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Thesis background: 
 
This thesis is founded on a working paper (submitted for publication) by Professor Terje Aven and 
Professor Enrico Zio, titled “Model Output Uncertainty in Risk Assessment”, revised 22 December 
2011. The paper discuss’ several issues with respect to the prevailing views on, and treatment of, 
model uncertainty in risk assessment, and are concerned with cases where no experimental data exists. 
This motivates the introduction of a new framework for analyzing model (output) uncertainty where 
distinctions and clarifications are made with respect to meanings and concepts, and where they link the 
concept of model output uncertainty to the objectives of modeling and risk assessment. The 
framework also allows different approaches for describing these (epistemic) uncertainties, both 
probabilistic and non-probabilistic approaches. 
 
In the paper they give three brief examples of how the framework may be applied. These examples are 
concerning a Poisson model for modeling undesired events, the consequence modeling of a release at 
an LNG (Liquefied Natural Gas) plant, and the groundwater flow modeling at a radioactive waste 
repository. 
 
The objective of this thesis has been to demonstrate in more depth how the framework applies. In the 
first paper we are concerned with the LNG case, and the second paper looks into the Poisson case.  
 
Summary 
 
The framework: 
 
In both papers we introduce the new framework for analyzing model (output) uncertainty in models 
used in risk assessment. The framework applies when no experimental data are available at the time of 
the risk assessment, and the main features can be summarized as follows (a more detailed description 
can be found in Paper I and II and the references within): 
 
The following concepts and distinctions are given in the framework: 
 

• The concepts and distinction between model error and model output uncertainty: 
 

The difference between a true value of interest to be realized in the future, Z, and the 
model outcome (prediction) G(X) is called the model error, ΔG(X)=Z-G(X). Model 
output uncertainty is the epistemic uncertainty about the magnitude of the model error, 
ΔG(X).  

 
• The concepts and distinction between structural model uncertainty and input quantity 

(parameter) uncertainty: 
 

The concept model output uncertainty is divided into structural model uncertainty and 
input quantity (parameter) uncertainty. The structural model uncertainty is the model 
output uncertainty about the magnitude of the model error conditional on the true input 
quantity, ΔG(XTrue), while the input quantity uncertainty is uncertainty about the true 
value of the input quantity, X.    
 

• The concept and distinctions regarding sources of uncertainty: 
 

Sources of uncertainty are classified as belonging to either the input quantity 
uncertainty or the structural model uncertainty. Sources of input quantity uncertainty 
are sources that give uncertainty about the value of X. While sources of structural 
uncertainty are typically assumptions and approximations underpinning the model. 
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The framework also links the concept of model output uncertainty to the objectives of modeling and 
risk assessment and specifically model accreditation is given focus. Meaning that the models needs to 
have a certain level of quality for its intended use (the purpose) in the risk assessment and subsequent 
decision making process. In addition the framework is open for various tools to represent the epistemic 
uncertainties. 
 
Uncertainty analysis within the framework: 
 
In Paper I we investigate a model for predicting the number of fatalities, Z, in case of a flash (pool) 
fire scenario or an explosion scenario at an LNG plant; and a regulatory criterion in that concern must 
be met. We utilize three different approaches for representing the uncertainties; subjective 
probabilities, imprecision intervals and a qualitative importance score method. An elicitation process 
of uncertainties is performed, and uncertainties described via the chosen approaches. All three 
approaches lead us to a rejection of the initial model due to high structural model uncertainty and 
remodeling is required. An acceptable alternative model is advised. 
 
In Paper II the value of interest, Z is the 95th percentile of the true distribution of number of minor 
hydrocarbon releases at a commercial pilot facility/system handling hydrocarbons with new 
technology. The model we use is a homogeneous Poisson process with rate λ. A qualitative importance 
score and imprecision intervals are chosen as approaches for uncertainty representation. Then, several 
sources of structural model uncertainty are educed which could violate the Poisson assumptions, and 
the uncertainty about the magnitude of the model error due to these sources is described using the 
selected approaches. The result of the approaches is that remodeling is required, and potential 
alternatives like a non-homogeneous Poisson model is suggested.  
 
Discussion and conclusions: 
 
Paper II gives a discussion on the findings in the paper and is also implicit covering Paper I. The 
conduction of the uncertainty analysis in both papers follows these main steps. 
 

1. Identify all concepts in the framework (Z,G,X) 
2. Determine which approach should be used for assessing the uncertainties  
3. Perform the uncertainty assessments  
4. Make judgments about accreditation and possible remodeling 

 
As for step 1 a key issue to determine whether the quantities of interest Z and X are probabilistic 
parameters of probability models as in Paper II or a physical quantity as in Paper I. For proper analysis 
of the model uncertainties, precision is required on this point as G is strongly dependent on this.  
 
In step 2 it seems apparent for all the approaches used in both papers that the assignation/judgment of 
values, or scores, is critical, as being relative to the assignor, with the associated issue on arbitrariness 
in that respect. From the use of these various approaches it seems like the qualitative importance score, 
even though being crude and based on more or less precise definitions of scores, in many cases is a 
sound first approach, being swift and providing sufficient information to conclude on model 
accreditation or remodeling. Other cases may require other approaches or a mix of several approaches, 
both quantitative and qualitative.  
 
The thesis conclusion is that based on the cases adopted in these papers, the framework has 
demonstrated to perform successfully for its intended use, and meaningful concepts and analyses can 
be defined and conducted.   
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Paper I – An application of a new framework for analyzing 
model (output) uncertainty in risk assessment. 
 
