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1. Abstract 

 

 

The objective for this thesis is to find a proper pre-treatment for sludge liquor for the purpose 

of growing microalgae in the treated solution. Sludge liquor (also called reject water) is the 

reject/centrate after the dewatering of the sludge after it has undergone anaerobic digestion, 

and is normally recycled to the inlet. It is characterized as a high turbid and high content of 

solids I addition to a high nitrogen load (especially ammonium) and phosphorous.  

Sludge liquor from four different wastewater treatment plants was characterized and different 

pre treatment methods were conducted. The different pre-treatment methods tested was 

aeration, oxidation, coagulation and flocculation (by testing different polymers), 

mediafiltration and centrifugation. Combinations of these were also tested. The efficiency of 

treatment was measured in % transmittance, which gives an indication of the light penetration 

properties of the solution which is crucial for microalgae growth, and also turbidity and solids 

removal.  

Oxidation and aeration did not improve the transmitting properties of the sludge liquor 

samples. The best treatment method was coagulation and flocculation by polymers, combined 

with centrifugation.  

Microalgae did grow in pretreated sludge liquor (diluted 1:5.5) added phosphate, so with 

optimization of pre-treatment and finding a optimal growth media, growth of microalgae in 

sludge liquor can be enhanced. 
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3. Introduction and background 

 

This thesis is a sub part of a bigger project focusing on developing a sustainable process to 

capture and store CO2, to produce more renewable bioenergy using waste nutrients. The goal 

is to utilize waste nutrients from wastewater treatment plants to grow photosynthetic 

organisms and harvest the biomass. The harvested biomass will be co-digested with sludge in 

existing anaerobic digesters for more biogas production. The sludge liquor which is the reject 

after dewatering of the anaerobic sludge, which is normally recycled into the wastewater 

stream, will be used as the growth medium for photosynthetic organisms, as microalgae, this 

resulting in a higher biomass production. Sludge liquor is high in nutrients like nitrogen and 

phosphorous. The challenge lies in treatment of the sludge liquor which in addition to high 

nutrient content has high suspended solid concentrations, high COD levels and cause of its 

dark colour and high turbidity it has low light penetration properties. For microalgae growth, 

in addition to nutrients, light penetration is one of the key parameters. Treatment to lower SS, 

turbidity and give higher transmittance properties and still hold on to the waste nutrients in the 

sludge liquor is the principal focus of this thesis.   

 

3.1 Introduction: 

 

In a municipal wastewater treatment plant the sludge that is formed during chemical and or 

biological treatment contains a lot of organic and inorganic and toxic substances and 

pathogenic microorganisms. Sludge is formed as a dilute suspension that contains 0,25-12% 

solids depending on operation and processes used. The further treatment of sludge is intended 

to reduce smell and reduce the quantities of organic solids and eliminate pathogens and is 

carried out through thickening, stabilization and dewatering before storage, transportation or 

further utilization.  

 

Thickening of the sludge is the first process after sedimentation, thickening is separation of 

water and sludge before anaerobic digestion to reduce the sludge volume. The free water in 

the sludge is separated here, and the solid content can get as high as 10%. Process used is 

depended on sludge characteristics and separation method used before thickening. The most 

used thickening methods are;   

- Gravitation: Sedimentation through compression over an extended time period.  

- Flotation: addition of air-bubbles that attaches to the particles that assembles on the surface.  

- Centrifugation: separation of particles based on weight.    

- Belt-press: sludge is covered on a cloth and with vacuum applied underneath water is let 

through.  

 

Digestion of sludge is a stabilization process widely used involving partial conversion of 

organic and inorganic matter into gas and a stabilized residue with help of bacteria in absence 

of  molecular oxygen (anaerobic) or in presence of oxygen (aerobic).   
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The processes in anaerobic digestion: 

 

1. Hydrolysis: Organic matter is hydrolyzed to monomers.  

2. Acidogeneis/fermentation: Decomposition of organic monomers to fatty acids and alcohol. 

3.  Acetogenesis: production of acetic acid and hydrogen gas from the fermentation products.  

4. Methanogenesis: Production of methane by organisms that uses acetic acid and hydrogen 

gas as substrate.  

The methane gas produced is rich on energy and is used as biogas.  

 

 

 
  
Figure 1. Subsequent steps in the anaerobic digestion process, Appels et al. 2008 

 

 

 

Dewatering is normally the last treatment before handling, transportation and disposal.  

Dewatering is used in wastewater treatment to reduce water content in sludge. It reduces the 

total volume of sludge, which reduces costs, makes it easier to handle and dispose, and 

increases calorific value of the sludge. The water trapped in interstices of flocc particles is 

removed by mechanical dewatering, the solid content can get as high as 40 % with 

centrifugation as the dewater mechanism.  Mechanical dewatering is rapid and most space 

beneficial and is therefore widely used. Selection of dewatering device is determined by type 

of sludge, characteristics of product and space availability.  The main dewatering process is 

centrifugation with chemical conditioning; the centrifuges separate liquids of different density 

and remove solids.  Dewatering can increase the solid concentration from 10% to 25-40% 

depending on the process, (thickening of sludge, which is done before dewatering, increases 

the solid content from 5% to 10%). 
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Figure 2. Material balance: water–solid mass according to Manzel 1989. 

 

 

The water that is rejected in this process is what we call sludge liquor (also called reject 

water), and is characterized by high ammonia and nitrogen levels (see table 1). The sludge 

liquor is normally recycled, and increases the total nutrient loading on the wastewater plant. 

This recycled reject water can contribute to increased maintenance costs due to higher use of 

coagulation chemicals that also contribute to higher operational costs when recycled to inlet 

(NORVAR, 2000). Wastewater treatment plants which have a separate treatment for the 

sludge liquor are normally carried out to reduce to nitrogen load on the plant, since it 

improves overall nitrogen elimination by lowering the nitrogen inlet load, and reduce the total 

nitrogen concentration in the final effluent (Fux et. al, 2005).  

 

 

Table 1; typical sludge liquor values 

Parameters mg/l 

NH4-N 500-1500 

Total-N 300-1000 

NO3-N 0,5-1 

NO2-N 0,01-0,05 

PO4 20-40 

TP  25-40 

COD 500-1500 

sCOD 300-1000 

TSS 400-800 

VSS 300-700 

  

pH 7-9 

Alkalinity (mmol/l) 20-40 
Source: Berends et al. 2005, Dosta et al. 2007, Ghyoot at al. 1998.   
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Biological CO2 mitigation has attracted attention because it leads biomass energy by CO2-

fixation through photosynthesis (Kondili and Kaldellis, 2007) and algae are viewed upon as 

valuable co-products in energy production and energy optimization on mass cultivation by 

photosynthetic CO2-fixation  (Brennan et al., 2010).  Microalgae are a group of fast growing 

unicellular and simple multicellular photosynthetic organisms that has the ability to fix CO2 

10 to 15 times greater then terrestrial plants and completely recycle CO2 (Li et. al 2008). 

Microalgae structures are good for energy conversion and they easily adapt to difficult 

environmental conditions (Lee et al. 2010), microalgae are easy to cultivate provided that 

nutrients are easily available and don’t need much attention (Mata et al. 2010).  

 

 

3.2 Objectives: 

 

The overall objective of this study is: 

 

1. Characterize sludge liquor from four different wastewater plants after dewatering.  

2. Investigate the key parameters needed for algae growth 

3. Investigate a pre-treatment method of sludge liquor that will reduce TSS, turbidity and 

COD, but still contain nitrogen and phosphorous compounds that can support algae growth.  

