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Abstract
In this paper we consider pseudo-Riemannian spaces of arbitrary signature for
which all of the polynomial curvature invariants vanish (VSI spaces). Using
an algebraic classification of pseudo-Riemannian spaces in terms of the boost-
weight decomposition, we first show more generally that a space which is not
characterized by its invariants must possess the SG

1 -property. As a corollary,
we then show that a VSI space must possess the NG-property (these results are
the analogues of the alignment theorem, including corollaries, for Lorentzian
spacetimes). As an application we classify all 4D neutral VSI spaces and show
that these belong to one of two classes: (1) those that possess a geodesic,
expansion-free, shear-free, and twist-free null congruence (Kundt metrics), or
(2) those that possess an invariant null plane (Walker metrics). By explicit
construction we show that the latter class contains a set of VSI metrics which
have not previously been considered in the literature.

PACS numbers: 02.40.−k, 02.40.Hw, 02.10.Hh

1. Introduction

In this paper we will consider an arbitrary-dimensional pseudo-Riemannian space of signature
(k, k + m). We will investigate when such a space has a degenerate curvature structure; in
particular, we shall determine criteria for when a space, or tensor, has all vanishing polynomial
curvature invariants (VSI space). Recall that a polynomial curvature invariant is defined as
the polynomial invariants of the components of the curvature tensors. Previously, the VSI
spaces for Lorentzian metrics have been studied [1] and it was shown that these comprise a
subclass of the degenerate Kundt metrics [2]. Here, we will see that Kundt-like metrics also
play a similar role for pseudo-Riemannian VSI metrics of arbitrary signature; however, we
will see that another class of metrics arises in the pseudo-Riemannian case, namely the Walker
metrics [3]. In order to obtain these results, we will utilize invariant theory to obtain important
properties of the structure of tensors having degenerate invariants. In particular, tensors not
characterized by their invariants will be shown to possess the SG

1 -property, while in the VSI
case they necessarily must possess the NG-property. We will use this fact to construct a new

+ 1

http://dx.doi.org/10.1088/0264-9381/29/9/095011
mailto:sigbjorn.hervik@uis.no
http://stacks.iop.org/CQG/29/095011
2905326
Typewritten Text

2905326
Typewritten Text

2905326
Typewritten Text

2905326
Typewritten Text

2905326
Typewritten Text



set of four-dimensional (4D) Walker metrics with vanishing curvature invariants of neutral
signature.

Walker metrics are metrics possessing an invariant null plane and have been studied in
various contexts [3, 4]. Here we will show that they also play a role in the classification of
VSI metrics. Indeed, we will give a new class of VSI metrics which has not been considered
before. These metrics are related to a bigger class of Walker metrics with a degenerate curvature
structure. The curvature structure of these metrics is distinct from the Kundt metrics known
from the Lorentzian case. One of the consequences of this district feature is that we need to
consider invariants containing up to four derivatives. Indeed, interestingly, there is a family of
Walker metrics which is VSI3, but not VSI4: perhaps the simplest member of this family is

ds2 = 2 du(dv + V du) + 2 dU (dV + av4 dU ), (1)

where a is a constant. This peculiar property of being VSI3 but not VSI4 has no analogue in
the Lorentzian case1.

First we will review some of the techniques used in this paper. Then we will provide the
general result for tensors (or spaces) not being characterized by its invariants. This result is the
analogue of the alignment theorem in the Lorentzian-signature case [5]. Then, as a corollary,
we will state the important VSI case. We will then use this VSI result to consider the 4D
neutral case in detail.

1.1. Boost-weight decomposition

Let us first review the boost-weight classification, originally used to study degenerate metrics
in Lorentzian geometry [6], in the pseudo-Riemannian case [7]. We will assume the manifold
is of dimension (2k + m) and of signature (k, k + m). We first introduce a suitable (real) null
frame such that the metric can be written as

ds2 = 2(�1n1 + . . . + �InI + . . . + �knk) + δi jmim j, (2)

where the indices i = 1, . . . , m.
Let us consider the k independent boosts which forms an Abelian subgroup of the group

SO(k, k + m):

(�1, n1) �→ (eλ1�1, e−λ1 n1)

(�2, n2) �→ (eλ2�2, e−λ2 n2)

...

(�k, nk) �→ (eλk�k, e−λk nk). (3)

This action will be considered pointwise at the manifold.
For a tensor T , we can then consider the boost weights of this tensor, b ∈ Z

k, as follows.
If we consider the components of T with respect to the above-mentioned null frame, then if a
component Tμ1...μn transforms as

Tμ1...μn �→ e(b1λ1+b2λ2+···+bkλk )Tμ1...μn ,

then we will say the component Tμ1...μn is of boost weight b ≡ (b1, b2, . . . , bk). We can now
decompose a tensor into boost weights; in particular,

T =
∑
b∈Zk

(T )b,

1 In the Lorentzian case, VSI2 implies VSI [1], while VSI1 Kundt implies VSI [2].
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where (T )b means the projection onto the components of boost weight b. The projections
(T )b are the eigentensors of a set of commuting operators (the infinitesimal generators of the
boosts) with integer eigenvalues. For example, a tensor P = A�InJmim j with I �= J and A is
some scalar has boost weight b = (b1, . . . , bk) where bI = −1, bJ = 1, other bi = 0. Indeed,
writing out a totally covariant tensor T using the basis in (2), the boost weight is given by
b = (bI ) where bI = #(nI ) − #(�I ).

