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ABSTRACT 
Value at Risk (VaR) is an important calculation in risk management. It is a commonly 
used measure of risk in finance, and is used by corporations to estimate potential future 
loss. With a significance level, VaR gives the worst potential loss within a specific time 
period. VaR is easy to understand, and provides important information about risk.  

 

This thesis uses data from the oil and gas industry to compare different methods of 
calculating the VaR. The approaches compared are the non-parametric and the 
parametric methods, whereas the latter is calculated based on the simple standard 
deviation, EWMA and GARCH (1,1). The thesis also studies the price fluctuations in the 
oil and gas market, which are mainly affected by changes in supply and demand.  

 

In the oil and gas market, the minimum price is set by the last supplier needed to fulfill 
the demand. Production will not be profitable for that supplier if the price is less than 
this. 

 

Expectations about the future have great influence on the price development. 
Geopolitical tensions, and other factors that could lead to reduced supply make the price 
increase. New discoveries, which lead to increased supply or reserves, tend to lower the 
price.  

 

As this thesis will show, the period from 2002 until the summer of 2008 was a period of 
steady growth for oil prices, whereas the prices for natural gas also started falling in 
2008 due to the financial crisis. 

 

The normal and student-t distributions were assumed in the parametric approach, and 
were compared to a non-parametric approach, the historical simulation, as a 
benchmark. 

 

The Kupiec-test and the Christoffersen-test were both used to test the validity of the 
approaches. 

 

For all three time periods considered (250, 500, 1000 days), the non-parametric 
approach was without doubt the one that got accepted most by the back-tests. The VaR 
estimates for the 99% confidence level were dominantly better than the ones for the 
95%, which the back-tests confirmed.  
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1 INTRODUCTION 
 
This chapter will outline the scope of the thesis, and give a quick introduction to Value at 
Risk (VaR). It will also give an overview of the layout of this thesis.  

 

1.1 Scope 
This thesis is focusing on extreme risk management in the oil and natural gas market. 
Different approaches to estimate the risk involved in the market is calculated. These 
approaches are all estimating the Value at Risk, but with different usage of the market 
histories. Thus, the calculations differ.  

 

The scope of this thesis is to compare the individual approaches, which one(s) are the 
best, and their validity.  

 

To test their validity, the approaches are all back-tested by the use of the Kupiec–test 
and the Christoffersen–test.    

 

1.2 Value at Risk 
Risk can be defined in a various amount of ways. The word risk can have a different 
meaning for people. Most of the things we do (if not all) involve some kind of risk. 
Usually we think of risk as a possibility of something negative to happen. If the negative 
outcome of an activity will give a serious consequence, we may decide not to go forward 
with the activity the assosiated risk is considered too high. 

 

In a financial texture, risk is usually thought of with regard to profit and loss. A high risk 
will give a better chance of resulting in a greater profit, but can also result in a greater 
loss. 

 

 The volatility, of the assets return is commonly used in finance to describe the risk of an 
investment. The volatility, which normally is the standard deviation of the assets 
historical returns, measures both sides of the mean. When thinking about risk, we 
usually consider the amount that we might lose. To measure the potential loss, or the 
negative risk of the investment, we can calculate the value that is at risk. 

 

Value at Risk is a measurement of how much the potential loss could be in a worst-case 
scenario. There are two inputs needed, together with information about the market (i.e. 
historical prices), to calculate the VaR of an asset or a portfolio of assets. These two 
inputs are the level of significance and the time period.  

 

The level of significance is a measure of how accurate the results are going to be; do we 
want to know with 95% certainty what the worst potential loss can be, or do we want 
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another level of confidence? The most commonly applied confidence levels within the oil 
and gas industry are 95% and 99%, whilst banks mainly prefer the 99% confidence 
level.  

 

For what time horizon do we want to get the estimates for? The time horizons can be 
days, weeks, years etc. A commonly used time horizon is 250, 500 and 1 000 days, which 
represent the trading days of one, two and four years. 

 

With the above two parameters given, we can give statements of the future potential 
loss (i.e. “Tomorrow (time horizon), 95% (level of confidence) of the outcomes will be 
greater than -150k (VaR)”).  

 

The approaches used to calculate the VaR are: 

  

- Historical simulation (non-parametric) 
- Variance-covariance (parametric) 
- Monte – Carlo simulation 

  

The historical simulation, also called the non-parametric approach, is based on historical 
data. It sorts the data according to returns, and gives the VaR as the return that has the 
property that X% (level of confidence) of the returns are greater than this value, and 1-
X% (level of significance) of the returns are less. The non-parametric approach equally 
weighs all previous data in the chosen timeframe in which data are collected. 

 

The variance-covariance approach assumes that the returns are following a specific 
mathematical distribution like the normal distribution, student t-distribution, gamma 
distribution, etc. When a distribution is chosen, the only parameter needed is the 
expected standard deviation. Instead of basing the calculation of VaR on the historical 
data, the future expected curve of returns are used. 

 

There are different approaches to calculate the standard deviation. The regular way, in 
which is mostly thought in lectures in mathematics, is the standard deviation that 
equally weighs the data considered. To put more weight on the more recent data the 
Exponentially Weighted Moving Average (EWMA) or Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) can be calculated. GARCH puts more weight to 
the recent data, and also assumes an average value. EWMA is a special case of GARCH as 
will be discussed in chapter 3. 

 

Monte–Carlo simulation is used to simulate the data, given an average and a standard 
deviation. Monte–Carlo is mostly used in calculations of VaR for portfolios.  
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1.3 Layout 
Chapter one, Introduction, presents the scope of the thesis together with an 
introduction to Value at Risk. It also introduces the parameters needed to perform the 
calculations. 

 

Chapter two, Price variability in the oil and gas market, gives an introduction to the 
oil and gas industry and its high price fluctuations. The market’s volatility, together with 
factors affecting its supply and demand, is presented. 

 

Chapter three, Risk, presents risk, risk management and risk measurement. The three 
mathematical methods that have been used to calculate the volatilities used in this study 
are discussed and compared. Value at Risk will be more thoroughly described, and its 
three different approaches will be presented. Lastly portfolio management will be 
introduced.  

 

Chapter four, Analysis of data, presents the statistical characteristics of the products 
studied in this thesis. The products will be presented, and their return distributions 
discussed and compared with the normal distribution. The portfolios will be presented 
together with diversification and product correlations. Figures, illustrating the price and 
the volatilities for the time period considered in this study, of the selected assets will 
also be presented in this chapter. 

 

Chapter five, Empirical results, gives the results obtained from the calculations. A 
description of how the calculations were executed will also be given. 

 

Chapter six, Conclusion, will provide conclusions of the study, and discuss them. Lastly, 
suggestions for further studies will be given.   

 

Chapter seven, References, gives the references. The bibliography studied for this thesis 
will be presented.  

 

An appendix, with the Microsoft Excel workbook for all the calculations, will be given at 
the end of the thesis. 
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2  PRICE VARIABILITY IN THE OIL AND GAS MARKET 
 

This chapter will discuss the oil and gas market, identifying the factors influencing 
demand and supply, and illustrate historical data and future forecasts.  

 

2.1 The market 
The oil and gas industry includes everything related to the process of getting oil and gas 
products out to the consumers, including exploration, extraction, transportation, 
distillation, etc. The processes listed below describe the steps necessary to bring a 
petroleum product like gasoline from the ground and to the gas station.  

 

Exploration is the first step performed to locate the reservoir. Once the reservoir has 
been found, drilling of wells and recovery of the hydrocarbons follow. When the oil and 
gas have been produced they need to be processed and transported away from the 
production site to the refinery. 

 

Through a process called distillation, refineries process the raw materials into different 
oil and gas products such as Kerosene, Asphalt, Gasoline, Propane, etc. This process is 
possible due to the properties of the hydrocarbon molecules. During distillation, the 
crude oil is heated and separated. The separation by distillation is possible because of 
the hydrocarbons´ different boiling points.  

 

The various products are then traded, meaning that sellers and potential buyers 
negotiate to reach an acceptable price for the products considered. With both sellers and 
buyers being spread all around the world, the trading market is a global market. A set of 
trading alternatives offers both sides opportunities to share risk, as presented in 2.1.2.  

 

Lastly, the products need to be distributed and marketed to the consumer.  

 

The above steps, describing the processes that take place within the oil and gas industry, 
can be divided into three different sectors: 

 

- Upstream 
- Midstream  
- Downstream 

 

The Upstream sector consists of the steps necessary to extract oil and gas from 
underground deposits. In other words; this sector encompasses the exploration and 
production of hydrocarbons.  
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The Midstream sector consists of the processes taking place after the production, but 
before the products reach the retailers. This sector includes the processing, refining, 
trading, storing and transportation of hydrocarbons.  

 

Lastly, the Downstream sector is comprised of the steps taken to bring the products to 
the consumers; the marketing and distribution as well as the actual sale of the products.  

 

For simplicity, the market is sometimes divided into two sectors instead of three, 
Upstream and Downstream. If a two model sector is used, then the Midstream sector is 
included in the Downstream sector.  

 

2.1.1 Storage and transportation 
Consumers of oil and gas products are spread all over the world. The vast majority of 
consumers typically do not live in the areas where production takes place. In order to 
reach all consumers, the products need to be transported and stored. As a consequence 
of this, transportation and storage play an important role in the industry.  

 

Boats, trucks and pipelines are among the utilities provided to make the transportation 
possible. Oil and gas are transported from the production site to the refinery, and the 
output from the refinery is either stored or transported to be distributed.  

 

Transporting hydrocarbons using a pipeline system instead of by boat or motor vehicle 
is more efficient and economical. The hydrocarbons are transported by pipeline to 
distribution hubs.   

 

Below is a map showing the pipeline network in the United States. 
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Figure 2.1: Map of the pipeline network in the United States (EIA.gov), including pipelines 
up to 2008. 

Oil and gas products are usually first sold to either the nearest buyers, or to buyers in 
areas where an integrated transportation system already exists (i.e. pipelines), due to 
the lower transportation costs.  

 

Oil and natural gas differ in how they can be transported. While oil can be readily stored 
in barrels and shipped globally, gas, due to its nature, is dependent on pipelines for 
transportation. Otherwise, gas has to be liquefied into Liquefied Natural Gas (LNG) in 
order to be transported by vehicle. The additional procedures involved in the liquefying 
and re-gasifying processes require facilities capable of converting the gas. As a 
consequence, the natural gas market is much more regionally defined, while the oil 
market is global. Today, LNG exports are limited to exports from Europe to USA and 
Japan.  

 

2.1.2 Trading 
Oil and gas products are traded in different markets around the world. The prices of the 
products that are described in this thesis are derived from the New York Mercentile 
Exchange (NYMEX), The InterContinental Exchange (ICE) and the Independent Chemical 
Information Services (ICIS). ICIS publishes the European Spot Gas Markets (ESGM), 
every working day of the year, following the British calendar.  
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The physical delivery of hydrocarbons are organized through long-term contracts and 
the spot market.  

 

There are three main ways of pricing the products: 

- Spot–price 
- Futures 
- Bilateral contracts 

 

Spot trading is the most fundamental method of trading. In essence, the seller and buyer 
agree on a price over the counter (OTC). Parties usually engage in spot trading in order 
to buy and sell quantities of oil or gas not covered by long-term contracts (Fattouh, 
2011).  

 

In a bilateral contract the two parts agree on a specific delivery of quantity and quality 
with a certain time and place of delivery. While the price is fixed, since the delivery and 
payment takes place in the future, both parties incur a counterparty risk (e.g. the seller 
may not be able to deliver the specified quantity and quality, or the buyer may not be 
able to pay for the goods due to financial distress). 

 

A future contract removes this counterparty risk, by allowing the buyer and seller to 
agree via a third party: the futures exchange market. In a future contract, the quality, 
quantity and delivery location is predefined by the exchange, thus limiting the buyer and 
seller to only agree on price. Each day the positions for both buyer and seller of the 
future are marked-to-market, thus removing the counterparty risk. Typically the 
contracts will be defined for several time periods, and buying (selling) multiple futures 
allows the buyer (seller) to vary both the time and quantity. However, since the quality 
is predefined, both buyer and seller may experience a basis risk, due to the difference in 
the product defined in the futures compared to the product supplied or purchased (e.g. 
an oil company may produce a certain oil quality like oil from the Brage oil field, while 
future contracts is traded using another quality, i.e. Forties blend at ICE). 

 

2.2 Price 
This section discusses the impact that different factors have on the price of oil and 
natural gas. The main factors discussed include the microeconomic model of supply and 
demand, geopolitical events and the global economy. 

 

The prices of oil and gas products are considered to be among the most volatile in the 
global market, and any prediction of the oil market will be highly uncertain due to its 
large volatility (Foote & Little, 2011; Hamilton, 2009). 

