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ABSTRACT 

SNJ uses chemical precipitation method to treat domestic wastewater. With regard to organic removal 

requirement; chemical treatment alone does not seem to be sufficient at SNJ/IVAR wastewater 

plant. This thesis is to assess the performance of the aerobic biological treatment on the 

wastewater of the plant in order to upgrade the existing plant to include biological treatment. The 

work was to conduct a laboratory scale SBR test for determination of the wastewater 

characteristics and the effect of temperature on the biological treatment. In addition to theoretical 

and experimental studies, the data was applied with a mathematical model of activated sludge 

used in modeling and design of biological treatment. 
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1 INTRODUCTION 

In Stavanger, the Sentralrenseanlegg Nord-Jæren (SNJ) wastewater treatment plant (WWTP) is one of the 

largest wastewater plants in Norway. SNJ uses chemical precipitation method to treat domestic 

wastewater of 220000 pe (Asplan Viak, 2010) from the communities around Stavanger. In Norway, this 

method was originally intended for removal of phosphorus (P) and suspended solids (SS). The reason of 

applying chemical P-removal was often referred to as being the characteristics of Norwegian wastewater 

with dilute, low temperature and with main particulates organics fraction (Ødegaard, 1995 cited by 

Ydstebø, 2005). 

After implementation of EU regulations, regulations on wastewater treatment set the requirements 

according to secondary treatment. Subsequently, focus has been shifted from removal of phosphorus and 

SS to removal of organic material (BOD5, COD). 

The treatment method applied by SNJ does not remove much of the soluble BOD5. Therefore, the plant 

sometimes has difficulties to meet the EU secondary effluent discharge requirements which are: 

- Maximum 25 mg/l BOD5 and 125 mg/l COD  

- Minimum 75 % BOD5 and 70 % COD removal  

The present project is an investigation of an alternative method for the chemical treatment in order to 

improve the BOD removal at SNJ plant to meet the discharge permits. Biological wastewater treatment is 

the most common method used for removal of dissolved BOD and was tested in this project 

One aspect that is important for biological wastewater treatment is the effect of temperature, as the 

temperature in wastewater at SNJ can reach low values during winter such as 4-5ºC.  

The objective of the study is to investigate the efficiency of substrate removal in biological treatment on 

the wastewater of the SNJ plant, based on theoretical and experimental studies. This will provide 

information for design of a better and acceptable treatment alternative for the plant.  

The study aims to provide information on process rates and how temperature will affect the process rates. 

The data will be valuable for dynamic modeling with the software Aquasim which will issue information 

important for the recommendations of the design of the plant. 
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2 BACKGROUND AND LITTERATURE REVIEW 

2.1 THE SNJ PLANT 

Sentralrenseanlegg Nord-Jæren (SNJ) is located in Merkjavik in Randaberg municipality about 10 

km north of Stavanger. It has been in operation since 1992. 

2.1.1 Characteristics of the plant 

The SNJ plant treats domestic wastewater from Randaberg, Stavanger, Sola, Gjesdal and 

Sandnes municipalities. The treatment is localized and constructed in the core of mountains as in 

cavern sites.  

The treated wastewater is discharged to Håsteinfjorden.  

The treatment plant North Jæren (SNJ) comprises an 8 km tunnel from Bjergsted in Stavanger, 

and a 4 km tunnel to discharge to Håsteinfjorden.  

The inlet flow consists of wastewater basically from households with contribution from 

infiltration flow (surface water and infiltration of groundwater and water leaks) and also small 

part from industrial wastewater. 

Generally, the wastewater from households is estimated around 200L / p.d (doc. Asplan viak)  

The specific flows in 2009 corresponded to a total of 450 L / p.d, of which 250 L/ p d is the 

amount of industrial wastewater and infiltration water. 

 

The processes (figure 2.1) involved in the sewage treatment at SNJ consist of:  

Screening, chemical precipitation with ferric chloride, flocculation, sedimentation and treatment 

of sludge with anaerobic digestion. 

- Screening:  

The pre-treatment consists of mechanical screening and trapping of sand materials. In 

screening and sand trapping, coarse and large particles are separated from the wastewater 

with screens of 3mm opening while the sand is removed in grit chambers. 

- Storage of chemical additives: 



12 

 

The chemical precipitation was originally based on ferric chloride and seawater. Ferric 

chloride is stored in 6 tanks of ca.70m
3
 volume each. At present, seawater is not in use. 

The ferric chloride and seawater can be added at the inlet of sand trap basin (figure 2.2). The 

dosage of ferric chloride is controlled by the incoming flow, the inlet pH and turbidity.  

Addition of the chemical can also be made separately in the mixing chamber or flocculation 

chamber upstream of the sedimentation basin (figure 2.2) as the chemicals can react very 

quickly with the contaminants in the wastewater especially when mixed and thus form small 

particles. 

- Flocculation:  

In the flocculation chamber, smaller particles is grown to larger particles enhanced by mixing 

by bounding to each other forming flocs that will settle more rapid in the sedimentation basin 

compared to smaller particles. 

- Sedimentation:  

The sedimentation basins are located in 4 halls. Each hall consists of 2 parallel basins of 7.0 

m wide and 67.6m long (surface: 473.2 m
2
) and with water depth of 4.8m. The clarified 

water flows into effluent weirs to a channel between the 2 parallel basins and to the effluent 

pipe. 

- Sludge disposal:  

The sludge settled at the bottom of sedimentation basin is pumped out to the buffer tank in 

the sludge treatment plant. The sludge has a high solid content (TS= 5.0 to 5.5%). The 

floating materials are pumped either to the sludge treatment plant or withdrawn and 

dewatered before transfer to a sludge disposal facility. 

 

 

 Figure 2.1  A simple schema of the treatment process at the SNJ plant 

screens 
Grit 

chamber 
flocculation sedimentation 

Sludge 

disposal 
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                Figure 2.2  Process diagram of wastewater treatment at SNJ plant (Doc. IVAR) 

2.1.2 Capacity of the plant 

The plant is designed for 240,000 population equivalents (pe) (doc. IVAR). The estimated load 

was around 218300 pe in 2008, 221000 pe in 2009 and around 390000 pe previewed for 2050 

(Asplan Viak, 2010). 

Table 2.1 shows the number of population estimated in the communities from where the 

wastewater is generated. 

Table 2.1 Number of populations in the municipalities  

 

 

 

 

 

 

Source: Asplan Viak, 2010 

Year 2008 2009 2050

Sandnes 63000 64000 141800

Stavanger 121000 122700 180000

Gjesdal 3243 3303 17000

Sola 21446 21895 38000

Randaberg 9622 9774 15000

Sum population 218311 221672 391800
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Sewage treatment plant 

The actual design for the system at SNJ are:   

Qdim = 1500 l/s 

Qmax,dim= 2500 l/s 

Qmax= 4000 l/s 

 

The Annual total flow reported by Asplan Viak (2010) was estimated to ca.37million 

m
3
 in 2008 and 2009. 

 

The forecast design flow rates  

In 2050, the number of population in the municipalities related to the plant is 

expected to be ca.392000 (table 2.1). This estimation can be approximated to 400000 

(Asplan Viak, 2010) which is an increase of 80% with regard to number of population 

in 2009.  

With the number of residents (and certainly including visitors) previewed for 2050, 

the flowrate of the sewage treatment will be expected to increase up to 3.8 m
3
/s (3800 

l/s) and 5.2 m
3
/s (5200 l/s) respectively for design flowrate and the maximum 

flowrate (Asplan Viak, 2010). 

Qdim(2050) = 2100 l/s 

Qmax,dim (2050) = 3800 l/s 

Qmax (2050) = 5200 l/s 

This increased load has to be considered for the alternative of any new design of the 

plant in the future.  

 

In estimation of design capacity in 2050, the load on the plant will correspond to 

500000 pe (Asplan Viak, 2010).  

The organic loading can be estimated as: 500.000 pe x 0.06kg BOD5/pe.d = 30.000kg 

BOD5/day for capacity in 2050.  
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Sludge treatment 

The capacity of the plant for sludge treatment is summarized as:  

Sludge production: 25t TS/day 

Organic loading: 15t TS/day 

Hydraulic loading: 500m
3
/day 

Sludge dewatering: 18t TS/day 

 

2.2  OVERVIEW ON WASTEWATER TREATMENT 

2.2.1 Chemical treatment 

According to Metcalf and Eddy (1991) chemical precipitation often in combination with other type of 

treatment was used to enhance the degree of suspended solids and BOD removal for wastewater with 

large variations in the concentration. Since about 1970, the need to provide more complete removal of 

organic compounds and nutrients such as nitrogen and phosphorus in wastewater has brought to renewed 

interest in chemical precipitation. Today, it is most used to enhance phosphorus removal. 

2.2.1.1  Chemical removal performance 

The degree of clarification obtained depends on the quantity of chemicals used and the care with which 

the process is controlled (Metcalf and Eddy, 1991).   

Removal of 80 to 90% of suspended solids yields removal of: 

- 40-70% BOD5  

- 30-60% COD 

- 80-90% of bacteria can be removed from chemical precipitation (Metcalf and Eddy,1991)  

When sedimentation only is used (i.e.: without chemical addition), the removal efficiency is lower: 

- about 50-70% of TS matter  

- 30-40% organic matter (Metcalf and Eddy, 1991) 

If we can compare that with the EU secondary treatment requirements of discharge, chemical 

precipitation does not fulfill the requirement of secondary effluent before discharge which is:  

- Minimum 75 % BOD5 and 70 % COD removal  
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Chemical precipitation involves addition of chemicals or coagulants to alter the physical state of dissolved 

and suspended matters for formation of aggregates and thereafter to facilitate their removal by 

sedimentation. 

Colloidal and small particles settle very slowly and it will be very expensive to let them settle by 

themselves. Coagulation and flocculation are mostly used to remove settleable and non-settleable solids 

and also nutrients (nitrogen, phosphorus). 

2.2.1.2  Ferric chloride as coagulants 

The ability of an agent to coagulate water is related to its charge. The multivalent characteristic of cations 

in the coagulants strongly attracts them to charged colloidal particles and their relative insolubility 

ensures their removal to a high degree (Droste, 1997). 

There are different coagulant salts that can be used in chemical precipitation. At the SNJ plant, they use 

iron salts (ferric-chloride: FeCl3).  

The characteristic of ferric chloride is to react with alkalinity or phosphates to form insoluble iron salts. 

The chemical reaction for the ferric coagulants, FeCl3, involves precipitations in the form of ferric 

hydroxide. Complexes can be then formed (Sincero, 2003) that reacts with suspended solids, colloids and 

also phosphorus for the purpose of phosphorus removal. 

The hydroxide can be provided either by the presence of calcium bicarbonate in the wastewater or by 

adding lime: 

                                          

           

                                     

For phosphorus removal, the basic reaction involved in precipitation of phosphorous and iron is shown 

below (Metcalf and Eddy, 1991): 

          
               

This reaction is just simple reaction as there are many competing reactions involved in the wastewater. 

Thus, this cannot be directly used for calculation of chemical dosages. Dosage should be done on the 

basis of a bench-scale test.  
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The complex FePO4 or Fe(OH)3 when produced are found in the sludge composition. 

2.2.1.3  Effect of pH 

pH has an effect on the efficiency of the precipitation reactions and ferric salts work best in pH range of 

4.5-5.5 (Droste, 1997). 