4. Characterization the pre treated sludge liquor.  

5. Grow microalgae using pre-treated sludge liquor  

6. Investigate the feasibility of the concept  
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4. Literature review 

 

 

Wastewater treatment is based on removal of BOD, COD, suspended solids, lower turbidity 

and removal of nutrients such as nitrogen and phosphorous.  

 

Total suspended solids measurement is one of the most important characterization methods 

for wastewater analysis. The filtration separates the suspended and the dissolved solids and 

the values of the suspended solids will vary with the pore size used, normal range is between 

0,45-1,6μm (Scragg 2004). 

Turbidity is a measure of light transmitting properties, which indicates the quality of 

wastewater according to colloidal and residual suspended matter.  It is based on comparison 

of light scattering intensity with a reference suspension standard. Colloidal matter will scatter 

or absorb light and affect the light transmitting properties (Metcalf and Eddy 2004). 

 

The chemical oxygen demand (COD) is defined as the quantity oxidant consumed is 

expressed in terms of the oxygen equivalence. Higher oxygen equivalence gives higher COD 

and higher pollution potential.  It is calculated by amount of specific oxidant (Cr2O7
2-

) that 

reacts with the sample;  

 

6 Cl
-
 + Cr2O7

2-
 + 14H

+
 → 3Cl2 + 2Cr

3+
 + 7H2O                                           (1) 

 

Removal of COD and suspended solids is commonly done by coagulation, flocculation and 

sedimentation (see section 4.3 for more details). Turbidity is reduced when suspended solids 

are removed from solution.  

 

Nitrogen removal is based on aerobic nitrification;  

 

8NH4
+
 + 16O2 → 8NO3

-
 + 8H2O + 16H

+
                                                        (2) 

 

followed by anaerobic heterotrophic denitrification;  

 

8NO3
-
 + 5CH3COOH + 8H

+
 → 4N2 + 10CO2 + 14H2O                                  (3) 

 

Also aerobic oxidation of ammonium to nitrite;  

 

8NH4
+
 + 12O2 → 8NO2

-
 + 8H2O + 16H

+
                                                         (4) 

 

combined with anaerobic oxidation of ammonium by nitrite;  

 

8NH4
+
 + 8NO2

-
 → 8N2 + 16H2O                                                                      (5) 

 

The removal of phosphate is normally performed by chemical precipitation using ferric 

chloride or ferric sulfate with addition of lime as pH-stabilization (Guo et al. 2010). 
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4.2 Sludge liquor and sludge liquor treatment 

 

Separate treatments of reject water which is currently studied are, according to Jenicek, 2005;  

 

- Controlled discharge in mainstream of wastewater 

- Physical- and chemical treatment 

- Use of reject water for bio-augmentations 

- Biological treatment 

 

Most treatments conducted on sludge liquor are done to remove nitrogen and phosphorous, 

the sludge liquor recycled to the influent of the wastewater treatment plant, only contributes to 

approximately 2% of the total influent flow but can contribute with up to 25% of the total 

inlet nitrogen load (Janus and Van der Roest, 1997). The most effective way to reduce 

phosphorous and nitrogen release after wastewater treatment is to treat reject water before 

recycling through a separate treatment procedure.  Reject water is characterized by high 

concentrations of nutrients and organics. Sludge liquor can contain from 750-1500mg/l NH4-

N (Berends et al. 2005) and 40mg/l PO4-P (Pitmann, 1991). As nitrogen and phosphorus are 

nutrients that give wastewater plants a high nutrient loading, these are the parameters in focus 

when treating sludge liquor.  

For nitrogen removal in sludge liquor different combinations of nitrification, denitrification, 

and anaerobic oxidation of ammonium is used (described in more detail in section 4.1) (Guo 

et al. 2010).  In Australia, biological treatment through a sequencing batch reactor has 

eliminated the nitrogen load significantly (Wett et al. 1998, Fux et al. 2006) Ion exchange, 

with different types of zeolites, as treatment of sludge liquor reduced ammonium loads from 

700mg/l to 27-36 mg/l ammonium (Thornton et. al 2007).   

 

For combined ammonium and phosphate removal in sludge liquor struvite crystallization has 

been conducted with good results (Battistani et al. 1997).  

 

Flocculants are used to increase sludge separation efficiency (Nguyene 2008), the reaction 

between sludge and flocculants results in clusters of sludge particles. The amount of 

flocculant dose added influences the suspended solids content in the sludge liquor. Boran et 

al. (2010) found that SS content in sludge liquor decreased with higher polymer dosage, the 

flocculant dose impacted the sludge liquor characteristics more then the sludge characteristics. 

 

 

4.3 Coagulation and flocculation as a pretreatment method 

 

 

The aim of coagulation-flocculation is to remove colloidal matter. Is a process of aggregating 

dispersed particles into larger units called flocs, and involves three principal steps;  

 

1. Destabilization of the suspended particles, elimination of interparticle repulsion that occurs 

due to electric charges opposing aggregation.  
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2. Floc formation and growth, particle-particle interaction, collision and adhesion that develop 

aggregates.  

3. Floc degradation, mechanical breakage of aggregates due to turbulence.  

 

The charge on the particles dispersed in water typically arises from electrochemical 

interactions, and can be controlled through pH. Other ways of elimination of charge  is high 

presence of high concentration of ions in solution that compresses the electrical double layer 

letting them approach to the range where attractive forces dominates. Polymeric substances 

function as a highly charged ionic species but act through a charge-path mechanism in which 

molecules adsorb on opposite charged surfaces forming regions of opposite charge to the 

surface (Gregory, 1973). Aggregation occurs by interaction with bare regions on other 

particles. Lower molecular weight polymers function good as dispersants, high molecular 

weight polymers are not effective for destabilization but are important in floc development.  

 

Destabilization makes particles to adhere to each other during contact. Flocs grow as a result 

of collision between particles moving due to;   

- Brownian motion (from thermal energy in the suspended fluid).  

- Velocity gradients in mechanically agitated suspension 

- Different settling of particles or flocs 

 

 

Recently the use of synthetic polyelectrolytes as flocculants (polymeric flocculants) in 

wastewater treatment for removal of SS has grown (Ebeling et al. 2005). Especially high 

molecular weight polymers have given high improvement in separation processes (Walker 

and Kelley, 2003).  

 

Acrylamide is a polyfunctional molecule containing a vinyl carbon-carbon double bond and 

an amide group with a deficient double bond that is susceptible to a wide range of chemical 

reactions (Girma et al. 2005). The advantage of polymeric flocculants is their property of give 

good settling compared to what is achieved by coagulation by producing large and, dense, 

compact and strong flocs and require lower dosages. The performance is also less pH 

dependent, and alkalinity is maintained. The performance of the polymer is depended on the 

type and molecular weight, ionic charge and wastewater charachteristics (Qian et al. 2004), 

and the advantages for polymers is that they can be design for exact purpose.  High molecular 

weight polymer flocculants appear to play a significant role in the floc breaking process, they 

serve primarily as binding agents as they bridge many small particles (Ebeling 2005), enhance 

the floc strength and reduce breaking rates; thereby permitting growth of large sizes. They are 

effective in promotion of floc growth in previous destabilized suspension.  They adsorb 

strongly and irreversible onto solid surfaces (Fleer et al. 1993).  

 

Organic polymers can be cationic (positively charged), anionic (negatively charged) and non 

ionic (no charge). Effectiveness depends on the efficiency of each stage (coagulation, 

flocculation and sedimentation) and;  

- Polymer concentration 

- Polymer charge 

- Polymer weight and charge density 

- The treated wastewater characteristics. 

- Physical properties (mixing, flocculation energy, duration). 