 

Originally, the oil price was set through oligopoly, by the largest oil companies in the 
world (Fattouh, 2011). However, in the late 1950´s the power to set the price shifted to 
the Organization of Petroleum Exporting Countries (OPEC).  
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The OPEC administered pricing system collapsed in the late 1980´s, and the “market” 
became the controlling pricing authority. Due to the emergence of many new suppliers 
and buyers, the largest oil companies (also called “the Seven Sisters”) and OPEC lost the 
power to determine the price. Since 1988 the “market related pricing system” has been 
the main method for pricing crude oil in international trade. Fattouh (2011) describes 
the market related pricing system. 

 

Historically, the oil price has been dominated by periods of high and low volatility. It is 
difficult to predict when these periods of rapid price change will occur. However, 
reasons for a price change can in most cases be found when studying historical price 
data. As demonstrated in figure 2.2 below, these periods of rapid change usually 
occurred contemporaneously during times of war and geopolitical unrest. 

 

 
Figure 2.2: The historical price of crude oil in US Dollars. Light green is the 2011 Dollar 

value, dark green is the Dollar value at the time. (BP.com, 2011) 

 

The following sections will introduce the microeconomic model of demand and supply 
together with elasticity, and discuss how it applies to the petroleum industry. 
Additionally, the impact of geopolitical tension will be included in the sections 
discussing supply and demand. 

 

2.2.1 The microeconomic model 
In microeconomics, the market price of a product is found at the point where the 
demand and supply curves meet. According to the microeconomic theory, the 
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relationship between supply and demand decides the price and quantity of a product in 
a market.  

 

The microeconomic model of “quantity vs. price for supply and demand” is illustrated in 
figure 2.3 below. 

 
Where  Q1: Quantity in market before demand shift    P1: Price before demand shift 

  Q2: Quantity in market after demand shift     P2: Price after demand shift  
  S: Supply 

 

Figure 2.3: The microeconomic supply and demand curve (Wikipedia.com, 2012). 

 

The above figure illustrates the connection between the price, quantity supplied and the 
quantity demanded of a product in a market. These are the laws of supply and demand. 

 

An increase in price will effectively reduce the demand. At the same time, if suppliers 
can get a higher price for their product they tend to produce more, thus increasing the 
quantity of supply.  

 

The positive shift in demand, as illustrated in figure 2.3 (where demand is shifting from 
D1 to D2), indicates that the product is in higher demand. The increased demand can for 
example be caused by a community’s increased wealth. This will lead to an increase in 
both price and quantity. 

 

In a perfect market with perfect competition, the price of a product will be equal to the 
marginal costs that suppliers face to offer the product. 

 

The above statement is also applicable to the petroleum industry. The high demand of 
hydrocarbon products drives its selling price. Therefore, its prices are higher than what 



 

Page 15 of 74 

 

the related costs of producing said products for the suppliers with the lowest costs. This 
is due to the inability of one, or a few suppliers, to meet the demand. With perfect 
competition, the price in this market will be set by the last supplier needed to meet the 
demand (i.e. the supplier that experiences the highest costs of production). 

 

It follows from the law of demand that as the price of a product drops, the demand for it 
will increase. Conversely, the law of supply states that as the price drops, its supply will 
decrease. How much the reduction in price impacts the quantity demanded or the 
quantity supplied depends on the goods elasticity. 

 

According to market equilibrium theory, a shortage in supply versus demand will lead to 
a price increase. This is a result of consumers’ willingness to pay extra to be able to get 
the product. The increase in price will induce more producers, increasing supply until 
the market reaches equilibrium, as illustrated in figure 2.3.  

 

2.2.2 Price Elasticity 
Price elasticity is a measure of how much the quantity demanded (supplied) reacts to a 
change in the market price. The formula for the elasticity is presented below: 

 

 
 

Where   P:  is the price   Qd:  is the quantity demanded 

   dP:  is the price change  dQd:  is the change of Qd  

 

An Ed value below -1 indicates that the good is following the microeconomic law of 
demand (i.e. the demand for a specific good will increase if the price of it is reduced, 
given that all else remains equal). A product is said to be elastic if a change in price 
causes the quantity demanded to change significantly (Mankiw, 2012). The opposite is 
true for an unelastic product; the quantity demanded will not react substantially to a 
change in price. According to Mankiw, there are no universal rules for what determines 
the elasticity. However, Mankiw points out four factors, which he describes as a “rule-of-
thumb” to determine elasticity: availability of close substitutes, necessities versus 
luxuries, definition of the market, and the time horizon.  

 

For oil and gas, there may be substitution alternatives in several dimensions, e.g. a 
power generating company substituting between different energy sources may use the 
availability and timing to substitute.  

 

As shown by Hamilton (2009), Kilian (2009), and Baumeister and Peersman (2012), the 
elasticity in the oil and gas market is very low and near zero in the short-term. This is 
due to demand for oil and the cost of substituting to other energy sources. As a 
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consequence most of the increase in price is passed on to consumers without reduction 
in consumption. 

 

On the other hand, long-term elasticity is higher. This is because industries to some 
degree can switch to alternative energy sources (e.g. coal instead of natural gas in power 
plants). Additionally, high oil and natural gas prices will provide incentives for research 
and development of alternative energy sources, which may provide more viable 
substitutes in the future.  

 

2.2.3 Supply, demand and the impact of geopolitics 
Oil and gas play a vital role in the global economy, and together with coal the fossil fuels 
are the number one energy source of the world (Carollo, 2012; BP, 2012). The price of 
oil impacts the global economy and is considered a leading factor that affects the prices 
of most energy sources. An increase in oil prices affects the net importing economies 
negatively, while net exporters benefit from it.  

 

The demand for oil and gas products increases as the world’s demand for energy 
increases. Not only is the average energy demand per person increasing, the number of 
people on earth is also increasing rapidly. A particularly high increase in demand is 
experienced by developing countries and Asia. Currently, China’s emergence as a 
developing nation has led to a tremendous increase in its demand for energy. 
Meanwhile, the consumption in Western Europe and the United States has experienced a 
slight decrease over the last years (BP, 2012). 

 

The commodities price development over the last 40 years reflects the shortcomings of 
these industries – the global production of oil and gas has been unable to meet the global 
demand for these energies (Inkpenn, Moffett, 2011).  

 

But the price is not solely based on the supply and demand in the market. Even though 
the demand for the most time has been higher than the supply, there are also other 
factors affecting the price of oil and gas. Geopolitical tensions, wars and other possible 
sources that impose a threat of the market to be in shortage of petroleum make the price 
position north.  

 

However, oil production has increased over the last year, and on April 30th 2012 it 
outpaced the global demand. Improved technology and new findings, together with 
OPEC´s 10% production increase over the last year (as of June 2012) are some of the 
factors that lead to this increase (Phillips, 2012). At the same time the world’s demand 
for oil has declined since December 2011. This is illustrated in the demand vs. supply 
figure below. 
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Figure 2.4: Demand vs. Supply (Energy Intelligence Group, 2012). 

 

The laws applicable to pricing with regard to supply and demand (presented in 2.2.1 
The microeconomic model) also apply to oil and gas products. In order to better 
understand the commodities price fluctuations, one must understand which factors 
influence the demand and supply for the given commodities. 

 

In the following sections demand and supply will be discussed. The impact of 
geopolitical tensions on supply and demand will also be explored in these sections. 

 

2.2.3.1 Demand 
According to the International Energy Agency (IEA), who is one of the world’s leading 
authoritative sources for energy statistics, the worlds demand for energy will increase 
by an average of 1.5% each year through 2030. By 2030, the world’s energy demand will 
be 60% higher than it was in the year 2000.  

 

IEA predicts that 80% of the increased demand will come from countries that are not 
affiliated with the Organization for Economic Cooperation and Development (OECD) 
nations (Inkpenn, Moffett, 2011). 

 

The following figure presented below illustrates a publicized forecast by United States 
Energy Information Administration (EIA, 2011) of global energy consumption. 
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Figure 2.5: Forecast of the World´s energy comsumption. Data from 1990 until 2008 is 

calculated based on actual numbers, the data after 2008 are estimations performed by the 
EIA (EIA, 2011) 

 

China is a major contributor to the Non-OECD countries increase in consumption. In 
2009, the total energy consumption in China surpassed the consumption of the United 
States. It is estimated that China’s energy demand will continue increasing, and that by 
the year 2035 will be about 68% higher than the total energy consumption of the United 
States. 

 

The following figure, compares the EIA’s forecast of energy consumption of China, India 
and the United States through 2035. 

 
Figure 2.6: Comparison of the historical and projected energy comsumptions for the 
United States, China and India (EIA, 2011). 
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Although new technologies make products and processes more energy efficient, it will 
take time before the market adjusts to them. These new technologies are most likely to 
be more expensive to invest in, and that it takes a long time for society and governments 
to adjust to new technologies in general, these “energy savers” will most likely not 
contribute much, in the sense of decreasing, to the demand for the next following years. 
The fact that, as mentioned above, the non-OECD nations are predicted to stand for 80% 
of the increased demand also supports this hypothesis. 

 

Fossil fuels (coal, oil and gas) are the energy source that has the most practical uses in 
the world (Follett, 2011). They provide electricity, heating, transportation, they are easy 
to store and transport, and they are cheaper than other energy sources.  

 

If the technology of other energy source (such as solar or wind) transmissions enhance, 
resulting in a reduced price for the energy, that is likely to switch the energy demand 
over to focus more on the cheaper energy source. This may impact the price for oil and 
gas products.  

 

Environmental concerns may also impact the prices of oil and gas products, since it may 
change the demand. It is already widely known that fossil fuels most likely have a bad 
impact on the environment, but further developments about this topic may affect the 
prices depending on the outcome of the news.  

 

Kathrine Follett (2011) argues, in her book “Energy Sources for the 21st Century”, that 
all of the energy sources can be said to have some kind of bad impact on the 
environment.  For example, solar cells are manufactured with toxic heavy metals, wind 
turbines cause noise pollution and injure or kill birds, and hydropower dams cause 
rivers to dry up, disturbing the environment for animals that rely on the water (for 
example fish that spawn in the river). Follett further argues that cutting edge technology 
makes fossil fuels clean and safe (Follett, 2011). 

 

Last year’s nuclear accident in Japan, was a consequence of the earthquake at 
Fukushima, and this incident reminded the world of the dangers of relying on nuclear 
energy.  

 

In situations when people believe that a shortcoming is most likely to occur, i.e. because 
of geopolitical tensions, they may want to get the product before its too late, and by 
doing so the temporary demand for the product increase, resulting in a higher price.  

 

A major act of nature, like a hurricane, tsunami or earthquake, will also impact the price 
of oil and gas products in the short run. Even though this impact is short it is worth 
mentioning.  

 

For example, during the fall of 2012, the eastern coast of the United States was struck by 
hurricane Sandy. As the storm approached, production and refining, as well as storage 
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facilities were shut down in anticipation of its arrival. Because of the shutdown, a 
surplus volume of oil products was created, affecting the wholesale network and the 
price of oil and gas declined due to the excess of supply.   

 

The impact felt on the price of oil following an act of nature is usually felt on a short-
term basis. The prices will re-adjust back to normal once the storm (or other act of 
nature is over)  (Moor, 2012). Even though the prices initially fell following the storm, 
due to the shut-down of the supply, prices on gasoline and diesel rose in anticipation of 
the approaching hurricane. This price increase can also be explained by the increased 
demand, since people filled up their cars with fuel, in fear of not being able to get it 
during and following the storm.  

 

During the Conference on the Oil and Market held at the Federal Reserve Bank of Boston 
in June 2010, experts surmised that the price fluctuations experienced during the 1970´s 
(price increase) and 1980´s (price decrease) are most likely never to be experienced 
again (Foote & Little, 2011). Their conclusion is based on the current lack of methods for 
a major net importing country to reduce its demand for oil, would a sudden price 
increase be experienced. During the 1970´s and 1980´s however, net importers could 
choose from other sources of energy, or simply increase their own domestic production. 

 

The oil price is highly dependent on the world’s fuel demand. Economic growth is a 
positive indicator with regard to this demand. Wood et Al (2004) argue that “Where 
high demand growth exists it is primarily due to rapidly rising consumer demand for 
transportation via cars and trucks powered with internal combustion engines”.  

 

Because the asset price is dependent on market expectations, what was given a lot of 
positive indications for the asset implying that it would very likely increase in value 
could as likely be wrong, and make the price go back to what it was before. In addition, a 
large increase in price may provide an opportunity to secure profits for some agents. 
Opposite, a large decrease may provide purchasing incentives for several agents as the 
commodity/stock is relatively cheaper. 

 

News about decreasing growth, or growth being lower than expected may lead to a 
decrease in price due to a fear of a decreasing demand on fuel. The fact that the Chinese 
economy in October showed less growth than expected, together with the economic 
weaknesses in Europe and a decreased level of fuel usage in the United States made the 
global demand not follow the supply (Wall Street Journal, 2012). When this happens, 
that the supply is larger than the demand, a decrease in price is experienced. In May 
2012, the supply curve passed the demand curve, and the price started to fall (see figure 
2.4 above). 