Metcalf and Eddy (1991) reported that theoretically the minimum solubility of FePO4 is at pH 5.3 (figure 

2.3). But practically, they have yielded good phosphorous removal in the range of 5.5 to 7.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Concentration of ferric phosphate in equilibrium with soluble phosphorus and as function of 

pH  (Metcalf and Eddy, 1991) 

In Figure 2.3, the solid lines demarcate the concentration of residual soluble phosphate after ferric 

phosphate precipitation. Pure ferric phosphate is precipitated inside the solid lines and mixed complex 

polynuclear species are formed outside toward higher and lower pH values (dashed lines). 

2.2.1.4  Influence of temperature 

For both iron and alum salts, it was found that a constant pH over temperature range of 5-20
o
C produced 

the best coagulation-flocculation results (Droste, 1997). Thus, performance decreases with cold 

temperatures (< 5
o
C). 
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Coagulants such as iron salts are often added to improve solid/liquid separation (Droste, 1997). 

Coagulants enhance the removal of solids and nutrients from wastewater. Nevertheless, they are 

inadequate to remove dissolved BOD and this is why biological treatment is needed at the SNJ plant to 

improve their effluent quality. 

2.2.2  Biological treatment 

The major objective in most biological treatment processes is the reduction of organic content 

(carbonaceous BOD) (Metcalf and Eddy, 1991) and in some cases removal of nutrients (N, P).  

Biological treatment uses microorganisms which have ability to decompose dissolved and colloidal 

organic matters. Oxygen is supplied to the system to facilitate the degradation of organic compounds. 

The most common form of biological treatment is activated sludge treatment that is based on 

microorganisms in suspension. Another system is biofilms that are based on microorganisms growing on 

surfaces. 

2.2.2.1  The Activated Sludge process 

The activated sludge process is used to improve the BOD removal of wastewater, by supplying enough 

oxygen and nutrients for the degradation of organic compounds (BOD).  

Conventional activated sludge is composed of a bioreactor where bacteria transform the biodegradable 

substrate in the wastewater (organic compounds) into new cells in their metabolism. A clarifier is used to 

collect the sludge where the operation consists of the separation of the biomass and suspended solids from 

the wastewater by gravity settling. A fraction of the sludge is returned back to the aeration tank to 

increase the biomass concentration. This allows for reducing the required bioreactor volume and the 

retention time. 

2.2.2.2  Characteristics of aerobic activated sludge 

The biodegradable organic compounds serve as substrate for aerobic microorganisms. The substrate or 

electron donor is oxidized into CO2, H2O. Oxygen is used as electron acceptor resulting in energy 

generation for growth of microorganisms.  

The growth rate is influenced by chemical and physical factors and to favour efficient substrate removal, 

i.e: high rates of growth, optimum requirements for growth must be provided.  
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The organic substrate serves both as energy source and carbon source. In addition, other nutrients such as 

nitrogen, phosphorous and others are also important, in the amounts shown in Table 2.2.  

Table 2.2  Cell composition of microorganisms 

Percent of dry weight 

Element Range Typical 

Carbon 45-55 50 

Oxygen 16-22 20 

Nitrogen 12-16 14 

Hydrogen 7-10 8 

Phosphorus 2-5 3 

Sulphur 0,8-1,5 1 

Potassium 0,8-1,5 1 

Sodium 0,5-2,0 1 

Calcium 0,4-0,7 0,5 

Magnesium 0,4-0,7 0,5 

Chlorine 0,4-0,7 0,5 

Iron 0,1-0,4 0,2 

Others 0,2-0,5 0,3 

Source: Metcalf and Eddy, 1991 

In domestic wastewater, nutrients such as N, P are supposed to be present in excess. However, in some 

industrial wastewaters with high concentration of BOD; N and P may be absent and must be added. 

Temperature and pH are primary environmental variables. The optimum pH is around 6.5 to 8.5 (Water 

Environment Federation, 1994).  

2.2.2.3  Influence of temperature 

The temperature dependence of the biological reaction-rate constants is very important in assessing the 

overall efficiency of a biological treatment process. Temperature has significant influence on the reaction 

in the biological process and the biomass growth rate.  

Higher temperature increases the rate of reaction and thus the growth rate increases. The growth rate of 

microorganism doubles approximately at each 10
o
C up to a maximum temperature (Ydstebø, lecture 

2008).  

At low temperatures, growth is slow and most organisms found in aeration tank of activated sludge work 

best at moderate temperature (ca. 10 to 40ºC) (Water Environment Federation, 1994), 



20 

 

The effect of T on the reaction rate of a biological process is usually expressed as:  

                               
            (eq. 2.1) 

Where 

 

θ is a constant (temperature coefficient) 

k_20 and k_T are reaction rate at temperature 20 ºC and T and k can be µ_max or k_d 

For activated sludge, a range from 1-1.08 has been reported for the temperature activity coefficients (Θ)  

(Metcalf and Eddy, 1991). 

Specifically, for heterotrophic organisms: θ can be 1.07 for growth correction (µ_max) and 1.03 for decay 

correction (k_d) (Ydstebø, lectures 2009) 

2.2.2.4  Removal efficiency 

The removal efficiency varies according to the type of activated sludge used. It was reported for example 

that a conventional AS with plug-flow system, a continuous-flow stirred-tank reactor system and a SRB 

with intermittent flow stirred-tank reactor system can yield a BOD removal of 85-95% (Metcalf and 

Eddy, 1991). 

2.2.2.5  Substrate removal and biomass growth  

Substrate removal and biomass growth are interdependently related and the removal and consumption of 

substrate result in growth of new cells. 

The Monod expression has been found to properly describe growth and substrate removal in many 

different types of biological treatment methods.                                                         

Every substance required by the microorganisms for their growth can limit the growth rate.  

In aerobic growth on organic compounds (COD), O2 or NH3 may limit the growth rate (Ydstebø, lecture 

2009).  

The limiting compound can be determined by using the Monod equation for growth 

                                                                           (eq. 2.2) 

 CK

C

S 


 max


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Where ,  

µ: Specific growth rate (1/d) 

µ_max: Max specific growth rate (1/d) 

Ks: Half saturation constant (mg/l) 

C: Growth limiting compound (mg/l) 

Mass  balance for growth  

Growth:                                   

                                            

                                                 (eq. 2.3) 

To summarize the relations in the growth of biomass and substrate removal: 

Growth:                    
  

  
     

     

    
      (eq. 2.4) 

Yield:                          
  

  
 

  
   

  
   

     (eq. 2.5) 

Substrate removal:    
  

  
  

  

 
 

     

    
 
  

 
       (eq. 2.6) 

Oxygen consumption:  
  

  
      

  

  
      

   

 
    (eq. 2.7) 

X is used instead of VSS because X is referred as viable biomass. And substrate removal depends on the 

active biomass and a given amount of substrate can support only a given amount of active mass when the 

process is operated under starved conditions (Droste, 1997). Inappropriately, VSS can contain a 

significant amount of dead biomass along with active.  

The part of substrate utilised in growth can be termed as growth yield, Y and expressed as the mass of 

organisms produced per mass of substrate removed. 

Substrate is generally expressed in terms of COD, BOD (TOC). COD is the amount of a specified oxidant 

(ex: Cr2O7
2-

) that reacts with the sample. The quantity of oxidant consumed is expressed in terms of its 

oxygen equivalence. Thus, COD can be defined as the chemical oxygen demand which is the amount of 

oxygen needed to complete oxidation of organic compounds in the sample.  



22 

 

BOD or Biochemical Oxygen demand is the amount of oxygen consumed by microorganisms for the 

degradation of organic compounds in the sample over a period of 5 days (BOD5). This involves only the 

biodegradable organic compounds. 

TOC or Total Organic Carbon is the amount of all carbon atoms bonded covalently in the organic 

compounds. 

Based on the rate of their assimilation by organisms, substrates can be classified in 2 kinds: 

- RBCOD, the easily or readily biodegradable which is directly utilised by the organisms as fast as 

they are available, for example: glucose. 

- SBCOD or slowly biodegradable which is assimilated very slowly because hydrolysis is 

necessary and some COD originates from dead organisms as well. Thus, it may also depend on 

how fast the organisms die. 

In an activated sludge, the organisms especially heterotrophs have 3 possibilities of getting the organic 

compounds necessary for their basal metabolism (Jenkins, 1978) 

- Soluble organics from raw sewage, that is the soluble RBCOD 

- Products of hydrolysis from biodegradable suspended organics that is particulate SBCOD 

converted to soluble substrate due to the action of exogenous enzymes. 

- Internal degradation of cell structures referred to as endogenous respiration or decay 

Decay 

Biomass is continuously lost by decay. The endogenous respiration occurs when dead organisms is 

oxidized by the remaining living biomass. This requires oxygen consumption as well. But, a portion of 

the biomass is not oxidised and builds up as endogenous residue (fd). The fraction oxidised is then (1- fd). 

Mass balance for decay  

Decay:              

                                    (eq. 2.8) 

Growth                                         
  

  
            (eq. 2.9) 

Endogenous residue production    
   

  
                (eq. 2.10) 

Oxygen consumption                    
  

  
                    (eq. 2.11) 
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3 MATERIALS AND METHODS 

A laboratory-scale experiment of biological wastewater treatment has been conducted to investigate the 

efficiency of BOD removal from wastewater and to provide information to the possible alternative for the 

actual treatment method on the plant.  

So, to reach to that end, a batch SBR process was used for the lab-scale experiment. SBR can be operated 

to achieve BOD and SS removal, nitrogen reduction and phosphorus removal and it is especially suitable 

for small scale. The laboratory works were operated in cooperation with a master student colleague 

between beginning of January and 31
st
 march. 

3.1  EXPERIMENTAL CONDITIONS 

As during winter, low temperature is an important issue in wastewater treatment and the experiments 

conditions were based on different temperatures:  

- At 4ºC 

- At 8ºC 

- At room temperature, around 20ºC 

The experiment was carried out in a digestor type SBR- Sequential Batch Reactor at 1.5L, 1.5L and 

4.0L volume at 4, 8 and 20ºC respectively.  

As the treatment was aerobic, aeration was used to keep the activated sludge in suspension and supply 

oxygen. The reactor was feed daily.  

Table 3.1 summarizes the experimental conditions and operation 

Table 3.1  Experimental conditions for aerobic reactors/SBR 

Experiment Temperature 

(ºC) 

Volume(l) Oxygen 

(mg/l) 

Feed frequency 

(day) 

period Loadings (l/d) 

Batch 1 20 4 7.5-9.0 2 

1 

1 

3/01/10-26/01/10 

27/01/10-3/02/10 

4/02/10-9/03/10 

1-1.88 

2-3 

2.5 

Batch 2 4 1.5 10-12 1-2 

1 

1 

3/01/10-26/01/10 

27/01/10-1/02/10 

2/02/10-26/02/10 

0.38-0.60 

1.2-1.4 

1.25 

Batch 3 8 1.5  1 4/03/10-18/03/10 1.25 
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Table 3.2 summarizes the aerobic digestion 

Table 3.2 Experiments for decay determination 

Experiment (same batch as 

SBR) 

Temperature (ºC) Period Feed 

Batch 1  

Batch 2 

Batch 3 

20 

4 

8 

10/03/10-26/03/10 

NA 

19/03/10-31/03/10 

0 

 

0 

 

pH was maintained between 7.5 to 8.5.  