To be published in the proceedings of PSAM’11/ESREL 2012, Jun 25-29 2012, Helsinki, 
Finland. 

  



4 

An application of a new framework for model (output) uncertainty analysis 
in risk assessment 

 
Torbjørn Bjergaa*, Terje Avena, Enrico Ziob,c 

a University of Stavanger, Norway 
b Chair on Systems Science and the Energetic Challenge, European Foundation for New Energy-

Electricité de France, Ecole Centrale Paris and Supelec, France 
c Politecnico di Milano, Italy 

 
Abstract: The purpose of this paper is to demonstrate the applicability of a recently proposed 
framework for model (output) uncertainty analysis in a risk assessment context.  The framework is 
based on a distinction between overall model output uncertainties (epistemic uncertainties about the 
differences between the true values of the output quantities and the values predicted by the model), 
structural model uncertainties and parameter (model input quantities) uncertainties. The framework 
also distinguishes clearly between model output uncertainty and sources of model output uncertainty, 
from incomplete/imprecise knowledge on the values of the parameters of the model, to model 
assumptions, simplifications and approximations introduced in the model. The application regards the 
modeling of the consequences from a scenario of hydrocarbon release in an LNG (Liquefied Natural 
Gas) plant located in an urban area. It is assumed that no experimental data are available at the time of 
the assessment.  The application allows pointing at and discussing several issues of relevance for the 
successful implementation of the framework, related to inter alia the distinction between stochastic 
(aleatory) uncertainties and epistemic uncertainties, and the use of different types of probabilistic and 
non-probabilistic approaches for representing these uncertainties.   
 
Keywords: Model Uncertainty, Risk Assessment, LNG Plant 
 
1.  INTRODUCTION 
 
Model uncertainty in a risk assessment context has been studied by several authors, see e.g. Zio and 
Apostolakis (1996), Devooght (1998), Nilsen and Aven (2003), Helton et al. (2004), Droguett and 
Mosleh (2008) and Baraldi and Zio (2010).  These references provide different perspectives on the 
concept of model uncertainty and different ways for analyzing it. The present paper refers to a 
framework introduced in a recent work by Aven and Zio (2011), and aims at testing its applicability by 
addressing a specific case, a risk assessment related to hydrocarbon releases in an LNG (Liquefied 
Natural Gas) plant in an urban area. Before we study the case, we give a short presentation of the 
framework.  
 
2.  THE FRAMEWORK AND ITS MAIN ATTRIBUTES 
 
This Section gives a formal introduction of the framework set forth in Aven and Zio (2011), and 
presents its main attributes. These attributes are pertaining to two main schemes: the first relates to the 
model output uncertainty concept itself, breaking it down in manageable parts so as to gain insights 
and use appropriate analysis tools; the second relates to the objectives of modeling and risk 
assessment, and the links to model output uncertainty. 
 
2.1.  Model Output Uncertainty 
 
Consider an event/system/process subject to a risk assessment, and assume that at the time of the 
assessment no experimental data is available.  Let Z represent the true value found in an unfolding 
future, and let G(X) be the model prediction at the time of the assessment where X is the input 
parameters. Both X and Z may be vectors.  Define: 
 

Model error: The difference, ΔG(X), between the model predictions, G(X) and the true future 
value Z  (i.e. ΔG(X) = Z - G(X)), and: 
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Model output uncertainty:  The uncertainty associated with the true value of the model error.  

 
A closer look at this taxonomy reveals that the model output uncertainty is actually the epistemic 
uncertainty of the model error and hence it may in theory be assessed using a suitable tool for 
measuring this type of uncertainty, like subjective probabilities and interval probabilities.  
 
The model output uncertainty is decomposed into two categories:   
	
  

Structural model uncertainty: The conditional uncertainty associated to the model error ΔG(X), 
given the true value XTrue (i.e. ΔG(XTrue)). 

 
Input quantity (parameter) uncertainty: The uncertainty associated with the true value of the 
input quantity X. 

 
The structural model uncertainty is expressing the epistemic uncertainty under the assumption that the 
input parameters are known (the true values), and relates then to the model structure itself, typically 
associated with assumptions and suppositions, approximations and simplifications made in the model. 
Input quantity (parameter) uncertainty is on the other hand reflecting epistemic uncertainties relating 
to the model inputs X.  
 
Sources of structural model uncertainty stem from actual “gaps” in knowledge which can take the 
form of poor understanding of phenomena that are known to occur in the system, as well as complete 
ignorance of other phenomena. This type of uncertainty can lead to “erroneous” assumptions regarding 
the model structure. Other sources of structural model uncertainty stems from approximations and 
simplifications introduced in order to translate the conceptual models into tractable mathematical 
expressions.  
 
2.2.  Objectives of Modeling and Risk Assessment in Relation to Model Output Uncertainty 
 
The objectives of modeling and risk assessment in a model output uncertainty context, and set forth in 
the framework, are founded on four categories typical of industrial practice as presented in de 
Rocquigny et al. (2008): 
 

• Accredit: To reach a required level of quality for the model by validation for its certified use. 
• Understand: To understand the influence of uncertainties on the results of the analysis and 

rank their importance so as to guide additional efforts (measurements, research, etc.) for 
uncertainty mitigation. 

• Select: To compare performances of alternative system designs, operation modes and 
maintenance policies for “optimal” choices. 

• Comply: To demonstrate compliance of a system, process, procedure with regulatory criteria.  
 
