure 25: Limits in the barrier KPI model 

An indicator shows green if the failure rate is within the acceptable failure rate given by the 

procedure Safety critical failure 
[5]

. If the failure rate is in the area between the acceptable 

failure rate and 2 times the failure rate the status is yellow, stating that improvement is 

needed. If the failure rate is larger than ―significant different‖ the status becomes red. As of 

today the failure rate is calculated as a 12 month moving average. This brings along some 

issues: 

- few test data gives a high failure rate when the equipment fails – render  the 

yellow area. For example if the equipment is tested twice a year and one fails, 

Acceptable FF 

2*FF 

>2*FF 
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this will give a failure rate 50%. If the limit is 1 %, this is a very significant 

difference. But it will take 50 years to gather 100 tests, and if this was the only 

failure in 50 years, the failure rate is acceptable and within the requirements 

- for some safety critical equipment test are performed weekly or monthly, 

while for others they are performed once a year 

- the failure rate could increase/decrease without any test performed as a result 

of the moving average 

- for some equipment the test interval is every 12 months, but in practice the 

tests are performed once a year. If the tests are performed in February one 

year and November the next, it will not be reflected in the 12 month moving 

average 

- the performance ―history‖ to the equipment is lost if only the 12 month 

moving average is presented. 

Acceptable failure rate in the procedure is equivalent to recommended minimum Safety 

Integrity Levels within industry standards and guidelines. Safety Integrity Level (SIL) is 

defined as a relative level of risk-reduction provided by a safety function, or to specify a 

target level of risk reduction
 [71]

. SIL represents the expected failure rate of a safety function 

provided by a safety function. The higher the Safety Integrity Level of the safety-related 

systems, the lower the probability that they will perform the requested safety function. The 

given SIL requirements are based on experience, with a design practice that has resulted in a 

safety level considered adequate
 [72]

. Gassco`s quantitative requirements are formulated as 

requirements to the failure fraction
 [5]

. The failure rate function can be interpreted as the 

probability (risk) of failure in an infinitesimal unit interval of time
 [73]

.
 
The increasing failure 

rate of an object is an indication of its deterioration or ageing. A constant failure rate is 

usually an indication of a non-ageing property, whereas a decreasing failure rate can describe, 

e.g., a period of ―infant mortality‖ when early failures, bugs, etc., are eliminated or corrected. 

 

The definition of the failure rate in Gassco‘s procedure is; the ration between the number of 

safety critical failures and the corresponding number of tests performed. Meaning that if a 

very large amount of tests are performed (n  ∞) the failure rate should not exceed a given % 

value (based on SIL requirement). The % value is the limit value based on infinite amount of 

data. Using this requirement when only a small amount of tests are performed each year will 

give some issues with high failure rates if the safety equipment fails. This will not provide 

―the correct picture‖. If all reported data are aggregated instead of using a 12 month average, 

eventually there will be a much better data foundation to compare with the requirements. But 

the catch is that a large amount of data will not be very sensitive to changes. For example, if 

the equipment starts to get an increase in the failure fraction, this would not be very visible if 

the average is calculated over a 10 years` time of data gathering.   

 

For one of the tests pilot installation data has been gathered over a time period of 3 years. One 

indicator – the gas detection system has in this time period a failure rate apparently higher 

than acceptable. Taking a closer look at the reported data and actions taken could help to 

identify a better way of presenting the reported data.  

 

Figure 26 shows 12 months, 24 months and 36 months moving average and the red and 

yellow limit for the failure rate. As shown, the failure rate has been higher than acceptable 

since the start of the data reporting. This has resulted in several corrective actions in 

accordance to Gassco`s safety critical procedure such as; increased inspection frequency from 
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6 months to 4 months and a long term mitigation: replacement of gas detection system in 

2011 – 2012. This is a positive result from the barrier KPI.  

 

 
Figure 26: Moving average reported data 

 

Calculating E(FF) for March 2011 for the 12 months, 24 months and 36 months moving 

average gives 0,028, 0,039 and 0,035. These values are all greater than 2 FFmax (which is 

0,02) and the moving average is significantly different from the requirement.  From the E (FF) 

values we can see that the actions taken have a positive effect on E(FF) which decreases 

(from 0,035 to 0,028) as a result of shorter test intervals. Meaning that the 12 months moving 

average is ―less‖ different than the 36 months moving average. This tells us that the 36 

months moving average also is very sensitive for changes, due to a small amount of data 

input. 

 

When trying to determine how a large amount of aggregated data will affect the moving 

average, some fictitious data are added to the average calculations. The same amount of tests 

performed in 2008 are assumed performed each year in the period 2001 – 2008. No failures 

are assumed in the period 2001 – 2008. This is probably not realistic, but the number of 

failures in the period 2001-2008 will only affect the % failure rate and not the shape and the 

gradient of the curve. In this connexion it is the shape and the gradient which is of interest.  In 

figure 27 the graph with aggregated data is shown together with the moving averages. 

Calculation E (FF) for March 2011 for the aggregated graph gives 0,011 which is between 0,5 

FFmax and 2FFmax (0,05 and 0,02) and the average is not significantly different from the 

requirement. 
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Figure 27: Moving average and aggregated data 

When aggregating a lot of data the failure rate will not be very sensitive. As shown in figure 

27,  an increase in the failure rate, which is very visible in the 12 and 24 months moving 

average curve, is barely visible in the aggregated curve.  

 

As of today, data in the barrier KPI model is presented as shown in figure 28 and 29. The 

status red, yellow or green, are calculated from the 12 months moving average. The trend 

shows whether or not the 12 months moving average increases/decreases or is unchanged 

compared to previous reporting period.  

 

 

 
Figure 28: Status Gas detection 
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Figure 29: Presentation moving average Gas detection 

 

The model is implemented and people have gained training in how to use and interpret the 

results. When making suggestion on changes in the model, these should be well argued for 

and not deviate significantly from signs and symbols already used.  

 

Aggregation of the reported results in the model will after a while rule out issues such as few 

test giving a high failure rate, data being lost as a result of the moving average and historical 

data being lost. Further on, the requirements regarding reactive elements in the model are 

based on ―an infinitive amount of tests‖, and therefore it is more adequate to aggregate the 

data reported in the model. But it also becomes less sensitive for changes. Also, if only a few 

tests are performed each year, it will take some time to collect data even if they are 

aggregated. From a practical point of view, it is important for the management to be aware of 

an increase in the failure rate over a short time period. This challenge can be solved by using 

the trend more effectively. If the status value for one indicator is calculated from the 

aggregated data reported, the trend could show the relation between the aggregated failure 

rate value and the moving average failure rate for a shorter time period. Using the trend 

interpretation as it is today in the model this will mean: 

- if the moving average over a time period, for example 12 or 24 months, is 10 

% higher than the aggregated failure rate the trend arrow is red, meaning that 

the failure rate is increasing 

- if the moving average over a time period is 10 % lower than the aggregated 

failure rate the trend arrow is green, meaning that the failure rate is decreasing 

- if the moving average over a time period is between 90% and 110 % of the 

aggregated failure rate, the trend is yellow and unchanged. 

Then, the next question will be: how short should the time period be? If using the 12 months 

moving average, some data included in the test year may be lost due to irregularity in the test 

period. In practice some test are performed once a year, meaning that they one year can be 

performed in January, but next year they could be performed in August due to for example a 

planned shutdown. If the time period is set to 24 months moving average, all test data for the 

last year will be included. Also, having a table as presented in figure 28 presenting the test 

performed the last 12 months, will give additional useful information regarding tests 

performed recently.  
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To deal with safety critical equipment where only a few tests are performed yearly, formula 

5.5 should be used. By using the Bayesian approach and assuming that the equipment 

performs as expected (e.g. 2% failure rate), one could ―build in‖ some history in the model.  

 

Using the rules suggested above, the results for March 2011 will be presented as a yellow 

status light and a red trend. Meaning that the failure rate is above the requirement (calculated 

as 1,1), but not significantly different. The trend shows that failure rate has increased the last 

24 months compared to the historical values (calculated as 444% higher). This has been 

calculated for several time periods and all result are meaningful according to the graph 

presented in figure 27. Calculations are presented in appendix G. 

 

When presenting the reported data in the barrier KPI model it should be as following: 

 

 
Figure 30: Status Gas detection 

  

 
Figure 31: Presentation graph 

This is one way to present the reported data that gives a more ―correct‖ comparison with the 

requirement, and also allows for revealing a negative trend in the last reporting period. The 

interpretation of status and trend are not altered, which is a good thing since the model is 

already implemented. It is important that there is a certain continuity in the interpretation 

through the model (reactive barriers compared with proactive and management elements).  

Several other ways to present the data were evaluated, but overall, the method suggested in 

this chapter is recommended. The reason for this is given in chapter 6.  

Failure rate (aggregated values) 

Aggregated since XX 

Aggregated since XX 

24 month moving average Mar 2011 – Apr 2009 

1,06% 

12 

1147 

5,77% 

12 month moving average 

Also display 24 month moving average 

and an aggregated value graph 
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Chapter 6. Discussion 

6.1 Discussion 
 

Discussing indicators in the abstract is not necessarily productive. When representing the 

theory there was a lot of discussion regarding barriers and indicators, whether or not they are 

leading/lagging indicators or what to call a barrier, reactive or proactive? The differences 

between safety and risk indicators were also discussed. There is no such thing as a universal 

model or method for the development of indicators. Perhaps the use of several methods will 

provide the best result – the most appropriate set of indicators, mixing barrier indicators, 

safety indicators and risk influencing factors. To quote Benjamin Franklin
 [20]

: 

 

“For the want of a nail, the shoe was lost; for the want of a shoe the horse was lost; and for 

the want of a horse the rider was lost, being overtaken and slain by the enemy, all for the 

want of care about a horseshoe nail.” 

 

This saying should be kept in mind. Not everything is straight forward, but the aim must be to 

get something done, learn and then make improvements. This has been the main strategy 

when writing this report; to make improvements and get one step further. But it is important 

to keep in mind that the road is long and that afterwards, there will be several steps to walk. It 

is better to try and fail, rather than not try at all. As a company, Gassco needs a full overview 

of the barrier function within their area of responsibility. They developed a model with the 

aim to fulfill their needs. It can be discussed if the barriers are put in the right category, and 

whether or not is it right to call it a barrier KPI model when it displays both barriers, risk 

influence factors and safety indicators. Gassco decided to act instead of using an amount of 

time discussing what is theoretically right to call an indicator. The practical results have been 

good according to persons who are using it in their daily work. Now that some experience has 

been gained with the model it is easier to see where improvements could be needed.  

 

It is important to emphasize that indicators used only in terms of the data gathered and put on 

display boards and presented in management briefings, do not represent any meaningful use 

of indicators.  