 

The oil and gas price is measured in US Dollars, a currency that has weakened over the 
last decade. A weakening of the US Dollar, assuming that everything else remains the 
same, will result in a cheaper price of oil relative to the local currency for a given 
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country with a different currency. The reason for this being the lower conversion factor 
between the local currency and the U.S. Dollar. 

 

Hamilton (2012) argues that “a lower value for the U.S. dollar would mean a greater 
quantity demanded worldwide at a given dollar price of oil”, which supports the 
reasoning given in the above paragraph.   

 
Setser (2008), who is a fellow for Geoeonomics for the Council on Foreign Relations, also 
supports this statement. He further explains the correlation between oil prices and the 
value of the US Dollar to be the interest rates in the United States being so low that it 
made investments in other forms than savings accounts more popular. This includes 
commodities. Considering that the United States is the world’s largest net importer of 
oil, it is logic that they will be the country most impacted by a rise in the oil price.  

 

2.2.3.2 Supply 
Oil and Gas are products resulting from the decomposition process taking place when 
dead organisms are buried underneath the ground. This process, which transforms the 
dead organisms to oil and gas, only takes place under specific conditions and a long 
period of time is required for it to occur. Chilingar (2005) describes this process, which 
takes millions of years. Due to the fact that the process takes a long time, it is easy to 
understand that there is a finite amount of oil and gas present.  

 

For a field to be considered an economically recoverable resource it has to be profitable 
to produce. Thus a decrease in the price may lead to premature field shutdowns, or field 
development projects being delayed or cancelled. This might again lead to a reduction of 
oil supply, whereas the severity depends on how many fields that will become 
uneconomical. 

 

The decline in production could then create a shortage in the market, which would 
stimulate an increase in the price. Thus, a higher oil price will result in more fields 
becoming profitable, which again will lead to a potential increase in supply. Because of 
the optimism in the market, companies would be willing to spend more money on 
research. 

 

Only 50-70% of the hydrocarbons are recovered from the reservoir with today’s 
technology. This means that 30-50% of the hydrocarbons is left behind in the reservoir. 
As the technology advances, the recovery factors are likely to improve, making it 
possible to increase the supply of hydrocarbons to the market. With new techniques one 
may be able to reduce production costs, and extend the life of fields. This can turn 
unprofitable reservoirs into recoverable resources.  

 

As the conventional, easy to produce, fields have been in operation for many years, more 
and more of the global production is now supplied from unconventional fields. These 
fields have higher production costs, and are therefore more sensitive to price changes.  
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The marginal costs related to oil production greatly differs between fields. The fields 
with the lowest marginal costs are the ones that can best withstand a reduction in the oil 
price and still remain profitable. The marginal costs are low in the fields located in 
Middle-Eastern countries, while the Tar Sands in Canada and offshore oil production 
have the highest marginal costs, as seen in figure 2.7 below. 

 

 
Figure 2.7: The figure illustrates the different marginal cost in production of oil from a set 
of oil resource types. (Mohn, 2012). 

 

Even though all countries are consumers of products originating from the oil and gas 
industry, only a few nations contribute as producers. The ability of these countries to 
produce oil and gas has allowed relatively small nations to become heavily influential in 
the world economy. One can only speculate if the United States and other developed 
countries would have shown the same interest in Middle-Eastern countries if it were not 
for the oil and gas resources available in Arab nations.  

 
Figure 2.8: The figure illustrates the global production of oil, and how much each “group” 
produces. The Middle East stands for almost one third of the world’s production 
(International Energy Agency, 2012). 
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Politics highly influence the price of oil and gas products. The influence exercised by 
politicians is demonstrated through government regulations, taxes, fees, environmental 
concerns, wars, as well as geopolitical tensions. 

 

Particularly, geopolitical tensions and war are very likely to affect the oil price. 
Especially if one or more of the nations involved are exporters of oil. Even speculation 
that a war may occur is enough to cause an increase of the oil price. A good example of 
this is the Yom Kippur War in the early 1970´s when Arab nations refused to export 
petroleum to Europe and the United States.  

 

The Organization of Petroleum Exporting Countries (OPEC) is an intergovernmental 
organization comprising of twelve non-OECD oil producing nations.  

 

“In accordance with its Statute, the mission of the Organization of the Petroleum Exporting 
Countries (OPEC) is to coordinate and unify the petroleum policies of its Member Countries 
and ensure the stabilization of oil markets in order to secure an efficient, economic and 
regular supply of petroleum to consumers, a steady income to producers and a fair return 
on capital for those investing in the petroleum industry.” 

 

(The Organization of Petroleum Exporting Countries, 2012) 

 

OPEC decides how much petroleum its member countries are allowed to produce. 
However, the organization has had problems controlling the quotas provided to its 
members, since  an individual member always has economic incentives to deviate from 
the agreed allocation. Saudi Arabia is by far the most important member of OPEC, and is 
generally considered the swing producer, having the capacity to influence the oil price 
by adjusting its production. 

 

A reduction of supply is an almost certain indicator of a future price increase, given that 
the demand has not decreased more than the supply. This theory is supported by Peak 
Oil Theory, which in short says that the production of oil in any region will follow a bell-
shaped curve.  There will be an initial phase of increased production until it reaches a 
maximum, and as the oil fields mature, the production will decline. This theory was 
introduced by Hubbert (1956). He predicted that the U.S. oil production would peak in 
the beginning of the 1970s. He later also predicted that global oil production would peak 
in 1995. Although his global prediction was inaccurate, it is now debated that we are 
currently peaking the production of conventional crude oil.  

http://www.opec.org/opec_web/static_files_project/media/downloads/publications/OS.pdf
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3 RISK 
This chapter will give an introduction to risk and risk management. Different 
approaches to calculate risk will be presented. Volatility will be introduced and the 
different approaches used to calculate it will be discussed. 

 

3.1 Risk and risk management 
Risk is something we encounter every day; when we are in the car, out walking, taking 
an exam, etc. Aven and Renn (2010) state that no agreed definition of risk exists. They 
list several definitions of risk defined by different authors. These definitions can be 
divided into two categories;  

 

(1) Risk is expressed by means of probabilities and expected values.  

(2) Risk is expressed through events/consequences and uncertainties. 

 
Based on the above two categories, nothing is risk free. This is due to the fact that 
nothing can be said to be 100% predictable 

 

When it comes to trading, risk basically boils down to profits and losses. The risk is 
money. There is always a chance that an investments actual return will differ from its 
expected return. Prices are prone to change and may increase or decrease, resulting in a 
potential gain or loss for investors. Ross et Al (2011) defines the true risk of any 
investment to be “the unanticipated part of the return, that portion resulting from 
surprises”. 

 

Risk can be divided into two categories; systematic risk and unsystematic risk.  

 

The factors affecting the systematic risk, also called market risk, can be defined as the 
surprises that influence the entire market. Examples can be an increase or decrease in 
interest rates, GDP or inflation. These are factors that impact most companies. 

 

A surprise may only impact a specific company, or a few companies, but not have 
consequences for anyone else. An example can be the sudden loss of key personnel, 
announcement of a strike or positive/negative publicity. These types of risks are 
unsystematic. 

 

By taking certain measures one can reduce risk, but it can never be removed entirely. 
Risk management is about understanding and assessing potential risks, and controlling 
or mitigating the effects of possible damaging events. 
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The oil and gas markets are susceptible to being affected by a wide variety of factors.  
Many of these were discussed in Chapter 2Price Variability in the oil and gas market. 
However, some issues that may affect the oil and gas market remain unknown. 

 

The price of an asset varies over time, and by studying these price changes one may get 
a better impression of how sensitive the asset is. The most common way of describing a 
set of data is by using the mean and the standard deviation (Gravetter et Al, 2011). It 
measures the dispersion about the mean of a distribution, and is a sufficient risk metric 
if the returns are following a normal distribution.  

 

In finance, volatility is used to describe risk. Volatility can be used to forecast different 
profit and loss scenarios for the future. Alexander (2008) defines volatility as the 
annualized standard deviation of the returns on an investment. However, the volatility 
can also be presented for other periods of time, the most common being daily, weekly or 
monthly. In other words – the volatility is a measure of the spread of data.  

 

A high standard deviation implies that the data values are widely spread. If these were 
the data of the prices for a specific stock, a high standard deviation would imply that the 
price changes have been substantial over the period considered, and thus the specific 
stock would be said to have a high volatility.  

 

The standard deviation, and thus the volatility, will vary with the observations horizon. 
Comparison of standard deviations calculated from data sets of different quantity will 
therefore not be comparable as they are. The standard deviation can be transformed 
into annualized terms, and expressed as a percentage (Alexander, 2008). 

 

To transform the standard deviation of a one-period log return (generated by a 
stationary i.i.d process with mean, µ, and standard deviation, σ) to a standard deviation 
of a h-period log return, the standard deviation of the one-period must be multiplied by 
the squared root of h. 

 

It is common to express the volatility on an annualized basis, which reflects the volatility 
of a one-year period. This can be done by following the 4-step procedure described 
below: 
 

1. Calculate the variance in log-return for each day from the given set of data 
2. Calculate the average daily variance 
3. Calculate the daily volatility by taking the squared root of the average daily 

variance 
4. Calculate the annualized volatility by multiplying the daily volatility by the 

squared root of 250/1* 
 

*On average there are 250 trading days in a year. The daily volatility is for a 
period of 1 day. If we had the two days volatility we would have to multiply this 
volatility by the squared root of 250/2 to get the annualized volatility. 
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The particular focus of this thesis will be on the volatility of oil and gas products. It will 
consider the volatility for a one-year period (250 trading days), a two-year period (500 
trading days) and a four-year period (1000 trading days). Different models and 
approaches to calculate the volatility and to assess risk will be discussed and presented.  

 

3.2 Risk measures 
There are different approaches to calculate the historical volatility. This thesis will 
present and discuss three: Simple, EWMA and GARCH. Which one to choose depends on 
how the historical data is to be weighted. 

 

The approaches all share the same first two steps; 

1. Calculate the rate of return 
2. Assign the data weight 

 

It is the outcome of step two that decides the type of approach and the steps that will 
follow. 

 

The daily return (from one day to the next) of an asset can be calculated using the 
logarithmic return, Rt ; 

 
 

Where   Pt: Price today  Pt-1: Price the day before 

 

The logarithmic return is preferred in finance due to its many properties that help 
simplifying calculations.  

 

3.2.1 Simple volatility 
The simple volatility is the standard deviation calculated the regular way, giving each of 
the data equal weight. Even though this is not the most accurate volatility, it is the 
easiest to understand and calculate, and can be used as input to calculate other historical 
volatilities such as EWMA and GARCH. 

 

The historical standard deviation over a specific period of time, n days, can be expressed 
as stated below.  

 

 
Where  N: the number of observations xi: the ith observation 
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The simple standard deviation emphasizes the historical data equally. Hence, 5-year old 
data is considered to influence today’s volatility with the same magnitude as does 
yesterday’s data. During short periods of time, a day of high volatility is very likely to be 
followed by another day of high volatility (Berry, 2012). Volatility clustering can be 
better explained through an example; say that a stock’s price rose significantly the 
previous day, one would believe that it is more likely to decrease or rise even more 
during the following day(s). It is highly volatile.  

 

The standard deviation will not accurately reflect the current market conditions because 
of the equal weighting afforded to the historical data. Hence, it does not take into 
consideration that recent data is more likely to reflect today’s market than the data 
collected years ago.  

 

The standard deviation is a function of squared returns deviation, thus making them 
more sensitive to outliers that can dominate the result. As an example, Ederington & 
Guan (2006) looks at S&P 500 market over a 35-year period. From July 5th 1967 to July 
11th 2002. When calculating the volatility by using the simple standard deviation, the 1% 
largest daily return accounted for 24.5% of the total squared return deviations!   

 

The weakness of the above approach (the volatility estimator assigns equal weight to all 
observations) can be fixed by giving the historical data different weight.  

 

3.2.2 Exponentially Weighted Moving Average (EWMA) 
The Exponentially Weighted Moving Average (EWMA) places the most emphasizes on 
the most recent observations. This method was first introduced by Roberts (1959) and 
later by Hunter (1986). The emphasis decreases exponentially as the data gets older. By 
doing this one avoids big shocks from an earlier period influencing the result as much as 
it does with the simple volatility/standard deviation.  

 

As one moves back in time, the data is given less and less weight. By doing this one 
assumes that the more recent the data is, the more important it is and the better it 
represents today’s market. 

 

The EWMA is calculated using the formula presented below 

 

σ2 n = (1- λ) r2 n-1 + λσ2 n-1  , 1 > λ > 0 
 

Where  σ2 n:  Variance      

λ:  The smoothing parameter /exponential weight coefficient  

r2 n-1:  The squared return of the day before 



 

Page 28 of 74 

 

 

The first term on the right hand side of the equation represents the intensity of reaction, 
which determines how much weight should be given to the squared return of the 
previous day. The last term on the right hand side of the equation is called the 
smoothing effect, and determines how much weight should be given to the lagged 
variances. 