(Ebeling et al. 2005).     
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The phosphate is incorporated in solids and reduction of solids gives phosphorous removal. 

Nitrogen removal due to coagulation-flocculation reduces nitrogen compounds contained in 

natural compounds as proteins and peptides, and also synthetic organic compounds, since it is 

related to the colloidal matter of solution and proteins are partially hydrophobic and 

hydrophilic. Ammonium is not directly removed by this process (De Renzo, 1978).   

 

Wong et al. (2006) tested out cationic and anionic polyacrylamides with different molecular 

weights and charge densities on paper mill wastewater. Paper mill wastewater is characterized 

by high BOD, COD (due to high content of tannins and lignins), SS and organic halides 

(Lacorte at al. 2003). Effectiveness was measured based on turbidity and COD reduction, and 

TSS removal. The most effective polymer was a high molecular weight and low strength 

cationic polymer, which reduced turbidity, TSS and COD by 95%, 98% and 93% with 

optimum dose at 5mg/l. And concluded that a single-polymer can be used, without addition of 

inorganic coagulant, since the efficiency is remarkable Walker and Kelley (2003) tested 

flocculation efficiency on pig waste slurry and found the polymer efficiency to vary between 

10-500mg/l, 62-125mg/l was optimal for TSS, SS and COD while amounts of 375-750 was 

optimum for nitrogen and phosphorous reduction. 

According to Ebeling 2005, there is no type of polymer flocculant (regarding family, charge 

or molecular weight) that predicts the performance as flocculation aid.   

 

 

4.4 Use of oxidation as pretreatment method 

 

Chemical oxidation is oxidation of pollutant complex substances into non-toxic simple 

substances by the use of a chemical oxidant. Chemical oxidations of organic substances are 

similar to biological oxidation with CO2 as end-product.  

 

The chemical oxidation is classified based on degradation: 

- Primary degradation – a structural change in compound that leads to biological 

degradable compounds 

- Acceptable degradation (defusing) – to a lower and acceptable toxicity 

- Complete degradation (mineralization) – total degradation to non-harmful inorganic 

compounds.  

 

Reaction rate determines necessary contact time between oxidant and liquid and are 

influenced by dosage, pH, temperature, TSS (can reduce reaction rate), and competing 

reactions. 

Complete oxidation/degradation requires high dosage and with lower dosages degradation to 

intermediate compounds can be achieved, which can be utilized for example by microalgae.     

(Lecture note, L. Ydstebø) 

 

4.4.1 Hydrogen Peroxide: 

A strong oxidant used for chemical oxidation and for odor control, widely used in for 

wastewater treatments in the past. It has no known byproducts and has been found to 

effectively treat wastewater requiring less stringent oxidation conditions (Ayling and 

Castrantas, 1981). It has been used for odor control, corrosion control, sludge-bulking control 

and bacterial reduction. Application of hydrogen peroxide alone to wastewater gives the 

problem of low rates for applications involving complex materials (Fung et. al. 2000).  
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The use of hydrogen peroxide alone not a recommendable option according to (Gogate and 

Pandit 2004) for the treatment of complex compounds, and the concentration and amount of it 

used cannot be increased to some certain levels because it act as an pollutant in to large 

amounts. Excessive amounts give create negative effect on removal efficiency due to 

formation of H2O2, formed by hydroxyl radicals and excess hydrogen peroxide, and is a less 

effective radical.  

 

H2O2 + 2H
+
 + 2e

-
 → 2H2O                                                                                        (6) 

 

Hydrogen peroxide is today used in combination with other processes, as UV, TiO2, ferrous-

salts (Fenton process). The pH is also important for efficiency, and a low pH (3-6) is found to 

give best efficiency of oxidation (Yonar et. al, 2006), and turbidity removal (filtration) as 

pretreatment increases the COD removal efficiency. 

 

4.4.2 Fenton process: 

 

Fenton`s reagent is a mixture of H2O2 and ferrous ion.  

Fenton oxidation is an effective pretreatment to improve biodegradability of wastewater and 

wastewater sludge prior to further treatment (Andrews et al. 2006). It is an advanced 

oxidation process and the fenton process involves Fe
2+

 and Fe
3+

 mediated catalytically 

decomposition of H2O2 that generates hydroxyl radicals; Fe
2+

 initiates and catalyze the 

decomposition;  

 

Fe
2+

 + H2O2   → Fe
3
 + OH● + OH

-
 and HO2●                                                        (7) 

 

The formed ferric ions catalyzes and contribute to decompose hydrogen peroxide into water 

and hydrogen;  

 

Fe
3
 + H2O2→ Fe-OOH

2+
 + H

+
                                                                                (8)              

 

Fe-OOH
2
 → HO2● + Fe

2+
                                                                                       (9)              

 

HO2● is a very strong oxidizing agent, a radical.  

 

HO2● + Fe
2+ 

→ Fe
3
 + HO2

-
                                                                                      (10)    

           

Fe
3
 + HO2● → Fe

2+
+ O2 + H

+
                                                                                  (11)              

 

OH● + H2O2→ H2O + HO2●                                                                                   (12)              

 

Hydroxyl radicals can oxidize organic matter by abstraction of protons producing organic 

radicals, which can be further oxidized (Walling and Kato, 1971).  

 

By accounting for the dissociation water a simplified Fenton reaction can be made (Wailing, 

1975):  

 

2Fe
2+

 + H2O2 + 2H
+

  → 2Fe
3
 + 2H2O                                                                        (13) 
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Acidic pH levels are optimal for the Fenton oxidation process (Hickey et al. 1995). The 

Fenton process has also been applied to enhance anaerobically digestibility as well as 

dewaterbility of wastewater sludge. The H2O2/FeSO4 ratio influence the functions. If Fe
2+

 

exceeds H2O2 the process seems to have an chemical coagulation effect, if the ratio is 

opposite it accts like an oxidation process ( Neyens and Baeyens 2003).  

 

 4.4.3 Peracetic acid (PAA) 

Peracteic acid is the peroxide of acetic acid, its produced from the reaction of acetic acid and 

acetic anhydride with hydrogen peroxide in the presence of sulfuric acid that acts like a 

catalyst (Block, 1991); 

CH3CO2H + H2O2 → CH3CO2H + H2O                                                                  (14) 

PAA is a strong oxidant and disinfectant, it requires lower concentrations then conventional 

hydrogen peroxide (Kitis, 2004). Peracetic acid has combined the active oxygen 

characteristics of peroxide within an acetic acid molecule. PAA has a higher activity at lower 

pH. 

 

4.5 Filtration media as pretreatment: 

Anthracite contains over 90% carbon, mostly in the form of large polycyclic aromatic sheets. 

That results in properties as high microporosity pore volume which makes it useful in water 

filtration applications (Andresen et al. 2004). Anthracite is used as granular media filter, alone 

and combined, to remove particulate matter as clay, silt, microorganisms and colloidal 

substances in seawater (Mitrouli et al. 2009). With respect to particulate parameters granular 

media filters are an inexpensive solid-liquid separation process. Particulates ranging from 

0,01-100μm can be captured by granular media provided that the right surface chemical 

conditions for attachment to media is present. The effectiveness of a granular media depends 

on physical parameters as pore size, shape, porosity, depth and surface area of media. Also the 

chemical properties of both media and particulates are important (Boller and Kavanaugh 

1995). In drinking water treatment filtration through granular media after coagulation and 

flocculation is common, and is used as a final polishing process for the potable water process 

(Zouboulis et al. 2007). Direct filtration through anthracite without pretreatment is considered 

best for low turbidity waters, for anthracite or anthracite in a dual media the influent should 

have low initial turbidity (Chuang and Li, 1997).  