 

Going through several accidents that occurred in the period 1998 – 2010, it is inevitable to ask 

why the industry does not learn from previous major accident. Clearly they do not. If they 

had, the signs of equality would not have been so distinctive. One might say that choosing 

other major accidents in the period, such as Ghislenghin 2004 (explosion in gas pipeline, 24 

killed and 122 injured) or Mexico 2010 (explosion oil pipeline, 27 killed and more than 50 

injured), could have given other lessons to learn. But due to available time when writing this 

assignment a selection had to be done. If 7 major accidents, all have several of the same root 

causes, one could assume that there is a pattern in the challenges in the industry.  Accidents 

chosen are from the western part of the world, due to the fact that they have several 

similarities in the legislation, economic situation, security and the safety work. But these 

parameters will also vary between the different countries in the western world, and they will 

in some degree affect the safety level at a given installation. Also the leadership culture plays 

a role in the safety work. As of today the leadership style in Norway is to have a high focus on 

safety issues. As shown in several of the accident mentioned in this report, some leadership 

styles were undermining the knowledge and advices from the staff regarding maintenance 
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issues (Longford). This leader mindset contributes to a very dangerous leadership style, and it 

should not be present in an organisation dealing with transportation of hydrocarbons.  If  the 

key element  deference to expertise had been present at Longford, maintenance on the valve 

had been prioritized. So leadership style and culture within each country are also important 

parameters that increase/decrease the risk of having a major accident. 

 

 Lesson learned from the Longford accident, which have been published and also have 

circulated around the oil and gas industry via email, is
[50]

: 

- reliance on lost-time injury data in major hazard industries is itself a major 

hazard 

- systematic hazard identifications are vital for accident prevention 

- corporate headquarters should maintain safety departments which can exercise 

effective control over the management of major hazards 

- frontline operators must be provided with appropriate supervision and backup 

from technical experts 

- routine reporting system must highlight safety-critical information 

- maintenance cutbacks foreshadow trouble 

- companies should apply the lessons from other disasters. 

 

These are some of the lessons that BP needed to learn to avoid the Texas City accident. 

Excerpts from lessons from Longford circulated within BP and specifically at Texas City on 

various occasions 
[50]

 still they failed to learn the lesson. An organisation has no memory, and 

the persons within it failed to learn. 

 

When evaluating Gassco`s barrier KPI model, there was a gap between the lessons learned 

from previous major accidents and the indicators already implemented in the model. One 

might say that what has occurred in the past, does not necessarily say something about what 

might be expected to occur in the future. But going through the major accidents, history 

shows that some issues are repeated. Still, there could be problem areas that have not been 

pointed out by going through the history. In this report, the focus area has been to try to learn 

from previous major accidents, and no effort have been put in trying to predict what might go 

wrong in the future. Technical causes vary from one accident to another, but the 

organisational failures are often the same. These organisational failures need to somehow get 

the attention from the management. To decrease the gap, some indicators are suggested 

implemented in chapter 4.6. A way to achieve management focus in the Gassco organisation, 

is a new indicator at the barrier KPI chart, that reflects the status of management elements at 

Gassco Bygnes. This indicator does not cover all areas that need management focus. In 

appendix D a long list of indicators suggested by the HSE in the UK is presented. Only four 

indicators are suggested implemented in the barrier KPI, but the list represented in appendix 

D contains several more. The reason for leaving most of them out, is that the indicators 

implemented in the barrier KPI should give meaning and be useful for the management when 

making important decisions. It is better to start with implementing some few indicators and 

gain some good experiences with them, rather than implementing a lot of indicators which 

does not necessarily give meaningful and crucial information to the management. Several of 

the suggested indicators in the appendix are already implemented in Gassco as a requirement. 

An audit should be performed to secure compliance with the requirements rather than 

implementing an indicator which will be green most of the time (due to the requirement). 

Also, if there are too many underlying indicators, an aggregation in the model could result in 

that important information is not highlighted enough.  The outcome of the indicator must give 
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meaning. A number saying that all procedures are up to date (100%) does not give anything 

except perhaps a ―false‖ safety feeling, thinking that everything is okay regarding this subject. 

But the indicator does not say anything about the quality and whether or not the employees 

act in accordance to the procedures. So a green indicator on the subject procedures might 

result in that the management relaxes while believing that everyone in the organisation acts in 

compliances with prevailing procedures. In the same way that an indicator stating the number 

of audits performed up against target, or number of audits performed with a good score, does 

not say anything about the quality of the audit. To quote E. Deming ―you can expect what you 

inspect‖ 
[28]

. 

 

The first step taken in the barrier KPI regarding management elements at Bygnes, is to have 

some indicators saying something about the safety culture, ongoing initiatives, maintenance 

management and exceptions on safety critical equipment. These are proposed because they 

will give the management useful information as soon as one start to report on them. The result 

can be used when making decisions regarding budget cost and whether or not a upgrading 

project is needed. Several of Gassco`s installations are old and ageing is a challenge. There 

are without doubt several other indicators that also could be implemented, but it is not 

desirable to implement to many indicators all at once. If experience shows that the indicators 

implemented are useful, it is easier to get the approval for implementing several indicators. If 

they are not useful, the need for several indicators might not be present. The suggested 

indicators require that actions are taken to get good measurements (develop a good survey, list 

exceptions‘, make limits etc.). This is also one reason to start with a few indicators - it makes 

the job manageable. All indicators suggested will provide useful information to the 

management when trying to decide on further initiatives/projects and budget cost. A good 

experience with these indicators can motivate the management to implement several 

indicators as the next step. 

 

Areas such as supervision/monitoring, policies and procedures, communication and training 

are not covered by implementing the indicators suggested in chapter 4.6. Implementing an 

indicator to help focus on management elements at a high level in the Gassco organisation, is 

not enough to learn the lesson from other major accidents. Data provided by indicators itself 

does not provide improvements in safety. It is the quality of the management system that is 

important. Earlier in this report it was mentioned that “You can‟t manage what you can‟t 

measure,‖
 [28]

.  It is said that this is an incorrectly quotation of William E. Demning 
[28]

. In fact, 

Demning stated that one of the seven deadly diseases of management is running a company 

on visible figures alone. Many people in the oil and gas industry believes that you cannot 

manage what you cannot measure. Demning was an American statistician, professor, author, 

lecturer and consultant. Demning realized that not everything of importance to management 

can be measured 
[28]

. But one still has to manage those important things. What is the benefit of 

spending $20,000 in training 10 people in a special skill? Probably one will never know this 

accurate, because one will never be able to measure it precisely. But it is done because it is 

believed that it will pay off some day. Among other things, Demning said that "The worker is 

not the problem. The problem is at the top! Management!" 
[74]

. It is the management‘s job to 

direct the efforts of all components toward the aim of the organisation. The first step is 

clarification: everyone in the organisation must understand the aim, and how to direct his 

efforts toward it.  

 

It requires a motivation and an understanding for the organisation to be seeking opportunities 

for improvements. More work than just implementing a new indicator is needed to ensure that 
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the lessons from previous major accidents are learned. Working towards being a high 

reliability organisation will improve the focus regarding management elements and 

organisational issues. The nuclear industry works with human factors differently than done by 

the oil and gas industry today, as described in chapter 4.7. Human error can occur at every 

stage in the life of an installation, and a variety of methods must be used to detect and prevent 

it. Some arguments for why the oil and gas industry should rethink their approach to human 

factors are presented in the following sections. 

 

The characteristic of a high reliability organisation are that it is sensitive to operations, 

reluctant to simplify, preoccupied with failure and deference to expertise and resilience. In the 

oil and gas industry some of these elements are present, such as preoccupation with failure, 

but other areas such as reluctance to simplify, is one area were the industry seems to fail. In 

investigation reports the underlying causes are often set to be unqualified staff, inadequate 

training or communication failure, without asking the question why the staff is unqualified or 

why the communication fails. Leaders and staff in the oil and gas industry must have constant 

awareness of that system and process risks can be prevented. To gain reliability, leaders need 

to listen to the advices given from the employees that are experts on the process equipment. 

Knowledge in the company must not be restricted due to the hierarchy. Training leaders and 

employees so that they know how to act in abnormal situations, is crucial. Leassons must be 

frequently repeated. If the oil and gas industry had worked consistent as an high reliability 

organisation, some of the underlying causes in the accident described in this report would not 

be present. As an example; if the management at Longford had shown deference to expertise a 

critical valve would have been maintained and could have been operated automatically. 

Further, if the management at Texas City had asked why the operators at Longford lacked 

training and why they did not understand the risk involved with the process, they could have 

trained their own employees better. This could probably have changed the outcome of the 

event at Texas City 2005.  

 

When discussing high reliability organisations after going through the accidents described in 

this report, one question that reveals itself is: what about organisational  redundance? Is it 

possible to build an organisation with established interactions, which makes the organisation 

capable to perform tasks more reliable than one single person could? In the oil and gas 

industry organisational redundancy is created when employees consult, check and correct 

each other. As of today there is no good method to evaluate to which extend people could 

function like an independent. For example could strong dependencies come into being, if 

several operators share the same incorrect mental model of a system, or if  a technical barrier 

and an operator make use of the same incorrect information. In high reliability organisations 

they are aiming for an overlap with personnel. Personnel have the same competence and work 

tasks. The overlap is due to the believe that humans will fail eventually. An overlap increases 

the probability that the failure will be discovered and corrected before an accident occurs. To 

gain such organisational redundancy, both structural and cultural conditions in the 

organisation must be open for mutual correction of error. 

 

The Management regulation states that there should be independency between barriers. In the 

industry the term barrier is traditionally used of technical barriers. But with basis in the 

description of previous major accidents, one could argue for that employees in practice often 

function as barriers.  As a result, human factors play a significant role in supporting 

installation safety and providing defence in depth (several lays of barriers). Permit to work 

and safe job analysis are good initiatives that contribute to an increase in the safety level. But 
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the need for a safe job analysis could be restrained due to work pressure. The work with 

human factors requires continuous focus from the managment. The most important factor is to 

build a good safety culture within the organisation.  

 

Communication failures are implicated in every disaster. There is always information 

somewhere in the system, which, if responded to appropriately, would have averted the 

disaster. Effective communication is an important element of any safety management system. 

