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Summary 
 

 

This thesis is concerned with studying the short run dynamics of 
commodity prices. The industry of interest and primary study is 
Norwegian Aquaculture, with the price of farmed salmon as the 
main data-set. Even though most of the cases studied are related to 
the salmon market, it is my hope that some of the insights and 
results can be applied to a more general set of agricultural or 
conventional commodities.  
 
This thesis falls in line with a large collection of research papers 
and thesis’ on the Norwegian aquaculture industry. Motivated by 
dissecting what has largely been a highly successful growth 
industry, coupled with availability of detailed high quality data, a 
great deal of economic research on the industry has been conducted. 
Much of this research is related to long run supply side effects. A 
large low frequency panel data set has laid the ground for 
successful economic research into amongst other productivity 
effects in the industry. Due to a lack of high frequency data, the 
short run effects have been less studied. The only reliable high 
frequency data available is price data. This thesis contributes to the 
body of research on the industry by focusing on the short run price 
dynamics of the commodity. In addition to studying short run 
effects, the thesis introduces tools originally used in finance to 
study the price data. Incorporating both traditional economic 
analysis and finance is relevant when doing short run price 
analysis, and provides an alternative angle for looking at the 
commodity market.  
 
Due to the lack of detailed high frequency data on state variables 
other than price, the thesis applies non-structural time series 
analysis as the method for empirical analysis. This necessarily 
restricts direct inference of causality relationships. However, non-
structural time series analysis provides a large battery of models to 
reliably and thoroughly describe the dynamics of the series studied. 
The detailed output from time series models are used in 
combination with knowledge of predictable relative changes in 
underlying state variables to understand the market dynamics. 
 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

1. INTRODUCTION 
 
The variations of prices around their long-run trends define their 
volatility. These short-run fluctuations are generally dominated by 
noise. Noise in the observed data can enter from exogenous sources, 
such as weather/climatic effects, or from measurement errors. 
Despite noise being a major part of short run fluctuations, we often 
observe persistent and deterministic patterns. In economic theory, 
such patterns are predicted to arise from the speculative property 
of the commodity. The ability to store and speculate on the future 
value of the commodity allows economic cost variables to enter the 
short-run dynamics of prices.  
 
The general economic theory proposing to explain short-run 
dynamics of commodity prices is the theory of storage (Kaldor, 
1939; Working, 1948, 1949; Brennan, 1958). As stated by Fama & 
French (1987), the theory is not controversial. Its initial strength is 
its simplicity and use of tangible economic variables as explanation 
variables. The theory of storage states that in order to carry a 
commodity forward, the carrier’s needs to be compensated for the 
cost of storing and the alternative cost of capital. This 
compensation comes in the form of expected price changes. In its 
general form, the theory gives an intuitive explanation to observed 
patterns in short run dynamics.  
 
Commodity markets are heterogonous. In its general form the 
theory of storage is to general to provide detailed predictions on all 
commodity markets. Being the main economic variable, the cost of 
storage needs to be specified for the particular commodity market 
analysed. Assuming, for example, a constant positive cost of storing 
fails to explain certain properties observed in commodity prices, 
such as backwardation in futures markets (Deaton & Laroque, 
1996). Each commodity market has a specific cost of storing 
function. The perishability of the commodity, the flexibility of 
changing production scale, the exogenous shocks to stocks, the use 
of the commodity (input value, multiple outputs) and seasonal 
effects all contribute to the cost of storing function. This 
necessitates a unique specification of the function for each 
commodity market analysed. These specifications allow use of the 
theory of storage as an analytical tool in interpreting output from 
empirical models where statistical causality inference is hard or 
impossible, such as non-structural time series models.  
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This thesis investigates the dynamics of commodity prices with 
main focus being on the price of Norwegian farmed salmon. The 
theoretical background for my analysis is the theory of storage. I 
use the theory of storage and its market specific modifications as an 
analytical framework to interpret output from the empirical 
analysis.  
 
My method of empirical analysis is non-structural time series 
analysis. I focus not only on statistical fitting, but also on how 
empirical models needs the flexibility to accompany the dynamics 
predicted by economic theory. Modern time series analysis provides 
a battery of flexible empirical models. Many of these models 
originate from empirical work in finance. Since commodity price 
dynamics in the short-run, to some degree, emulate the price 
dynamics of financial assets, the application of financial asset 
models in commodity market analysis seems valid. The main 
difference, in model application, is that commodity models need to 
accompany the effect of non-exogenous changes in stocks.  
 
Non-structural time series analysis using prices alone disallows 
direct causation inference between price and other state variables. 
To arrive at statistical satisfactory models, where direct inference 
is possible, we need a detailed data-set of state variables. For many 
commodity markets, such data-requirements are unfeasible. In 
addition, a clear definition of the representation of state variables 
is not always apparent. If we, for example, define an inventory as a 
reserve of market ready stocks, it is not straight forward how this 
state variable should be constructed. Storage in agriculture, for 
example, can be done by delaying harvest. If we ignore direct 
inference of causation relationships, modern time-series analysis 
provides a detailed descriptive representation of commodity prices.  
 
The descriptive representation of prices provides a strong indirect 
inference framework for evaluating predictions made by the theory 
of storage. One might argue that the lack of direct inference is 
compensated by the greater availability of price data. In order to 
analyse the output of non-structural time series models in the light 
of economic theory, the models need to be flexible enough to 
accommodate the dynamics predicted by theory. A consistent price 
series model should therefore be sensitive to changes in state 
variables.  
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Even though exact quantitative representations of state variables 
are unavailable, we often have information on relative structural 
changes in state variables. For example, regular demand shifts or 
growth patterns in stock variables provide information on 
predictable changes in state variables. If the price model is 
sensitive to such state variable changes, the model can be used to 
derive indirect inference of predictions from theory. Combining 
time series analysis and knowledge of changes in market 
fundamentals provides an indirect means to gain insight into the 
driving processes’ of price determination. I focus on using time 
series analysis in combination with knowledge of market 
fundamentals to analyse the dynamics of commodity prices. 
 

1.1 ESSAYS OF THE THESIS 
 
In the thesis’ first paper, The Behaviour of Salmon Price Volatility, 
written in collaboration with Marius Sikveland, we provide an 
analysis of salmon price volatility. Salmon prices exhibit 
substantial volatility. An understanding of the structure of 
volatility is of great interest since this is a major contributor to 
economic risk in the salmon industry. The volatility process in 
salmon prices was analysed based on weekly price data from 1995 
to 2007. The Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model was used to test for volatility 
clustering and persistence for prices. We find evidence for and 
discuss the degree of persistence and reversion in salmon price 
volatility. Further, we find that volatility is larger in periods of 
high prices. For the industry this means that larger expected 
profits more often than not comes at a trade-off of larger price risk. 
 
In the second paper, Supply Side Explanations for Volatility Spill-
Over in Primary Commodity Prices, I seek to use storage theory to 
explain volatility spill-over patterns in commodity prices. I suggest 
that correlations in inventory stocks and differences in inventory 
flexibility, as well as common price deterministic factors such as 
input factor usage and substitutability between goods, allow non 
sporadic volatility spill-over to persist in primary commodity 
markets. To investigate these claims empirically, I apply a 
volatility spill-over test to a basket of goods from the Norwegian 
aquaculture industry, where differences in characteristics of goods 
allow examination of the economic significance of volatility spill-
over. 
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In the paper Regime Shifts in Commodity Prices with Application 
to the Price of Salmon I apply a flexible regime shifting model to 
the price of salmon in order to accommodate the non-linear 
dynamics predicted by the Theory of storage.    Both commodity price 
theory and statistical evidence suggests that the underlying price 
processes of commodity prices are non-linear in dynamics. By 
allowing both mean and variance parameters to change between 
states we find evidence that underlying skewness and kurtosis in 
residuals arising in linear models disappear. I further argue, based 
on the theory of storage that a two-state regime shifting model is a 
suitable price model for commodity prices. Theory predicts that as 
underlying fundamentals such as stock sizes change, the 
persistence and volatility of prices will change. Using the regime 
shifting model we are able to indirectly test predictions made by the 
theory of storage. The state probabilities emerging as a product of 
regime shifting models can provide a basis for examining 
theoretical predictions on commodity markets. For the case of 
salmon, I find that there are seasonal patterns in volatility in 
addition to industry profitability conditions affecting the emergence 
of volatility regimes. 
 
In the final paper Stochastic Long Run Cycles in Agricultural 
Commodity Prices, written in collaboration with Frank Asche, we 
analyse the degree of stochasticity of long run cycles in commodities 
using an expansion of the HEGY unit root test. In a rational 
speculative agricultural market long run predictable cycles not 
founded in cost shifting factors should not be allowed to persist. 
None the less arbitrage possibilities have documented in long run 
cycles of for example hogs, broiler and cattle. If cycles are 
sufficiently stochastic the cost of identifying and reacting to the 
perceived cycles will increase to the degree of allowing some 
residual cyclicality in the markets. As such realised cycles and 
arbitrage will only be reasonably identified following the cycle 
completion. During the cycle movement persistence is allowed due 
to its stochasticity. In this paper we propose two approaches to 
examining the stochasticity of long run cycles in agriculture. The 
first approach depends on the notion of duration dependence in 
cycles and is a non-parametric index to test for convergence in 
cycles. The second approach is based on the realisation that most 
commodity prices are non-stationary and near-unit or unit root. We 
expand on the classical seasonal unit root test to test for existence 
of unit roots outside the seasonal frequencies.   
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My main data-set in this thesis will be weekly observations on the 
price of Norwegian farmed salmon from 1990 to 2007. I also use 
monthly and annual observations on frozen salmon, hogs, wheat, 
corn, poultry, eggs oil and gold. Since my main data-set is the price 
of Norwegian farmed salmon I will give a summary of the 
Norwegian Aquaculture industry. In the summary my main focus 
will be on discussing state variables which determine the price of 
salmon. Following this, I move on to a general illustration of the 
economic theory of commodity price dynamics before I move on to 
the main time-series methods used in this dissertation. 
 

2. THE NORWEGIAN SALMON FARMING INDUSTRY 
 
In 2008 Norway accounted for 51% of farmed Atlantic salmon 
production. Total production in 2008 was approximately 754 000 
tonnes at a value of 18 billion NOK. Norway is today the largest 
exporter of farmed Atlantic salmon, and it is one of Norway’s 
biggest exporting industries. The main product form is fresh whole 
salmon accounting for 77% of the industries revenues in 2008 
(figure 1).  
 

The trend in the industry has been one of fewer and larger 
companies (Guttormsen, 2002; Tveteras, 1999; Tveteras, 2000). In 
2008, 186 companies and 929 production licenses where registered, 
the same statistics for 1999 on the other hand show 467 companies 
and 799 licenses.  
 

        
 
FIGURE 1.FIGURE 1.FIGURE 1.FIGURE 1. Market shares for different types of salmon products and main export 
markets, 2007. Source: Norwegian Seafood Export Council. 
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Despite the consolidation of the salmon industry it is still a fairly 
competitive industry, with many medium and small companies 
representing a large share of the production. 
 
The long Norwegian coastline offers an array of potential farm 
locations, providing farmers with potential hedging of production 
risk as correlation of farm specific risks, such as disease outbreaks 
and temperature fluctuations, decreases over geographical distance 
(Oglend & Tvetras, 2009). At present salmon farms are located 
along most of the Norwegian coastline. 
 
The main export market for Norwegian salmon is the European 
Union, with France and Poland as the two biggest EU markets. 
Besides EU, Russia has emerged as an important market. Followed 
by Japan these two markets remain the two largest outside of the 
EU (figure 1).  
 

2.1 SALMON AQUACULTURE AND THE FISHERY SECTOR 
 
Currently salmon farming is the most valuable single sector of 
Norwegian food production. The industry remains profitable and 
competitive in international markets without subsidies and 
regulatory assistance from the central government. From its 
beginnings in the 1970’s, the industry has evolved positively both in 
terms of production output and market value. Figure 2 illustrates 
how production output and market value has increased steadily 
over the last twenty years.  
 

 
FIGURE 2FIGURE 2FIGURE 2FIGURE 2.  .  .  .  Developments in quantity harvested and value of Norwegian fisheries 
and Norwegian salmon aquaculture. Source: SSB. 
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By comparing aquaculture to the traditional fishery sector we 
observe that fisheries output has remained relatively stable, while 
salmon production has experienced a consistent positive growth. 
Despite salmon having a considerably lower output quantity, the 
sales value surpassed the fishery sector in 2005, and has remained 
considerably above it ever since. 
 
From figure 2 we can observe another important difference between 
the sectors. In comparison to the fishery sector, the fluctuation in 
value relative to production output is considerably higher in 
aquaculture. This suggests that price has been a major source for 
fluctuations in industry value; an issue which will be discussed 
further in the thesis and remain an underlying motivation for my 
work.  
 
What separates aquaculture production from fisheries is the degree 
of control over production and output (Anderson, 2002). The 
intensive production process characterising Norwegian salmon 
farming allows a closed production cycle with a controlled feeding 
process. This high degree of control enables the aquaculture 
industry to provide a stable supply of fish. A stable supply has 
provided the aquaculture industry with a major advantage in 
expanding markets to include super-market outlets, and has 
allowed a steady supply and innovation of processed salmon 
products (Bjørndal, 1990; Tveteras, 2000; Guttormsen, 2002; 
Vassdal 2006). In an industry with substantial productivity growth 
this has provided an outlet for market growth, where positive shifts 
in both the demand and the supply curve has allowed persistently 
decreasing prices and on average positive, yet very volatile, returns 
(Asche, 1997).   
 

2.2 THE SALMON PRODUCTION CYCLE 
 
The strategy for successful aquaculture production lies in first 
replicating the species life in nature, and then improving conditions 
such that both productivity and stability of output can be increased 
(Asche, 2008). In salmon farming there are two major production 
steps; the production of smolt and the cultivation of smolt to 
harvest ready fish.  
 
At the first stage in the production chain, brood stock is kept in 
order to produce offspring. When the salmon offspring hatches they  
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are raised on land in fresh water tanks. The fry are kept in tanks 
and fed for 12 to 18 months until they reach the smolt stage. At this 
stage the fish is ready to be transferred to sea.  
 
In the final stage the fish are kept in salt water pens where they 
are fed until reaching harvest ready weight, this process usually 
takes from 12 to 24 months. At this stage that most of the growth of 
the salmon occurs. The smolt transfer to sea is, due to biological 
factors, done in the months of March to October. One “generation” 
of fish is transferred either in the spring or the fall segment of the 
transfer window.  
 
Salmon growth is dependent on the sea temperature. Growth is 
highest during mid to late summer. Since only the spring transfer 
will benefit from the increased growth period during its first 
months in sea, most small fish is available during the spring to 
early summer, before the major growth period. For the larger fish 
most harvesting is done during the summer, due to larger fish 
having an increased probability of reaching sexual maturity in late 
summer. When the salmon reaches sexual maturity the quality of 
fish severely decline (Asche & Guttormsen, 2001).  
 

 
FIGUREFIGUREFIGUREFIGURE    3. 3. 3. 3. Average harvest weight for salmon, 2007. Source: Norwegian Seafood 
Export Council. 
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salmon increases at Christmas and Easter, leaving less available 
fish for the early summer months.   
 
Another way of looking at this is to think of the potential growth of 
salmon as an alternative cost of harvesting. By harvesting in the 
spring the immediate growth period is sacrificed. This suggests 
that the convenience yield for keeping stocks in the pens is greater 
in the spring. Knowing the seasonal dynamics of stock development 
is important in accounting for the short term dynamics of price. 
This subject will be more thoroughly discussed later and emerges 
throughout the thesis.      

 
2.3 INDUSTRY TRENDS 
 
Since its start in the 1970’s, the Norwegian aquaculture industry 
has experienced a persistent growth in productivity, as can be seen 
in the real production cost per kg/Salmon (figure 4). These 
improvements in productivity have consistently created incentives 
for new companies to enter the market, in addition to increased 
production amongst incumbent companies (Asche, 1997). This has 
contributed to increases in aggregate supply and declining prices. 
We observe a clear long-run downward trend in prices explained by 
a persistent decline in production costs (figure 4) until 2000.  
 

 

 

FFFFIGUREIGUREIGUREIGURE    4.4.4.4.  Developments in real price and production cost per kg. Salmon in 
Norwegian Aquaculture. Source: Norwegian Seafood Export Council. 
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improvements to feed and feed-technology (Asche et al., 1999; 
Guttormsen, 2002). The feed-factor (the relationship between feed 
usage and salmon growth) has decreased from about 3 during the 
early nineties to just above one.  Despite feed costs accounting for 
close to 60% of production costs today (20 % in 1985) the cost of feed 
per kg/fish has been reduced by 29% since 1985. Another main 
contributor to declining costs is the decline in labour related costs. 
Inflation adjusted labour costs declined from 9.55 NOK/kg. in 1986 
to 1.33 NOK/kg in 2007. Further the cost share of labour dropped 
from 15% in 1986 to 9% in 2007. A final reason for decreased 
production costs is an increase in capacity utilization. As a proxy 
for better capacity utilization the inflation adjusted depreciation 
cost of capital per kg. salmon produced has dropped from 2.59 NOK 
in 1986 to 0.75 NOK in 2005 (Tveteras & Guttormsen, 2007).  

 
2.4 STOCK AND PRICE DYNAMICS 
 
The main interest in this thesis is the price dynamics of 
commodities. It is therefore of interest to examine how important 
state variables, such as live fish stock size and consumer demand, 
have affected both industry returns and the price of salmon. In this 
introductory analysis we use graphical representations of state 
variables.  
 
For Norwegian salmon aquaculture we notice that despite a 
persistent decline in production costs per kg/salmon, the return per 
kg fish is very volatile. The declining production costs can account 
for the long run decreasing trend in the price for salmon.  
 

 

 

FIGUREFIGUREFIGUREFIGURE    5.  5.  5.  5.  Development in Real Return per kg. salmon and the Annual change in 
Stock Size as measured by outstanding fish. Source: SSB. 
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However the price volatility; accounting for much of the 
fluctuations in returns, is not explained by variations in production 
costs.  
 
In figure 5 we observe both the annual change in fish stock, as 
measured by quantity of fish, and the return per kg. salmon. As the 
figure illustrates, returns fluctuate quite drastically throughout the 
period. The mean return in this period is approximately 7.4%. 
Looking at annual changes in stock size, this variable is 
constructed as: 
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)()()(
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)()1(

+

−−
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−+

tstock
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The stock size is measured as quantity of fish, and as such does not 
account for outstanding biomass. However, the stock variable 
contains information on future availability of sellable fish. In figure 
5 we see that stock growth follows return in an apparently pro-
cyclical manner. In a non-stochastic production environment this 
relationship could be explained by an inverse relationship between 
stock and sales growth, generating a pro-cyclical relationship 
between output price and stock-growth (growth in terms of number 
of fish). In a stochastic production environment, such as 
aquaculture, this relationship does not hold absolutely. Stock 
increases can be the result of favourable output developments. In 
such cases sales do not have to decrease to increase stocks. The 
stochastic output also affects returns through effective production 
costs.  
 

 

 

FFFFIGUREIGUREIGUREIGURE    6666....    The development in real return per kg. salmon and annual stock 
depreciation by loss of fish. Source: SSB. 
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In example, the large negative return in 1991 can be explained by a 
large loss of fish (figure 6), and as such a severe reduction in stock 
size. 
 

The stock loss caused effective production costs per kg salmon to 
increase and returns to be negative. Following the large reduction 
in stock size, price increased (figure 7) and return peaked again in 
1994.  
 

 
FFFFIGUREIGUREIGUREIGURE    7. 7. 7. 7. Real Price and Production cost per kg Salmon adjusted for linear and 
quadratic trend. Source: SSB. 
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decrease as stock stability increases. Further, how producers react 
to loss in production is fundamental in how prices move. In figure 8 
we see how the ratio of new stock to sales moves with stock loss.  
 

 
FFFFIGUREIGUREIGUREIGURE    8. 8. 8. 8. Developments in Stock Depreciation and percentage of annual sale 
relative to new stock. Source: SSB. 

 

A low value of new stock to sales suggests that stocks outside what 
is lost are being reduced to keep up supply. The immediate effect of 
this is to counter spiking in spot prices. As stocks are reduced, 
expected prices will increase as stocks are not immediately 
replaced. A high loss and a low new stock to sales value is an 
indicator that prices will increase. The stock to sales ratio is a 
control variable for producers, equivalent to the storage variable.  
 
The flexibility in this control works as an immediate opposing force 
to stock loss on price effects. In a forward looking market the 
management of new stock to sales can be used to buffer price 
movements, and to exploit arbitrage possibilities If this variable 
was held constant, short term price movements would be directed 
purely by the loss variable under constant structural demand. In 
this case an improvement in technology to reduce loss would have 
the effect of reducing spot price volatility.  
 
In the industry today there are indications that the flexibility in the 
new stock to sales control variable is reduced. The reason for this is 
the markets demand for a stable fish supply. Large super-market 
chains require a predictable and stable supply of fish. As such the 
flexibility of producers in changing short-run supply to counter  
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short-run effects are reduced. In terms of price volatility there are 

 
FFFFIGURE IGURE IGURE IGURE 9. 9. 9. 9. Weekly observations of salmon price and a 20 week moving average 
squared deviation of prices. 

 
opposing forces on the determination of future spot price volatility. 
In figure 9 I have plotted the weekly price of salmon and a measure 
of price volatility. For the volatility measure we observe that spot 
price volatility move in clusters with periods of high volatility. In 
terms of evolution of volatility there is no indication that volatility 
has been reduced over the years.  

 
2.5 SEASONAL EFFECTS 
 
The quantity of salmon sold (figure 10) has been steadily increasing 
over the years. Atlantic salmon has moved from a niche luxury 
commodity to a bread and butter fish available in major super 
market outlets. Figure 10 illustrates the seasonal patterns in sales. 
Traditionally, a major increase in sales occurs at Christmas when 
demand increases.  
 
A lesser demand surge also occurs at Easter. Following the Easter 
season, sales usually flattens out in the early summer and starts 
picking up again in the fall, before peaking at Christmas. The 
major demand shifts are predictable through-out the season, and 
should have little effect on price movements outside of cost changes 
related to shipping and changing stock sizes.  
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In summer months the temperature in the North-Atlantic 
increases, providing better conditions for the salmon to grow. The 
availability of fish prior to the growth period depends on the 
preceding seasonal demand, fish health and status of production 
facilities. 
 

  
FFFFIGUREIGUREIGUREIGURE    10. 10. 10. 10. Development in quantity of salmon sold. 
 

Prior to the summer growth the stock is comparatively dominated 
by smaller fish. Having a sizable stock in this period is valuable. 
Reducing the stock by harvesting comes at a cost of sacrificing the 
benefit of the higher growth to come. This higher alternative cost of 
harvesting generates a convenience yield on remaining stocks. A 
higher convenience yield necessitates that price must increase for 
slaughtering to occur. The producer needs to be compensated for 
the sacrificed growth period. In figure 11 I averaged the price and 
quantity sold over weekly observations to more easily illustrate the 
seasonal movements in price and quantity sold.  
 
We observe that prices on average are highest from April to early 
June, prior to the major growth period when the stock of weight 
classes where most fish is sold is lowest. In this period, the value of 
remaining stock is high. As fall approaches and growth declines, 
the biomass increases and sales increase. As sales increase, prices 
decline before it spikes up at the Christmas demand surge.   
 
The reason that the spring/summer seasonal pattern persist is most 
likely due to biological restrictions. One might argue that if regular 
patterns emerged that were not founded on biological restrictions  
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they would be eliminated by changes to production plan. The price 
increase in Christmas is also accompanied by an increase in sales, 
suggesting that price increase is the result of greater demand. For 
the higher prices in early summer we observe no such co-movement 
in price and sales. This further lends support to the claim that 
higher prices in this period are the result of changes in supply side 
fundamentals, necessitating higher prices to keep up supply. As 
stated, this is likely due to the increased alternative cost of 
harvesting in this period. 
 

 
FFFFIGUREIGUREIGUREIGURE    11. 11. 11. 11. Seasonality in Price and Quantity Sold. Averages are taken from 
1995-2008.  

 
2.6 CONCLUDING REMARKS 
 
The Norwegian salmon farming industry has experienced a 
consistent growth both in productivity and value since its 
beginnings in the 1970’s. The increase in productivity has allowed 
the price of salmon to follow a long run declining trend. Despite a 
steady increase in the control of production output, industry profits 
are still sensitive to shocks to stocks through disease, escape of fish, 
algae influx or temperature changes. The nature of the biophysical 
restriction leads such effects to have persistent effects on fish stock, 
return and price dynamics.  
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We observe how industry profits are volatile, a volatility that has 
been relatively stable throughout the sample period. Cost factors 
are unlikely to account for the variations in profitability. The main  
 
cause for volatility appears to be the stochastic output, both 
through its direct effect on sellable stock and the short term spot 
price dynamics. The stochastic production and the producers’ 
reaction to windfall loss or gain to output remains crucial in 
explaining short-run price and profit dynamics. In terms of price 
volatility, we do not observe a decline in magnitude of the years. 
Volatility is itself stochastic and varies regularly throughout the 
data-period. One would perhaps expect volatility to decline as the 
industry attains better control over production. However, short 
term supply flexibility has most likely been reduced in later years, 
owing to salmon becoming a main provider of “bread and butter” 
fish, necessitating a stable supply of salmon to processors and 
outlet chains. A lower flexibility in changing short term supply to 
counter loss or gain to output will lead prices to correct more 
heavily and as such to increased volatility. 
 
In the next section I look more generally at price characteristics of 
commodities. I discuss the economic theory underlying the short 
run dynamics of prices and the econometric theory used for 
modelling price dynamics in this thesis.  

 
3. SHORT-RUN COMMODITY PRICE DYNAMICS 
 
In the short run the commodity behaves similarly to a financial 
asset. This similarity arises because storage allows speculation on 
the future value of the commodity. When storage is allowed, the set 
of consumers and producers are no longer disjoint. Producers can 
now enter on the demand side of the market. The flexibility and 
cost of storing places each commodity market on a continuum 
between a classical economic market of disjoint producers and 
consumers and a modern financial asset market. 
 
If the set of consumers and producers are disjoint, the price 
prevailing at each instant in time will (under the assumption of 
stationary demand) be the outcome of a stationary stochastic 
process having expected value at the competitive equilibrium value 
– the marginal cost of production. In this traditional case, price  
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reflects the intersection between marginal consumption and 
production value. 
 
For financial assets, the set of “consumers” and “producers” are the 
same. Financial assets cannot be consumed, they are held solely for 
their ability to generate monetary value over time. Ignoring 
emissions, the total stock of financial assets are at all times 
constant. The financial asset is valued by its inter-temporal ability 
to generate a dividend to the holder. For holders of financial assets, 
it is the return process that determines its value. Asset prices are 
statistically well approximated by a random walk, a statistically 
divergent process. That financial asset prices might diverge does 
not conflict with financial theory since returns, not levels, is the 
determining factor in the assets valuation.  
 

Modern commodity markets exists on a continuum between the 
traditional economic commodity market of independent consumers  
 
and producers, and the joint set characterizing financial asset 
markets. In commodity markets, agents can turn speculators or 
hedgers by holding commodities over time. Storage opens an 
alternative to selling or consuming the commodity immediately. 
Based on expectations on the future, agents might find it optimal to 
sit on the commodity. When this happens, the commodity takes on 
an additional speculative property, and the commodity more 
strongly emulates a financial asset.  
 
When analysing the short run dynamics of commodity prices, we 
apply ideas from both finance and conventional producer and 
consumer theory. It is natural that in the short run, where 
producers are allowed some speculative freedom, ideas from finance 
enter into the modelling of commodity prices.  
 

3.1 THE THEORY OF STORAGE  
 
When modelling price spreads (the difference between spot and 
expected future prices) there exists both a financial and economic 
explanation model. In finance the spread is explained in part by a 
predictable element, the expected price, and a risk premium 
accruing to the holder of a futures contract on the commodity 
(Cootner, 1960; Dusak, 1974; Breeden, 1980; Hazuka, 1984). In 
economic theory, the spread is explained by the alternative cost of  
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capital and the cost of storage. The economic model was in its 
initial form developed by Kaldor (1939), Working (1948, 1949) and 
Brennan (1958).  

 
3.1.1 THEORY AND DATA 
 
The theory of storage remains uncontroversial (Fama & French, 
1987). However, in its simplest form (constant costs of storing) the 
theory fails to explain certain characteristics of commodity prices. 
Also, since the theory only accounts for short run dynamics, any 
permanent structural changes is not accounted for by the theory. 
To make the theory explain certain characteristics of modern 
commodity prices, several modifications to the net cost of storage 
variable has been introduced in more recent works. Below I list 
three price characteristics which the general theory of storage has 
proved unable to explain. I also explain some of the remedies to the 
theory proposed in order to explain the data. 
 
1. High, near unit root autocorrelation.    In general, commodity 
prices have an autocorrelation much higher than what can be 
accounted for by speculative storing alone. This discrepancy has 
been pointed out by several authors (Deaton & Laroque 1992, 1996; 
Chamber & Bailey, 1996; Pindyck, 2001; Williams & Wright, 1991).  
 
Collecting monthly data on a selection of commodity prices from the 
IMF website, I provide in table 1 some descriptive statistics. All 
prices are corrected for inflation. I calculate three month 
autocorrelations, normalised standard deviations in addition to 
skewness and kurtosis measures on price levels. I also perform an 
Augmented Dickey Fuller test for unit roots in prices. The unit root 
test results are not shown in the table.  
 
As seen from table 1, half of the commodities have a first order 
autocorrelation greater than 0.95. Even for the third month 
autocorrelation, the average value is 0.81. This high autocorrelation 
often makes commodity prices fail standard unit root tests such as 
the Augmented Dickey Fuller test (Wang & Tomek; 2007, Tomek; 
2000). Of the 36 commodities in table 3 only 6 of the commodities 
rejects a unit root using the Augmented Dickey Fuller test with a 
constant and trend. In order to accommodate the problems 
associated with empirical analysis using non-stationary data 
(Granger & Newbold, 1974), prices are normally put through a 
first-difference filter.  
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TABLE 1.TABLE 1.TABLE 1.TABLE 1. Price characteristics of monthly commodity prices (1983-2008). 

        

 Category  Commodity AC(1) AC(2) AC(3) Std. Dev. Skewness Kurtosis 

        

Beverages Cocoa beans 0.95 0.89 0.84 27.66 0.58 0.15 

 Coffee 0.96 0.96 0.83 36.31 0.85 0.55 

 Tea 0.84 0.66 0.54 21.55 0.80 0.61 

  Sugar 0.96 0.90 0.85 32.34 0.24 -0.28 

Cereals Barley 0.95 0.90 0.85 36.36 1.95 5.17 

 Maize 0.91 0.83 0.75 26.71 2.34 7.64 

 Rice 0.88 0.68 0.50 33.55 4.61 31.95 

  Wheat 0.95 0.89 0.83 31.57 2.79 10.11 

Fruits Bananas 0.75 0.56 0.38 28.34 0.90 0.96 

  Oranges 0.91 0.80 0.71 38.32 1.42 1.82 

Meat Beef 0.96 0.92 0.89 14.52 -0.19 -1.29 

 Poultry 0.98 0.95 0.92 21.41 0.14 -0.74 

 Lamb  0.97 0.93 0.89 21.30 0.27 -0.91 

  Swine 0.93 0.85 0.77 35.30 1.23 1.48 

Seafood Fish (salmon) 0.98 0.95 0.91 28.79 0.66 -0.16 

  Shrimp 0.89 0.80 0.74 18.71 0.27 -0.72 

Vegetable Oils and  Fishmeal 0.97 0.94 0.91 31.36 1.56 2.48 

Protein Meal Olive Oil 0.99 0.96 0.94 34.64 0.64 -0.62 

 Palm oil 0.95 0.89 0.84 40.83 1.89 5.16 

 Groundnuts (peanuts) 0.92 0.81 0.70 27.47 2.19 5.34 

 Rapeseed Oil 0.94 0.89 0.83 38.94 2.28 7.21 

  Soybeans 0.92 0.84 0.76 25.26 2.34 7.57 

Agricultural - Wool  0.97 0.93 0.89 28.92 1.38 2.01 

Raw Materials Cotton  0.97 0.91 0.85 29.40 0.49 0.20 

 Hard Logs 0.97 0.92 0.86 21.65 1.19 3.21 

 Hides 0.93 0.83 0.74 34.33 -0.17 -0.06 

  Rubber 0.96 0.91 0.87 16.32 1.65 2.51 

Metals Aluminum  0.95 0.91 0.87 29.72 1.23 0.99 

 Copper 0.97 0.93 0.89 63.64 2.16 3.81 

 Iron Ore 0.95 0.89 0.84 57.88 2.85 8.63 

 Lead  0.98 0.94 0.89 73.73 3.20 10.70 

 Nickel  0.98 0.94 0.90 79.22 2.52 7.02 

  Tin 0.94 0.87 0.80 44.30 2.55 7.77 

Energy Coal 0.89 0.81 0.75 46.08 3.81 18.75 

 Crude Oil (petroleum)  0.94 0.89 0.85 68.98 2.33 5.89 

 Natural Gas  0.96 0.93 0.89 59.39 1.99 3.49 

                

 

Note: AC(1) denotes first order autocorrelation, AC(2) second order and so on. 
Standard deviation is normalized by the sample mean price....    
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Unit roots in commodity prices, however, are not supported by the 
theory of storage. None the less, for suitably long time series’ non-
stationarity is likely to emerge. 
 
The structure of demand and technology is expected to change in 
time. Under this explanation for non-stationarity it is reasonable 
that the theory of storage cannot account for non-stationarity. The 
theory of storage is a short-run model. The data we collect on 
commodity prices is the sum of both short-run and long-run 
structural effects. To generate an autocorrelation in line with what 
the data shows, Deaton & Laroque (1996) and Chamber & Bailey 
(1996) suggests adding an autoregressive element to the exogenous 
harvest component. The remedy itself is straightforward, however 
the evidence that harvests are autocorrelated is still lacking. 
 
2. Price Backwardation. A constant positive cost to storing cannot 
account for the fact that producers tend to hold stocks even when 
prices are expected to fall. To account for this, the cost of storing 
must be allowed to take negative values. There must be a real 
positive dividend to holding a commodity. As such, a less tangible 
economic variable, the convenience yield, is introduced to the 
theory. The convenience yield is defined as the marginal benefit of 
sitting on a commodity. Several proposed intuitive explanations for 
the convenience yield have been put forward. For example, stocks 
are held as an insurance against stock-outs (Deaton & Laroque 
1992, 1996), taking on a real option value (Heaney, 2002; 
Litzenberger & Rabinowitz, 1995; Routledge, Duane & Chester, 
2000) as it becomes increasingly valuable to sit on a commodity as 
it becomes more scarce. A further proposition to why producers 
tend to sit on commodities when prices are expected to fall is found 
in the benefit of being able to produce when stocks are low and/or 
avoid costly changes in production (Considine & Larson, 2001;  
Litzenberger & Rabinowitz, 1995). That convenience yields are 
linked to some economic dividend on the stock is further supported 
by Milonas & Henker (2001) who find that convenience yields in oil 
are strongly seasonal and inversely related to stocks. 
 