The framework proposed in Aven and Zio (2011) sets forth the links between these categories and the 
model output uncertainty analysis.  It points at uncertainty analysis as a tool to accredit the model, so 
as to ensure a certain quality and possible certification. In the accreditation process, the understanding 
of the influence of uncertainties on the results of the analysis is of importance, to adequately guide the 
uncertainty reductions. If the model considered cannot be accredited, remodeling is required. When an 
accredited model is obtained, a risk analysis might be conducted to inform the decision makers on the 
selection and compliance in line with the objectives stated above.  
 
The characteristic that no experimental data exist at the time of the assessment leads us away from 
classical statistical tools for validation and subsequent accreditation of the model. Instead validation 
transforms into utilizing expert/analyst argumentation based on established scientific theories and 
specific knowledge about the system, which the model assessed, intends to describe. 
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An important observation is that no restrictions pertain to utilizing a pure probability-based approach. 
The framework opens for both probabilistic and non-probabilistic approaches, and thereby injects 
flexibility into the uncertainty analysis, giving the opportunity to choose the approach that is judged to 
best represents/express the uncertainties, given the specific phenomena and surroundings examined.  
 
In all instances a (accompanying) qualitative analysis is encouraged and necessary, since even if 
accredited, a model still has inherent limitations and weaknesses, and these should be presented as part 
of the total risk assessment. 
 
3.  CASE STUDY: UNCERTAINTY ANALYSIS CONCERNING CONSEQUENCE 
MODELING OF A HYDROCARBON RELEASE IN AN LNG PLANT. 
 
The case is taken from a Quantitative Risk Assessment relating to an LNG (Liquefied Natural Gas) 
plant in an urban area, as described in Aven (2011), and assumes that the assessment is conducted 
prior to construction and that no experimental data are available. Also it is assumed that the purpose of 
the assessment is to demonstrate compliance with regulatory criteria for risk related to loss of lives. 
We consider the consequences of a potential hydrocarbon release modeled with the event tree of 
Figure 1. The quantity of interest is the number of fatalities, Z and we wish to assess the pertaining 
model output uncertainties in line with the framework introduced in Section 2, by a crude analysis of 
uncertainties including evaluation of the relation to the objectives of the modeling and risk assessment.   
 
3.1.  The Event Tree Model 
 
The event tree model (Figure 1) looks into a potential release and considers four final consequences; 
pool fire, flash (pool) fire, explosion, or no effect. The final scenario outcome depends on the 
intermediate branching events; immediate ignition, A, delayed ignition, B, and a third stage branch 
event following a delayed ignition, leading to either flash (pool) fire, C, or explosion.  
 
In the event tree model (Figure 1), X0 = number of releases, which is approximately equal to 1 if a 
release occurs and 0 otherwise, ignoring the probability of two or more releases in the time period 
studied. Furthermore, X1 = I{A}, X2 = I{B} and X3 = I{C}, where I is the indicator function which is equal 
to 1 if the argument is true and 0 otherwise. Together, the Xi’s form a quadruplet for the input 
parameter vector, X = (X0, X1, X2, X3). 
 

 

X0

Flash (pool) 
fire, C

ExplosionNo ignition

Delayed 
ignition, B

X3

X3

X1 = 1

Immediate 
ignition, A

X1

Not immed- 
iate ignition

= 0 No effect

X2

X2

Pool fire

= # of releases
= 1 Flash (pool) fire

= 1
= 0 = 0 Explosion
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Figure 1: Event Tree Model for Hydrocarbon Release. 
 

From the event tree we see that there are four paths, or scenarios, arising from the event tree. These are 
presented in Table 1, along with the numbers of people exposed and the associated fatalities.  The 
fraction of fatalities is 0.1 for scenarios 2 and 3, causing 5 and 10 fatalities respectively, and 0 
otherwise.   
 

Table 1: Scenarios. 

 
 
Let Z be the true number of fatalities due to release events of the type here considered. To assess Z we 
introduce the model G, which according to the assumptions made above (Table 1) can be written:    
 

G(X) = 5 X0 (1 - X1) X2 X3 + 10 X0 (1 - X1) X2 (1 - X3)    (1) 
 

as  the number of fatalities  equals 5 if X0 (1 - X1) X2 X3 = 1 (scenario 2 occurs), and as the number of 
fatalities  equals 10 if X0 (1 - X1) X2 (1 - X3) = 1 (scenario 3 occurs).  
 
Following the terminology introduced in Section 2, the model error ΔG(X) is defined as the difference 
between the true number of fatalities Z, and the model output  G(X), i.e. ΔG(X) = Z - G(X), and the 
model output uncertainty is the (epistemic) uncertainty associated with the model error ΔG(X). 
Following the framework, we decompose the model output uncertainty into the structural model 
uncertainty which relates to ΔG(X) if X is given the true value, and the input quantity (parameter) 
uncertainty which pertains to X and its true value.   
 
3.2.  Analyzing Uncertainties  
 
There are many sources of the model output uncertainty. In this paper we focus on three examples:  
 

1) The numbers 5 and 10 representing the number of fatalities following the scenarios 2 and 3, 
respectively.  

2) That X0 is approximated to be 0 or 1 release. 
3) That X3 is considered to be either a flash (pool) fire or an explosion in case of a delayed 

ignition.  
 
Here source 1) relates to the structural model uncertainty, whereas the sources 2) and 3) relate to the 
input quantity (parameter) uncertainties. In the following, we will focus on source 1). There are also 
other sources of model output uncertainties, but they are assumed negligible and not further analyzed 
here.   
 