Another organisational issue which is hard to measure, safety culture, is also implicated in 

every disaster. If culture, understood as mindset, is to be the key to preventing major 

accidents, it is management culture rather than the culture of the workforce in general which 

is most relevant. The management mindset must be that every major hazard should be 

identified and controlled, and management should be committed to make available whatever 

resources necessary to ensure that the workplace is safe. Safety culture must be built from the 

top of the organisation and downwards. The major accident history shows that the industry 

fails to learn how to ensure good communication and to build a good safety culture. Perhaps 

the keyword here is learning. It seems like it is taken for granted that everyone knows how to 

communicate and how to behave to ensure a good safety culture. Especially the management, 

which is well educated and are intellectual people. One might think: of course they know how 

to communicate and how to behave. But how can people know something that they have not 

learned? It is written several books on communication in practice 
[75][76]

 and culture 

knowledge in organisations 
[77][78][79]

, but these books are commonly used in educations other 

than engineering, such as for instance social workers, teachers, psychologists and sociologists. 

Looking at a plant as a society the employees have to communicate clearly and directly (like 

social workers), the engineer has to teach, both expressed orally and in writing (like teachers) 

and the management must keep the organisation on the right track, and understand the risks 

and build a good and safe culture (like a psychologist ―programs‖ people and helps in 

building a new way of life). All should learn how to fulfill their tasks the best way possible. 

Professor Andrew Hopkins, which has an undergraduate Science Degree and a Masters in 

Sociology 
[80]

, has written some very thorough books about the Longford and Texas City 

accident regarding human and management failures. For Hopkins, it is evident what causes 

the accidents because he has been educated in understanding humans and organisations. The 

oil and gas industry is a highly developed technological industry. But perhaps it lacks 

knowledge in how to effective communicate in writing and oral, how to make people behave 

in a safe manner and how to build a good safety culture? Engineers are not educated in these 

things.  

 

When evaluating suggested indicators from the report published by HSE
 [6]

, the need for a 

designated champion to help manage human performance risk, are underlined (ref. chapter 

4.6). The suggestion is that each plant/project should have a ‗human factors manager‗rather 

than just implementing an indicator. This person should provide expertise in oral and written 

communication and teach engineers and managers the importance of getting this part of the 

job right. The nuclear industry has already started implementing a `human factor specialist`. 

In some countries, a human performance evaluation specialist is responsible for the analysis 

of unplanned reactor events, and for making recommendations to correct the root causes of 

human performance problems.  

 

The triggering cause in a major accident is most likely to be an Operator error, often 

connected to a physical/instrumentation failure. In the nuclear industry, more and better 

training of abnormal situations for the Operators in simulators is recommended. Also, a better 
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analyse of selected important events in the incidents report, is recommended. The conclusion 

is that this will help to prevent human errors repeating themselves. This should also be done 

in the process industry. Better training is also one of the key elements in a high reliability 

organisation. Implementing required simulator training would help preventing human error in 

repeating themselves. If an abnormal situation occurred in the process, the Operators would 

be trained and better prepared to handle the situation. Also, it would be easier for the 

Operators to discover signs of something wrong if they have been trained in the importance of 

awareness. 

 

Audits were carried out prior to the accidents mentioned in this report. But usually there were 

no serious findings. Is a large scale audit which fails to uncover problems a credible audit? 

No, and a lot of effort must be put into training personnel and to choose the right persons to 

perform an audit. Perhaps there should be a qualification requirement for the audit personnel 

regarding the subject they are going to verify? This could increase the quality of the audit 

performed, which is a very important tool in the work done to prevent major accidents. There 

should at least be a quality check of the audits performed, for example spot checks. 

 

The barrier KPI model is a tool to help the management with the motivation and the 

understanding of the importance of barriers. And what is good about the barrier KPI model is 

that it involves several people in Gasscos organisation. The employees that follow up the 

daily work at the different installations are made accountable for the status at the installation. 

Further the different directors are made responsible for the installations within their portfolio. 

Making employees accountable and combine it with management focus, makes things happen 

and hopefully ensures a good quality in the reporting. The barrier KPI helps manage 

important safety critical barriers. If the indicators suggested in this report regarding 

management elements are implemented, the gap between lessons learned from previous major 

accidents will decrease. But there will still be a gap. The need for more focus on human 

factors and the safety culture in the oil and gas industry are also needed. Trying to measure 

human and organisational factors creates many discussions. Some believe it can be done, 

while others do not believe that it is possible to measure human and organsational elements, 

and that relaying on KPI`s could be dangerous. One thing everyone agrees upon is that a good 

safety culture is important to maintain a high level of safety. Initiatives that can contribute to 

increase the safety culture will also increase the reliability of human and organisational 

barriers. A good safety culture is crucial in a high reliability organisation. The barrier KPI 

model contributes to a better safety culture within the organisation, due to increased focus on 

important barriers. 

 

A lot can be learned from the way the nuclear industry handles this issue. When investigating 

an incident, more effort should be put in mapping out the human failures. By having a person 

in the organisation dedicated to work with human failure and safety culture, it would also be 

easier to quantify the possibility of human failure in a more dynamic version of the QRA 

model. A register of human failure and the cause of them should be developed within Gasscos 

portfolio. This has already been done in the nuclear industry. 

 

For the barrier KPI tool to be useful in the organisation, Gassco should also work constantly 

with the high reliability organisation principles; sensitivity to operations, reluctance to 

simplify, preoccupation with failure, deference to expertise and resilience. To achieve more 

focus on human factors Gassco should learn by the nuclear industry and start to work more 

goal-oriented with this subject. A way to start is to dedicate the work to someone how could 
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be a `human factor manager` in the company. This is a way to start a more goal-oriented, 

efficient and structured work with human and organisational barriers. Experience data 

regarding human factors and failures should be registered, and the use of human factor 

analysis in project and operation should be used more consistent.  Making one person 

responsible for human and organisational elements in the company would be one initiative 

that shows that the learning‘s regarding management elements are taken serious, and that time 

and resources are set ensure implementation of it.  

 

Another question is whether or not the barrier KPI model can further on be developed to say 

something about the risk in Gassco`s portefolio. Neither the barrier KPI model or the way 

QRA analysis are performed as of today gives a ―dynamic picture‖ of the risk level at a given 

installation. But both the barrier model and the QRA analysis provide useful information 

regarding the risk at a given installation. The barrier KPI model could be made more sensitive 

to reflect the risk level by giving important barriers a higher weight, or the influence on the 

risk level could be highlighted in some other way. But the barrier KPI does not show 

dependencies, and at some installations, reported data on important barriers, such as ignition 

source control, are missing due to insufficient labeling of equipment. Even though there is no 

input data on a barrier, it could be a very important barrier. If it is not present in the barrier 

KPI model their impact on the risk level would not be reflected. Also, for example the 

blowdown system could be rated high due to the fact that it could prevent escalation. But if 

the gas detection alarms functions, people inside the installation have evacuated, reducing the 

fatality consequences. The barrier KPI model also has its limitations due to the program used 

to present it. As learnt from the nuclear industry the risk level could be monitored more 

actively than done today in the oil and gas industry. Gassco is already one step closer to a 

more dynamic QRA model due to the barrier KPI model. Due to several aspects mentioned, it 

seems more adequate to develop a new model aiming for representing the risk picture at any 

time at an installation. 

A solution could be to combine the information gained in the barrier KPI model with the 

QRA analysis already present and develop a new more ―dynamic‖ QRA model as suggested 

in chapter 5.3. This will give several more benefits for Gassco: allow for planning of coming 

outages, long-term follow up of risk profile and evaluation of disturbances and failures as well 

as experienced feedback. Results from this model could easily be used to develop a risk 

indicator based on the same principle used in the barrier KPI. The risk indicator could show % 

increase/decrease in the risk level compared with the previous period, and whether or not the 

level is acceptable. This will give the management and board a fairly representation of risk 

within Gasscos portfolio. The risk indicator and the barrier KPI will become very dependent 

of each other. If the risk level increases this will be reflected in the barrier KPI model – a lot 

of barriers will become red. By continuous work with maintaining the barriers, the risk 

indicator will be at an acceptable level. It is important to be aware of that if important safety 

critical barriers are not included in the barrier KPI indicator, failure and the effect on the risk 

level will be harder to reveal. Yet an argument for getting all installations to implement all 

indicators. Some of Gassco`s installations have not implemented the ignition source indicator 

due to inadequate labeling of equipment, which make it hard to figure out the failure rate 

based on performed tests. But as shown in previous chapter, ignition source control is an 

important barrier and plays a significant role in the risk level at a given installation. Based on 

this, effort should be made to implement this indicator at all Gassco`s installations. Reasons 

for why indicators are not implemented should be argued for and documented. Perhaps 

emphasising at each installation which important barrier indicators that are ―missing‖ would 
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motivate the management to get the indicator implemented.  But experiences have shown that 

it is not always very easy to get the right data input into the model. It is important that the data 

reported into the model is good and in accordance with the specification, or else the model 

will lose its credibility. This is also one reason why it is not desirable to implement many new 

indicators regarding management elements all at one.  

The new QRA model must take into account dependencies and changes in failure rate 

regarding barriers and human/organisational values. By implementing several management 

elements in the barrier KPI model, a lot of information could be gained directly from here. By 

having a person responsible for the human and organisational factors in the organisation, this 

person will gradually gain experience and could evaluate the input data to the dynamic QRA 

model. Also, developing a database with experience data on human factors would simplify 

this work. The largest challenge will be to build the new ―dynamic QRA‖ model. But it is 

possible and a lot can be learned from the nuclear industry. By starting to develop this model 

Gassco will add another aspect to risk management in the oil and gas industry and utilize the 

barrier KPI model for all it is worth. Since Gassco is a relatively young company and their 

responsibility increases gradually, it would be very useful to start working on a human factor 

database and a new dynamic QRA model as early as possible in Gassco`s operating time. One 

motivation for starting to work on a more dynamic QRA model is that PSA has requested the 

industry to conduct risk analysis and use the results more efficiently 
[81]

. This request makes 

development of a new QRA model and a risk indicator a natural step for the barrier KPI 

indicator. The way QRA`s are used in the industry as of today simply is not sufficient enough 

compared with the potential of a QRA. And if it has been done in the nuclear industry, there is 

no reason for why it should not be done in the oil and gas industry. After all, a lot of money is 

spent on performing QRA`s, but the benefit is small compared to the potential.There are 

several reasons for starting this work, but two arguments that should be heavily weighted are: 

It will be a natural step to further improve the risk management and risk communication in 

Gassco, and the Authorities have requested a more efficient use of the QRA
[81]

. 