3. Mean Reversion in Price Spreads. Backwardation also implies 
that commodity price returns display consistent mean reversion. 
The theory of storage, with constant cost of storing, does not give 
rise to this mean reversion pattern. To get a price spread consistent 
with the mean reversion observed in prices, the net cost of storage 
is modelled as stochastic, being the sum of both a positive cost of  
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storing and stochastic convenience yield component (Gibson & 
Schwartz, 1989; Miltersen & Schwartz, 1998). By allowing the 
convenience yield to be mean reverting, the net cost of storing will 
be mean reverting and the price spread will mean revert.  
Outside the high autocorrelation observed in prices, the theory of 
storage modified by a flexible cost of storing function can explain 
many of the characteristics observed in commodity prices today. 
The cost of this theoretical consistency is the introduction of the 
less tangible convenience yield variable. The lesson from these 
necessary modifications is that one general theory to account for 
the dynamics of all commodity prices is unfeasible. Within the 
theory of storage we need to specify a specific cost of storage 
function for each commodity market analysed. 
 
Despite the need to take account for the heterogeneity in each 
commodity market, there are some characteristics of commodity 
prices the general theory can account for. Theory predicts that the 
price distribution is right skewed. The positive probability of a 
stock-out generates positive price spikes, leading to right skewed 
price distributions. Looking at table 1, we observe that most 
commodity prices have right skewed distributions relative to the 
normal distribution.  
 
Further, the asymmetric price process generates a non-constant 
conditional variance of prices. Theory predicts that when stocks are 
low – the convenience yields are high, and price volatility increases. 
These predictions are shown to hold in several studies (Ng & 
Pirrong, 1994; Ng & Ruge-Murcia, 2000 and Nilesen & Schwartz, 
2004) – illustrating that implications from the theory of storage are 
consistent with patterns in observed volatility. Further Fama & 
French (1987) test both the economic and financial model of storage 
for a set of 21 commodities. They test the economic and financial 
model of storage for a set of 21 commodities. The authors find that 
the theory of storage provides a better explanation for the observed 
price characteristics than the financial model. However the authors 
point out that the financial and economic theory for commodity 
price spreads are not mutually excluding. 

 
3.2 OPTIMAL STORAGE AND PRICE SPREAD DYNAMICS 
 
We now turn to providing a more rigorous explanation for the 
theory of storage. As is conventional we assume that producers  
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exhibit Rational Expectations (Lucas, 1978). The producers’ beliefs 
concerning the future are assumed to coincide with the true 
probability distribution underlying state realisations. We further  
 
assume that a continuous, real-valued and strictly decreasing 
demand function )(pD  exist where )(pD  tends to +∞  as price tends 

to a lower bound p . The inverse demand function )(xP  thus exists 

and is strictly converging down to a lower bound on amount at 
hand x . We also assume that demand and technology is 

structurally constant. Also, production scale and intensity is 
assumed fixed in the short run. 
 
Denoting stock levels at time t as tX  , stocks are assumed to follow 

the discrete time process: 
 
 tttt IXX ν++=

−− 11
.      (1) 

 
In equation (1), the variable tν  accounts for exogenous additions to 

stocks from planned production. In the theory of storage this is the 
source for variations in prices. In its simplest interpretation, 
variations enter due to weather effects affecting realized output. 
However, since temporary changes in demand has an equivalent 
but inverse effect on stocks, the stochastic component can also be 
seen as an exogenous excess demand variable (Deaton & Laroque, 
1996).  
 

1−tI  is the amount stored in the previous period. Amount stored is 

the control variable available to the producer in short run. Storage 
is restricted to take non-negative values; it is not possible to carry 
over stocks from tomorrow to today. This restriction is crucial to the 
dynamics of commodity prices. It implies that price dynamics 
becomes asymmetrical as the pricing function changes regime when 
a stock-out occurs. When no storage is done, the stock dynamics is 
fully dependent on the exogenous addition to stocks tν . Note that 

the storage variable 
1−tI  can also be defined as 

111 −−−
= ttt XI φ , 

[ ]1,01 =
−tφ ; ,a ratio of stocks carried over to the next period. Looking  

 
at storage in this way makes it more general. In agriculture, 
storage can hence be viewed as the option not to harvest. Storing is 
done through further cultivation.  
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We now introduce the cost of storing variable. On the margin this 
variable can be defined as: 
  
 ( ) ( ) ( )ttt IIcI δχ += .            (2) 

 
The marginal cost of storing ( )tIχ  is decomposed into a non-

negative cost factor ( )tIc  and a non-positive convenience yield 

factor ( )tIδ . Under competitive storage it is assumed that cost of 

storing depends on amount stored. In the Kaldor-Woking 
hypothesis it is assumed that 0>χID , an increasing marginal cost 

of storing. For higher storage levels, the cost effect is expected to 
dominate the convenience yield effect. The marginal benefit to 
increasing storage is generally hypothesized to be decreasing.  
 
The theory of storage states that in order to store a commodity, the 
producer must be compensated on the margin for the cost of 
storing. This restriction generates the Euler condition for optimal 
storage: 
 
 ( ) ( ) ( ) ( )tttttt IIcIXPIpE δβ +=−−

+
|1

 .       (3) 

   
Here β  is a discount factor accounting for the alternative cost of 

capital. ( )tt IpE |1+
 is the expected price tomorrow with storage tI  

today. Further, ( )tt IXP −  is the realized spot price. In equilibrium, 

the discounted expected price spread ( ) ( )tttt IXPIpE −−
+

|1β  must 

cover the marginal cost of storing ( ) ( )tt IIc δ+ . When condition (3) is 

satisfied, any arbitrage from storing has been eliminated.  
 
The price spread ( ) ( )tttt IXPIpE −−

+
|1β  decreases in storage. This 

implies that the maximum price spread is achieved when storage is 
zero. We define the expected maximum price spread Max

tE 1+η  as: 

  
 ( ) ( )tt

Max

t XPpEE −= ++ 0|11 βη          (4) 

 
Following equation (4), the market stocks-out ( 0=tI ) when 

( ) ( )tt

Max

t IIcE δη +<+1
. In this case the optimal storage level is  

 
negative. However, due to the non-negativity constraint on storage 
the storage, the closest point to optimality is zero.  
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Combining equation (3) and (4) the expected discounted price 
spread 

1+t
Eη  can be expressed by the functional: 

 
 ( ) ( ) ( ) ( ){ }ttttt XPpEIIcE −+=

++
0|,min 11 βδη        (5) 

 
 
This is the price spread process predicted by the theory of storage. 
The left term on the right side of equation (5) is the expected price 
spread under storage, while the right term is the stock-out spread. 
Note how equation (5) illustrates how the control variable tI  

determines the spread under storage, while the spread under stock-
out is determined by the exogenous addition to stocks today. 
Equation (5) also illustrates the importance of a convenience yield. 
Since the convenience yield is a negative cost component it reduces 
left side expression, increasing the probability that storage is the 
prevailing regime. 
 
We observe how the spread process is non-linear, moving between 
the two regimes dependent on stock availability today tX . The 

probability of stocking-out tomorrow can be expressed as: 
 

  
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )0|

0|

111

111

+−−

−−+

>++++

⇔+<++−

tttttt

tttttt

pEIIcvIXPprob

IIcvIXPpEprob

βδ

δβ
      (6) 

  
Under the assumption that the harvest is normally distributed 

( )σµ,~ Nv , the price process moves according to a two state 

Markov chain having non-constant transition probabilities given 
by: 
  

 
( )

( ) ( )( )







−−−

−
=

−−

−−

11

11

111

1

tttt

tttt

tP
ρρρρ

ρρρρ
        (7) 

 
Where ( )( )0|1, 2

,1,
+

Φ= tt pE
tsts

βρ
σµ

 is the probability of storing today. The 

probability distribution is conditional on stock availability today. 
Its mean and variance can be approximated by: 
  
 ( ) ( ) ( )tttts IIcXP δµ ++=,

 

   (8) 
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This derivation implies that the more that was stored yesterday, 
the higher is expected stocks today, and the higher is the 
probability of not stocking out today. Hence the higher stocks are 
the greater is the likelihood of staying in the storage state. In 
essence the spread process under optimal storage follows a non-
linear process – a two state time dependent Markov chain 
determines the likelihood of changing price regimes. Note also that 
since price spreads can change regime the volatility process 
becomes non-constant. 
 

3.3 THE ROLE OF RATIONAL EXPECTATIONS 
 
Storage creates a short run price dynamic different from a white 
noise process. The drift in the process arises due to a compensation 
for the cost of storing. If fundamentals such as planned production 
output and demand follow non white-noise processes, storage 
decisions must anticipate the signals in these variables to the 
extent they are predictable. The knowledge that productivity 
increases in a certain period must lead expected prices period to 
decrease for this period as storage accommodates this information. 
 

 
FFFFIGUREIGUREIGUREIGURE    12. 12. 12. 12. Rational Expectations under Storage    
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It is not rational behaviour to store as under normal conditions 
when information is in the market that a demand surge will occur 
in the next period. As the market absorbs all available information, 
expectations becomes rational to the degree that any divergence 
from expectations arise purely due to unpredictable shocks.  
 
Assume for example that producers only look one period ahead. In 
this case the expected price will be equal to the price achieved when 
selling the stock tomorrow (Expected price with subscript icicicic in  
 
Figure 12). This expected price can be consistent with the condition 
that expected price spread covers the cost of storage, and will 
indeed be correct if stocks tomorrow are insufficient to initiate 
storage tomorrow. However, once storage today is so high that 
storage is likely done tomorrow as well, this expectation becomes 
inconsistent with rational expectations. As storage will be done 
tomorrow, the spot price tomorrow diverges from what was 
expected today, and the divergence arises from a predictable 
reason. Price will then jump from 

1+t

t

ic pE  to 
1+t

t

c pE .  A producer 

knowing that the market only looks one period ahead can exploit 
this information to earn a marginal profit of 

11 ++ − t

t

ict

t

c pEpE . Under 

rational expectations, divergence due to available information at 
time t will not occur, only divergence in price spread due to 
information arriving at t+1 will move future spot price away from 
what is expected at time t. 
 

Another way of stating this is that expected prices cannot be used 
as information to earn abnormal profits in the future: 
 

( )
( )( ) ( )( ) ( )( )

( )( ) ( )( )tnttntnt

tttttttt

ttnt

ppEppEpE

ppEppEpEEpppE

EpppE

|||...

||||

|

11

1121

−+−++

++++

+

−++

−+−

=−

      (9)

   
In effect, the expected price n periods ahead is equal to the sum of 
expected prices up to n, conditional on price at time t. The 
assumption of rational expectations is a fundamental axiom in the 
theory of storage. 
 

3.4 THE THEORY OF STORAGE AND AGRICULTURE 
 
When it comes to agriculture in general, there are certain 
characteristics which influence the theory of storage. Agriculture  
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deals with production of “living” commodities. This implies that the 
flexibility involved in storing is limited by the perishability natural 
to agricultural commodities. The value of living commodities 
depreciates under storage, suggesting that the cost of storing in 
time increases by the rate of decay. Depreciation due to 
perishability can be remedied by deferring from harvesting. 
Delaying harvest is equivalent to storing the commodity. Storing by 
further cultivation suggests a stochastic cost of storing contributing 
to the volatility of price spreads. Contrary to keeping stocks 
warehouses, storing by cultivation implies that stocks are subject to 
the ordinary weather effects of agricultural production.  
 
Agricultural commodities are by nature used as inputs in own 
production. Its input value suggests that as stock levels decline, 
their marginal productive value increases, generating a positive 
convenience yield on remaining stocks. As is shown by bio-economic 
models, growth rates of agricultural commodities vary with stock 
size. If stocks are too high or too low, this can significantly punish 
growth rates. The convenience yield from storing by cultivation can 
be seen as the alternative cost of harvesting. The expected growth-
rate of the stock becomes a component of the convenience yield. 
Hence we should observe seasonal variations in convenience yields 
for agricultural commodities. Growth rates vary predictably 
throughout the season and contribute to the alternative cost of 
harvesting at any time.  
 
Many agricultural commodities can be sold in separate markets 
conditional on its property at the time of harvest and/or some 
transformation applied by producers. Certain fish species can be 
sold at different weight-classes, meat can be sold fresh, frozen or 
conserved etc. This implies that stocks of commodities are related, 
and that theory of storage could be used to, not only explain the 
single commodity price dynamic, but also relative price dynamics 
across related markets. The stock of one commodity can have 
positive or negative productivity effects on the stock of other 
commodities. The theory of storage provides not only an inter-
temporal explanation for price dynamics, but also a spatial 
explanation for common patterns in mean-reversion and/or 
volatility.  
  
Aquaculture is a subset of agriculture dealing with production of 
farm bred marine species. For salmon aquaculture, markets exist  
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for frozen, fresh and conserved salmon. Fish is also sold as whole or 
filets, in addition to different weight-classes. This means that 
stocks are highly correlated; a fixed amount of fish stock is 
distributed over each product form. Further, salmon can be stored 
by delaying harvest or by harvesting and storing. When the fish is 
harvested, it can be stored fresh or in some conserved form, such as 
frozen. An array of varying degrees of flexible storing options is 
available to salmon producers. Further, growth rates of salmon 
vary predictably across seasons, with higher growth rates during  
 
summer when water temperatures rise. The convenience yield from 
storing by cultivation increases during early summer since the 
alternative cost of slaughtering prior to a high growth period is 
greater. For producers of salmon, potential arbitrage opportunities 
exist not only inter-temporally but also spatially across different 
product forms. The theory of storage provides a suitable framework 
to analyse the price relationships both inter-temporally and 
spatially in the short run. The theory suggests that inter-temporal 
and spatial arbitrage needs to be evaluated simultaneously in light 
of a commodities connection to a common stock starting point. In 
effect the theory of market integration becomes equivalent to the 
theory storage where the cost of storing is replaced by the cost of 
transformation between markets.        
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4. EMPIRICAL METHODS 
 
In order to model dynamics of prices empirically we need to 
establish a suitable statistical representation of our data. We would 
also prefer that, in addition to an appropriate statistical 
representation, the empirical model should encompass the 
dynamics demanded by the structural model. We have seen how the 
dynamics of commodity prices move dependent on state-variables in 
a constant feedback relationship. None of the state variables, 
except additions to stocks from production, can be reasonably 
assumed exogenous. Analysing price series in the light of the theory 
of storage has in general taken three approaches.  
 
The first approach I call Direct Inference Using Inventory/Stock 
Data. The benefit to this approach is it allows direct inference of 
predictions made by theory. In this approach causality 
relationships are empirically possible to achieve. Due to the low 
availability of good, high frequency, inventory/stock and cost of  
 
storing data this approach is less frequently used in the literature. 
Examples of this approach are Rucker, Burt & LaFrance (1984), 
Krane (1993), Pindyck (1993) and Considine & Larson (2001). 
 
The second approach I call Indirect Inference Using Price Data. 
This approach uses price data to test predictions on price 
characteristics from the theory of storage. Due to the higher 
availability of high frequency price data, this approach is 
predominant in the literature. The drawback of this approach is 
naturally the inability to draw direct inference on the relationships 
between inventory/stocks, cost of storing and price. Using only price 
data prevents identification of parameters. The modelling 
framework for this approach is non-structural time series analysis. 
One of the benefits to this approach is accessibility to a large 
arsenal of modern time series tools. Examples of this approach are 
Fama 6 French (1987); Bessembinde & Sequin (1993); Ng & Pirrong  
(1994); Litzenberger & Rabinowitz (1995); Kim & Rui (1999); 
Routledge, Duane & Chester (2000); Heaney (2002); Cassaus & 
Collin-Dufresne (2005)).   
 
A third approach uses different variations of simulated methods of 
moments to directly estimate parameters of the structural model 
(Michaelides & Ng. 2000). This approach has emerged with the  



 

 

 

 
 

EMPIRICAL METHODS 

31 

 

 
availability of greater computing power. The approach uses 
simulated methods of moments from finance to estimate the 
parameters of the theoretical storage model.  
 
In this thesis I use the Indirect Inference Using Price Data 
approach for the empirical analysis. I focus not only on statistical 
fitting of empirical models but also on how empirical models need 
the flexibility to accompany the dynamics predicted by economic 
theory.  

 
4.1 NON-STRUCTURAL TIME SERIES ANALYSIS 
 
With a non-structural time series representation of prices we can 
achieve a well defined statistical representation of dynamics. The 
cost of this is a sacrifice of direct causality inference between state 
variables. However, since theory suggests that state variables exist 
in a constant feedback relationship, the sacrifice of direct causation 
inference seems less grave. Even though direct inference is 
sacrificed, this does not imply that hypothesis testing is impossible, 
or that empirical representation of data is disjoint from economic 
theory. The theory produces several predictions on price 
characteristics in which results can be evaluated.  
 
In addition to focusing on empirical models consistent with the 
flexibility required by theory, we can also use knowledge of relative 
changes in underlying state variables to evaluate model output. 
Even if exact quantitative representation of state variables is 
missing, we often have available information relating to predictable 
structural changes. Such information can come from seasonal 
patterns, as in growth rates of stocks, or predictable changes in 
demand. This knowledge can be used, in combination with the 
theory of storage, to interpret the output of a consistent empirical 
model. 
 
Developments in modern time series analysis have provided many 
useful models to represent prices in a manner consistent with the 
flexibility demanded by theory. Some of these models include the 
(G)ARCH models of Engle(1982) and Bollerslev(1986) in addition to 
the different modifications to the model such as the EGARCH 
model of Nelson(1991), the GJR-GARCH model of Glosten, 
Jagannathan & Runkle(1993) or the GARCH-M model. Various 
non-linear models such as the regime shifting model of 
Hamilton(1986), structural models (Harvey, 1991) and smooth  
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transmission models (Chan & Tong, 1986) provide a great degree of 
flexibility when modeling the mean. In addition, long memory 
models such as the fractionally integrated models of Granger & 
Joyeux (1980) and seasonal unit root models (Hylleberg, Engle, 
Granger & Yoo, 1990) provide flexibility in modelling longer run 
effects in prices.  
 

4.2 STATIONARITY AND DATA PREPARATION 
 
Before we derive the general time series model of prices used in this 
thesis, it is worth mentioning a fundamental and important issue 
when doing time-series analysis. The issue is that of data 
stationarity. We define a data-set as a discrete 1×n  vector Y , 
where a single element is identified by ty  in the time subscript t. In 

our data-set n represent the number of observations available and 
t∆  denotes the time interval between observations, usually a day, 

week or month in commodity price analysis. It is assumed that  
{ } ntt

tttyY
+=

=
= 0

0

 is a single outcome of the underlying stochastic process 

that generated our data set. The underlying stochastic process is  
 
called the data generating process (DGP).  Our entire data set Y  is 
assumed a single draw from the DGP. The objective of time series 
analysis, like any econometrical analysis, is to find a statistically 
suitable approximation of the DGP. The DGP is said to be 
stationary if: 
 
 ( ) µ=tyE     t∀  

 
 ( )( ) jjtt yyE γµµ =−−

−
   t∀ , j∀  

 
That Y  is stationary implies that that the mean µ  and 

autocovariance 
jγ  of the series is independent of the time of 

observation t. Working with a stationary data set is important both 
in terms of statistical validity of coefficient estimates, and economic 
validity of output analysis. Granger & Newbold (1974) illustrated 
how a non-stationary process, specifically a process with a unit 
root, generates spurious regression effects which severely bias’ 
statistical inference. In addition, if the non-stationarity is not 
accounted for, the output of our model is only relevant for the 
specific time period of our data set. By not accounting for non- 
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stationary components, the future underlying DGP will change in 
time while our model approximation will not.  
 
That the data is stationary leads to a fundamental theorem in time 
series analysis: the Wold decomposition theorem. The theorem 
states that given a stationary data-set, the DGP can be written as 
an infinite moving average process:  
 

 t
i

ititt by εεµ ∑
∞

=

−
++=

1

         (10) 

 
Where 

t
ε  is an uncorrelated innovation sequence, theb ’s are the 

moving average coefficients, assumed absolutely summable, and tµ  

is the deterministic component. Thus we are able to decompose the 
price series as the sum of a deterministic component tµ  and a 

random component t
i

itib εε∑
∞

=

−
+

1

. Since the process is dependent on 

an infinite innovation sequence it is standard to express the time 
series as an autoregressive model, or a mixed autoregressive 
moving average model: 
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This is equivalent to the Wold representation. The Wold 
decomposition theorem allows the dynamics of the series to be 
represented by a linear model. This way of representing the 
dynamics of a model is fundamental in time series analysis. The 
primary criterion to allow this representation is that the data is 
stationary. In most economic data, the raw data does not allow this 
property. To make the data stationary it is common to apply a filter 
to the data, removing the non-stationary component. What filter 
one applies is naturally dependent on the form non-stationarity. 
Deterministic or seasonal trends can be removed by applying 
polynomial or trigonometric filters. Stochastic trends can be 
removed by difference filters. A difference filter takes the form 
( )nL−1 , where L is the backshift operator and n is some positive 

integer. The process might also be fractionally integrated such that 

a filter ( )d
L−1 , where d can be a real number, is necessary to 

achieve stationarity. To analyse returns for example, the filter  



 

 

 

 
 

EMPIRICAL METHODS 

34 

 

 
( )L−1  is applied. This filter removes the zero frequency unit root 

and allows stationary modelling of zero frequency unit root data. 

 
4.3 THE EMPIRICAL PRICING FUNCTION 
 
To derive the time series representation of prices, we start from 
commodity price theory. Supply today tS  determines spot price as: 

 
 ( )tt SPp =   ttt IXS −= .           (12) 

 
The supply 

tS  is further the result of previous period realisation of 

sales through stock tX  and storage tI  as discussed in the previous 

section. Since state variables exist in a constant feedback 
relationship, the pricing function does not generally allow a closed 
form solution. By focusing specifically on the price variable at time 
t, we can construct an approximate price model as: 
 
 ( )( )

1|ˆ −≈ ttt SSEPp  ⇔  ( )( )( )1

1|ˆ −

−≈ ttt SPSEPp         (13) 

 
Since the demand function is assumed invertible, a one-to-one 
mapping exists between the previous period price and sale. Using  
 
 
previous period price, an estimate of current sales and price can be 
achieved. We define the approximate price today as: 
 
 ( ) ttt pfp ε+= −1ˆ            (14) 

 
Here 

t
ε  is the error in the approximation model. Due to the lack of 

a one-to-one mapping, direct inference of state variables is not 
possible. Even though a one-to-one mapping between sales and 
price exists, a one-to-one mapping between sales and underlying 
state variables such as stock and storage costs does not exist. Low 
supply might suggest low stock levels. However, low supply might 
also be the result of a high convenience yield.  This implies that 
direct inference on state variables from price alone is not possible. 
Denoting p  as the long run equilibrium price; the price when 

storage is at its steady state, the price process (14) can be 
approximated by a Taylor series expansion as: 
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 ( ) ( ) ( )( ) ttt pppfrpp ε+−++= −1

11  

           (15) 

( ) ( )( )n

t
n

n

t pppf −= −

∞

=

∑ 1

2

ε  

   
This is the fundamental non-structural time series representation 
of prices from the theory of storage. The linear term measures the 
speed of convergence to the long run equilibrium, p . This is the 

mean reversion term. The term tε  measures the error of applying 

the linear model. If ( ) 0=tE ε  and ( ) 0=
+ jttE εε  is equal to a constant 

for 0=j and zero for 0≠j  the linear model is a valid 

representation. If this is the case the model is said to be stationary 
and the Wold decomposition theorem applies.  
From the theory discussion above we do not expect linearity to be 
the case.  The derivatives ( )nf  measure how the market reacts to 
changes in the state variables outside of equilibrium. If linearity is 
a valid representation, we need costs of storage to be constant; we 
also need storage to be a constant ratio, planned production to be 
constant and demand stationary and linear. Assuming all this 
seems unreasonable. Also, looking at the table of commodity price 
characteristics these restrictions generally do not appear to be 
satisfied. For example, symmetric mean reversion of prices around 
the long run price is unreasonable. The possibility of stock-outs and  
 
non-linear storage costs makes mean reversion asymmetric. Note 
that if  ( ) 11 =f  the price dynamics collapses to a random walk 
process where prices appreciate at rp . Further, when the market 

stocks out, mean reversion generally vanishes such that ( ) 01 =f . In 
reality ( )1f  will vary in state variables leading to a non-linear price 
process.  
 
How the price process diverges from the linear model represents 
important information on price dynamics. Moreover, it allows the 
use of output from time-series models to indirectly test hypothesis 
from theory. What is not picked up by the linear model remains in 

the error term ( ) ( )( )n

t
n

n

t pppf −= −

∞

=

∑ 1

2

ε  . Analysing both the structure 

of this term and the invariance of this term by changing the linear 
model remains crucial in understanding commodity price dynamics. 
Since price itself does not provide a one-to-one mapping to other 
state-variables, we apply knowledge of exogenous factors in specific  
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markets to evaluate the empirical output of the model against 
theory.  
 

The dynamics of ( ) ( )( )n

t
n

n

t pppf −= −

∞

=

∑ 1

2

ε  contains information, on 

amongst others, the conditional variance, skewness, kurtosis and 
serial-correlation in prices. Several models are available to examine 
the structure of tε . The (G)ARCH model focuses mainly on the 

second order derivative ( )2f . Further, regime shifting models focus 
on the asymmetry of convergence, picked up amongst others by the 
third order derivative ( )3f . This can account for the skewenss in 
distributions. By including several lags in the linear model we can 
also gain information on the kurtosis and form of mean reversion in 
prices. The eigenvalues and modulus of the mean reversion 
coefficient vector provides information on how prices converge to 
the long run mean. Real eigenvalues higher than unity in absolute 
values suggests diverging prices, while complex eigenvalues lower 
than unity generates oscillating reversion patterns. Improved 
understanding of commodity prices can be achieved by time-series 
modelling when we analyse linear model output against the 
theoretical pricing model. Since commodity price theory predicts 
that errors from linear models should emerge we can analyse the 
empirical error by time series methods and knowledge of exogenous 
state variables in specific markets.      
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Abstract Abstract Abstract Abstract Salmon prices exhibit substantial volatility. An 
understanding of the structure of volatility is of great interest since 
this is a major contributor to economic risk in the salmon industry. 
The volatility process in salmon prices was analysed based on 
weekly price data from 1995 to 2007. The Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) model 
was used to test for volatility clustering and persistence for prices. 
We find evidence for and discuss the degree of persistence and 
reversion in salmon price volatility. Further, we find that volatility 
is larger in periods of high prices. For the industry this means that 
larger expected profits more often than not comes at a trade-off of 
larger price risk. 

 

INTRODUCTION 
 
In general, producers face two main types of risk, production risk, 
which influences how much is produced with a given input factor 
combination, and price risk, which influences the revenue one will 
obtain from the quantity produced (Just & Pope 1978; Sandmo 
1971). A number of studies have recognized that salmon farming is 
risky (Asche & Tveteras, 1999; Tveteras, 1999; 2000, Kumbhakar, 
2002 & Kumbhakar and Tveteras, 2003). Production risk is the 
main focus of these studies. Despite that price volatility seems to be 
one of the main sources for cycles in profitability, price risk in 
salmon aquaculture has received little focus. In this paper we 
investigate the price volatility for Norwegian salmon, and thereby 
obtain information with respect to the nature of the price risk that 
salmon farmers are facing. 

                                                        
1
 Published in Marine Resource Economics 23:507-526. 
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To put the salmon industry into a broader perspective, we can 
compare it with meat producing sectors in agriculture. From 1995 
to 2007 the standard deviation of monthly salmon prices around 
their linear trend was 14.9%. For US beef and pork the standard 
deviation in the same time period was 11.9% and 24.9%, 
respectively. One particular distinguishing factor with salmon is 
that as it approaches harvest-ready sizes it also approaches sexual 
maturation, which causes a significant decline in quality and 
growth. Salmon farmers will often have a relatively short time 
window for harvesting, and will consequently be concerned about 
week-to-week variation price dynamics during that time window. 
 
For the salmon industry, providing information on the volatility of 
prices is potentially valuable. There is substantial variability in 
industry profit levels (Tveteras, 1999), and an important part of 
this variability is due to fluctuating prices.   
 

 

FFFFIGUREIGUREIGUREIGURE    1.1.1.1. Average and standard deviation of the export margin for Norwegian 
salmon exports 1985-2002. Source: The Norwegian Directorate of Fisheries. 

 
Not only first hand sellers experience the economic costs of highly 
fluctuating prices. The costs of price volatility are transferred to the 
entire value chain. Retailers and consumers increasingly demand 
stability of price and supply, and often have little understanding for 
biological and other mechanisms driving the formation of prices in 
the market. Modern value chains for food products are organized 
and have capital-intensive technologies that are geared towards 
predictability and stability of supplies and prices. From the 
fluctuating first-hand prices to the relative stable retail prices 
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many intermediary agents in the value chain, such as fish 
processors, can experience substantial variability of capacity 
utilization and profits as prices fluctuate.  
 
Revealing information on the volatility term contributes to the 
literature on price processes in aquaculture. Studies of price 
forecasting (Guttormsen, 1999; Gu and Anderson, 1995; Vukina & 
Anderson, 1994) rely on precise knowledge of the noise generating 
part of prices. The question of how precise we can expect price 
forecasts to be is highly related to the volatility term. Also, studies 
of market integration (Asche, Bremnes, & Wessells, 1999; Asche, 
Gordon, & Hannesson, 2004) rely on knowledge of the volatility 
term. If markets for comparable goods are integrated, which imply 
that we can describe them by a single price measure, this should 
also include the integration of the volatility processes of the 
comparable goods.  
 
In addition, volatility of prices is important in establishing the 
value of contingent claims. Forward and futures market for salmon 
is now under establishment in Norway and Switzerland, although 
they have not been successfully established on a large scale. This is 
due to many factors outside the scope of this paper, but since the 
value of a contingent claim is dependent on the underlying asset (in 
this case the salmon price) it is important to establish the true 
properties of the volatility generating part of the price process. 
Simply assuming an independent zero-mean normally distributed 
term for describing volatility can be costly if the price process 
contains properties and connections diverging from a random walk. 
For instance, assuming normality if the distribution displays fat 
tails can lead to underestimation of extreme events and 
consequently to severe losses, as many speculators and investors on 
the world’s stock markets have experienced. For example the 
probability of a trading loss as that incurred from the Black 
Monday stock market crash has been estimated, using a normal 

distribution, to occur with a probability of 1 in 157
10  per day (James 

& Zetie, 2002).  
 
Previous research on salmon prices has been predominantly 
concerned with issues such as price forecasting and market 
integration, and as such has for the most part focused on the price 
levels and the drift term of the price process. As far as we know, 
little work has been done on examining the volatility process of 
salmon prices. Thus this paper contributes to the study of salmon 
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prices by analytically and descriptively investigating the volatility 
term of the price process. In essence we will look for indications 
that the volatility term cannot be described by a, generally 
assumed, independent zero-mean normally distributed random 
variable. We do this econometrically by applying the GARCH model 
(Bollerslev 1986) to our price time-series. The GARCH model allows 
us to model the variance term of the price process as a regression 
equation dependent on some explanatory variables, where the 
lagged variance and squared error term of the price process is 
assumed as default variables. This in essence allows us to 
empirically model any heteroskedasticity in the process. The result 
from the analysis of this process will reveal information on the 
volatility term in the form of bringing to light attributes such as 
volatility clustering2 and the persistence of volatility shocks. This 
again allows us to discuss how volatility reverts after a shock, and 
as such reveal the predictive powers of volatility. The persistence of 
any volatility shock will also provide an indicator on the level of 
efficiency in the market; how fast prices revert to a conceived 
equilibrium following a shock. In addition we will investigate the 
distributional properties of the error term in the price structure in 
order to reveal non-normality attributes such as leptokurtosis and 
skewness. When deriving the distributional form of the error term 
we apply the kernel density estimation method.   
 
The paper starts by giving a short overview of the aquaculture 
industry and some of the processes generating price risk. After this 
we start our analysis by descriptively trying to analyse the 
behaviour of price volatility. We apply some measures of volatility 
to our time series in order to apprehend indications of the 
properties of volatility that will in turn direct our further analysis. 
Following the descriptive analysis we apply the GARCH model to 
our time series so as to more rigorously investigate the properties 
suggested by the descriptive analysis. Our results reveal that the 
volatility term is not independent and that persistence and 
clustering is present in the short term dynamics of prices. As such 
the investigation provides valuable information on the salmon price 
path for any risk averse market participant.  
 

 
 

                                                        
2
 Volatility clustering is the property that prices are correlated in higher powers.  
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AQUACULTURE PRODUCTION AND RISK 
 
The salmon farming industry is an industry in rapid growth; from 
1996 to 2006 the volume of salmon sold from Norwegian farms 
more than doubled (from 298 to 626 thousand metric tonnes). This 
development has transformed what was once a relative small scale 
periphery of the biological production sector into a multi-billion 
dollar industry. For the biological production sector the breeding 
and cultivation of salmon has been one of the most commercially 
successful endeavours. Today Norway is the leading producer of 
salmon accounting for around 40% of the world production. Most of 
the industry growth comes from a substantial productivity growth 
which over time has substantially reduced unit costs. The reduction 
of production costs is due to two main factors. Firstly, fish farmers 
are able to produce more with a given amount of inputs, and 
secondly, improved input factors has made the production process 
cheaper (for example the development of better feed and feeding 
technology). The reduction of unit costs has lead the price of salmon 
to decrease over time (figure 2), providing a long term trend for the 
general direction of the salmon equilibrium price. In Norway most 
of the salmon farms where established during the 1980s. The long 
Norwegian coastline provides a large array of potential farm 
locations, and provides the farmer with potential hedging of 
production risk as correlation of farm specific risks such as disease 
outbreaks and temperature fluctuations decreases over 
geographical distance. At present salmon farms are located along 
most of the Norwegian coastline. 
 