Activated carbon can be made from anthracite, but this is a challenging process compared to 

making it from bituminous coals which has applications in both water and air purification. It 

is used in water treatment for removal of organic compounds, odor control and removal of 

color (Magic-Knezev and Kooij, 2004). PAC/GAC for other uses then odor and taste control 

is poorly documented. The extent of adsorption of synthetic organic chemicals is depended on 

what type of compounds being removed. In (Kim et al. 2002) pretreatment of secondary 

effluent from a combined industrial and municipal wastewater plant was pretreated before 

enter as feed in RO memebrane filtration. The combination of GAC and anthracite and 

coagulation-flocculation with a cationic polymer before GAC/Anthracite media was tested. 

The combined GAC and anthracite plus the coagulation before the dual media had good 
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effects on color, COD, TOC and BOD removal, approximately 75%, 70%, 60%, 50%. 

Nitrogen was removed in some extent, while phosphorpus removal was not as efficient, cause 

of the negative charge of phosphate it does not get adsorbed by GAC. Activated carbon 

combined with limestone was used for removal of NH4-N, and showed effective removal at 

very low cost (Hussain et al. 2006). Studies show that GAC combined with MF reduces COD, 

TOC, and turbidity significantly and give less removal of total nitrogen and phosphorous 

(Kim et al. 2009). All these cases are low turbidity waters as rivers, drinking water and 

seawater.  

 

 

4.6 Centrifugation as a pretreatment 

 

Centrifugation is widely used for liquid/liquid separation and solid separation (Metcalf and 

Eddy, 2004). Centrifuges achieve separation by an accelerated gravitational force achieved by 

rapid rotation. (Sutherland 2005). The separation is similar to what is achieved in a 

sedimentation process, but with a much higher driving force due to the rotation. The 

suspended particles in the incoming liquid settle down die to gravitational force while liquid 

is moved through the centrifuge. Centrifuge performance is affected by operating and design 

variables, operating variables include; particle size, flow rate, fluid/particle density 

differential and fluid viscosity. Design variables includes rotational speed, height and radius 

which effect residence time or centrifugal force. Rotational speed has a high effect on 

separation efficiency, efficiency fourfold when speed doubles (Gorham and Dudrey, 2006).  

 

 

4.7 Aeration as pretreatment 

 

Aeration in wastewater treatment is used for maximize the supply of oxygen and avoid 

oxygen limitation of growth by inducing air in the liquid. It’s the main principles for an 

activated sludge process which is the most common of the suspended growth processes. The 

aeration in presence of microbial suspension gives a solid-liquid separation due to microbial 

metabolization of suspended and soluble organic matter (Scragg, 2005).  

The process is depended on the existing microbial community and their metabolization 

capabilities.  
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4.8 Microalgae 

 

Microalgae represent a diverse group of prokaryotic and eukaryotic photosynthetic organisms 

of high ecological importance and are one of the most efficient converters of solar energy to 

biomass (Masojídek and Torzillo, 2008). Microalgae composition is important to apprehend 

their digestion potential, major components in microalgae is carbon, nitrogen and 

phosphorous. They grow rapidly and can grow in harsh conditions because of their unicellular 

or simple multicellular structure (Mata et al. 2010). They represent a big variety of species 

(estimated 50.000) living in a wide range of environmental conditions. They are divided in 

seven phyla; the largest is the chlorophyta (also known as green algae) and includes species 

like Chlorella and Scendsemus. Chlorella is used in commercial production for human 

nutrition, aquaculture and cosmetic purposes (Spolaore et al. 2006).  

Microalgae is widely used for biodiesel production, because of high lipid content and high 

growth rate under right conditions. Average proportions are 6-52% protein, 7-23% lipids and 

5-23% carbohydrates with high proportions of glucose (21-87%), this is all strongly species 

depended (Brown et al. 1997).  

 

 

4.8.2 Current use of microalgae for wastewater treatment 

 

Wastewater has large quantities of different nitrogen forms and high phosphorous 

concentration. Combination of wastewater treatment and microalgae has been conducted due 

to savings of chemicals (nutrients already provided) and environmental benefits (Mallick 

2002). The process involves removing nutrients or pollutants from wastewater while 

producing algal biomass. Mostly secondary and tertiary wastewater is used for algae 

cultivation and wastewater treatment, but it has been difficult to differentiate between the 

microalgae and other microorganism role in nutrient utilization (de-Bashan 2010). Microalgae 

has been used in wastewater treatment to remove organic matter (BOD) and inorganic 

nutrients and heavy metal removal (Munoz and Guyiesse, 2006).  B.Braunii has been used to 

remova nitrogen and phosphorous from secondarily treated wastewater, eliminating settled 

and organic matter (Yun et al. 2007). C. Vulgaris is commonly used for tertiary wastewater 

treatment, de-Bashan et al. (2004) describes a combination of microalgae (C. Vulgaris) and 

microalgae growth promoting bacteriato remove nitrogen and phosphorous from municipal 

wastewater. C. Vulgaris was also capable of removing as much as 55% of phosphorous from 

dairy and pig farming wastewater (Gonzales 1997).  

 

4.8.3 Growth and cultivation of microalgae: 

 

The solar energy stored in algal biomass as a result of photosynthetic reaction can be released 

as methane through anaerobic digestion. Commersial cultivation of microalgae has been done 

for over 40 years with the species of Chlorella and Spirulina, the main problem of 

commercial for microalgae production is high costs due to excessive light expenses and slow 

growth rate (Borowitzka 1999). Cultivation of microalgae in aerated pig manure was 

conducted in Martin et al. 1985, the microalgae strain was a Scendermus sp.  The result 

obtained with aerobically fermentation of the manure over 8 days as an algae substrate 
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showed it as a good way to produce biomass. It did not effect algae growth with high initial 

ammonium concentrations. Aeration-agitation (stirring and air bubbling) optimization for 

wastewater treatment in removal of ammonium and phosphate in addition to algae cultivation 

was conducted by Pouliot et al. 1988. Results showed that aeration at a 14/24 hour basis was 

optimum for removal of ammonium and phosphate, giving removal of 95% and 62%. Nitrate 

addition to culture helped on algae growth. Stirring was not a good option for algae growth. 

The rate of aeration was not as important as thought for biomass growth but enrichment of 

CO2 up to 5% gave good biomass growth (Noue et al. 1984). Chlorella sp cultivation and 

growth in a lab scale photobioreactor for CO2 removal in stack gas was conducted by 

Watananbe and Saiki 2007. 10% CO2 enriched air was added and the CO2 utilization 

efficiency was at 21,9% and NO removal rate at 85%. Maximum increase in biomass 21,5g 

dry biomass/m
2
d or 0,68 dry biomass/Ld. Pohl et al. (1987) tried seawater diluted in distilled 

water as growth media for freshwater microalgae, 10 % seawater the rest distilled water, the 

only nutrient added was phosphate with good results.   

 

Growth medium must provide sufficient nutrients; carbon, nitrogen, phosphorous and sulfur 

are the most important parameters. Other essential elements are iron, magnesium and silicon. 

Also salinity, temperature, pH, light and dissolved oxygen effect growth.  

N and P is essential for algae growth and Mostert and Grobbelaar (1987) found that optimum 

N and P values for microalgae growth was when they exceeded 25 and 2 mg/l in a culture 

Phosphate is relevant to all growth and metabolism, and is essential elements for DNA, RNA, 

ATP and cell membrane materials, phosphorous should be added in excess. 

Ammonium at high concentrationshas toxic effects on microalage growth (Lourenzo et al. 