 

λ is called the exponential weight coefficient, and decides how much  weight the returns 
will be given. The value of λ is normally between 0.9 and 0.975 (Alexander, 2008). JP 
Morgan, who developed the EWMA in 1989, assigns a value of 0.96, which has become 
the most used value for λ among analysts. 

 

The mean simple variance is used as the first variance in the calculation of the EWMA. 
The resulting EWMA variance is then used as variance for the following calculations.   

 

Compared with the Standard Deviation, the EWMA is a better interpretation of the 
volatility with regard to the financial stock market due to its higher emphasis of the 
most recent observations.  

 

The EWMA is a special, simplified version of the Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH), which is described below. 

 

3.2.3 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) is the most popular 
method for estimating volatility and was introduced by Engle (1982) and Bollerslev 
(1986). It assumes that the volatility will revert to an expected value over the long run. 
The assumption of mean reversion is an improvement compared to the EWMA, and 
limits the significant effects on the mean that can be caused by the influence of larger 
fluctuations.  

 

Apart from the above, the same conditions as the EWMA apply; as data gets older, the 
weight it is afforded is  reduced exponentially.  

 

The formula for calculating the GARCH variance is presented below 

 

σ2n =    ω + αr2 n-1  + βσ2n-1 

 

Where   σ2: variance     σ: volatility    

   r: return    α: weight on periodic returns 

   ω: Expected long run variance β: Weight of variance 
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To estimate the weight parameters for both EWMA and GARCH (1,1) the Maximum 
Likelihood Estimation (MLE) method is used. By maximizing the value of the equation 
for the logarithm of the normal distribution’s likelihood function, the optimal 
parameters can be found. Brooks (2008), Alexander (2008), Eliason (1993) and Khadska 
(2004) describe Maximum Likelihood Estimation, and presents examples.  

 

Because the likelihood function is based on the normal distribution, it assumes that the 
returns follow a normal distribution. Therefore, if applied to a non-normal distribution, 
the result may not be correct. 

 

A GARCH variance with an expected long run variance, ω, of zero, and  α = (1- λ) ,  

β = λ, makes the GARCH identical to the EWMA. This illustrates that the EWMA is a 
special case of GARCH. 

 

3.2.4 Other measures (kurtosis, skewness) 
Both kurtosis and skewness are used to describe the distribution of the empirical 
returns. Moreover, their values can be used to compare the distributions to a normal 
distribution, which is often used as a base assumption in the analysis.   

 

3.2.4.1 Kurtosis 
Kurtosis is used to describe a distributions peakedness and measures how concentrated 
the data are around its mean.  

 

The excess kurtosis of a student-t distribution can be calculated using the formula 
presented below. 

 

 
 

Where v represents the degrees of freedom. 

 

The normal distribution has a kurtosis of 3. Deviations from this value indicate that a set 
of data is not normally distributed. Hence, to assume normal distribution in calculations 
then can lead to wrong answers. This is discussed by Lee, Lee & Lee (2000). 

 

 

 

 

 

 



 

Page 30 of 74 

 

Figure 3.1 below illustrates the forms of distributions with kurtosises of infinity, 2 and 0. 

 

 
Figure 3.1: Illustration of different kurtosis values. X-axis is the number of standard 
deviations and y-axis is probability. The black curves represents the normal distribution 
(Wikipedia, 2012). 

 

A kurtosis higher than 3 indicates that the dataset consists of more extreme values than 
that of the normal distribution, and thus resulting in the VaR being too high. The 
opposite is true for kurtosis values below 3.  

 

The return distributions of products in the oil and gas industry commonly have fat tails, 
which results in a higher kurtosis compared with the normal distribution. 

 

3.2.4.2 Skewness 
The skewness is used to describe the form of the distribution. It tells whether or not the 
data are distributed symmetrically around its mean. A normal distribution has perfect 
symmetry, and hence a skewness of 0. Skewness compares the symmetry of a 
distribution with the normal distribution, and tells how skewed it is compared to the 
normal distribution. 
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A distribution can be positively or negatively skewed. This is illustrated in the figure 
below. 

 

 

 

 
Figure 3.2: Illustration of data sets with a negative skew and a positive skew     

(Wikipedia, 2012) 

 

The parametric approach may miscalculate the VaR of a skewed distribution because it 
assumes that the data are normally and symmetrically distributed. As can be seen in the 
figure above, a negative skew would underestimate the risk whereas a positive skew 
would overestimate it. This is supported by Lee, Lee & Lee (2000). 

 

3.3 Portfolio management and diversification 
On any given day, the price of a stock can have three different outcomes in the end of the 
trading day; it can close on a price lower, higher or equal to the one it had on the day 
before. Some stocks have a wider price variation than others; they might be more 
sensitive to change.  

 

By studying the historical price data of stocks, one can get a picture of how the price 
reacts to a specific market change; does the change have a positive or negative influence 
on the price? Compared with other stocks, how does this stock react?  

 

A portfolio generally consists of more than one asset or stock. It can consist of assets, 
stocks and bonds, all of which induce some risk, but also offer more “risk–free” solutions 
like money in the bank, or currency. All of these investments may be combined in a 
portfolio, or some of them. By spreading investments over several assets, the risk is 
reduced through diversification, as explained in portfolio theory by Markowitz (1959) 
and Samuelsson (1967). Lower portfolio risk can also be obtained by investing in assets 
with low correlation (Jorion, 2001) 
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Diversification can be explained as risk spreading.  

 

Ex: The President and the Vice President are not allowed to travel together. This is to 
make sure that if something happens to the President, the Vice President will be able to 
step in for the President in his absence.  

 

The above example illustrates that by diversifying the transportation, the risk of 
something happening to both the President and the Vice President at the same time is 
greatly reduced. 

 

In a financial texture diversification reduces the risk related to profits and losses. A 
diversified portfolio contains different products.  

 

As mentioned in section 3.1 Risk and risk management, the total risk of an investment 
has two components; the systematic risk and the unsystematic risk. The systematic risk 
affects most companies, and is therefore a component that will remain equal no matter 
what company you decide to invest in. However, by combining different stocks in a 
portfolio, the unsystematic risk can be dramatically reduced. 

 

By adding different kinds of stocks to a portfolio one reduces the expected std of Profits 
and Losses (P&L). Ross et Al (2011) explains that this is because the diversifying of the 
portfolio combines the unsystematic risks for each investment. By doing this, the unique 
events, positive and negative, tend to cancel each other out when the portfolio consists 
of a variety of assets, rather than a few. 

 

Assets may react differently to news and market change. A general market change is 
very likely to affect most assets. That is what happened during previous economic crises 
like the financial crisis of 2007 and the Wall Street Crash of 1929. These are examples of 
systematic risk, and cannot be reduced by portfolio diversification.  

 

3.3.1 Correlation 
Correlation is a statistical measure of how different data relate to each other. It is used 
to see if a connection between the behaviors of two different data sets exists, if they are 
dependent on each other. 

 

The correlation is defined as: 
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The correlation varies between the values -1 and 1. A correlation value of -1 indicates a 
strong negative correlation, which means that when the data values of one dataset 
increase, the values of the other dataset considered will decrease. If the trends of the 
two datasets are the same, meaning both of their values increase or decrease, the two 
datasets are said to be strongly correlated – thus giving a correlation value of 1. A value 
between 0 and 1 indicates correlation, while a value between 0 and -1 indicates a 
negative correlation. The closer the value is to 0, the less of a correlation we have. 0 
means no correlation at all. 

 

Combining assets that lack strong positive correlation will reduce the overall risk of the 
portfolio.  

 

Correlation is an important component when explaining diversification. Samuelsson 
(1967) proves that adding assets to a portfolio will always reduce the risk, due to some 
imperfect correlation. Only if the extra asset is perfectly and positively correlated (r = 1), 
the risk will not be reduced (Mayo, 2011). However, reducing risk by adding assets will 
also reduce the expected return, as a result of common risk-return tradeoff.  

 

A portfolio which contains assets that have strong correlation between each other is not 
as diversified as it would be if the assets had negative or lower correlation. The portfolio 
in this thesis is a single-asset portfolio. All of the products are from the same industry 
and expected to be highly correlated. The correlation between the natural gas and the oil 
products are not expected to be as correlated as the correlation between the individual 
oil products, but they are expected to show some degree of correlation.  

 

Figure 3.3 illustrates how the risk is reduced when 2 assets with different levels of 
correlation are combined.  

 
Figure 3.3: Illustration of combining 2 assets with different levels of correlation (ρ = {-1.0, 
0.2, 1.0}) and the effect on the risk and return tradeoff. 
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3.4 Value at Risk (VaR) 
“Value at risk (VaR) is a probability-based metric for quantifying the market risk of 
assets and portfolios. (...) VaR measures are forward-looking approximations of market 
risk” (Culp, Mensink, Neves, 1999).  

 

VaR is a statistical definition that estimates the maximum potential loss in a given period 
of time. The VaR calculation serves as a good summary of financial investments in terms 
of risk management (Culp, Mensink, Neves, 1999). 

 

Matemathically, VaR can be described as the probability P for the potential loss L being 
less than the amount xl, given a significance level p. This is illustrated in equation (1.1) 
below. 

P ( L < xl ) = p    
 

VaR represents the potential worst-case scenario of loss based on different confidence 
levels. With a specific confidence, the VaR estimate attempts to identify the worst 
expected loss. The probability of the loss being less than what it was estimated to be by 
the risk measure is given by the confidence level (Hendricks, 1996).  

 

Corporations may use this calculation to estimate how much money they should have in 
easy access to avoid bankruptcy.  

 

Lets illustrate this with an example: 

 

Suppose that a given corporation estimates that they have a probability of 0.02% of 
defaulting within the next two-year period. The company wants to know how much 
they will need to have in equity to have a good chance at surviving a potential 
default. 

 

To calculate this they use a VaR analysis with a confidence level of 99.98% and a 
time period of 2 years. If VaR(2-years, 99.98%) =  $ 24.5 million, this means that 
there is a 0.02% chance of the company going bankrupt if they have an equity of  $ 
24.5 million. In other words – We have a confidence of 99.98% that the total loss 
over the given 2-year period will be maximum $ 24.5 million dollars. 

 

As seen in the above example, a confidence level of X% for the VaR gives us the outcome 
in which X% of the data is better, which implies that only (1-X)% of the data is worse. In 
other words – there is only a (1-X)% chance that the loss will be higher than the 
calculated VaR.  
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The potential loss depends on the chosen confidence level. The Value at Risk will 
increase when the confidence level is increased. This is due to the higher level of 
accuracy, which includes a larger percentage of the data, and thus also the worse 
returns. The opposite is true for decreasing levels of confidence.  

 

Choudhry (2006) describes the four steps for calculating VaR: 

(1) Determine the time horizon over which one wishes to estimate a potential loss 
(2) Select the degree of certainty required, which is the confidence level that applies 

to the VaR estimate 
(3) Create a probability distribution of likely returns for the instrument or portfolio 

under consideration 
(4) Calculate the VaR estimate 

  

The VaR is based on data, and can be calculated using three different approaches 
(Etukuru, 2011): 

 

1. Historical simulation (non-parametric approach) 
2. Variance - Covariance (Parametric approach) 
3. Monte Carlo Simulation 

 

The three different approaches presented above differ in how the data is going to be 
used for the calculation of the VaR. The approaches are supposed to make estimates that 
are as close to future distributions of returns as possible. The challenge of calculating 
the VaR lies mostly in selecting the approach that gives the best fit to the future 
distribution. 

 

This thesis will calculate the VaR for oil and gas related products. The three different 
approaches above will all be used, whereas the Parametric approach will be based on 
EWMA and GARCH (1,1), both of which assume that the data is  normally distributed.  

 

The Value at Risk can be back tested, which means that it is possible to test the validity 
of the estimation. If the VaR estimation is accurate, the amount of losses larger than the 
estimated VaR will only occur x% of the time, where x is the specified level of 
confidence. 

 

3.4.1 Historical simulation (non-parametric) 
The Non-parametric approach assumes that the future is going to behave exactly like the 
past. It is based on data from previous observations and is therefore often called “The 
Historical approach”.  

 

The historical returns are sorted numerically from worst losses to best gains. Because 
the data are sorted, the historical VaR can also be found by calculating the xth first data, 
which is the xth worst loss based on which x-percentile that is chosen for the VaR 
calculation.  
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Lets say we want to calculate a 99% confidence VaR. Then we are interested in finding 
the worst 1% of the data. If we are basing our calculation on a set containing 2000 
historical data, that would mean that the 99% VaR would give us the 20th (2000 x 1%) 
lowest value in the set considered.   