At the beginning of the experiments, especially for 20 and 4ºC batchs, the feed volume and the 

wastage were not constant and the feed frequency was every 2 days. When more or less constant 

biomass concentration was attained, constant daily feeding was performed to keep SRT constant and 

have a steady state condition. 

3.2 THE EXPERIMENTAL PROCEDURES 

3.2.1  Experimental  monitoring 

As the system was SBR, the settling was operated in the same batch. The operating cycle includes 

filling, reaction, settling, decanting. 

Raw wastewater was collected every 14 days from the inlet of SNJ plant after preliminary screening. 

As the raw wastewater initially had low BOD concentration, it became difficult to generate sufficient 

sludge. The first cycles of the operation were devoted only to produce sludge and sugar was added to 

enhance the growth. 

The growth of the biomass was initiated first by feeding every 2 days at the beginning of the 

experiment. The sludge was retained and half of the batch volume was decanted at the end of each 

cycle in order not to lose suspended solids in the effluent. 

So, later from February, the feeding mode changed to daily feeding as the reactor contained a more 

concentrated and constant biomass. 

Sludge was removed when the retention time was sufficient for the growth. The retention time, 

however, varied during the experiment probably because of the variation of the wastewater 

characteristics and operation. 
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In fact, the wastewater characteristics were not the same during the experiment, regarding the BOD 

content and the salinity. 

3.2.2  SBR characteristics 

OUR, TSS/VSS, TOC, COD were measured and monitored regularly in order to get data of the 

experiment.  

The OUR was measured daily along with the TSS/VSS and TOC. COD was measured for every raw 

wastewater and non-systematically for some samples of effluent. 

Those measurements were used for assessing kinetic parameters such as the maximum growth rate, 

the decay rate (µmax, kd) as well as the growth yield (Y). 

3.2.3  Determination of decay by aerobic digestion 

After terminating the aerobic activated sludge, the experiment was prolonged with an aerobic 

digestion test for determination of the endogenous respiration rate (decay rate). It was performed with 

the remaining sludge in the reactors for 12 days for 8ºC and 22 days for 20ºC. Digestion of sludge at 

4ºC was not performed, because the temperature controlled room had limited period of 4ºC. 

OUR, TSS/VSS over time and nitrate were analysed to determine the endogenous respiration rates. 

The decay rate was determined graphically with the OUR data or VSS. 

3.2.4 Control 

The pH was controlled and kept in the range of 7.5 and 8.5.  

Usually pH goes down when nitrification occurs. In the 20ºC reactor, nitrification appeared for some 

periods of time.  

Whenever the pH was reduced, a buffer such as sodium bicarbonate (NaHCO3) was added to bring 

the pH back to optimum. 

In our experiment, between 0.6 to 1g of NaHCO3 were added to the mixed liquor to bring up the pH. 

Nutrients, especially nitrogen and phosphorus are vital for bacteria growth. If the wastewater does not 

contain any nutrients, we need to add some. With domestic wastewater, adding nutrients is not 

supposed to be necessary as it already contains sufficient. However, it happened in our experiment 
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that the mixed liquor lacked phosphorous. So, a small amount of pre-prepared macronutrients 

NaH2PO4.2H2O was added to avoid phosphorus limitation. 

3.2.5  Maintenance 

The reactor are cleaned every second week to control biological growth on the walls. The rubber-type 

diffusers used in the aeration system may also have its pores plugged and biofilms growth. 5%HCl 

was used to clean the diffusers and the walls. 

3.3 ANALYTICAL PROCEDURES 

3.3.1 pH, temperature, DO, conductivity  

pH, temperature, dissolved oxygen (DO), conductivity were measured to monitor the condition of the 

digestor. In addition, OUR (Oxygen utilization rate), solids TSS/VSS, TOC, COD, ortho-phosphate 

and nitrate were also analysed in order to follow the activity of bacteria, their growth and substrate 

removal. 

pH, temperature, DO and conductivity were determined with a multimeter WTW multi 340i (for pH, 

oxygen (DO) and conductivity). An oxymeter Cellox 325 was used for recording the dissolved 

oxygen. 

3.3.2  OUR 

OUR is the Oxygen consumption Rate by bacteria. It is determined to monitor the bacteria activity by 

their oxygen consumption. A 250ml erlenmeyer flask is used for OUR measurements. It was applied 

during the daily monitoring of the mixed liquor and during the aerobic digestion tests. 

The erlen meyer flask was filled completely with the mixed liquor. The probe of the oxymeter 

equipped with a rubber stopper is put in the flask. It had to be sealed completely so that no air entered 

the flask. The system is stirred while the reduction of DO is recorded until it reached about 2mg/l. 

OUR measurements were done right after feeding with a high frequency during the beginning of the 

cycle when there was high concentration of substrate. These data was used for calculation of the 

maximum growth rate and to distinguish the readily biodegradable substrate (RBCOD.The liquid 

used for OUR measurements was put back in the reactor. The OUR was determined graphically by 

plotting the DO versus time.   
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3.3.3  TSS/VSS analysis 

Filtration of the samples was performed with Whatman GF/C glass fibre filter with 1um pore size. 

The filter was dried at 105ºC and weighed before filtration and after drying. In a graduated cylinder, 

the sample to be filtered was measured. The volume depends on the amount of solids in the sample. 

The sample settled for a while in the graduated cylinder to make the filtration going faster, as the 

clear liquid on top of cylinder was filtered before the concentrated solids at the bottom. 

TSS were determined after evaporating the solids and filter at 105ºC about 2 hours.  

VSS were determined after burning the solids and filter at 550ºC for 30minutes.  

The filtered liquid was preserved by acidification or freezing for further analysis such as minerals 

analysis, orthophosphate, nitrate, TOC and COD. 

3.3.4  TOC 

TOC was analysed with a Shimadzu 5000 A TOC analyzer. A filtered sample was injected and the 

organic carbon was oxidized catalycally after combustion at 680ºC to CO2 and the measurement was 

based on CO2 measurement by a non-dispersive infrared gas analysis. 

3.3.5  COD analysis 

For COD analysis, the closed Reflux colorimetric method was applied (Clesceri, Greenberg et al. 

1998). In a HACH vial, 7.5 ml solution is prepared with 2.5 ml sample added to 1.5 ml of digestion 

solution and 3.5 ml sulphuric acid solution. After closing tightly the cap, the samples are digested at 

150ºC about 2 hours. Then, the absorption of each sample was determined with the 

spectrophotometer HACH DR 2000 at 600nm wavelength. 

3.3.6  Analyse of phosphate, nitrate and ammonia 

Po4-P and NO3-N content of filtered samples are measured with an Ion Chromatograph (Dionex ICS-

3000). Pre-treatment (filtration) was required by filtration through a 0.2um syringe filter to remove 

particles as the IC had a small diameter of the column. 

For reactive P, standard solution is made by K2HPO4 to 100 mg/l P and calibration of the instrument 

is done within an appropriate range.  
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For dissolved N compounds such as ammonia (NH4), nitrite (NO2) and nitrate (NO3), standards are 

made of NH4Cl, KNO2 and KNO3 for ammonia, nitrite and nitrate respectively; within the range the 

sample concentrations are expected.   

3.4 MATHEMATICAL MODELLING 

The parameters determined from the experiment can be used in modeling. A mathematical model 

describing the process for biological wastewater treatment is required to determine the essentials for the 

design and control for future alternative to propose. 

It can help optimizing the process design and control and determining the most favorable system. 

The models are presented in matrix including kinetic rates and stoichiometry. The basic processes here 

are related to growth and decay of heteretrophs. 

 

The activated sludge model is derived from the mass balances of different constituents. The model is used 

to describe the biological processes involved in the aeration tank of the system with return sludge. There 

are two options of sludge wasting as shown in figure 3.1; from the settler and directly from bioreactor. 

The system configuration on which the expressions are written is shown in Figure 3.1: 

Accumulation = Inflow- outflow + reaction  

Figure 3.1    Schematic diagram of activated-sludge system for modelling 
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Variables are important as they significantly affect the process control and the performance of an aerobic 

biological treatment process. Those variables especially the retention time can be controlled through 

process design. 

3.4.1  Biomass mass balance in bioreactor  

By using the mass balance for biomass in a bioreactor (ideal CSTR or continuous stirred tank reactor), the 

relation between SRT and growth rate can be determined from: 

                                                           
  

  
                           (eq. 3.1) 

               

    

  
 

 

   
       

μ-kd is the net growth rate which is the inverse of retention time. SRT is the time the biomass remains in 

the reactor.  

The previous expression can also be solved to result in the effluent substrate concentration C (COD) as 

function of the retention time. 

                                                      
 

   
 

     

    
           

     

    
           (eq. 3.2) 

 
 

   
                  

       
 

   
         

 

   
      

                                                                      
   

 

   
     

      
 

   
     

          (eq. 3.3) 

 

This equation expresses the effect of the SRT on system performance. It is possible to regulate SRT to 

achieve good treatment efficiency that is determined by the effluent concentration, C (COD) in the reactor 

and effluent. To meet the requirement of a low effluent, a longer sludge retention time should be used. 

SRT is determined in practice by controlling the sludge waste rate (Qwaste·Xr).  

 

Figure 3.2 shows the effluent substrate COD in function of the retention time and also in function of 

temperature.  
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 Figure 3.2 Effluent substrate concentration COD as function of SRT and temperature  

If temperature is low, the maximum growth rate is lower and longer SRT is needed. For the same target 

effluent COD, SRT at 8ºC is longer than at 15ºC because growth is lower at lower temperature.  

3.4.2  Mass balance for substrate 

                                                               
  

  
         

  

 
          (eq. 3.4) 

Steady state:  

            
  

  
   

           
  

 
  

          
 

   
     

 

 
          

 

   
     

                                                            
         

   
 

   
     

 
             

            
        (eq. 3.5) 

This equation shows the SRT effect on biomass concentration. Long SRT result in low sludge waste, thus 

accumulation of high biomass concentration in the reactor.  

The expression also shows the biomass concentration is function of substrate. The more substrate is 

removed         the higher the biomass concentration  . High decay rate kd will decrease the biomass 

concentration.  

According to the last equation, X is inversely proportional to the volume of reactor, V. At a specified SRT 

and organic loading, a certain mass of solids is generated and can be expressed as:  
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Biomass generation: 

                          
 1

)(






d

in

kSRT

SRTYCCQ
XVMX      (eq. 3.6) 

3.4.3  Volume design 

As mentioned earlier, X is inverse of the volume V. So, if the sludge is increased (biomass), the volume is 

reduced. The biomass can be increased by recycling it back to the bioreactor.  Consequently, high 

substrate removal efficiency can be attained.  

A given biomass concentration can determine the size of the bioreactor volume. For a design purpose, the 

biomass X is given, and the volume is determined based on the biomass generation expression:  

                                                        
  

 
      (eq. 3.7) 

 

3.4.4   Mass balance endogenous residue 

Decay is a loss of biomass due to death, endogenous respiration, cell lysis, maintenance and predation. 

There can be many approaches for description of decay in mathematical modeling. In activated sludge, 

the reduction of biomass by decay is balanced by accumulation of an unbiodegradable or inert particulate 

fraction and utilization of electron acceptor (Ydstebø, 2005). 