For uncertainty source 1), epistemic structural model uncertainty relates to the fixed values 5 and 10 
representing the number of fatalities for scenarios 2 and 3. These numbers are based on some strong, 
simplifying assumptions. The numbers used can be considered the expected numbers of fatalities in 
these scenarios based on some crude analysis of the number of people exposed and the loss fraction in 
case the events occur. Clearly the actual number could deviate considerably from these computed 
expected values. The model output uncertainty can be reduced with more detailed modeling of the 
phenomena, reflecting for example the distributions of people being exposed and considering the 
number of fatalities as random quantities and not fixed numbers.   

Scenario Path People 
exposed 

Fraction of 
fatalities 

Number of 
fatalities 

1 release – A – pool fire 50 0.0 0 
2 release – not A – B - flash (pool) fire 50 0.1 5 
3 release – not A – B – explosion 100 0.1 10 
4 release – not A – not B – no effect 50 0.0 0 
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To conclude on the acceptance of the model, we will discuss the magnitude of the error ΔG(X) given 
the current knowledge K.  In the following, we will do this by using three different approaches:  
 

i) Subjective probabilities: if we assign a probability of 0.1 say, it means that the assigner 
has the same uncertainty or degree of belief for this event to occur as drawing a specific 
ball out of an urn containing 10 balls (Lindley 2000).  

ii) Imprecise probabilities: assigning an imprecision interval, e.g. [0.1, 0.2], means that the 
assigner states that his/her degree of belief is greater than or equal to the urn chance of 
0.10 (the degree of belief of drawing a specific ball out of an urn containing 10) and less 
than or equal to the urn chance of 0.20. The analyst is not willing to make any further 
judgments.   

iii) Using a qualitative scheme giving scores on the importance of the assumptions made, 
reflecting both the degree of sensitivity and the uncertainty (see e.g Flage and Aven 2009, 
Selvik and Aven 2011).  

 
Starting with i) we aim at specifying a subjective probability distribution for ΔG(X) which expresses 
the difference between the true number of fatalities Z and the model output G(X). First let us assume 
that the only source of model uncertainty stems from 1). Then, we need to compare G(X) defined in 
(1) with G’(X) = X4 X0 (1 - X1) X2 X3 +  X5 X0 (1 - X1) X2 (1 - X3), where X4 and X5 denote the 
numbers of fatalities in scenarios 2 (flash (pool) fire) and 3 (explosion), respectively: the error term 
becomes,  
 

G’(X) - G(X) =  (X4 – 5)X0 (1 - X1) X2 X3 +  (X5 –  10) X0 (1 - X1) X2 (1 - X3).                    (2) 
 
The structural model uncertainty is the focus here, so we can condition on perfect knowledge of X, 
which in this case can be done by conditioning on the occurrence of either scenario 2 or 3. Given the 
occurrence of scenario 2, the structural uncertainty relates to the error X4 – 5. The analyst group then 
assigns a probability distribution for X4 – 5 reflecting this uncertainty. Figure 2 shows the assigned 
probability distribution. The analogous distribution for X5 – 10 is shown in Figure 3.  

 

   
Figure 2: Assigned Probabilities for X4 – 5  

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

{-4,-5} {-2,-3} {-1,0,1} {2,3} {4,5} X4-5 

P 
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Figure 3: Assigned probabilities for X5 – 10. 

 
The estimate of 5 fatalities in case of a flash (pool) fire is rough and based on an estimated 50 people 
being exposed within the perimeters of the plant, and a fraction of fatalities set to 0.1.  The analyst 
group review the models used and the assumptions made related to the number of fatalities, and 
excludes the possibility that more than 10 people can be killed due to this scenario. Within the range 0 
- 10 fatalities, 5 is the best estimate but there are a number of factors that could lead to a different 
value in this range.  A triangle-type distribution as shown in Figure 2 is used to reflect the analyst 
group uncertainty assessment. The uncertainties are larger in the explosion scenario 3, as Figure 3 
shows. Here fatality numbers up to 100 are considered possible, although quite unlikely.  For such 
extreme outcomes to occur, several barriers must fail in the system.    
 
This rather crude assessment of the structural model uncertainty is then evaluated in view of the 
purpose of the risk assessment, which is to demonstrate compliance with regulatory criteria. The 
analyst group judges the uncertainty to be too large for model accreditation, and advise remodeling 
using G’ in place of G. Adopting this new model the structural model uncertainties are considered 
small and the model is accredited.  
 
Next considering ii), we seek to establish imprecision intervals on the uncertainty associated with the 
model error ΔG(X), again conditional on X (scenario 2 or 3). Due to limited information and reluctance 
among the group members to assign exact probabilities, imprecise probability intervals are assigned to 
reflect the groups uncertainty assessment. The assigned intervals for X4 - 5 and X5 - 10 are presented in 
Figures 4 and 5, respectively.  
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Figure 4: Assigned Imprecision Intervals for X4 - 5. 

 

 
Figure 5: Assigned Imprecision Intervals for X5 - 10. 

 
The group concludes as in the case of i): the structural model uncertainty is too large for model 
accreditation. Remodeling is required, which leads to the adoption of G’ as defined above.  
 
The assumptions 2 and 3 are judged to give rise to small model output uncertainties. Low probabilities 
(less than 0.05) are assigned for these factors not to hold, and it is concluded that there is no need for 
remodeling. Models avoiding these assumptions would lead to considerably more complex models, 
but with little beneficial effect on the output model uncertainty.  
 