 

Data reported into the model needs to be presented in a suitable way. As of today the reactive 

elements in the model are presented as a 12 months moving average. This solution brings 

some challenges such as; few test data gives a high failure rate when the equipment fails, 

equipment history is lost and the fact that the calculated failure rate could actually be 

acceptable if seen over a long time period. There are several ways to present the data; increase 

time period for the calculated average, display time period between each failure, display 

failure reported last test month  etc. It is important that the data presented in the Barrier KPI 

model gives the ―right‖ picture of the condition of the safety critical equipment. The 

suggested method in chapter 5.3 (aggregate the reported data), makes the failure rate more 

comparable with the requirement than the 12 months moving average. Using the Bayesian 

approach and formula 5.5, helps present the failure rate more correctly when few tests are 

performed yearly (by assuming that the equipment is performing as anticipated, history is 

built in to the model). By using the trend description to show how the failure rate has 

developed the last 24 months, ensures the sensitivity in the model. When the results for the 

last 12 months are presented as well, it is easy to find out when the failure(s) occurred. Using 

the same trend description as earlier (10% increase/decrease), it will be easy for the users to 

adjust to the changes. The suggested changes seem to be an improvement of the model 

without large changes in the model setup or presentation. It is of importance that the ones 

making decision based on the reported failure rate get the right impressions regarding the 

safety critical equipment conditions.  
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The other limits in the model are presented as a 12 months moving average (proactive and 

management elements), and are not evaluated in this report. The reason for this is that they are 

presented as a number and the requirements are not connected to a probability distribution. So 

whether or not they are presented as a 12 months moving average or a monthly value, is more 

or less a question of what is desirable. 

 

Summing up the discussion, it is clear that more work regarding the management elements is 

needed in Gassco, but it does not seem like this could be achieved only by implementing 

some new indicators in the barrier KPI model. The model can be used to increase the focus, 

and management elements at Gassco Bygnes should be represented in the model due to the 

fact that the work done by the management is crucial in the work done to prevent major 

accidents. Other areas also need to be further developed when it comes to human factors and 

the way QRA`s are used as of today. A lot can be learned from the nuclear industry regarding 

this. Also, implementing the five key elements of a high reliability organisation will increase 

the level of safety within Gassco`s organisation. Some changes in the way the failure rate in 

the model is presented must be done to give a more fair comparison to the requirements.  

Suggestions for further work, not only for the barrier KPI model, but how to ensure learning 

from previous major accidents, are suggested in the next chapter.  

 

6.2 Suggestions for further work 
 

Suggestion on how to further develop the barrier KPI model and also how to ensure learning 

from previous major accidents:   

 develop an HSE climate survey which is suitable for all employees in Gassco`s 

organisation. The survey should be developed in such a manner that if a person is 

responsible for safety critical equipment/tasks, additional questions could be added 

 implement a new overall indicator for Gassco Bygnes, representing several management 

elements that seems to be repeated in the major accident history, suggestions are made in 

chapter 4.6. All indicators should be discussed in a work shop held in Gassco 

 if the indicators implemented in the overall indicator for Bygnes give valuable 

information after some experience has been made, effort should be made to implement 

several of the indicators at installation level. New indicators in the Gassco Bygnes 

indicator should also be assessed 

 decide on a `human factor manager` in the organisation/at the installations/in projects, 

which is given the opportunity to learn and become an expert on human errors, oral and 

written communication and the function of organisations 

 develop an overview of human failures in Gassco`s portofolio. Reference is made to the 

database developed by NRC: Human Factors Information System (HFIS). This is a 

database which stores information about human performance issues   

 establish a project and start trying to develop a more ―dynamic QRA‖ model, or join other 

research studies which are working on a more dynamic QRA model.  

 

Suggestions mentioned above are based on the evaluations and work done in this report.  
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Chapter 7. Conclusion 
 

This report is the result of the evaluation of Gassco`s barrier KPI model. When evaluating the 

model, the aim was to answer three questions:  

1. Does Gassco`s barrier KPI reflect learning from recent major accidents, or should 

more indicators be included in the model? 

2. Do changes in the barrier KPI model equal changes in the risk level? 

3. Is the information regarding failure rate in the model presented in an adequate way? 

 

By studying several major accidents that occurred recently, some gaps between lessons 

learned and indicators that are implemented in the barrier KPI model as of today, are exposed. 

Since the management in Gassco is located at Bygnes, a new indicator containing 

management elements at Bygnes, is suggested implemented in the barrier KPI model. 

Gathering all initiatives done to prevent a major accident could result in better motivation for 

―getting the job done‖. The indicator will visualise the importance of the management 

elements and the work done at Bygnes to prevent major accidents. If the experiences made 

with the new indicators are good, Gassco should aim for implementing several of them at 

installation specific level. Some indicators are suggested in chapter 4.6 to reduce the gap, but 

the solution is not only to implement some new indicators. More work has to be done. 

Summing up, it is all about improving the safety culture in the organisation. People are 

affected by culture. One person should be dedicated the role as ―human factor manager‖ or 

something more suitable, and continuously work with this subject. Also an experience 

database regarding human factors should be built. References are made to the way the nuclear 

industry is handling organisational and human factors, presented in chapter 4.7. Gassco 

should work continuous with the five key elements of a high reliability organisation, and a lot 

of learning could be achieved by studying what has been done in the nuclear industry through 

the years. 

 

The barrier KPI model should be kept as an indicator of the state of the barriers within 

Gassco`s portfolio. To achieve a more ―dynamic‖ status on the risk level, the QRA model 

should be further developed to become a more ―dynamic QRA model‖. References are also 

here made to the nuclear industry, chapter 5.3. This model would benefit from the effort put 

down when developing a database regarding human factors and the barrier KPI model. When 

the model has been built, a natural step further would be to develop a risk indicator. This 

indicator will become closely linked to the barrier KPI indicator, and together they will 

provide very useful information to the management and board when trying to manage risk. A 

risk graph to use in daily operation and projects could be one outcome from the new QRA 

model. Suggestion to such a process is illustrated in chapter 5.3. There are several reasons for 

starting this work. One is that it will be a natural step further to improve the risk management 

in Gassco. The fact that the Authorities has requested a more efficient use of the QRA is a 

also a weighty argument.  

If the data in the barrier KPI model shall be used further for analysis, it is important that the 

failure rate is presented fairly compared to the requirements. The 12 months moving average 

used when representing status on reactive elements as of today, is not suitable. One fair way 

to present the data, due to the fact that the requirements are set based on an infinitive amount 

of tests, is to aggregate all reported figures and use the Bayesian approach. To maintain the 

sensitivity in the model, the trend arrow could be used to measure the failure rate the last 24 
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months up against the aggregated value. This would reveal if the failure rate in the last time 

period is worse, more or less the same or better than the aggregated value. 

Some of these conclusions can be handled short term, such as changing the presentation of the 

failure rate and start the work with developing and implementing new indicators. The benefit 

of having a `human factor manager` and the effort put down in developing a new QRA model 

and a risk indicator must be seen in the long term. Management elements, including human 

factors, are very important areas when working with the prevention of major accidents, and 

effort must be put in handling this subject efficiently. Lessons from other industries shows 

that this could be done through continuous and hard work, combining knowledge from several 

aspects, both regarding technical and non technical issues. It is also important with innovative 

work, and the time has come to further develop the existing QRA model in the oil and gas 

industry. By doing this, risk management in the industry will improve.   
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Chapter 9. Appendices 
 

A. Regulations 

The Petroleum Safety Authority in Norway is the regulatory authority for technical and 

operational safety, including emergency preparedness, and for the working environment in the 

offshore industry. There are five regulations which control safety of design and operation of 

offshore and land based installation
 [82]

. There are several sections in the Management 

regulations that are important, with respect to analysis of risk and barriers. The sections 

relevant for this report are given in full below: 

Section 4 

Risk reduction 

In reducing risk as mentioned in  11 of the Framework Regulations, the responsible party 

shall select technical, operational and organisational solutions that reduce the probability 

that harm, errors and hazard and accident situations occur. 

Furthermore, barriers as mentioned in  5 shall be established. 

The solutions and barriers that have the greatest risk-reducing effect shall be chosen based 

on an individual as well as an overall evaluation. Collective protective measures shall be 

preferred over protective measures aimed at individuals. 

  

Section 5 

Barriers 

Barriers shall be established that: 

a) reduce the probability of failures and hazard and accident situations developing, 

b) limit possible harm and disadvantages. 

 

Where more than one barrier is necessary, there shall be sufficient independence between 

barriers. 

The operator or the party responsible for operation of an offshore or onshore facility, shall 

stipulate the strategies and principles that form the basis for design, use and maintenance of 

barriers, so that the barriers‟ function is safeguarded throughout the offshore or onshore 

facility‟s life.  

Personnel shall be aware of what barriers have been established and which function they are 

intended to fulfil, as well as what performance requirements have been defined in respect of 

the technical, operational or organisational elements necessary for the individual barrier to 

be effective. Personnel shall be aware of which barriers are not functioning or have been 

impaired. The responsible party shall implement the necessary measures to remedy or 

compensate for missing or impaired barriers. 

http://www.ptil.no/framework-hse/rammeforskriften-e-article4024-403.html#p11
http://www.ptil.no/management/styringsforskriften-e-article3858-401.html#p5
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The guidelines to the regulations state that barriers as mentioned in the first sub, can consist of 

either physical or non-physical measures, or a combination. The requirement for 

independence as mentioned in the second sub, means that it should not be possible for 

multiple important barriers to be impaired or malfunction simultaneously, e.g. as a result of a 

single fault or a single incident. 

The NS-EN ISO 13702 
[83]

 standard should be used for development and stipulation of 

strategies for risk-reducing measures and functions. IEC 6150884
[84]

should be used for safety 

systems. In addition, OLF‟s Guideline 070 
[72]

 should be used as a basis for offshore 

petroleum activity.  

Section 6 

Management of health, safety and the environment 

The responsible party shall ensure that the management of health, safety and the environment 

comprises the activities, resources, processes and organisation necessary to ensure prudent 

activities and continuous improvement, cf.  17 of the Framework Regulations. 

 

Responsibility and authority shall be unambiguously defined and coordinated at all times. 

The necessary governing documents shall be prepared, and the necessary reporting lines 

shall be established. 

 

Section V in the Management regulation is about analyses and states among other things that: 

Section 16 

General requirements for analyses 

The responsible party shall ensure that analyses are carried out that provide the necessary 

basis for making decisions to safeguard health, safety and the environment. Recognised and 

suitable models, methods and data shall be used when conducting and updating the analyses. 

The purpose of each risk analysis shall be clear, as well as the conditions, premises and 

limitations that form its basis. 

The individual analysis shall be presented such that the target groups receive a balanced and 

comprehensive presentation of the analysis and the results. 

Criteria shall be set for carrying out new analyses and/or updating existing analyses as 

regards changes in conditions, assumptions, knowledge and definitions that, individually or 

collectively, influence the risk associated with the activities. 