 

To better illustrate the Historical approach, a histogram representing the historical 
returns is presented below. The confidence level is drawn as a straight vertical line in 
the figure, representing the VaR at that confidence level.  

 

 
Figure 3.4: Histogram of returns for ULSD (red bars) and 95% VaR. 

 

Figure 3.4 illustrates that 95% of the actual historical returns will be on the right hand 
side of the confidence level line, which means that were better than this level. The 
remaining 5% is on the left hand side, and thus worse than the chosen level of 
confidence. Where the vertical line is drawn depends on the chosen level of confidence.  

 

A weakness of the historical simulation approach is that it does not say anything about 
the magnitudes of the losses that are in excess of the chosen level of confidence. These 
losses may be of significant magnitude, and therefore also of significant importance for 
risk management purposes. 

 

Yet another shortcoming of the historical simulation is that it requires a lot of data to 
provide a realistic result, and that all data are weighted equally. There has been 
performed several tests and written many papers about the historical simulation 
approach.  
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It has been concluded several times that the performance of the approach depends 
heavily on the amount of data considered. The trend is that historical approaches give 
more accurate estimates as the sample size increases (Hendricks, 1996, Vlaar, 2000). 

 

The historical approach is easy to understand and very easy to calculate when a 
sufficient amount of data is available. 

 

3.4.2 Variance – covariance (parametric) 
The Variance – Covariance (parametric) approach assumes that the future data will 
follow or approximately follow a specific distribution (e.g. Gaussian). This approach is 
also known as “the variance based VaR estimate” (Culp, Mensink, Neves, 1999) because 
of its dependency on the future distribution’s assumed variance.  

 

The assumption that the future data will follow a normal distribution makes the 
calculation of VaR more straightforward and easy to both understand and perform. To 
present a normal distribution the only two variables needed are the distribution’s mean 
and its standard deviation. This thesis assumes that the log returns follow a normal 
distribution.  

 

It is assumed that changes in instrument values will be linear with respect to changes in 
risk factors. This is a property that makes the parametric approach a linear approach 
(Etukuru, 2011). The requirement of parameters like the mean, standard deviation and 
correlation (the latter which is used on portfolios) is the reason why this approach is 
called parametric. 

 

To decide which mean and standard deviation that best represent the Gaussian curve for 
the future distribution, different models can be applied. To get an idea of what is going 
to happen in the future, an obvious thing to do would be to use the information available 
today, which amongst others is the historical data. There are a wide variety of models 
applicable to estimate the future data. This thesis uses the simple volatility, the EWMA 
and the GARCH (1,1), whom of all are described in Chapter 3.2 Risk measures, to 
calculate the historical standard deviation which is used to forecast the future standard 
deviation used in the estimation of the VaR. 

 

The simple volatility, EWMA and GARCH (1,1) differ in the approach they use to 
calculate the volatility (standard deviation). This means that the output, the volatility, 
from the different approaches may differ.   
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The VaR, assuming normal distributed data can be calculated using the formula 
presented below (Etukuru, 2011); 

VaRα = (σ * zα + µ ) * Asset value 
Where  σ : The standard deviation of asset per holding period in percentage 
  α : The significance. (1- α) is the level of confidence 

  Z : The z-value according to alpha-level  

 

If the entailed assumptions about the form and shape of the distribution are incorrect, 
the given VaR calculated with the parametric approach will not be reliable. This is the 
most significant weakness of the parametric approach. The calculated VaR will 
underestimate the actual VaR if one assumes normal distribution when in fact the data 
shows that they are not normally distributed.    

 

When calculating the VaR we are only interested in the outer left tail, in which we find 
the potential losses. Typically, the tails of a financial data series is found to be fat 
(Mandelbrot, 1963), meaning that extreme events occurs more often than predicted by a 
normal distribution (Embrecht et al., 2002). Statistically this can be checked using 
kurtosis, as a fat tail will have excess kurtosis indicating fat tails. Financial returns tend 
to have a much higher kurtosis than the normal distribution (Coleman 2012; McNeil et 
al. 2005). This makes the shape of the financial returns higher and with fatter tails than 
the normal distributions bell shaped curve. Leptokurtic distributions have kurtosis 
higher than three, and are more likely to represent the distribution of returns in finance 
(Brooks, 2011).  

 

The standard deviation and the mean will be influenced by major fluctuations in the 
historical data. Previous market shocks will affect the standard deviation differently 
depending on how extensive the data collection has been and on the decision of how to 
weigh the data.  

 

An advantage of the parametric approach is that once the standard deviation and the 
mean are decided it is typically much faster to calculate compared to Monte-Carlo 
simulation or historical simulation.  

 

3.4.3 Monte-Carlo simulation 
This approach is intended for calculations of VaR with regard to portfolios. The Monte-
Carlo simulation simulates the prices over a horizon. These prices are the data that is 
used for the VaR estimation, which then can be calculated using the same approach as is 
used to calculate the historical VaR. The only difference is that instead of using the 
historical data for the calculation, the simulated data will be used for the calculation. In 
other words – If we have simulated 2000 prices, the VaR on a 99% confidence level will 
then be today´s price minus the 20th lowest simulated price (2000 x (1-0.99) = 20). 
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The Monte-Carlo simulation performs random selections of data from a distribution. The 
degree of uncertainty and the average yield are amongst the assumptions that need to 
be taken to perform the simulation. 

 

3.5 Backtesting of VaR 
After the Value at Risk calculations have been performed and the results are given, it is 
necessary to examine the results and to verify that the methods chosen is in fact valid. A 
good method has to satisfy two equally important requirements; 

 

(1) The amount of times that the true values exceed the VaR is the same as expected, 
as indicated by the level of confidence. 

(2)  The exceptions are independent of each other.  
 

The data is expected to not exceed the 95% VaR estimate more than a total of 5% of the 
time (1-95%). This means that for the VaR estimate to be good, the losses can only 
exceed the VaR a reasonable amount of times, this depending on its level of confidence. 

 

Different tests can be used to examine an approach used to calculate the VaR. The 
simplest tests only consider the first requirement (1), whereas more advanced tests also 
takes requirement (2) into account. 

 

To compare the different approaches to Value at Risk, this study examines the amount of 
times the market change exceeds the individual VaR estimates. The good estimates will 
be the ones that experience an acceptable amount of times where the market changes 
exceed the estimate.  

 

In this study two tests have been used to test if the amount of exceeding losses are 
significant or not, thus resulting in the VaR to be rejected or accepted. The two tests 
used are the Kupiec test and the Christoffersen test. 

  

The next two sections will give a brief introduction to the two backtesting methods. 

 

3.5.1 The Kupiec test 
In 1995 Kupiec suggested a method to test if the number of exemptions is consistent 
with the level of confidence or not. This is one of the simple tests, and it only considers 
requirement (1). 

 

By using the binomial distribution Kupiec calculates the probability of the specific 
amount of VaR breaks to occur within a specified number of trading days. He then uses 
the cumulative binomial distribution to find a confidence interval in which the amount 
of VaR breaks has to fall for the approach to be accepted (Gustafsson, Lundberg, 2009). 
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The probability of x numbers of outcomes in n tries is calculated by using the formula 
for the binomial probability: 

 

 
 

Where:  x: is the number of VaR breaks  n: is the number of days 

   p: is the level of significance 

 

In short, the Kupiec test considers whether or not the amount of VaR breaks differs 
considerably from the level of significance. The underlying risk model is rejected if the 
amount of VaR violations significantly exceeds the expected amount with respect to the 
level of confidence. 

 

3.5.2 Christoffersen test 
In 1998 Peter Christoffersen published his three steps procedure for evaluating the 
ability of VaR models to predict the future. This test is more advanced, and considers 
both requirement (1) and (2). 

 

The Christoffersen test is a conditional test in the sense that it does not accept 
“clustering”. It considers when the actual data exceed the calculated VaR, and if the 
deviations are closely together in time. 

 

The test does not only estimate if the number of times the calculated VaR is exceeded by 
the actual data differs significantly from the level of significance (like the Kupiec test 
does), but also takes the time when this happens into account. Even though a VaR value 
has been accepted by the Kupiec test, it can be rejected by the Christoffersen test due to 
clustering.  

 

Good presentations of the above two back-tests for VaR can be found in Kupiec (1995) 
and Christoffersen (1998). 
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4 ANALYSIS OF DATA 
 

This chapter will provide information about the products that the calculations have been 
done for. 

 

4.1 The Products 
The prices of 10 products from the oil and gas industry are examined and used for the 
calculations performed for this thesis (with a brief explanation of them) are: 

 Propane NWE FOBSeagoing Platts Mid As Quoted(US$:F/T) 
(Propane is a byproduct of petroleum refining and natural gas processing) 

 Jet/Kerosene NWE CIF ARA Platts Mid As Quoted(US$:F/T) 
(Jet/Kerosene is a blend of hydrocarbons, a product of petroleum refining which 
belongs to the middle distillate group. Normaly used in commercial airliners. (ICIS, 
2012) 

 HSFO 3.5% NWE CIF ARA Platts Mid As Quoted(US$:F/T) 
(High Sulphur Fuel Oil, fuel oil containing 3.5% sulphur) 
 

 No.6 1%/LSFO NWE CIF ARA Platts Mid As Quoted(US$:F/T) 
(Low Sulphur Fuel Oil, fuel oil containing 1% sulphur) 
 

 Naphtha NWE FOB Barges Platts Mid As Quoted(US$:F/T) 
(Naphtha is a colorless, volatile petroleum distillate, usually an intermediate product 
between gasoline and benzine, used as a solvent, fuel, etc.) 
 

 ULSD 10ppm NWE FOB Barges Platts Mid As Quoted(US$:F/T) 
(Ultra Low Sulphur Diesel is diesel fuel with substantially lowered sulfur. Almost all of 
the petroleum-based diesel fuel available in Europe and North America is of a ULSD 
type)  

 

 NYMEX Henry Hub Nat Gas Monthly Rollover Series 1st Month Close As 
Quoted(US$:F/MMBTU) 
(Natural gas located at the Henry Hub, USA) 

 

 ICE NBP Nat Gas Monthly Rollover Series 1st Month Close As 
Quoted(US$:F/MMBTU) 
(National Balancing Point, natural gas in the U.K) 
 

 Zeebrugge Monthly Rollover Series 1st Month ICIS Heren Mid As 
Quoted(US$:F/MMBTU) 
(The price for natural gas bought from the Zeebrugge hub) 

 

 ICE Brent Combined Monthly Rollover Series 1st Month Close As 
Quoted(US$:F/BBL) 
(The price listed by ICE for Brent) 

 

Below follows explanations for some of the abbreviations presented above. 
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- NWE stands for North West Europe. Products with this in their name are 
traded from the North West Europe oil and petrochemicals market.  
 

- Mid means that the price is an arithmetic average between high and low 
quotations of the day. This is the case for most of the products. 

 

- ARA stands for Amsterdam-Rotterdam-Antwerp. Products termed ARA are 
used in shipping when discharge or loading occur in one of the three ports in 
Amsterdam-Rotterdam-Antwerpen. 

 

- FOB and CIF stands for Free On Board and Cost Insurance Freight. They are 
two different types of insurance. The type of insurance decides the 
responsibility for risk of the cargo during freight. CIF is generally more 
expensive because the freight is insured and the price is for the product at the 
delivery port. With FOB the price is for the product(s) at the departure port, 
and excludes the cost for shipping and insurance. The buyer has to pay for this 
by himself.  

 

- NYMEX stands for the New York Mercantile Exchange. Products termed with 
NYMEX are traded from this market.  

 

- NBP stands for the National Balancing Point, and is a virtual trading location 
for the sale, purchase and exchange of UK natural gas. Products with NBP in 
their name are traded from this market. 

 

- ICE stands for InterContinental Exchange and is an American financial 
company that operates Internet-based marketplaces. Products with ICE in 
their name are traded from one of the markets operated by ICE. 

 

- ICIS is a publisher of the European Spot Gas Markets (ESGM). 
 

- Zebrugge and Henry Hub are hubs located in Zeebrugge, Belgium and 
Louisiana, USA. They are distribution hubs for the natural gas markets in 
Europe and the US respectively. Products with one of the two names included 
indicates that the quoted price is for the product sold from one of these 
locations. 

 

- Platts is a pricing reporting agency (PRA). Most of the products in this study 
have Platts in their name, meaning that their price is quoted by Platts. 

 

- (US$:F/T) means that the price is quoted in US Dollars per Tonn. 
 

- (US$:F/MMBTU) means that the price is quoted in US Dollars per million BTu. 
BTu is the British Thermal unit. 1 MMBTU = 1,000,000 British Thermal Units 
= 293.071 kWh 
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- (US$:F/BBL) means that the price is quoted in US dollars per barrel. 