By considering tensor products, the boost weights obey the following additive rule:

(T ⊗ S)b =
∑

b̃+b̂=b

(T )b̃ ⊗ (S)b̂. (4)

We also note that the metric g is of boost weight 0, i.e. g = (g)0; hence, raising and lowering
indices of a tensor do not change the boost weights.

1.2. The Si- and N-properties

Let us consider a tensor, T , and list a few conditions that the tensor components may
fulfil [7, 8]:

Definition 1.1. We define the following conditions:

(B1) (T )b = 0, for all b = (b1, b2, b3, . . . , bk), b1 > 0.
(B2) (T )b = 0, for all b = (0, b2, b3, . . . , bk), b2 > 0.
(B3) (T )b = 0, for all b = (0, 0, b3, . . . , bk), b3 > 0.
...
(Bk) (T )b = 0, for all b = (0, 0, . . . , 0, bk), bk > 0.

Definition 1.2. We will say that a tensor T possesses the S1-property if and only if there exists
a null frame such that condition (B1) above is satisfied. Furthermore, we say that T possesses
the Si-property if and only if there exists a null frame such that conditions (B1)–(Bi) above are
satisfied.

Definition 1.3. We will say that a tensor T possesses the N-property if and only if there exists
a null frame such that conditions (B1)–(Bk) in definition 1.1 are satisfied, and

(T )b = 0, for b = (0, 0, . . . , 0, 0).

Let us also recall the following result [7, 8]:

Proposition 1.4. For tensor products, we have

(1) Let T and S possess the Si- and S j-properties, respectively. Assuming, with no loss of
generality, that i � j, then T ⊗ S possesses the Si-property.

(2) Let T and S possess the Si- and N-properties, respectively. Then T ⊗ S possesses the
Si-property. If i = k, then T ⊗ S possesses the N-property.

(3) Let T and S both possess the N-property. Then T ⊗ S, and any contraction thereof,
possesses the N-property.

We extend this and define a set of related conditions which will prove useful to us. Consider
a tensor, T , that does not necessarily meet any of the conditions above. However, since the
boost weights b ∈ Z

k ⊂ R
k, we can consider a linear GL(k) transformation, G : Z

k �→ �,
where � is a lattice in R

k. Now, if there exists a G such that the transformed boost weights,
Gb, satisfy (some) of the conditions in definition 1.1, we will say, correspondingly, that T
possesses the SG

i -property. Similarly, for the NG-property.
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If we have two tensors T and S both possessing the SG
i -property, with the same G, then

when we take the tensor product

(T ⊗ S)Gb =
∑

Gb̂+Gb̃=Gb

(T )Gb̂ ⊗ (S)Gb̃.

Therefore, the tensor product will also possess the SG
i -property, with the same G. This will

be useful later when considering degenerate tensors and metrics with degenerate curvature
tensors. Note also that the SG

i -property reduces to the Si-property for G = I (the identity).

1.3. Tensors not characterized by its invariants

Another useful concept is the question when a tensor/spacetime is ‘characterized by its
invariants’. Henceforth, by invariants we will always mean the polynomial invariants. Such
have been discussed in several papers both in the Lorentzian case and in the more general case
[9, 10].

We will now recall some of the definitions and concepts from invariant theory, see, e.g.,
[11–13]. For a tensor T , we define the action of the semi-simple group G = O(k, k + m)

on the components of T as follows. For simplicity, assume that the components of T
have been lowered: Ta1...ap . We form the N-tuple consisting of the components of T as
X = [Ta1a2...ap] ∈ R

N . The action corresponds to a frame rotation and explicitly, if we consider
the matrix g = (Ma

b ) ∈ O(k, k + m), acting as a frame rotation gω = {Ma
1ea, . . . , Ma

nea}, the
frame rotation induces an action on X through the tensor structure of the components:

g(X ) = [
Mb1

a1
. . . M

bp
ap Tb1...bp

]
.

The (real) orbit O(X ) is now defined by

O(X ) ≡ {g(X ) ∈ R
N
∣∣g ∈ O(k, k + m)} ⊂ R

N .

We can then extend this definition to a direct sum of vectors, T = T (1) ⊕· · ·⊕T (q). The action
g(X ) on the components is then extended through the standard direct sum representation of
the group G acting on the direct sum of tensors.

In the case of a pseudo-Riemannian space, T is a direct sum of the curvature tensors

T = Riem ⊕ ∇Riem ⊕ ∇∇Riem ⊕ · · · ⊕ ∇ (K)Riem

up to some sufficiently high order K.

Definition 1.5. A tensor T (or pseudo-Riemannian space) is characterized by its invariants
if and only if the corresponding orbit O(X ) is topologically closed in R

N with respect to the
standard Euclidean topology.

The motivation for this definition is given in [5]—essentially, the set of closed orbits

C = {O(X ) ⊂ V
∣∣O(X ) closed}

is parameterized by the invariants, possibly up to a complex rotation (indeed, the complexified
orbits are parameterized uniquely, the real orbits intersect these a finite number of times)2.

For more details on these issues we would refer the reader to [11–13, 5].