 

 
FFFFIGUREIGUREIGUREIGURE    2.2.2.2.  Cost of production and price per kilo fish for the Norwegian 
salmon farming industry 1986-2005. Source: The Norwegian Directorate of 
Fisheries. 
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We can define volatility as the fluctuations of prices above and 
below some pre-conceived long term trend or equilibrium. These 
price movements are for the most part risky as the direction and 
force of the motions are largely unknown on the short term basis. 
For the salmon industry the level of prices functions as the target 
for which production is evaluated. When prices increase the 
farmers seek to increase profits by increasing the amount of salmon 
produced and sold, when prices decline the farms might choose to 
reduce the intensity of production and the amount of fish sold in an 
attempt to wait for prices to increase. The biological nature of 
production implies that desired production output does not always 
meet its target. Disease, escape of fish and water temperature 
conditions are important factors that determine the final stock of 
fish. As such the possibility at any time to clear the market is not at 
unity. There will be periods of over and under supply which will 
cause prices to fluctuate. In particular the market for fresh fish will 
be subject to volatility as inventory keeping is limited, although 
some flexibility is allowed through the stocking of fish in pens. This 
inventorying is limited because the fish eventually reaches sexual 
maturity and when it does its quality deteriorates rapidly.  Salmon 
in Norway have the largest probability of reaching sexual maturity 
during August-September. Thus one would expect seasonal 
differences in the flexibility available for the farmers in exploiting 
profit probabilities. Further at the demand side, factors such as 
seasonality and changes in preferences (e.g. caused by information 
on animal diseases and potentially harmful and beneficial 
substances) and changing exchange rates in different markets will 
also contribute to the volatility of prices.3 So, if salmon farmers are 
risk averse they will use the volatility of prices, in addition to the 
level, as a target to evaluate the amount of salmon produced and 
sold at the market at a given time. Information on the short term 
dynamics of volatility can thus provide valuable information since 
on the short term basis farmers have some level of flexibility in 
realising an optimal utility of profits.   
 
We now start our analysis of the salmon price volatility. We do this 
with the assumption that the volatility term is approximated by a 
random process, an assumption that seems reasonable in light of 
the large degree of uncertainty inherit in the market. As we will see 

                                                        
3 Kinnucan & Myrland (2002, 2001) provide a discussion of the impact of exchange 
rates. 
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this assumption will soon break down; the analysis will show that 
the volatility term itself contains valuable information. 
  

THE SHORT RUN DYNAMICS OF SALMON PRICES 
 
Our data set is provided by the Norwegian Seafood Export Council 
and consists of 650 weekly observations of salmon prices in 
Norwegian Kroners from the start of 1995 to week 21 in 2007. One 

observation of price at time t will be denoted as tX . As a starting 

point we decompose the price path as such. 
 

tttt dBXXdX σµ +=                 (1) 

 
The above Stochastic Differential Equation breaks the price 
movement down in two parts. One predictable, or trend part tXµ , 

and one noise part, ttdBXσ  accounting for the uncertainty of price 

movements. The uncertainty of price movements σ  is driven by the 
Brownian motion tB , which in its increments is normally 

distributed with mean zero and variance equal to the size of the 
time increment. Note that the price decomposition contains two 
information terms, namely the drift term and a constant volatility 
term. The Brownian motion is pure noise and contains no 
information. 
 
This basic way of modelling price movements is much applied in 
financial economics. We will argue that the price process in the 
salmon industry may be described by the same process. The selling 
and buying of salmon is motivated by the same incentive for utility 
maximization as any financial asset investment. The sale of salmon 
does not have to occur at the exact moment the fish reaches sellable 
size; the profit maximizing policy of sellers is a dynamic problem, 
they might hold the salmon and wait for price to change or sell it 
immediately. This strengthens the speculative forces underlining 
the price of salmon.  
 
Since uncertainty is a fundamental attribute of the salmon 
production process we know that the price of salmon is volatile. A 
hypothesis concerning salmon prices is therefore that the price 
process is very much explained by the Brownian motion, and that 
long term predictability is limited. In our time series the long term 
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predictability, or drift term, is linked to any trend observed in the 
given time domain.   
 
The relative difference in price levels, or return, from week to week 
is denoted as 1/

−
= tt XXR . To account for proportional changes in 

returns we apply a logarithmic transformation of the price 
difference such that 1lnln

−
−= ttt XXY . The logarithmic 

transformation is also applied to the price process; transforming 
both the variables and the shape and moments of the probability 

distribution 
tt dBdtdY σσµ +−= )

2
1( 2 . The log return tY  is normally 

distributed with mean t∆− )
2

1( 2σµ  and variance t∆2σ . This simple 

model, in the case of zero drift, assumes that log returns are 
independent. For the Black-Scholes option pricing formula, for 
example, the pricing equation does not contain a local mean rate of 
return. Generally this seems like a strict assumption, and as such 
the seminal work done by Black & Scholes has been criticized for 
this independence assumption. In fact, empirical analysis of stock 
returns indicates that non-linear functions of returns are 
autocorrelated (Jones, 2003). The non-zero correlation between 
different powers of return gives rise to volatility clustering. Thus 
log-returns, at least for stocks, often seem to be connected not only 
through a drift term but also through a non-zero conditional 
variance.  
 

 

FIGURE 3FIGURE 3FIGURE 3FIGURE 3. . . . Weekly salmon prices from 1995 to 2007 with fitted trend line. 
 

If the noise term σ  is equal to zero, the price movement is 
completely predictable and described by the linear relationship

tY µ+0 . Thus we see that volatility is the term describing the 
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divergence of prices from its predictable level. In relation to salmon 
prices we might expect that the price will often diverge from any 
assumed predictable level. From 1996 to 2007 we observe that the 
trend line in prices (figure 3) is weakly declining. Increasing 
industry productivity subsequently explains the decline in prices 
over time.4  In our figure prices are nominal so that the downward 
effect from increased productivity on prices is counteracted by 
inflation.  
 
If the market for salmon is completely efficient, meaning that all 
relevant information concerning the future value of salmon is 
incorporated in its price, the predictable part of the price movement 
approximates to zero; more precisely, any trend observed in the 
price in the case of an efficient market is due to inflation. Thus the 
change in price from week to week should be completely described 
by the noise term ttdBXσ . The parameter σ  in the price process is 

the fundamental measure of volatility, and is in this simple 
description assumed to be constant. From figure 3 it is hard to 
argue that the predictable factor µ  is very dominant, there seems 

to be little drift in the price process and the dominant part of the 
given price movement seems to be given by the Brownian motion. If 
this holds then no patterns in prices can be found, and thus for the 
market participants they would be unable to acquire any 
information on the future price movements. The best prediction on 
future prices would simply be today’s price levels, where the 
volatility term would be a simple white noise term. 
 

FIGURE 4FIGURE 4FIGURE 4FIGURE 4. Annual average of weekly standard deviation of salmon prices.    

 

                                                        
4
 See e.g. Asche (1997), Asche & Tveteras (2002) . 
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In order to examine the noise term of the production process, we 
now apply two empirical measures of volatility on the salmon price 
series, a standard deviation measure and a historical rolling 
volatility measure. The standard deviation measure in Figure 4 
gives us the annual average variation of prices from its mean. This 
simple measure gives us our first indication that volatility itself 
fluctuates. The annual standard deviation only gives one 
observation per year and hence it does not contain much 
information. 
 
To give a more detailed picture of volatility we expand on the 
annual standard deviation measure by using a rolling measure in 
which we measure the divergence of prices from a 20 week moving 
average.  
 

FIGUREFIGUREFIGUREFIGURE    5.5.5.5. Twenty weeks moving average of salmon price volatility. 
 
As indicated in Figure 4 and 5, the volatility is displaying 
significant variation over time. In addition, volatility seems to 
“spike” in certain time intervals. There appear to be significant 
positive shifts in the volatility process. This suggests that the 
volatility σ  in our price process is stochastic, and that the 
assumption that volatility σ  is constant seem insufficient in 
describing the price process. When modelling stochastic volatility to 
incorporate spikes, the Ornstein-Uhlenbeck process for volatility 
has been applied (Zerili, 2005). The Ornstein-Uhlenbeck process 
allows for autocorrelation in volatility. 
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FFFFIGUREIGUREIGUREIGURE    6.6.6.6. Salmon Price and Volatility. 
  
The discrete time counterpart to the Ornstein-Uhlenbeck process 
can be implemented by the GARCH model. The indication that 
volatility is a stochastic process opens up the possibility that 
volatility is connected across time, and that a GARCH model is 
suitable to describe the volatility process for the discrete time 
approach.   
 
By examining Figure 6 another pattern in the volatility process 
seems to emerge. The figure suggests that volatility is greater in 
periods of relative high prices; that a positive correlation between 
price and volatility exists. In the theory of storage it has been 
conjectured that such a relationship should exist (Deaton & 
Laroque, 1992; Chambers & Bailey, 1996). In periods with scarce 
availability of goods, for example due to a streak of bad harvests, 
the price is allowed to persist above the long run equilibrium level. 
As inventories are emptied the producers reach a state where 
excess demand cannot be satisfied. This gives rise to the 
characteristic price spikes observed in commodity markets; and as 
such larger than average volatility. In order to examine this 
property we divide our data-set in two; one set where price is below 
the trend and one where it is above. Thus this functions as a proxy 
for a high and low price data set. Further we test, using both the 
Levene (1960) and Brown & Forsythe (1974) test, whether the 
standard-deviation of the two price sets are significantly different, 
as shown in Table 1. We note that the standard deviation of the 
“high price”  and “low price” series are 3.47 and 2.27, respectively.  
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TTTTABLEABLEABLEABLE    1.1.1.1. Levene/Brown and Forsythe test for equality of variance. 

 

Dummy Mean St.Dev. Freq.     

Low price 24.33 2.27 360   

High price 30.19 3.47 290     

Total 26.95 4.08 650   

       

w0   = 40.14       df(1,648)             Pr > F = 0.0000000   

w50 = 13.26       df(1,648)             Pr > F = 0.0002914   

w10 = 24.15       df(1,648)             Pr > F = 0.0000011   
 

****The term w0 reports Levene’s statistic, and w50(median) and w10(10 percent 
trimmed mean) replaces the mean with the two alternative location estimators as 
proposed by Browne and Forsythe. 

 
Both the Levene’s and the Brown & Forsythe test indicate that the 
standard deviations are different. As such this approach supports 
the suspicion that volatility is larger in periods of high prices. For 
market participants this means that larger expected profits 
generally come at a trade-off of larger price risk.  
 
Next we move to the log-space, where we apply our measures of 
volatility to the log-return of prices. By examining returns instead 
of levels we are able to say something about the short term 
dynamics of price movements; that is the corrective movements in 
prices. The return movement indicates how the market price 
converges to the equilibrium price. If the equilibrium price level is 
constantly changing, as we would assume in a market with much 
uncertainty, this would lead to large volatility in returns as prices 
constantly “catches up” to the equilibrium price. 
 
If drift is absent from the return process we should observe that the 
log returns are independent and (in the case of a constant volatility 
term) fluctuate unsystematically around zero as drift-less 
Brownian motion increments (the Brownian motion is as stated 
independent and normally distributed in its increments). 
 
Figure 7 shows the movements of log-returns. The mean of log 
returns is estimated to -0.00032. Thus this simple description 
seems to indicate that log-returns are reasonably approximated by 
Brownian motion increments. But as we will see later this simple 
analysis is incomplete as it cannot isolate what part of volatility is 
random and independent and what is correlated. 
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FIGURE 7.FIGURE 7.FIGURE 7.FIGURE 7. Log-Return of salmon prices. 

 
If we were to assume that log-returns are in fact normally 
distributed and follow Brownian motion increments we can reach 
an estimate on annual standard deviation of log returns based on 
the expression: 
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Where tY  is the mean annual log-return, T∆ is the number of 

periods, here 52 weeks, and n  is number of observations per year, 
also 52. 

 

FFFFIGUREIGUREIGUREIGURE    8. 8. 8. 8. Estimation of annual volatility of log returns based on assumption of 
log-normal returns. 

 
Now, Figure 8, as well as previous figures, suggests that the 
variance of salmon price is itself volatile, such that the volatility 
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term σ  becomes stochastic. Thus the simple estimate on annual 
standard deviation becomes unreasonable, since it assumes that 
returns are drawn from a fixed log-normal distribution in the 
sample interval. 
 

 

FFFFIGUREIGUREIGUREIGURE    9. 9. 9. 9. Twenty weeks moving average of log returns with and without drift. 

 
 
To obtain a more complete picture of log-return volatility we apply 
the dynamic moving average measure. Figure 9 depicts the moving 
average with and without drift. The figure supports the hypothesis 
that drift is largely absent in the salmon return process. There 
seems to be little divergence between a drift and a zero drift 
process. The difference between the two moving average measures 
is a mean adjustment term to the log-returns in the case of the drift 
measure. If there were significant drift in the price process this 
would lead to a notable difference between the two measures since 
log-returns would over time diverge from zero. 
 
This figure also suggests that volatility displays clustering. The 
indication of volatility clustering further strengthens our suspicion 
that the volatility term of the price process is stochastic. It appears 
to depend on previous week(s) volatility.  
 
It is also necessary to determine the time series properties of the 
variables in order to avoid the problem of non-stationarity. We test 
for non-stationarity using the Augmented Dickey-Fuller (ADF) test. 
We included a constant in all the variables that do not appear to be 
trending, and a trend in the ADF test on the highly trending 
volume traded variable. The results are shown in table 2. Lag 
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length was chosen to minimize the Akaike Information Criterion. 
The most important tests are the tests on log returns and log 
volume change (log-diff.-volume). The ADF tests reject the null of 
non-stationarity on both of these variables at the five percent level.        
 

TABLE 2.TABLE 2.TABLE 2.TABLE 2. Augmented Dickey Fuller unit root test.    

Series t-adf Lag length Options included 

Salmon price -2.748 2 Constant 

Log-Return -26.84** 0 Constant 

Volume -12.10**  1 Constant and trend 

Log.-diff.-volume  -10.75** 14 Constant 

    

We also tested for “ARCH effects” (Engle 1982) on both log return 
and log-diff.-volume We regressed the dependent variable (log 
return and log-diff.-volume sequentially) on a constant, and saved 
the residuals, squared them, and regressed them on five own lags 
to test for ARCH of order 5. We obtained R2 and multiplied with the 
number of observations. This test statistic is distributed as Chi-
square. The test statistic (table 3) for both log return and log-diff.-
volume, shows that the series show evidence of ARCH effects. A 
test for autocorrelation in the data was also performed. The Ljung-
Box test suggests that autocorrelation is present in all series except 
log returns.  
 

TTTTABLE ABLE ABLE ABLE 3333.... Autocorrelation and ARCH tests. 

 

Price Series Autocorrelation ARCH 

 Ljung-Box (25) Chi 2  

Salmon Price 8405**  

Log-Return 24 220** 

Volume 6096**  

Log-diff.-volume 114** 265** 

   

The analysis so far suggests that long run predictability is severely 
limited; a drift in the price process is largely absent in our time 
frame, and such that the volatility movements is important in 
describing the price process. Further, the existence of spikes and 
clustering of volatility suggests that volatility is described by a 
stochastic process and that it is not independent across time. 
 
Despite a lack of predictability arising from an approximately zero 
drift term, the log returns still might display correlations arising 
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from a non zero conditional volatility. Thus the natural extension of 
the analysis is to apply the GARCH model to our price process. 
 

ECONOMETRIC APPROACH 
 
If we simulate an ARCH(1) series, we can see that the ARCH(1) 
error term ut has clusters of extreme values. This is a consequence 
of the autoregressive structure of the conditional variance. That the 
variance is dependent on the squared variance of the previous 
period leads to the possibility of higher power correlations between 
log-returns. If the realized value of ut-1 is far from zero, ht (the 
conditional variance of ut) will typically be large. Therefore, 
extreme values of ut are followed by other extreme values, and thus 
we observe the clustering seen in financial market returns.  
 
There have been some difficulties implementing the ARCH model. 
A problem is that often a large number of lagged squared error 
terms in the equation for the conditional variance are found to be 
significant on the basis of pre-testing. In addition, there are 
problems associated with a negative conditional variance, and    it is 
necessary to impose restrictions on the parameters in the model. 
Consequently in practice the estimation of ARCH models is not 
always straight forward. Bollerslev (1986) extended the ARCH 
model and allowed for a more flexible lag structure. He introduced 
a conditional heteroskedasticity model that includes lags of the 
conditional variance (ht-1, ht-2,…, ht-p) as regressors in the model for 
the conditional variance in addition to lags of the squared error 

term ),...,,( 22

2

2

1 qttt uuu −−− , which leads to the generalized ARCH 

(GARCH) model. In a GARCH(p,q) model, ut is defined as: 
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1, 2,…, p. It follows from manipulation of the above equation that ht 
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Earlier in the paper we noted that volatility is larger in periods of 
higher prices, as such it seems reasonable that the volatility 
process is asymmetric and positively skewed. In order to 
incorporate asymmetric volatility it is normal to apply the 
EGARCH (exponential GARCH) rather than GARCH model. In 
describing our price series we have not found this to be a suitable 
approach. Under leptokurtic distributions such as the Student-t 
distribution, the unconditional variance does not exist for 
EGARCH. The exponential growth of the conditional variance 
changes with the level of shocks, this leads to the explosion of the 
unconditional variance when extreme shocks are likely to occur. In 
empirical studies it has been found that EGARCH often overweighs 
the effects of larger shocks on volatility and thus results in poorer 
fits than standard GARCH models5. 
 

ECONOMETRIC RESULTS AND DISCUSSION 
 
A normality test (Doornik & Hansen, 1994), presented in Table 4, 
indicate non-normality, which is not surprising considering many 
large residuals. Non-normality is an inherent feature of the errors 
from regression models of financial data, and hence robust 
standard errors are calculated. Further, the price level series 
displays kurtosis (1.6361) and skewness (0.8663). Concerning log 
returns, the distribution displays excess kurtosis (45.324) but as 
opposed to the price level series skewness (0.094122) is to a large 
degree eliminated. Furthermore, the large kurtosis in log returns 
means that more of its variance is explained by infrequent extreme 
deviations from its mean. This illustrates the uncertainty and risk 
underlying the return process in the industry. 
 

TABLE 4TABLE 4TABLE 4TABLE 4.... Descriptive Stastistics 

     

Series   Mean Std.Dev. Skewness Kurtosis Normality 

      Chi
2
 

Salmon Price 26.946 4.0835 0.8663 1.6361 67.858** 

Log-Return  -0.00032 0.0318 0.0941 45.324 3607** 

Volume  5305.9 1954.6 0.8459 1.0401 81.885** 

Log-diff.-volume  0.002309 0.4935 0.0300 129.11 9449.3** 

 
Corresponding results for both volume and log-diff.-volume can be 
seen in table 4 below. Applying kernel density estimation with a 

                                                        
5 See the empirical study of Engle and Ng (1993).  
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FFFFIGUREIGUREIGUREIGURE    10. 10. 10. 10. Kernel density estimates of price level and log return.
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Gaussian distribution term we can estimate the distribution of the 
returns. 

As figure 10 shows the skewness is to a large degree eliminated 
when looking at log-returns. The low level of skewness suggests 
that in the short term there is little possibility of any reliable 

In addition the high kurtosis in log returns means 
that more of its variance is explained by infrequent extreme 
deviations from its mean. This would suggest that large returns are 
generated by unpredictable shocks. The distributional analysis 
indicates that assuming a normally distributed error term in the 
price structure of salmon is non-trivial, and that any research on 
salmon prices should account for the distributional form of the price 
series in their time domain.  

 

 

Kernel density estimates of price level and log return. 

In the volatility equation we include the stationary time series of 
traded differences. The reason for including volume can 

be found in the relationship between storage and short term price 
cs in commodity prices (Deaton & Laroque, 1992; Chambers 

Bailey, 1996). The theory states that storage allows the 

Gaussian distribution term we can estimate the distribution of the 
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deviations from its mean. This would suggest that large returns are 
generated by unpredictable shocks. The distributional analysis 
indicates that assuming a normally distributed error term in the 

trivial, and that any research on 
salmon prices should account for the distributional form of the price 

In the volatility equation we include the stationary time series of 
. The reason for including volume can 

and short term price 
hambers 

allows the 



 
 
 
 
 

SALMON PRICE VOLATILITY 

 

61 

 

smoothing of short term price fluctuations. In production of goods 
with limited durability; such as fresh salmon, the possibility for 
inventorying is limited. One might conjecture that the only 
possibility for storage of fresh fish in aquaculture is through a 
continuation of cultivation. As such there exists an inverse 
relationship between the growth in volume sold and the availability 
of inventories to smooth future prices; or alternatively that the 
growth in volume indicates the utilization of inventories. The 
relationship between volatility and volume is also investigated in 
financial markets (c.f. Bessembinder & Seguin 1993).   
 
We estimate the GARCH model with Student-t distributed errors, 
as proposed by Bollerslev (1987)6. The distribution tends to the 
standard normal when degrees of freedom go to infinity. From table 
5 below we observe that the optimal number of lags in our model is 
five. 
 
The model is estimated with a five week lag in the price equation 
and a one week lag in the GARCH and ARCH terms.   
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Here Volume∆  is along with return defined on log form. The model 
(2) – (3) was estimated sequentially using maximum likelihood7. 
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Where Φ  represents the parameters space; υ the degrees of freedom and Γ the 

gamma function. See Hamilton (1994) pp 662 for further detail on GARCH 
estimation with t-distributed errors. 
7 Akaike Information Criterion also confirms that log-diff-volume in the variance 
equation should be included. AIC with volume included is -4.88, and is -4.87 
without log-diff-volume in the estimation. 
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TABLE 5.TABLE 5.TABLE 5.TABLE 5. Akaike Information Criteria (AIC) and Bayesian Information Critaria 
(BIC). 

GARCH(1,1)
*
     

    AIC   BIC 

AR(1)  -3139.51  -3133.84 

AR(2)  -3139.13  -3132.66 

AR(3)  -3139.46  -3132.17 

AR(4)  -3140.02  -3131.92 

AR(5)  -3146.11  -3137.21 

AR(6)  -3137.3  -3127.58 

AR(7)  -3132.59  -3122.06 

AR(8)  -3123.85  -3112.52 

AR(9)  -3116.76  -3104.62 

AR(10)  -3108.86  -3095.91 

         
*Extending the GARCH terms to GARCH(2,1), GARCH(1,2) or GARCH(2,2) does 
not improve the fit over the GARCH(1,1) alternative 

 
From table 6 we observe that both previous period variance and 
error term is significant on the 5% level on today’s variance of price. 
Thus the large spiking and clustering in volatility indicated earlier 
can be explained by the conditional variance term. Intuitively the 
lag 1 structure of variance suggest that if price was very volatile 
last week it is more likely than not to be very volatile this week as 
well. After a period with high volatility, one can expect that the 
volatility reverts to a more stable level. For aquaculture firms this 
means that volatility last week has some predictive power 
concerning this week’s volatility, and as such can offer information 
to a risk averse firm who values information on price volatility. 
    

In the variance equation, we see that Volume∆  is negative and 
significant on the five percent level: the conditional variance of 
salmon prices is negatively (positively) related to positive (negative) 
changes in traded volume. Following the reasoning for including 
volume movements in the volatility equation, the results state that 
as the utilization of inventories increase volatility decreases. 
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TTTTABLEABLEABLEABLE    6.6.6.6. AR(5)-GARCH(1,1) Estimation Results. 

 
Parameter         

Mean Function Coefficient Robust Std.Dev. t-values 
µ  

 
-0.00024 0.00068 -0.358 

1η  0.35227** 0.04683  7.52 

2
η

 
 

-0.02208 0.04079 -0.541 

3
η

 -0.06444 0.04129 -1.56 

4
η

 
 

0.02923 0.03537  0.827 

5
η

 0.08648** 0.03061  2.83 

     Variance- Function 

     
0

α
 0.00018** 0.000003  2.81 

γ  
 

-0.00035* 0.00016  2.13 

1
α

 0.44230** 0.1259  3.51 

1β  

 
0.3694** 0.1214  3.04 

Log likelihood 1581.8     
 
** implies significance on the one percent level, * implies significance on the five 
percent level 

 
This supports the relationship that the availability of inventories 
helps smooth prices. However the utilization of inventories today 
comes at a trade-off of lower inventories tomorrow such that the 
option of smoothing prices in the future has decreased. We should 
note that although the difference in volume traded is statistical 
significant, it is less likely to be economically significant due to a 
low coefficient value. Figure 11 shows the relationship between log 
return standard deviation and changes in volume traded. In table 6 
we observe how the conditional mean (return) is related to its 
previous values. Particularly, lag 1 and lag 5 are significant and 
positive. The return in week t depends on the return last week and 
return five weeks ago.  
 
Next we perform misspecification tests on the model residuals. The 
Portmanteau statistic for the scaled residuals returns a Chi square 
value of 15.453 (a p-value of 0.75). The Portmanteau statistic for 
squared residuals results in a Chi square value of 0.31328 (a p-
value of 1). Hence, the Portmanteau tests reject autocorrelation in 
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the residuals. We test for error ARCH from lags 1 to 2. With a p-
value of 0.97 we reject ARCH 1-2 in the residuals. Lastly, a 
normality test is performed. A p-value of 0.00 implies serious non-
normality. With regressions from speculative prices, we do not get 
normally distributed errors. We therefore report robust standard 
errors.  
 

 

FFFFIGUREIGUREIGUREIGURE    11. 11. 11. 11. Change in volume traded and standard deviation of log-returns. 

 
In a GARCH(1,1) model, the sum )( 11 βα +  measures the degree of 

volatility persistence in the market; the speed at which the market 
dissipates a shock. What this means is that the larger the 
persistence is the lower is the speed of reversion in the market. We 
note that the value of volatility persistence in our model is 
estimated to 0.81. To put this in context we note that Buguk, 
Hudson & Hanson (2003) found persistence values for catfish, corn, 
soybeans and menhaden equal to 0.98, 0.94, 0.88 and 0.38, 
respectively. Moreover, this suggests that the market for salmon 
displays a lower degree of volatility persistence than catfish, corn 
and soybeans products, but greater than menhaden.    
 
Furthermore, we might use the degree of volatility persistence in 
the market to estimate the half life of a volatility shock. The half 
life estimate measures the time it takes for a shock to fall to half of 
its initial value and is determined by (Pindyck, 2004): 
 
 Half-life time = )log(/)5log(. 11 βα +     

  
We calculate a half life time of 3.3 weeks. Recent literature on 
volatility persistence suggests that the persistence in the 
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conditional variance may be generated by an exogenous driving 
variable that is itself serially correlated. Hence the inclusion of 
such an exogenous variable in the conditional variance equation 
would reduce the observed volatility persistence (see Lamourex & 
Lastrapes, 1990; Kalev et al., 2004). We find that excluding the 
exogenous variable results in a half life time of 4.4 weeks.   

 

CONCLUDING REMARKS 
 
While production risk in salmon aquaculture has received 
substantial attention, little focus has been given to price risk. It is 
important to understand price risk as is seems to be a main factor 
driving the profitability cycles the industry is experiencing. Our 
results indicate that the assumption of an independent zero mean 
normally distributed error term is not trivial when modelling 
salmon prices. We find that the salmon prices and log-returns are 
non-normal, and display skewness and kurtosis for the former and 
kurtosis for the latter case. Assuming normality when modelling 
salmon prices is not supported by our study. Moreover, we find that 
a AR(5)-GARCH(1,1) process describes the salmon price process. 
Thus academic research applying salmon prices should account for 
the fact that there is persistence of volatility itself on the short-
term dynamics. For studies of price forecasting, for example, this 
means that in periods of large shocks we cannot expect as precise 
forecasts, even in periods following the shock since volatility will 
generally persist for some time as the market corrects. Also for 
studies of market integration we note that if comparable salmon 
goods are to be aggregated they should also display some of the 
same volatility patterns, we should observe some volatility spill 
over effects between comparable goods. For the relevant market 
participants the fact that volatility clustering is existent offers 
some predictive information on the price fluctuations in the market. 
More specifically we find that previous week’s volatility offers some 
indication of next week’s volatility. This provides information to a 
market chronically missing stability and predictability. Risk averse 
market participants can avoid trading next week if they observe 
that volatility is large this week. This gives the market participants 
an additional hedging possibility; there is clear evidence that 
volatility reverts following a shock. We also find support for the 
hypothesis that volatility is larger in periods of high prices. For the 
industry this means that larger expected profits more often than 
not comes at a trade-off of larger price risk. 
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Our results also indicate that the degree of volatility persistence in 
the market for salmon aligns itself with a small sample of other 
agricultural goods. We also note that following a shock, the 
volatility half’s in an estimated 3.3 weeks, which offers some 
planning information for the market participants. Concerning the 
predictability of prices we find that today’s log-returns are 
dependent on a 1 and a 5 week lag of log-returns. This means that 
there is some level of short term predictability present in the 
market. To some degree this supports studies that claim to offer 
some level of short term predictions of salmon prices. Concerning 
long term predictions on price levels we find that the long term 
trend in prices is weakly declining. The decline is mostly due to 
increasing industry productivity. As such, any prediction on future 
price levels can, at least in the long run, be found in the 
continuation of the productivity increase. Short term price 
correlations offer no predictive powers on any long term price 
levels. The focus of this paper has been on understanding price risk 
in salmon prices. Future research can be conducted on evaluating 
forecasting performance of different volatility models.  
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AbstractAbstractAbstractAbstract    In this paper, I investigate supply-side explanations for 
nonsporadic volatility spillover patterns in perishable commodities. 
I suggest that correlations in inventory stocks and differences in 
inventory flexibility, as well as common price deterministic factors 
such as input factor usage and substitutability between goods, 
allow nonsporadic volatility spillover to persist in primary 
commodity markets. To investigate these claims empirically, I 
apply a volatility spillover test to a basket of goods from the 
Norwegian aquaculture industry, where differences in 
characteristics of goods allow examination of the economic 
significance of volatility spillover. I find that volatility spillover is 
present in the salmon market and that the less perishable frozen 
commodity takes a leading role in spillover causation.    
 

INTRODUCTION 
 
In the theory of storage (Kaldor, 1939; Working, 1948,1949; Deaton 
& Laroque, 1992; Pindyck, 2001; Chambers & Bailey, 1996) the 
persistence of short-run price movements is largely explained by 
suppliers’ ability to use inventories to smooth price variations. 
Inventories enable producers and/or speculators to link the spot 
price to the expected future price, and under a rational expectations 
regime, dampen price movements by satisfying short run excess 
demand. By linking spot price to expected future prices, a positive 
low-order autocorrelation in prices is generated.  Deaton & 
Laroque(1996) find that speculative behaviour alone is not 
sufficient to explain the large autocorrelations displayed by 
commodity prices. They conclude that most likely underlying 
autocorrelations in fundamental supply and demand processes add 
to the high low order autocorrelations observed in commodity 
prices. Moreover, higher price volatility generally leads to an 
increase in the demand for inventories as the value of having  
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inventories increase. In commodity markets, high-volatility regimes 
are often identified by periods of exhausting inventories where 
price smoothing is less efficient. Since inventories are so pivotal in 
accounting for short-run commodity price dynamics, it seems 
reasonable that inventory dynamics might also account for short-
run co-movements in related commodity prices. In this paper, I 
investigate the significance of inventories in explaining volatility 
spillover between commodity prices when inventories are 
correlated. By this I provide supply-side explanations for the 
existence of non-sporadic price volatility spillover. To test for 
volatility spillover we apply the bi-variate causation in variance 
test of Cheung & Ng (1996). 
 
One motivation for keeping inventories is so to quickly react to 
emerging profit opportunities. Different commodity markets have 
different possibilities for storage, and storage can take different 
forms. Producers of fresh agricultural goods, for example, will have 
inferior storage flexibility in the traditional sense of keeping goods 
at warehouses. On the other hand, for these producers, storing can 
be done by delaying harvest, in effect storing by further cultivation. 
The decision to reduce inventories can have effects outside 
immediate stocks effect. A commodity stock is often not 
independent of the stock of other commodities. An example of  this 
is use of commodities as inputs in the production of processed 
goods.  Certain commodities are also inputs in own production. Live 
animal stocks are used for the breeding of future stocks. These 
dynamics in commodity stocks are conjectured to generate long run 
price cycles. The classic example is the hog, cattle and broiler cycles 
(Hayes & Schmitz, 1993; Shonkwilder & Spreen, 1986; Harlow, 
1960; Rosen, Murphy & Scheinkman, 1994; Rausser & Cargill, 
1970).  
 
In this paper we argue that inventory dynamics, through 
correlations in stocks levels, can generate price volatility spillover 
effects. When commodities enter high-volatility regimes, it is often 
due to increased scarcity of the good. Goods become unique in the 
sense that arbitrage is allowed to persist as prices are allowed to 
spike to abnormal levels. If different commodity stocks are 
correlated, this also suggests that related commodities will enter 
high-volatility regimes, in effect generating volatility spillover. 
Furthermore, differences in inventory flexibility between related 
goods will generate a leading, causal relationship in volatility 
spillover. Goods better suited for storage will appear to cause 
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volatility spillover into markets with less flexible storage. This 
happens because goods better suited for storage will buffer price 
movements with greater ease than less flexible goods.  
 
In a rational expectation market the speed of volatility 
transmission does not have to follow the speed of inventory 
correlations.  Stock levels in one market can provide information on 
the future stock levels in related markets, leading prices to move as 
the market anticipates future stock changes. This correlation in 
stocks provides a supply-side explanation for the existence of 
volatility spillover in commodity markets. If the speed of reacting to 
anticipated inventory correlation effects is sufficiently great, this 
effect will however not be reasonably isolated from market 
integration effects. In this case causation inference is impossible 
due to common price driving factors. Common stochastic trends can 
gives rise to apparent volatility spillover effects at lower lag orders. 
 
In this paper I test for volatility spillover in the Norwegian salmon 
aquaculture industry. Farm bred salmon is sold in several different 
product forms, where the stocks of each product is related to a 
common stock of fish. We test for volatility spill-over between the 
markets for different weight-classes of fresh salmon in addition to 
frozen salmon. This provides a spectre of stock correlations and 
storage flexibility in commodities relevant to investigate to supply 
side explanations for volatility spillover. 
 
A common approach to volatility spillover analysis is to specify a 
multivariate GARCH model, where conditional variances are 
regressed on own past conditional variance and squared residuals, 
in addition to other lagged variables of related goods. Cheung & Ng 
(1996) provide an alternative test for volatility spillover, where the 
sample cross-correlations between standardized squared residuals 
are used to determine any significant volatility spillover. This 
simplifies the analysis by evaluating all prices against each other 
one at a time. One can then avoid the potentially complex equations 
involved in fitting a multivariate GARCH model. The approach of 
Cheung & Ng will be the method of analysis in this paper.  
 