The mass balance for endogenous residue can be generally given as:  

Accumulation = inflow – outflow – waste  

  
   

  
                                      (eq. 3.8) 

           
 

  
                                          (eq. 3.9) 

         
   

    

 
 

  

                               

Mass of endogenous residue: 

                                                           (eq. 3.10) 

This expression shows that the concentration of endogenous residue increases as the biomass increases. 
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3.4.5  Mass balance of inert residue 

The mass balance for inert residue is given by: 

  
   

  
                                     (eq. 3.11) 

    

   
       

 

                      
         

 
                  (eq. 3.12) 

Mass of unbiodegradable particulate: 

                                                      (eq. 3.13) 

 

3.4.6  Sludge mass in bioreactor 

Organics fractions: The MLVSS in the reactor is the addition of organic solids (active biomass and dead 

biomass) 

Organic fractions = Biomass + Mass of Endogenous residue + Mass of Unbiodegradable organics  

                                    (eq. 3.14) 

The ratio MLVSS/MLSS is typically around 0.7-0.8   

3.4.7  Model kinetic and stoichiometry 

Table 3.3 present the matrix for process kinetics and stoichiometry of the aerobic system. Table 3.4 and 

table 3.5 show the different compounds and parameters applied in the aerobic carbon removal model. 

Table 3.3 Kinetics and stoichiometry of an aerobic carbon removal system 

         Variable 

Process 

SS SO XH XS XE Rate equation 

(gCOD/l∙d) 

Growth of 

heterotrophs HY

1
   

H

H

Y

Y


1  1   

HX

SSSK

SS




m ax
 

Hydrolysis of 

SBCOD 

1   -1  

HX

HX

SX

XK

HX

SX

Hk 



 

Decay of 

heterotrophs 

 – (1 - fd)  – 1 fd fd 
HXdk   
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Table 3.4 Compounds in the aerobic carbon removal model  

Description Symbol Unit 

Dissolved compounds   

RBCOD SS  mgCOD/l 

Dissolved oxygen SO mgO/l 

Particulate compounds   

Heterotrophic organisms XH mgCOD/l
 

SBCOD XS mgCOD/l 

Inert residue from dead cells XE mgCOD/l
 

Inert particulate COD from influent XI mgCOD/l
 

 

Table 3.5 Parameters in the aerobic carbon removal model 

Description Symbol Unit 

Stoichiometric parameters   

Growth yield for aerobic heterotrophic organisms YH mgCOD/mgCOD 

Unbiodegradable residue in cells fd mgCOD/mgCOD 

Kinetic parameters   

Maximum specific growth rate for heterotrophic organisms µmax d
-1 

Hydrolysis rate kH d
-1

 

Decay rate for heterotrophic organisms k_dH d
-1 

Half-saturation coefficient for RBCOD K_S mgCODSu/l 

Half-saturation coefficient for hydrolysis compounds KX mgCOD/mgCOD 
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4 RESULTS AND DISCUSSION 

4.1  HISTORY AND OVERVIEW OF THE EXPERIMENT 

4.1.1 Operation conditions during experiment at 20ºC 

4.1.1.1   pH, temperature and conductivity  

The conditions of the experiment such as temperature, pH and conductivity are summarized in figure 4.1. 

 

Figure 4.1 pH, temperature and conductivity at 20ºC 

Along the period of experiment, the inlet wastewater varied not only with respect to organic content but 

also in ionic strength as we can observe in figure 4.1 for 20ºC and later in figure 4.3 for 4ºC. The ionic 

strength was quite high especially in between 8-18feb. This is believed to be caused by cold weather and 

application of salt to roads. 

During the experiment, the temperature was almost constant, between 19-22ºC. The pH change is small 

along the experiment. It was kept at the range of 7.5 to 8.5 except for 2 or 3 days in between 25 february 

and 4 march where pH were recorded lower than 6.5, the minimum of the pH range reported for 

biological treatment in literatures. The pH drop was due to nitrification process in the reactor. The 

biological rates may be affected by that decrease in pH such as reduced growth rate. Therefore, as 

mentioned in methodology part (chap3), alkalinity was added to neutralize the pH.  

The nitrification process can bring about pH drop because it consumes alkalinity. Hence, the 20ºC batch 

was seemingly affected by nitrification. Nitrification is a process by which ammonia is converted first to 
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nitrite by nitrifying bacteria nitrosomonas and then to nitrate by nitrobacter. In fact, during the process of 

transformation of ammonia to nitrate, H
+
 is released. This engenders the decrease of pH. 

   
       

            
              

          

    
       

              
              

  

In biological treatment process, the nitrogen is not removed by nitrification, but just converted to nitrate 

which will appear in the effluent. Therefore, the nitrate content of the effluent can be analyzed to check 

whether nitrification happened in the experiment. No significant amount of nitrate was determined during 

IC test meaning that nitrification can be neglected. 

4.1.1.2  MLVSS and SRT conditions  

The figure shows the condition of operation regarding MLVSS content and SRT along the experiment at 

20ºC. MLVSS are the measured VSS content of the mixed liquor at the last hours of the end of each 

cycle. SRT was measured based on the total mass in the system over the total mass wasted in the decant 

and wasted sludge. So, a connection is laid between MLVSS content and the SRT.  

 

 

 

 

 

 

 

Figure 4.2 MLVSS and SRT during the experiment at 20ºC 

The SRT and MLVSS varied along the period of experiment due to variation in operational procedures 

mainly sludge waste. The average SRT was estimated at 20.73 d varying between 4 and 60 days. This 

wide range of SRT is because we had 3 different wastewaters with regard to organic content (see later 

section 4.3). This could influence the operational procedures such as wasting of sludge as the response of 

the sludge growth could not be the same. This is also the case of the experiment at 4ºC (section 4.1.2.2). 
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There is effect of the SRT on biomass if we refer to the expression of biomass (XH) (Chapter 3.4). The 

longer the SRT, the more sludge concentration is accumulated in the system. High SRT is met when the 

waste is too low. Therefore, at higher SRT, high MLVSS would be observed and lower biomass MLVSS 

corresponds to low SRT.  

The reason for this high MLVSS up to February 6 was due to the high substrate concentration due to 

sugar addition. 

4.1.2 Operation conditions at 4 and 8ºC 

4.1.2.1  pH, temperature and conductivity 

pH, temperature and conductivity from tests at 4º and 8ºC is presented in figure 4.3 and 4.4. 

 

Figure 4.3 pH, temperature and conductivity at 4ºC 

 

Figure 4.4 pH, temperature and conductivity at 8ºC 
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Temperature variation in 8ºC where relatively stable, between 7 and 10ºC. At 4ºC, temperature was 

unstable (between 1 to 6ºC) due to the uncontrolled variation of the room condition. 

Unlike at 20ºC, pH was stable for experiment at 4 and 8ºC. pH was maintained higher than 8 and no 

decrease in pH was recorded.  At lower temperature, the nitrification process did not occur and no nitrate 

was observed in the effluent.  

According to U. Wiesman et al (2007), the nitrification rate is a function of temperature and at low 

wastewater temperatures in winter (< 10C), nitrification will normally not occur. 

Due to low growth rate, long SRT is required for the growth of nitrifiers and at 8ºC, the SRT is short 

(about 5 days) which is not sufficient for nitrification.  

At 4ºC, the wastewater used was the same as at 20ºC, the conductivity was also the same varying between 

2 and 6 mS/cm corresponding to about 10 times more salt than regular wastewater. 

At 8ºC, the conductivity did not vary because only one type of wastewater was used. 

4.1.2.2  MLVSS and SRT conditions 

 

Figure 4.5 MLVSS and SRT during the experiment at 4ºC 

At 4ºC, SRT was calculated to about 9.02d varying between 3 and 20 days.  

 

At 4ºC, MLVSS increased gradually and stabilized at the end of the experiment. The growth at lower 

temperature is reduced, so it takes longer time for the reactor to build up sufficient biomass concentration. 
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At the end of the experiment, when SRT was low (around 5d), more concentrated and steady biomass was 

maintained. Thus, this low SRT was sufficient for biomass growth even at lower temperature.  

 

Figure 4.6 MLVSS and SRT during the experiment at 8ºC 

An average SRT of 5d was estimated at 8ºC with a range between 4.72 and 5.47d.  

A similar shape of the MLVSS curve as at 4ºC was observed. MLVSS builds up little by little until 

reaching a plateau where it was constant. The main difference is that the plateau was reached only 10days 

at 8ºC while it took almost 4weeks for 4ºC.  

There are 2 explications for that: First, it is due to lower activity of the organisms at lower temperature. 

Second, at 8ºC, as there was already much sludge initially in the reactor (sludge remained from 4ºC 

experiment), it was not necessary to grow sludge from nothing like initially at 4ºC. A constant wasting 

was done from the beginning of the experiment, which may have speeded up the stabilization of the 

biomass concentration.  

It can be observed from figure 4.6 that when the SRT was low (around 4 - 5.3d), the biomass kept on 

increasing until a steady concentration. As at 4ºC, this was sufficient SRT for 8ºC as MLVSS did not 

decline in this range. 

The SRT was much lower at 4ºC and 8ºC compared to 20ºC; SRT was 5 and 9.02 against 20.73 found for 

8ºC, 4ºC and 20ºC respectively. This is not common as SRT should normally decrease with increasing 

temperature. The explanation is the way of sampling and wasting of sludge during the experiment and 

there have been wasted relatively more at 4ºC and 8ºC than at 20ºC. 
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4.1.3 Conditions in a reaction cycle 

4.1.3.1  SBR test result at 20ºC 

The OUR, TOC and MLVSS during a reaction cycle is shown in figure 4.7. 

 Fig 4.7.a       Fig 4.7.b 

Figure 4.7 OUR, TOC and MLVSS during a reaction cycle at 20ºC (9th march) 

At 20ºC, after addition of substrate, immediate high oxygen consumption is observed. The system 

responds to the substrate immediately with the highest OUR which corresponds to a rise in MLVSS 

concentration and immediate drop in substrate concentration. After a short discontinuity (fig 4.7a), a 

second drop of OUR occurs while the corresponding MLVSS continues growing at a more or less 

constant rate until reaching a peak point (figure 4.7b). This peak is reached only after 5-8 hours (5h in 

figure 4.7). The second drop corresponds probably to the exhaustion of substrate causing the MLVSS to 

gradually decrease.  

The initial phase with rapid removal of substrate, rapid increase in MLVSS and high OUR corresponds to 

the uptake of easily biodegradable substrate. Only soluble organics in the substrate give rise to such 

immediate oxygen consumption (S.H. Jenkins, 1979). 

As observed in fig 4.7b, where the second OUR drop stops (after 4-5hours), the biomass has reached its 

maximum, corresponding to that substrate was exhausted.  

The initial phase of high OUR is related to assimilation of RBCOD and terminated at 0.5-1h while the 2
nd

 

OUR phase which corresponds to SBCOD was between 1-1.5 to 5-6 hours (example in fig 4.7a). The 

second phase is related to the use of the SBCOD resulting both in slower growth of biomass or apparently 

more constant concentration of MLVSS (fig 4.7a). The constant MLVSS concentration is due to net 

balance between SBCOD consumption (reduction of MLVSS) and the biomass increase (increase of 
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MLVSS) since MLVSS is the sum of biomass, unbiodegradable fractions and SBCOD. The observed 

constant removal of substrate is the removal of slowly biodegradable substrate.  