2002). CO2 is the usual source for carbon for photosynthetic culture of microalgae (Grima et 

al. 1999).  

 

In dense microalgae cultures, light penetration is impeded by light absorption (Frolich et al. 

1983). Availability and intensity of light are major factors controlling productivity of 

photosynthetic cultures (Lee and Low, 1992). One cannot increase light intensity over a 

certain limit because a high light energy per cell will photo inhibit the photosynthetic cells 

(Lee et al. 2005). Chlorofyll a has a maximum light absorbance at 670-680nm (Werner, 1977) 
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5. Sampling and sample sites 

 

Sludge liquor  was collected after dewatering from four different plants, Frevar, Gardermoen 

(GRA), Søndre Follo (SFR) and Nordre Follo (NFR) wastewater treatment plants, which lies 

near the Oslo region.  

 

 

Table 2; Overall process overview over each wastewater plant sampled 

 FREVAR Gardermoen 

Renseanlegg -GRA 

Nordre Follo 

Renseanlegg -NFR 

Søndre Follo 

Renseanlegg -SFR 

Location 1630 Gamle 

Fredrikstad 

2050 Jessheim 1407 Vinterbro 1540 Vestby 

Dimmensioned 

load  (P.E) 

100.000 50.000 41.000 17.000 

Mechanical 

treatment 

Coarse screens 

Grit removal 

Coarse screens 

Grit removal 

Pre-sedimentation 

Coarse screens 

Grit removal 

Pre-sedimentation 

Coarse screens 

Grit removal 

 

Chemical 

treatment/ 

Precipitation 

agent 

Flocculation and 

sedimentation.  

FeCl3 + 

Seawater 3% 

 

Flocculation and 

flotation PAX 21 + 

cationic polymer as 

helping agent 

Flocculation and 

flotation PAX + 

cationic polymer as 

helping agent 

 

Flocculation and 

sedimentation. 

PAX-18 + a 

cationic polymer as 

helping agent 

Biological 

treatment 

none Nitrogen removal by 

anoxic and aerobic 

reactors (Moving 

Bed Biofilm reactor) 

Nitrogen removal 

by anoxic and 

aerobic reactors 

none 

Sludge 

thickening 

Rotary drum 

thickener + 

addition of 

polymer 

Thickening 

 

Gravity thickening Thickening 

Pasterurisation Pasteurisation none Pasteurisation Pasteurisation 

Digestion Anaerobic 

digestion 

(thermophile) 

Anaerobic digestion 

(thermophile) 

Anaerobic digestion 

(thermophile) 

Anaerobic 

digestion 

(thermophile) 

Dewatering  Centrifuge  Centrifuge 

 

 

Centrifuge and belt-

filter press 

 

Centrifuge 
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Table 3; Sample location 

Sample 

location 

Sample 

collection point 

Polymer used 

for dewatering 

FREVAR Under 

centrifuge outlet 

C-491K 

Gardermoen 

Renseanlegg 

(GRA) 

From a storage 

containing reject 

water from 

dewatering by 

centrifuge 

ZG 8110 

Nordre Follo 

Renseanlegg 

(NFR) 

Under 

centrifuge outlet 

SF 603 CL 

Søndre Follo 

Renseanlegg 

(SFR) 

Under 

centrifuge outlet 

SF 640 CL 

Description of sample site.  

 

 

6. Materials and methods: 

 

6.1 Characterization/Analytical procedures 

 

 6.1.1 Physical parameters 

 

pH 

pH was measured by using a WTW SenTix 41 connected to a WTW 340i portable set.  

 

Conductivity 

Conductivity was measured by using a WTW TetraCon 325 connected to a WTW 340i 

portable set.  

 

DO 

Dissolved oxygen was measured by using a WTW CellOx 325 connected to a WTW 340i 

portable set. 

 

Alkalinity 

Conducted as described in Standard method 2320B (standard methods for water and 

wastewater, 1992).  An ampoule with standardised 0.1M HCl was used, so there was no need 

for titration to determine concentration of HCl before the endpoint titration. pH was used for 

end point determination at pH: 4.5.  
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Turbidity 

HACH 2100P, portable turbid meter, was used to measure turbidity. Values is given in NTU 

(nephelometric turbidity units).  

 

 

Transmittance 

Spectrophotometer used: DR 5000 (HACH). It was taken a full wavelength scan (200-

1100nm), the absorbance and transmittance results at 670nm were used to compare the 

results. A 1 cm quarts cuvette was used to measure absorbance, and distilled water was used 

as a blank and zeroed against and to give 100% transmittance. The wavelength of 670 nm was 

chosen because algae growth is our main perspective for the pre-treatments and chlorophyll 

has the highest absorbance at 670nm (Cederstrand et al. 2003).  

 

Particle size distribution 

Malvern Mastersizer NS was used for detection of particle size distribution. 

In electronic particle counting, diluted sample is passed by a laser beam. When passing by the 

laser beam the conductivity of the fluid changes and the change is correlated to the size of an 

equivalent sphere. Also when the particle passes the laser beam it reduces the intensity due to 

light scattering and that reduced intensity is correlated to the diameter of the particle. The 

volume fraction corresponding to the particle sizes can be can then be computed.  

 

 

TS, TSS, VS and VSS 

Standard method 2540B, 2540D and 2540E was used (Standard methods for water and 

wastewater). Whatman GF/C 1,2 μm filter was used. A known volume of sample is filtered 

through a Whatman GF/C 1,2 μm filter by the use of a Buchner flask connected to vacuum 

and dried at 105
o
C to find the TSS value. VSS is found after burning the sample at 555

 o
C.  

 

VSS= TSS-FSS 

 

For TS and VS values a known volume of the sample is incubated at 105
 o
C and 555

 o
C.  

 

VS= TS-FS 

 

 

 

Light measurement 

Lux meter LX1010B was used for measuring light 
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6.1.2 Chemical parameters 

 

The chemical parameters were analyzed by the use of Dr. Lange test kits and measured on DR 

5000 spectrophotometer.  

 

 

Table 4; chemical parameters and kit information 

Chemical 

parameter 

Kit number Mehod description 

COD LCK 014 

LCK 514 

 Oxidization able substances react with sulphuric 

acid potassium dichromate solution in the presence 

of silver sulphate as a catalyst. Chloride is masked 

by mercury sulphate. The green colorization of Cr
3+

 

is evaluated. Based on ISO 15705.  

 

TN LCK 138 

LCK 338 

Inorganically and organically bonded nitrogen is 

oxidised to nitrate by digestion with 

peroxodisulphate. The nitrate ions react with 2,6-

dimethylphenol in a solution of sulphuric and 

phosphoric acid to form nitrophenol.  

NO3-N LCK 339 Nitrate ions in solution containing sulphuric and 

phosphoric acid react with 2,6-dimethylphenol to 

form 4-nitro-2,6-dimethylphenol. 

NO2-N LCK 341 Nitrites react with primary aromatics amines in 

acidic solution to form diazonium salts. These 

combined with aromatic compounds that contain an 

amino group or a hydroxyl group to form 

intensively coloured azo dyes.  

NH4-N LCK 302 

LCK 303 

Ammonium ions react at pH=12,6 with 

hypochlorite ions as salicylate ions in the presence 

of sodium nitroprusside as a catalyst to form 

indophenol blue. 

TP LCK 348 

LCK 349 

LCK 350 

Phosphate ions react with molybdate and antimony 

ions in an acidic solution to form antimonyl 

phosphomolybdate complex, which is reduced by 

absorbic acid to phosphomolybdenum blue. 

Includes hydrolysis and all phosphate is measured.  