The operator or the party responsible for operating an offshore or onshore facility shall 

maintain a comprehensive overview of the analyses that have been carried out and are 

underway. Necessary consistency shall be ensured between analyses that complement or 

expand upon each other. 

http://www.ptil.no/framework-hse/rammeforskriften-e-article4024-403.html#p17
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Section 17 

Risk analyses and emergency preparedness assessments 

The responsible party shall carry out risk analyses that provide a balanced and most 

comprehensive possible picture of the risk associated with the activities. The analyses shall be 

appropriate as regards providing support for decisions related to the upcoming operation or 

phase. Risk analyses shall be carried out to identify and assess contributions to major accident 

and environmental risk, as well as ascertain the effects various operations and modifications 

will have on major accident and environmental risk. 

Necessary assessments shall be carried out of sensitivity and uncertainty. 

 

The risk analyses shall 

a) identify hazard and accident situations, 

b) identify initiating incidents and ascertain the causes of such incidents, 

c) analyse accident sequences and potential consequences, and 

d) identify and analyse risk-reducing measures. 

 

Risk analyses shall be carried out and form part of the basis for making decisions when e.g.: 

a) classifying areas, systems and equipment, 

b) demonstrating that the main safety functions are safeguarded, 

c) identifying and stipulating design accidental loads, 

d) establishing requirements for barriers, 

e) stipulating operational conditions and restrictions, 

f) selecting defined hazard and accident situations. 

 

Emergency preparedness analyses shall be carried out and be part of the basis for making 

decisions when e.g. 

a) defining hazard and accident situations, 

b) stipulating performance requirements for the emergency preparedness, 

c) selecting and dimensioning emergency preparedness measures. 
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B. Indicators in Gassco`s barrier KPI model and aggregation rules 

Category Indicator  Mathematical description Comment/failure mode 
Tolerance limits 

Weight Data sources 
Lower  Upper 

Preventive 

barriers 

Inspections - 

Onshore/offshore 

installations 

# of critical obs in period 

(period = reporting 

period, normally 30 

days) 

Critical observation if corrective 

action is required within 30 days 

Examples of critical findings: 

- Wall thickness less 

than code minimum 

thickness (e.g. ANSI B 

31G) 

- Significant cracks 

- Loose bolts 

- Deformations 

Several findings on one tag is 

regarded one finding 

Installation 

specific 

Installation 

specific 
NA 

SH: RIS/ SAP 

CP: SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

Visual inspection - 

onshore pipeline 

# of critical obs in period 

(period=reporting period, 

30 days) 

Overall pipeline condition from 

Orbit. 

Given by 

Orbit 

Given by 

Orbit 
NA 

SH: Orbit 

CP: Orbit 

Gassco: Orbit 

Total: NA 

Centrica: NA 

ROV inspection 

# of critical obs in period 

(period=reporting period, 

30 days) 

Given by 

Orbit 
Given by 

Orbit 
NA 

Intelligent pigging 

(ILI) 

# of critical obs in period 

(period=reporting period, 

30 days) 

Given by 

Orbit 
Given by 

Orbit 
NA 

Reactive 

barriers 

Gas detection, 

automatic 
# of failures / # of tests 

F&G logic does not receive a 

signal from the detector when 

tested 

1.0 % 2.0 % 2 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 
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Ignition Source 

Control 
# of failures / # of tests 

1. Switch/ignition source not 

disconnected 

2. Fuel valve for rotating 

equipment not closed 

NB! Does not include hot work, 

car driving and ex equipment. 

1.0 %4 2.0 % 2 

SH: Vary across 

installations 

CP: Barrier panel/SAP 

Gassco: Vary, not tested 

in Zeebrügge 

Total: Not reg. tested 

Centrica: As Total  

HVAC # of failures / # of tests 
Damper does not close tight on 

demand 
2.0 % 4.0 % 1 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: Not regularly tested 

Centrica: Not regularly 

tested  

ESD - Valves # of failures / # of tests 

The valve does not close on 

signal within specified time or 

has a higher internal leakage 

rate than specified criterion 

1.0 % 2.0 % 3 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Reports 

Total: SAP 

Centrica: Maximo 

ESD - Pushbutton # of failures / # of tests 

The ESD logic does not receive 

a signal from the pushbutton 

when activated 

0.5 % 1.0 % 3 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Reports 

Total: SAP 

Centrica: Maximo 

Safety critical PSD 

valves 
# of failures / # of tests 

The valves do not close on 

demand in time 
2.0 % 4.0 % 2 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

PSV # of failures / # of tests 

The valve does not open at 120 

% of set point or at a pressure 

50 bar above set point if this is 

lower 

4.0 % 8.0 % 3 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

                                                 
4
 Limits for Ignition source control is not given in ref. GL0114, but assumed equal to gas detection which initially trigger the deactivation of ignition sources. 
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HIPPS # of failures / # of tests 

HIPPS valve does not 

open/close on signal within 

specified time. 

0.1 %5 0.2 % 2 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

PPS # of failures / # of tests 
Same function as the HIPPS 

system. 
0.1 % 0.2 % 2 Only applicable for SH 

Blowdown  
# of failures / # of tested 

valves 

1. The pushbutton does not send 

a signal when activated 

2. The valve does not open on 

signal within specified time 

0.5 % 1.0 % 3 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

Fire detection 
# of failures / # of tested 

detectors 

F&G logic does not receive a 

signal from the detector when 

tested 

Include heat-, smoke- and flame 

detectors 

1.0 % 2.0 % 2 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

Deluge valve # of failures / # of tests Deluge valve does not open 1.0 % 2.0 % 2 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

Deluge nozzle # of failures / # of tests 

Nozzle does not distribute water 

with the expected amount and 

release pattern. 

3.0 % 6.0 % 2 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

Fire water pumps # of failures / # of tests 

1. The pump fails to start 

2. The pump capacity is reduced 

with more than 10 % 

2.0 % 4.0 % 2 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

                                                 
5
 Limit not given in ref.GL0114, SIL 3 requirement used as basis for lower limit. 
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PA system 
# of speakers failed / # 

tested 

Too low battery capacity UHF 

radios) 
2.0 % 4.0 % 1 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

Emergency power 

generator 
# of failures / # of tests 

The generator does not start or 

does not supply specified 

voltage 

0.5 % 1.0 % 2 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

UPS capacity # of failures / # of tests 

The UPS does not have the 

capacity to supply the required 

emergency power for a period 

of 30 minutes 

0.5 % 1.0 % 2 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

Emergency lightning # of failures / # of tests 

Emergency lighting does not 

remain lit, using emergency 

power supply, for a period of 30 

minutes 

5.0 % 10.0 % 1 

SH: A10 report/SAP 

CP: Barrier panel/SAP 

Gassco: Spreadsheets 

Total: SAP 

Centrica: Maximo 

Management 

elements 

PM backlog on 

safety critical 

equipment 

# of work orders in 

backlog related to 

inspection and tests 

Backlog according to company 

specific definition 

SH: Backlog if  >30 days over 

due  

Installation 

specific 

Installation 

specific 
1 

SH: Currently not 

available 

CP: Barrier panel, PM 

backlog 

Gassco: SAP, PM backlog 

Total: Backlog not 

defined (?) 

Centrica: Maximo 

CM backlog on 

safety critical 

equipment 

# of work orders in 

backlog related to CM on 

safety critical equipment 

Backlog according to company 

specific definition (see example 

in figure below) 

Installation 

specific 

Installation 

specific 
3 

SH: MIS-CMR 

CP: Barrier panel ZB, PM 

backlog 

Gassco: SAP 

Total: SAP 

Centrica: Own KPI 
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Critical audit 

findings 

# of critical open 

findings  

Criticality dependent on audit 

system. Example is findings 

rated yellow or red (or 1 in new 

rating scale) in SH system 

Installation 

specific 

Installation 

specific 
2 

SH: SAMS 

CP: Impact 

Gassco: Synergi 

Total: Stream (?) 

Centrica: CATS 

Overdue actions on 

critical audit findings 
# of overdue actions 

Overdue time bound actions 

initiated by critical audit 

findings. Action should be a 

concrete improvement measure. 

Installation 

specific 

Installation 

specific 
3 

SH: SAMS 

CP: Impact 

Gassco:  

Total:  

Centrica: 

Override indicator 

# Of critical safety 

barriers overridden a 

specific time (e.g. first 

Friday in reporting 

period at 08:00 - the time 

can be chosen by 

reporting person, but 

should be the same for 

each period). 

Disconnection or by-pass of a 

technical safety barrier e.g.: 

- Override onscreen using 

switch on control panel, 

with or without a key 

- Physical by-passes or 

disconnections in 

equipment lockers or 

terminal blocks 

- Override of safety functions 

in electrical systems 

 

Installation 

specific 

Installation 

specific 
2 

SH: Monitored in control 

room 

CP: Control room 

Gassco: Control room 

Total:  

Centrica: Separate risk 

assessment 

Open corrective 

work order related to 

safety critical failure 

modes 

# of outstanding work 

orders on safety critical 

equipment 

Example: 

- ESD valve with to high 

leak rate 

- Non functional gas detector 

Installation 

specific 

Installation 

specific 
2 

SH: MIS-CMR 

CP: Available in other 

format 

Gassco: Not registered 

Total:  

Centrica:  
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Aggregation rules and colour interpretation  
 

Each indicator is summarized and an overall status for reactive elements, preventive elements 

and management elements are calculated by using equation B.1. Reactive and preventive 

elements are given weight based on were the barriers are located in the chain of events. Some 

systems though, are regarded exceptions to this rule of thumb. Here, a weight is allocated to 

each barrier applying a combination of the weights used in the TTS project (ref chapter 1.1) 

and expert judgments 
[6]

. 

An aggregate parameter P is calculated as the weighted average of the score allocated to each 

indicator according to colour using the wieghts described in the table in chapter iii. Red rating 

is given extra attention and is allocated an additional ―criticality‖ score point
[7]

:  

P = [λ1×R1 + λ2×R2 + …+ λn× Rn] ×                                               (Formula B.1) 

λ i : weight factor for system i 

Ri : rating according to colour on system level (green = 1, yellow = 2, red = 4) 

Applying formula B.1, a rating of yellow for all system level indicators would give a P value 

of 2. Upper and lower tolerance level is calculated by respectively adding and subtracting 

16,67 % of the value corresponding to all yellow, giving following limits
[7]

: 

Green value: 1=< x < 1.67 

Yellow value: 1.67 =< x < 2.33 

Red value: 2.33 < = < 4 

Further, on installation, organisational unit- and corporate level the aggregation rules 

indicated in the figure below is applied, and summarized to one status for Gassco, as 

illustrated in figure 25
[6]

.  

 
Figure 32: Aggregation hierarchy[6] 
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C. Major accidents 
 

In this chapter some more major accidents are presented which are referred to in the report. 

 

C.1 Humber oil refinery 2001  
 

Reference for information in this is made to the HSE public investigation report 
[85]

. 