In the literature on volatility spillover, most interest has been 
directed at analyzing traditional financial assets such as exchange 
or interest rates (Apergis & Rezitis, 2003; Reyes, 2001; Hong, 2001; 
Kanas & Kouretas, 2001; Kim & Rui, 1999; Tse, 1999; Gallagher & 
Twomey, 1998; Byars & Peel, 1995). In addition, it seems that a  
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multivariate GARCH model has been the preferred tool for 
analysis, at least prior to the article by Cheung & Ng (1996). In 
primary commodity markets, the study of volatility spillover has 
received less attention. Buguk, Hudson & Hanson (2002) examine 
volatility spillover effects in the US catfish markets. They 
subsequently detected strong price spillover from feeding materials 
to catfish feed and output prices. Apergis & Rezitis (2006) study 
spillover effects in Greek agricultural products and find that 
disequilibrium at the input level is transmitted to the retail level, 
and vice versa. Furthermore, Yang, Zhang & Leatham (2003) study 
the volatility spillover in international wheat futures markets. 
 
The paper is organized as follows. We start by positing the supply-
side explanations for volatility spillover emerging from the theory 
of storage. Following this, we provide a short summary of 
Norwegian salmon aquaculture, deriving the predictions made on 
volatility spillover from our hypothesis. We then derive the 
empirical test for volatility spillover. We investigate the time-series 
properties of our data and derive specifications of the price 
processes driving the data generation. We then perform the 
empirical test and analyse these results in light of the postulated 
supply-side explanations. Our analysis shows that volatility 
spillover effects exist in the markets for farm bred salmon. Strong 
zero lag effects suggest that common price driving factor connect 
volatility. In addition, we find that volatility transmission effects 
are stronger from lower weight classes of fish to higher, consistent 
with correlation patterns in stocks. 
 

INVENTORY CORRELATIONS AND VOLATILITY SPILLOVER 
 
We might define storage as the action of keeping a stock of goods 
readily available for shipping to the market. In this sense, storage 
and its cost can take several forms. For agricultural commodities 
storage can for example be done by delaying harvest. From this 
definition we treat storage as the carrying forward of market ready 
stocks. In this sense, storage can be applied to a broad spectre of 
agricultural commodities where perishability inhibits traditional 
storage. 
 
The theory of storage states that availability of stocks determines 
the market’s ability to buffer price movements. Arbitrage 
opportunities due to positive price spiking are less likely to persist 
in markets where inventories can be emptied quickly to increase 
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supply. Following the assumption that lower stock levels generate 
higher price volatility, we might state some implications regarding 
volatility spillover. 
 
Implication 1:    A significant cross-correlation between commodity 
stocks will generate price volatility spillover between markets. 
 
To illustrate the intuition behind this implication, imagine that the 
price of a certain commodity increases. The price increase reduces 
the stocks of that good as producers capture the profits associated 
with higher prices. If a positive correlation in stocks exists between 
this commodity and another, the future stock of the related 
commodity will decrease. The lower future stock of the related 
commodity will increase the price volatility in the market. If stocks 
are negatively correlated, the opposite effect will occur. The speed 
at which this transmission effect occurs depends on the degree 
which the effect is anticipated by market participants.   
 
Implication 2:    The commodity with superior inventory possibility 
will take a leading role in causing volatility spillover between 
related goods. 
 
As long as the cost and flexibility of storage varies across 
commodities, the superior storage commodity will be better suited 
to buffer price movements. This will generate a leading role in 
volatility spillover. An example of this is the relationship between 
fresh and preserved commodities. A preserved commodity will 
generally have superior storage opportunity and thus be better 
dampening effects of shocks from the fresh market. 
 
Another issue related to volatility spillover worth mentioning is 
market integration. Some price determining factors can, to a 
varying degree, be common across commodities. These common 
factors generate a common trend and restrict the allowable 
divergence in relative prices. When investigating the market for 
fresh salmon, Asche & Guttormsen (2001) find that markets are 
highly correlated and that a common stochastic trend exists. This 
implies that fresh salmon prices are strongly linked at the zero 
frequency. The existence of common stochastic trends thus suggests 
that some volatility spillover exists in the markets outside of stock 
correlation effects. Market integration suggests a strong zero-lag 
volatility transmission. In our analysis, we are not able to 
differentiate between volatility transmissions that are a result of  
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common factor shocks and those generated by heterogeneous 
shocks. In addition, if the co-integration relationships display 
persistence—for example, following a stationary autoregressive 
process—this translates to patterns in volatility spillover that give 
the impression of direct volatility causation. Failing to account for 
market integration relationships might bias the economic 
interpretation of causation relationships, and could be wrongly 
ascribed to properties such as the market’s efficiency in 
substituting between goods. In the test by Cheung & Ng (1996), 
volatility spillover effects can exist even if no causality in the mean 
can be found, but the analysis does not distinguish between 
heterogeneous and common factor shocks. Our analysis thus 
reveals volatility spillover effects, if they exist, but does not account 
for the qualitative difference and causation of shocks. However, a 
strong zero-frequency volatility transmission indicates market 
integration. 
 

EMPIRICAL APPLICATION 
 
In order to examine volatility spillover, we use a basket of goods 
conjectured to be connected in stocks, but with somewhat different 
inventory correlations and flexibility. Specifically, the dataset 
consists of time series of fresh salmon of 2–3 kg, 3–4 kg, 4–5 kg, 5–6 
kg and 6–7 kg in addition to frozen salmon. 
 
As with agriculture in general, there are considerable biological 
dependencies in aquaculture production. In the common stock of 
farm bred salmon the growth of the fish provides the mechanism 
for correlation between stocks of different weight classes. Growth 
generates a positive correlation in stock sizes across different 
weight cohorts. This correlation is further asymmetrical as larger 
stocks of lower weight-classes generate larger stocks of higher 
weight-classes, but not the other way around. After harvesting the 
fish remains fresh for only a couple of weeks. Hence the option of 
storing fresh commodities outside of delaying harvest is limited. 
However, the farmer has the option to freeze the fish and 
considerably increase the storage opportunity. The more flexible 
nature of storage in the frozen fish suggests that the stock is less 
dependent on the stock of the fresh fish in the short run. The option 
of freezing the fish will, in general, decrease its market value, as a 
premium exists on the willingness to pay for fresh fish.  
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A preliminary indication of the effect of stock correlations on prices 
can be found by investigating relative prices and volume traded. We 
generate a series of volume traded and price of fresh salmon of 3–4 
kg and 5–6 kg weight cohorts relative to the 4–5 kg cohorts. The 
correlations in stocks suggest that increasing the supply of 3–4 kg 
salmon should reduce the availability of 4–5 kg salmon. The sale of 
5–6 kg however should not affect the availability of 4–5 kg salmon. 
In Figure 1, we plot the relative values of volume traded and prices 
from 1999:01 to 2006:11.  
 

 

FIGUREFIGUREFIGUREFIGURE    1.1.1.1. Relative price and volume traded 
 

The relevant patterns reveal themselves by examining the peaks in 
relative prices with respect to movements in volume traded. In 
figure 1 we observe how an increase in sales of 3–4 kg relative to 4–
5 kg is accompanied by a negative peak in the price of 3–4 kg  
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salmon relative to 4–5 kg salmon. The same negative peak is not 
observed for 5–6 kg salmon relative to 4–5 kg salmon because 5–6 
kg salmon fetches a higher price than 4–5 kg salmon. However, in 
this figure, the price peaks upward as supply of 4–5 kg salmon 
increases relative to 5–6 kg salmon. 
 

These differences in price cycles suggest that it is the lowest weight 
class in both cases that are detrimental for relative price 
movements. The explanation for this in our model is simply that 
inventories, which are negatively related to sales, are positively 
correlated. If market participants observe an increase in the sales 
of a certain weight class of fish, in effect reducing its inventory, 
they know that this leads to a reduction in the future availability of 
fish of a higher weight class. The expected price of fish of higher 
weight classes will increase, thus increasing the spot price as 
arbitrage equate the current price to the appropriately discounted 
expected future price. Therefore, one expects a positive volatility 
spillover between fish of different weight classes. 
 
With regard to our analysis we expect to observe some specific 
patterns in the analysis of volatility spillover in Norwegian 
aquaculture. In relation to market integration and common 
equilibrium factors, previous research has shown that the markets 
for different sizes of fresh salmon are integrated. Hence we expect 
to observe a high volatility spillover at the zero frequency. Because 
substitutability in the sales of fish of different weight classes exists, 
we also expect that volatility spillover is larger for goods closer in 
weight. Concerning storage flexibility we expect that frozen salmon 
will take a leading role in volatility causation due to the superior 
conditions for buffering shocks from fresh fish 
 
In regards to correlations in inventories, movements in prices are 
not generally bounded by movements in physical stocks. As long as 
expectations are assumed rational, prices adjust to changes in 
expected stock levels. Thus, correlations in inventories are assumed 
to contribute to a strong zero-lag volatility spillover. For volatility 
spillover effects outside of the zero frequency, if they exist, we 
expect a stronger volatility transmission from lower to higher 
weight classes due to the nature of stock correlations.  
 
 
 
 



 

 
 
 
 

VOLATILITY SPILLOVER 
 

79 

 

EMPIRICAL METHODOLOGY 
 
In order to estimate volatility spillover effects we apply the method 
first proposed by Cheung & Ng (1996). We derive the cross-
correlation function (CCF) of squared standardized residuals. These 
series’ are then used to test for Granger causality in variance. 
Under the null hypothesis of no spillover effects, the CCF will be 
asymptotically normally distributed with unit variance and zero 
mean. 
 
The notation of the following derivation follows Cheung & Ng 
(1996). Assume that the data generating process of two time series 
can be specified as: 
 

tttt hX εµ 5.0

111 +=     
tttt hX ξµ 5.0

222 += ,,,, 

 
where tε  and tξ  are two i.i.d. normally distributed stochastic 

processes with zero mean and unit variance. The conditional 
variance 2,1,5.0 =ihit

 is assumed to exist. The conditional mean and 

variance can be modelled by commonly used models such as ARMA 
or (G)ARCH. Next, we construct the squared standardized 
residuals as: 
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Furthermore, the CCF at lag k is defined as: 
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Where )(kc uv

is the cross-covariance at lag k between the squared 

standardized residuals tU  and tV . Furthermore, )0(uuc  and )0(vvc  

are sample variances. By definition, ))0(( uucE  and ))0(( vvcE  is equal 

to one. It follows that if no cross-correlation exists between tU  and 

tV , ))(( kcE uv
 is zero, and the CCF will tend to zero. Given a 

correctly specified sample counterpart of the CCF, )(ˆ kruv , it follows 

that )(ˆ krT uv  converges to )1,0(N  (Theorem 1, Cheung and Ng, 

1996). Thus, in order to test for causation in variance we compare  
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)(ˆ krT uv  to the standard normal distribution. The null hypothesis of 

no causation in variance between two time series can then be stated 
as: 
 

0),1,(~)(ˆ:0 =xxNkrTH uv , 

 

0),1,(~)(ˆ:1 ≠xxNkrTH uv . 

 
At this point, it is necessary to note that the assumption of a strict 
causal relationship between variances hinges on our definition of 
the information sets generating price movements in each market. 
Only under the strict assumption of two disjoint sets of information, 
each affecting the relevant time series, can we with certainty say 
that a causal relationship exists. If co-integration vectors exist, for 
example, we know that an additional information set can be 
isolated that affects both prices through a common equilibrium 
relationship. As stated above, what appear to be causal 
relationships can then simply be the result of common information 
entering the market. Based on this we will use the term “volatility 
correlation” rather than “causation” from now on. 

 
DATA 
 
The dataset used for the formal analysis is provided by the 
Norwegian Export Council and consists of seven time series of 
prices (salmon 2–3 kg, salmon 3–4 kg, salmon 4–5 kg, salmon 5–6 
kg, salmon 6–7 kg, and frozen salmon) observed monthly from 
January 1990 to July 2007. This provides 211*6 (1266) unique 
observations. These goods are chosen because they display 
somewhat different fundamental properties and relations to each 
other relevant to the posited explanations for volatility spillover. 
Specifically, the flexibility available for storage is different between 
fresh and frozen commodities. Further, the growth of fish ensures 
that one way correlations in stocks exist upward in weight classes.  
 

Table 1 provides some summary statistics of our dataset. Both the 
normal and asymptotic normal distribution can be rejected for fresh 
salmon, albeit with the lower weight classes of salmon being closest 
to reaching normality. For frozen salmon we cannot reject the 
hypothesis of asymptotic normality.  
 



 

 
 
 
 

VOLATILITY SPILLOVER 
 

81 

 

TABLE 1.TABLE 1.TABLE 1.TABLE 1. Summary Statistics - monthly observations January 1990 - July 2007 

  

2-3kg 3-4kg 4-5kg 5-6kg 6-7kg Sal. Frozen 

       Mean 26.215 28.199 28.971 29.251 29.457 31.103 

Maximum 42.625 48.625 50.875 52.375 54.75 44 

Minimum 13.643 16.078 16.303 16.25 16.293 18.08 

Std. Dev. 6.5006 7.2086 7.574 7.8189 7.9106 5.8953 

Skewness 0.34183 0.59169 0.6478 0.7157 0.78518 -0.015499 

Kurtosis -0.72959 -0.58373 -0.58673 -0.51451 -0.31628 -0.78116 

Normality 16.386** 38.63** 48.976** 58.969** 62.09** 6.385* 

Asy. Norm. 8.789** 15.308** 17.784** 20.34** 22.56** 5.3733 

Obs. 211 211 211 211 211 211 

              
1

All prices are denoted in NOK. 

2
The measure of kurtosis is corrected to make the kurtosis of the normal distribution standard with 

value zero. 

3
The normality test is based on Doornik and Hansen (1994) where the null hypothesis is that the series is 

normally distributed. Values reported are the chi-squared test statistic. 

4
The asymptotic normality test is derived from the normality test but applies transformed skewness and 

kurtosis measures that create statistics that are closer to the standard normal distribution. 

 
All distributions except for frozen salmon right skewed, having 
larger probabilities than average of values above the mean. Right 
skewness in commodity prices is common, arising due to positive 
price spiking. The lack of significant right skewness in frozen 
salmon can be explained by superior storage flexibility.  
 

TABLE TABLE TABLE TABLE 2222.... Augmented Dickey Fuller unit root tests. 

 

Series Lag Level Lag First difference 
1:0 =βH   β   β  

Salmon 2–3 kg 6 0.958 2 0.058** 

Salmon 3–4 kg 6 0.951 5 –0.261** 

Salmon 4–5 kg 6 0.950 5 –0.250** 

Salmon 5–6 kg 6 0.948 5 –0.328** 

Salmon 6–7 kg 6 0.943 8 –0.599** 

Frozen salmon 7 0.930 4 –0.252** 

     

Note: ** 5% significance 
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None of the individual price series are leptokurtic, but they display 
lower probability than the normal distribution for values near the 
mean. 
 
We apply the Augmented Dickey–Fuller test to test for unit roots at 
the zero frequency. We test this using a constant and a maximum 
lag level of 14 months, derived from the formula 

25.0max ]100/[12int[ TL = as suggested by Schwert(2002). To trace out 
the specific lag length from these 14 possibilities, we use the 
Akaike Information Criteria (AIC). The result from this test is 
reported in Table 3. For all fresh salmon goods, the AIC suggests a 
lag length of six months, where the hypothesis of a unit root cannot 
be rejected at the 95% level. For frozen salmon, the AIC suggests a 
seven-month lag, where again the hypothesis of a unit root cannot 
be rejected. To ensure stationarity, we apply the logarithmic first-
difference filter to each series. As Table 2 shows, applying the first-
difference eliminates the unit root. 

 
PRICE PROCESS SPECIFICATION 
 
In order to derive statistical valid cross correlation functions (CCF) 
we need consistent estimates of residuals and conditional 
variances. To ensure that any correlations revealed by the CCF 
represent volatility transmission effects between goods, we focus 
our model selection procedure on purging the error terms of serial 
correlation. We apply a dynamic autoregressive model on both the 
return and variance processes. For the conditional variance, we 
apply the general autoregressive conditional heteroskedasticity 
model (GARCH) of Bollerslev (1986). We also allow two extensions 
of the model; namely, the exponential GARCH (EGARCH) of 
Nelson(1991) and the GJR-GARCH of Glosten, Jagannathan & 
Runkle(1993). The GJR-GARCH model allows a leverage effect to 
account for asymmetry of residuals. This is done to allow for 
possible asymmetries in the price process, with the traditional price 
spikes of commodity prices in mind. 
 
Each volatility model is allowed one or two lags to the lagged 
squared residual and variance. The lag length of the mean model is 
chosen according to the Akaike information criteria. Model 
selection is done by evaluating serial correlation in standardized 
residuals (Ljung Box Q test (Box, Jenkins & Reinsel,1994)) and 
normality of the residual distribution (Chi 2  test and Kolmogorov 
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TABLE TABLE TABLE TABLE 3333.... Price model estimation results for each commodity. 

       

 
2-3kg 3-4kg  4-5kg  5-6kg  6-7kg Frozen 

Model: AR(4)- AR(6) AR(6)- AR(6)- AR(6) - AR(14)- 

GJR(1,2) GJR(1,2) GJR(1,2) GJR(1,2) GARCH(21) GJR(1,2) 

       
Mean Model:             

Constant .00 (.00) -.01 (.01) -.01 (.01) -.01 (.01) -.01 (.01) .00 (.01) 

AR-L(1) .23 (.08) .17 (.09) .24 (.09) .28 (.08) .37 (.08) .06 (.09) 

AR-L(2) -.09 (.09) -.01 (.09) .00 (.08) -.01 (.09) -.04 (.07) .17 (.08) 

AR-L(3) -.09 (.08) -.17 (.08) -.18 (.08) -.22 (.07) -.28 (.07) -.12 (.09) 

AR-L(4) .13 (.07) -.13 (.09) -.14 (.09) -.13 (.09) -.10 (.09) -.26 (.08) 

AR-L(5) - (-) .02 (.09) .01 (.09) .02 (.08) .07 (.08) .00 (.09) 

AR-L(6) - (-) -.15 (.09) -.14 (.09) -.21 (.08) -.19 (.07) .08 (.08) 

AR-L(7) - (-) - (-) - (-) - (-) - (-) .00 (.08) 

AR-L(8) - (-) - (-) - (-) - (-) - (-) -.16 (.07) 

AR-L(9) - (-) - (-) - (-) - (-) - (-) .04 (.07) 

AR-L(10) - (-) - (-) - (-) - (-) - (-) -.09 (.07) 

AR-L(11) - (-) - (-) - (-) - (-) - (-) -.05 (.07) 

AR-L(12) - (-) - (-) - (-) - (-) - (-) -.10 (.07) 

AR-L(13) - (-) - (-) - (-) - (-) - (-) -.11 (.06) 

AR-L(14) - (-) - (-) - (-) - (-) - (-) -.10 (.06) 

Variance Model:           

Constant .00 (.00) .00 (.00) .00 (.00) .00 (.00) .00 (.00) .00 (.00) 

ARCH-L(1) .13 (.14) .03 (.09) .06 (.40) .01 (.10) .39 (.16) .13 (.19) 

ARCH-L(2) .56 (.27) .04 (.11) .03 (.12) .00 (.10) - (-) .52 (.21) 

GARCH-L(1) .05 (.16) .57 (.48) .59 (.14) .61 (.46) .00 (.15) .39 (.16) 

GARCH-L(2) - (-) - (-) - (-) - (-) .44 (.22) - (-) 

Leverage-L(1) .36 (.30) -.03 (.19) -.06 (.18) -.01 (.14) - (-) .21 (.28) 

Leverage-L(2) .05 (.34) .14 (.22) .18 (.20) .20 (.23) - (-) -.49 (.23) 

              

Ljung-Box  18.87 (.53) 10.05 (.97) 12.16 (.91) 13.42 (.86) 10.78 (.95) 27.19 (.13) 

Chi
2

 2.20 (.70) 2.44 (.66) 2.80 (.91) .93 (.92) 1.96 (.86) 9.60 (.09) 

KS test .04 (.87) 6.35 (.10) .04 (.90) .04 (.90) .04 (.83) .07 (.30) 

       
LL 487.03 (.00) 467.76 (.00) 468.83 (.00) 460.47 (.00) 456.55 (.00) 508.19 (.00) 

              

 
 
 



 

 

 

 
 

VOLATILITY SPILLOVER 

84 

 

 
Smirnov(KS) test (Masseym,1951)). We also select by model fitting 
(Log likelihood values). The normality test of residuals is preferred 
because valid inference of the CCF is based on asymptotic 
normality. The Portmanteau Q statistics are used to avoid biased 
measures in the CCF as related to autocorrelation in residuals. The 
full statistics for each model is reported in the appendix. 
 
In table 3 the output for the selected models for each commodity is 
shown. For each model selected, the residuals satisfy the serial 
correlation and normality tests. The standard deviation for each 
estimate is reported in parenthesis.  For the test statistics, the 
parenthesis contains p-values. Having satisfactory purged the 
residuals we are now ready to derive the cross correlation 
functions. 

 
VOLATILITY SPILLOVER ANALYSIS 
 
From the price process specifications above, we estimate each 
model and store residuals and conditional variances. These series 
are then used to generate the CCFs derived above. In the volatility 
spillover analysis, every price is evaluated against every other 
price, and this is done for up to up to ten-month lags. Each cross-
correlation is evaluated against the null hypothesis of zero 
volatility spillover, in which the cross-correlation is asymptotically 
normally distributed with zero mean and unit variance. Full cross-
correlations are reported in table 4, p-values are reported in 
parenthesis. The bolded correlations are significant at the 5% or 
lower level.  
  
Our analysis focuses on evaluating the postulated supply-side 
explanations for volatility spillover derived above. Firstly, we note 
that all significant volatility spillover effects are positive in sign. 
This is expected from a positive correlation in stock sizes. The most 
easily noticeable pattern is the strong zero-lag volatility spillover 
between fresh salmon commodities. It appears that within a month, 
much of the volatility has already been absorbed. 
 
As conjectured, the market integration relationship leads to 
correlations in corrections to shocks as prices share common 
equilibrium factors. A common equilibrium factor in prices moves 
all prices that are connected and results in the error term of each 
price being non-independent; this has the effect linking volatility at 
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the zero frequency. No zero-lag volatility spillover appears to exist 
between fresh and frozen salmon prices.  
 

TABLE TABLE TABLE TABLE 4444a.  a.  a.  a.  Volatility spillover analysis results. 
 

2-3kg  2-3kg  2-3kg 2-3kg 2-3kg  

vs.  vs.  vs.  vs. vs. 

3-4kg. 4-5kg. 5-6kg. 6-7kg. Frozen 

LAG 

-10 -.09 (.19) -.04 (.53) -.01 (.87) -.01 (.91) .05 (.50) 

-9 .08 (.23) .09 (.19) .16 (.03) .08 (.26) .02 (.81) 

-8 -.05 (.52) -.06 (.41) -.04 (.53) -.05 (.48) -.01 (.90) 

-7 .00 (.95) .07 (.34) .03 (.70) .00 (.97) .15 (.03).15 (.03).15 (.03).15 (.03)    

-6 -.06 (.42) -.07 (.36) -.08 (.24) -.03 (.62) .05 (.48) 

-5 -.06 (.40) -.05 (.46) -.02 (.76) -.01 (.92) .29 (.00).29 (.00).29 (.00).29 (.00)    

-4 -.04 (.54) -.03 (.66) -.05 (.51) -.03 (.71) .03 (.64) 

-3 .12 (.10) .10 (.15) .07 (.30) .00 (.97) .11 (.13) 

-2 -.11 (.14) -.11 (.11) -.07 (.30) -.06 (.42) .03 (.64) 

-1 -.07 (.31) -.04 (.58) -.03 (.69) .07 (.33) -.07 (.34) 

0 .76 (.00).76 (.00).76 (.00).76 (.00)    .70 (.00).70 (.00).70 (.00).70 (.00)    .60 (.00).60 (.00).60 (.00).60 (.00)    .42 (.00).42 (.00).42 (.00).42 (.00)    .07 (.35) 

1 .00 (.96) -.01 (.91) .00 (1.00) -.06 (.37) .10 (.16) 

2 .06 (.39) .06 (.37) .07 (.33) .07 (.36) .06 (.40) 

3 .16 (.03).16 (.03).16 (.03).16 (.03)    .14 (.05).14 (.05).14 (.05).14 (.05)    .16 (.02).16 (.02).16 (.02).16 (.02)    .11 (.11) .00 (.99) 

4 .01 (.85) .03 (.71) .00 (.97) .00 (.97) .00 (.95) 

5 -.07 (.31) -.08 (.29) -.06 (.42) -.02 (.76) -.05 (.49) 

6 .04 (.56) .02 (.75) .02 (.82) .05 (.46) -.02 (.79) 

7 -.05 (.47) -.02 (.77) -.06 (.42) -.02 (.79) .00 (.98) 

8 -.06 (.36) -.07 (.29) -.05 (.45) -.09 (.20) .00 (.96) 

9 -.05 (.52) -.08 (.27) -.03 (.65) -.01 (.94) .00 (.95) 

10 .04 (.60) .03 (.72) .02 (.77) .03 (.72) .02 (.79) 

            

 
 
The stock of frozen commodities is less dependent on immediate 
effect of live stock effects. The improved storage flexibility in 
keeping stocks of frozen fish provides a buffer for stochastic 
movements in the live stock. The volatility spill-over in fresh fish 
appear to decrease as the weight difference increases. Fish that are 
closer in weight are more strongly linked in correlations of stocks 
and effects of single-good inventory decisions. For fresh salmon 
production, this is stated in the fact that the time to transform one 
salmon, as indexed by  
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weight, to another is lower for salmon in which the target weight is 
closer to the original weight.  
 
 

TABLE TABLE TABLE TABLE 4444b.b.b.b.  Volatility spillover analysis results. 

 
3-4kg  3-4kg  3-4kg  3-4kg  4-5kg 

 
vs. vs. vs. vs.   vs.  

 
4-5kg. 5-6kg. 6-7kg. Frozen 5-6kg. 

LAG 

-10 .03 (.62) .01 (.90) -.03 (.66) .05 (.45) -.02 (.73) 

-9 .01 (.86) .04 (.58) .04 (.58) .00 (.96) .01 (.93) 

-8 -.06 (.44) -.05 (.47) -.02 (.83) .05 (.45) -.07 (.36) 

-7 .01 (.91) -.04 (.61) -.07 (.33) .12 (.09) -.02 (.74) 

-6 .03 (.72) -.01 (.86) .00 (.97) .09 (.18) .00 (.99) 

-5 -.06 (.41) .00 (.98) .05 (.52) .25 (.00).25 (.00).25 (.00).25 (.00)    -.01 (.85) 

-4 -.02 (.73) -.04 (.58) -.03 (.63) .10 (.16) -.04 (.57) 

-3 .19 (.01).19 (.01).19 (.01).19 (.01)    .16 (.02)16 (.02)16 (.02)16 (.02) .10 (.18) .06 (.42) .15 (.03).15 (.03).15 (.03).15 (.03)    

-2 -.08 (.27) -.09 (.22) -.10 (.15) .02 (.74) -.06 (.43) 

-1 .00 (.97) .04 (.54) .16 (.03).16 (.03).16 (.03).16 (.03)    -.07 (.29) .00 (.97) 

0 .93 .93 .93 .93 (.00)(.00)(.00)(.00)    .85 (.00).85 (.00).85 (.00).85 (.00)    .61 (.00).61 (.00).61 (.00).61 (.00)    .09 (.18) .89 (.00).89 (.00).89 (.00).89 (.00)    

1 -.07 (.35) -.08 (.25) ----.16 (.03).16 (.03).16 (.03).16 (.03)    .07 (.31) -.04 (.55) 

2 -.03 (.71) -.03 (.64) .02 (.74) .03 (.70) -.04 (.60) 

3 .18 (.01).18 (.01).18 (.01).18 (.01)    .25 (.00).25 (.00).25 (.00).25 (.00)    .20 (.01).20 (.01).20 (.01).20 (.01)    -.07 (.31) .24 (.00).24 (.00).24 (.00).24 (.00)    

4 -.01 (.85) .00 (.97) -.07 (.32) -.02 (.77) -.01 (.89) 

5 -.08 (.24) -.08 (.27) -.06 (.37) -.05 (.51) -.08 (.28) 

6 .02 (.77) .02 (.80) .03 (.69) -.08 (.28) .03 (.71) 

7 -.06 (.41) -.07 (.33) -.03 (.69) .01 (.89) .00 (.96) 

8 -.07 (.34) -.06 (.41) -.09 (.20) -.01 (.85) -.05 (.44) 

9 -.06 (.41) -.03 (.63) -.01 (.92) -.07 (.33) .00 (.95) 

10 -.02 (.74) -.02 (.75) -.04 (.55) .02 (.83) .04 (.59) 

            

 
We observe that a pattern emerges in how a shock to fresh salmon 
goods transfers to the frozen salmon market. Within three to five 
months of a shock in the frozen salmon market, there are 
significant volatility transmission effects on the fresh market. On 
the other hand a shock in the fresh market has no significant 
effects on the frozen fish volatility. This supports the hypothesis 
that storage possibilities in commodity prices helps to buffer price 
shocks. As stated above, the possibility for inventory keeping is 
greater for frozen than fresh fish. 
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TABLE TABLE TABLE TABLE 4444cccc.  .  .  .  Volatility spillover analysis results. 
 

4-5kg  4-5kg  5-6kg  5-6kg  6-7kg  

 
vs.  vs. vs.  vs. vs. 

6-7kg.  Frozen 6-7kg. Frozen Frozen 

LAG 

-10 -.03 (.69) .04 (.53) .00 (.99) .04 (.53) .02 (.77) 

-9 .01 (.90) -.01 (.89) .04 (.59) -.01 (.87) .04 (.61) 

-8 -.03 (.70) .05 (.49) -.03 (.71) .01 (.93) -.03 (.69) 

-7 -.06 (.42) .15 (.03).15 (.03).15 (.03).15 (.03)    -.06 (.40) .15 (.03)15 (.03)15 (.03)15 (.03) .14 (.06) 

-6 .02 (.81) .09 (.22) .01 (.90) .05 (.51) .05 (.48) 

-5 .02 (.82) .25 (.00).25 (.00).25 (.00).25 (.00)    .02 (.76) .24 (.00).24 (.00).24 (.00).24 (.00)    .29 (.00).29 (.00).29 (.00).29 (.00)    

-4 -.02 (.74) .06 (.38) .02 (.79) .04 (.58) .02 (.82) 

-3 .09 (.21) .03 (.67) .11 (.13) .05 (.45) .05 (.50) 

-2 -.08 (.28) .03 (.67) -.11 (.12) .01 (.88) .01 (.85) 

-1 .12 (.10) -.07 (.36) .13 (.07) -.04 (.62) .05 (.50) 

0000    .67 (.00).67 (.00).67 (.00).67 (.00)    .09 (.18) .77 (.00).77 (.00).77 (.00).77 (.00)    .07 (.30) .01 (.84) 

1 -.13 (.07) .12 (.09) ----.16 (.02).16 (.02).16 (.02).16 (.02)    .06 (.38) .04 (.56) 

2 .03 (.66) .01 (.84) .00 (.96) -.02 (.78) -.06 (.43) 

3 .20 (.01).20 (.01).20 (.01).20 (.01)    -.06 (.40) .14 (.05).14 (.05).14 (.05).14 (.05)    -.05 (.48) -.01 (.93) 

4 -.09 (.22) -.02 (.82) -.09 (.22) .01 (.87) -.08 (.29) 

5 -.07 (.34) -.01 (.84) -.04 (.59) .01 (.93) .08 (.25) 

6 .04 (.54) -.09 (.19) .02 (.80) -.07 (.32) -.09 (.23) 

7 .03 (.69) -.02 (.81) -.02 (.76) -.02 (.73) .00 (.96) 

8 -.10 (.18) -.03 (.69) -.07 (.31) -.04 (.53) -.09 (.21) 

9 .02 (.80) -.04 (.57) .01 (.89) .02 (.79) .03 (.70) 

10 -.03 (.70) .05 (.52) -.05 (.47) .04 (.57) -.01 (.89) 

 
In volatility spillover, this effect emerges as a leading relationship 
in volatility transference for frozen fish. It is likely that frozen 
salmon volatility transmission is a result of direct causation effects, 
because of the relative long time period of transference and the 
strong correlation relationship. The low flexibility in fresh fish 
inventories makes these goods less elastic in reacting to shocks 
from the frozen market. The market returns to equilibrium either 
through changing price or supply. In a competitive market, the 
change in supply is expected to dominate the change in price. 
However, if supply is inflexible, as with lower inventory 
possibilities, the market is more likely to tend to equilibrium 
through changes in prices. This would explain the stronger 
correlation relationship in volatility from frozen to fresh fish. In 
addition, the correlation from frozen salmon is larger for fresh 
salmon of larger weight. The stronger effect for higher weight  
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classes can be explained by the lower flexibility in inventorying 
available to the farmer as the fish increases in weight, making the 
alternative of freezing the fish more desirable. 
 
As postulated the mechanism that correlates fresh stocks are the 
growth of fish. This suggests that shocks to lower weight-class 
stocks transmit to higher weight-classes, but not the other way 
around. From the assumption that lower stocks generate higher 
price volatility we would thus expect that price volatility is 
transmitted in the same manner. Looking at the volatility spill-over 
results it thus appears that there are stronger transmission effects 
from lower weight to higher weight classes. This is consistent over 
all weight-classes. From these indirect results we can explain some 
of the patterns emerging in price volatility transmission by the 
fundamental correlation existing in stocks of the commodity.  
 

CONCLUSION 
 
Our analysis of volatility spillover illustrated how fundamental 
properties of markets, common equilibrium factors and correlation 
and flexibility in inventories can carry over to how shocks in prices 
are transmitted across markets. The theory of commodity prices 
states the importance of inventories in accounting for the volatility 
of prices. This analysis also suggested that correlations in 
inventories affect transmission in volatility. The analysis in this 
paper found evidence supporting this hypothesis. Therefore, the 
existence of volatility spillover can be partly explained by these 
correlations in inventories. In addition, we provided evidence that 
common equilibrium factors generating a common stochastic trend 
further lead to a strong zero-lag volatility spillover. The analysis 
provides justification for the existence of nonsporadic volatility 
spillover effects outside of what can be explained by non-stationary 
demand-side effects. We found that the application of volatility 
spillover analysis to commodity prices can yield patterns 
explainable by economic theory even when applied to monthly 
observations. This paper suggested that systematic volatility 
spillover in primary commodities can occur and are explainable by 
economic theory; specifically, common equilibrium factors can 
account for a strong zero-lag spillover, while correlations and 
differing degrees of flexibility in inventorying can explain greater-
than-zero-lag correlations. 
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The volatility spillover test of Cheung & Ng (1996) was applied to a 
basket of Norwegian aquaculture goods. We found a strong zero lag, 
in addition to higher-level lag effects between fresh salmon prices, 
but with the effects decreasing as the difference in weight 
increases. We found that frozen salmon takes a leading role in 
volatility spillover, explained by the more flexible inventory 
possibilities available for frozen fish. We further found evidence 
that the volatility of fresh salmon of lower weight classes is more 
closely related to trout, while the volatility of higher weight classes 
is more closely related to frozen salmon. In light of the analytical 
results on volatility spillover, these volatility spillover effects are 
believed to be generated by the differences in inventorying 
flexibility and common equilibrium factors such as prices on 
primary input factors. 
 