4.2 Statistical characteristics 
 

4.2.1 10-year history of price and volatility 
All of the oil products have been following the same trend over the last ten years. Their 
prices have all increased steadily from 2002 until 2008, when the financial crisis led to a 
dramatic decrease in price. From July 2008 prices decreased dramatically throughout 
the year (i.e. the price of Jet/Kerosene fell from a summer high in 2008 of above 1400 
USD/T to a low of below 400 USD/T the following winter!) In 2009 prices started to 
move steadily upwards again. 

 

The fact that the products have been following the same trend indicates that they are 
closely linked together and most likely impacted by the same factors. The 10-year price 
history for the seven oil products are given in figure 4.1 below. By looking at the figure, 
it is easy to observe that they all are strongly correlated. The reason why ICE Brent 
combined has a much lower value than the other products is only because its price is 
listed as dollars per barrel, instead of per ton. The conversion factor from barrels to tons 
are approximately seven, thus giving ICE Brent combined a value in the same range as 
the other products in the figure. 

 

The 10-year price histories for the thesis´ oil products are illustrated in figure 4.1. 

 

The price developments for the three natural gas hubs considered in this thesis indicate 
a strong link between them. The price trend for the natural gas markets is also affected 
by the financial crisis. From 2002 until 2006, the price development followed a positive 
trend. Between 2006 and 2007 the market price decreased. In 2007 the prices increased 
again, until the effects from the financial crisis forced prices downwards, to bottom 
levels of 2007. After the financial crisis, prices for the Zeebrugge hub and ICE NBP have 
increased, whereas the Henry hub continues to decrease. 

 

From 2002 until 2005, the natural gas prices had several peaks. These four price peaks 
can be explained by the season variation of natural gas. During the winter season, more 
natural gas is used, leading to an increase in demand. As described in chapter 2 Price 
variability in the oil and gas market, the increased demand most likely leads to an 
increase in price. Another explanation may because companies have changed their 
contracts to include a larger range of volumes. There are no sudden peaks after 2005. 
This can be a result of contracts taking larger volumes into account and more trading in 
the post market. But also increased supply, new technology and discoveries have made 
more natural gas available.  

 

It is expected that the prices of NBP (red in figure 4.2) and Zeebrugge (green in figure 
4.2) will have a high correlation due to the fact that they both are sold on the European 
natural gas market. As mentioned in 2.1.1 Storage and Transportation, the gas market is 
more regionally defined due to its limited transportability, and thus it is not too 
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surprising if the price for gas on the American natural gas market differs to some degree, 
when compared to the European market. The Henry Hub price differs a little from the 
two other prices, but can be said to follow the same trend until 2009/2010. The main 
reason for the decrease in price after this is the shale gas in the United States, increasing 
the supply of natural gas in the country. These reserves have become profitable to 
produce, thanks to new technologies within hydraulic fracturing. These discoveries may 
turn the United States from being a net importer of energy to a net exporter. 

 

The 10-year price histories for the thesis´ three natural gas products are illustrated in 
figure 4.1 below. 

 

There are similarities in the price variability between figure 4.1 and 4.2. The fact that 
they share the same trends can be explained by their prices being impacted mostly by 
the same factors. These factors are mentioned in chapter 2. The exception is the natural 
gas peaks in figure 4.2, which most likely are the effect of the increased demand due to 
seasonal winter weather. 
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Figure 4.1: 10-year price history for the seven oil products considered in this thesis. ICE Brent is listed as US$/BBL, the other products are 

listed as US$/T. Conversion factor from BBL to T is approximately 7. 
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Figure 4.2: Price history for natural gas. 
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The one-year volatilities for the seven oil products followed a downward trend from 
2002 until 2008. Then, due to the financial crisis, the volatilities increased dramatically 
throughout the year, and a downward trend did not begin until late in 2009. In 2010 the 
volatilities were back to where they were before the major increase, and after that have 
since demonstrated a slightly decreasing trend. 

 

The one-year volatilities for the seven oil products show an inverse connection with the 
products price developments presented in figure 4.1, but with a delay. The reason for 
the slight shift east is due to the calculations of the volatilities being based on a period of 
250 days. This is also true for the volatilities represented in figure 4.4.  

 

The volatilities for the seven oil products are presented graphically in figure 4.3 below.  

 

 

 
 

Figure 4-3: The volatilities of the seven products over the 10 year-period, measured by the 
standard deviation over the last 250 days. 

 

The volatilities for the three natural gas products show a downward trend. The one-year 
volatilities of the natural gas on the European market are dominantly higher than the 
one-year volatility of the natural gas from the Henry Hub until late 2009. This can again 
be explained by the new technology, resulting in an increased volume of economically 
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recoverable reserves of natural gas in the United States. The general downward trend 
can be explained by increased supply, in addition to this, companies have started to use 
new contracts, allowing them to get more flexibility with regard to future volumes. 

 

The differences in volatility over time are more pronounced for the natural gas series. 
This may be a result of temporary demand shocks from seasonal variations, but also due 
to temporary supply shocks as for instance seen in Europe with gas supply from 
Russia/Ukraine having experienced troubles during this period. There seems to be a 
convergence for all 3 products from 2008, which is of particular interest when 
considering the price fluctuations between Zeebrugge/NBP and Henry Hub, as seen in 
figure 4.2. 

 

The volatilities of the three natural gas products are shown in figure 4.4 below. 

 
 

Figure 4.4: The volatilites for the three natural gas products, measured by the standard 
deviation over the last 250 days. 

 

4.2.2 Properties of the return distributions 
A set of data will, according to the Central Limit Theorem, approach a normal 
distribution as the number of observations increase. By investigating the properties of 
the products´ return distributions, they can be compared with the normal distribution.   
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A normal distribution will have a mean and skewness of zero, and a kurtosis of three. 
The return distributions for the ten products all differ from the normal distribution, but 
to different degrees.  

 

All the products have a mean return close to zero, but none have a kurtosis of three or a 
skewness of zero.  

 

The kurtosis of the natural gas form the European and North American market differs 
significantly from the one of the normal distribution. They are 7 to 10 times larger. The 
Henry Hub and NBP both have a skewness close to 1. This implies that they do not 
follow the normal distribution, and thus their VaR is not expected to be accurate if it 
assumes normal distribution. 

 
Jet/Kerosene, No.6 and Brent are the three products that have kurtosis and skewness 
most similar to the normal distribution. 
 
The properties of the 10 different products return distributions are presented in table 
4.1 below. 
 

Product Mean Median 1.quartile 

 

3. 
quartile 

Standard  

Deviation 

Kurtosis  Skewness 

Normal 
distribution 

0 0   Varies 3 0 

Propane 0.00048 0.0000 -0.00617 0.00656 0.0176 9.8464 0.4101 

Jet/ Kerosene 0.00056 0.00087 -0.01123 0.01182 0.0197 1.9934 0.0890 

HSFO 0.00060 0.00077 -0.01233 0.01370 0.0247 6.8113 0.3924 

No.6 0.00059 0.00052 -0.01130 0.01260 0.0220 4.7290 0.0997 

Naphtha 0.00058 0.00126 -0.01192 0.01381 0.0244 7.2108 -0.1071 

ULSD 0.00053 0.00090 -0.01101 0.01215 0.0216 5.0433 -0.3545 

Henry Hub 
nat. gas 

-0.00026 -0.00099 -0.02087 0.01829 0.0420 37.6268 0.8380 

NBP nat. gas 0.00073 -0.00181 -0.02182 0.01765 0.0705 39.5820 0.7443 

Zeebrugge 
nat. gas 

0.00064 -0.00124 -0.02315 0.01917 0.0653 21.3410 0.3143 

Brent 0.00057 0.00126 -0.01168 0.01354 0.0229 2.8943 -0.2221 

        

Table 4.1: Properties of the ten products´ return distributions are compared with the 
normal distribution. 
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More than 30% of the returns of Propane were 0, thus making the distributions curve 
differ significantly to the normal distribution despite its closeness to zero mean, zero 
median and 0.4101 in kurtosis. This may be a result of the product not being traded in 
large volumes daily, as the data used in this analysis are based on daily returns.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: The distribution of the returns for Propane, based on the last 10 years of price 
history. Propane is the blue curve, while the red curve illustrates how a normal distribution 
with the same standard deviation would look like. 

 

All distributions had a kurtosis higher than three except the distributions for 
Jet/Kerosene and Brent, who both were close to three. The distributions of NBP and 
Zeebrugge differ greatly from the normal distribution as illustrated in figure 4.6 below. 

Figure 4.6: The return distributions of NBP and Zeebrugge natural gas. The blue curves 
illustrate the distribution of the returns whilst the red curves showes the normal 
distribution curves with standard deviations with the same as the ones of the return 
distributions. 
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Jet/Kerosene, No.6, ULSD and Brent are the four products that have curves most similar 
to the normal distribution curve. As mentioned above, Jet/Kerosene, No.6 and Brent are 
the three products with kurtosis and skewness nearest to the normal distribution. ULSD 
have a negative skew of -0.3545, but has a kurtosis and mean close to that of the normal 
distribution. The curves of the four distributions are illustrated in figure 4.7 below. 

 

 

 

 

Figure 4.7: Illustration of the distributions of Jet/Kerosene, No.6, Henry Hub, HSFO, ULSD 
and Brent compared with the normal distribution. The curves of the products returns are 
in blue, the normal distribution is in red.  
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The return distributions are not normally distributed. However, most of them have a 
shape similar to the bell curve, with the exception of a higher peak and thicker tails. This 
implies that the distributions have properties more similar to a student-t distribution.  

 

Due to the similarities of the student-t and the normal distribution, the returns are 
assumed to be normally distributed in the calculations that follow. This makes it 
possible to use the MLE method to estimate the variables needed to calculate EWMA and 
GARCH (1,1). The VaR for the portfolios will be calculated assuming both distributions, 
to compare the results. For the student-t distributions, 6 degrees of freedom are chosen, 
as the standard is between 5-7 degrees of freedom for financial returns. 

 

4.3 Portfolio diversification and product correlation 
The four portfolios created consist of several of the ten products given above. Each 
product is not invested in more than once. The four portfolios are listed in table 4.2 
below. 

Portfolio 
# Propane 

Jet/ 
Kerosene 

HSFO 
3.5%  

No.6 
1% 
/LSFO Naphtha  

ULSD 
10ppm  

Henry 
Hub 
Nat 
Gas 

NBP 
Nat   

Zeebrugge 
Nat Gas Brent  

A 1 1 0 0 0 0 0 0 1 1 

B 1 0 0 1 0 0 1 0 1 0 

C 0 1 0 0 1 1 1 1 1 0 

D 0 1 0 0 0 1 1 1 1 1 

Table 4.2: The four different portfolios. 

 

The seven oil products are highly correlated, meaning that their price variations follow 
each other. This is as expected considering the descriptions of their price and volatility 
histories presented in section 4.2 Statistical characteristics. The natural gas are not as 
correlated with the oil products. 

 

The two prices for natural gas on the European market (NBP and Zeebrugge) are also 
very correlated, as discussed in section 4.1 Statistical characteristics. On the other hand, 
the price for natural gas from the Henry Hub in the United States is not very correlated 
to any of the other nine products. The Henry Hub is, as the only one, even slightly 
negatively correlated with HSFO and LSFO.  Table 4.3 below, shows the correlation 
between the products. 

 

 

 

 

 



 

Page 53 of 74 

 

Correlation Propane  

Jet/ 
Kero-
sene  

HSFO 
3.5%  

No.6 
1%/LSFO  Naphtha  

ULSD 
10ppm  

Henry 
HubNat 
Gas  

NBP 
Nat  

Zee-
brugge  Brent  

Propane  1.0000 0.9124 0.9041 0.9080 0.9483 0.9120 0.0236 0.6954 0.6563 0.9014 

Jet/Kerosene  0.9124 1.0000 0.9259 0.9395 0.9664 0.9981 0.1185 0.7382 0.7077 0.9772 

HSFO 3.5%  0.9041 0.9259 1.0000 0.9946 0.9584 0.9243 -0.1739 0.5994 0.5693 0.9458 

No.6 1%/LSFO  0.9080 0.9395 0.9946 1.0000 0.9587 0.9386 -0.1281 0.6293 0.5998 0.9546 

Naphtha  0.9483 0.9664 0.9584 0.9587 1.0000 0.9637 0.0010 0.6469 0.6029 0.9546 

ULSD 10ppm  0.9120 0.9981 0.9243 0.9386 0.9637 1.0000 0.1126 0.7396 0.7085 0.9750 

HenryHub Nat 
Gas  0.0236 0.1185 

-
0.1739 -0.1281 0.0010 0.1126 1.0000 0.3887 0.3347 0.0400 

NBP Nat  0.6954 0.7382 0.5994 0.6293 0.6469 0.7396 0.3887 1.0000 0.9075 0.7196 

Zeebrugge  0.6563 0.7077 0.5693 0.5998 0.6029 0.7085 0.3347 0.9075 1.0000 0.6879 

Brent  0.9014 0.9772 0.9458 0.9546 0.9582 0.9750 0.0400 0.7196 0.6879 1.0000 

Table 4.3: Correlation between the ten products. Henry Hub, NBP and Zeebrugge are the 
natural gas, whilst the remaining seven products are oil products. 