In April 2001, on Easter Monday at approximately 2:20 p.m, a large explosion occurred on 

the Humber oil refinery in UK. There were no fatalities, but two people were injured. The 

explosion caused widespread damage to houses and businesses within a 1 kilometer radius of 

the plant. In total 180 metric tons of flammable liquids and gases were released during the 

incident along with just over half a tone of the toxic gas hydrogen sulphide. ConocoPhillips, 

owner of the refinery, was investigated and subsequently fined and ordered to pay £218,854 

costs by the Health and Safety Executive for failing to effectively monitor the degradation of 

the refineries‘ pipework. The company pleaded guilty to these charges in court and has since 

implemented a Risk Based Inspection program. 

The primary cause of the explosion was the erosion/corrosion of the 6‖ diameter pipe, known 

as P4363. Examination showed that the elbow had failed owing to an erosion-corrosion 

damage mechanism which, over time, had reduced the wall thickness at the outside of the 

elbow to such an extent that the wall could no longer withstand the internal pressure within. 

The pattern of thinning appeared to be directly associated with the water injection position 

and the downstream flow path of the water from the injection point and around the outside of 

the elbow. Following its installation the use of P4363 water injection was not well 

documented. There is evidence that from early 1980s water injection through this pipe was 

continuous, until 1995 when the decision was taken that it would only be used intermittently 

as required (or not at all). The change to intermittent use was not progressed through a 

Management of change procedure and therefore there was no evaluation of the effects this 

might have on corrosion potential. Sometime during 2000 or early 2001 the water injection 

was put back into continuous use. 

The design and installation of the water injection point in P4363 was not subject to any 

management of change assessment. Had such an assessment been carried out the corrosion 

risk that the injection point introduced for the downstream pipework could have been 

identified. Similarly no assessment was made of the changes in the use of the water injection 

point, between continuous and intermittent, over the lifetime of the plant.  

ConocoPhillips corrosion management was not sufficiently thorough or systematic to prevent 

the failure of P4363. Positive actions, such as a full time Corrosion Engineer for the Refinery,  

were allowed to lapse with the result that there was both insufficient data on, and inadequate 

resource or focus applied to, corrosion as a potential major accident initiator. Systematic and 

thorough arrangements are necessary for the effective management of corrosion on major 

hazard installations. Adequate resource, including relevant expertise, should be applied to 

ensure that adequate standards are achieved and maintained. 

Two significant communication failings contributed to the incident. The various changes to 

the frequency of use of the P4363 water injection were not communicated outside plant 

operation personnel. As a result there was a belief elsewhere that it was in occasional use only 

and did not constitute a corrosion risk. Secondly information from the P4363 injection point 

inspection, which was carried out in 1994, was not adequately recorded or communicated 

with the result that the recommended further inspections of the pipe were never carried out.                                   
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Communication systems should aim to actively involve the workforce. This was also pointed 

out in a detailed inspection of human factors issues at the Refinery. Safety communication 

were found to be largely instructions related to personal safety issues, rather than seeking to 

involve the workforce in prevention of major accidents. The inspection identified that there 

were insufficient attention on the Refinery to the management of process safety. 

 

ConocoPhillips failed to implement an effective system for the inspection of pipework. The 

system used fell far below recognized industry good practice at the time. In addition they 

failed to use knowledge and experience from others of the plant that should have identified 

the need for more inspection of the SGP pipework. Over time pipework condition data should 

have been obtained, and entered onto an inspection database, to verify the believed integrity 

and inform assessments of future inspection requirements. Summing up the factors that 

contributed to Humber refinery accident can be grouped into the following categories: 

 

Supervision and monitoring: 

- management of pipework inspection – failed to implement a effective system 

for the inspection of pipework, there should have been an inspection database 

 

Policies and procedures: 

- lack of management of change policy and procedure 

 

Physical devices and instrumentation: 

- inadequately maintenance of equipment (corrosion) 

 

Communication: 

- various changes to the frequency of use of the P4363 water injection were not 

communicated outside plant operations personnel 

- information from the point inspection in 1994 was not adequately recorded or 

communicated – the recommended further inspection were never carried out 

- safety communication were found to be largely ‗top down‗  instructions on 

personal safety, rather than seeking to involve the workforce in preventing a 

major accident. 

 

Training: 

- lack of awareness off  present risks  

 

When summing up the underlying causes that contributed to the Humber oil refinery accident, 

it is evidently that there were several weaknesses in the management system. There were lack 

of management of pipework inspections, management of change policy and procedures and 

insufficient maintenance management. 
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C.2 Toulouse 2001  
 

The official investigation report of the Toulouse accident in 2001 is in French language and is 

not translated into English. Reference to information regarding this accident is made to an 

article published by Safety Science 
[86]

; First lessons of the Toulouse ammonium nitrate 

disaster, 21st September 2001, AZF plant, France. This article summaries conclusions made 

for several investigation carried out subsequently following the accident.  

 

21
st
 September 2001 an explosion occurred in a downgraded ammonium nitrate store in 

Toulouse, France. The accident resulted in 30 facilities and approximately 10 000 injuries. 

The plant belonged to Grande Paroisse Company, TotalFinaElf Group. The explosion 

occurred in a downgraded ammonium nitrates store, which was authorised for 500 tons and 

contained approximately 400 tons of product on the day of the explosion. The chemical was 

stored flat and separated by partitions. It is not known what caused the explosion. The TNT 

equivalent mass of the explosion was estimated by INERIS to be in the range of 20 to 40 tons 

of TNT. 

There is still a controversy on the direct causes of the explosion. The key element is to find 

the ignition source of the ammonium nitrate stored. The Justice‘s main assumption is a 

chemical reaction (trichloramine NCL3), which is very unstable and able to explode. The 

TotalFinaElf companies focusing mostly on a huge underground electric arc between a 

transformer on SNPE‘s plant (owned by the French State) and EDF‘s electric line. Other 

assumptions are terrorism act or malicious intent. Neither has appeared relevant so far.  

Several investigations of the accident gave lots of analysis and propositions that help the 

French Environment Ministry to implement a new law. The new law focuses on several points 

that complete the Seveso II Directive. Some lessons have also been implemented at a EU 

level (White book, ammonium nitrate changes in Seveso II Directive). For example, as 

recommended by several investigations, the Environment Ministry made compulsory in its 

new law in 2003 to involve more widely the employees and also to integrate the 

subcontractors in the risk management process. Also, the new laws aims at monitoring the use 

of subcontracting on Seveso installations.  

On the plant there were 25 subcontracting companies that worked continuously and 3 

different subcontracting companies worked in the warehouse (the ammonium nitrate was 

picked up, unloaded and removed by them) and the maintenance of the warehouse was carried 

out by another contractor. An organisational investigation carried out after the accident 

considered that the subcontracting was a ―determining factor‖.  One consequence of the 

operational subcontracting was a disengagement of AZF employees for its operational 

management, and AZF lost the control of some activities carried out by the subcontractors. 

By the various investigations no specific analysis of the safety management system of the 

company and the way it worked has been performed. Neither has an investigation at a higher 

level of the organisation in the company been carried out. This seems to be a weak point in 

the investigations carried out after the Toulouse accident 

A few days after the accident the European Parlament (EP) stated that they regretted that they 

didn‗t provide sufficient numbers of competent and specialised inspectors and calls. Staff 

were recruited and suitably trained, and minimum qualification criteria for inspectors were 

updated. 

1570 firemen and militaries and 950 policemen were involved in the emergency response and 

housing monitoring. A problem was that they arrived without any plan and any discussion by 
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phone as the classical phone lines were partly destroyed and the mobile phone network was 

saturated. The internal and external emergency plan were not prepared to this scenario and its 

gravity and the first firemen were not protected with adequate equipment for any toxic cloud 

and with devices to detect those toxic gases. The French Environment Ministry gave 

additional funds to INERIS to increase the research on chemicals properties, on learning from 

experience, on safety studies and on emergency preparedness. 

After the accident it was pointed out the need for introducing uncertainties of the accidental 

scenarios as probabilities in the risk assessment like in the UK. The new law therefore asks to 

take into account probability and the kinetic of scenarios in the new safety studies. However, 

they pointed the need to keep on assessing scenarios with a consideration of a possible failure 

of the safety barriers designed and implemented (deterministic approach). 

Information in this will not be divided into categories due to insufficient information 

regarding the accident sequence and root causes. But from lessons learned as described above, 

it seems that most off the contributing factors were organisational and management elements, 

such as lack of risk understanding, lack of knowledge and lack of training. This accident 

clearly shows the importance of understanding the characteristics of chemical substances and 

the safety design principle given by Kletz
 [87]

, intensification, attenuation, substitution and 

simplification. 

 

C.3 Buncefield 2005  
 

Reference to the information in this chapter is made to the investigation report from the Major 

investigation board 
[88]

,  formally established by the Health and Safety Executive. The 

Buncefield Investigation Board publishes its Final Report and announces the end of its work 

11. December 2008 
[89]

. The Final Report captures all of the work over nearly three years in a 

single publication. Its aim was to identify the immediate causes of the explosion, rather than 

consider who was to blame for any deficiencies, so as not to prejudice further legal 

proceedings. The chain of events and direct and underlying causes to the accident  is not 

described in the report. A picture of what went wrong is therefore established by evaluating 

the recommendations given in the report. 

 

Sunday 11 December 2005 a series of explosions and subsequent fire destroyed large parts of 

the Buncefield oil storage and transfer depot, Hemel Hempstead, England. There were no 

fatalities, but 43 persons were injured. Fortunately, no one was seriously hurt. There was 

significant damage to both commercial and residential properties near the plant and about 

2000 people had to be evacuated from their homes. The fire burned for five days, destroying 

most of the plant and emitting a large plume of smoke into the atmosphere that dispersed over 

southern England and beyond.  The plant owners were Total UK limited (60%) and Texaco 

(40%). 

The petrochemical storage tank overflow valve failed whilst fuel was being pumped into the 

tank causing a large quantity of that highly inflammable substance to seep out of the tank. 

There was evidence suggesting that a high-level switch, which should have detected that the 

tank was full and shut off the supply, failed to operate. The switch failure should have 

triggered an alarm, but it too appears to have failed. This was a safety critical event which 

went unnoticed by technicians and their monitoring systems. Consequently, a dangerous 

vapour cloud spread, quietly and ultimately disastrously, across the plant. A spark from either 
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the site‘s fire prevention system or a nearby generator at the Northgate building was enough 

to cause that fuel vapour cloud to ignite with destructive force.  