Asche & Guttormsen (2001) also show that representing salmon 
prices through one unified price is valid. Our analysis follows this 
and suggests that the volatility in salmon prices can be represented 
by a unified salmon volatility measure. In addition, any precision of 
price forecasting is dependent on the level of volatility in the given 
market, where the study of Oglend & Sikveland (2009) already 
shows that salmon price volatility is stochastic with clustering 
properties such that the precision of forecasts is dependent on its 
previous volatility patterns. Our analysis shows that the precision 
of forecasts in one market is not independent of volatility patterns 
in other markets. In addition, our analysis suggests that a vector 
autoregressive representation of salmon prices should include a 
multivariate representation of variance with relevant cross-
correlation terms. This is especially relevant in representations 
where a correctly specified conditional variance is important; for 
example, the emerging market for Norwegian aquaculture 
derivatives. 
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APPENDIX 
 
Results from model selection procedure. 
  

              

   
  Salmon 2-3kg. 

 Model   LAG Ljung-Box Q Chi 2   KS LL 

  

GARCH (1,1) 1 15.59 (.742) 2.44 (.656) .05 (.639) 480.8 

(1,2) 7 18.62 (.546) 2.91 (.714) .05 (.591) 486.0 

(2,1) 3 15.59 (.742) 2.44 (.656) .05 (.639) 480.8 

 
(2,2) 7 18.62 (.546) 2.91 (.715) .05 (.591) 486.0 

  

EGARCH (1,1) 7 20.08 (.453) 3.68 (.451) .05 (.639) 484.4 

 
(1,2) 1 22.95 (.291) 2.75 (.739) .03 (.981) 491.8 

(2,1) 9 25.91 (.169) 2.96 (.565) .07 (.279) 490.6 

 
(2,2) 7 23.71 (.255) 20.12 (.003) .09 (.057) 511.0 

GJR (1,1) 8 11.87 (.920) 2.89 (.576) .06 (.446) 482.9 

 
(1,2) 8 18.87 (.531) 2.20 (.699) .04 (.865) 487.0 

(2,1) 8 11.87 (.920) 3.36 (.499) .06 (.446) 482.9 

(2,2) 8 18.87 (.531) 2.20 (.699) .04 (.865) 487.0 

              

 

  Salmon 3-4kg. 

Model   LAG Ljung-Box Q Chi 2   KS LL 

  

GARCH (1,1) 1 9.97 (.969) 5.54 (.236) .04 (.815) 465.9 

 
(1,2) 7 10.25 (.963) 3.93 (.415) .05 (.768) 467.3 

(2,1) 3 9.95 (.969) 1.72 (.632) .05 (.659) 466.5 

(2,2) 7 10.25 (.963) 3.93 (.415) .05 (.768) 467.3 

  
  

    EGARCH (1,1) 7 12.43 (.901) 7.16 (.209) .05 (.640) 475.7 

 
(1,2) 1 10.17 (.965) 3.32 (.506) .03 (.986) 470.3 

(2,1) 9 16.74 (.670) 7.80 (.167) .09 (.061) 478.1 

(2,2) 7 13.57 (.852) 10.32 (.171) .07 (.288) 492.1 

       GJR (1,1) 8 20.88 (.404) 10.63 (.031) .06 (.475) 461.8 

(1,2) 8 10.05 (.967) 2.44 (.656) .04 (.868) 467.8 

 
(2,1) 8 21.19 (.386) 6.35 (.096) .07 (.283) 462.5 

(2,2) 8 10.05 (.967) 2.44 (.656) .04 (.868) 467.8 
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  Salmon 4-5kg. 

Model   LAG Ljung-Box Q Chi 2     KS LL 

  

GARCH (1,1) 1 12.77 (.887) 5.91 (.206) .05 (.567) 466.8 

 
(1,2) 7 13.06 (.875) 2.91 (.714) .04 (.879) 468.0 

(2,1) 3 12.34 (.904) 13.09 (.023) .06 (.521) 467.1 

 
(2,2) 7 13.06 (.875) 2.91 (.714) .04 (.879) 468.0 

  

EGARCH (1,1) 7 12.84 (.884) 7.53 (.110) .04 (.786) 466.3 

 
(1,2) 1 15.04 (.774) 2.99 (.560) .04 (.932) 467.8 

(2,1) 9 14.91 (.781) 4.53 (.605) .05 (.707) 481.0 

(2,2) 7 24.27 (.231) 6.15 (.407) .07 (.263) 483.2 

       GJR (1,1) 8 12.49 (.898) 9.94 (.077) .05 (.766) 467.0 

 
(1,2) 8 12.16 (.911) 2.80 (.911) .04 (.898) 468.8 

(2,1) 8 11.50 (.932) 2.99 (.701) .05 (.751) 468.2 

(2,2) 8 12.16 (.911) 2.79 (.732) .04 (.898) 468.8 

              

 

 
 

 

 
 
 
   

 
Salmon 5-6kg. 

 Model   LAG Ljung-Box Q Chi 2  KS LL 

  

GARCH (1,1) 1 13.96 (.833) 4.40 (.494) .05 (.669) 458.6 

 
(1,2) 7 13.83 (.839) 10.29 (.067) .05 (.588) 459.0 

(2,1) 3 12.34 (.904) 8.10 (.151) .05 (.604) 459.8 

 
(2,2) 7 13.82 (.839) 10.29 (.067) .05 (.587) 459.0 

  

EGARCH (1,1) 7 13.33 (.863) 5.00 (.416) .05 (.660) 459.3 

 
(1,2) 1 13.91 (.835) 1.83 (.767) .04 (.818) 460.1 

(2,1) 9 22.28 (.326) 9.31 (.157) .04 (.948) 472.6 

 
(2,2) 7 16.75 (.669) 8.38 (.212) .04 (.932) 475.0 

  
  

    GJR (1,1) 8 13.50 (.855) 5.59 (.348) .05 (.692) 459.4 

 
(1,2) 8 13.42 (.859) .93 (.920) .04 (.901) 460.5 

(2,1) 8 11.96 (.918) 5.31 (.379) .04 (.794) 460.7 

(2,2) 8 13.42 (.859) .93 (.920) .04 (.901) 460.5 
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  Salmon 6-7kg. 

  
Model   LAG Ljung-Box Q Chi 2   KS LL 

  

GARCH (1,1) 1 13.19 (.869) 5.88 (.208) .03 (.973) 456.0 

(1,2) 7 13.31 (.864) 5.40 (.249) .03 (.968) 456.0 

(2,1) 3 10.78 (.952) 1.96 (.855) .04 (.829) 456.5 

(2,2) 7 10.96 (.947) 2.79 (.732) .04 (.775) 456.6 

  

EGARCH (1,1) 7 13.48 (.856) 4.14 (.387) .04 (.928) 458.1 

(1,2) 1 15.30 (.759) 2.14 (.709) .03 (.998) 459.9 

(2,1) 9 16.53 (.683) 8.73 (.189) .06 (.408) 484.8 

 
(2,2) 7 16.55 (.682) 1.88 (.866) .06 (.483) 487.5 

  

GJR (1,1) 8 12.16 (.910) 4.44 (.350) .03 (.966) 457.3 

(1,2) 8 13.11 (.873) 4.74 (.315) .03 (.965) 458.8 

(2,1) 8 12.16 (.910) 4.44 (.350) .03 (.966) 457.3 

 
(2,2) 8 13.11 (.873) 4.74 (.315) .03 (.965) 458.8 

              

 

 

   
  Frozen Salmon 

 Model   LAG Ljung-Box Q Chi
2
  KS LL 

  
  

    GARCH (1,1) 1 30.84 (.057) 13.45 (.009) .08 (.111) 504.0 

(1,2) 7 33.50 (.030) 12.99 (.023) .07 (.218) 506.1 

 
(2,1) 3 30.84 (.057) 13.45 (.009) .08 (.110) 504.0 

(2,2) 7 31.38 (.050) 10.99 (.052) .08 (.121) 506.2 

  

EGARCH (1,1) 7 31.27 (.052) 14.24 (.007) .09 (.077) 504.2 

(1,2) 1 41.40 (.003) 16.01 (.025) .05 (.556) 525.7 

 
(2,1) 9 27.92 (.111) 9.52 (.090) .07 (.299) 510.9 

 
(2,2) 7 24.83 (.208) 11.10 (.049) .07 (.208) 519.2 

  

GJR (1,1) 8 28.19 (.105) 10.08 (.039) .07 (.254) 504.9 

(1,2) 8 27.19 (.130) 9.60 (.087) .07 (.300) 508.2 

(2,1) 8 28.19 (.105) 10.08 (.039) .07 (.253) 504.9 

 
(2,2) 8 27.19 (.130) 9.60 (.087) .07 (.300) 508.2 
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AbstractAbstractAbstractAbstract    Both commodity price theory and statistical evidence 
suggests that the underlying price processes of commodity prices 
are non-linear in dynamics. By allowing both mean and variance 
parameters to change between states we find evidence that 
underlying skewness and kurtosis in residuals arising in linear 
models disappear. I further argue, based on the theory of storage 
that a two-state regime shifting model is a suitable price model for 
commodity prices. Theory predicts that as underlying fundamentals 
such as stock sizes change, the persistence and volatility of prices 
will change. Using the regime shifting model we are able to 
indirectly test predictions made by the theory of storage. The state 
probabilities emerging as a product of regime shifting models can 
provide a basis for examining theoretical predictions on commodity 
markets. For the case of salmon, I find that there are seasonal 
patterns in volatility in addition to industry profitability conditions 
affecting the emergence of volatility regimes. 
 

INTRODUCTION 
 
When analysing time series of commodity prices, two common 
statistical characteristics can often be detected. Firstly, the 
distributions of price levels are often right skewed, arising from the 
characteristically positive price spikes. Secondly, low order 
autocorrelations are high, often to the degree of failing to reject 
standard unit root tests (Deaton & Laroque 1992, 1996; Chamber & 
Bailey, 1996; Pindyck, 2004; Tomek, 2000). The primary economic 
explanation model for the short run dynamics of commodity prices 
is the theory of storage (Kaldor ,1939; Working , 1948, 1949 and 
Brennan, 1958). In the theory of storage, shocks to price levels are 
allowed to persist in order to cover the discounted cost of storage. 
Since stocks cannot be carried from the future to the present, a 
non-negativity constraint is imposed on the storage control 
variable. This non-negativity constraint generates non-linear price 
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dynamics as the price process jumps from regimes of speculative 
storage to stock out periods. Such periods of scarcity allows the 
commodity some uniqueness, divorcing its value from marginal 
costs.  
 
In the theory of storage inventory levels and cost of storage are 
important state variables accounting for non white noise patterns 
in short-run price movements. Neither inventory levels nor net 
costs of storage are exogenous in the theory. A feedback 
relationship exists between state variables. In general, a closed 
form solution to the pricing function from the theory of storage 
cannot be derived. When constructing an empirical commodity price 
model consistent with dynamics predicted by theory of storage, we 
should reasonably allow price dynamics to change states. The 
theory of storage suggests two fundamental states: the storage 
regime, where speculative storage is done to eliminate arbitrage. 
Prices are here smoothed so that the spread recoups the net cost of 
storage and alternative cost of capital. In the other state, the 
scarcity regime, no speculative storage is done and prices are 
allowed to persist at abnormal positive levels. In regards to 
Granger and Swanson (1997), the first regime will be a convergent 
regime, where storage prohibits divergence of prices. The second 
regime will, on the other hand, be a regime of mildly explosive 
prices and no directed mean reversion driven by economic 
incentives.  
 
To account for this conjectured change in price dynamics, we 
propose a model for price dynamics where parameters of a linear 
model are allowed to change between two states. This non-
structural model does not allow mapping of regime shifts to specific 
changes in state variables. We have no direct way to infer if states 
produced by the empirical model are consistent with regime 
changes in the theoretical model. However, using output from the 
empirical model and knowledge of structural changes in state 
variables (specifically the time series of state probabilities, the 
coefficient values in each state, and knowledge of predictable 
changes in state variables), we are able to indirectly infer if our 
empirical model produces dynamics consistent with economic 
theory. In example, knowledge of seasonal effects in stock levels or 
demand surges can be used to evaluate if the empirical model 
produces dynamics consistent with what would be expected from 
the theory of storage. The theory, for example, predicts that when 
stocks are low the market is more likely to enter a scarcity period 
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where price volatility increases and mean reversion decreases. 
Using knowledge of the market in addition to model output, such 
hypothesis can indirectly be examined.  
 
Our econometric approach is Hamilton’s regime switching model 
(Hamilton , 1989). By defining a probability measure as a stochastic 
Markov process we allow state dependent parameters to be 
weighted according to probability measures. The probability 
measure generates a time dependant convex combination of two 
sets of parameters. Examining the probability measures reveals 
information on which regime at any specific time best represents 
the data generating process. We apply the empirical model on a 
data-set of weekly observations of the price of fresh salmon. The 
price of salmon is a non-stationary stochastic process dominated by 
what appears to be relative large shifts in a stochastic variance 
parameter Oglend & Sikveland (2009). Modelling prices as the 
outcome of an unconditional distribution will generate residuals 
diverging from normality. By allowing the distribution to change in 
time, such non-normality issues can be properly addressed. 
 
An important advantage of regime switching models is that 
parameter values are allowed to shift independently of lagged 
variables. We draw information from the errors of linear models to 
infer statistical properties of the time series. This is beneficial in 
cases where we believe that non-stationarity is due to non-
observable state variables not readily available to the 
econometrician. When analysing short run commodity price 
dynamics, the full range of relevant state variables are often not 
available. Relying on inference from non-observable state variables 
is then often necessary. This paper investigates whether a two state 
regime switching is a consistent and suitable non-structural time 
series representation of prices. We further investigate how the 
output from such a model can be used to evaluate predictions made 
by the theory of storage. 
 
Our empirical results for the price of salmon suggest that the non-
linear regime shifting model is able to produce approximately 
normally distributed residuals. It appears that the leptokurtic 
properties observed in the data can be addressed parametrically by 
the model. Furthermore, using the model we find indirect support 
for the theory of storage. We find that under the normal regime 
dynamic multipliers are stable and converging, while under the 
high volatility regime the multipliers a far more unstable with 
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oscillating patterns. Furthermore, as prices increase the probability 
of entering the high volatility regime increases.  
 

BACKGROUND 
 
The modern formulation of the theory of storage is found in the 
rational expectation competitive storage theory, derived amongst 
other in Deaton & Laroque (1992, 1996) and Chambers &Bailey 
(1996).  A derivation of the theoretical pricing function illustrates 
how commodity price dynamics is the result of a two state process. 
As is standard for competitive storage models, an equilibrium 
storage level is reached when price spreads (the difference between 
expected price and spot price) are equal to the net cost of storage 
and alternative cost of capital. The decision variable facing the 
inventory manager is the level of inventories.  
 
Denoting the stock levels at time t as tX  , stocks follows the 

discrete time process: 
 
 tttt IXX ν++= −− 11

.      (1) 

 
In equation (1), the variable tν  accounts for exogenous additions to 

stocks from planned production. In the theory of storage this is the 
source for variations in prices. In its simplest interpretation, 
variations enter due to weather effects affecting realized output. 
However, since temporary changes in demand has an equivalent 
but inverse effect on stocks, the stochastic component can also be 
seen as an exogenous excess demand variable (Deaton & Laroque, 
1996).  
 

1−tI  is the amount stored in the previous period. Amount stored is 

the control variable available to the producer in short run. Storage 
is restricted to take non-negative values; it is not possible to carry 
over stocks from tomorrow to today. This restriction is crucial to the 
dynamics of commodity prices. It implies that price dynamics 
becomes asymmetrical as the pricing function changes regime when 
a stock-out occurs. When no storage is done, the stock dynamics is 
fully dependent on the exogenous addition to stocks tν . Note that 

the storage variable 1−tI  can also be defined as 111 −−− = ttt XI φ , 

[ ]1,01 =
−tφ ; ,a ratio of stocks carried over to the next period. Looking 

at storage in this way makes it more general. In agriculture, 
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storage can hence be viewed as the option not to harvest. Storing is 
done through further cultivation.  
 
We now introduce the cost of storing variable. On the margin this 
variable can be defined as: 
  
 ( ) ( ) ( )ttt IIcI δχ += .            (2) 

 
The marginal cost of storing ( )tIχ  is decomposed into a non-

negative cost factor ( )tIc  and a non-positive convenience yield 

factor ( )tIδ . Under competitive storage it is assumed that cost of 

storing depends on amount stored. In the Kaldor-Woking 
hypothesis it is assumed that 0>χID , an increasing marginal cost 

of storing. For higher storage levels, the cost effect is expected to 
dominate the convenience yield effect. The marginal benefit to 
increasing storage is generally hypothesized to be decreasing.  
 
The theory of storage states that in order to store a commodity, the 
producer must be compensated on the margin for the cost of 
storing. This restriction generates the Euler condition for optimal 
storage: 
 
 ( ) ( ) ( ) ( )tttttt IIcIXPIpE δβ +=−−+ |1

 .       (3) 

   
Here β  is a discount factor accounting for the alternative cost of 

capital. ( )tt IpE |1+
 is the expected price tomorrow with storage tI  

today. Further, ( )tt IXP −  is the realized spot price. In equilibrium, 

the discounted expected price spread ( ) ( )tttt IXPIpE −−+ |1β  must 

cover the marginal cost of storing ( ) ( )tt IIc δ+ . When condition (3) is 

satisfied, any arbitrage from storing has been eliminated.  
 
The price spread ( ) ( )tttt IXPIpE −−+ |1β  decreases in storage. This 

implies that the maximum price spread is achieved when storage is 
zero. We define the expected maximum price spread Max

tE 1+η  as: 

  
 ( ) ( )tt

Max

t XPpEE −= ++ 0|11 βη          (4) 

 
Following equation (4), the market stocks-out ( 0=tI ) when 

( ) ( )tt

Max

t IIcE δη +<+1
. In this case the optimal storage level is 
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negative. However, due to the non-negativity constraint on storage 
the storage, the closest point to optimality is zero.  
 
Combining equation (3) and (4) the expected discounted price 
spread 

1+t
Eη  can be expressed by the functional: 

 
 ( ) ( ) ( ) ( ){ }ttttt XPpEIIcE −+= ++ 0|,min 11 βδη        (5) 

 
This is the price spread process predicted by the theory of storage. 
The left term on the right side of equation (5) is the expected price 
spread under storage, while the right term is the stock-out spread. 
Note how equation (5) illustrates how the control variable tI  

determines the spread under storage, while the spread under stock-
out is determined by the exogenous addition to stocks today. 
Equation (5) also illustrates the importance of a convenience yield. 
Since the convenience yield is a negative cost component it reduces 
left side expression, increasing the probability that storage is the 
prevailing regime. 
 
We observe how the spread process is non-linear, moving between 
the two regimes dependent on stock availability today tX . The 

probability of stocking-out tomorrow can be expressed as: 
 

  
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )0|

0|

111

111

+−−

−−+

>++++

⇔+<++−

tttttt

tttttt

pEIIcvIXPprob

IIcvIXPpEprob

βδ

δβ
      (6) 

  
Under the assumption that the harvest is normally distributed 

( )σµ,~ Nv , the price process moves according to a two state 

Markov chain having non-constant transition probabilities given 
by: 
  

 
( )

( ) ( )( )







−−−

−
=

−−

−−

11

11

111

1

tttt

tttt

tP
ρρρρ

ρρρρ
        (7) 

 
Where ( )( )0|1, 2

,1,
+Φ= tt pE

tsts

βρ
σµ

 is the probability of storing today. The 

probability distribution is conditional on stock availability today. 
Its mean and variance can be approximated by: 
  
 ( ) ( ) ( )tttts IIcXP δµ ++=,

 

   (8) 
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This derivation implies that the more that was stored yesterday, 
the higher is expected stocks today, and the higher is the 
probability of not stocking out today. Hence the higher stocks are 
the greater is the likelihood of staying in the storage state. In 
essence the spread process under optimal storage follows a non-
linear process – a two state time dependent Markov chain 
determines the likelihood of changing price regimes. Note also that 
since price spreads can change regime the volatility process 
becomes non-constant. 
 
We observe that the price process moves between the two regimes. 
The two fundamental state variables determining if regime shifts 
occur in the following period is the stock level and cost of storage. 
Quantitative representation of these state variables does not exist 
at the desired frequency for the commodity market analysed in this 
paper. We therefore treat state transition probabilities as time 
invariant parameters to be estimated. In essence, the error of 
applying the linear model functions as a state variable in the 
empirical model. This necessary disallows direct in inference. The 
important feature is that the empirical model allows price 
dynamics to changes regimes, as is the implication on price 
dynamics as predicted by theory.  
 

EMPIRICAL MODEL  
 
In order to draw valid statistical inference from our model we need 
to derive a model which satisfactory can encompasses the dynamics 
of the underlying data generating process. The previous analysis 
suggests that price follows an asymmetrical two regime process. To 
model these asymmetries empirically we apply a two state regime 
shifting model, as first derived in Hamilton (1989). Regime 
switching models have become popular, specifically in application 
to macroeconomic and financial issues. However, less application of 
the model can be found in commodity price theory.  
 
The regime switching model was first developed by Hamilton 
(1989), where regime shifts are applied to the mean term of the 
model. This was initially done to identify business cycles in 
macroeconomic data. The model has later been expanded to allow 
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regime shifts in variance parameters (Hamilton & Susmel, 1994) or 
in relation to co-integration (Krolzig, 1996). The regime switching 
model has been applied to explain problems in macroeconomics 
such as the business cycle (Bansal, Tauchen and Zhou, 2004; 
Hamilton, 1989) or interest rate movements (Garcia & Perron, 
1996; Gray, 1999; Ang & Bekaert 2002; Engstad & Nyholm, 2000). 
In addition, the model has been applied to model exchange rate 
movements (Sachs, 1996) and financial asset returns (Guidolin & 
Timmermann (2007); Ang & Bekaert (2000)). Furthermore, 
different estimation approaches has been proposed such as the 
EMM estimator, where a simulation approach is evaluated against 
the real time series (Bansal et al. (1995) and Gallant and Tauchen 
(1996). Concerning commodity prices, application has been found in 
regards to the study of macroeconomic regimes (Tomek, 1997; 
Cuddington & Liang, 1999).  
 
In our approach we are interested in the shift of the price process, 
specifically in mean reversion and volatility movements. We 
initially model the price as an autoregressive model with regime 
dependant autoregressive parameters. To allow stochastic volatility 
shifts we model the constant term in an ARCH representation to be 
regime dependent. The regime probabilities evolve according to a 
two state Markov process, where we label the two states as 
“normal” and “extreme” regime.  
 
We start by assuming that the data generating process can be 
represented by the autoregressive switching ARCH model. The 
model allows regime dependent parameters both in the mean and 
variance equation: 
 

tttt

q

i
tit SySy εσβµ )()( 2

1

1

+∆+= −

=

∑ .            (9) 

∑
=

−+=
p

i
tittt SS

1

2

10

2 )()( εαθασ .       (10) 

 
Equation (9) describes the development of prices, where 

t
y  denotes 

the price observed today, µ  is the intercept and )( ti Sβ  is the 

autoregressive parameters dependent on the state at time t. 
Furthermore, 2

,tsσ  describes the conditional variance. To allow shifts 

in volatility, the conditional variance intercept 0α  is multiplied by 

a state dependent scale factor )( tSθ . The parameter )( tSθ  takes on 
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a unit value during the normal regime, while be being scales by 
s

θ

in the extreme regime. Note that we do not impose any value on the 
scaling factor; it is purely selected by data fitting. 
 
In order to make the model tractable we specify the state 
determining variable tS  as a stochastic variable. We follow 

Hamilton (1989) and model  tS  as the result of a discrete time, 

discrete state first order Markov process. We define tS  as a 12 ×  

vector ],[ 21 tt SS  where element j of tS takes value one if state j is 

realised and zero otherwise. Furthermore, we define the 22 ×  
matrix P  as the transition probabilities between states8: 
 









=

2221

1211

PP

PP
P  

 
Hence, the state process tS  evolves as the result of a first order 

autoregressive process where transition probabilities functions as 
parameters: 
 
 11 +−

+= ttt PSS ν  .        (11) 

 
The outcome of equation (11) can be interpreted as the implied 
probability of the system in being in state one or two at time t. 
Using this equation (9) and (10) can be rewritten as: 
 

( ) ( ) 2

1 1

2

21022,11,0 t

q

i

p

i
ititstittSitSit SSySSy

tt
εεαθαϕϕϕµ ∑ ∑
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++++++=

 
Note that for variance, the scaling coefficient sθ  is normalized for 

state one. This implies that during the a priori extreme state, the 
variance is scaled by the parameter

s
θ , presumably different from 

unity, but not necessarily larger. 
 
The problem we face is to reach an optimal inference on the process 

tS   determining the weights in the linear combination of 

parameters. The solution to this problem is the non-linear filter 
proposed by Hamilton. If the two eigenvalues of the transition 

                                                        
8 We must assume that the rows of the transition probabilities sum to unity so as to 

represent them as probability measures. 
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probabilities P are respectively one and less than one, the Markov 
chain is said to be ergodic. Ergodicity implies that the eigenvector 
associated with the unit eigenvalue, ππ =P , produces the 

unconditional probability of being in state j at any point in time, 

it jsP π=Φ= );( . Here Φ  is the vector of model parameters. The 

vector π  can be interpreted as the limit of the Markov process 
π=

∞→
t

m

m
SPlim , or the stable probability vectors independent of time.  

The density of the observed point ty  conditional on the state j and 

parameters θ  is:  
 
 );|( Φ= jsyf tt

   for j=1,2. 

The probability of observing state j and value ty is:  

 
 );();|();,( Φ=×Φ==Φ= jsPjsyfjsyP ttttt

.     (12) 

 
Summing this over all states generates the unconditional 
probability of observing the data point at time t :  
 

∑
=

Φ=×Φ==Φ
2

1

);();|();(
j

tttt jsPjsyfyf .     (13) 

 
In order to derive the probability weights that produce our 
parameters at any given time, we need to produce the probabilities 
that the unobserved regime responsible for observation t was 
regime j. Using Bays’ rule this can be stated as: 
 

 








Φ
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tt
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t

tt
tt yf
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yjsP π     (14) 

 
This is just state j’s part of the total unconditional probability of 
observing the data.  If the distribution implied by state j totally 
describes the data observed at time t, the probability of observing j 
is equal to the unconditional probability of observing state j at any 
given time. This gives us an intuitive interpretation of the weights 
as being proportional to how much of the observed data each regime 
can account for. Further, note that this is the sample or post-data 
counter part of the Markov process 11 +−

+= ttt PSS ν  defined above. 
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Given a set of parameters Φ̂ , Hamilton shows how optimal 
inference about the regimes can be ensured by iterating equation 
(12) and (13), written in its composite form as: 
 

 
( )

)('1 1|

1|

|

ttt

ttt
tt S

S
S

η

η

⊗

⊗
=

−

−   tttt SPS ||1 ×=+ .               (15)

   
Where tη  is the ( )12 ×  vector of conditional densities and P is the 

probability transition matrix. As a by-product of this iteration the 

likelihood function ∑∑
=

−

=

⊗=Φ=Φ
T

t
tttt

T

t

Syf
1

1|

1

)('1));(()( ηℓ  is produced. 

The value of the parameters Φ  that maximizes the log likelihood 
function can then be found by conventional maximum likelihood 
methods. In order to start the procedure we need a starting value 
for the probability weights 0|1S . For this we use the unconditional or 

ergodic probabilities π . Thus for the two state approach two 
likelihood functions are calculated, one for each state. These are 
combined according to weights S  to construct a composite 
distribution to represent the data generating process. The weight 
ascribed to each parameter value is, as stated, the result of a first 
order Markov process where the parameters of the Markov process 
is the state transition probabilities. By the ergodicity of this process 
the weights can be interpreted as probabilities that the system is in 
a given state. Further by maximum likelihood we find the optimal 
parameters, including the state transition probabilities so as to best 
combine the state dependant distributions. These parameters are 
derived in combination with equation (15) to produce our desired 
probability weights. Since the probability weights 

ttS |
 are only 

evaluated at up to the information available at time t we perform a 
sweep through the data at the end of the estimation so as to use the 
full sample to evaluate each time dependant probability (See 
Hamilton (1994) pp. 694).  
 

MODEL ESTIMATION 
 
The composition of the salmon price used in the empirical 
evaluation is achieved by averaging the market price for fresh 
salmon of different weight classes. This is assumed a valid 
representation of price of salmon (Asche & Guttormsen, 2001). 
Prices are observed weekly from the end of 1992 to the summer of 
2007, totalling 844 observations.   
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In order to draw valid statistical inference from the empirical 
analysis we need to ensure stationarity. We detect only weak linear 
trends in our time series, unlikely to account for all non-
stationarity. As is common, a stochastic trend component is likely 
to exist in our data. To avoid the possibility of spurious regression 
effects we test for unit roots at the zero frequency using the 
Augmented Dickey Fuller test. Failing to detect a unit root suggests 
no stochastic trend in our data. We test using a constant and a 
maximum lag level of 20 weeks, as suggested by the formula 

25.0max ]100/[12int[ TL =  (Schwert ,1989).  
 

TTTTABLE ABLE ABLE ABLE 1.1.1.1. Augmented Dickey Fuller Unit Root Test. 

              

                  Constant     Constant + Trend 

Series Lag  1−ty  coef. t  Lag  1−ty  coef. t 

        

Price level 17 0.989 -2.123  17 0.9802 -2.716 

        

1. difference 16 -0.15311 -9.083**  16 -0.15461 -9.083** 

         
** Significance at the 1% level 

 
To trace out the specific lag length from these 20 possibilities, we 
use Akaike’s Information Criteria (AIC). The AIC suggests an 
evaluation at a lag of 17 months. The test fails to reject a unit root 
(see Table 1). To eliminate non stationary components we apply a 
first difference filter. The series in first differences rejects unit 
roots at all lag levels.  
 

TABLE 2TABLE 2TABLE 2TABLE 2.... Descriptive Statistics. 

  Price Level    First Difference 

Mean 26.41  -0.021941  

Standard Deviation 6.125  1.023  

Skewness 0.787  0.44105  

Excess Kurtosis 0.384  12.775  

Minimum 14.508  -6.8333  

Maximum 49.167  8.7083  

Normality Test 129.39**  1079.1**  

          

Note: The normality test is the Jarque Bera test, where ** indicate rejection of the 
null hypothesis of normality on the 95% significance level. Excess kurtosis is 
kurtosis outside of the normal distribution. 



 

 
 
 
 

REGIME SHIFTS IN COMMODITY PRICES 
 

109 

 

As such we will in our further analysis use the first differenced 
price series. 
 
Table 2 provides some summary statistics for both the level and 
first difference of prices. We note that normality is rejected for both 
levels and returns using the Jarque Bera test. In both levels and 
returns the distributions display positive skewness and excess 
kurtosis. The positive skewness implies a longer tail to the right of 
the mean; arising due to the characteristic positive price spikes. For 
the first difference some skewness has been transferred to excess 
kurtosis.  
 

A large portion of the return seems to be concentrated around the 
mean, but with occurring periods of large corrections. Below we plot 
autocorrelations and partial autocorrelations for the first 
differenced series.    The plot suggests that autocorrelations move in 
a weak oscillating pattern, with waves above and below zero 
respectively. 
 

 

Sample autocorrelations 
Confidence interval: [ ] [ ]07.0,07.0/2,/2 −≈+− TT  
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Sample partial autocorrelations 
 

FIGURE 2.FIGURE 2.FIGURE 2.FIGURE 2. Sample Autocorrelations and Partial Autocorrelations 

 
The effect seems to vanish for higher order lags, indicating an 
oscillation decreasing in magnitude. Oscillating correlations with 
decaying amplitude is a property of systems with complex 
eigenvalues of modulus less than one. If we represent the price 
process of salmon through a second order autoregressive model, the 
eigenvalues of the system is approximately [ ]i342.009.0 ±  which has 

modulus 0.361.   
 
These eigenvalues are converging dynamic multipliers of oscillating 
pattern with peaks appearing approximately monthly. Evaluating 
the likelihood values for lag length of three weeks does not 
significantly improve the representation of data. Increasing lag 
length beyond three lags does provide a better fitting to the data, as 
would be expected, but at the cost of possibly over specifying the 
model. An AIC analysis on a linear autoregressive model suggests 
the application of a twenty week lag. However for a non-linear 
model, this suggestion becomes invalid. By allowing non-linear 
parameters the need for such long lag lengths disappears. By 
constructing parameters as a flexible convex combination of linear 
parameters we can replicate the complex eigenvalues arising in the 
linear model. Indeed, as we will see in the next chapter, a two week 
lag for the non linear model performs well under relevant 
sensitivity analysis.  
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SENSITIVITY ANALYSIS 
 
In order to verify the adequacy of the models fit to data, we now 
apply some sensitivity analysis to the basic model. The model we 
use is a second order autoregressive model for the development of 
the mean and a first order autoregressive conditional 
heteroskedasticity model for the conditional variance. The model 
applies regime dependant parameters for the autoregressive 
coefficients in the mean, and for the constant term of the 
conditional variance: 
 

tttt
i

tit SySy εσβµ )()( 2

1

2

1

+∆+= −

=

∑ .    

  
2

10

2 )()( −+= tittt SS εαθασ .  