The final phase is the decay or endogenous respiration phase. This phase started when the substrate was 

exhausted and the MLVSS starts to decrease. There is no more available substrate and the organisms are 

starving. Any activity (OUR) still observable in that phase is the substrate related to endogenous 

respiration where there is auto-degradation of the dead organisms. Died biomass are degraded by the 

remaining active biomass and unbiodegradable biomass also accumulates as inert residue.  

  

Figure 4.8 OUR profile during several reaction cycles at 20ºC  

Figure 4.8 shows the OUR results obtained from different cycles at 20ºC. It demonstrates that the first 

rapid drop of OUR is within 0.5 to 1 h in most of the tests independently the initial OUR relating to the 

RBCOD. This is followed by the second drop of OUR at about 5-8 hours referring to the utilization of 

SBCOD. 

   

fig 4.9.a          fig 4.9.b 

Figure 4.9 Profiles of OUR during a reaction cycle at 20ºC (left) and at 4ºC (right)  

Figure 4.9 represents a general feature of the OUR response in a biological reaction and 3 distinct phases 

are seen from the profile of OUR. Initial phase with a high oxygen consumption (fig 4.9a) is linked to 
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utilization of soluble substrate consumption, RBCOD. The soluble RBCOD passes directly through cell 

wall of the organisms and is metabolized at high rate (Ekama and Marais, 1984). Thus, RBCOD is used 

directly by organisms resulting in a rapid response and corresponding biomass increase (fig 4.7.b).  

Phase 2 of the OUR represents utilization of the particulate slowly biodegradable substrate, SBCOD. The 

particulate slowly biodegradable substrate SBCOD cannot be metabolized directly by the organisms. The 

particulate COD requires adsorption, storage and extracellular breakdown prior to absorption by the cells 

(Ekama and Marais, 1984). This is why the growth rate of biomass is lower as substrates are not directly 

assimilated. 

The last phase represents endogenous respiration where there is no external substrate left, but the activity 

is due to degradation of the dead cell compounds. The gradual decrease of OUR in this period is due to 

the gradual reduction in biomass as a result of decay. 

At lower temperatures, the initial phase was longer than at 20ºC and terminated after 1- 2 hours. For some 

cycles, there is an increase in OUR in the initial phase as a result of rapid biomass growth. At 4ºC, the 2
nd

 

phase where SBCOD is degraded is much longer at lower temperatures than at 20ºC due to reduced 

hydrolysis rate. Thus, the change from the 2
nd

 and the 3
rd

 endogenous phase is not so distinguishable.  

4.1.3.2  SBR test result at 4ºC  

Figure 4.10 shows the OUR, TOC and MLVSS in a cycle at 4ºC 

  

fig 4.10.a                   fig 4.10.b 

Figure 4.10 OUR, TOC and MLVSS at 4ºC (fig4.10a, 18th and fig4.10b, 22nd feb)  

As mentioned earlier, only two phases is observed (figure 4.10), since the growth rate is low and the 

transfer from phase 2 to 3 is not very distinguished. 
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A gradual increase in MLVSS and removal of substrate is observed representing the growth in the 

process. Unlike at 20ºC, at 4ºC, the decrease in OUR is not abrupt in the initial phase because at low 

temperature the organisms are less active than at higher temperature and thus, the substrate consumption 

rate is also lower. The second phase of OUR has a very slow decrease. The initial slight increase in OUR 

corresponds to immediate removal of substrate and increase in MLVSS. The peak of MLVSS is observed 

after 5 to 6 h when substrate reached low concentration or exhaustion.  

Like figure 4.9b, in figure 4.10 has no clear endogenous phase is not yet present or it is not 

distinguishable from the 2
nd

 lower phase of OUR. The corresponding MLVSS is at the maximum 

(increasing) at 5h where the endogenous phase has not yet started. Endogenous phase would follow after 

the 2
nd

 phase and MLVSS would be expected to decrease (the relating data was not recorded).  

4.1.3.3  SBR test result at 8ºC 

Figure 4.11 represent the TOC, MLVSS and OUR profile from the experiment at 8ºC.  

        fig 4.11a      fig 4.11b 

Figure 4.11 OUR, TOC and MLVSS at 8ºC (16 and 18 mar)  

At 8ºC, more or less the same feature as in 4ºC is observed regarding the OUR profile and the MLVSS 

increase. The main difference is in OUR (figure 4.11). Figure 4.12 shows the OUR profile for 8ºC and the 

initial phase seemed to be longer compared to at 4ºC. Besides, the initial increase in OUR apparently is 

higher at 8ºC than at 4ºC. The initial increase of OUR could be because the utilization of substrate was 

not only direct but also through storage. 

The second phase is a drop in OUR which reflect a continuous utilization of the stored substrate (from 3h 

in figure 4.12). At 5h, a peak of MLVSS is reached as seen at 4ºC, corresponding to the exhaustion of 

substrate. The endogenous respiration is not shown in figure 4.11 and fig 4.12.   
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Figure 4.12 OUR profile during a reaction cycle at 8ºC 

Compared to OUR profiles in figure 4.9 and figure 4.13 (in next section), the second phase at 8ºC is 

significantly longer than at 20ºC but a little longer than at 4ºC (around 2h). This strange behavior 

compared to 4ºC is incomprehensible since it would be expected that the behavior at 8ºC should be in 

between 20º and 4ºC 

4.2  EFFECT OF TEMPERATURE ON PROCESS RATES 

4.2.1  Effect of temperature on activity rate of microorganisms  

 

 

 

 

 

 

                                                

 

                                              Figure 4.13   OUR at different temperature. 

Figure 4.13 indicates OUR is highest at 20ºC during a reaction cycle. Thus, there is an influence of 

temperature on the removal rate of substrate which is linked to growth and OUR. The lower the 

temperature, the lower the OUR and growth rate due to slow uptake of the substrate.  

Temperature can exert an effect on biological reactions in 2 ways: by influencing the rates of 

enzymatically catalyzed reactions and by affecting the rate of diffusion of substrate to the cells (C.P.L 

Grady and G.T.Daigger, 1999). 
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4.2.2  Effect of temperature on growth rate 

Figure 4.14 displays the effect of temperature on maximum growth rate. Calculation of the maximum 

growth rate was based on the calculated SRT and kd

The maximum growth rate, µmax is a function of temperature and so is the decay rate, kd.  

At 4ºC, determination of decay rate was based on temperature correction from 20ºC with a temperature 

coefficient Θ of 1.03 (Ydstebø, 2009). As a result, a kd of 0.07d
-1

 and a µmax of 0.77 d
-1

 were evaluated. 

kd at 20ºC was experimentally determined to 0.11 d
-1

 and 0.12d
-1

at 8ºC. The µmax was determined at 2.53 

d
-1

 and 2.84 d
-1

 at 20º and 8ºC respectively, which is strange as µmax and kd at 8ºC is expected to be lower 

than at 20ºC.  

To avoid error in calculation of parameters for the modeling part, a temperature correction was used for 

8ºC, using the kd value evaluated at 20ºC. Thus, a kd of 0.08d
-1

 at 8ºC was estimated.  

 

 

 

 

 

 

                 

 

 

             Figure 4.14  Effect of temperature on maximum growth rate 

Figure 4.14 shows that the growth rate of microorganisms increases with temperature. The maximum 

growth rate at 8ºC and 20ºC are not significantly different as we found 2.46 and 2.53d
-1

 respectively. This 

is not likely to be true as there should be big distinction between 8ºC and 20ºC and less difference 

between 4º and 8ºC. According to what has been mentioned earlier, the maximum growth rate of 

microorganism doubles approximately each 10
o
C up to a maximum temperature (Ystebø, 2009 and 

Metcalf&Eddy, 1991). Thus, the values found from our calculation were not in accordance with that.   
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Probably, the inaccordance may arise from the fact that the experiment at 8ºC was very short, only 10days 

experiment for the main biological reaction. This may create ambiguity compared to results at 4ºC and 

20ºC where there was much more data.  

Moreover, another reason is probably the maximum growth rate calculation. There was big difference and 

inappropriate data in the SRT values as mentioned in section 4.1.2, especially at 20ºC which was 

overestimated. 

4.3 TREATMENT PERFORMANCE 

Table 4.1 represents the BOD and COD removal efficiency from the SBR lab-scale experiment. 

Table 4.1 Inlet and effluent BOD and COD content of the wastewaters  

 

BOD5 (mg/l) BOD5 

removal  

influent COD Effluent COD COD removal 

 

inf_BOD eff_BOD unfiltered filtered unfiltered filtered unfiltered filtered 

ww 1 86 N/A N/A 79 47.5 N/A N/A N/A N/A 

ww 2 61.40 N/A N/A 168 92.25         

20ºC 

     

84.50 72.00 50% 22% 

4ºC           81 70.00 52% 24% 

ww 3 152.8     376.5 135.75         

20ºC   7.5 95%             

      

70.00 54.00 81% 60% 

      

78.00 62.00 79% 54% 

      

53.50 46.50 86% 66% 

      

51.50 48.00 86% 65% 

 

          76.50 58.50 80% 57% 

4ºC   40.7 73%     109.50 79.50 71% 41% 

      

347.50 74.50 8% 45% 

 

Table 4.1 shows that we had 3 different wastewaters during the experiment, the 2 first (ww1 and ww2) 

were quite low in BOD5 content. That is why sugar addition was necessary to enhance the sludge growth 

at the beginning of the experiment.  

The information about BOD5 removal is available only for wastewater 3. As shown in table 4.1, 95% was 

the efficiency of BOD5 removal for 20 ºC, 73% at 4ºC. Result at 8ºC was not recorded due to 

unavailability of the measurement apparatus. 

As referred to the EU regulations mentioned in previous chapter, the effluent at 20ºC is according to the 

requirements with a high efficiency at 20ºC. The measurement at 4ºC was little lower but close to the 

effluent limit (73% vs. 75%). As a conclusion, the BOD efficiency removal at 4ºC was not poor but 

sufficient for the low temperature at the tested conditions. 
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Due to inaccuracy of the COD measurement in the beginning of the period, COD analyses were done for 

wastewater 2 and wastewater 3and their effluent were analyzed.  

Table 4.2 represents the BOD5, COD and TOC variations of some municipal wastewater plants reported 

by Droste (1997). It was noted that the data was from only a limited number of plants but the variation of 

the ratios is typical for treatment of domestic wastewater. 

Table 4.2  Organic variation in treatment of municipal wastewater 

 

BOD5 (mg/l) 

 

COD (mg/l) 

 

TOC (mg/l) 

 

BOD5/  TOC 

 

COD/TOC 

 

average range 

 

average range 

 

average range 

 

average range 

 

average range 

Raw 86 72-105   236 136-304   56 41-70   1.5 1.31-1.88   4.16 3.32-4.68 

Primary effluent 58 46-68 

 

204 146-299 

 

52 44-61 

 

1.11 1.00-1.33 

 

3.9 3.19-5.85 

Final effluent 15 11-20 

 

84 77-95 

 

35 33-40 

 

0.44 0.20-0.69 

 

2.4 2.02-2.58 

Ave. removal (%) 83     64     38               

Source: Droste (1997) 

It is shown that the average BOD5 removal from the literature is a little lower but close to what we 

calculated, especially at 20ºC.  Estimated COD removal from our experiments was better than reported in 

table 4.2. 

COD removal in the experiment was estimated at 79-86% at 20ºC and ca. 71% at 4ºC. The latter is just 

around the threshold of permit for secondary effluent in EU regulations. 