Lastly, considering approach iii), we aim at giving a qualitative importance score of the assumptions 
made in the quantification. The first step is to perform a systematic identification of all the main 
assumptions that the assigned probabilities are based on. This task is carried out by the risk analysts, 
but to ensure that the identified list covers the key assumptions an independent review should be 
performed. Then, the importance of each assumption is measured by uncertainty and sensitivity 
analysis. A guideline for classifying the uncertainties and sensitivities in three categories (high, 
medium low) is shown in Appendix A.  To obtain a high importance score, the probabilities assigned 
must be judged as sensitive to changes in the considered assumption, and the assumption must be 
subject to large uncertainties. The group identifies the following assumptions (in line with the above 
list), and gives the evaluations in Table 2: 
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1) The values 5 and 10 representing the number of fatalities following the scenarios 2 and 3 

respectively.  
2) That X0 is either 0 or 1 release. 
3) That X3 is either a flash (pool) fire or an explosion in case of a delayed ignition.  

 
 

Table 2: Importance Assessment. 
 
 
 

 
 
 
 
From Table 2, we see that the uncertainties are judged high for assumption 1 as the values used 
represent strong simplifications, and low for the assumptions 2 and 3. The sensitivity is also judged 
high for assumption 1 as small changes in the number of fatalities for scenarios 2 and 3 would result in 
significant changes in the output probabilities. A change in the number of releases will also strongly 
affect the output probabilities, but as the likelihood is considered small for this event the sensitivity 
score is low. The sensitivity for assumption 3 is assigned a medium score reflecting that the number of 
fatalities and the output probabilities could be relatively strongly affected by a change in this 
assumption.  
 
The practical conclusion is that remodeling is found necessary to reduce the criticality of assumption 
1, whereas the assumptions 2 and 3 are judged acceptable.   
 
4.  CONCLUSION 
 
We have applied a recently proposed framework for model (output) uncertainty to the consequence 
assessment from scenarios of hydrocarbon release in an LNG (Liquefied Natural Gas) plant located in 
an urban area. The assessment starts from the assumption that no experimental data are available. The 
purpose of the assessment is to demonstrate compliance with regulatory criteria for the risk associated 
with loss of lives. The framework is shown capable of supporting representations of the knowledge 
input into the assessment by alternative approaches of uncertainty modeling, such as subjective or 
imprecise probabilities, and qualitative schemes of value judgment. The present work is intended to be 
the first one of a number of applications of the proposed framework, aimed at verifying the suitability 
of its practical use in different problem and data/information contexts, and related uncertainty 
representations.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assump
-tion  

Uncertainty Sensitivity Importance 

1 High High  High  
2 Low Low   Low 
3 Low  Medium  Low-Medium 
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Appendix A. Uncertainty Assessment Score Interpretation. 
 
Based on Flage and Aven (2009), see also Selvik and Aven (2011). 
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Aspect Score Interpretation 
Uncertainty High One or more of the following conditions are met: 

- The assumptions made represent strong simplifications.  
- Data are not available, or are unreliable. 
- There is lack of agreement/consensus among experts. 
- The phenomena involved are not well understood; models are 

non-existent or     known/believed to give poor predictions 
 

 Medium Conditions between those characterizing low and high uncertainty. 
 

 Low One or more of the following conditions are met: 
- The assumptions made are seen as very reasonable.  
- Much reliable data are available.  
- There is broad agreement/consensus among experts.  
- The phenomena involved are well understood; the models used 

are known to give  predictions with the required accuracy.  
 

Sensitivity High Relatively small changes in base case values needed to bring about 
altered conclusions. 
 

 Medium Relatively large changes in base case values needed to bring about 
altered conclusions. 

   
 Low Unrealistically large changes in base case values needed to bring about 

altered conclusions. 
 

Importance High/Medium/ 
Low 

Average of the other two aspect scores. 
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Application of a new framework for model (output) uncertainty analysis on 
a probabilistic model for risk assessment 

 
Abstract: This paper aims at demonstrating the applicability of a recently developed framework for 
assessing model (output) uncertainties (epistemic uncertainties about the differences between the true 
values of the output quantities and the values predicted by the model) in models used in risk 
assessments where no experimental data are available at the time of the assessment. The framework is 
based on a distinction between model (output) uncertainty, structural model uncertainty and input 
quantity (parameter) uncertainty, and relates the model (output) uncertainty to the objectives of the 
modeling and the risk assessment. The application is related to the use of a Poisson model for 
representing the number of events occurring in specified intervals, and the use of both probabilistic 
and non-probabilistic approaches for representing epistemic uncertainties. We show how the selection 
of responses (remodeling, acceptance, or rejection of the model) is based on judgments of the different 
type of uncertainties.   

 
 
1. INTRODUCTION 
 
Within risk assessment, models are commonly used to represent systems and provide predictions and 
estimates of relevant quantities. The quality of a risk assessment – its strength in providing decision 
support - relies strongly on the “goodness” of the models used. 

The models are simplifications of the real systems, and their accuracy has to be balanced against their 
timely and efficient use. In this paper, the focus is on probability models describing the variation in 
quantities characterizing a huge (infinite) population of similar units, referred to as stochastic or 
aleatory uncertainty in the risk assessment literature. We exemplify the problem by considering the 
Poisson model for describing the variation in the occurrences of a specific event on the real axis.  As 
the quantity of interest, we consider the number of events occurring in a specific period of time.  
 