       
We evaluate the model by comparing the non-linear models to that 
its linear counterpart (the same model with only one regime). When 
evaluating a linear versus non linear model, we must confront a 
problem arising due to lack of equivalent parameters under the 
linear model. For example, transition probabilities do not exist for 
the linear counterpart. Further, as pointed out by Hansen(1996), 
when evaluating a linear autoregressive model against a regime 
switching model, some key assumptions about the asymptotic 
distributional theory of non-linear models are compromised. In 
order for the non-linear models to produce true parameter 
estimates, we need to assume a locally quadratic likelihood surface; 
where locally is defined as a region where both the null and global 
optimum lie. In addition, we need to guarantee that the scores have 
positive variance, allowing the application of a central limit 
theorem stating the existence of a multivariate normal distribution. 
In evaluating Hamilton’s switching model, both these assumptions 
are violated because of the existence of the nuisance parameters. 
The null of a linear model arrives at a local optimum, and higher 
order derivatives also appear to vanish. As such the standard 
Likelihood Ratio test used to evaluate such models will reject a 
linear model too often. Hansen (1992) & Garcia (1989 improve 
around these difficulties by deriving bounds for the asymptotic 
distribution valid under the existence of nuisance parameters. 
Hamilton (1996) further created a set of score functions based on 
the derivatives of the model’s log likelihoods. From these score 
functions one can test the existence of autocorrelations, ARCH 
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effects or the validity of the Markov assumptions. Hamilton’s 
testing approach has not been applied on a large scale in the 
literature, most likely due to the complexities of the switching 
models fitted to data  (Breunig, Najarian & Pagan, 2003). In order 
to evaluate the validity of applying a non-linear model, we apply a 
modified Likelihood Ratio test from Tillman(2003). We adjust the 
LR test statistics to a )(2 nr +χ  distribution where r is the degrees 

of freedom and n is number of nuisance parameters. Being aware of 
the existence of nuisance parameters, we take a conservative 
approach to the likelihood ratio test:  
 
 ( ))|()|(2 T

rest

T YLYLLR θθ −=  .  

 
Where restθ  is the parameters of our restricted (linear ARCH) model. 
Evaluating this model against the equivalent two state switching 
model produces a likelihood ratio of 102 (Table 3). The relevant 
critical value is 20.5 for the 1% interval. The test suggests that 
introducing non-linear parameters strongly improves the models fit 
to data. In addition, the non linear model performs better than the 
linear model even with a twenty week lag. Testing for more than 
two states is more problematic, and an optimum of the likelihood 
surface is hard to find. As stated, the asymptotic properties of this 
test is not technically satisfactory because of the nuisance 
parameters, however such a high rejection rate evaluated against a 
conservative critical value provides strong evidence that 
introducing the non-linear model is justifiable.  
 
In order to validate our choice of model further, we test the 
normality of the standardized residuals in the linear and non-linear 
model using the Jarque Bera test (Table 3). The Jaque Bera test for 
normality of residuals for the linear model produces a statistics of 
152.71, strongly rejecting the hypothesis of normality. For the non-
linear model, we note that the distribution of the final model is 
multivariate, with the final distribution generated by a linear 
combination of the regime dependent distributions. For the 
normality of residuals the test value is 5.94, satisfying normality on 
the five percent level. Introducing multivariate distributions 
through non-linear modelling allows the representation of normal 
residuals, and more importantly able us to model the non-normality 
properties of the data. 
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TTTTABLEABLEABLEABLE    3.3.3.3. Likelihood and Normality Test. 

  Value 95% Critical Value 

Likelihood Ratio 102 20.5 

   

JB for linear model 152,71 5.99 

JB for non-linear model 5.94    5.99    

                        

Linear model:                  Non-Linear model: 
tttt yy εσβδ 2
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Where the subscript S denotes regime dependant variables 

 
To further facilitate our choice of model we will test some 
predefined moment functions on the residuals of the model. 
Formally we define three such moment functions: 
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Equation (16) measures the residual as implied by the model, and 
we should find under proper specification that )( 1mE  converges to 

zero. Further equation (17) and (18) tests the autocorrelations of 
residuals. Thus under the expectation that all relevant information 
is included in the model no serial correlation should exist. In order 
to estimate equation (16), (17) and (18) consistently we regress

tm ,1
, 

tm ,2
 and 

tm ,3
 individually against intercepts and scores and use 

robust standard errors when forming t-statistics. The scores are 
defined as the derivatives of the log likelihood with regards to the 
parameters. We include the scores in the estimation to correct the 
variance of the moment functions for effects generated by the 
nuisance parameters Tauchen(1985). Specifically it can be shown 
that the asymptotic variance of the moment functions converges to 
the sample variance and a term consisting of the score and 
information matrix of the likelihoods. Failing to account for this 
extra term will hence overestimate the sample variance, leading to 
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under rejection of the hypothesis of zero expected moments (See 
Breunigi, Najarin & Pagan (2003), pp.709).  
 

TTTTABLEABLEABLEABLE    4.4.4.4. Consistency test for residuals. 

          

  Intercept t-value    Rob. std.errors  

m1 0.0105961 0.38 0.0277576  

m2 0.0046653 0.13 0.0359982  

m3 -0.007281 -0.16 0.0453619  

          

 
We evaluate the t-values of the intercept terms in the moment 
regressions to assess the value of our three moment functions. As 
reported in table 4 no significant autocorrelation in residuals can be 
found. It does appear that our moment functions are satisfied, 
strengthening our specification of the data generating process.  
 

ESTIMATION RESULTS 
 
We now apply our model to the estimation procedure derived above. 
The estimation is performed using the maximum likelihood 
approach of Broyden, Fletcher, Goldfarb, Shannon (BFGS). Initial 
values are traced using the Simplex method. Table 5 reports the 
estimation results. All parameter values, except the mean, are 
significant at the 95% level. We note that the normal state displays 
greatest stability, where the probability of remaining in the state 
following a normal state is 97.8%, while changing state occurs only 
with a 9% probability. During what we define as the normal state, 
the autoregressive parameters of the mean model are for week one 
and week two lag respectively 0.499 and 0.28. This indicates mean 
reversion in the normal state. For the high volatility regime, the 
autoregressive parameters are negative, with value -0.20 and -
0.232 for lag one and two respectively. The negative parameter 
values during the high volatility regime illustrate the fluctuating 
nature of excess return during these periods. Turning to the 
competitive storage theory this fluctuating reversion patterns can 
be explained by a lack of speculative stocks to smooth prices and 
generate positive autocorrelations.  
 
Concerning the conditional variance of returns, we observe that 
mean reversion exist in the autoregressive parameter. Persistence 
in volatility exists, giving rise to volatility clustering.  
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TTTTABLEABLEABLEABLE    5.5.5.5. Estimation Results. 

            

Parameter   Coefficient Std.Dev. t-value   

      

11P   0.9781 0.0072 135.8088  

12P   0.09 0.0258 3.4816  

µ   -0.0261 0.0225 -1.157  

1|1 =
−

Stβ   0.49968 0.043 11.6148  

2|1 =− Stβ   -0.2 0.0366 -5.4587  

1|2 =− Stβ   0.2801 0.1066 2.6266  

2|2 =− Stβ   -0.2318 0.0902 -2.568  

0α   0.2732 0.0254 10.724  

1α   0.2446 0.072 3.3937  

2| =Sθ   8.8609 0.8617 10.282  

         

Obs.  844  LL -939.3436  

            

 
For the high volatility regime the conditional variance is multiplied 
by a scalar approximately equal to 8.86. As such, during the high 
volatility regime the variance of the distribution increases almost 
nine fold relative to the normal state.  
 

 
FIGURE 3.  FIGURE 3.  FIGURE 3.  FIGURE 3.  Probability of being in high volatility regime 
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In figure 3 we plot the smoothed unconditional probabilities of 
existing in the high volatility state. We observe that some years are 
relative “quiet”. Specifically 1994 to 1997 and 2000 to 2004 are 
relative quiet periods. Following 2004 up to 2007 the market again 
enters a high volatility regime. From the estimation results we now 
compare how the implied price dynamics compare to knowledge of 
market fundamentals and the implications from theory of storage.  
 

DISCUSSION 
 
Regarding the mean reversion parameters, we note that the 
eigenvalues for the normal state ]585.02.0[ ±  are real and 
converging, providing a state where excess returns are absorbed to 
an unconditional mean value. For the “high” volatility regime the 
eigenvalues ]47.01.0[ i±−  are complex, with modulus 0.48. Thus the 
dynamic multipliers in the high volatility regime are oscillating but 
converging. Hence the mean reversion in the price process moves 
between states of stable convergence of returns to fluctuating 
convergence. Under speculative storage the autocorrelations are 
believed to be relatively high as current price is equated to the 
discounted expected future price. As such, inventories are used to 
absorb excess returns and mean reversion is expected. In periods of 
low stocks the price movements are to a greater degree dominated 
by the stochasticity of demand and supply, and excess returns are 
allowed to persist as stocks are insufficient to eliminate arbitrage.  
 
In the salmon market demand is not stationary across the season. 
Periods exist, for example during Christmas and Easter, where 
demand increases. Further, because of the productive nature of 
stocks, the total biomass of stocks varies across the season, 
following seasonal growth and maturity patterns.  This provides a 
mean to examine indirectly the effects predictable shifts in state 
variables on the price process. In order to isolate specific seasonal 
patterns in supply we fit some cyclical patterns to a time series of 
quantity of salmon sold from 1999 to 2007. From our preliminary 
knowledge we know that during summer periods, growth of fish 
increases while at Christmas and Easter a surge in demand occurs. 
In the weekly quantum traded data we can pick up these effects by 
modelling the trend by trigonometric sinusoid and cosine functions. 
We allow for one, two and four cycles a year in addition to a 
quadratic and linear time trend. The trend is modelled as: 
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Figure 4 displays the trends fit to data. The major peak in the 
seasonal trend is the Christmas surge in demand, accounting for 
the largest seasonal effect. The smaller peaks following Christmas 
is the Easter surge, while the larger peak following this is the 
summer seasonal effect. We note that the minor peaks fit the data 
poorer in later observations. 
 

 

FIGURE 4. FIGURE 4. FIGURE 4. FIGURE 4. Quantum Traded and fitted trend 

 
This representation of the trend is not in any way complete but is 
sufficient to illustrate and identify the summer, Christmas and 
Easter seasonal effects.   
 

To identify the seasonal effects we generate a series of the weekly 
averages of the probability of being in a high volatility state from 
1992 to 2007. From 1992 to 2007 there are 15 data points. To 
evaluate the statistical significance of the seasonal patterns in 
volatility we apply the bootstrap method. From the entire series of 
probabilities we draw 15 observations randomly, representing a 
random seasonal observation. From these observations an average 
is created. This is done for 10 000 draws, allowing the formation of 
a distribution of averages. From the distribution the 1%, 5%, 95% 
and 99% percentiles are generated. In figure 5 these percentiles in 
addition to the mean and seasonal series is displayed. We observe 
from figure 5 that the seasonal pattern lays within the 5% and 95% 
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confidence interval, however with the extremes of the series being 
close to the intervals bounds. 
 

 

FIGURE 5. FIGURE 5. FIGURE 5. FIGURE 5. Weekly probability of high volatility state. 

 
The probable high volatility weeks in figure 5 coincide with the 
seasonality patterns conjectured above. Specifically, we find that 
the demand surge during Christmas times increases the probability 
of the market in entering a high volatility regime. The demand 
surge effectively empties the inventory of available fish for sale, 
reducing the markets flexibility in satisfying future excess demand. 
The market is more likely to be equated by price movements than 
flexibility in supply. Concerning the early summer period seasonal 
effects, the convenience yield of stocks increases as the alternative 
cost of harvesting fish increases.  
 
This is due to the fact that harvesting prior to a growth period 
sacrifices the immediate high growth period. As the convenience 
yield increases more stocks are withheld and the price necessary to 
initiate harvesting increases.  In figure 6 we plot the seasonal 
patterns in volatility in addition to the seasonal price level 
patterns. In the figure we observe how the probable high volatility 
regimes coincide with the seasonal patterns in prices. This result is 
in line with the theory of storage, where high prices are 
accompanied with lower stocks and higher price volatility. 
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FIGUREFIGUREFIGUREFIGURE    6.6.6.6. Seasonal pattern in volatility and price levels. 

 
Turning back to the full probability of high volatility series, we can 
also compare the periods of probable high volatility with the series 
of annual industry return, that is the difference between price and 
production cost per kilogram fish.  
 

 
FIGURE 7. FIGURE 7. FIGURE 7. FIGURE 7. Volatility and Profitability. 

 
 
From figure 7 we see that periods of high profitability; measured by 
the price/cost difference, is closely followed by an increasing 
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likelihood of existing in a high volatility regime. When profitability 
is large stocks are exhausted leaving less flexibility in smoothing 
future price movements.  
 
The results indicated above suggest that the two state regime 
shifting model can provide a successful basis in modelling 
commodity prices. We observe the movements in fundamentals 
such as stock levels are important in accounting for changes in the 
price process in the short run and that a model with shifting 
parameters can pick up such changes.   
 

CONCLUSION 
 
In this paper I have argued that a two state Markov switching 
model is a consistent price model for commodity prices. The price 
model allows the flexibility in dynamics demanded by the theory of 
storage. The output of the model are furthermore useful in making 
indirect inference of predictions made by storage theory. We 
applied the regime shifting model to a time series of salmon prices 
in order to examine predictions made by commodity price theory. 
The competitive storage theory states that price follows an 
asymmetrical process identified by speculative storage. By 
modelling mean and variance as the result of a two state regime 
swicthing model, the fit to data is improved over its linear 
counterpart. We defined the two states as a normal volatility 
regime and a high volatility regime. The econometric analysis show 
that during the normal regime, returns behave according to a 
traditional mean reverting process. In the high volatility regime, 
volatility is scaled almost nine fold relative to the normal regime, in 
addition to generating negative signs on the mean reversion 
coefficients of returns.  
 
From the empirical analysis we also find that during early to 
middle summer and around Christmas there exist a greater 
probability of existing in a high volatility state. These periods 
coincide with seasonal patterns observed in the market. Specifically 
the summer seasonality is associated with improved growth of 
salmon. This improved growth period generates a convenience yield 
on sitting on stocks, leaving less stocks available for speculative 
storage. A higher price is necessary to initiate harvesting. The 
Christmas seasonality is associated with a surge in demand, 
effectively emptying stocks as the temporal excess demand is 
satisfied. We also find that higher prices and improved profitability 
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is associated with a higher likelihood of existing in a high volatility 
regime. This is consistent with the theory of storage, where high 
prices are characterised by a scarcity of goods. The high prices lead 
farmers to empty current stock, lowering the flexibility in reacting 
to future changes in excess demand. The feedback effect between 
high prices and low inventories is expected to generate a high 
volatility regime  
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AbstractAbstractAbstractAbstract In a rational expectations market, long run predictable 
cycles not founded in cost shifting factors should not persist. Still, 
arbitrage possibilities have been documented in long run cycles of 
for example hogs, broiler and cattle. If cycles are sufficiently 
stochastic the cost of identifying and reacting to the perceived 
cycles will increase to the degree of allowing some residual 
cyclicality in the markets. As such, realised cycles and arbitrage 
will only be precisely identified following the cycle completion. In 
this paper, we follow two approaches to examining the stochasticity 
of long run cycles in commodity prices. The first approach based on 
duration dependence in cycles and is a non-parametric index to test 
for convergence in cycles. The second approach is based on the 
realisation that most commodity prices are non-stationary and 
near-unit or unit root. We expand on the classical seasonal unit 
root test to test for existence of unit roots outside the seasonal 
frequencies.   
 

INTRODUCTION 
 
The existence of long run predictable cycles in commodity prices 
have been thoroughly examined, studied, and documented, where 
the classical studies are those of the hog cycle (Hayes & Schmitz, 
1993; Shonkwilder & Spreen, 1986; Harlow, 1960; Dean & Heady 
1958; Chavas & Holt, 1991) in addition to cyclicality in cattle prices 
(Rosen, Murphy & Scheinkman, 1994) and broiler prices (Rausser 
and Cargill, 1970). The out of seasonal cycles are believed to 
emerge due to a counter cyclical reaction in supply and the lag from 
production decision to realised output. A positive price shock will 
increase supply as profits are captured, leading spot 
prices to decline. The increased supply will further reduce the 
availability of future stocks, leading prices to increase again until a 
new stock emerges allowing prices to be corrected. Earlier studies 
founded on the Cobweb theorem (Ezekiel, 1938) argued that these 
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cycles persist due to producers ignoring public information and 
forming price expectations on some model of historical price 
realisations (Breymeyer, 1959; Larie, 1947; Harlow, 1960; Larson, 
1950; Rucker, Burt & LaFrance, 1984). Based on the cobweb model, 
it was predicted that a four year cycle in hog prices should exist. 
However, cycles both shorter and longer than this has been found 
in empirical studies. This discrepancy motivated the development 
of multi-frequency cobweb explanations, allowing for several 
cyclical patterns to exist (Talpaz, 1974).  
 
Following the cobweb analysis a second school of thought emerged, 
basing its analysis on the efficient market hypothesis of Fama 
(1970), Muth (1961) and Samuelson (1965). These studies argued 
that in an efficient market, predictable cycles will be eliminated 
due to arbitrage opportunities. Under this regime, a cobweb style 
cycle should not persist since it generates a profitable trading 
strategy. The cobweb model allows identification of emerging cycles 
since expected prices are based on historical data. The elimination 
of arbitrage, and hence cyclicality, in the efficient market 
framework hinges on two criteria: (1) the ability to identify and 
predict the cyclical patterns and (2) the marginal gain in changing 
trading strategies overshadowing marginal costs. The argument 
that long-run cycles will be eliminated by arbitrage thus hinges on 
the assumption of a predictable cycle. 
 
Shonkwilder & Spreen (1986) examined the statistical stability of 
hog cycles, and found evidence that cycles undergo a complicated 
change based on cycle length. Further studies (Holt & Craig, 2006; 
Chavas & Holt, 1991) based on a non-linear and chaotic approach 
to cycles conclude that cycles follow what appear to be non-linear 
dynamics, and that hog cycle is a non-stationary process. It appears 
that earlier attempts at modelling cycles as deterministic changes 
in well behaved stationary markets is unsatisfactory in explaining 
the persistence of cycles. However, if cycles emerge from a non-
stationary process, their persistence is not necessarily in 
contradiction with the efficient market hypothesis. Identification 
and profitable trading strategies can be derived after the cycle 
unfolding, in a suitably long time series. The cost and risk in 
reacting to a perceived cycle might outweigh the expected benefits 
during the cycle unfolding. 
 
The existence of unit roots in commodity prices is debated (Tomek, 
2000; Tomek & Wang, 2007). Economic theory suggests that 
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commodity prices should be convergent, yet empirical tests often 
find that unit roots cannot be rejected. High autocorrelation in low 
order lags are often detected in commodity prices. Near unit root, or 
stochastic root, processes are further difficult to reject using 
traditional unit root tests. Hence, it is necessary to maintain a 
scepticism vis-à-vis equating commodity prices in general to unit-
root processes. However, statistical evidence that commodity prices 
contain unit roots should not simply be discarded as the result of 
potentially inferior statistical methods. Existence of non-stationary 
components in commodity prices can provide an economic 
explanation for the existence of persistent long run cycles in 
commodity prices. If one assumes that slowly evolving unit-root 
processes are significant components in commodity prices, this 
provides an explanation within the efficient market hypothesis for 
the existence of long-run cycles in commodity prices.  
 
There are several economic rationales for unit roots outside of the 
zero frequency. For instance, if producer’s price by marginal cost, 
unit roots outside of the zero frequency can be detected if marginal 
costs follow a sufficiently variable non-zero frequency unit root 
process. Implementation of new technology is generally not 
immediate, taking some time to be functional. Stock levels might 
also move in a near unit root process dependant on stocks at some 
non-immediate previous time period. In a market where the 
correlation between stocks and sales are high this will transmit to 
stochastic cyclicality in prices. Further, in pricing regimes where 
producers base planned production output on spot prices, cyclicality 
in can occur. Some time generally passes before changes in planned 
production takes effect. That many commodity prices appear non-
stationary opens for the possibility that cycles in prices are 
generated by out of seasonal unit roots. This paper contributes to 
the literature of long run cycles in commodity prices by examining 
for the existence of stochastic cycles generated by out of seasonal 
unit root processes.  
 
To test the stochasticity of observed cycles we take two approaches. 
Our first approach is non-parametric and consists of evaluating a 
constructed index that allows the examination of duration 
dependence in cycles. This method is based on the approach used by 
Ohn, Taylor & Pagan (2004) for identifying business cycles. By 
simulation we infer the statistical properties of the index under the 
null of no duration dependence. From this we test the sampled 
index values. Failing to reject duration dependence implies non-
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converging and random cycle evolution. The second approach is a 
parametrical econometric test, expanding on the classical seasonal 
unit root test of Hylleberg, Engle, Granger & Yoo (1990) paper 
(HEGY). In the parametric test we explicitly define the relevant 
cyclical frequencies. The HEGY test initially tested for seasonal 
unit roots in quarterly data, but was later expanded to monthly 
data by Beaulieu & Miron (1993) and Franses (1991). The expanded 
test allowed the existence of twelve seasonal unit roots in addition 
to the conventional zero frequency root. In the seasonal unit root 
literature the economic incentive for the existence of these roots are 
not thoroughly discussed.  It is generally argued that some seasonal 
fluctuations may be caused by the behaviour of economic agents 
and may therefore not be constant (Hylleberg, Jørgensen & 
Sørensen, 1993). Concerning cyclical patterns outside of the 
seasonal span, the most well know cycle is the business cycle. The 
business cycle can be generated by a random walk process, and it is 
not possible to separate the stochastic trend from the cycle 
(Harding & Pagan, 2002). We use this approach to test for unit 
roots at frequencies that can account for out of seasonal cycle 
lengths.  
 
We start the analysis by investigating an index which enables us to 
test the degree of convergence and predictability in cycles. We 
evaluate the index for monthly observations of the spot price of 
some selected commodities. Following the index test we continue to 
the parametric unit root test, where we apply the test to the same 
monthly observations in addition to annual observations of 
different commodities. Our analysis suggests that cycles are non-
deterministic and stochastic with out of seasonal frequencies being 
significant in determining cyclical movements. We find support for 
the hypothesis that long run cycles are allowed to persist due to 
their stochastic nature and that reliable identification can only be 
done after the cycle unfolding. 
   

CYCLE PHASE CORRELATION 
 
Samuleson (1965) demonstrated that if all available information is 
incorporated in the probability distribution of price movements, 
prices will fluctuate randomly. One model for this process is the 
random walk model, a zero frequency unit root process where 
returns are generated from an unconditional stable distribution.  
The random walk process contains the Markov property that 
current prices moves randomly conditional on previous period 
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information; the price history outside of the immediate previous 
period has no predictive power on future prices. If prices display 
cyclicality it appears that the Markov property is violated as the 
price history can predict future price movements. This suggests 
that if cycles not founded in cost shifting factors persist in the 
efficient market paradigm, they must behave like a unit root 
process. Cycle length and amplitude cannot have predictive power 
on future movements. Profitable trading strategies for such cycles 
can only be found after their unfolding, much like novel chart 
analysis show how to buy low and sell high in a historical chart.  
 
A property of unpredictable cycles is a lack of duration dependence. 
A positive (negative) duration dependence implies that the 
likelihood of an expansion or contraction phase to revert is 
positively (negatively) proportional to the time spent in the cycle 
phase. In a data generating process with no duration dependence, 
the duration of cyclical phases are independent of the history of the 
phases. A unit root process will not display duration dependence as 
the Markov property implies that expected future price is equal to 
the spot price.  
 
A starting point to examine the stochasticity of cycles is to examine 
whether duration dependence is present in the series. In this 
section we apply an index to measure the tendency of the series to 
be in the same cycle phase at different lags.  Our null hypothesis 
will be no duration dependence. No duration dependence is a 
characteristic of series where no economic forces correct price 
movements; the random walk model for example contains no 
duration dependence. We start by transforming a time series of 

price observations { }T

tty
0=
 into a series of expansion and contraction 

phases by the mapping: 
  

1=ts    if  ( ) 01 ≥− tyL  

0=ts if  ( ) 01 <− tyL , 

 

where L is the backshift operator. A string of ones in { }T

tts
0=
 for 

example indicates the existence of a cycle expansion phase. The 
event of being in a certain phase and the duration of each phase is 
assumed drawn from some probability distributions. Under no 
duration dependence, the event of being in a phase is independent 
of previous realisations and as such is drawn from the Poisson 
distribution. The duration of each phase will be drawn from the 
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exponential distribution, or the geometrical distribution in discrete 
time (Ohn, Taylor & Pagan, 2005). In a series with convergent 
cyclical behaviour the independence assumption of each phase will 
be broken as the duration of each phase will be dependent on the 
duration of previous phases.  Evaluating the duration dependence 
of cycles allows evaluation of the stochasticity of cycles.  The index, 
when evaluated against the null hypothesis of no-duration 
dependence provides a measure of the stochasticity in the observed 
cyclical behaviour.  
 

The index is created from the binary sequence { }T

tts
1=
 by measuring 

the regularity in occurrence of phases at different lag levels: 
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kt
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The index measures the rate at which the phases at time t and t-k 
are equal. This approach is equivalent to the Harding & Pagan 
(2002) measure of concordance between different cycles. We do not 
impose any restrictions on the minimum duration of each phase as 
we at this point will not discriminate between cycle lengths. An 
advantage of the non-parametric approach is that non-stationarity 
of the original series is not an issue. The expected value of the 
index is equal to: 
 

( ) ( ) ( ) ( ) ( ) ( )kttkttkttktt sssEsEsEsEIE
−−−−

+−−+= ,cov211,
.   

 
For no cyclical regularity the covariance term vanishes. In a pure 
random walk process the probability of moving up or down 
conditional on current price is equal to one half, and the expected 
value of the index will be equal to one half for all lag choices. Under 
the null hypothesis the covariance term ( )ktt ss

−
,cov2  vanishes for 

all lag values k. Under stationarity conditions of { }T

tts
1=
, the ergodic 

theorem imply that: 
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The geometric distribution associated with no duration dependence 
is defined as ppkXprob k)1()( −==  where )( kXprob =  describes the 

probability of observing a cycle with length k . The probability p  



 

 
 
 
 

STOCHASTIC CYCLES 
 

131 

 

denotes the probability of a phase collapse. The expected cycle 
length will be equal to 1][ −= pXE . In the case of a drift-less random 

walk, 5.0=p . Note that for a non-zero frequency unit root processes 

such as tltt yy ε+= − , the probability of a phase collapse p  is also 

one half when 00 =y  because: 
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If the process contains a drift, the probability of an expansion and 
contraction phase collapse is not identical. To eliminate drift we de-
trend the original series before applying the index.  
 
When evaluating the empirical index we compare our derived index 
values against the implied distribution of the index under the null 
hypothesis. Our procedure to derive the sample distributions under 
the null is as follows: (1) we de-trend the original price series and 

generate the sequence { }T

tts
1=
. Following this we derive the implied 

probabilities of existing in an expansion or contraction phase. The 

probabilities are derived as the rate at which the series { }T

tts
1=
 is in 

an expansion (contraction) phase. Under stationarity conditions of 

the sequence { } 1

0

−

=

T

tts  this provides an unbiased measure of the 

probability of existing in given a cycle phase. (2) Applying the 
derived probabilities we generate the distribution of the index 

under the null hypothesis by simulating series { }T

tts
1ˆ =
, where phase 

lengths are drawn from the geometric distribution. This is done for 
each series that we evaluate. From 24 000 simulations of the series 

{ }T

tts
1ˆ =
 we derive critical values of the simulated distribution as 

relevant fractiles of the statistics:  
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The critical values are generated for each series and each lag value 
k of interest. (3) If the critical values of our empirical index fall 
outside of the relevant percentile areas of the simulated critical 
values we reject the hypothesis that the associated cyclical 
movement is generated with no-duration dependence.  
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TABLE 1TABLE 1TABLE 1TABLE 1.... Cycle Phase Correlation Index for a selection of commodities. 

                    

          

   Wheat Beef Corn Hog Poultry Gold Oil  

Lag          

1  0.57 0.58 0.62 0.58 0.64** 0.52 0.53  

2  0.54 0.51 0.55 0.51 0.57* 0.46 0.46  

3  0.51 0.48 0.52 0.48 0.51 0.53 0.52  

4  0.48 0.49 0.48 0.51 0.41** 0.54 0.45  

5  0.49 0.48 0.49 0.49 0.42** 0.53 0.52  

6  0.45 0.49 0.48 0.51 0.42** 0.49 0.49  

7  0.44* 0.46 0.50 0.48 0.41** 0.56 0.49  

8  0.48 0.54 0.51 0.46 0.46 0.56 0.48  

9  0.51 0.56* 0.49 0.49 0.49 0.48 0.50  

10  0.54 0.51 0.54 0.51 0.54 0.49 0.56  

11  0.57* 0.48 0.53 0.54 0.57* 0.55 0.52  

12  0.53 0.49 0.53 0.62** 0.63** 0.52 0.49  

13  0.57* 0.43* 0.50 0.53 0.58* 0.48 0.49  

14  0.49 0.42* 0.53 0.43* 0.53 0.47 0.44  

15  0.44 0.43* 0.51 0.43* 0.43* 0.51 0.45  

16  0.48 0.47 0.48 0.47 0.42** 0.54 0.43*  

17  0.44 0.46 0.49 0.44* 0.37** 0.47 0.55  

18  0.47 0.52 0.49 0.45 0.37** 0.52 0.51  

19  0.51 0.49 0.49 0.48 0.40** 0.51 0.50  

20  0.48 0.52 0.51 0.41** 0.41** 0.52 0.60**  

21  0.52 0.52 0.52 0.45 0.51 0.49 0.52  

22  0.50 0.50 0.60** 0.49 0.54 0.47 0.46  

23  0.56* 0.49 0.54 0.51 0.53 0.55 0.48  

24  0.55 0.50 0.50 0.52 0.61** 0.56* 0.46  

25  0.46 0.51 0.52 0.53 0.55 0.52 0.53  

26  0.49 0.56* 0.48 0.46 0.51 0.46 0.45  

27  0.46 0.54 0.49 0.44* 0.46 0.50 0.45  

28  0.46 0.52 0.45 0.47 0.44* 0.55 0.52  

29  0.50 0.48 0.48 0.51 0.44* 0.50 0.50  

30  0.41* 0.50 0.51 0.48 0.48 0.48 0.57*  

31  0.50 0.51 0.47 0.48 0.47 0.55 0.52  

32  0.51 0.48 0.49 0.45 0.48 0.54 0.48  

33  0.48 0.49 0.50 0.49 0.51 0.48 0.51  

34  0.51 0.52 0.50 0.54 0.57* 0.48 0.44*  

35  0.53 0.50 0.52 0.60** 0.59** 0.48 0.52  

36  0.53 0.53 0.53 0.61** 0.64** 0.47 0.52  

                    
 
Note: *  5% significance level, ** 1% significance level 
For details on data-sources see Appendix A. 
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This will be evidence for the existence of economic forces underlying 
the cyclical movements. 
 
The appendix reports the full critical value tables for up to 36 lags. 
For monthly observations of Wheat, Beef, Corn, Hogs, Poultry, Gold 
and Oil from 1983:08 to 2008:06 we calculate the index and critical 
values. The results are reported in table 1 above.  
 
The series with most consistent cyclicality is poultry. For poultry 
we observe a strong annual phase correlation where the probability 
of being in the same state of the cycle is significantly higher at the 
annual lag order. The production cycle for poultry is kept within 
one year, making seasonal patterns dominate any long run out of 
seasonal effects. The effect further persists back to the three year 
lag. For hogs the same consistent annual cycle vanishes. We have a 
clear 12 month correlation but this effect does not persist at the 24 
month lag but does emerge again at the 36 month lag. There 
appear to be both intra seasonal and out of seasonal effects in hogs, 
with a significant three year cycle. For beef, wheat and corn in 
addition to gold and oil the persistence in cycles seem weaker. The 
lack of a regular pattern in the emergence of cycle correlation, such 
as a clear correlation in 12, 24 and 36 months suggests that cycles 
are stochastic. A unit root process outside of the zero frequency will 
give rise to such inconsistencies in patterns, where integer 
multiples of significant lags are not significant themselves. As such 
hogs and poultry appear to have less stochastic cycles than for 
example beef, wheat and corn. Thus the index gives a preliminary 
indication to which commodities have the most deterministic cycles. 
 

OUT OF SEASONAL UNIT ROOTS 
 
We now turn to testing parametrically for out of seasonal unit 
roots. The original HEGY test explains how to test for seasonal unit 
roots in quarterly data. Franses (1991) and Beaulieu & Miron 
(1993) expanded this test to allow for testing within monthly 
observations. Our goal in this section is to further generalize this 
approach to allow for cycle lengths outside of the seasonal span. In 
effect, we treat the notion of a season as longer than a year, thereby 
allowing us to test for unit roots outside of the traditional seasonal 
span.  
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We define our data as the sequence { }T

tty
0=
 . The data is assumed 

generated by the autoregressive process: 
 

( ) ttyL εϕ = .             (2) 

 
Here ( )Lϕ  is a polynomial in the backshift operator L  and tε  a 

white noise process. We assume that deterministic trends are 
absent from equation (2). Equation (2) allows up to n unit roots 
where some or all might be complex. A process with n unit roots can 
further be written ( ) tt

n yL ε=−1 , that is with n unit roots. If in 

monthly data we are interested in stochastic cycles up to three 
years, the maximum amount of unit roots n would be equal to 36+1, 
where the one is due to the possible unit root at the zero frequency. 
In the complex plane a particular root can be expressed by the 
complex polar representation as:  
 
 ( ) ( )ααα sincos ie i ±= .             (3) 

 
The minus sign accounts for polar opposites, which is related to the 
aliasing of the series.  A specific root can further be identified by 
frequency nj /2πα = , 1,...,1 −= nj . Our interest is to examine 

whether the series ty  has unit roots at any of the zero or lower 

frequencies, that is weather applying a filter assuming unit roots at 
the specific frequencies is a valid representation of the data 
generating process.  HEGY achieves this by linearizing the 
polynomial ( )Lϕ  so to isolate specific frequencies, allowing testing 

of each complex root. Further a unit root process generated by 
( ) tt

n yL ε=−1  can be factored as: 
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We wish to examine whether the data ty  has unit roots at any of 

the zero or lower frequencies. For n unit roots the specific 
frequencies of the roots are: 
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Where frequencies correspond to cycles in the specifically defined 
seasonal span n as:  
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If the ordinary seasonal span is equal to s (for example s=12 for 
monthly observations) we are interested in unit roots generating 
cycles longer than s. Note that due to the aliasing problem; that a 
cyclical pattern can be fitted by more than one unique cycle, we can 
only test the presence of unit roots in frequencies by pair wise 
comparison (other than for the unique frequencies at zero and π ).  
From the polar representations ( ) ( )ααα sincos ie i ±=  a cycle with 

frequency 6/π  can be fitted by its polar opposite 6/11π  since 
( ) ( )6/11cos6/cos ππ = . This will enable us to specifically distinguish 

out of seasonal from inter seasonal unit roots.  As such the rejection 
of the null hypothesis of no unit root at the frequency indicates no 
out of seasonal unit roots, however the non-rejection suggests the 
possibility of out of seasonal unit roots at the frequency.  
 