2 In [12] they denote this set as V//G.
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2. Pseudo-Riemannian metrics not characterized by its invariants

A tensor, T , satisfying the SG
i -property or NG-property is not generically determined by its

invariants in the sense that there may be another tensor, T ′, with precisely the same invariants.
The SG

i -property thus implies a certain degeneracy in the tensor.
Indeed,

Theorem 2.1. A tensor T is not characterized by its invariants if and only if it possesses (at
least) the SG

1 -property.

Proof. Assume that T is not characterized by its invariants; i.e. the corresponding orbit is not
closed. Using the results of Richardson–Slodowy [12], there then exists a X ∈ B, where B

is the vector subspace of the Lie algebra so(k, k + m) consisting of symmetric matrices (so
that so(k, k + m) = B ⊕ K, where K is the Lie algebra of the maximal compact subgroup),
such that exp(τX )(T ) → p. We note that the maximal compact subgroup of SO(k, m + k) is
K ∼= SO(k) × SO(m + k), which we represent as g = (g1, g2) ∈ SO(k) × SO(m + k). The X
can be represented as

X =
[

0k S
St 0m+k

]
, (5)

where S is a k × (k + m) matrix. The transformation, g−1Xg induces a transformation of S
according to g−1

1 Sg2, (g1, g2) ∈ SO(k)×SO(m+k). Thus by the singular value decomposition,
we can always find a g ∈ K such that S is diagonal S = diag(λ1, . . . , λk). This therefore
corresponds to a pure boost; specifically, by applying a null frame, X will represent the boost
given in equation (3). Henceforth, let us represent λ = (λ1, ..., λk) as a vector. Then if the
tensor T is decomposed using the corresponding boost-weight components relative to the null
frame; i.e. T = ∑

b(T )b, we can write

exp(τX )(T )b = exp(τb · λ)(T )b, (6)

where b · λ = ∑n
i=1 biλi. In the limit τ → ∞, exp(τX )(T ) has to approach p which is finite:

hence, if (T )b �= 0 we obtain the requirement b · λ � 0. In particular,

exp(τb · λ)(T )b → (T )b, b · λ = 0,

exp(τb · λ)(T )b → 0, b · λ < 0, (7)

all other (T )b must be zero

(T )b = 0, b · λ > 0. (8)

Using a G ∈ O(k) transformation in boost-weight space, we can align λ with the first basis
vector so that Gλ = |λ|(1, 0, 0, . . . , 0). Thus the requirement equation (8) implies that T
fulfils the SG

1 -property. �

2.1. The VSI properties

For the VSI spaces we now obtain an important corollary:

Theorem 2.2. For a tensor T in pseudo-Riemannian space, the following is equivalent:

(1) T has only vanishing polynomial invariants (VSI).
(2) Any operator constructed from T (by raising/lowering indices, contractions and tensor

products) is nilpotent.
(3) T possesses the NG-property.

5



Proof. The proof of 1 ⇔ 2 follows from [9]. Furthermore, 3 ⇒ 1 follows from this work also.
Left to prove is thus 1 ⇒ 3.

From the proof of theorem 2.1 we see that tensors having all vanishing invariants must
either have closed orbits, or have a limit which approaches an element in this closed orbit.
We note that the zero tensor T̃ = 0 has a closed orbit, and since the complex orbit consists
of only the zero element, the zero tensor must be the unique tensor which has closed (real)
orbits. Thus, we can choose the limit in the proof to be p = 0. This implies that equation (8)
turns into the stronger requirement

(T )b = 0, b · λ � 0. (9)

By the same transformation matrix G, we write Gλ = |λ|(1, 0, 0, . . . , 0) and the NG-property
follows. �

3. 4D neutral space: all VSI metrics

The even-dimensional case with signature (k, k) (i.e. m = 0) is called the neutral case. Let us
consider the 4D neutral case which is of particular interest (see, e.g., [14, 15]); in particular, we
will use the above theorem to find all neutral VSI spaces of dimension 4. Such spaces have been
studied before; however, only spaces satisfying the N-property were investigated. Although it
was noted that the NG-property was sufficient for VSI, this possibility was not investigated in
detail. Indeed, we will show that there are VSI spaces satisfying the NG-property, but not the
N-property thus establishing a new class of VSI spacetimes. We also derive all such metrics
and show that they are all Walker metrics possessing an invariant null plane.

In 4D neutral signature we thus obtain two classes of metric, the Kundt metrics and the
Walker metrics. These will be reviewed in what follows. We will also utilize the work of Law
[4] where all the spin coefficients of 4D neutral space were investigated. Using Law’s notation,
we adopt the slightly modified null frame (�, n, m, m̃) ≡ (�1, n1, �2,−n2) so that metric (2)
can be written as

ds2 = 2�n − 2mm̃. (10)

In the neutral case, this frame is purely real. With respect to such a frame, Law defined the
spin coefficients which we will use in proving the main theorem. In [4] Law writes the spin
coefficients in terms of κ, ρ, σ, τ, ε, α, β, γ , and their tilded (κ̃, ρ̃, . . ..), primed (κ ′, ρ ′, . . ..),
and primed-tilded (κ̃ ′, ρ̃ ′, . . ..) counterparts. All these spin coefficients are real. For example,
the covariant derivatives of the frame vector �a can be written as

�b∇b�
a = (ε + ε̃ )�a + κ̃ma + κm̃a,

m̃b∇b�
a = (α + β̃ )�a + σ̃ma + ρm̃a,

mb∇b�
a = (α̃ + β)�a + ρ̃ma + σ m̃a,

nb∇b�
a = (γ + γ̃ )�a + τ̃ma + τ m̃a, (11)

. . . etc.