In this typical risk assessment setting, the issue of model uncertainty arises. This type of uncertainty 
has been studied by several authors, see e.g. Zio and Apostolakis (1996), Devooght (1998), Nilsen and 
Aven (2003), Helton et al. (2004), Droguett and Mosleh (2008), Baraldi and Zio (2010) and Aven and 
Zio (2011).  The present paper is based on the framework introduced by Aven and Zio (2011). In 
Bjerga et al (2012) we presented an application of this framework within a risk assessment related to 
hydrocarbon releases in an LNG (Liquefied Natural Gas) plant in an urban area. The present paper 
extends the work by considering a probability model (the Poisson model). Through the example, we 
clarify the meaning of the various concepts of the model uncertainty framework and show how they 
can be described and measured using different approaches, including interval probabilities.  Before we 
introduce the Poisson model and study its uncertainty, we give a short presentation of the framework.  
 
2. MAIN FEATURES OF THE FRAMEWORK 
 
This Section gives a formal introduction of the framework set forth in Aven and Zio (2011), and 
presents its main features from two main sides: the first relates to the model output uncertainty concept 
itself, breaking it down in manageable parts so as to gain insights and use appropriate analysis tools; 
the second relates to the objectives of modeling and risk assessment, and the links to model output 
uncertainty. 
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2.1.  Model Output Uncertainty 
 
Consider an event/system/process subject to a risk assessment, and assume that at the time of the 
assessment no experimental data is available.  Let Z represent the true value found in an unfolding 
future, and let G(X) be the model prediction at the time of the assessment where X is the input 
parameters. Both X and Z may be vectors.  Define: 
 

Model error: The difference, ΔG(X), between the model predictions, G(X) and the true future 
value Z  (i.e. ΔG(X) = Z - G(X)), and 

  
Model output uncertainty:  The uncertainty associated with the true value of the model error.  

 
A closer look at this taxonomy reveals that the model output uncertainty is actually the epistemic 
uncertainty of the model error and hence it may in theory be assessed using a suitable tool for 
measuring this type of uncertainty, like subjective probabilities and interval probabilities.  
 
The model output uncertainty is decomposed into two categories:   
	
  

Structural model uncertainty: The conditional uncertainty associated to the model error ΔG(X), 
given the true value XTrue (i.e. ΔG(XTrue)). 

 
Input quantity (parameter) uncertainty: The uncertainty associated with the true value of the 
input quantity X. 

 
The structural model uncertainty is expressing the epistemic uncertainty under the assumption that the 
input parameters are known (the true values), and relates then to the model structure itself, typically 
associated with assumptions and suppositions, approximations and simplifications made in the model. 
Input quantity (parameter) uncertainty is on the other hand reflecting epistemic uncertainties relating 
to the model inputs X.  
 
Sources of structural model uncertainty stem from actual “gaps” in knowledge which can take the 
form of poor understanding of phenomena that are known to occur in the system, as well as complete 
ignorance of other phenomena. This type of uncertainty can lead to “erroneous” assumptions regarding 
the model structure. Other sources of structural model uncertainty stem from approximations and 
simplifications introduced in order to translate the conceptual models into tractable mathematical 
expressions.  
 
 
2.2.  Objectives of Modeling and Risk Assessment in Relation to Model Output Uncertainty 
 
The objectives of modeling and risk assessment in a model output uncertainty context, and set forth in 
the framework, are founded on four categories typical of industrial practice as presented in de 
Rocquigny et al. (2008): 
 

• Accredit: To reach a required level of quality for the model by validation for its certified use. 
• Understand: To understand the influence of uncertainties on the results of the analysis and 

rank their importance so as to guide additional efforts (measurements, research, etc.) for 
uncertainty mitigation. 

• Select: To compare performances of alternative system designs, operation modes and 
maintenance policies for “optimal” choices. 

• Comply: To demonstrate compliance of a system, process, procedure with regulatory criteria.  
 
The framework proposed in Aven and Zio (2011) sets forth the links between these categories and the 
model output uncertainty analysis.  It points at uncertainty analysis as a tool to accredit the model, so 
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as to ensure a certain quality and possible certification. In the accreditation process, the understanding 
of the influence of uncertainties on the results of the analysis is of importance, to adequately guide the 
uncertainty reductions. If the model considered cannot be accredited, remodeling is required. When an 
accredited model is obtained, a risk analysis might be conducted to inform the decision makers on the 
selection and compliance in line with the objectives stated above.  
 
The characteristic that no experimental data exist at the time of the assessment leads us away from 
classical statistical tools for validation and subsequent accreditation of the model. Instead validation 
transforms into utilizing expert/analyst argumentation based on established scientific theories and 
specific knowledge about the system, which the model assessed, intends to describe. 
 
An important observation is that no restrictions pertain to utilizing a pure probability-based approach. 
The framework opens for both probabilistic and non-probabilistic approaches, and thereby injects 
flexibility into the uncertainty analysis, giving the opportunity to choose the approach that is judged to 
best represent/express the uncertainties, given the specific phenomena and surroundings examined.  
 
In all instances a (accompanying) qualitative analysis is encouraged and necessary, since even if 
accredited, a model still has inherent limitations and weaknesses, and these should be presented as part 
of the total risk assessment. 
 