Equation (3) shows how each unit root is associated with a specific 
cyclical frequency. Beaulieu & Miron (1993) further show how a 
filter in the backshift operator can be applied to the series so as to 
isolate the specific cyclical frequencies. Applying the fact that each 
frequency has a corresponding polar opposite the specific filters 
can, for n seasonal unit roots written, be written as: 
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2/,..,1 Nn =  and N the maximum unit roots. The filter associated 

with the B subscript corresponds to the polar opposite of the 
specific frequency. We use the negative sign to account for the 
negative sign emerging when the frequency starts in the negative 
quadrant of the unit circle, where the cosine value is negative. The 
equation to be estimated can then be written as: 
 

( ) ( ) t

N

n
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The polynomial ( )*
Lϕ  is a remainder with roots outside of the unit 

circle. The parts following the unit root filters is a part accounting 
for intercept and trend, note that this part also allows for seasonal 
dummy effects. Equation (5) is further estimated by Ordinary Least 
Squares. For frequency zero and π  we compare 0=nAπ  against 

0<nAπ  since the polar opposites vanish for these values. For the 

other frequencies we test 0=nAπ  with a two sided test. If we cannot 

reject 0=
nA

π  we need to test 0=nBπ  versus 0<nBπ . Under unit-root 

the coefficient values are zero. Further if 0≠
nA

π  for frequency π

and for at least one of the sets { }nBnA ππ , , no unit roots outside of the 

zero frequency unit root exists. Note also that in testing a specific 
filter, for example the ( )361 L−   filter, we are able to test filters 

which are factors of ( )361 L− . In this specific case we are also able to 

test the validity of ( )L−1 , ( )21 L− , ( )31 L− , ( )41 L− , ( )61 L− , ( )91 L− ,

( )121 L−  and ( )181 L−  as the frequencies associated with these filters 

are subsets of the higher order filter ( )361 L− . We thus note that the 

seasonal filter from Beaulieu & Miron (1993), namely ( )121 L− , 

becomes a special case of the general test. Increasing the number of 
possible unit roots would increase the number of possible subset 
filters however at the cost of reducing degrees of freedom.  
 
The distribution of the t-statistics for frequencies zero and π  is 
equal to the Dickey & Fuller(1979) distribution. Further Beaulieu 
& Miron(1993) proves that the t-distribution for nAπ  and nBπ  is 

equal to that in Hylleberg, Engle, Granger & Yoo(1990) and as such 
is assumed indifferent of initially amount of unit roots.  For the 
testing procedure we simulated critical values in order to replicate 
the critical values in Beaulieu & Miron (1993) and Hylleberg, 
Engle, Granger & Yoo (1990). This is done for six unit roots in a 
series of annual observations and 36 unit roots in a series of 
monthly observations. These values complement the tables 
generated by Beaulieu & Miron (1993) and Hylleberg, Engle, 
Granger & Yoo (1990) and the values appear consistent with the 
traditional seasonal test values.  
 
We will apply the above approach to a maximum of 6 unit roots (a 
maximum six year cycle) for annual observations of corn wheat, 
beef, corn, hogs, eggs, gold and oil. We also apply a 36 unit roots (a 
maximum three year cycle) for monthly observations of wheat, beef, 
corn, hog, poultry, gold and oil. 
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UNIT ROOT ESTIMATION RESULTS AND DISCUSSION 
 
Before we continue to the unit root estimation we provide some 
descriptive statistics of our data (table 2). We also perform 
Augmented Dickey Fuller tests with intercept and trend for the 
commodities and series used.  
 
TABLE 2.TABLE 2.TABLE 2.TABLE 2. Descriptive Statistics and Augmented Dickey Fuller test for Unit Root 

at Zero Frequency. 
                  

                     Annual         

         

  Wheat Beef Corn Hogs Eggs Gold Oil 

         

Data Range 
1909: 
2007 

1910: 
2007 

1909: 
2008 

1910: 
2008 

1909: 
2006 

1901: 
2007 

1901: 
2007 

Mean 2.10 32.745 1.51 24.08 0.42 127.76 9.1346 

% Dev. From  54.63 81.50 55.60 66.17 41.23 152.22 125.20 

Skewness 0.44 0.70117 0.49 0.51 0.24 1.2633 2.2178 

Kurtosis -0.90 -0.97448 -0.72 -1.23 -1.07 0.20652 5.4761 

         

ty∆ Lag Order :  
3 2 3 2 2 4 7 

1−tyβ : ADF Constant  
0.96 1.00 0.94 0.99 0.95 0.99 1.04 

ty∆ Lag Order 
2 1 1 2 10 4 5 

1−tyβ : ADF Constant + 

Trend  0.72* 0.88 0.69* 0.82 0.54* 0.89 0.90 

         

                     Monthly        

         

  Wheat Beef Corn Hogs Poultry Gold Oil 

         

Data Range  
83:01-
08:06 

83:01-
08:06 

83:01-
08:06 

83:01-
08:06 

83:01-
08:06 

83:01-
08:06 

83:01-
08:06 

Mean  155.03 102.81 113.03 74.50 56.93 394.07 28.496 

% Dev. From  31.57 14.52 26.71 35.30 21.41 68.98 21.41 

Skewness  2.88 -0.22 2.1251 1.01 0.15 2.344 2.3968 

Kurtosis  10.93 -1.21 6.7115 0.65 -0.83 6.3864 6.4079 

         

ty∆ Lag Order :  
7 2 8 12 7 5 11 

1−tyβ : ADF Constant  
1.00 0.97 1.02 0.93 1.00 1.02 1.03 

ty∆ Lag Order 
7 2 8 12 12 5 2 

1−tyβ : ADF Constant + 

Trend  0.99 0.97 1.01 0.89* 0.89** 1.02 1.03 

                  

 

Note: * Reject unit root at 5% significance level, ** Reject unit root at 1% significance level. For details on 
data-sources we refer to Appendix A. 
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In determining lag length for the zero frequency unit root test apply 
the Akaike Information Criteria.  
 
For the annual data the ADF test with a constant fails to reject the 
null of a unit root for all six series. However, when including a 
trend the null of a unit root is rejected for three of the series at a 
5% level. It appears that the drift term can explain some of the high 
autocorrelation for the annual data, and wheat, corn and eggs 
appear trend stationary in annual observations. Turning to the 
monthly data we cannot reject a unit root at the 5% significance 
level for any series using only a constant. The drift term in the 
monthly data are less able to explain the high autocorrelation and 
including a trend a unit root at the zero frequency can only be 
rejected for hogs and poultry. 
 
We now turn to the application of the unit root test for annual data. 
We allow up to six unit roots outside of the zero frequency, where 
these unit roots relate to cycles of length 2 years, 6 years, 1.2 years, 
3 years and 1.5 years). The test results are reported in table 3 and 
models include both a constant and a trend term. Lags are again 
chosen from the Akaike Information Criteria. As with the ADF 
tests, these tests are also us unable to reject the zero frequency unit 

root 1π  for all commodities with only a constant. For the trend case 

the critical values are closer to rejection but we can still not reject 
unit root at the zero frequency. Moving to the two year long cycle 

2π  we can reject a unit root for all series except beef and corn, and 

this result is carried over for the trend model.  
 
Further for wheat and eggs we can reject at least one of the F-tests 
such as no unit roots appear present in these series outside of the 
zero frequency. For hogs we cannot reject the null of unit roots 
associated with cycles longer than two years. For beef we reject all 
frequencies except the zero and Nyquist frequency.  
 
For corn the frequency associated with a 6 and 1.2 year cycle 
cannot reject a unit root. Gold and oil appear dominated by the zero 
frequency, an intuitive result since these commodities are 
dominated by speculative behaviour forcing the spectrum of the 
series to fall steeply after the zero frequency.  
 
As stated above, we can test downwards for the appropriate 
differencing filter. The six year test allows us to test for the filters 
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)1( L− , )1( 2L−  and )1( 3L− . We do this by testing the unit root at 
the shortest cycle and moving upwards if we cannot reject unit 
roots, we stop if all cycles of a given length cannot be reject while 
all above can be rejected. Doing this gold and oil are characterised 
by the )1( L−  filter, beef by the )1( 2L−  filter, allowing up to a two 
year cycle as generated by a unit root process, and eggs by the 

)1( 3L−  filter, associated with a longest unit root cycle of 3 years. 
For wheat, corn and hogs the appropriate the filter cannot be found 
from this specific test. We can reject the zero frequency unit roots 
for wheat, but not for corn and hogs.  
  
 

TABLE 3.TABLE 3.TABLE 3.TABLE 3. Results from Unit root test with six unit roots in Annual Data. 

                      

                                     Constant      

   0 π  3

π  

3

2π  

3

π  

3

2π  

           

  Period Lags 1π  
2π (2y) 

3π (6y) 
4π (1,2y) 

5π (3y) 
6π (1.5y) 

4,3F  
6,5F  

Wheat 1909:2007 8 0.6 -2.41* -0.54 -2.13* -0.97 2.98** 2.43 4.94** 

Beef 1909:2008 6 0.67 -0.53 -1.71 -2.8* -1.95* 2.43** 5.73** 5.21** 

Corn 1909:2008 8 0.09 -1.3 -1 -1.72* -2.94** 2.71** 2 7.65** 

Hogs 1910:2008 12 -0.01 -3.38** -2.08* -0.93 -0.98 1.15 2.71 1.17 

Eggs 1909:2006 12 -0.55 -2.42* -1.43 -0.88 -2.8** 1.63* 1.44 5.63** 

Gold 1901:2007 8 0.63 -2.03* -0.35 -3.57** -2.04** 2.43** 6.42** 5.04** 

Oil 1901:2007 9 1.9 -2.81** -3.49** -1.98 -1.69 1.69 8.82** 3.01** 

           

           

                              Constant and Trend       

   0 π  3

π  

3

2π  

3

π  

3

2π  

           

  Period Lags 1π  
2π (2y) 

3π (6y) 
4π (1,2y) 

5π (3y) 
6π (1.5y) 

4,3F  
6,5F  

Wheat 1909:2007 8 -2.2 -2.48** -0.53 -1.5 -0.99 3.05** 1.28 5.17** 

Beef 1909:2008 6 -1.64 -0.53 -1.96* -1.96* -2.06* 2.45** 6.05** 5.51** 

Corn 1909:2008 8 -2.61 -1.38 -0.91 -1.02 -2.79** 2.86** 0.94 7.64** 

Hogs 1910:2008 12 -2.5 -3.52** -2.39** -0.87 -1.09 1.11 3.36 1.24 

Eggs 1909:2006 12 -2.45 -2.48** -1.63 -0.86 -2.97** 1.58* 1.72 6.06** 

Gold 1901:2007 8 -1.21 -2.03* -0.43 -3.43** -2.04* 2.42** 5.96** 5.01** 

Oil 1901:2007 9 0.33 -2.79** -3.42** -1.91 -1.73 1.7 8.33** 3.11** 

                      

 

Note: Significance at 5% level,  **Significance at 1% level 
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Having examined annual data we move to the monthly test where 
we allow for thirty six unit roots. This is applied to observations of 
wheat, beef, corn, hog, poultry, gold and oil from 1983:08 to 
2008:06. Due to space restraints we only report the two first unique 
frequencies along with the F-tests in the table below, the complete 
statistics is reported in the appendix. The models include both a 
constant, constant and trend and seasonal dummy. In the analysis 
we will refer to the F-test for all frequencies except the zero and 
Nyquist frequency as reported in the table below.   
 
What primarily distinguishes the monthly data from the annual 
data is the tendency to reject unit roots at the zero frequency for all 
series. For wheat we reject unit root at the 5% for the zero 
frequency, except for the trend case. The results here are 
ambiguous as we are close to the rejection values. For the Nyquist 
frequency, the frequency associated with a 2 month cycle, we reject 
unit root only with the seasonal dummy. Including deterministic 
dummies have an effect, but make rejection less likely and thus 
support that both deterministic and stochastic cyclical effects are 
present.  
 
Further the intra-seasonal frequencies appear important in wheat 
as we cannot reject unit root for any of the models, except for the 
seasonal dummy effect appearing to account for the annual cycle. 
Further the frequency related to the three year cycle cannot be 
rejected. Beef appear to be the commodity with most stochastic 
effects in cycles. We fail to reject both the zero and Nyquist 
frequency in addition to the frequency associated with the three 
year cycle. Again unit roots at the seasonal frequencies seem more 
relevant, however not to the extent of wheat. For beef the seasonal 
associated with a three month cycle can be explained by the 
seasonal deterministic dummy. For corn the results are more 
ambiguous, with a rejection of the zero frequency for all cases 
except the trend case. 
 
The Nyquist frequency is rejected at a 5% significance level in all 
cases with the exception of the seasonal dummy case. The seasonal 
dummies appear less powerful to explain intra seasonal cycles in 
corn in respect to wheat; however the three year cycle frequency is 
again significant. Still, the rejection of the Nyquist frequency cast 
doubt to the existence of lower frequency unit roots. Hogs have the 
strongest rejection of a unit root at the zero frequency, while no 
rejection can be found at the Nyquist frequency. 
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TTTTABLEABLEABLEABLE    4. 4. 4. 4. Results from Unit Root Test with 36 possible Unit Toots in Monthly Data. 
                                          

                     

  Frequency 0 π (s) 2

π (s) 

9

5π  

9

4π  

8

11π  

18

7π  

3

2π (s) 

3

π (s) 

18

13π  

18

5π  

9

7π  

9

2π  

6

5π (s) 

6

π (s) 

9

8π  

9

π  

18

17π  

18

π  

 

Cycle Length     

4m 3.6m 4.5m 3.27m 5.14m 3m 6m 2.77m 7.2m 2.57m 9m 2.4m 12m 2.25m 18m 2.11m 36m 

 1.33m 1.38m 1.28m 1.44m 1.24m 1.5m 1.2m 1.56m 1.16m 1.63m 1.125m 1.71m 1.1m 1.8m 1.06m 1.9m 1.03m 

   1π  
2π  4,3F  

6,5F  
8,7F  

10,9F  
12,11F  

14,13F  
16,15F  

18,17F  
20,19F  

22,21F  
24,23F  

26,25F  
28,27F  

30,29F  
32,31F  

34,33F  
36,35F  

Wheat C -2.73** -2.15* 3.01* 5.58** 6.67** 3.29* 0.34 1.42 1.99 1.05 4.83** 6.92** 7** 0.75 2.47 6.1** 4.54** 4.51** 1.98 

 C+T -2.91 -2.14* 2.99* 5.56** 6.64** 3.27* 0.34 1.42 1.98 1.05 4.79** 6.91** 6.93** 0.75 2.48 6.09 4.47** 4.5** 1.64 

 C + SD -2.64 -1.96 3.42 5.82* 6.1* 3.53 0.28 1.33 1.32 1.06 4.71* 6.26* 7.25** 1.76 5.01* 5.62* 4.54* 4.23* 2.1 

                      

Beef C -1.76 -1.86* 2.17 1.53 3.41* 3.86* 2.32 1.07 2.98* 4.45** 5.07** 4.47** 1.87 6.26** 4.24** 5.92** 10.04** 6.81** 0.72 

 C+T -1.73 -1.85* 2.16 1.52 3.4* 3.84* 2.32 1.07 2.98* 4.42** 5.05** 4.44** 1.87 6.21** 4.19* 5.89** 9.98** 6.77** 0.73 

 C + SD -1.71 -2.15 2.47 1.45 3.08 4.23 2.43 4.51* 2.94 3.74 4.93* 4.38 1.83 7.13** 4.33* 5.61* 9.12** 6.64** 0.67 

                      

Corn C -2.99** -2.36* 2.69 7.88** 5.16** 0.53 5.29** 5.26** 5.24** 2.64 7.26** 2.7 7.66** 3.2* 4.67** 5.91** 7.26** 6.31** 1.89 

 C+T -3.06 -2.35* 2.69 7.85** 5.14** 0.53 5.26** 5.23** 5.19** 2.62 7.22** 2.67 7.6** 3.17* 4.72** 5.86** 7.19** 6.25** 1.73 

 C + SD -2.84* -2.53 1.11 8.57** 2.93 1.07 3.67 3.66 2.81 1.92 5.11* 1.97 5.23* 4.28 5.01* 7.06** 9.11** 5.88* 2.44 

                      

Hog C -4.13** -1.67 7.43** 6.78** 13.23** 8.63** 7.51** 2.73 11.06** 5.12** 17.91** 5.9** 6.61** 1.17 5.03** 4.84** 15.14** 6.68** 3.07* 

 C+T -3.52* -1.66 7.41** 6.79** 13.13** 8.65** 7.49** 2.73 10.9** 5.13** 17.55** 5.89** 6.51** 1.17 4.98** 4.81** 14.97** 6.62** 2.62 

 C + SD -3.92** -1.56 8.87** 6.21* 14.23** 8.22** 8.17** 4.51* 13.62** 4.38* 20.45** 5.23* 8.45** 1.4 12.13** 4.43* 18.25** 6.59* 3 

                      

Poultry C -2.9** -0.97 6.41** 7.36** 11.06** 6.07** 4.24* 3.94* 1.91 7.68** 16.74** 7.22** 8.67** 6.62** 2.48 7.41** 8.11** 5.93** 1.6 

 C+T -3.92** -0.99 6.56** 7.23** 11** 6.16** 4.15* 4.06* 1.9 7.78** 16.26** 7.43** 7.92** 6.75** 2.61 7.55** 7.72** 6.06** 1.29 

 C + SD -3.06* -1.93 10.73** 7.67** 13.82** 7.17** 4.93* 8.87** 7.63** 7.28** 16.62** 8.03** 9.49** 7.2** 1.76 7.53** 9.05** 6.76** 1.97 

                      

Gold C 0.38 -0.47 9.11** 4.15** 6.35** 7.88** 2.1 11.03** 5.49** 6.69** 5.71** 3.58* 6.54** 7.02** 2.5 0.83 7.27** 7.6** 10.47** 

 C+T 1.02 -0.37 9.62** 4.52** 6.64** 8.11** 2.24 11.08** 5.9** 6.66** 6.25** 3.49* 7.16** 6.84** 2.78 0.85 7.99** 7.36** 12.77** 

 C + SD 0.36 -0.62 9.05** 3.89 6.27** 7.41** 2.09 13.06** 5.55* 7.06** 5.59* 3.63 6.68** 7.49** 3.3 0.6 7.03** 7.01** 9.84** 

                      

Oil C 1.11 -2.37* 5.16** 1.57 10.2** 7.19** 3.93* 5.27** 5.24** 3.83* 7.43** 11.46** 3.93* 6.2** 2.89* 8.69** 10.18** 12.52** 2.01 

 C+T 0.98 -2.37 5.27** 1.6 10.32** 7.22** 4* 5.31** 5.22** 3.86* 7.4** 11.45** 3.99* 6.23* 2.7 8.71 10.22** 12.67** 1.84 

 C + SD 0.91 -2.64 5.75** 1.81 10.61** 7.05** 4.32 5.63** 6.39** 3.75 8.06** 11.66** 4.27 7** 4.02 7.34** 10.95** 11.52** 2.18 

                                          

Note: C : Constant, T : Trend, SD: Seasonal Dummy. The parts marked in italics are seasonal unit roots where cycles are completed within seasonal span.    
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For lower frequencies, we find that most frequencies can be rejected 
except for the three year frequency and the seasonal frequency 
associated with the 2.4 month seasonal cycle. Note that the power 
to reject seasonal frequencies increase significantly for the model 
including seasonal effects. 
 
For poultry we reject the zero frequency and not the Nyquist 
frequency. Lower order frequencies mostly rejects unit roots and all 
seasonal cycles expect for the frequency associated with the twelve 
month cycle appear explainable by the seasonal dummies, this 
result is in line with the results for the index where clear intra-
seasonal cycles appears. The frequencies associated with the twelve 
month and three year cycle lack rejection of the unit root 
hypothesis. Gold and oil are the commodities less likely to reject the 
unit root hypothesis at the zero frequency. However, for gold we 
cannot reject the Nyquist frequency. For seasonal frequencies the 
only one we cannot reject unit roots is for the 12 month cycle. Gold 
is further the only commodity we can reject the frequency 
associated with the three year cycle. It appears that the seasonal 
frequencies dominate for most goods but that the unit root 
associated with frequency of a 3 year cycle cannot be rejected, 
except for gold. The goods where stochastic cycles appear most 
predominant are for beef, hog and poultry. This result is in line 
with the hypothesis that the dynamics in animal production, the 
usage of outputs as inputs in a stochastic production process can 
generate cyclical patterns in prices. These dynamics often span 
outside of the traditional seasonal lengths associated with for 
example plant production and appear highly stochastic as we 
cannot reject unit roots outside of the zero frequency. 
 
We also turn to testing downwards in order to find an appropriate 
filter associated with the factors of the 36 unit root test. For corn, 
hog and poultry we reject unit root at the zero frequency, the lowest 
order simple filter )1( L− , thus no simple filter fits these goods 
since the zero frequency is the common denominator for the all 
higher order filters. Further for the )1( 2L−  filter only the zero and 
Nyquist frequency must be unit root, however this is not satisfied 
in any of the remaining series such that from our testing procedure 
no lower order appropriate filter can be found. Oil is the closest to 
be described by a )1( L−  filter while gold is closest to the )1( 2L−  
filter. Other filters which are not a factor of 36 could be relevant 
but this has not been pursued here. For example, for all integer 
filters inside the seasonal span one could create enough high order 
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filters so that all factors is an integer between zero and twelve. For 
our test beef appear the series with most frequencies not rejecting 
unit root, but also for soybeans, poultry and hogs we cannot reject 
unit root at other than the zero frequency although no general 
lower order filter seem appropriate. Also the seasonal frequencies 
seem important for most series. The failure to reject a unit root at 
other frequencies, and in particular the frequencies associated with 
a three year cycle, implies that we cannot reject the hypothesis that 
highly stochastic long run dynamics exist. These dynamics can 
account for stochastic cyclical patterns.  
 
Looking at the cycle phase correlation index together with the unit 
root tests, the results indicate that the cycle phases are not 
independent of their duration, that some force exist which reverts 
cycles in a consistent pattern, and further that seasonal patterns 
are important. However, looking at the three commodities with the 
lowest rejections of unit roots outside of the zero frequency, beef, 
hog and poultry, we observe that these are the commodities with 
the most significant cycle phase correlation. Furthermore, in the 
unit root test, beef appear to be the commodity with the most 
stochastic cyclical behaviour. This is in line with the cycle phase 
correlation index where little consistency in regular repetition of 
significant correlations in cycle phases indicates a stochastic  
 
cyclical pattern. Poultry, in the cycle correlation index, appear to 
have a regular repetition in emergence of correlations and further 
have a high degree of unit root rejection for frequencies other than 
the Nyquist frequency. As such for poultry deterministic cyclical 
behaviour inside the seasonal spans seem more important than for 
beef where longer run stochastic cycles appear more prevalent. The 
unit root tests illustrate the importance of the seasonal patterns 
and deterministic mean shifting effects at seasonal frequencies. 
Despite the results from the cycle correlation index that economic 
forces seem fundamental in determining cyclical behaviour, a lack 
of regularity in emergence of correlations suggests that previous 
cyclical behaviour cannot predict future cyclical behaviour, and as 
such, that cycles are highly stochastic, especially for the prices of 
animal products.  Hence, cycles can be identified after their 
duration but complex long run dynamics appear to exist such that 
the prediction of cycle lengths and amplitudes during its unfolding 
seems harder. This supports the hypothesis that long run cycles can 
persist due to their inherent randomness. Further, as the oil and 
gold commodities illustrate, strong speculative forces are important  
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in tying prices together over time and as such forcing the mass of 
the spectrum to the zero frequency. In addition, the underlying 
mechanics of the production process where not only current 
production decisions but also sales or harvesting decisions affect 
future stocks is important in generating potentially long run 
dynamics in price connections. If, in addition, production is 
stochastic and storage possibilities limited, the cycle will appears 
highly stochastic and can explain the emergence and persistence of 
apparently predictable and profitable long run cycles in prices. 
 

CONCLUSION 
 
In this paper we pursue the hypothesis that long run cycles in 
commodities can persist due to their inherent randomness leading 
to a high cost of identifying cycles and low precision in forecasting 
future cycle lengths and amplitudes. We examine the stochasticity 
of the long run dynamics by examining the most stochastic cycle, 
the ones generated by unit root processes. Two test approaches are 
derived. First, we derived a non-parametric index which tests for 
no-duration dependence in the cycles. No duration dependence is 
associated with cycle phases independent of phase length. This is 
consistent with cycles generated by unit root processes where the 
Markov property dictates that price moves only according to 
present level. We generate this index for monthly observations of 
wheat, beef, corn, poultry, hog, gold and oil to test the hypothesis. 
Our tests suggests that we can reject no-duration dependence for 
all commodities, that there apparently is some force dictating the 
cycle properties but that the regularity in emergence of cycle phase 
correlation is weak, except for the case of poultry. The index helps 
our analysis by in essence telling us that no, cycles are generally 
not completely independent of their history, but this dependence is 
irregular and that during a time series the cycle properties might 
change.  
 
Our second approach is parametric and consists of formally stating 
cycle frequencies which we test for unit roots. The test is an 
expansion of the classical seasonal unit root test where we allow for 
cycle lengths greater than the seasonal span. From the 
generalisation we derive two specific tests, one for six unit roots 
and one for thirty six unit roots. The six unit root test is applied to 
annual observations of wheat, beef, corn, eggs, hogs, gold and oil 
allowing for a cycle length of maximum six years. We find that gold 
and oil are characterised by the )1( L−  filter, beef by the )1( 2L−  
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filter, allowing up to a two year cycle as generated by a unit root 
process, and eggs by the )1( 3L−  filter, associated with a longest 
unit root cycle of 3 years. For wheat, corn and hogs the appropriate 
the filter cannot be found from this specific test. We can reject the 
zero frequency unit roots for wheat, but not for corn and hogs.  
 
The thirty six unit root test is applied to monthly observations of 
wheat, beef, corn, poultry, hog, gold and oil allowing a maximum of 
a three year cycle length. We find that for oil and gold the zero 
frequency unit root is most predominant. This is consistent with the 
knowledge that these commodity markets are more dominated by 
speculative forces and less restricted by seasonal productive 
restrictions. Seasonal frequencies dominate for most goods, but the 
unit root associated with the frequency of a 3 year cycle cannot be 
rejected, except for gold. The goods where stochastic cycles appear 
most predominant are for beef, hog and poultry. This result is in 
line with the hypothesis that the dynamics in animal production, 
the usage of outputs as inputs in a stochastic production process 
can generate long cyclical patterns in prices. For poultry the 
stochastic effects seem less dominant and intra-seasonal 
deterministic regular cycles seem important. Beef appear to be the 
commodity with most stochastic cycles. This result is also in line 
with the cycle phase correlation index where poultry has a clearer 
regularity in emergence of cycle phase correlation, indicating more  
 
deterministic cycle behaviour. We conclude that fundamental 
production properties, such as the impact of future production on 
current sales decisions are important in generating cycles and 
coupled with at stochastic production process and low inventory 
flexibility can generate cycles which are severely stochastic and as 
such that cycles are allowed to persist due to their randomness and 
are only clearly identifiable after their unfolding.  
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APPENDIX A.  DATA DESCRIPTION: 
 
Monthly Series          

 Source   Description       

          

Wheat www.indexmundi.com 
No.1 Hard Red Winter, FOB Gulf of Mexico, US$ 
per metric tonnes.   

Beef www.indexmundi.com 

 
Australian and New Zealand 85% lean fores, FOB 
U.S. import price, US cents per pound. 

Corn www.indexmundi.com 

 
U.S. No.2 Yellow, FOB Gulf of Mexico, U.S. price, 
US$ per metric tonnes.  

Hog www.indexmundi.com 

 
Swine (pork), 51-52% lean Hogs, U.S. price, US 
cents per pound.   

Poultry www.indexmundi.com 

 
Poultry (chicken), Whole bird spot price, Georgia 
docks, US cents per pound.  

Gold Global Insight 
 
Per Ounce, US$      

Oil www.indexmundi.com 

 
Crude Oil (petroleum); Dated Brent, US$ per 
barrel.    

          

Annual Series          

          

Wheat USDA-NASS USD/bu       

Beef USDA-NASS Prices Received By Farmers, US$ per Cwt.    

Corn USDA-NASS USD/bu       

Hogs Historic and Quick Stats        

Eggs Historic and Quick Stats        

Gold Global Insight Per Ounce, US$      

Oil Historic and Quick Stats US$ per barrel      
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APPENDIX B. 
 
TTTTABLEABLEABLEABLE    B1.B1.B1.B1.    Critical values from Distributions of Test Statistics for 6 Unit Roots in 

Annual Data, 24000 simulations, data generating process 
ty ε=∆6
 ( )1,0nid . 

                              

               

                                                                    Fractiles  

Auxilliary    
                

1:πt                                               
2:πt                               

ODDt π:                

Regressions T   0.01 0.05 0.1   0.01 0.05 0.1   0.01 0.05 0.1 

               

No intercept 50  -2.50 -1.84 -1.51  -2.50 -1.84 -1.52  -2.49 -1.83 -1.49 

No trend  100  -2.54 -1.88 -1.56  -2.57 -1.92 -1.58  -2.52 -1.88 -1.54 

  1k  -2.54 -1.92 -1.59  -2.54 -1.92 -1.59  -2.54 -1.89 -1.55 

               

Intercept  50  -3.38 -2.74 -2.44  -2.49 -1.84 -1.51  -2.47 -1.81 -1.48 

No trend  100  -3.39 -2.81 -2.50  -2.52 -1.90 -1.57  -2.53 -1.87 -1.53 

  1k  -3.45 -2.85 -2.54  -2.53 -1.90 -1.59  -2.52 -1.90 -1.56 

               

Intercept  50  -3.95 -3.28 -2.97  -2.47 -1.83 -1.51  -2.47 -1.81 -1.48 

Trend  100  -3.89 -3.33 -3.05  -2.51 -1.89 -1.56  -2.50 -1.87 -1.55 

  1k  -3.95 -3.38 -3.08  -2.55 -1.92 -1.58  -2.52 -1.89 -1.55 

                              

               

                                                                   Fractiles 

Auxilliary    
                             

EVENt π:                                                  
EVENODDF ,:π  

Regressions  T  0.01 0.05 0.10 0.90 0.95 0.99     0.90 0.95 0.99 

               

No intercept 50  -2.30 -1.60 -1.24 1.24 1.62 2.31   2.33 3.03 4.77 

No trend  100  -2.35 -1.62 -1.25 1.25 1.61 2.31   2.37 3.09 4.76 

  1k  -2.30 -1.64 -1.28 1.27 1.63 2.31   2.36 3.08 4.81 

               

Intercept  50  -2.26 -1.59 -1.23 1.23 1.59 2.29   2.30 3.02 4.71 

No trend  100  -2.32 -1.62 -1.26 1.25 1.62 2.28   2.34 3.06 4.70 

  1k  -2.30 -1.63 -1.27 1.25 1.60 2.28   2.36 3.04 4.65 

               

Intercept  50  -2.24 -1.58 -1.22 1.19 1.54 2.23   2.19 2.89 4.55 

Trend  100  -2.26 -1.59 -1.24 1.23 1.59 2.28   2.31 2.97 4.58 

  1k  -2.29 -1.62 -1.26 1.24 1.59 2.26   2.32 3.03 4.71 
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TABLE B2.TABLE B2.TABLE B2.TABLE B2. Coefficient Standard Deviations from simulation. 

                    

          
Auxilliary          
Regressions T   y1 y2 y3 y4 y5 y6 
          
No intercept 50  0.045 0.044 0.045 0.036 0.044 0.035 
No trend  100  0.025 0.026 0.027 0.021 0.027 0.021 
  1000  0.014 0.014 0.015 0.012 0.015 0.012 
          
Intercept  50  0.080 0.044 0.044 0.035 0.044 0.035 
No trend  100  0.043 0.025 0.026 0.020 0.026 0.021 
  1000  0.022 0.014 0.015 0.011 0.014 0.011 
          
Intercept  50  0.103 0.042 0.043 0.034 0.042 0.033 
Trend  100  0.055 0.024 0.025 0.020 0.026 0.020 
  1000  0.029 0.014 0.015 0.011 0.014 0.011 
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TABLE B3. TABLE B3. TABLE B3. TABLE B3. Critical values from Distributions of Test Statistics for 36 Unit Roots 
in Monthly Data, 24000 simulations, data generating process 

ty ε=∆36
 ( )1,0nid .    