Thus, from the experiment results, the effluent quality at 20ºC and 4ºC meets the limit. For 4ºC, part of 

the results in effluent quality for BOD5 removal was around the required level but close enough to expect 

that this can be improved by providing appropriate control and operation at 4ºC. In fact, during our 

experiment, the reactor at 4ºC was subjected to temperature changes due to uncontrolled temperature-

room condition such as reported in section 3.1.2 (figure 4.3). This might have affected the treatment 

capacity of the reactor and the effluent quality.  

Figure 4.15 represents the tendency of effluent (soluble COD effluent as from filtered samples) as 

function of time. The data was not available to the end of the cycle but only at 4-5 hour of test. 

Substrate concentration was expressed as TOC, which was the method we used frequently. The COD 

equivalent of the substrate concentration was based on a COD/TOC ratio of 3; this ratio was chosen  

appropriate for our data according to the variations in table 4.2. 
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Figure 4.15 Substrate concentration effluent-COD as function of time at 20ºC (from filtered TOC 

multiplied 3 times) 

Figure 4.15 demonstrates the soluble effluent COD. It can be deducted that the effluent COD decreases 

with time. At 4 to 5 hours, a lower and constant substrate concentration of about 30 to 40mg/l has been 

reached at 20ºC. The shape of the graph indicates that most of the biodegradable COD has been degraded 

and the remaining COD is unbiodegradable. 

The measured total COD of influent wastewater varied, as can seen in table 4.1. Wastewater 1, 2 and 3 

had a COD evaluated at an average of 79, 168 and 377 respectively. Since wastewater 3 was the one used 

during the most important experimental period, the value of 377 mg/l was used in the final estimation of 

the COD fractions. 

Generally, according to Ydstebø (lecture, 2009), 5-10% of COD in wastewater is unbiodegradable soluble 

COD (which is from effluent filtered COD or from TOC), and 10-15% is unbiodegradable particulate 

COD which become part of VSS. Therefore, for this wastewater (ww3), unbiodegradable soluble COD 

was assumed to be 30-40mg/l according to TOC result and 40-60mg/l was assumed unbiodegradable 

particulate COD based on the total COD which is approximated to 400mg/l. Thus, for the total COD of 

400mg/l the biodegradable part is considered to be around 300-330mg/l. This latter would be applied in 

for the dynamic simulation of the aerobic removal process in the following section. 

4.4  DYNAMIC SIMULATION OF THE AEROBIC CARBON REMOVAL 

The model given in the mathematical modeling chapter 3.4 was applied in the program Aquasim and 

different simulations were done to try to determine the agreement between our measured experimental 

data and theoretical predictions.   

0

20

40

60

80

100

0 2 4 6 8 10

ef
fl

u
en

t-
C

O
D

 (
m

g/
l)

time (days)

C-effluent

0

20

40

60

80

100

120

140

0 2 4 6 8 10

ef
fl

u
en

t 
-C

O
D

 (
m

g/
l)

time (days)

C-effluent



48 

 

During simulations, the yield of 0.66 in COD units (0.45mgVSS/mgCOD*1.42COD/VSS) from literature 

(Ydstebø, lecture notes 2009) was applied. In addition, hydrolysis rate kH and maximum growth rate µmaxH 

are the parameters to be estimated. 

The prediction was performed in two steps: 

-  First, simulation with values from steady state calculation were applied 

- Second, estimation of parameter µmaxH and kd were performed with the aquasim based on 

experimental observations  

4.4.1 Simulation with values of steady state model  

When the estimated parameters from the experiments such as µmaxH, kd, initial biomass concentrations and 

measured total COD were incorporated in the model, the simulations predicted higher OUR than the 

experiments. The model predicted about 80% higher OUR than the measured OUR (figure 4.17a) at 20ºC, 

26% and ca. 50-60% increase in OUR at 8ºC and 4ºC respectively (fig 4.18a and fig 4.19a).  

The input parameters are presented in table 4.3. Figure 4.17a, 4.18a and 4.19a show simulation with the 

estimated values from steady state. Prediction does not fit at all except for 20ºC. So, parameter estimation 

of KH and µmax with the results from steady state were performed with the dynamic simulation. 

At 4ºC, when the measured values (or from steady state) were used in the simulation, the model OUR was 

too high and far from the experimental (figure 4.18a). It could be that the biomass concentration in the 

system was a little lower than what was measured, 1300mg COD/l. If the latter was decreased, a better 

OUR prediction would be obtained (see section simulation with assumed values) 

4.4.2 Parameter estimation with dynamic simulation 

In order to reproduce the measured OUR, the hydrolysis rate and the maximum growth rate were 

estimated based on the measured values.  

Table 4.3 summarizes the input parameters for the simulation and table 4.4 shows the estimated kinetic 

parameters for each temperature.  
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Table 4.3 Parameter inputs in the aerobic carbon removal model  

Description Value Unit 

Dissolved compounds   

RBCOD 50  mgCOD/l 

Dissolved oxygen >7 mgO/l 

Particulate compounds   

Heterotrophic organisms 800-1600* mgCOD/l 

SBCOD 250-300 mgCOD/l 

Inert residue from dead cells 140-160 mgCOD/l 

Inert particulate COD from influent 200-250 mgCOD/l 

Stoichiometric parameters   

Growth yield for aerobic heterotrophic organisms 0.66 mgCOD/mgCOD 

Unbiodegradable residue in cells 0.20 mgCOD/mgCOD 

Kinetic parameters   

Half-saturation coefficient for RBCOD 10 mgCODSu/l 

Half-saturation coefficient for hydrolysis compounds 0.027 mgCOD/mgCOD 

*from the steady state calculation for different temperature 

Table 4.4 Estimated parameters based on experimental observations 

Description  Values*  Unit 

 4º 8º 20º  
Kinetic parameters     

Maximum specific growth rate for heterotrophic 

organisms 

0.5 2.07 1.22 d-1 

Hydrolysis rate 0.085 1.68 1.36 d-1 

Decay rate for heterotrophic organisms 0.07* 0.08* 0.11* d-1 

*from measurements and steady state (kd and X_Hini values)  

The biomass concentration estimated from steady state and used in the simulation was 1300 mgCOD/l, 

800 mgCOD/l and 1600 mgCOD/l at 4º, 8º and 20ºC respectively.  

At 8ºC, µmax was estimated higher than at 20ºC with 2.46 d
-1

 estimated in steady state and 2.07 d
-1

 after 

parameter estimation. Besides, with dynamic simulation (table 4.4), µmaxH was estimated much higher 

than at 20º C (2.07d
-1

 against 1.22 d
-1

) which is not likely. This is because for the two evaluations, the 

biomass concentrations from steady state were very much different. The value for 20ºC was double of 

that at 8ºC. It is evident that this is wrong and calculation at 8ºC was underestimated as it is much lower 
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than at 4ºC. This inaccordance is probably due to error in experimental practice which resulted in 

overestimations of µmaxH and kd at 8ºC.  

Figure 4.16b, 4.17b and 4.18b indicates that the model predicted very close to measurements at 20ºC and 

4ºC and while at 8ºC, the prediction was close but with more deviations.  

 

 

 

 

 

 

 

Figure 4.16  Simulation of OUR at 20ºC with the parameters from steady state model (fig 4.16a) and with 

estimated parameters based on the experimental results (fig 4.16b)  

 

 

 

 

 

 

 

Figure 4.17  Simulation of OUR at 8ºC with the parameters from steady state model (fig 4.17a) and with 

estimated parameters based on the experimental results (fig 4.17b) 

 

 

 

 

 

 

Figure 4.18  Simulation of OUR at 4ºC with the parameters from steady state model (fig 4.18a) and with 

estimated parameters based on the experimental results (fig 4.18b) 
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At 20ºC, predicted OUR fitted relatively close to the measured except for the last phase around 24h. This 

is probably because the experimental was estimated with higher µmax , and overestimated compared to that 

predicted in the model. We measured steady state model with µmax of 2.53d
-1

 against 1.22 d
-1

 for dynamic 

model. 

4.4.3 Simulation with assumed parameters values 

The relation between µmax, KH, XHini and kd is the key for the simulation since the estimated parameters 

µmax, KH are inversely proportional to the initial biomass concentration XHini . The expression for µmaxH 

confirm this relation (chapter 3.4 and eq.4.1). The simulated parameters are also inversely dependant to 

kd, but to a small degree. 

Therefore, by adjusting the parameters such as reducing decay rate, decreasing initial sludge 

concentrations (especially for 20º and 4ºC), the predicted and the experimental data correlate more 

closely.  

The values were estimated by increasing or decreasing the initial biomass concentration with a decay rate 

of around 0.2d
-1

, 0,1d
-1

 and 0.05d
-1

 at 20º, 8º and 4ºC respectively.  

In the simulation, at constant XHini and increasing kd, the hydrolysis rate and the maximum growth rate are 

decreased. If kd increased from 0.2 to 0.22 at 20ºC, the estimated parameters which was 1.92d
-1

 for both 

KH and µmax was decreased to 1.91 d
-1

and 1.89 d
-1

 respectively. 

Moreover, at constant kd and changing XHini, KH and µmax change as well. KH and µmax of 1.92d
-1

 was 

reduced to 1.55d
-1

 and 1.4d
-1

 respectively when XHini increased from 1000 to 1300mgCOD/l. Figure 4.16 

shows this relation between biomass concentration and µmax in addition to OUR. 

Figure 4.19 shows the relation between the maximum growth rate and the biomass concentration.  
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Figure 4.19  Estimated µmax as function of biomass concentration 

This relation is dictated by the expression        
      

        
            (eq. 4.1) 

Figure 4.20, figure 4.21 and figure 4.22 present the simulated and measured OUR during a reaction cycle 

at 20ºC, 8ºC and 4ºC respectively. Assumed values other than values from steady state were used to fit 

better the model to the measured OUR.  

 

Figure 4.20 Experimental and simulated OUR in a cycle at 20ºC  

 

Figure 4.21 Experimental and simulated OUR in a cycle at 8ºC  
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Figure 4.22 Experimental and simulated OUR in a cycle at 4ºC  

As figure 4.22 shows, the model predicted very adequately OUR at 4ºC when the decay rate were 

changed to 0.05d
-1

 and maximum growth rate of 0.76 d
-1

 were also estimated. This was close to kd and 

µmax of the estimated values from the steady state calculations which were 0.07 d
-1

 of and 0.77 d
-1
 

respectively.  

At 20ºC, there is no significant difference in the prediction of OUR from steady state (fig 4.16b) and that 

from assumed values (fig 4.20). For the latter, a decay rate of 0.2 d
-1

 was applied. In contrast, at 8ºC, 

prediction with assumed kd value was much better than prediction of OUR from steady state values as 

shown in figure 4.21. The model predicted OUR well with small deviations. An assumed kd of 0.1 d
-1

 

predicted also better at 8ºC than the calculated from measurements which was 0.08 d
-1

 (from 20ºC 

temperature correction). 

Figure 4.23, figure 4.24 and fig 4.25 represent the simulated VSS along with growth and the 

unbiodegradable COD fractions at 20º, 8º and 4ºC respectively. 