PO4 -P LCK 348 

LCK 349 

LCK 350 

Phosphate ions react with molybdate and antimony 

ions in an acidic solution to form antimonyl 

phosphomolybdate complex, which is reduced by 

absorbic acid to phosphomolybdenum blue. 

Happens without hydrolysis and only dissolved 

orthophosphate is measured.  

 (HACH Practice report 2008) 

 

 

 

 



 28 

6. 2 Pretreatment of sludge liquor 

 

Different pre treatment methods were tested on the sampled sludge liquors.  

 

Treatment methods used: 

- Aeration 

- Oxidation; Peracetic acid, Hydrogenperoxide and Fenton reaction 

- Chemical precipitation 

- Filtration through Anthracite 

- Filtration through GAC 

 

The best treatment method was used further, and the two best results in form of % 

transmittance and turbidity was characterized and compared.  

 

 

6.2.1 Aeration 

 

Samples were aerated by inserting an air-tube and aquarium pump. Transmittance, pH, 

turbidity, DO and was measured after 2, 6 and 24 hours of aeration.  

 

 

6.2.2 Oxidation 

 

Different concentrations of H2O2, PAA and Fenton reagent were used to treat the sludge 

liquor. The sample added the specific oxidant concentrations were set on a magnetic stirrer 

and parameters were measured after given times. Supernatant was taken and analyzed for 

given parameters in table 5.  

 

 

Table 5; Concentration of oxidants added to samples 

 Chemical 

composition 

Concentration 

1 (mg/l) 

Concentration 

2 (mg/l) 

Concentration 

3 (mg/l) 

Hydrogen Peroxide H2O2 40 80 150 

Peractic acid CH3CO3H 20 40 100 

Fenton Reagent H2O2 + FeSO4 (1:0,1 

molar ratio) 

150 - - 

 

  

Table 6; parameters measured 

Reaction time 0,5 hours 2 hours 4hours 24 hours 

Parameters measured 

for oxidation with 

PAA and H2O2 

pH, turbidity, 

transmittance, 

NH4, NO3, 

COD 

pH, turbidity 

and 

transmittance.  

pH, turbidity 

and 

transmittance. 

pH, turbidity, 

transmittance, 

NH4, NO3, 

COD 

Parameters measured 

for Fenton oxidation 

pH, turbidity, 

transmittance 

 -  - 

 

pH, turbidity, 

transmittance 

Parameters measured after given times during oxidation 
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6.2.3 Chemical precipitation 

 

Chemical coagulation tests were conducted with a Jar-testing apparatus, Kemira flocculator 

90. The process proceeded with rapid mixing for 10 seconds at 400rpm, mixing slowly for 10 

minutes at 40rpm and with 20 minutes of sedimentation. 8 different polymers were tested; 5 

cationic and 3 anionic polymers. Concentrations at 1, 10 and 25mg/l of all polymers from a 

prepared stock solution at 0,1% was tested. The 2 most promising polymers based on turbidity 

and transmission results were further used to find the optimum polymer dose. Further analysis 

was then conducted to characterize the treated sludge liquor, all physical parameters as pH, 

alkalinity, particle distribution, conductivity and chemical parameters as COD, nitrogen and 

phosphorous.   

 

 

Table 7; Properties of polymers used for coagulation 

Polymer Flocculant type  Flocculant Chemical 

supplier 

A-120 Anionic Polyacrylamide 

flocculant 

KEMIRA 

C-492 Cationic Polyacrylamide 

flocculant 

KEMIRA 

C-496 Cationic  Polyacrylamide 

flocculant 

KEMIRA 

Magnafloc 155 Anionic High molecular weight 

polyacrylamide  

 

CIBA 

Magnafloc 342 Anionic  High molecular weight 

polyacrylamide  

CIBA 

Magnafloc 919 Anionic  Non-toxic, 

high molecular weight 

polyacrylamide  

 

CIBA 

ZetaG 7550 Cationic  Polyacrylamide  CIBA 

ZetaG 8125 Cationic  Synthetic high 

molecular weight 

polyacrylamide. Low 

cationic charge. 

 

CIBA 

(CIBA; Technical information).  

 

 

6.2.4 Filtration through Anthracite 

 

600 grams of anthracite was weighed and placed in a cylinder with a controlled outlet valve. 

The column specifications were 9.2 cm high and had a diameter of 8 cm. Both original sludge 

liquor from the wastewater plants and treated sludge liquor with polymers were filtered 

through anthracite. Turbidity and transmittance results were measured to evaluate the effect of 

the filtration. The particle size of the used anthracite was 1mm-2.4mm.  
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6.2.5 Filtration through activated carbon 

Activated carbon in the size range of 0.5-1mm was weighed and putted in a cylinder. 40 

grams GAC was weighed, the cylinder height was 6.2 cm high and had a diameter of 6.6 cm. 

Volumes of 10-15 ml sample was filtered of original sludge liquor. Turbidity and 

transmittance results were measured to evaluate the effect of the filtration.  

 

 

6.2.6 Coagulation with polymer plus anthracite filtration 

The optimum polymer dose decided after coagulation and flocculation procedure of sludge 

liquor as described in 6.2.3 was further filtrated through anthracite, as described in 6.2.5.  

Further analysis was then conducted to characterize the treated sludge liquor, all physical 

parameters as pH, alkalinity, particle distribution, conductivity, turbidity, transmittance and 

chemical parameters as COD, nitrogen and phosphorous.   

 

 

6.2.7 Centrifugation 

Samples were centrifuged for 10 minutes at 4000 rpm for centrifugal separation. Further 

analysis was then conducted to characterize the treated sludge liquor, all physical parameters 

as pH, alkalinity, particle distribution, conductivity, turbidity, transmittance and chemical 

parameters as COD, nitrogen and phosphorous.   

 

 

6.2.8 Coagulation with polymer plus centrifugation 

The optimum polymer dose decided after coagulation and flocculation procedure of sludge 

liquor as described in 6.2.3 was further centrifuged as described in 6.2.7. Further analysis was 

then conducted to characterize the treated sludge liquor, all physical parameters as pH, 

alkalinity, particle distribution, conductivity, turbidity, transmittance and chemical parameters 

as COD, nitrogen and phosphorous.   

 

 

6.3 Microalgae growth 

 

Algae growth was based on mg dry weight per litre per day, a specific volume of algae 

growth medium was dried at 105
0
C and weighed.  

Algae specie used was Chlorella sp. and was given by our collaboration partners at UMB. 

The standard nutrient medium that our treated sludge was compared against was also given by 

UMB, and the content of that and our treated sludge is given in table 7. As a test medium, 

treated sludge from Frevar, by the use of polymer and anthracite, diluted with outlet from 

Frevar wastewater plant was used.  

 

The algae culture was cultivated under 24hour light, 8000 Lux, 500 ml of culture in 1000ml 

sample glass bottles, volume was kept constant so the surface area was constant throughout 

the cultivation period. Oxygen was added during cultivation.  
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The treated sludge liquor (90ml) was added 40ml KH2PO4 (41mg/l) and diluted in 370ml of 

water from outlet at Frevar.  

 

 

Table 8; nutrient values in growth media.  

Nutrients in mg/l Standard growth medium 

(“Superba grønnsak”) 

Treated sludge liquor 

(Frevar) diluted with water 

from outlet (1:5,5) 

TN 92 90 

NO3-N 92 2,33 

NH4-N 0 44,25 

TP 45 2,73 

PO4 -P 40,5 4,55 

 

 

 

7. Results 

 

 

7. 1 Characteristics of sludge liquor from the different wastewater treatment plants 

 

This section (figure 3 to15) includes comparison of all parameters, chemical and physical, for 

the sludge liquor samples from the different wastewater treatment plants.  
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Figure 3; Total solids and volatile solids in sludge liquor samples.  
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Figure 4; Total suspended solids and volatile suspended solids in sludge liquor samples.  
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Figure 5; Particle size distribution in sludge liquor samples, measured by the use of Malvern 

mastersizer.  