We refer to [4], in particular, equations (2.10) and (2.11) therein, for details.

3.1. Invariant null planes: Walker metrics

Here, we will consider the 4D neutral spaces which possess an invariant null plane. Such
metrics are known as Walker metrics.
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Consider two orthogonal null vectors � and m. These span an invariant null plane iff

∇a(� ∧ m) = ka(� ∧ m), (12)

for a vector ka. Using [4] this immediately implies the vanishing of certain spin coefficients

κ = ρ = σ = τ = 0.

Indeed, one can see that the vanishing of these spin coefficients implies the existence of an
invariant null plane (hence, it is a Walker metric).

Furthermore, Walker [3] showed that the requirement of an invariant two-dimensional
(2D) null plane implies that the (Walker) metric can be written in the canonical form:

ds2 = 2 du(dv + A du + C dU ) + 2 dU (dV + B dU ), (13)

where A, B and C are functions that may depend on all of the coordinates.
In particular, this implies that we can choose a frame such that [4]

κ = ρ = σ = τ = ε = β = 0, α′ = γ ′ = ρ ′ = τ ′ = 0, (14)

κ̃ = ρ̃ = α̃ = ε̃ = 0, β̃ ′ = γ̃ ′ = σ̃ ′ = τ̃ ′ = 0. (15)

We note that σ̃ needs not be zero, and hence, these Walker metrics need not be Kundt spacetimes
(see below).

3.2. Pseudo-Riemannian Kundt metrics

In the Lorentzian case the Kundt metrics play an important role for degenerate metrics, and
VSI metrics in particular [1]. Their pseudo-Riemannian analogues also play an important role
for pseudo-Riemannian spaces of arbitrary signature [8, 15].

We define the pseudo-Riemannian Kundt metrics in a similar fashion, namely:

Definition 3.1. A pseudo-Riemannian Kundt metric is a metric which possesses a non-zero
null vector � which is geodesic, expansion-free, twist-free and shear-free.

This implies that, in terms of the spin coefficients defined in [4], a space is Kundt if and
only if there exists a frame such that

κ̃ = κ = ρ̃ = ρ = σ̃ = σ = 0. (16)

Therefore, we will consider metrics of the form (which is equivalent to the above definition)

ds2 = 2 du[dv + H(v, u, xC) du + WA(v, u, xC) dxA] + gAB(u, xC) dxA dxB (17)

(here, the indices A, B range over the null indices I = 2, 3. The metric (17) possesses a null
vector field � obeying3

�μ;ν = L11�μ�ν + L1i�(μmi
ν) + L̃1i�(μm̃i

ν),

and consequently it is geodesic, non-expanding, shear-free and non-twisting. Since this is a
pseudo-Riemannian space of signature (2, 2), the transverse metric

ds2
1 = gAB(u, xC) dxA dxB,

will be of signature (1, 1).

3 If, in addition L1i = L̃1i = 0, the vector �μ is also recurrent (hence, Walker), and if L1i = L̃1i = L11 = 0, then �μ

is covariantly constant.
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3.3. The 4D neutral VSI theorem

Let us now state an important result regarding the determination of all 4D VSI metrics.

Theorem 3.2. A 4D neutral VSI metric is of one (or both) of the following types:

(1) A Walker metric possessing an invariant 2D null plane.
(2) A Kundt metric.

In order to prove this theorem one needs to consider theorem 2.1 and consider the covariant
derivatives ∇ (N)(Riemann). We will prove the theorem using two different methods, one is
the more indirect method using the one-parameter family of boosts Bτ = eτX , the other
is the direct method by explicitly computing the covariant derivatives. These two illustrate
two conceptually different methods and both provide us with separate information about the
underlying structure of these spaces. For example, while the first is a more ’elegant’ proof,
the second gives some information of how many derivatives are necessary and provides with
more details about the various special cases.

3.3.1. The boost method. Let us employ the frame which is aligned with the family of boosts
Bτ = exp(τX ) providing us with the limit in theorem 2.1. This is a pointwise action but
consider a point p and assume this is regular4 implying that there exists a neighbourhood U
such that the algebraic structure of the space does not change over U . Consider now a compact
K ⊂ U neighbourhood of p. The boost Bτ acts pointwise; however, since K is compact, we
can assume that the Bτ does not depend on the point in K. Thus, with respect to the adapted
frame, the boost will be constant over K:

� �→ e−τλ1�, n �→ eτλ1 n, m �→ e−τλ2 m, m̃ �→ eτλ2 m̃

Note that such a boost will transform the curvature tensors at p as follows:

exp(τX )(T )b = exp(τb · λ)(T )b. (18)

Now, in relation to the ε-property [10], we have that this boost manifests the limit:

X = X̃ + N.

Furthermore, since K is compact, ||N|| will have a maximum, Nmax, over K so that ||N|| � Nmax;
consequently,

||X − X̃ || � Nmax.

In the VSI case, X̃ = 0, so that X = N and the ε-property implies that the components can be
arbitrary close to flat space.

Consider now the action of the boost Bτ . The vector N is a direct sum of tensorial objects
implying that, since it must be of type III, or simpler, there is an a > 0 such that

||Bτ (N)|| � e−aτ ||N|| � e−aτ Nmax.