 

The four portfolios have different degrees of diversification due to the fact that they all 
have a mix between the oil products and the natural gas. General portfolio theory as 
described in Chapter 3 provides a set of opportunities for a risk manager. The portfolios 
used should therefore have lower risk due to diversificiation. The return distributions 
all have a mean and median close to zero as seen in table 4.4. However, their kurtosis 
differ significantly from the one of the normal distribution.  

 
Product Mean Median 1.kvartil 

 

3.kvartil Standard  

Deviation 

Kurtosis  Skewness 

Normal 
distribution 

0 0   Varies 3 0 

Student-t, 6o 0 0   Varies 6  

Portfolio A 0.0005
6 

0.00034 - 
0.00870 

0.00918 0.01929 10.0654 0.2754 

Portfolio B 0.0003
6 

0.00039 -
0.01015 

0.01017 0.02096 8.9499 0.1776 

Portfolio C 0.0004
6 

0.00012 -
0.01051 

0.01025 0.02240 13.4458 -0.0369 

Portfolio C 0.0004
6 

4.46E-6 -
0.00914 

0.00959 0.02143 15.6082 -0.0264 

Table 4.4: Properties of the distributions of the four portfolios, compared with the normal 
distribution.  
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All the four curves for the four portfolios` return distributions are similar. They are 
dominated by thin high peaks, thus differing from the normal distribution. Because of 
the returns high kurtosis, they are more likely to fit better with a leptokurtic distribution 
as presented in chapter 3.4.2 – Variance-covariance. 

 

The curves of the four distributions are illustrated in figure 4.8 below.  

 

     

 
 

Figure 4.8: Portfolio A – D respectively. Blue line is portfolio distribution of daily log 
returns. Red line is normal distribution. 
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5 EMPIRICAL RESULTS 
In this chapter the results of the VaR calculations are presented and discussed. The 
different approaches are calculated for 250, 500 and 1000 days, and back-tested by 
using the Kupiec test and the Christoffersen test. The tests are performed based on two 
different levels of significance; 95% and 99%. 

 

A description of how the calculations have been performed is presented, and the results 
from the back-tests will be presented and discussed.  

 

5.1 The VaR estimation methods 
The historical price data of 10 different petroleum products have been collected. The 
prices are given for each trading day from 1. October 2002 until 20. April 2012.  

 

The logarithmic profits and losses were calculated for each day using the formula 
presented below: 

 
 

Excel’s SUMPRODUCT was used to calculate the P&L for the portfolios. 

 

The standard deviations for the P&L data were calculated by considering different time 
periods. The calculations were done for the span of 250, 500 and 1000 trading days. 
Excel’s formula STDEV was used to perform the calculations.  

 

The P&L results were used to calculate the EWMA and GARCH (1,1). The Maximum 
Likelihood Estimation (MLE) was used to estimate the different parameters needed to 
solve the calculations for the EWMA and GARCH (1,1).  

 

Excel’s Solver has been used to perform the MLE for each individual product. 

 

EWMA and GARCH (1,1) were calculated for different periods of time; 250, 500, and 
1000 trading days. 

 

The historical prices together with the results from the standard deviation, EWMA and 
GARCH (1,1) calculations were then used as input for the estimations of the different 
products´ Value at Risk. 
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The VaR was calculated with two significance levels; 95% and 99%. Eight VaR 
calculations were performed for each product and each portfolio per time period. The 
different approaches used to calculate VaR: 

 

The VaR was calculated with two significance levels; 95% and 99%. Eight VaR 
calculations were performed for each product and each portfolio per time period. The 
different approaches used to calculate VaR: 

 

- Historical Simulation 
- Variance-covariance 

o Simple (by using the standard deviation as input) 
o EWMA 
o GARCH (1,1) 

 

The VaR was calculated based on different time spans. The time periods were 250, 500 
and 1000 trading days. The normal distribution was used in the calculations of all 
products, whereas both the normal and student-t distributions were used for the 
portfolios.  

 

The calculation of VaR, under the assumption of normal distributed data is: 

 

VaRnormal = volatility*Z 

 

When the data is assumed to follow a student-t distribution, the degrees of freedom can 
be converted to a Z value by using Excels function TINV , and the calculation is the same 
as for the normal distribution: 

 

VaRStudent-t = volatility*Zt 

 

To be able to comment on and compare the different approaches, the extreme values 
were counted by using a formula to count the times the estimated VaR was exceeded by 
the actual change in the market. 

 

The number of times that the actual change exceeded the estimated VaR were then used 
as input to backtest the approaches. The backtesing methods, Kupiec (1995) and 
Christoffersen (1998) test, were calculated using Excel macros.  

 

5.1.1 The VaR estimations 
The Value at Risk has been calculated with regard to three different periods (250 days, 
500 days and 1000 days), in order to measure the market volatility for one, two and four 
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trading years. Confidence levels of 95% and 99% were used, as these are the most 
common confidence levels to use in this industry. 

 

The Parametric and the Non-parametric approaches have been used to calculate the 
Value at Risk for the ten different products, assuming a normal distribution. For the 
portfolios, both normal and student-t distributions were assumed, due to the high 
kurtosis. For the Parametric approach, three different volatilities have been used to 
calculate the Values at Risk: standard deviation, EWMA and GARCH (1,1). 

 

The results for ULSD and Henry Hub will be presented to illustrate the products with the 
best  back-test results among the oil products and among the three natural gas hubs. The 
results for the one-year period will be presented in a table of products and a portfolio 
table, while the results for the other periods will be discussed in the text (no table will 
be provided). However, all the results for the back-tests can be found in the appendix. 
The one-year period has the highest “update rate”, and will be presented in the tables 
and figures in this chapter. The results from the back-tests performed on the two-and 
four-year periods will be discussed in the text together with the results of the one-year 
period (no table will be provided). However, all results and calculations can be found in 
the Excel workbooks in the appendix found on the CD. 

 

5.2 Back-testing the different VaR approaches 
The two back-testing methods, described in section 3.5 Back-testing of VaR, by Kupiec 
and Christoffersen has been used to investigate the validity of the VaR approaches and 
their results.  

 

The number of VaR breaks for each approach is calculated, with confidence levels of 
95% and 99%, for each product and portfolio. The Extreme events are found when the 
actual return exceeds the one that has been predicted. This results in 36 different VaR 
estimates for each approach, 20 come from the VaRs for the individual products, and 16 
from the portfolios. The back-tests are used to investigate whether the amount of VaR 
breaks is significantly different (or not), from what is expected by the significance level.  

 

For the estimation method to be accepted, the estimated VaR cannot differ from the 
actual data more times than what is accepted by the level of confidence (as described in 
section 3.5 Backtesting). The number of VaR breaks is calculated for each approach on 
each product/portfolio with the confidence levels of 95% and 99%. The back-tests are 
used to calculate if the amount of VaR breaks is significantly different from what is 
expected by the significance level.  

 

5.2.1 Products 
The one-year VaR estimates obtained the best results from the back-tests. As the time 
period considered increased, so did the number of back-test rejections. This may be a 
result of the impact that the financial crisis had on the return data. Because the one-year 
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period only is based on the previous 250 trading days at a time, its rate has a higher 
level of refreshment compared to the two- (500 trading days) and four-year (1000 
trading days) periods. Although the one-year period provides the most updated rate, its 
volatility is greater due to the smaller amount of data. 

 

ULSD was the only product that got accepted by both tests for all three time periods. The 
VaR breaks for the 95% confidence level are illustrated in figure 5.1 below. 

 

For simplicity, only the 95% VaR is presented for one oil product (ULSD) and one gas 
product (Henry Hub). The results for 99% are similar, although all estimates are more 
extreme resulting in fewer breaks. 

 

Henry Hub was accepted most times in the 500-day period. Then it was accepted for all 
methods on a 99% level, whereas the non-parametric approach (Simple) and the EWMA 
approach accepted it on the 95% level. Kupiec accepted all of the VaR on the 99% level 
for the one-year periodwhilst Christoffersen accepted the simple approach on the 95% 
level, and both EWMA and GARCH (1,1) for the 99% level. 
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Figure 5.1: Illustration of VaR breaks (in red) for ULSD, with a 95% confidence level for the one-year time period. The Extreme events are 

found when the actual return exceeds the one that has been predicted. 
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Figure 5.2: Illustration of VaR breaks (in red) for Henry Hub, for the 95% confidence level, for the one-year time period. The Extreme events 

are found when the actual return exceeds the one that has been predicted. 
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All of the VaR approaches were rejected for the five-year period for Zeebrugge, whilst 
they were accepted on the 99% confidence level for the two-year period. 
Christoffersen did not accept the historical VaR for the 99% confidence level, but 
approved the 95% confidence level for this approach. Both tests accepted the 
remaining three approaches for the 99% confidence level. NBP was rejected on both 
confidence levels for both the two- and the five-year period. For the one-year period 
all approaches were accepted by both tests for the 99% level. 

 

The Christoffersen test rejected all of the VaRs calculated for Propane and No.6, for all 
three periods. Due to the fact that Kupiec accepted them both, this indicates that their 
VaR breaks are too clustered.  

 

The Historical (Simple) approach was the estimation method that was accepted the 
most by both tests for all three time-periods considered and both levels of 
significance.  

For the one-year period, the Kupiec test approved the VaR for this approach for all of 
the products, while the Christoffersen test only disapproved of 8 out of 20 VaR 
breaks. With four of these times coming from Propane and No.6, this leads one to  
question whether this is limited to these products and how this may be explained 
considering their properties. 

 

The Variance-Covariance approach did not have as many acceptances as the 
Historical approach. The VaR based on the standard deviation (SD) was accepted 70% 
of the time by the Kupiec test, and 45% of the times by Christoffersen.  

 

The VaR based on the EWMA was accepted in 50% of the tests. Kupiec accepted it in 
12 of 20 tests.  

 

The amount of VaR breaks for the VaR based on GARCH (1,1) was determined by 
Kupiec to be significant in 8 of the 20 calculations. The Christoffersen test accepted 
the test for 6 out of 20 calculations. This results in the GARCH (1,1) being the test 
with the lowest score in the one-year period VaR. 

 

The amount of VaR breaks are summarized and presented in table 5.1 below, together 
with the results from the two back tests. The values are given for a 95% confidence 
level on the first line, whereas the second line of data gives the data for a confidence 
level of 99%. A method accepted by one of the tests will be marked with either K 
(Kupiec) or C (Christoffersen). 
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VaR  95% 

          99% 

VaR 
breaks 

VaR breaks 
Simple 

VaR breaks  

SD 

VaR breaks  

EWMA 

VaR breaks  

GARCH (1,1) 

Propane 0.0568 

0.0236 
0.0513K 

0.0134K 

0.0402 

0.0203 
0.0430K 

0.0222 

0.0374 

0.0194 

Jet/ 
Kerosene 

0.0531 

0.0125 
0.0471KC 

0.0111KC 

0.0457KC 

0.0083KC 

0.0481KC 

0.0106KC 

0.0134 

0.0028 

HSFO 0.0564 

0.0217 
0.0522KC 

0.0120K 

0.0457KC 

0.0176 

0.0481KC 

0.0199 

0.0203 

0.0079K 

No.6 0.0564 

0.0199 
0.0485K 

0.0134K 

0.0481K 

0.0148K 

0.0522K 

0.0189 

0.0485K 

0.0171 

Naphtha 0.0555 

0.0208 
0.0494KC 

0.0116KC 

0.0485KC 

0.0143K 

0.0527K 

0.0199 

0.0494 

0.0185 

ULSD 0.0536 

0.0134 
0.0476KC 

0.0083KC 

0.0439KC 

0.0120KC 

0.0508KC 

0.0134KC 

0.0467KC 

0.0111KC 

Henry 
Hub nat. 
gas 

0.0587 

0.0185 
0.0560KC 

0.0125KC 

0.0421K 

0.0152KC 

0.0504KC 

0.0176 

0.0388 

0.0143KC 

NBP  

nat. gas 

0.0439 

0.0097 
0.0434K 

0.0088KC 

0.0217 

0.0069KC 

0.0166 

0.0051KC 

0.0171 

0.0060KC 

Zeebrugg
e nat. gas 

0.0467 

0.0157 
0.0462KC 

0.0102K 

0.0263 

0.0106KC 

0.0296 

0.0139KC 

0.0250 

0.0106KC 

ICE Brent 0.0596 

0.0236 
0.0550K 

0.0129KC 

0.0494K 

0.0180 

0.0508K 

0.0222 

0.0328 

0.0134KC 

Sum K  10 

10 

7 

7 

8 

4 

2 

6 

Sum C 

 

 6 

6 

4 

5 

4 

4 

1 

5 

 

Table 5.1: Percentage of VaR breaks for each approach and product. Numbers accepted 
by the Kupiec test and the Christoffersen test are market with K (Kupiec) and/or C 
(Christoffersen). The data are calculated based on a one-year period. 