The Board‘s recommendations (summed up) consist that the measures for controlling major 

incidents risk must integrate: 

- integrity levels at major hazards sites in relation to containment of dangerous 

substances and process safety; 

- mitigation against the effect of a major accident on off-site populations and 

buildings; 

- preparedness for emergency response to limit the escalation of potential major 

accidents; 

- land use planning and the control of societal risk; and 

- the regulatory system for inspection and enforcement at major hazard industrial 

sites 

Regarding design and operation at fuel storage sites there are recommendations given by the 

Board which emphasised the need to increase the protection provided by primary containment 

systems to reduce the likelihood of failure. The Buncefield incident highlighted the need 

for high integrity systems and that there remains a need for an effective means of preventing 

environmental pollution in the event of a failure of primary containment. Therefore there are 

also recommendations given dealing with secondary and tertiary containment if an accident 

should occur.  

Further, there are recommendations given on how to deal with technological matters and their 

management. It‗s also noted that human and organisational factors are important and there are 

given recommendations on how to deal with this matter. There are also recommendations on 

how to deal with a broader strategic objectives relating to sector leadership and culture. It is 

stated that to achieve the full benefit from the technological improvements to process safety 

and environmental protection depends on human and organisational factors such as the roles 

of supervisors, the way work is organised and the robustness of communications on critical 

tasks.  

At the time of writing of the Boards investigation report there was also an investigation 

ongoing on the Texas City disaster (described in the preceding chapter). Both incidents 

occurred due to loss of primary containment by overfilling of a vessel resulting in the 

formation of large flammable vapour cloud that subsequently ignited. The Boards 

investigation report states that their report is equally strong on the importance on human 

factors in the overall program as the report after the Texas City accident 
[51]

. Also, it is 

emphasized that process safety protection systems should not rely on operator response to 

alarms and that overfill protection must be independent of normal operational monitoring, just 

as in the reports after the Texas City disaster 
[51]

. The Boards report states that there are a lot 

of similarities between the recommendation given after  the Texas City explosion and their 

recommendations regarding high reliability organisations and the need for a better safety 

culture and adoption of better measures of performance that are more useful to major hazards 

sectors than injury rates and other measures (that are primarily occupational safety-related). 

The Buncefield incident was a major test for contingency planning. The impressive 

emergency response to Buncefield effectively relied on initiative and good working relations 

of the responders in dealing with an incident that had been unforeseen and therefore not 

planned for. The recommendations in the report from the Board address the need to improve 

emergency arrangements at local, regional and national levels. The recommendations given 
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can mainly be divided into the following: assessing the potential for a major incident, 

managing a major incident on site, warning and informing the public, preparing for and 

responding to a major incident off sit, review of off-site emergency plans, responding and 

recovering to a major incident. There are also given recommendations on the design and 

operation of fuel storage. 

The third of the main areas of concern, stated in the report
[88]

 is the system for land use 

planning and the control of societal risk around major hazard plant. The first 

recommendations called for a wide-ranging review of the system for land use planning around 

major hazard sites to begin without delay and include the incorporation of societal risk into 

land use planning decision making. The following recommendations asks for the economic 

case for land use planning and control of societal risk to be clarified, and for the workings of 

the planning system to be set out in clear guidance for the general public. There are also 

recommendations given that calls for a simplified, generic approach to risk assessment used 

around flammable storage to be replaced by a site-specific assessment of risks, using QRA 

methods. Further recommendations calls for an alignment in the risk assessment approach in 

the COMAH safety report system with land use planning, and in setting priorities on the 

management of sites to ensure continuing integrity of the control measures incorporated in the 

planning decisions. At the end the recommendations are that the key stakeholders demystify 

the concept of societal risk and envisage a future system where they support the planning 

authority in coming to transparent decision on what level of societal risk that can be accepted. 

Planning authorities also need to be suitable resourced to develop the expertise and 

procedures necessary for their role. 

Looking at the recommendations given by the Board it seems like most of the causes can be 

categorised into the same group as mentioned earlier in previous chapters; 

supervision/monitoring, policies and procedures, physical devices and instrumentation and 

communication. Also risk in design and planning and emergency preparedness are areas that 

need to be focused on.  
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D. Indicators human factors 
 

In this appendix the suggestions of human factors indicators from HSE‗s research report from 

Energy institute are presented 
[6]

.  The indicators suggested are meant to be assessed in the 

risk assessment. In this appendix some of the indicators are suggested implemented in the 

barrier KPI model, based on the experiences gained from previous major accidents. The 

indicators must be suitable to the organisation at Bygnes. As a starter, the aim of the barrier 

KPI model is to have a chance in revealing a growing major accident potential. Therefore it is 

of interest to try and implement mostly leading indicators. The suggested lagging indicators 

have not been evaluated.  

The suggested indicators below are human factors performance indicators. The indicators are 

important risk influencing factors, and as illustrated previously in this report, play a role in the 

chain of event leading towards a major accident. It is important to have a way of ―reading‖ 

signs of bad development in the organisation.  

Managing human failures: 

Potential lagging indicators Potential leading indicators 

Number or percentage of incidents, accidents 

or root cause investigations in which human 

failures identified as being contributed or 

causal factor 

 

Number or percentage of risk 

assessments/HAZOPs that include 

assessment of potential human failure. 

Total number per year of recommendations 

made in response to identified human factors 

related failures 

Number or percentage of risk 

assessments/HAZOPs/HAZIDs with defined 

team competencies including human factors 

specialist competence/capability. 

 

Number of percentage of API RP
6
 754 loss 

of containment incidents in the industry at 

each level with associated human factors root 

causes.  

 

Number or percentage of plants/sites in the 

organisation that have designated champion 

to help manage human performance risk. 

Number or percentage of incidents involving 

human failures in which potential for failure 

was previously identified via risk assessment, 

hazard identification study (HAZID) or 

HAZOP process but not sufficiently 

mitigated. 

Number of or percentage of projects in the 

organization for which a ‗human factors 

manager‗ has been appointed. 

 Number or percentage of safety critical task 

assessments (human reliability assessment, 

human error analysis) completed vs. number 

planned.  

 

 

 

 

                                                 
6
 American Petroleum Institute Recommended Practice 
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Procedures: 

Potential lagging indicators Potential leading indicators 

Number or percentage of incidents, accidents 

or root cause investigations in which 

inadequate procedures identified as being a 

causal factor. 

 

Number or percentage of safety critical tasks 

for which procedures are in place. 

Number or percentage of incidents related to 

failure to follow procedures. 

 

Number or percentage of procedures 

documented/up-to-date/within scheduled 

review date, or compared with total number 

of procedures. 

 

Number or percentage of non-

compliances/violations in following 

procedures. 

Number or percentage of procedures meeting 

quality criteria/number of errors found in 

procedures (based on procedural 

‗walkthroughs‗ undertaken by managers and 

operators to confirm appropriateness). 

 

Number or percentage of errors found in 

procedures. 

 

 Number or percentage of safety critical tasks 

for which appropriate (scope, critical tasks, 

emergency actions) procedures are in place. 

 

 Number or percentage of PTWs
7
 reviewed 

and considered fit-for-purpose. 

Training and competence: 

Potential lagging indicators Potential leading indicators 

Number or percentage of incidents, accidents 

or root cause investigations in which lack of 

competence identified as being a causal 

factor. 

 

Number or percentage of employees trained 

per period as compared with schedule
8
. 

 

Number or percentage of training records 

complete/up-to-date. 

 

Feedback on staff competence from third 

party body (based on annual audit). 

Number or percentage of staff satisfactorily 

completing refresher training as compared 

with schedule
9
. 

 

 Number or percentage of safety critical roles 

filled versus unfilled.
10

 

 

 Frequency with which supervisors actively 

                                                 
7
 Permit to work 

8
 Indicators can be developed if necessary for % of employees successfully completing:general safety awareness 

training, emergency response training/drill, technical training, etc. 
9
 NB: this is not the same as competence. Also, the number of non-attendees may indicate staffing pressures. 

10
 Requires that safety critical roles to be defined, so likely to be used for mature and more mature organisations. 
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check staff competence (based on audit 

interviews with supervisors). 

 

Number or percentage of staff acting 

up‗(temporarily filling more senior roles), 

based on spot check audits. 

 

 Number or percentage of training not given 

on request. 

 

Number or percentage of technical specialists 

available versus required number (ref. 

Longford). 

Staffing (staffing levels and workload, supervision, contractors): 

Potential lagging indicators Potential leading indicators
11

 

Staffing levels and workload 

Number or percentage of incidents, accidents 

or root cause investigations in which 

workload/staff shortages identified as being 

causal factor. 

 

Staff workload assessment
12

 

 

Maintenance backlog. 

 

Percentage of optimum staffing level 

achieved, or degree to which required 

percentage staffing levels are being met (e.g. 

for emergency requirements). 

Average hours worked/overtime worked 

(taken from timesheet analysis). 

 

Team availability (number or percentage of 

personnel available on each shift who are 

fully trained). 

Number or percentage of times work stopped 

because of lack of personnel. 

 

Number or percentage of staff off work 

because of stress. 

 

Number or percentage of identified skills 

shortages. 

 

Number or percentage of tasks carried over 

to next shift and/or that exceed programmed 

time. 

 

Number or percentage of people 

available/trained to cover required signing 

authority roles versus target (PTW issuer, 

receiver). 

 

Staff turnover. 

 

Supervision 

Number or percentage of accidents, incidents 

or root cause investigations in which lack of 

or poor supervision identified as being a 

causal factor. 

Ratio of supervisors to staff reporting to 

them. 

 

Supervisor time on plant against time in 

office versus target (hours)
13

. 

                                                 
11

 Measures can be indicative of resource/workload problems, but careful interpretation of the data is required. 
12

 Workload assessment is particularly important for safety critical tasks 
13

 Can be useful, but depends on site context 
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Number or percentage use of upward 

appraisal and 360 degree feedback.  

 

Contractors 

Number or percentage of incidents, accidents 

or root cause investigations in which poor 

management of contractors identified as 

being a causal factor. 

Number or percentage of risk assessments 

relating to contractor activities that involve 

contractor personnel. 

 

Number or percentage of audits that are 

undertaken for contractor activities, versus 

targets. 

Organisational change: 

Potential lagging indicators Potential leading indicators
14

 

Number or percentage of incidents, accidents 

or root cause investigations in which failures 

in the MoC process identified as a causal 

factor. 

 

Number or percentage of issues arising from 

failure in MoC process (e.g. delays, impact 

on operations etc.) 

Number or percentage of engineering and 

organisational, changes that are risk assessed 

as part of MoC process. 

 

Number or percentage of MoC requests 

closed out or signed off versus number 

remaining live (for period/against targets). 

 

Number or percentage adherence to MoC 

procedures, based on spot check audits. 

  

Safety critical communications (including permits and shift handover): 

Potential lagging indicators Potential leading indicators
15

 

Communication 

Number or percentage of incidents, accidents 

or root cause investigations in which failures 

in communication identified as a causal 

factor. 