We can assume that the neighbourhood U is a coordinate patch and map U into R
4 with p at

the origin. Then we can assume that the compact neighbourhood K ⊂ R
4. We now consider

the X = N as a set of differential equations on U as follows:
Express the components of the Riemann tensor (relative to the adapted frame) in terms of

the spin coefficients �
μ
αβ in the standard way:

Rμ
αβν = ∂ν

(
�

μ
αβ

) − ∂β

(
�μ

αν

) + (� � �)
μ
αβν , (19)

4 In the sense of [16], the number of independent Cartan invariants does not change at p.
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where � � � indicates the quadratic terms in the spin coefficients. Similarly, the covariant
derivatives can also be expressed using the spin coefficients

∇R = ∇R(∂∂�, ∂�,�), ∇∇R = ∇∇R(∂∂∂�, ∂∂�, ∂�,�), etc.

We thus replace the left-hand side of X = N with a PDE

Pde[�] = N. (20)

The relation between the frame ∂α and � is given via

[∂α, ∂β] = −(�
μ
αβ − �

μ
βα)∂μ. (21)

Equations (20) and (21) provide us with a set of PDEs and integrability conditions over the
neighbourhood U in terms of the functions �

μ
αβ . We can now consider the ‘boosted’ set of

equations

Pde[�̂] = Bτ (N) (22)

over U . This gives us a one-parameter family of equations. Since Bτ (N) can be made arbitrary
small, this can be seen as a perturbation of a PDE describing flat space. Let us now consider
the Cartan equivalence problem [17] which will give us a more direct perturbation. Let us
make sure that we consider sufficient number of derivatives in X to satisfy the Cartan bound.
Consider the point p. For every τ there is an inverse boost so that the Bτ (N) is mapped onto
X = N. Considering the boost that leaves the point p fixed, the equivalence principle implies
that there exists a diffeomorphism φτ that maps K onto φτ (K), leaving p fixed, and induces
(through φ∗

τ ) the boost Bτ acting on the tangent space at p. The diffeomorphism does not
necessarily map K into itself. Consider an increasing sequence τn such that τn → ∞, and
define Kn = φτn (K), which is compact. In particular, Kn is closed and p ∈ Kn. This implies
further that p ∈ K ∩ (⋂

n Kn
)

(and closed).
Note that the set K ∩ (

⋂
n Kn) may not be a neighbourhood, indeed, in many cases it

may be a single line. Thus, the limiting procedure may result in a mere pointwise result at p
causing the functions �̂ to not necessarily have the right functional dependence in the limit
τ → ∞ over K. Thus in the limit we should only consider the value of � restricted to the set
K ∩ (⋂

n Kn
)
. On the other hand, for τn finite, the result applies to a neighbourhood.

It is thus more appropriate to consider the following perturbed PDE:

Pde[�̂] = Bτ (φ
∗
τ (N)), (23)

where φ∗(N) should be thought of as acting on the components of N as functions; i.e. if Na...b

is a component, then φ∗(Na...b) = Na...b ◦ φ [17].
Assuming we are considering a certain metric g, we know that there exists a set of

equations to this PDE. In particular, there is a continuous family of solutions �̂(τ ) which
solves equation (22). Moreover, over the compact region Kn, since this is a perturbed PDE
which implies that it satisfies a Cauchy property, namely there exists an increasing sequence
τn → ∞, such that for any ε > 0, there exists M such that

n, m � M ⇒ ||�̂(τn) − �̂(τm)|| < ε. (24)

The diffeomorphism φτ acts as follows on the connection [16, 17]: if � is the connection
form, then φ̃∗

τ � = �̂, where φ̃τ is the induced transformation on the frame bundle and �̂ is
the transformed connection, we obtain over U :

�̂
μ
αβ = (M−1)μν

[
Mγ

αφ∗
t (�ν

γ δ ) + Mγ

α,δ

]
Mδ

β .

Furthermore, since p = φτ (p), we have �
μ
γδ = φ∗

τ (�ν
γ δ ) at p. Moreover, in the aforementioned

frame, we have M1
1,μ = −M2

2,μ, M3
3,μ = −M4

4,μ, while all other components of Mγ

α,δ are
zero.
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Equation (24) implies that the connection coefficients can be chosen to be arbitrary close to
flat space. Componentwise we have |�̂α

βγ (τn)−�̂α
βγ (τm)| < ε. Since some of the components

of the connection transforms as tensor components under the boost, if the component has boost
weight b, we obtain∣∣�̂α

βγ (τn) − �̂α
βγ (τm)

∣∣ = ∣∣ exp[b · λτn]�α
βγ − exp[b · λτm]�α

βγ

∣∣
= exp[b · λτn]

∣∣�α
βγ − exp[b · λ(τm − τn)]�

α
βγ

∣∣
< ε. (25)

If we fix m, then it is clear that

b · λ � 0, or �α
βγ = 0 for b · λ > 0.

This is valid for an arbitrary point p ∈ U ; hence, it is valid everywhere in the neighbourhood.
We can now consider the connection coefficients that transform tensorially, and consider

the various cases. By a simple geometric argument, we obtain

(1) κ̃ = κ = ρ̃ = ρ = σ̃ = σ = 0, and hence Kundt; or
(2) κ̃ = ρ̃ = σ̃ = τ̃ = 0, and hence, a Walker space possessing an invariant null 2-plane.