 

 

Table 9; Particle concentrations and size distribution in percentage 

WWT Plant 

Measured 
particle 
concentration 
(mg/l) d0.1 d0.5 d0.9 

GRA 525 1,23 20,03 210,29 

FREVAR  1500 0,72 2,26 571,17 

SFR 1380 9 64,13 161,73 

NFR 700 0,68 1,39 144,9 

Values corresponding to d0.1, d0.5 and d0.9, means the particle size, 

 in μm, that is represented in 10%, 50% and 90% of the particles.  
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Figure 6; Transmittance in sludge liquor samples, measured at 670nm.  
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Figure 7; Turbidity in sludge liquor samples, values over 1000 NTU could not be measured, and are 

illustrated here by reaching over 1000 NTU. GRA and SFR had a value of 611 and 566 NTU.  
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Figure 8; pH in sludge liquor samples. 
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Figure 9; Alkalinity in mmol/l in sludge liquor samples 
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Figure 11; Chemical oxygen demand and soluble chemical oxygen demand (filtered through 1.2μm 

filter) in sludge liquor samples.  
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Figure 12; Total nitrogen, soluble nitrogen and ammonium values in sludge liquor samples 
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Figure 13; Nitrate values in sludge liquor samples 
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Figure 14; Nitrite values in sludge liquor samples 
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Figure 15; Total Phosphate and Ortho-phosphate values in sludge liquor samples. Phosphate in GRA 

was under the detectable range of 0,05mg/l.   
 

 

 

 

 

7.2 Centrifugation as pre-treatment 

 

Centrifugation as described in section 6.2.7 was tested to see if it was suitable as pre-

treatment alone. The result is presented in % transmittance.  
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Figure 16; Transmittance values (%T) at 670nm after centrifugation compared with original values 

 

 

7. 3 Media filtration of sludge liquor from the different wastewater plants 

 

Media filtration was conducted (see section 6.2.4 and 6.2.5), and as media filtration as pre-

treatment alone only transmittance was measured.  
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Figure 17; transmittance (%T) after filtration through anthracite and activated carbon, compared with 

original values.  

 

 

7. 4 Aeration as pre-treatment of sludge liquor from the different wastewater plants 

 

As described in section 6.2.1, samples were aerated and parameters measured to evaluate the 

effect. The change in transmittance, pH, DO can be seen in figure 18-20.  
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Figure 18; Change in transmittance during aeration as pre-treatment.  
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Figure 19 Change in pH during aeration as pre-treatment 
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Figure 20; Change in DO concentrations during aeration as pre-treatment 
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7. 5 Oxidation as pre-treatment of sludge liquor from the different wastewater plants 

 

In section 6.2.2, the oxidation procedure is described. Parameters was measured for different 

concentrations of PAA and H2O2. There was not much difference in the tested concentrations 

for PAA or H2O2, and the change in %T and  pH for the concentrations of 40mg/l, 80mg/l and 

150mg/l for PAA, H2O2 and Fenton is showed in figures 21-25. 

Measured values for COD, NH4-N and NO3-N are showed in tables 10-21.  
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Figure 21; Change in transmittance during oxidation with hydrogen peroxide, as pre-treatment. 
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Figure 22; Change in pH during oxidation with hydrogen peroxide as pre-treatment. 
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%Transmittance at 670nm during oxidation with 40mg/l PAA
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Figure 23; Change in transmittance during oxidation with peracetic acid, as pre-treatment. 
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Figure 24; Change in pH during oxidation with peracetic acid, as pre-treatment. 
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%Transmittance at 670nm during oxidation with 150mg/l Fenton agent
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Figure 25; Change in transmittance during oxidation with Fenton reagent, as pre-treatment. 

 

 
Table 10; Control during oxidation (GRA) 

Gardermoen wastewater treatment plant 
Control 

 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-N 
reduction 

0h 1872 0 280 0 5,6 0 

0,5h 1665 11,1 228 18,6 5,49 2,0 

24h 2008 -7,3 135 51,8 5,29 5,5 

Table shows values and percentage reduction for the control sample 

 

 
Table 11; Oxidation with hydrogen peroxide (GRA) 

Gardermoen wastewater treatment plant 
 H2O2 80mg/l 

 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-
N 
reductio
n 

0h 1872 0 280 0 5,6 0 

0,5h 1577 15,8 182 35,0 5,5 1,8 

24h 1941 -3,7 170 39,3 4,3 23,2 

Table shows values and percentage reduction for GRA during oxidation with 80mg/l H2O2 

 
 

Table 12; Oxidation with peracetic acid (GRA)  
Gardermoen wastewater treatment plant 

PAA 40mg/l 
 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-N 
reduction 

0h 1872 0 280 0 5,6 0 

0,5h 1643 12,2 238 15,0 5,1 8,9 

24h 1960 -4,7 182 35,0 3,4 39,3 

Table shows values and percentage reduction for GRA during oxidation with 40mg/l PAA 
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Table 13; Control during oxidation (FREVAR) 

Frevar wastewater treatment plant 
Control 

 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-N 
reduction 

0h 7525 0 831 0 18,9 0 

0,5h 7701 -2,3 1160 -39,6 29,6 -56,6 

24h 7908 -5,1 1120 -34,8 23 -21,7 

Table shows values and percentage reduction for the control sample 

 

 
Table 14; Oxidation with hydrogen peroxide (FREVAR)  

Frevar wastewater treatment plant 
 H2O2 80mg/l 

 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-N 
reduction 

0h 7525 0 831 0 18,9 0 

0,5h 7000 7,0 1080 -30,0 22,8 -20,6 

24h 7047 6,4 739 11,1 37,4 -97,9 

Table shows values and percentage reduction for FREVAR during oxidation with 80mg/l H2O2 

 

 
Table 15; Oxidation with peracetic acid (FREVAR)  

Frevar wastewater treatment plant 
PAA 40mg/l 

  Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-N 
reduction 

0h 7525 0 831 0 18,9 0 

0,5h 8042 -6,9 726 12,6 39,3 -107,9 

24h 7625 -1,3 742 10,7 25,5 -34,9 

Table shows values and percentage reduction for FREVAR during oxidation with 40mg/l PAA 

 
Table 16; Control during oxidation (SFR) 

Søndre Follo wastewater treatment plant 

Control 
 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-N 
reduction 

0h 4503 0 308 0 0,629 0 

0,5h 4477 0,6 480 -55,8 1,08 -71,7 

24h 5694 -26,4 570 -85,1 1,42 -125,8 

Table shows values and percentage reduction for the control sample 
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Table 17; Oxidation with hydrogen peroxide (SFR)  

Søndre Follo wastewater treatment plant 
 H2O2 80mg/l 

 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-
N 
reductio
n 

0h 4503 0 308 0 0,629 0 

0,5h 4326 3,9 436,5 -41,7 1,42 -125,8 

24h 5277 -17,2 545 -76,9 1,39 -121,0 

Table shows values and percentage reduction for SFR during oxidation with 80mg/l H2O2 

 

 
Table 18; Oxidation with peracetic acid (SFR) 