 

Number or percentage compliance with 

communication protocols (based on spot 

check/sampling audits). 

 

Correct use of communications proformas 

(identify number or percentage non-

compliance via sampling). 

 

Permits 

Number or percentage of incidents, accidents 

or root cause investigations in which failures 

in permits identified as a causal factor. 

Number or percentage adherence to corrct 

permit process (quality checks based on 

sample auditing). 

 

Competence of permit issuers/receivers 

 

Shift handover 

                                                 
14

 Measures can be indicative of resource/workload problems, but careful interpretation of the data is required. 
15

 Measures can be indicative of resource/workload problems, but careful interpretation of the data is required. 
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Number or percentage of incidents, accidents 

or root cause investigations in which failures 

in shift handover process identified as a 

causal factor. 

 

Number or percentage of reported end-of-

tour or shift handover problems. 

Number or percentage of shift handovers 

meeting required criteria
16

/number or 

percentage of errors found in handover 

process (quality checks based on sample 

auditing of handover process and review of 

logs). 

  

 

Human factors in design (control rooms; human/computer interfaces (HCI); alarm 

management; lighting, thermal comfort, noise and vibration): 

Potential lagging indicators Potential leading indicators
17

 

Human factors in design 

Number or percentage of incidents, accidents 

or root cause investigations in which human 

factors design failings identified as a causal 

factor. 

 

Number or percentage of items not accessible 

for maintenance (ergonomic considerations 

for accessibility have not been addressed). 

 

Number or percentage of installations 

requiring re-work (revealed by 

commissioning/decommissioning). 

 

Compliance with human factors integration 

plan, based on review of site activities, 

interviews, documentation. 

 

Number or percentage of ergonomic 

walkabout reviews/audits. 

 

Number or percentage of items of equipment 

non-compliant with ergonomic standards 

(based on spot check sampling audits/review 

of ergonomic assurance evidence). 

 

Number or percentage of design reviews with 

defined team competencies including human 

factors/ergonomics specialist knowledge. 

 

Number or percentage of workarounds found 

related to design problems (based on audit 

sampling). 

 

Subjective operator views on equipment 

usability, obtained via interviews/sampling 

audit. 

 

Compliance of workplaces with ergonomic 

environmental design requirements (lighting, 

noise, etc.) based on sample audits. 

 

Control room and interface design 

Number or percentage of incidents, accidents 

or root cause investigations in which design 

factors/ergonomics failures identified as a 

Compliance of equipment/workplace with 

requirements of ergonomic standards, based 

on sample audits. 

                                                 
16

 Checks to include correct completion of handover documentation , quality of spoken handover, and acceptance 

of handover by incoming team. 
17

 Measures can be indicative of resource/workload problems, but careful interpretation of the data is required. 
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causal factor. 

 

Number or percentage of repeat incidents 

associated with specific equipment (NB: 

repeated problems may be intdicative of a 

problem in the design). 

 

Number or percentage of design issues raised 

on Issues Register. 

Alarm systems 

Number or percentage of incidents in which 

alarms issues/failures identified as a causal 

factor. 

 

 

Number or percentage of alarms that 

operators fail to acknowledge per shift. 

 

Compliance with EEMUA guidance on 

human/machine  interfaces and alarm 

handling. Possible indicators include counts 

of overall alarm frequency, number or 

percentage of standing alarms, number or 

percentage of alarms failing to initiate, 

number or percentage of false alarms etc. 

 

Evaluation of alarm follow-up actions (e.g. 

accepted/disabled) and standing alarm 

reviews, based on sampling. 

  

 

What could be of interest for the offices at Bygnes is control room and interface design: 

―Compliance of equipment/workplace with requirements of ergonomic standards, based on 

sample audits‖. Further also ―Number or percentage of alarms that operators fail to 

acknowledge per shift‖ is a potential indicator. Based on the accidents studied, only alarm 

management was mentioned as an issue that contributed to an accident, for example the 

Longford accident. 

Fatigue and shiftwork: 

Potential lagging indicators Potential leading indicators 

Number or percentage of incidents, accidents 

or root cause investigations in which fatigue 

issues or shift scheduling identified as a 

causal factor. 

 

Number or percentage of near misses arising 

from shift work/fatigue issues. 

 

Levels of sickness absence
18

. 

 

Reported and observed cases of fatigue. 

Average number of hours worked (or 

percentage overtime worked) from timesheet 

analysis. 

 

Number or percentage of open shifts. 

 

Number or percentage of consecutive shifts 

worked by individuals.  

 

Number or percentage work breaks missed 

(sampling/interview). 

                                                 
18

 May be indicative of fatigue issues if sickness absence is a means to avoid working a shift. Care is required in 

interpretation. 
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Number or percentage of non-compliances 

with documented shift pattern. 

 

Number or percentage of exceptions 

(breaches of company policy), including staff 

working non-compliant working hours. 

 

Scheduled versus actual hours worked. 

 

Organisational culture (leadership, behavioral safety, learning organisations): 

Potential lagging indicators Potential leading indicators 

Reporting and incident investigation:  

Number or percentage of reported near-

misses (should not be zero). 

 

Number or percentage of incidents, accidents 

or root cause investigations in which 

organisational culture/safety culture 

identified as being causal factor. 

 

Continuous improvement: 

Number or percentage of incidents/accidents 

that are repeat incidents/accidents (measure 

of how well the organization is learning from 

incident investigations). 

 

Safety climate and culture: 

Breaches of company policy. 

Leadership: 

Measure of visibility of senior executives in 

the workplace (number of site visits, etc.) 

 

Number or percentage of safety tours 

undertaken by managers and middle 

managers. 

 

Number or percentage of task observations 

undertaken by leaders (behavioral safety 

measure). 

 

Outcomes of upward/360 appraisals. 

 

Provision of resources: 

Number or percentage of items of equipment 

requested but not provided. 

 

Communication and risk awareness: 

Feedback on adequacy of regular toolbox 

talks. 

 

Number or percentage of working groups 

(including employee representation). 

 

Reporting and incident investigation: 

Number or percentage of incidents reported 

upwards through the reporting chain. 

 

Effectiveness of incident investigation 

process, including: 

- Circulation of incident 

investigation reports; 

- Adherence to planned 

timeframes for incident 
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investigation; 

- Effectiveness of 

interventions, and 

- Adherence to timescales for 

remedial actions (number or 

percentage of actions closed 

out by target dates). 

Continuous improvement: 

Number or percentage of issues reported in 

timely fashion by workforce. NB: non-

reporting or delay in reporting might be 

indicative of undesirable cultural issues. 

 

Safety climate and culture: 

 Results from HSE safety climate surveys (or 

other safety culture/climate surveys or 

external audits), undertaken every 12 or 18 

months, involving questionnaires, team 

interviews and individual interviews. Provide 

a snapshot of the organization‗s culture 

(compare results against industry 

benchmark/changes over time). 

 

Employee attitude and perception survey 

(including management, supervisors and 

workforce), results benchmarked against 

industry. 

 

Number or percentage of actions identified 

from previous safety culture/climate audits 

that have been closed, against prioritized 

targets. 

 

Evaluation of working culture: completeness 

and adequacy of work undertaken versus 

‗tick-box‗ mentality (determined via spot 

check audits). 

 

Major accident hazards/behavioral safety 

focus: 

Number or percentage of reported events that 

are process safety related versus behavioral 

safety  related. 

  

Maintenance, inspection and testing (maintenance error, intelligent customers): 

Potential lagging indicators Potential leading indicators 

Number or percentage of incidents, accidents Relative number or percentage of reactive 
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or root cause investigations in which human 

failures in maintenance, inspection or testing 

identified as being a causal factor, including 

maintenance-induced latent failures. 

 

Number or percentage of loss control 

reports/reported failures, including key 

component failures, attributable to lack of 

maintenance. 

 

Number or percentage of reported 

maintenance errors/number of tasks requiring 

rework. 

 

Number or percentage of times issues 

reported with equipment that has been 

maintained or repaired (i.e. maintenance 

incorrectly performed leading to latent 

defects/maintenance induced failure). 

(corrective) versus proactive (planned) 

maintenance. 

 

Maintenance backlog (number or percentage 

of equipment not maintained against 

prioritized targets). 

 

Number or percentage of equipment 

inspections/test undertaken against target 

scheduled. 

 

Completeness and accuracy of maintenance 

records (based on sampling review). 

 

Timescale for closure of work orders, against 

targets. 

 

Availability of critical spares. 

 

Number or percentage of workarounds 

(temporary modifications) in place because 

of failed /degraded equipment. 

 

Evaluation of effectiveness of maintenance 

against procedure/process (based on regular 

review of maintenance reports/job notes). 

 

Number or percentage of plant alarms not 

available/not calibrated at plant start-up. 

 

Intelligent customers 

Number or percentage of incidents, accidents 

or root cause investigations in which failures 

related to outsourcing identified as being a 

causal factor 

Number or percentage of nominated 

intelligent customer‗ resources within the 

organization. 

 

Number or percentage of defined intelligent 

customer‗ competence profiles within the 

organization. 

 

Number or percentage of contracts requiring 

intelligent customer‗ management. 
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E. Risk calculations  

 
 

 

Figure 33:  Risk calculations 
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Figur 34: Calculations overall % risk change 

 

 

Figure 35: Calculation overall % change in FAR 
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FORMULAS: 

 

 

 
Figure 36: Formulas used in figure 27 
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Figure 37: Formulas used in figure 28 
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Figure 38: Formulas used in figure 29 
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F. Calculations status 

 
Figure 39: : Overall status when all other indicators are green 
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Figure 40: Overall status when all other indicators are green – continuing from figure 27 
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Figure 41:Overall status when all other indicators are 50 % green and 50 % yellow 
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Figure 42: Overall status when all other indicators are 50 % green and 50 % yellow – continuing from figure 35 
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Figure 43: Calculations installation combinations 
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Figur 44: Quality check - number of possible combinations 
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Figure 45: Formula used when calculating possibøle values 

 

 

Formula B.1 is used to calculate all values in the colour table. 
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G. Calculations moving average 

 

 
Figure 46: Calculations moving average and FF gas detection 
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Figure 47: Calculations moving average, aggregated and FF gas detection 
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Figure 48: Calculations different status/trend when using method suggested in chapter 5.4 

Formulas used in figure 46 and 47: 

  

Figure 49: Formulas used when calculating moving average and FF 

 

All average values are calculated by using this type of 

formula 
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Figure 50: Formulas used when calculating aggregated values and FF 

 

 

Figure 51: Formulas used when calculating different status/trend using method suggested in chapter 5.4 

All average values are calculated by using this type of 

formula 
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