3.3.2. The direct method. Before we embark on the direct method let us remind ourselves
of some useful identities and formulae. The covariant derivative of a tensor T has the formal
structure

∇T = ∂T −
∑

� � T, (26)

where the ∂T indicates the partial derivative piece, and the � � T indicates the algebraic piece
where � are the spin coefficients. Furthermore, also useful are the second Bianchi identity and
the generalized Ricci identity

Rab(cd;e) = 0, (27)

[∇a,∇b] Tc1...ck =
k∑

i=1

Tc1...d...ck R
d

ciab, (28)

which enable us to permute covariant derivatives up to algebraic terms. We note that all the
algebraic terms are of lower order in derivatives of T .

Assuming that T fulfils the NG-property, there are therefore two potential ways the
covariant derivative ∇T of the tensor can violate the NG-property; namely through the
components of the partial derivatives propagating the components of T across the b · λ = 0
line in boost-weight space, and the algebraic terms. At every level of covariant derivatives,
we can thus first permute the derivatives as much as possible, and then impose the necessary
conditions on the remaining components. Thus we ensure that the NG-property is valid at
every lower derivative so that when using the Ricci identity, it does not involve NG-property
breaking terms through the algebraic piece.

Let us first split the Riemann tensor into its irreducible parts R, Sab, W +
abcd and W −

abcd . For
a VSI space, R = 0 so the trace-free Ricci tensor, Sab, is equal to the Ricci tensor Sab = Rab.

Then consider a non-zero Ricci tensor. By considering RacRc
b or higher powers if necessary,

we can assume the Ricci tensor is of the form (brackets mean symmetrization)

R = a�� + b(�m̃) + cm̃m̃. (29)

We need to compute the derivatives ∇ (k)Rab. The various cases depend on the components a, b
and c and let us consider these in turn.

10



ac �= 0. Here, we can boost so that a and c are both constants. Computing first ∇aR, some
of the components are proportional to

(−1, 2) : aσ̃ , (0, 1) : aκ̃,

(1, 0) : cσ̃ , (2,−1) : cκ̃;
consequently, by the NG-property, κ̃ = σ̃ = 0. Computing ∇b∇aR we obtain similarly
ρ̃ = τ̃ = 0. Thus, this is a Walker space.

ab �= 0, c = 0. Here, we can boost so that a and b are both constants. Considering the first
derivative, ∇aR, we obtain (among others) the components

(−1, 2) : aσ̃ , (0, 1) : aκ̃,

(0, 1) : bσ̃ , (1, 0) : bκ̃, (0,−1) : bρ̃;
hence, there are two possibilities κ̃ = ρ̃ = 0, or κ̃ = σ̃ = 0. By computing ∇b∇aR, we quickly
obtain ρ̃ = 0. Thus we need to consider the two cases σ̃ �= 0, and σ̃ = 0.

From the second derivative, and Law’s equation (3.4) in [4], we obtain the conditions

σ̃ ρ = σ̃ σ = σ̃ κ = τ̃ κ = τ σ̃ + ρτ̃ = 0. (30)

If σ̃ �= 0, then ρ = κ = σ = τ = 0, and consequently Walker.
Assume then σ̃ = 0. If τ̃ = 0, then the space is again Walker. Left to consider is therefore

τ̃ �= 0 and κ̃ = σ̃ = ρ̃ = 0. From the equations above, we thus obtain κ = ρ = 0 also. If
σ = 0, then the space is Kundt. We need thus to check if σ �= 0. By computing ∇ (3)R and
∇ (4)R, we obtain numerous constraints from the requiring the NG-property. Most of these are
the same as the Bianchi identity. Imposing these and some algebraic conditions on the spin
coefficients, we obtain the following b.w. (0, 0)-component to be

R22;4311 = 12τ̃ 3σb.

By the NG-property this component has to vanish which is contradictory to the assumptions
given above. Hence, the space has to be either Walker or Kundt.

b �= 0, a = c = 0. Here, we note that there is a discrete symmetry which flips boost-weight
space with respect to the line b1 − b2 = 0. Using this symmetry, the case here essentially
reduces to the case ab �= 0 above. Thus also here the NG-property implies Walker or Kundt.

a �= 0, b = c = 0. Lastly we need to consider the case when only a is non-zero. First we
look at ∇ (2)R. Using the symmetry (b1, b2) �→ (b1,−b2) we obtain the conditions

κ̃ = σ̃ = ρ̃ = ρ = 0. (31)

In addition, the vanishing of the (0, 0) components implies κτ̃ = 0. If τ̃ = 0, then the space
is Walker. Assume thus τ̃ �= 0, implying κ = 0.

In addition, the Bianchi identities need to be fulfilled. Imposing these and computing the
symmetric 2-tensor � Rab, we note that this is of the following form:

� R = A�� + B(�m̃) + C�̃m. (32)

If B or C is non-zero, then the previous computations imply that, by considering possibly
four more derivatives, its Walker or Kundt. The requirements B = C = 0 impose additional
conditions on the spin coefficients. Eventually, after possibly four more derivatives, this also
implies its Walker or Kundt.
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The Weyl tensor. Let us now consider the self-dual (or anti-self-dual by orientation reversion)
Weyl tensor. This needs to be of type III, N, or O, see [7]. If it is of type III, then (W+)2 as a
bivector operator is of type N. Consider thus the case of type N. By discrete symmetries, we
can thus assume that (in a shorthand notation)

W + = φ(� ∧ m)(� ∧ m). (33)

We note that the discrete symmetry that acts on boost-weight space as (b1, b2) �→ (−b2,−b1)

leaves W + invariant. By computing the second covariant derivative, ∇b∇aW +, we pick out the
following components (including their boost weights):

nanb(m̃ ∧ m)(m̃ ∧ m) : ∝ κ2, (2, 0)

m̃am̃b(m̃ ∧ m)(� ∧ n) : ∝ σ 2, (0,−2)

mamb(m̃ ∧ m)(m̃ ∧ m) : ∝ ρ2, (0, 2).