 

Figure 4.23 Simulation of MLVSS along with growth and the unbiodegradable COD fractions at 20ºC 
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Figure 4.24 Simulation of VSS along with growth and the unbiodegradable COD fractions at 8ºC 

 

Figure 4.25 Simulation of VSS along with growth and the unbiodegradable COD fractions at 4ºC 

Even if the measured MLVSS was not applied to the simulation, similarity can be inferred between the 

two approaches. If compared with the experimental observation (figure 4.7b, figure 4.10 and 4.11 for 20º, 
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Again here, 8ºC imitates the behavior at 20ºC with the simulation. The biomass growth is on exponential 
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As referred to the simulation, at 24h of the biological reaction at 4ºC, there are remaining particulate 
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growth is still in the increasing phase (figure 4.25 and 4.28), meaning that at 4C, slowly biodegradable 

substrates are not yet depleted at 1 day of the test. This is probably why distinction of the endogenous 

phase was difficult in the results part (figure 4.9b and fig 4.10). Biomass growth would attain the 

maximum when the particulate biodegradable COD becomes very low. 

This indicates that at cold temperature 4ºC, the break-down of substrates is very slow and takes longer 

time.  

 

Figure 4.26 Simulation of soluble and particulate COD along with growth and inert fractions at 20ºC 

 

Figure 4.27 Simulation of soluble and particulate COD along with growth and inert fractions at 8ºC 
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the soluble RBCOD resulting from the hydrolysis of particulate SBCOD. This second lower decrease 

differentiate the higher temperature to lower temperature depending on how fast or slow the SBCOD is 

degraded.  

 

 

Figure 4.28 Simulation of soluble and particulate COD along with growth and inert fractions at 4ºC 

 

From simulation, figure 4.23, figure 4.24 indicate that RBCOD (from influent and from hydrolysis) 
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5  DESIGN OF AS SYSTEM AND ALTERNATIVE TO SNJ 

TREATMENT PLANT 

This chapter covers the design of an activated sludge system for the improvement of the actual treatment 

plant at SNJ/IVAR.  

The study results will be considered in the following design of the proposed process.  

As described in literature review part (chapter 2) an activated sludge comprises 2 main parts, an aeration 

tank and the settling tank (figure 3.3). The design of the main reactor, aeration basin will is (be most 

likely) the main aim of this part. Though, the possible option about what settling tank size to choose will 

be highlighted.  

5.1 DESIGN CRITERIA OF THE BIOREACTOR 

In the design of an activated sludge process some parameters should be taken into consideration such as 

retention time, biomass production, sludge production, oxygen requirement, and effluent characteristics.  

The parameter SRT is of upmost importance for the design and the control of the process system because 

it will affect the other parameters. The design SRT must be determined and a safety factor (SF) should be 

included to account for changes in operating conditions (temperature, flowrate, etc...), or for instance any 

change in the influent loadings. 

5.1.1 In situ and specific parameters 

Some parameters characteristic of the plant such as the influent parameters and capacity deserve to be 

described or reminded because this will also constitute the basis of any calculation. As we described in 

part 2, ASPLAN VIAK (2010) has predicted for 2050 a design flowrate of 2.1m
3
/s. In 2050, the organic 

loading is evaluated around 30000kgBOD5/d, which is equivalent of 60000kg COD/d. In the calculation, 

the parameters applied are summarized as follows: 

COD_s (mg/l) 30 

COD_p (mg/l) 40 

COD_tot (mg/l) 300-400 

Q (m
3
/s) 1.984 

MLSS (mg/l) 3000-4000 

L (kgCOD/d) 60000 
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As the calculation is based on 4ºC, µmax and kd evaluated at 4ºC were used for the design. For 2050, the 

flowrate of 1.98m
3
/s was evaluated. The total COD of 350mg/l total (average) was applied. As MLSS 

during the experiment was not as high as 4000mg/l, the average of 3500mg/l of typical MLSS for 

biological system was applied. 

5.1.2  Design SRT 

From chapter 1, SRT can be expressed by the relation between maximum growth rate and the decay rate 

as given in equation 1.15.  

The selection of the design SRT is based on the evaluation of the lowest operating temperature of the 

experiment (4ºC). That is reasonable as well since low temperature will be the big challenge during 

winter and also to preview an yearly change of operating conditions. Thus, µmax of 0.77 and kd of 0.07 

from the experimental results at 4ºC will be accounted for SRT determination.  

From the SRT expression, SRT min is obtained when growth rate is maximum (µ=µmax) 

       
 

       

  
 

         
         

This minimum required SRT which is very low because independent of C, the effluent COD. However 

the effluent quality is the basis of the evaluation of the design SRT as we have to meet low effluent. 

The first step should be then defining the effluent target. The effluent requirement for Norway as we 

mentioned in the introduction part is 125mgCOD/l. This is high as far as quality of effluent. To have 

safety with the system performance, the total effluent-target COD can be set as 40 mg/l (CODus =30mg/l). 

The SRT related to this target will be then the minimum design SRT.  

Figure 5.1 displays the effluent biodegradable COD and total effluent COD as function of sludge age. The 

expression used was given earlier in equation 1.16. 
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Figure 5.1 Effluent COD as function of retention time 

Effluent biodegradable COD is decreased with increasing sludge age. From figure 5.1, when SRT is lower 

than around 3days, then the time is too short for the growth of heterotrophic organisms. So, this 

corresponds to minimum SRT to meet less than 40mg/l effluent COD. 

Since it is obvious that having 0mg/l of TSS (100%separation) in the effluent is not possible, there should 

be expected COD in SS carried along with the effluent which we assume, for safety, the same as soluble 

COD (40mg/l). As a result, the overall total COD is expected to be between 70-80mg/l. 

5.1.3  Biomass production  

The biomass production and sludge fractions expressions were given in equations 1.19 and 1.27 and 

figure 5.2 presents the sludge fractions, biomass production over the sludge age. 

 

Figure 5.2  Sludge accumulation in the system as function of SRT 
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The unbiodegradable fractions build up with the time. If inert solids are too high, there is a decrease in the 

capability of forming flocs, so wasting of sludge should be done periodically 

5.1.4  Design volume of the reactor 

The bioreactor volume can be determined using Eq.1.20. This equation shows that biomass production 

determines the required reactor volume. 

The sludge production, total oxygen demand and volume are presented in figure 5.3 

 

Figure 5.3  Sludge production, oxygen requirement and reactor volume as function of SRT 

From figure 5.3, it indicates that the longer the SRT, the bigger the volume. For economical and space 

savings, the required aeration tank volume should be as minimum as possible corresponding to the lowest 

possible SRT. Therefore, 3-5 days is the minimum SRT for volume requirement. 

Production of sludge is important to determine as it will affect also the capacity or design of the sludge 

disposal facilities. At the plant, the sludge will be reused for biogas production. 

Sludge production (Px) decreases as retention time increases due to decay of biomass (figure 5.3).  In the 

biogas plant, the more sludge implies the more energy generated by biogas. So, having the maximum 

sludge production possible would be beneficial. In figure 5.3, the maximum sludge, around 

28000kgTSS/day is produced at about 3 days SRT.  

5.1.5 Oxygen requirement 

As microorganisms require oxygen for their growth and endogenous respiration, the plant will need the 
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and for endogenous respiration respectively. The sum will give the total oxygen the plant needs to supply 

for an efficiency of the process. 

In contrast to sludge production, oxygen demand increases with the sludge age due to increasing decay 

and oxidation of dead biomass (endogenous respiration) which require more oxygen. For the plant, to 

have the lowest operating cost possible with regard to oxygen requirement, as low SRT as possible is 

required. 

A SRT of minimum 3days will satisfy this requirement for low oxygen demand (figure 5.3). 

5.1.6 OUR 

The OUR can be computed by dividing the oxygen demand by the aerator volume size. OUR at SRT of 6 

days is predicted to be around 22.34mg/l/h which is much higher than the measurement during 

experiment (10-16mg/l/h). This is because the design MLSS concentration is much higher; 3500 mg/l vs 

2000 mg/l.   

A typical MLSS of 1500-3000mg/l and 2500-4000mg/l was reported by Metcalf and Eddy (1991) for 

conventional and complete-mix activated-sludge respectively. When the MLSS concentration is lowered 

to ca. 2000-2500mg/l, the OUR becomes close to that of the experiment (≈12-16mg/l/h). However, the 

volume size has increased from 45120 to 63170-78960m
3
 which is almost an increase of 39-75% of the 

oxygen demand. Similarly, an MLSS of 4000mg/l would require lower reactor volume but higher OUR 

rate (25mg/l/h). 

So, care should be taken when selecting the parameters design, because this may bring about higher 

operational cost.  

5.1.7 Influence of loadings 

Figure 4.5 demonstrates the influence of loadings or flowrate onto sludge production, biomass production 

and the reactor size.  
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Figure 5.4   Biomass, sludge production and reactor volume as function of flow rate 

As it is shown, MX_H, MX_VSS, sludge production and the volume of reactor increases with increasing 

flowrate. And the volume is also inversely proportional to the biomass concentration. To have a minimum 

volume possible is then to consider the biomass concentration, especially in activated sludge system and 

also to consider the flow rate. 

5.1.8 Estimated design parameters 

To recapitulate, the minimum SRT for sufficient effluent quality is 3days (sect.5.1.2). A SRT of 3-5days 

is the volume requirement (sect.5.1.4) and a minimum sludge age of 3 days for both sludge production 

and oxygen demand (5.1.5 and 5.1.6) are also required. Thus, to satisfy each requirement, the limit of 3 

days would be favorable for both a better effluent quality (around limit of 40mg/l) and cost-effective 

reactor size and oxygen consumption. 

The evaluated wastewater flowrate predicted for 2050 is around 171 428m
3
/d or 1.98m

3
/s which is close 

to what ASPLAN VIAK (2010) predicted (2.1m
3
/s).  

A safety factor is applied for more safe design especially when seasonal variation of conditions or 

loadings may happen during the year.  

- SF = 2 is assumed ==> design SRT = 3*2 = 6 days. 

Table present the parameters evaluated at SRT = 6 days 

Table 5.1 Design parameters determined at 6 days sludge age 

SRT (d) tot COD_e(mg/l) Volume (m3) 
P_X 

(kgTSS/d) 

MO_tot 

(kgO/d) 

Q (m3/d) 

6 34.43 45121.43 26320.83 24195.96 171428.6 
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The design volume for 2050 is predicted to be around 45120m
3
 with a sludge production of 

approximately 26320 kg TSS/day and the oxygen demand of at about 24195kO/d.  

The hydraulic retention time for the aeration tank can be determined using the information in table 5.1 

and eq.2.13.           
            

   

 
          

 

      

The design estimated for 2050 implies that an increase in organic loadings is predicted as actually the 

load is around 1.5m
3
/s. Expansion of the area of treatment is also previewed as the volume of treatment 

will be increased. 

If we assume the area occupied by the actual sedimentation basin will be the area the aeration tank will be 

installed. We can compute the ratio of increase of the area. 

Actually, from the information given in chapter 2, the volume of the sedimentation basin can be 

estimated: 

                                           

So, the total volume of the actual series of basin is not enough for the space of the design aeration tank. 

We need 2.5 times higher than actual volume. 

5.2 DESIGN OF SETTLING TANK 

Designing the settling tank is also a concern but no experimental data relating to settling characteristic is 

available for the wastewater. The settling capability of a treatment dictates its effluent performance. 

Clarifier design must provide adequate clarification of the effluent and solids thickening for the activated 

sludge solids (Metcalf and Eddy, 2003).  

The following equation can help understand the relation between designing the aeration tank and the 

settling tank.   