3. CASE STUDY: A POISSON MODEL  
 
The case study pertains to a risk assessment context, and the modeling of the occurrences of a type of 
undesirable event in the future for a specific activity. To represent such occurrences, a Poisson model 
is used. Let N(t) be the number of events occurring in the time interval [0,t]. It is assumed that the 
stochastic process N is a homogeneous Poisson process with occurrence rate λ. Hence N(t) has 
Poisson distribution with expected value λt, i.e. P(N(t) = n | λ, t) = p(n| λ, t) = (λt)ne-λt/n!,  n = 0,1,2… 
We interpret λ as the expected number of events occurring per unit of time.  
 
Furthermore let p0(n| t) be the “true” distribution of the number of events in [0,t], obtained by 
considering an infinite number of activities similar to the one considered. The average number of 
events occurring in [0,t] is defined as λ0. The Poisson distribution p(n| λ, t) is  a  model of this true 
distribution, and λ0 is the true value of λ. The distributions p and p0 represent the true variation in the 
number of events occurring in such intervals and the variation as modeled, respectively.    
In the case study, the objective of the risk assessment is to verify that the 95th percentile, n95, of p0(n|t0)   
is in compliance with a regulatory threshold value nM.  
 
From Section 2, we identify n95 as the quantity of interest, Z, λ as the parameter X, and the model 
representing Z, G(λ) as the 95th percentile of the Poisson distribution, which we refer to as n95(λ). The 
model error can thus be written ΔG(λ) = n95 - G(λ) = n95- n95(λ). The structural model uncertainty 
relates to uncertainty about the value of ΔG(λ0)  = n95 - G(λ0) = n95- n95(λ0), and the parameter 
uncertainty to the true value of λ, i.e. λ0.  
 
As a concrete example of this setting, we can consider potential releases from a commercial pilot 
facility/system handling hydrocarbons with new technology. This system is operating in a seasonal 
market following economic cycles and variations in demand. The system is in the planning phase, and 
compliance with regulatory regulations must be demonstrated prior to construction. Concerning the 
environmental risk and potential releases, the authorities acknowledge that releases could occur due to 
the novel technology and the limited operational experience. The authorities have specified an 
acceptance level of 5 releases during one month, to license construction and continuous operation; the 
system must be demonstrated capable of hold this true with 95% certainty.  
 
To model the case, a homogeneous Poisson process is initially found to be representative for the 
number of releases. The parameter λ representing the average number of releases is estimated to be 
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1.75 per month. From this number the probability of having more than 5 releases is estimated to be 1% 
using the Poisson distribution, and it is concluded that requirement from the authorities is met.   
But what about uncertainties and model uncertainties in particular?  In the following we will address 
this issue by conducting an uncertainty analysis with different approaches and perspectives, all in line 
with the structure and terminology presented in Section 2.  
 
3.1. Uncertainty Analysis 
 
To evaluate and conclude on model accreditation, two different approaches i) and ii) for uncertainty 
assessments are used:  

i) A qualitative scheme giving scores on the importance of the assumptions made, reflecting 
both the degree of sensitivity and the uncertainty (see e.g. Flage and Aven 2009, Selvik and 
Aven 2011). The basic features of the approach are outlined in Appendix A. 

ii) Imprecise probabilities: assigning an imprecision interval, e.g. [0.1, 0.2], means that the 
assigner states that his/her degree of belief is greater than or equal to the urn chance of 0.10 
(the degree of belief of drawing a specific ball out of an urn containing 10) and less than or 
equal to the urn chance of 0.20. The analyst is not willing to make any further judgments.  

 
3.1.1. Structural Model Uncertainty  
 
We first look into approach i). The analysis starts with evaluating the underlying assumptions for the 
Poisson process, and how they contribute to the structural model error ΔG(λ0).The homogeneous 
Poisson process can be defined as follows: 

 
A stochastic process N is a homogeneous Poisson process with rate λ if,  
E[ N(t + h) - N(t) | history up to t]/h converges to λ, as h converges to zero, for all t.  

 
From the definition we may identify two critical model conditions for the Poisson process (which we 
will refer to as the Poisson assumptions): 
  

1. Independence: That the occurrence rate for the events at a specific point in time t is 
independent of the history up to that time.  
2. Stationarity: The occurrence rate is a constant, λ. 

 
The analyst group discusses the uncertainties related to these assumptions. Several sources of 
uncertainties in this regard are pointed to (formulated as assumptions): 

a) There is no deterioration of the system over time.  
b) A release will not cause long term learning effects.  
c) Utilization of the system does not vary in time. 
d) There is no extra stress imposed on the system during a release, increasing the chance of new 

releases close in time.  
 
Following the procedure of approach i), a qualitative importance score is assigned for each of the 
assumptions justifying the model. The first step in the approach is a systematic identification of the 
assumptions, and is done by the risk analyst. An independent review should be performed to ensure 
that all key assumptions are identified. The sources of uncertainty a) through d) cover the list of 
assumptions in this case. Next, a classification of the uncertainties and sensitivities in three categories 
(high, medium and low) is performed following the guideline in Appendix A. To obtain a high 
importance score, the assumptions must be subject to large uncertainties, and the model conclusions 
must be sensitive to changes in the assumptions. The score evaluations are presented in Table 1, 
followed by brief explanations in the subsequent paragraphs. 
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Table 1. Importance Score for Assumptions a) through d). 
  