By the NG-property of W + and ∇ (2)W +, and using the remaining discrete symmetry, we thus
obtain the following cases:

κ = σ = 0, or κ = ρ = 0.

Consider first κ = σ = 0. Computing ∇d∇c∇b∇aW +, in particular the component
mambmcmd(m̃ ∧ n)(m̃ ∧ n) ∝ ρ4 of boost weight (2, 2). Again, utilizing the remaining
discrete symmetry, this must be zero. Thus, κ = σ = ρ = 0.

Hence, we are left with κ = ρ = 0, while σ need not be zero. Assume thus that σ �= 0.
Using the second derivative once again, but this time the components

m̃anb(m ∧ n)(� ∧ m) ∝ κ̃σ, (1, 1)

m̃am̃b(m ∧ n)(� ∧ m) ∝ ρ̃σ, (0, 0); (34)

thus, κ̃ = ρ̃ = 0. From Law’s equation (3.4a) in [4], it now implies that σ̃ σ = 0; hence,
σ̃ = 0.

Thus we are in the situation where we obtain one of the following cases:

(1) κ = κ̃ = ρ = ρ̃ = σ̃ = 0, σ �= 0.
(2) κ = ρ = σ = 0.

It is important here that we keep track of the components of the lower derivatives.
Consider next the first case where σ �= 0. Then using the fourth derivative, we obtain the

component

m̃amb�cm̃d (m̃ ∧ n)(m̃ ∧ m) ∝ σ 2τ̃ 2

of boost weight (0,0); consequently, τ̃ = 0 and thus all the tilded variables κ̃ = ρ̃ = σ̃ = τ̃ =
0, and this is thus a Walker space.

We are left to consider the second case where κ = ρ = σ = 0. If τ = 0, we have a
Walker space. Assume thus that τ �= 0. By computing the fourth derivative, we note that one
of the components

m̃am̃b�c�d(� ∧ n)(� ∧ n) ∝ τ 4.

This component has boost weight (−2,−2) and has the same boost weight as W + under
the exchange of tilded spin coefficients with non-tilded ones. After a lengthy computation,
sometimes needing to go to eighth order, we obtain that κ̃ = σ̃ = ρ̃ = 0 (analogously as
above). Thus, implying that this is a Kundt space.

If W + but W − �= 0, then we can consider the discrete symmetry which interchanges
tilded spin coefficients with non-tilded ones: x̃ ↔ x, where x is the spin coefficients. Then an

12



identical computation as above implies that the space is either Walker with an invariant null
2-plane, or Kundt. The theorem follows then from these considerations.

Although the argument involves eight derivatives, it is suspected that the number of
derivatives needed is less than this. In particular, no examples of spaces which are VSIk but
not VSIk+1 are known for k > 3. The example equation (1) is VSI3 but not VSI4; however, this
is a Walker metric which is a restricted class. This example, and an explanation of how this
example can be extended to other similar examples, will be given later. However, a question
still remains: are there examples of non-Walker metrics which are VSIk but not VSIk+1 for
k > 3?

3.4. Neutral VSI metrics

3.4.1. 4D neutral case: Kundt metrics. Using

ds2 = 2(�n − mm̃), (35)

we will consider the pseudo-Riemannian Kundt case for which the transverse space is 2D.
Requiring the N-property, this must be flat space (see [8, 15]). Therefore, we can write

−2mm̃ = 2 dU dU = −dT 2 + dX2.

There are two classes of 4D Neutral Kundt VSI metrics; they can be written as [8, 15]

ds2 = 2 du(dv + H du + Wμ1 dxμ1 ) + 2 dU dV, (36)

where

Null case:

Wμ1 dxμ1 = vW (1)
U (u,U ) dU + W (0)

U (u,U,V ) dU + W (0)
V (u,U,V ) dV,

H = vH (1)(u,U,V ) + H (0)(u,U,V ). (37)

Spacelike/timelike case:

Wμ1 dxμ1 = vW (1) dX + W (0)
T (u, T, X ) dT + W (0)

X (u, T, X ) dX,

H = v2

8
(W (1))2 + vH (1)(u, T, X ) + H (0)(u, T, X ), (38)

and

W (1) = −2ε

X
, where ε = 0, 1. (39)

We note that these possess an invariant null line if W (1) = 0, and a 2D invariant null plane if
W (0)

V = 0 for the null case5.

3.4.2. 4D neutral signature: Walker metrics. This class of metrics provides us with a new
set of VSI metrics which have not been considered before. This is due to the fact that these
VSI metrics do not in general possess the N-property, but rather the weaker requirement of the
NG-property.