The area of the settling tank is given by the expression 

                                                                    
 

  
                        (eq. 5.1) 

And the volume of the settling tank (Vs) is:               (eq. 5.2) 

Where   Vs is the volume of the settling tank 

A is the settling tank area (m
2
) 

 Q is the flowrate (m
3
/h) 
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 vs is the settling velocity of solids or hydraulic rate of the settling tank (m/h) 

 d is the depth of the settling tank. Here, it is assumed to be 5m. 

Velocity and surface are inversely proportional (eq.5.1). If settling velocity is decreased, the resulting 

surface area should be increased. 

Metcalf and Eddy (2003) reported the typical value for the design of settling activated-sludge is an 

average of 400-800gal/ft
2
.d. With the highest value, let us compute the relating typical settling velocity. 

vs = 800gal/ ft
2
.d * 0.0407  = 32.56m

3
/m

2
.d = 1.36 m/h.    

If this value is to consider, knowing the organic loading previewed for 2050 (171428m
3
/d), the 

corresponding design settling tank area is computed.  

  
             

            
        

The design settling tank volume can also be evaluated  

                     

Figure 5.5 shows the hydraulic rate of clarifier or settling velocity as function of MLSS concentration. 

 

 

 

 

 

 

 

Figure 5.5   Settling velocity of solids as function of MLSS (adapted from example in Metcalf and Eddy, 

1991) 

When MLSS increases, the settling velocity decreases. This means smaller bioreactor and bigger settling 

tank.  

This must be taken into consideration when relating SRT to MLSS 
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5.3  RECOMMENDATION 

Two possible alternatives can be proposed for the alternative of the present treatment (fig 4.6): 

1. Introduction of a complete biological activated sludge system for removal of BOD5 and SS, 

without chemical treatment (fig 5.7). 

2. Introduction of a combined process of complete biological activated sludge system for removal of 

BOD5 and SS with chemical addition (ferric chloride)  

 

 

 

                                           

 

 

 

 

Figure 5.6   Present treatment at the plant 

Both of the alternatives require area/volume expansion. This is because of the introduction of bioreactor 

and the settling tank. For 2050, as computed and shown in table 5.1, a reactor volume of about 45100m
3
 

is required with organic loading of 0.06kg BOD5/pe.d (ASPLAN VIAK, 2010).  The choice of the process 

depends on many factors including the compatibility with the existing treatment method, compatibility of 

the existing equipment and the existing space, the installation cost of any new equipment and the 

operating cost and other factors depending on the plant needs. 

The first alternative is proposed if nutrient removal such as phosphorus is not included in treatment 

objective. It is suitable for low or medium wastewater. 

The second alternative has additional treatment as chemical precipitation with addition of ferric chloride 

prior to the settling tank (fig 5.8) to optimize sludge-liquid separation thus to improve the SS removal. It 

can be suitable for high loading and can save area in the way that it eliminates the need of bigger clarifier 

if the activated sludge process alone was used. 
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Figure 5.7   Activated sludge system without chemical treatment 

 

 

 

 

 

 

 

 

 

Figure 5.8   Activated sludge system combined with chemical treatment 
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6 CONCLUSION 

In this thesis work, the performance of the biological wastewater treatment has been investigated. 

Theoretical and experimental approaches have been used.  Measured and estimated values from steady 

state calculations in addition to estimated parameters from dynamic simulations served as basis for the 

design of the proposed system alternative to the actual treatment at the plant.  

From this thesis work, we can conclude that: 

- Temperature affects significantly the activity rate of microorganisms, the process rates and thus the 

system efficiency, especially at 20ºC and 4ºC. A decay rate of 0.11 d
-1

 and 0.07d
-1

 were determined at 20º 

and 4º respectively and a maximum growth rate of 2.53 d
-1

 versus 0.77 d
-1

. At 8ºC, overestimation of the 

calculated parameters and underestimation of the biomass concentration from steady state led to 

unreliability of the data. 

- The treatment efficiency during the test was high at 20ºC and rather acceptable at lower temperature 

(4ºC). At 20ºC, the effluent quality met satisfactorily the discharge permit requirement with estimated 

BOD5 removal of 95% and COD removal of 79-86% while at 4ºC, the results of 72-75% BOD removal 

and 71% COD removal were just above the standard limit. 

- OUR behavior and other estimated parameters at 8ºC were expected to be closer to 4ºC. However, the 

lower temperature, 8ºC tended to imitate 20ºC with regard to not only OUR but also almost all 

experimental results and simulations. The reason for all this deviation is probably erroneous experimental 

procedures at 8ºC. 

- Simulations based on steady state calculation predicted higher OUR than the experimental results. And 

estimation of the parameters µmax and kd based on the experimental observations predicted accordingly. 

- Design of activated sludge was based on the results and on the prediction of the year 2050 by ASPLAN 

VIAK. 

- From the experimental study, activated sludge process is concluded as a possible alternative for the 

treatment of SNJ wastewater. Introduction of an activated sludge system at the plant seems to be a very 

good solution with or without the use of chemical addition, depending on the means and the needs of the 

plant. 
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APPENDIX I: Determination of decay rate kd 

 At 20ºC 

 

 

 At 8ºC 
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APPENDIX II : Steady state calculation of µ_max and X_H  

   20ºC   8ºC   4ºC  

k_d (/day) 0.11 0.08 0.07 

OUR_mean (mgO/l/h) 41.11 30.40 14.57 

Y (gVSS/gCOD) 0.45 0.45 0.45 

Q (L/day) 2.50 1.25 1.25 

V (L) 4.00 1.50 1.50 

∆COD (mg/l) 300.00 300.00 300.00 

SRT (d) 20.73 5.00 9.02 

Y (gCOD/gCOD) 0.66 0.66 0.66 

X (mg/lVSS) 533.21 405.91 622.01 

X (mg/lCOD) 757.16 576.40 883.26 

µ_max (/d) 2.53 2.46 0.77 

 

   20ºC  
 8ºC 

(kd=0.08)  
 8ºC 

(kd=0.12)   4ºC  

 X (mg/lVSS)  533.21 405.91 351.56 622.01 

 XE (mg/lVSS)  243.18 32.47 42.19 77.68 

 XI (mg/lVSS)  388.69 125.00 125.00 225.50 

X_H (mg/lVSS) 1165.08 563.39 518.75 925.19 

X_H (mg/lCOD) 1654.41 800.01 736.63 1313.77 

 

 

 

 

 

 

 

 

 

 

 



 

 

APPENDIX III   : Design of activated sludge  

SR

T 

C_e  MX_H MX_E MX_I MX_VSS MX_TSS V P_X MO_g MO_e MO_tot 

(d) mgCOD/

l 

kgVSS kgVSS kgVSS kgVSS kgTSS m^3 kgTSS/

d 

kgO/d kgO/d kgO/d 

2 28.500 34037.59 953.05 9657.95 44648.59 55810.74 15945.93 27905.3
7 

15564.2
6 

2706.67 18270.9
3 

3 11.000 51449.82 2160.89 14486.92 68097.64 85122.05 24320.58 28374.0

2 

16647.2

6 

4091.29 20738.5

5 

4 7.111 65785.71 3684.00 19315.90 88785.61 110982.0
1 

31709.15 27745.5
0 

16887.9
2 

5231.28 22119.2
0 

5 5.400 78457.14 5492.00 24144.87 108094.0

1 

135117.5

2 

38605.00 27023.5

0 

16993.8

2 

6238.91 23232.7

3 

6 4.438 89821.18 7544.98 28973.84 126340.0
0 

157925.0
0 

45121.43 26320.8
3 

17053.3
8 

7142.58 24195.9
6 

7 3.821 100091.8

9 

9809.01 33802.82 143703.7

2 

179629.6

5 

51322.76 25661.3

8 

17091.5

6 

7959.31 25050.8

7 

8 3.391 109427.6
2 

12255.8
9 

38631.79 160315.3
0 

200394.1
2 

57255.46 25049.2
7 

17118.1
3 

8701.68 25819.8
1 

9 3.075 117953.8

3 

14862.1

8 

43460.76 176276.7

8 

220345.9

7 

62955.99 24482.8

9 

17137.6

7 

9379.69 26517.3

6 

10 2.833 125773.1
1 

17608.2
4 

48289.74 191671.0
8 

239588.8
5 

68453.96 23958.8
9 

17152.6
6 

10001.4
8 

27154.1
3 

11 2.642 132970.7

6 

20477.5

0 

53118.71 206566.9

7 

258208.7

2 

73773.92 23473.5

2 

17164.5

1 

10573.8

4 

27738.3

5 

12 2.486 139618.6
0 

23455.9
2 

57947.69 221022.2
1 

276277.7
6 

78936.50 23023.1
5 

17174.1
2 

11102.4
7 

28276.5
9 

13 2.358 145777.6

1 

26531.5

3 

62776.66 235085.8

0 

293857.2

5 

83959.21 22604.4

0 

17182.0

7 

11592.2

4 

28774.3

1 

14 2.250 151500.0
0 

29694.0
0 

67605.63 248799.6
3 

310999.5
4 

88857.01 22214.2
5 

17188.7
6 

12047.2
8 

29236.0
4 

15 2.158 156830.7

4 

32934.4

5 

72434.61 262199.8

0 

327749.7

5 

93642.78 21849.9

8 

17194.4

6 

12471.1

8 

29665.6

4 

16 2.078 161808.7
8 

36245.1
7 

77263.58 275317.5
3 

344146.9
2 

98327.69 21509.1
8 

17199.3
7 

12867.0
3 

30066.4
1 

17 2.009 166468.0

9 

39619.4

0 

82092.56 288180.0

5 

360225.0

6 

102921.4

5 

21189.7

1 

17203.6

6 

13237.5

4 

30441.2

0 

18 1.948 170838.3
5 

43051.2
7 

86921.53 300811.1
5 

376013.9
4 

107432.5
5 

20889.6
6 

17207.4
3 

13585.0
7 

30792.5
0 

19 1.894 174945.7

0 

46535.5

6 

91750.50 313231.7

6 

391539.7

0 

111868.4

9 

20607.3

5 

17210.7

7 

13911.6

8 

31122.4

5 

20 1.846 178813.1

9 

50067.6

9 

96579.48 325460.3

6 

406825.4

4 

116235.8

4 

20341.2

7 

17213.7

5 

14219.2

2 

31432.9

7 

21 1.803 182461.2

4 

53643.6

1 

101408.4

5 

337513.3

0 

421891.6

2 

120540.4

6 

20090.0

8 

17216.4

3 

14509.3

2 

31725.7

4 

22 1.764 185908.0

4 

57259.6

8 

106237.4

2 

349405.1

4 

436756.4

3 

124787.5

5 

19852.5

7 

17218.8

4 

14783.4

1 

32002.2

5 

23 1.728 189169.8

0 

60912.6

8 

111066.4

0 

361148.8

8 

451436.1

0 

128981.7

4 

19627.6

6 

17221.0

3 

15042.7

8 

32263.8

1 

24 1.696 192261.0

5 

64599.7

1 

115895.3

7 

372756.1

3 

465945.1

6 

133127.1

9 

19414.3

8 

17223.0

3 

15288.6

0 

32511.6

3 

25 1.667 195194.8

1 

68318.1

8 

120724.3

5 

384237.3

3 

480296.6

7 

137227.6

2 

19211.8

7 

17224.8

6 

15521.8

9 

32746.7
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