 

A trend is noticeable when comparing the results from the three different time 
periods: As the time period considered increased, so did the back-test rejections. This 
is true for all of the four approaches used to calculate the VaR. This can be caused by 
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the impact of the financial crisis that occurred within the price histories collected. As 
the amount of data considered increase, data from the financial crisis have a greater 
influence on the amount of VaR breaks. This because they are accounted for more 
times (remain in the same dataset) as the considered days increase. On the other 
hand, the extreme events occurring in the financial crisis will impact the VaR 
estimates of small data sets (i.e. 250 days) more than it will for larger sets of data (i.e. 
500 and 1000 days).     

 

The data from the financial crisis are more extreme, and as a result calculations 
taking them into account tend to result in an overestimation of the VaR. 

 

The back-tests were performed for three time periods for the portfolios, in order to 
compare how the tests performed for the periods before, during and after the 
financial crisis. The tests were performed on the oil product Brent, and on portfolio B. 
Brent confirms the assumption that the data in the financial crisis are more volatile 
and therefore rejected by the back-tests. 

 

For the calculations of the separation of periods, the financial crisis is defined to last 
from June 5th 2008 to June 4th 2009. It must be pointed out that these dates are very 
roughly estimated and the amount of data for the calculations may not be sufficient to 
provide good results. The table for the results from the VaR back-tests for the three 
periods (before, within, after the financial crisis) are presented in table 5.2 below. The 
table for portfolio B can be found in section 5.2.2 Portfolios. 

 

Brent       95% 

                   99% 

VaR Simple VaR SD VaR EWMA VaR GARCH 
(1,1) 

Total K 

KC 

K 

- 

K 

- 

- 

KC 

     

Before the 
Financial Crisis 

KC 

KC 

K 

KC 

KC 

KC 

- 

KC 

     

Within the 
Financial Crisis 

- 

- 

- 

- 

- 

- 

- 

- 

     

After the 
Financial Crisis 

K 

KC 

- 

KC 

- 

KC 

- 

KC 

Table 5.2: The results from the VaR back-tests for the three periods (before, within, 
after the financial crisis) for Brent. The financial crisis is defined to last from June 5th 
2008 to June 4th 2009 
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5.2.2 Portfolios 
The VaR methods got rejected significantly more when the calculations were based 
on the data from the portfolios instead of the individual products. Even though the 
VaR was calculated for both normal and student-t distributions, both portfolios A and 
B got the same amount of VaR breaks for the two different distributions. For 
portfolios C and D, the amounts of VaR breaks for the student-t distribution were less 
than for the normal distribution. Despite this, the student-t distribution assumption 
provided more rejections than the normal distribution assumption. A reason for this 
may be that the VaR got over estimated due to the thicker tails associated with the 
leptokurtic student-t distribution. 

 

The non-parametric approach was accepted the most for the 250-day period, and was 
the only method that got accepted by the Christoffersen test. Kupiec accepted the 
approach for all four portfolios, whereas Christoffersen only accepted the approach 
for portfolio C.  

 

All of the approaches obtained better results for the 99% confidence level. This may 
be a result of the lower significance level, making the estimates more extreme. By 
doing this, more of the subsequent breaks experienced at 95% VaR are removed, and 
as a result the likelihood of accepting the method increases when using a 
Christoffersen test. 

 

The amounts of one-year VaR breaks are given in table 5.3 below, together with the 
results from the back-tests. Student-t data are given in the parentheses. An empty 
parentheses means that the value is the same as for the normal distribution.  For the 
historical simulation (VaR breaks Simple in the table), it is independent of any 
assumptions about the underlying distribution. 
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VaR   

Norm (Stud-t) 

95% 

99% 

VaR 
breaks 

VaR 
breaks 
Simple 

VaR 
breaks 

 SD 

VaR breaks 
EWMA 

VaR breaks 
GARCH (1,1) 

Portfolio A 0.0504 
(0.0467) 

0.0185 
(0.0139) 

0.0467K 

0.0134K 

0,0236 () 

0,0055K (K) 

0,0268 () 

0,0065K (K) 

0,0231 () 

0,0060K (K) 

Portfolio B 0.0541 () 

0.0171 () 

0,0471K  

0,0111K 

0,0374 ()  

0,0139K (K) 

 

0,0439K (K)  

0,0166 () 

0,0379 ()  

0,0120K (K) 

Portfolio C 0.0545 
(0.0522) 

0.0171 
(0.0116) 

0,0513KC 

0,0116KC 

0,0384 
(0.0240)  

0,0111K 
(0.0037) 

0,0416 
(0.0268)  

0,0143K 
(0.0046) 

0,0351K (0.0226)  

0,0134K (0.0032) 

Portfolio D 0.0297 
(0.0283) 

0.0057 
(0.0042) 

0,0499K 

0,0120K 

0,0370 
(0.0226)  

0,0134K 
(0.0028) 

0,0393 
(0.0273)  

0,0152K 
(0.0046)  

0,0342 (0.0226)  

0,0120K (0.0032) 

Sum K  10 

10 

7 

7 

8 

4 

2 

6 

Sum C 

 

 6 

6 

4 

5 

4 

4 

1 

5 
 

Table 5.3: The amount of VaR breaks for the different approaches on the portfolios. The 
results from the assumption of student-t distributed returns are given in the 
parentheses. Parentheses are left blank when the two distributions got the same value. 

 

The results from the periods based on 500 and 1000 trading days are presented in 
table 5.4 below. The data are from the VaR assuming student-t distribution, and it is 
evident that the non-parametric (Simple) approach achieves significantly better 
results than the parametric approaches. 
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Portfolio 

95%500  (1000) 

99% 500  (1000) 

Simple VaR SD VaR EWMA VaR GARCH (1,1) 
VaR 

A K (K) 

K (K) 

- (-) 

- (-) 

- (-) 

KC (-) 

- (-) 

- (-) 

B K (K) 

KC (KC) 

- (-) 

- (-) 

- (-) 

- (-) 

- (-) 

- (-) 

C KC (KC) 

KC (KC) 

- (-) 

- (-) 

- (-) 

- (-) 

- (-) 

- (-) 

D - (-) 

K (K) 

- (-) 

- (-) 

- (-) 

- (-) 

- (-) 

- (-) 

Sum K 3  (3) 

4  (4) 

- (-) 

- (-) 

- (-) 

1 (-) 

- (-) 

- (-) 

Sum C 1 (1) 

2 (2) 

- (-) 

- (-) 

-  (-) 

1 (-) 

- (-) 

- (-) 

Table 5.4: The results from the back-tests performed on the different portfolios based 
on 500-day data (1000-day data). 

 

Portfolio B and C were the portfolios that obtained the best results for the back-tests 
over all. Project B was accepted for more than the non-parametric approach, and is 
therefore chosen to illustrate the difference when dividing the VaR breaks into three 
time periods. Results for Portfolio B are given in table 5.5 below. 

 

For the calculations of the separation of periods, the financial crisis is defined to last 
from June 5th 2008 to June 4th 2009. It must be pointed out that these dates are very 
roughly estimated and the amount of data for the calculations may not be sufficient to 
provide good results.  



 

67 

 

Portfolio B – Stud-t 

95%             99% 

VaR Simple VaR SD VaR EWMA VaR GARCH (1,1) 

Total K      K -        K K       - -       K 

     

Before the 
Financial Crisis 

-      K -        K -       K -       K 

     

Within the 
Financial Crisis 

-       - -        - -        - -        - 

     

After the Financial 
Crisis 

KC       KC -         KC -         KC -      KC 

Table 5.5: The results from the VaR back-tests for the three periods (before, within, after 
the financial crisis) for Portfolio B. The financial crisis is defined to last from June 5th 2008 
to June 4th 2009. 
 

The back-tests done for the period of the financial crisis rejects more of the VaR values 
compared with the other periods. For portfolio B, the VaRs in the financial crisis were 
rejected for all approaches. The normal distribution assumption results in more rejections 
within the financial crisis than if a student-t distribution is assumed. 
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6 CONCLUSION 
The results presented in the previous chapter will be discussed in this chapter. 

 

The results obtained in this study do not clearly state one or more of the approaches 
as a correct approach of calculating the VaR.  Because this study was limited to a few 
products withing the oil and gas industry, the conclusions drawn based on the results 
may not apply for other products and other industries. 

 

None of the approaches were accepted by all tests. One would believe that the 
parametric approach, based on the more complex volatility calculations EWMA and 
GARCH (1,1), would provide the best estimates of VaR. However, in fact the more 
simplistic historical simulation test provided the best results. 

 

Even though this study proves the historical simulation to be the most successful, this 
conclusion cannot be drawn in general. The parametric approach is more complicated 
than the historical simulation, and relies on several parameters. Wrong parameters 
may affect the accuracy of the approach, and result in a rejection by the back-tests. 

 

The MLE performed to estimate the parameters for both EWMA and GARCH (1,1) may 
not be correct due to the fact that Excel’s Solver finds the local maximum, and not the 
global. Even though the estimation has been done several times, it cannot be 
guaranteed that the maximum found is the global maximum. 

 

The results from this study indicate that the validity of the approach is not only 
dependent on the approach, but also on the specific product or asset being studied. It 
is evident that for some of the products/assets, none one of the approaches are 
accepted for the longer time periods (500, 1000). Therefore, one may further 
conclude that the distributions cannot be generalized; and that each asset/product 
has to be studied individually to determine its distribution.  

The reason why the parametric approach did not obtain good results from the back-
tests is very likely due to the normal distribution assumptions. Even though the VaR 
for the student-t assumed portfolios did not result in many acceptances, one can 
conclude that the data did not follow a normal distribution.  

 

When the portfolios were assumed to be student-t distributed, the back-tests rejected 
more of the approaches for the majority of portfolios and time periods (one, two and 
five years). However, the student-t accepted more of the VaRs within the financial 
crisis.  

 

As the time period considered was increased, so did the back-test rejections. This was 
especially significant for the products, because the one-year period is only based on 
the previous 250 trading days, its rate has a higher level of refreshment compared to 
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the two- (500 trading days) and four-year (1000 trading days) periods. Although the 
one-year period provides the most updated rate, its volatility is greater due to the 
smaller amount of data.  

 

One would believe that the accuracy of the estimations would increase with 
increasing observation period, due to the central limit theorem (however, the 
financial crisis occurred during the time span when the data for this thesis was 
collected). Nevertheless, by increasing the time period considered, a higher emphasis 
will be placed on the data derived from the financial crisis, and it will be calculated for 
a longer period of time when the VaR is calculated. For the shortest observation 
period, the financial crisis will have a substantial impact for a short, temporary 
period. 

 

Most of the return distribution curves of the ten products had a shape similar to that 
of the normal distribution curve. Nevertheless, the tails were to some extent thicker 
than a normal distribution tail, which was confirmed by the kurtosis. Logically, this 
will tend to underestimate the true VaR if a normal distribution is assumed.  

 

For the portfolios all of the approaches get sufficiently better results for the 99% 
confidence level.  

 

All of the approaches get better results for the 99% confidence level. This may be a 
result of the lower significance level, making the estimates more extreme. By doing 
this, more of the subsequent breaks experienced at 95% VaR are removed, and as a 
result the likelihood of accepting the method increases when using a Christoffersen 
test. 

 

All of the above can be summed into one conclusion; due to the fact that VaR 
estimations are meant for periods of normality, and that the parametric approach got 
rejected so many times, the approaches are not applicable when data from the 
financial crisis is involved. As a consequence it may be more accurate to include a 
regime shifting method to adjust for extreme periods. 

 

Conclusion 1: The validity of the approach is not only depending on the approach, but 
also on the specific asset.  

 

Conclusion 2: This study does not provide enough information to conclude whether 
or not the historical simulation approach is better than the parametric approach. 

 

Conclusion 3: As the time period considered increased, so did the back-test rejections.  
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Conclusion 4: More VaR approches got accepted on the 99% confidence level 
evaluating VaR using a Kupiec and Christoffersen test. 

 

Further studies 

This thesis studies the VaR of ten different products from the oil and gas industry. The 
results drawn from this work may not be accurate for other products. It would be 
interesting to study the properties of other products´ return distributions and 
determine how the approaches would perform when applied to them. 

 

In addition, it would be interesting to conduct further studies on the parametric 
approach, and to estimate the best parameters. As well as compare different 
distributions, i.e. Student-t and Delta Gamma, and try to find a similar distribution for 
different product returns.  Furthermore, it would be ideal to study the effects of the 
financial crisis, to determine when it began to influence the returns, and perform the 
back-tests for the three periods (before, during and following the financial crisis). 

 

Lastly, it would be interesting to have an opportunity to study more back-testing 
methods. 
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