Using the following Walker form:

ds2 = 2 du(dv + A du + C dU ) + 2 dU (dV + B dU ), (40)

the result can be summarized in the following theorem:

5 In order for the spacelike/timelike case to possess an invariant null 2-plane, it needs to be a special case of the null
case.
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Theorem 3.3. Consider the metric (40), where

A = vA1(u,U ) + VA2(u,U ) + A0(u,U ),

B = V B1(u, v,U ) + B0(u, v,U )

C = C1(u, v,U ) + VC2(u,U ) + C0(u,U ). (41)

Then the following holds:

(1) The metric is a VSI1 space. If

A2
∂2B1

∂v2
�= 0, or A2

∂3C1

∂v3
�= 0,

then it is not VSI2.
(2) If

B1 = vB11(u,U ) + B10(u,U )

C1 = v2C12(u,U ) + vC11(u,U ) + C10(u,U ), (42)

then it is a VSI3 space. If in addition,

A2
∂4B0

∂v4
�= 0,

then it is not VSI4.
(3) If equation (42) holds and, in addition

B0 = v3B03(u,U ) + v2B02(u,U ) + vB01(u,U ) + B00(u,U ), (43)

then the space is VSI.

The proof is that this result is partly by direct computation of the curvature tensors and
requiring NG-property. Let us indicate how the proof goes and in the process we elude to how
these can be generalized.

Starting with the Walker form equation (40) we can compute the Riemann tensor. We note
that the metric gives Riemann components in the lower triangular part of boost-weight space.
Let us for short use notation such that the basis 1-forms are

{ω1,ω2,ω3,ω4} = {du, dv + A du + C dU, dU, dV + B dU}. (44)

Then a component of a tensor would have the boost weight as follows (indices downstairs):

(b1, b2) = (#(1) − #(2), #(3) − #(4));
i.e. the component R1223, say, will have boost weight (−1, 1).

For the Walker metric the components of interest in relation to the NG-property are

(2,−2) : R1414 = −B,vv, (45)

(1,−1) : R1214 = − 1
2C,vv, R1434 = −B,vV (46)

(0, 0) : R1212 = −A,vv, R1234 = − 1
2C,vV R3434 = −B,VV (47)

(−1, 1) : R1223 = A,vV , R2334 = 1
2C,VV , (48)

(−2, 2) : R2323 = −A,VV , (49)

while (R)(b1,b2 ) = 0 for b1 + b2 > 0. Thus, the Riemann tensor automatically satisfies the
SG

1 -property. In order for it to satisfy the NG-property, we can set the components (2,−2),
(1,−1) and (0, 0) to zero. Solving these equations gives the functional dependences as given

14



in (41). This is thus a VSI0 space. Indeed, by direct computation we note that ∇(Riemann)

satisfies the NG-property also, hence, it is in addition VSI1.
Assume then that (41) is satisfied. Regarding the ∇ (2)(Riemann) we note that this does

not necessarily satisfy the NG-property (thus not VSI2). One such non-vanishing scalar is
Rabcd;e f Rabcd;e f . However, componentwise, the critical components are

R1424;33 = A2(B1),vv, R2324;11 = 1
2 A2(2(B1),vv − (C1),vvv ).

These give rise to the conditions mentioned and equating these to zero gives the solutions (42).
Satisfying equation (42) will now give the NG-property and thus VSI2; indeed, VSI3 by direct
computation.

Thus assume (41) and (42) are satisfied. Computing Rabcd;e f ghRabcd;e f gh, we obtain

Rabcd;e f ghRabcd;e f gh = 576[(B0),vvvv]2A4
2.

Hence, it is not VSI4 if A2(B0),vvvv �= 0. Requiring that (B0),vvvv = 0 gives the solution in (43)
and by inspection, ∇ (4)(Riemann) satisfies the NG-property. This is sufficient for the metric
to be VSI.

We note that this proof also provides us with examples of metrics being VSI3 but not
VSI4. For example, if (41) and (42) are satisfied, but A2, (B0),vvvv �= 0, then it is VSI3 but not
VSI4. The example given in the introduction, equation (1) is perhaps the simplest member of
this family.

Similarly, metrics being VSI1 but not VSI2 can be found analogously; as a simple set of
examples of metrics of this kind

ds2 = 2 du(dv + V du + bv3 dU ) + 2 dU (dV + aVv2 dU ), (50)

where a and b are constants, or functions depending on (u,U ), not both being zero.

4. Discussion

In this paper we have studied pseudo-Riemannian metrics with the degenerate curvature
structure in the sense that they are not characterized by their polynomial curvature invariants.
In particular, we related these to the SG

1 -property. Specifically, we have three main results:

(1) In a pseudo-Riemannian space of arbitrary dimension and signature, a space (tensor) not
characterized by its polynomial invariants possesses the SG

1 -property.
(2) In the special case where the invariants vanish, the space (tensor) must possess the

NG-property.
(3) In 4D neutral signature, a VSI space is either Kundt or a Walker space.

Indeed, in the latter case we constructed a new family of Walker VSI spaces. This shows
that in the pseudo-Riemannian case, these Walker metrics can provide new examples of
metrics not being characterized by their invariants. Indeed, using the ideas given in this paper,
examples of VSI Walker metrics can be given in any signature (k, k + m) where k � 2. As an
example, the following is a neutral VSI Walker metric (with a 3D invariant null space) in six
dimensions:

ds2 = 2 du(dv + V du) + 2 dU (dV + V dU ) + 2 dU (dV + v7 dU ).

In future work, pseudo-Riemannian VSI metrics will be studied further and the ultimate aim
is a full classification of VSI metrics in any dimension and signature.
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