 
 
 
 
 
a) Over time the system will experience deterioration (causing e.g. mechanical fatigue and rupture) 
which is increasing the chance of releases over time. On the other hand, maintenance plans are 
prepared to restrain the system degradation. Accordingly the analyst group rates the uncertainty as 
low. Relatively many releases due to deterioration, and over a short time interval, are considered 
necessary to affect the output, hence the sensitivity is judged medium.  
 
b) In case of a release the system will likely experience causation focus, to be able to understand what 
happened and give input to how to prevent similar releases in the future. The occurrence rate thus 
depends to some extent on its history. The company has implemented a zero release vision, which 
indicates that the attention on improvements will be strong. Both the uncertainty and sensitivity are 
judged medium.  
 
c) There are also concerns related to the utilization of the system, which is assumed responsive to 
shifting demand and economic cycles. For instance it is questioned whether the utilization via demand 
is correlated with volatile oil prices; i.e. high prices compels high utilization, hence a higher chance of 
releases, and vice versa. The group finds the assumption of fixed utilization as a strong simplification 
subject to large uncertainties, and the stationary assumption (2), in particular, is found glaringly 
sensitive to changes. 
 
d) Lastly, the increased stress level is also a factor that may come to play. Due to extra stress imposed 
on the system during a release, a second release is more likely to occur close in time. However the 
group finds that the additional stress is minor and assigns low scores to this assumption.  
Given the purpose of the risk assessment, the analyst group consider assumption a) and d) to be 
acceptable; the effect on the model error is judged small enough for accreditation. The importance 
score on assumptions b) and c) suggests that the homogeneous Poisson model is invalidated, and 
remodeling should be seriously considered.  
 
To this end a quantitative analysis according to approach ii) is adopted, using imprecision intervals. 
Figure 1 shows the results for the structural model error ΔG(λ0) = n95 - n95(λ0) due to b) and c).  As we 
see from Figure 1 the group believes the error to be between -5 and 5.  
 

 
Figure 1. Imprecision Intervals for the Structural Model Error ΔG(λ0). 

Assumption Uncertainty Sensitivity Importance 
a) Low Medium Low-Medium 
b) Medium Medium Medium 
c) High High High 
d) Low Low Low 
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Based on this analysis, the analyst group concludes that the uncertainties are too high for accreditation 
- remodeling is advised. Demonstrating compliance with the regulatory threshold value of 5 releases 
per month cannot be justified when the model uncertainties are so large.  
 
It is beyond the scope of the present paper to actually perform the remodeling, but some indications of 
the features addressed will be given.  The uncertainties pertain mainly to the stationary assumption and 
to a less degree the independence condition.  This suggests that a non-homogeneous Poisson process 
may be a candidate as a first test.  Starting from this model we can repeat the above verification 
process and assess the model output uncertainties. If the model cannot be accredited, other models 
should be considered, including doubly stochastic Poisson process (also known as a Cox process or 
mixed Poisson process). If we also question the dependence assumptions, we need to open up for other 
types of counting processes (see Aven and Jensen 1999).  
 
 
4. DISCUSSION 
 
The motivation and use of the framework studied in the present paper is thoroughly discussed in Aven 
and Zio (2011). Of the many issues thereby raised, we emphasize one key point: model output 
uncertainty is not the same as the model error ΔG(X): it is actually the epistemic uncertainty of it. To 
measure this uncertainty different tools can be used as illustrated above. The model output uncertainty 
and its measurement are considered in relation to the magnitude of the model error, as is clear from the 
analysis in Section 3. Hence what is a small model uncertainty output cannot be seen in isolation from 
the model error.  
 
The present paper reports on the application of these concepts and the framework to a Poisson model.  
The analysis has shown that the framework provides meaningful definitions that allow performing 
uncertainty analyses of the model error and the structural model error. A critical step of the analyses is 
the approach used to assess the model uncertainties.  In the above analysis we looked at interval 
probability assignments and a qualitative score method.  The first approach is attractive because based 
on mathematically well-defined concepts, but is difficult to use in practice as it is typically based on 
assignments with little support. The arbitrariness in the assignment process is a problem for exact 
probability assignments, but is also present for the interval probabilities.  
 
The qualitative approach is crude, based on more or less precise definitions of scores. Nonetheless, it 
can be a useful tool for quickly pointing at the most important sources of the model uncertainties and 
then in its turn, gives a basis for decision on whether the model should be accredited or not.   
 
The analysis of the model uncertainties are based on the following four elements:  
 

1. Identify all concepts in the framework (Z,G,X) 
2. Determine which approach should be used for assessing the uncertainties  
3. Perform the uncertainty assessments  
4. Make judgments about accreditation and possible remodeling    

 
A key issue to determine in relation to item 1 is whether the quantities of interest Z and X are 
probabilistic parameters of probability models (as in the example considered in Section 3) or some 
physical quantities, e.g. the number of events occurring or the number of fatalities as studied in Bjerga 
et al. (2012). For proper analysis of the model uncertainties, precision is required on this point as G is 
strongly dependent on this. For the choice of approach in item 2, it is clear that different situations call 
for different approaches. For a quick analysis, the qualitative approach may be preferred; in other 
situations both a qualitative and a quantitative approach may be used.   
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5. CONCLUSION 
 
The aim of the present paper has been to demonstrate the applicability of a recently developed 
framework for assessing model (output) uncertainties in models used in risk assessments where no 
experimental data are available at the time of the assessment.  The overall conclusion of the analysis is 
that the framework performs as intended in this case and that meaningful concepts and analyses can be 
defined/conducted.  Several approaches for describing the model uncertainties are applicable, and in 
practice it could be most informative to use combinations of them, i.e. both qualitative and quantitative 
approaches.   
 
 
Appendix A. Guidelines for providing scores in the qualitative approach for assessing 
model uncertainties  
 
Based on Flage and Aven (2009), see also Selvik and Aven (2011). 
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