 
                                                                           Fractiles  

Auxilliary   
                    

1:πt                                                         
2:πt                                              

ODDt π:  

Regressions T   0.01 0.05 0.1   0.01 0.05 0.1   0.01 0.05 0.1 

               

No Intercept 200  -2.32 -1.74 -1.44  -2.33 -1.75 -1.46  -2.29 -1.69 -1.39 

No Seasonal 400  -2.43 -1.84 -1.51  -2.41 -1.84 -1.53  -2.42 -1.81 -1.49 

No Trend 1k  -2.48 -1.86 -1.55  -2.49 -1.88 -1.57  -2.46 -1.85 -1.53 

               

Intercept  200  -3.16 -2.62 -2.35  -2.33 -1.75 -1.45  -2.31 -1.73 -1.42 

No Seasonal 400  -3.27 -2.74 -2.44  -2.45 -1.84 -1.52  -2.42 -1.81 -1.50 

No Trend 1k  -3.35 -2.80 -2.51  -2.49 -1.89 -1.56  -2.49 -1.87 -1.55 

               

Intercept  200  -3.10 -2.56 -2.29  -3.06 -2.54 -2.26  -3.14 -2.50 -2.13 

Seasonal 400  -3.23 -2.70 -2.42  -3.24 -2.69 -2.42  -3.32 -2.65 -2.28 

No Trend 1k  -3.36 -2.81 -2.52  -3.34 -2.82 -2.52  -3.41 -2.73 -2.34 

               

Intercept  200  -3.67 -3.14 -2.87  -2.30 -1.75 -1.44  -2.31 -1.72 -1.41 

No Seasonal 400  -3.78 -3.23 -2.96  -2.43 -1.84 -1.53  -2.42 -1.82 -1.50 

Trend  1k  -3.89 -3.33 -3.05  -2.53 -1.90 -1.59  -2.50 -1.87 -1.55 

               

Intercept  200  -3.09 -2.54 -2.28  -3.13 -2.57 -2.28  -3.13 -2.50 -2.13 

Seasonal 400  -3.70 -2.94 -2.51  -3.24 -2.70 -2.42  -3.29 -2.63 -2.25 

Trend  1k  -3.88 -3.33 -3.06  -3.35 -2.79 -2.50  -3.41 -2.72 -2.33 

                              

    Fractiles 

Auxilliary    

                                        
EVENt π:                                                                             

EVENODDF ,:π  

 Regression    T   0.01 0.05 0.10 0.90 0.95 0.99     0.90 0.95 0.99 

               

No Intercept 200  -2.17 -1.52 -1.17 1.17 1.51 2.17   2.08 2.68 4.13 

No Seasonal 400  -2.25 -1.59 -1.24 1.23 1.59 2.26   2.23 2.88 4.40 

No Trend 1k  -2.28 -1.61 -1.25 1.25 1.60 2.26   2.29 2.95 4.50 

               

Intercept  200  -2.19 -1.55 -1.20 1.19 1.53 2.17   2.06 2.67 4.10 

No Seasonal 400  -2.25 -1.59 -1.24 1.23 1.58 2.24   2.22 2.87 4.39 

No Trend 1k  -2.29 -1.62 -1.26 1.26 1.62 2.29   2.34 3.02 4.61 

               

Intercept  200  -2.25 -1.58 -1.23 1.21 1.56 2.24   3.11 4.00 5.93 

Seasonal 400  -2.36 -1.66 -1.29 1.27 1.64 2.34   3.47 4.45 6.54 

No Trend 1k  -2.42 -1.70 -1.32 1.32 1.69 2.40   3.73 4.78 6.98 

               

Intercept  200  -2.19 -1.55 -1.21 1.17 1.51 2.15   2.04 2.65 4.09 

No Seasonal 400  -2.25 -1.59 -1.24 1.22 1.57 2.23   2.22 2.86 4.38 

Trend  1k  -2.29 -1.62 -1.26 1.25 1.61 2.28   2.33 3.00 4.59 

               

Intercept  200  -2.26 -1.59 -1.24 1.21 1.57 2.24   3.11 4.01 5.91 

Seasonal 400  -2.34 -1.65 -1.28 1.27 1.64 2.33   3.47 4.46 6.55 

Trend  1k  -2.43 -1.70 -1.33 1.31 1.69 2.40   3.72 4.77 7.00 
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TTTTABLEABLEABLEABLE    BBBB4444....    Results from Unit Root test with 36 possible Unit Roots in Monthly 
Data,    Constant Included.    

                     

   0 π (s) 2

π (s) 

9

5π  

9

4π  

           

  Period Lags 1π  
2π  

3π  
4π  

5π  
6π  

7π  
8π  

Wheat 83:08-08:06 2 -2.91 -2.14 0.04 -2.45 -1 3.09 -0.99 -3.49 

Beef 83:08-08:06 2 -1.73 -1.85 -0.53 -2.01 -0.93 1.4 -2.44 -0.96 

Corn 83:08-08:06 2 -2.99 -2.36 -2.12 -0.84 -1.24 3.64 -2.27 -2.25 

Hog 83:08-08:06 3 -3.52 -1.66 -3.27 -2.06 -1.77 3.08 -4.16 -2.92 

Poultry 83:08-08:06 2 -3.92 -0.99 0.02 -3.62 -2.14 2.92 -0.35 -4.67 

Gold  83:08-08:06 2 0.38 -0.47 -4.07 -1.16 -2.88 -0.11 -3.34 -1.22 

Oil 83:08-08:06 1 1.11 -2.37 -2.77 -1.56 -0.75 1.59 -2.57 -3.75 

           

 8

11π  

18

7π  

3

2π (s) 

3

π (s) 

18

13π  

           

  9π  
10π  

11π  
12π  

13π  
14π  

15π  
16π  

17π  
18π  

Wheat -2.29 1.12 0.07 -0.82 -1.64 0.42 -1.99 -0.04 0.25 1.43 

Beef -2.21 1.64 -0.53 -2.08 -1.16 0.89 -1.72 -1.7 -2.89 0.73 

Corn -0.54 0.88 0.22 -3.25 -0.95 3.1 0.42 -3.21 -1.82 1.41 

Hog -3.6 2.02 -1.73 -3.43 -1.52 1.74 -4.09 -2.13 -3.17 0.48 

Poultry -1.84 3 0.49 -2.85 -0.69 2.76 0.01 -1.95 -2.71 2.87 

Gold -3.95 0.47 -1.4 -1.5 -3.98 2.47 -1.04 -3.14 -1.03 3.52 

Oil -1.89 3.3 0.29 -2.79 -2.69 1.82 -1.69 -2.74 -2.42 1.33 

           

 18

5π  

9

7π  

9

2π  

6

5π (s) 

6

π (s) 

           

  19π  
20π  

21π  
22π  

23π  
24π  

25π  
26π  

27π  
28π  

Wheat -0.32 -3.08 -1.35 3.43 1.76 -3.16 -1.06 0.65 -1.24 -1.76 

Beef -1.26 -2.95 -2.71 1.3 -0.45 -1.91 -3.22 1.52 -2.59 -0.99 

Corn 0.77 -3.71 -2.32 0.06 2.25 -3.02 -2.05 1.49 -1.41 -2.61 

Hog -4.66 -3.6 -2.81 2 0.37 -3.58 -1.51 0.24 -2.7 -1.41 

Poultry 1.24 -5.52 -2.29 3.07 1.78 -3.36 -3.12 1.9 -2.24 0.46 

Gold -1.52 -3.04 -2.05 1.71 0.37 -3.57 -3.7 -0.41 -1.52 -1.67 

Oil -1.88 -3.36 -4.72 -0.61 0.5 -2.73 -3.15 1.49 -1.56 -1.69 

           

 9

8π  

9

π  

18

17π  

18

π  

  

           

  29π  
30π  

31π  
32π  

33π  
34π  

35π  
36π  

  

Wheat -3.25 1.34 1.04 -2.83 -2.94 0.53 1.59 -0.31   

Beef -3.41 -0.21 -0.4 -4.45 -3.51 0.97 -0.15 -1.16   

Corn -2.79 2.01 0.83 -3.78 -3.19 1.44 1.91 0.43   

Hog -3.1 0.05 -2.61 -4.61 -3.6 0.55 1.67 -1.02   

Poultry -3.32 1.96 -0.54 -3.8 -3.48 0 1.29 1.56   

Gold -0.87 -0.95 1.31 -3.58 -3.81 0.88 -1.23 -4.57   

 Oil -3.94 -1.41 -0.51 -4.47 -3.88 2.44 1.49 -1.24   
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TTTTABLEABLEABLEABLE    BBBB5555....    Results from Unit Root test with 36 possible Unit Roots in Monthly 
Data,    constant and Trend Included.    

                     

   0 π (s) 2

π (s) 

9

5π  

9

4π  

           

  Period Lags 1π  
2π  

3π  
4π  

5π  
6π  

7π  
8π  

Wheat 83:08-08:06 2 -2.91 -2.14 0.04 -2.45 -1 3.09 -0.99 -3.49 

Beef 83:08-08:06 2 -1.73 -1.85 -0.53 -2.01 -0.93 1.4 -2.44 -0.96 

Corn 83:08-08:06 2 -3.06 -2.35 -2.12 -0.83 -1.25 3.63 -2.27 -2.24 

Hog 83:08-08:06 3 -3.52 -1.66 -3.27 -2.06 -1.77 3.08 -4.16 -2.92 

Poultry 83:08-08:06 2 -3.92 -0.99 0.02 -3.62 -2.14 2.92 -0.35 -4.67 

Gold 83:08-08:06 2 1.02 -0.37 -4.21 -1.1 -3.01 -0.19 -3.42 -1.23 

Oil 83:08-08:06 1 0.98 -2.37 -2.8 -1.6 -0.72 1.62 -2.58 -3.77 

           

 8

11π  

18

7π  

3

2π (s) 

3

π (s) 

18

13π  

           

  9π  
10π  

11π  
12π  

13π  
14π  

15π  
16π  

17π  
18π  

Wheat -2.29 1.12 0.07 -0.82 -1.64 0.42 -1.99 -0.04 0.25 1.43 

Beef -2.21 1.64 -0.53 -2.08 -1.16 0.89 -1.72 -1.7 -2.89 0.73 

Corn -0.54 0.88 0.21 -3.24 -0.96 3.09 0.4 -3.2 -1.82 1.4 

Hog -3.6 2.02 -1.73 -3.43 -1.52 1.74 -4.09 -2.13 -3.17 0.48 

Poultry -1.84 3 0.49 -2.85 -0.69 2.76 0.01 -1.95 -2.71 2.87 

Gold -4.02 0.33 -1.51 -1.48 -4.09 2.31 -1.21 -3.21 -1.12 3.49 

Oil -1.9 3.3 0.29 -2.81 -2.71 1.82 -1.69 -2.74 -2.42 1.35 

           

 18

5π  

9

7π  

9

2π  

6

5π (s) 

6

π (s) 

           

  19π  
20π  

21π  
22π  

23π  
24π  

25π  
26π  

27π  
28π  

Wheat -0.32 -3.08 -1.35 3.43 1.76 -3.16 -1.06 0.65 -1.24 -1.76 

Beef -1.26 -2.95 -2.71 1.3 -0.45 -1.91 -3.22 1.52 -2.59 -0.99 

Corn 0.74 -3.71 -2.31 0.06 2.21 -3.03 -2.04 1.48 -1.46 -2.6 

Hog -4.66 -3.6 -2.81 2 0.37 -3.58 -1.51 0.24 -2.7 -1.41 

Poultry 1.24 -5.52 -2.29 3.07 1.78 -3.36 -3.12 1.9 -2.24 0.46 

Gold -1.72 -3.11 -2.04 1.68 0.25 -3.76 -3.63 -0.52 -1.6 -1.77 

Oil -1.88 -3.36 -4.72 -0.59 0.48 -2.76 -3.16 1.48 -1.52 -1.62 

           

           

 9

8π  

9

π  

18

17π  

18

π  

  

           

  29π  
30π  

31π  
32π  

33π  
34π  

35π  
36π  

  

Wheat -3.25 1.34 1.04 -2.83 -2.94 0.53 1.59 -0.31   

Beef -3.41 -0.21 -0.4 -4.45 -3.51 0.97 -0.15 -1.16   

Corn -2.78 1.99 0.8 -3.77 -3.17 1.43 1.82 0.44   

Hog -3.1 0.05 -2.61 -4.61 -3.6 0.55 1.67 -1.02   

Poultry -3.32 1.96 -0.54 -3.8 -3.48 0 1.29 1.56   

Gold -0.83 -1.01 1.3 -3.78 -3.78 0.89 -1.4 -5.05   

Oil -3.94 -1.42 -0.47 -4.49 -3.91 2.44 1.52 -1.06   
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TTTTABLEABLEABLEABLE    BBBB6666....    Results from Unit Root test with 36 possible Unit Roots in Monthly 
Data,    constant and Seasonal dummy Included.    

                      

   0 π (s) 2

π (s) 

9

5π  

9

4π  

           

  Period Lags 1π  
2π  

3π  
4π  

5π  
6π  

7π  
8π  

Wheat 83:08-08:06 2 -2.64 -1.96 -0.53 -2.53 -1.12 3.12 -1.02 -3.33 

Beef 83:08-08:06 2 -1.71 -2.15 -0.48 -2.16 -0.91 1.37 -2.18 -1.2 

Corn 83:08-08:06 2 -2.64 -1.96 -0.53 -2.53 -1.12 3.12 -1.02 -3.33 

Hog 83:08-08:06 3 -3.92 -1.56 -3.7 -2.01 -1.87 2.82 -4.54 -2.7 

Poultry 83:08-08:06 2 -3.06 -1.93 -0.56 -4.59 -2.1 3.08 -0.28 -5.24 

Gold 83:08-08:06 2 0.36 -0.62 -4.05 -1.17 -2.79 -0.09 -3.3 -1.25 

Oil 83:08-08:06 1 0.91 -2.64 -2.84 -1.81 -0.55 1.81 -2.65 -3.8 

           

 8

11π  

18

7π  

3

2π (s) 

3

π (s) 

18

13π  

           

  9π  
10π  

11π  
12π  

13π  
14π  

15π  
16π  

17π  
18π  

Wheat -2.4 1.12 0.01 -0.75 -1.61 0.28 -1.61 -0.21 0.13 1.45 

Beef -2.14 1.93 -0.56 -2.12 -1.51 2.59 -1.51 -1.86 -2.68 0.58 

Corn -2.4 1.12 0.01 -0.75 -1.61 0.28 -1.61 -0.21 0.13 1.45 

Hog -3.49 2.02 -2.29 -3.27 -2.25 1.96 -4.57 -2.37 -2.96 0.15 

Poultry -2.04 3.21 0.61 -3.09 -1.86 3.77 -0.04 -3.91 -2.64 2.76 

Gold -3.85 0.31 -1.42 -1.47 -4.35 2.62 -1.1 -3.14 -1.21 3.57 

Oil -1.86 3.28 0.34 -2.92 -2.7 2 -2.01 -2.94 -2.39 1.33 

           

 18

5π  

9

7π  

9

2π  

6

5π (s) 

6

π (s) 

           

  19π  
20π  

21π  
22π  

23π  
24π  

25π  
26π  

27π  
28π  

Wheat -0.43 -3.04 -1.29 3.27 1.5 -3.38 -1.57 1.07 -0.96 -3 

Beef -1.21 -2.93 -2.69 1.32 -0.42 -1.9 -3.47 1.59 -2.49 -1.31 

Corn -0.43 -3.04 -1.29 3.27 1.5 -3.38 -1.57 1.07 -0.96 -3 

Hog -5.11 -3.72 -2.73 1.77 -0.46 -4.1 -1.53 0.7 -3.01 -3.93 

Poultry 1.04 -5.64 -2.53 3.07 1.87 -3.7 -3.26 1.91 -0.86 -1.52 

Gold -1.55 -2.98 -2.06 1.73 0.21 -3.63 -3.85 -0.19 -2 -1.65 

Oil -1.93 -3.53 -4.79 -0.46 0.54 -2.85 -3.3 1.66 -1.28 -2.41 

           

           

 9

8π  

9

π  

18

17π  

18

π  

  

           

  29π  
30π  

31π  
32π  

33π  
34π  

35π  
36π  

  

Wheat -3.15 1.22 0.78 -2.93 -2.86 0.47 1.75 -0.44   

Beef -3.33 -0.16 -0.27 -4.26 -3.46 1.01 -0.13 -1.1   

Corn -3.15 1.22 0.78 -2.93 -2.86 0.47 1.75 -0.44   

Hog -2.97 0.01 -2.7 -5.26 -3.59 0.56 1.55 -1.32   

Poultry -3.38 1.85 0.13 -4.24 -3.68 0.07 1.94 1.61   

Gold -0.72 -0.84 1.38 -3.49 -3.65 0.88 -1.2 -4.43   

Oil -3.59 -1.37 -0.58 -4.63 -3.84 2.2 1.64 -1.16   
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TTTTABLE ABLE ABLE ABLE BBBB7777....    Critical Values for Distribution of Test Statistics for Index Cycle 
Correlation, 24000 simulations, T=600.    

                                        

                    

 
  0.25=fprob                    0.256=fprob                              0.263=fprob                           0.27=fprob  

LAG 0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01 

                    

1 16.0 15.3 11.2 10.5  15.6 14.7 10.9 10.1  15.1 14.3 10.5 9.71 
 
 14.6 13.8 10.1 9.31 

2 9.02 8.16 4.13 3.27  8.63 7.78 3.79 3.02  8.25 7.50 3.44 2.68  7.87 7.04 3.19 2.43 

3 5.96 5.08 0.92 0.08  5.69 4.82 0.75 -0.08  5.52 4.56 0.50 0.34  5.17 4.39 0.34 -0.50 

4 4.56 3.61 -0.59 -1.43  4.34 3.44 -0.76 -1.60  4.21 3.27 -0.84 1.60  3.96 3.11 -0.92 -1.77 

5 3.79 2.85 -1.35 -2.28  3.61 2.77 -1.43 -2.28  3.53 2.68 -1.52 2.28  3.44 2.51 -1.52 -2.37 

6 3.36 2.51 -1.77 -2.63  3.27 2.43 -1.77 -2.63  3.23 2.35 -1.77 2.71  3.19 2.35 -1.86 -2.63 

7 3.19 2.35 -1.94 -2.88  3.11 2.26 -1.94 -2.80  3.11 2.26 -1.94 2.80  3.02 2.18 -1.94 -2.80 

8 3.11 2.18 -2.03 -2.97  3.02 2.18 -2.03 -2.97  3.02 2.18 -2.03 2.88  3.02 2.09 -2.03 -2.88 

9 3.11 2.18 -2.11 -2.97  2.94 2.09 -2.11 -3.06  3.02 2.09 -2.11 2.88  2.94 2.09 -2.03 -2.88 

10 3.02 2.18 -2.11 -2.97  2.94 2.09 -2.11 -3.06  3.02 2.09 -2.11 2.97  2.94 2.01 -2.03 -2.88 

11 3.02 2.18 -2.11 -3.01  3.02 2.09 -2.11 -2.97  3.02 2.09 -2.03 2.88  2.94 2.09 -2.03 -2.88 

12 3.02 2.18 -2.11 -3.06  2.94 2.09 -2.11 -3.06  3.02 2.09 -2.03 2.88  2.94 2.01 -2.11 -2.88 

13 3.02 2.09 -2.11 -2.97  2.94 2.09 -2.20 -3.06  2.94 2.09 -2.03 2.97  2.85 2.01 -2.03 -2.97 

14 3.02 2.09 -2.11 -3.06  2.94 2.09 -2.11 -3.06  2.94 2.09 -2.03 2.97  2.94 2.01 -2.11 -2.88 

15 3.02 2.09 -2.11 -2.97  2.85 2.09 -2.20 -3.06  2.94 2.09 -2.11 2.97  2.85 2.01 -2.03 -2.88 

16 3.02 2.09 -2.11 -3.06  2.94 2.09 -2.20 -3.06  2.94 2.09 -2.11 2.97  2.85 2.01 -2.03 -2.97 

17 3.02 2.09 -2.11 -3.06  2.94 2.09 -2.11 -2.97  3.02 2.09 -2.11 2.97  2.85 2.09 -2.11 -2.97 

18 3.02 2.09 -2.11 -3.06  3.02 2.09 -2.11 -3.06  3.02 2.09 -2.03 2.97  2.94 2.01 -2.11 -2.97 

19 3.02 2.18 -2.11 -2.97  2.94 2.09 -2.11 -2.97  2.94 2.09 -2.03 2.97  2.85 2.01 -2.03 -2.97 

20 3.02 2.18 -2.11 -2.97  3.02 2.09 -2.11 -3.01  2.94 2.09 -2.03 2.88  2.85 2.01 -2.03 -2.97 

21 3.02 2.18 -2.11 -3.06  3.02 2.09 -2.11 -2.97  2.94 2.09 -2.11 2.97  2.85 2.01 -2.03 -2.88 

22 3.11 2.09 -2.11 -3.06  2.94 2.09 -2.11 -2.97  2.85 2.01 -2.11 2.97  2.85 2.01 -2.03 -2.88 

23 3.02 2.09 -2.11 -3.06  2.94 2.09 -2.11 -3.06  2.94 2.01 -2.11 2.97  2.94 2.01 -2.03 -2.88 

24 3.02 2.09 -2.11 -3.06  3.02 2.09 -2.11 -2.97  2.94 2.09 -2.11 2.97  2.94 2.09 -2.03 -2.97 

                    

 
0.277=fprob                  0.285=fprob                            0.294=fprob                           0.303=fprob  

LAG 0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01 

                    

1 14.18 13.3 9.61 8.82  13.7 12.8 9.12 8.44  13.1 12.3 8.63 7.87  12.6 11.7 8.16 7.50 

2 7.59 6.77 2.85 2.09  7.13 6.32 2.51 1.76  6.77 5.96 2.18 1.42  6.41 5.61 1.84 1.17 

3 4.95 4.13 0.17 -0.67  4.65 3.87 -0.08 -0.92  4.47 3.61 -0.25 1.09  4.21 3.36 -0.42 -1.18 

4 3.79 2.94 -1.01 -1.86  3.61 2.77 -1.18 -1.94  3.44 2.60 -1.26 2.03  3.27 2.51 -1.35 -2.11 

5 3.36 2.43 -1.60 -2.45  3.19 2.35 -1.60 -2.45  3.11 2.26 -1.69 2.45  2.94 2.14 -1.69 -2.54 

6 3.11 2.18 -1.77 -2.67  2.94 2.18 -1.86 -2.63  2.94 2.09 -1.86 2.63  2.85 2.01 -1.86 -2.63 

7 2.94 2.09 -1.94 -2.80  2.85 2.01 -1.94 -2.71  2.85 2.01 -1.86 2.71  2.77 2.01 -1.94 -2.71 

8 2.94 2.09 -1.98 -2.88  2.85 2.01 -1.94 -2.80  2.77 1.93 -1.94 2.71  2.68 1.93 -1.94 -2.80 

9 2.94 2.01 -2.03 -2.97  2.77 2.01 -2.03 -2.80  2.77 1.93 -1.94 2.80  2.68 1.93 -1.94 -2.71 

10 2.94 2.01 -2.03 -2.88  2.85 1.93 -2.03 -2.80  2.77 2.01 -1.94 2.71  2.68 1.93 -1.94 -2.71 

11 2.85 2.01 -2.03 -2.88  2.77 1.93 -1.94 -2.80  2.77 1.93 -1.94 2.80  2.77 1.93 -1.94 -2.80 

12 2.85 2.01 -2.03 -2.88  2.77 1.93 -2.03 -2.88  2.77 1.93 -1.94 2.71  2.77 1.93 -1.94 -2.71 

13 2.85 2.01 -2.03 -2.88  2.77 1.93 -2.03 -2.80  2.77 1.93 -1.94 2.76  2.77 1.93 -1.94 -2.71 

14 2.85 2.01 -2.03 -2.88  2.77 2.01 -1.94 -2.80  2.77 1.93 -1.94 2.71  2.77 1.93 -1.94 -2.80 

15 2.94 2.01 -2.03 -2.80  2.85 2.01 -2.03 -2.80  2.77 1.93 -1.94 2.80  2.77 1.93 -1.94 -2.71 

16 2.85 2.01 -2.03 -2.88  2.81 2.01 -2.03 -2.80  2.77 1.93 -1.94 2.80  2.72 1.93 -1.94 -2.80 

17 2.85 2.01 -2.03 -2.88  2.85 2.01 -2.03 -2.80  2.68 1.93 -1.94 2.80  2.68 1.93 -1.94 -2.80 
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18 2.85 2.01 -2.03 -2.88  2.77 1.93 -2.03 -2.80  2.77 1.93 -1.94 2.80  2.68 1.93 -1.94 -2.80 

19 2.85 2.01 -2.03 -2.88  2.77 1.93 -2.03 -2.80  2.77 1.93 -1.94 2.71  2.68 1.93 -1.94 -2.71 

20 2.85 2.01 -2.03 -2.88  2.77 2.01 -1.94 -2.84  2.68 1.93 -1.94 2.71  2.77 1.93 -1.94 -2.71 

21 2.85 2.01 -2.03 -2.88  2.77 2.01 -1.94 -2.80  2.77 1.93 -1.94 2.80  2.85 1.93 -1.94 -2.71 

22 2.85 2.01 -2.03 -2.84  2.77 1.93 -1.94 -2.88  2.77 1.93 -1.94 2.80  2.68 1.93 -1.94 -2.80 

23 2.85 2.01 -2.03 -2.80  2.85 2.01 -2.03 -2.88  2.77 2.01 -1.94 2.76  2.77 1.93 -1.94 -2.80 

24 2.85 2.01 -2.03 -2.88  2.85 1.93 -2.03 -2.88  2.85 1.93 -1.94 2.80  2.68 1.93 -1.94 -2.71 

                                        

     
0.3125=fprob              3225.0=fprob                  333.0=fprob                            345.0=fprob  

LAG 0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01 

                    

1 12.05 11.2 7.69 6.86  11.4 10.7 7.13 6.41  10.8 10.0 6.50 5.87  10.2 9.41 5.87 5.25 

2 6.05 5.25 1.59 0.75  5.69 4.82 1.17 0.42  5.25 4.47 0.84 0.08  4.82 4.13 0.50 -0.25 

3 3.96 3.19 -0.59 -1.43  3.70 2.94 -0.76 -1.56  3.44 2.68 -0.92 1.77  3.27 2.51 -1.09 -1.86 

4 3.19 2.35 -1.43 -2.20  3.11 2.26 -1.52 -2.20  2.85 2.09 -1.52 2.37  2.77 2.01 -1.60 -2.37 

5 2.85 2.09 -1.77 -2.54  2.77 2.01 -1.77 -2.54  2.68 1.93 -1.77 2.54  2.60 1.93 -1.77 -2.54 

6 2.77 1.93 -1.86 -2.63  2.68 1.93 -1.86 -2.63  2.68 1.93 -1.86 2.54  2.60 1.84 -1.77 -2.54 

7 2.72 1.93 -1.86 -2.63  2.60 1.84 -1.86 -2.63  2.68 1.84 -1.86 2.63  2.60 1.84 -1.77 -2.54 

8 2.68 1.93 -1.94 -2.71  2.60 1.84 -1.86 -2.71  2.60 1.84 -1.86 2.63  2.60 1.84 -1.86 -2.54 

9 2.68 1.84 -1.94 -2.63  2.60 1.84 -1.86 -2.63  2.68 1.84 -1.86 2.63  2.60 1.84 -1.86 -2.54 

10 2.68 1.93 -1.94 -2.63  2.60 1.84 -1.86 -2.63  2.60 1.84 -1.86 2.63  2.60 1.84 -1.77 -2.54 

11 2.68 1.93 -1.94 -2.71  2.60 1.84 -1.86 -2.63  2.60 1.84 -1.86 2.63  2.51 1.84 -1.77 -2.54 

12 2.68 1.93 -1.94 -2.71  2.60 1.93 -1.86 -2.63  2.60 1.84 -1.86 2.63  2.60 1.84 -1.86 -2.63 

13 2.68 1.93 -1.94 -2.71  2.68 1.84 -1.86 -2.71  2.60 1.84 -1.86 2.63  2.51 1.76 -1.86 -2.63 

14 2.68 1.93 -1.94 -2.71  2.68 1.93 -1.86 -2.63  2.68 1.84 -1.86 2.63  2.51 1.84 -1.86 -2.63 

15 2.68 1.84 -1.86 -2.71  2.68 1.84 -1.86 -2.63  2.60 1.84 -1.86 2.63  2.51 1.84 -1.86 -2.54 

16 2.68 1.93 -1.94 -2.63  2.68 1.84 -1.86 -2.71  2.60 1.84 -1.86 2.63  2.60 1.84 -1.86 -2.63 

17 2.68 1.93 -1.86 -2.71  2.60 1.84 -1.86 -2.71  2.60 1.84 -1.77 2.63  2.60 1.84 -1.86 -2.63 

18 2.68 1.84 -1.86 -2.67  2.68 1.84 -1.86 -2.63  2.60 1.84 -1.86 2.63  2.60 1.84 -1.86 -2.63 

19 2.68 1.93 -1.86 -2.63  2.68 1.84 -1.86 -2.63  2.60 1.84 -1.86 2.63  2.51 1.76 -1.86 -2.63 

20 2.60 1.93 -1.86 -2.63  2.60 1.84 -1.86 -2.63  2.60 1.84 -1.86 2.63  2.56 1.84 -1.86 -2.63 

21 2.64 1.84 -1.86 -2.71  2.60 1.84 -1.86 -2.63  2.51 1.84 -1.86 2.63  2.60 1.76 -1.77 -2.54 

22 2.68 1.88 -1.86 -2.71  2.68 1.84 -1.86 -2.63  2.60 1.84 -1.86 2.63  2.51 1.84 -1.86 -2.54 

23 2.68 1.93 -1.86 -2.71  2.60 1.84 -1.86 -2.71  2.60 1.84 -1.86 2.63  2.60 1.84 -1.86 -2.54 

24 2.68 1.93 -1.94 -2.71  2.60 1.84 -1.86 -2.63  2.60 1.84 -1.86 2.63  2.60 1.84 -1.86 -2.63 

                    

 
  0.357=fprob                   3703.0=fprob                    384.0=fprob                              4.0=fprob  

LAG 0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01 

        

1 9.51 8.73 5.34 4.65  8.73 8.06 4.65 3.96  8.06 7.32 3.91 3.19  7.22 6.50 3.19 2.51 

2 4.56 3.79 0.25 -0.50  4.13 3.36 -0.13 -0.92  3.79 3.02 -0.50 -1.18  3.36 2.68 -0.76 -1.47 

3 3.11 2.35 -1.18 -1.94  2.94 2.18 -1.35 -2.11  2.77 2.01 -1.43 -2.20  2.60 1.93 -1.52 -2.28 

4 2.68 1.93 -1.60 -2.37  2.60 1.84 -1.60 -2.37  2.51 1.84 -1.69 -2.37  2.43 1.76 -1.69 -2.37 

5 2.60 1.84 -1.77 -2.45  2.51 1.76 -1.77 -2.45  2.43 1.76 -1.77 -2.54  2.43 1.67 -1.69 -2.45 

6 2.51 1.76 -1.77 -2.54  2.51 1.76 -1.77 -2.54  2.51 1.76 -1.77 -2.54  2.43 1.67 -1.77 -2.45 

7 2.51 1.76 -1.77 -2.54  2.43 1.76 -1.77 -2.54  2.51 1.76 -1.77 -2.45  2.35 1.67 -1.77 -2.45 

8 2.51 1.84 -1.77 -2.45  2.51 1.76 -1.77 -2.45  2.51 1.76 -1.69 -2.45  2.43 1.67 -1.69 -2.45 

9 2.51 1.84 -1.77 -2.54  2.51 1.76 -1.77 -2.54  2.43 1.76 -1.69 -2.45  2.43 1.76 -1.69 -2.45 

10 2.51 1.84 -1.77 -2.45  2.43 1.76 -1.77 -2.54  2.43 1.76 -1.77 -2.45  2.43 1.67 -1.69 -2.45 

11 2.51 1.84 -1.77 -2.54  2.51 1.76 -1.77 -2.54  2.43 1.76 -1.77 -2.45  2.43 1.67 -1.69 -2.45 

12 2.51 1.84 -1.77 -2.54  2.43 1.76 -1.77 -2.54  2.43 1.76 -1.77 -2.54  2.35 1.67 -1.69 -2.45 

13 2.51 1.76 -1.77 -2.63  2.51 1.76 -1.77 -2.54  2.51 1.76 -1.77 -2.45  2.43 1.67 -1.69 -2.45 
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14 2.51 1.76 -1.86 -2.54  2.51 1.76 -1.77 -2.45  2.43 1.76 -1.77 -2.45  2.43 1.76 -1.69 -2.45 

15 2.51 1.76 -1.77 -2.54  2.51 1.76 -1.77 -2.54  2.43 1.76 -1.77 -2.45  2.39 1.67 -1.77 -2.45 

16 2.51 1.76 -1.77 -2.54  2.51 1.76 -1.77 -2.45  2.51 1.76 -1.77 -2.54  2.43 1.67 -1.77 -2.45 

17 2.51 1.76 -1.86 -2.54  2.51 1.76 -1.77 -2.45  2.51 1.76 -1.77 -2.45  2.43 1.67 -1.69 -2.45 

18 2.51 1.76 -1.77 -2.54  2.51 1.76 -1.77 -2.54  2.43 1.76 -1.77 -2.45  2.43 1.67 -1.69 -2.45 

19 2.60 1.84 -1.77 -2.54  2.51 1.76 -1.77 -2.54  2.51 1.76 -1.77 -2.45  2.43 1.67 -1.69 -2.45 

20 2.60 1.84 -1.77 -2.54  2.43 1.76 -1.77 -2.54  2.51 1.76 -1.77 -2.45  2.43 1.76 -1.77 -2.45 

21 2.51 1.76 -1.86 -2.54  2.51 1.76 -1.77 -2.45  2.43 1.76 -1.77 -2.54  2.43 1.76 -1.77 -2.37 

22 2.51 1.76 -1.86 -2.54  2.51 1.76 -1.77 -2.54  2.43 1.76 -1.69 -2.45  2.43 1.67 -1.77 -2.45 

23 2.51 1.76 -1.77 -2.63  2.51 1.76 -1.77 -2.54  2.51 1.76 -1.77 -2.45  2.43 1.67 -1.77 -2.45 

24 2.51 1.76 -1.86 -2.54  2.43 1.76 -1.77 -2.54  2.43 1.76 -1.77 -2.45  2.43 1.67 -1.69 -2.45 

                                        

 

 

 0.416=fprob                           4347.0=fprob                            4545.0=fprob                           48.0=fprob  

LAG 0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01   0.99 0.95 0.05 0.01 

                    

1 6.41 5.69 2.35 1.67  5.52 4.82 1.42 0.84  4.56 3.83 0.50 -0.17  3.44 2.77 -0.50 -1.26 

2 3.02 2.35 -1.01 -1.77  2.77 2.09 -1.26 -1.94  2.60 1.84 -1.43 -2.20  2.35 1.67 -1.60 -2.37 

3 2.51 1.84 -1.60 -2.28  2.43 1.67 -1.69 -2.37  2.35 1.67 -1.60 -2.37  2.26 1.59 -1.69 -2.37 

4 2.43 1.67 -1.69 -2.37  2.43 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37 

5 2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.33 

6 2.43 1.67 -1.69 -2.37  2.43 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37 

7 2.43 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.26 1.67 -1.69 -2.37 

8 2.43 1.67 -1.69 -2.37  2.43 1.67 -1.69 -2.41  2.35 1.67 -1.69 -2.37  2.35 1.59 -1.69 -2.37 

9 2.43 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.60 -2.37 

10 2.35 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37 

11 2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.26 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37 

12 2.35 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.41  2.35 1.67 -1.69 -2.37  2.26 1.67 -1.69 -2.37 

13 2.35 1.67 -1.69 -2.37  2.43 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37 

14 2.35 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.60 -2.37 

15 2.35 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.41  2.35 1.67 -1.69 -2.37  2.35 1.59 -1.69 -2.37 

16 2.43 1.67 -1.69 -2.37  2.43 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.33 

17 2.43 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.37 

18 2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37 

19 2.43 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.60 -2.37  2.35 1.67 -1.69 -2.37 

20 2.35 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37 

21 2.43 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37 

22 2.43 1.67 -1.69 -2.45  2.26 1.67 -1.69 -2.45  2.43 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37 

23 2.35 1.67 -1.69 -2.37  2.43 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.60 -2.37 

24 2.43 1.67 -1.69 -2.45  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37  2.35 1.67 -1.69 -2.37 
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