Søndre Follo wastewater treatment plant 
PAA 40mg/l 

 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-N 
reduction 

0h 4503 0 308 0 0,629 0 

0,5h 4641 -3,1 466 -51,3 1,13 -79,7 

24h 6137 -36,3 600 -94,8 1,56 -148,0 

Table shows values and percentage reduction for SFR during oxidation with 40mg/l PAA 

 

 
Table 19; Control during oxidation (NFR) 

Nordre Follo wastewater treatment plant 

Control 
 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-N 
reduction 

0h 3850 0 476 0 7,16 0 

0,5h 3995 -3,8 665 -39,7 8,86 -23,7 

24h 4795 -24,5 409 14,1 12 -67,6 

Table shows values and percentage reduction for the control sample 

 

 
Table 20; Oxidation with hydrogen peroxide (NFR)  

Nordre Follo wastewater treatment plant 
 H2O2 80mg/l 

 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-
N 
reductio
n 

0h 3850 0 476 0 7,16 0 

0,5h 3510 8,8 605 -27,1 8,63 -20,5 

24h 5050 -31,2 377 20,8 10,4 -45,3 

Table shows values and percentage reduction for NFR during oxidation with 80mg/l H2O2 
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Table 21; Oxidation with peracetic acid (NFR) 

Nordre Follo wastewater treatment plant 
PAA 40mg/l 

 Reaction 
time  COD mg/l 

% COD 
reduction 

NH4-N 
(mgN/l) 

%NH4-N 
reduction 

NO3-N 
(mgN/l) 

%NO3-N 
reduction 

0h 3850 0 476 0 7,16 0 

0,5h 4265 -10,8 409 14,1 10,9 -52,2 

24h 3455 10,3 630 -32,4 9,02 -26,0 

Table shows values and percentage reduction for NFR during oxidation with 40mg/l PAA 

 



 46 

 

 

7.6 Testing of polymers and combining coagulation-flocculation with filtration 

 

Pre-treatment testing for each sample site is described in separated sections, showing results 

of coagulation-flocculation by several polymers and optimal dose of selected polymer. The 

results of the best combined treatment are compared by values and percentage reduction.  

 

 

7.6.1 Gardermoen wastewater treatment plant 
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Figure 26; The results in transmittance properties after coagulation flocculation with all polymers, 

with the best result for 1, 10 and 25mg/l for GRA. 
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Testing of optimal polymer dose
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Figure 27; testing the optimal polymer dose of the polymers who worked the best in first testing 

(GRA) 
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Figure 28; comparing original value of sludge liquor from GRA with best polymer and polymer dose, 

and polymer addition combined with filtration through anthracite.  
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Table 22, chemical parameters, before and after treatment (GRA) 
 Chemical 

Parameters 
Original ZG 8125 

50mg/l 
%  

removal 
ZG 8125 
50mg/l + 
filtration 
through 
anthracite 

%  
removal 

TSS (mg/L) 787 104 87 93 88 

VSS (mg/L) 673 84 88 87 87 

COD (mg/L) 1872 937 50 600 68 

sCOD 
(mg/L) 

751 660 12 480 36 

Tot-N 
(mg/L) 

640 518 19 508 21 

NO3-N 
(mg/L) 

5,6 0,32 94 0,4 93 

NO2-N 
(mg/L) 

0,044 0,036 18 0,021 52 

NH4-N 
(mg/L) 

280 248 11 244 13 

Tot-P 
(mg/L) 

2,8 1,09 61 1,02 64 

PO4-P 
(mg/L) 

<0,05 <0,05 - <0,05 - 

Table shows values and % reduction of parameters after treatment.  

 

 

 
Table 23, physical parameters, before and after treatment (GRA) 
Physical parameters Original ZG 8125 

50mg/l 
ZG 8125 50mg/l + 
filtration through 

anthracite 

Turb 611 60,9 20 

Alkalinity (mmol/L) 25 23 20,2 

Conductivity (mS/cm) 2,93 2,74 2,69 

% T (670 nm) 16,1 68,4 85 

pH 7,77 7,59 7,64 

Table shows values and % reduction of parameters after treatment.  

 

 
Table 24; Particle concentrations and size distribution in percentage (GRA) 

 

Measured 
particle 

concentration 
(mg/l) d0.1 d0.5 d0.9 

Original 
 525 1,23 20,03 210,29 

ZG 8125 50mg/l 50 0,88 7,66 32,4 

ZG 8125 50mg/l 
+ filtration 
through 

anthracite 45 1,2 3,1 28 

Values corresponding to d0.1, d0.5 and d0.9, means the particle size, in μm, that is  

represented in 10%, 50% and 90% of the particles.  
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7.6.2 Frevar wastewater treatment plant 22.03 
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Figure 29; the results in transmittance properties after coagulation and flocculation with all polymers, 

with the best result for 1, 10 and 25mg/l for Frevar. 
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Figure 30; testing the optimal polymer dose of the polymers which worked the best in first testing. 

Frevar.  
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Figure 31; comparing original value of sludge liquor from Frevar with best polymer and polymer dose, 

and polymer addition combined with filtration through anthracite and centrifugation.  

 

 

Table 25, chemical parameters, before and after treatment (FREVAR) 
 Chemical 

Parameters 

Original Centrifuge 
% 
removal 

ZG 8125 
250mg/l + 
filtration 
through 
anthracite 

% 
removal 

ZG 8125 
250mg/l + 
centrifugation 

% 
removal 

TSS (mg/L) 3740 313 92 64 98 122 97 

VSS (mg/L) 2940 237 92 52 98 107 96 

COD (mg/L) 7525 5326 29 1888 75 3957 47 

sCOD 
(mg/L) 3330 3272 2 1800 46 3390 -2 

Tot-N 
(mg/L) 1655 1370 17 517 69 997 40 

NO3-N 
(mg/L) 18,9 12,1 36 13,8 27 18,7 1 

NO2-N 
(mg/L) 0,026  -  - 0,019 27 0,023 12 

NH4-N 
(mg/L) 831 612 26 370 55 640 23 

Tot-P 
(mg/L) 37,1   100 1,83 95 3,24 91 

PO4-P 
(mg/L) 3,79 1,48 61 0,087 98 1,18 69 

Table shows values and % reduction of parameters after treatment.  

 

 
Table 26, physical parameters, before and after treatment (FREVAR) 
Physical parameters 

Original Centrifuged 

ZG 8125 250mg/l + 
filtration through 
anthracite 

ZG 8125 250mg/l + 
centrifugation 

Turb >1000 503 28 35,4 

Alkalinity (mmol/L) 73  - 32 49 

Conductivity (mS/cm) 8,63  - 4,05 7,19 

% T (670 nm) 0,1 12,4 76,9 65,9 

pH 8,1 8,19 8,14 8,22 

Table shows values and % reduction of parameters after treatment.  
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Table 27; Particle concentrations and size distribution in percentage (FREVAR) 

 Measured 
particle 

concentratio
n (mg/l) 

d0.1 d0.5 d0.9 

Original 1500 0,72 2,26 571,17 

Centrifuge 120 0,6 0,89 1,4 

ZG 8125 250mg/l + 
filtration through 
anthracite 25 0,66 1,17 4,79 

ZG 8125 250mg/l + 
centrifugation 30 0,67 1,31 11 

Values corresponding to d0.1, d0.5 and d0.9, means the particle size, in μm, that is  

represented in 10%, 50% and 90% of the particles.  
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7.6.3 Søndre Follo wastewater treatment plant 
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Figure 32; the results in transmittance properties after coagulation and flocculation with all polymers, 

with the best result for 1, 10 and 25mg/l for SFR. 
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Figure 33; testing the optimal polymer dose of the polymers which worked the best in first testing. 

SFR.  
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Figure 34; comparing original value of sludge liquor from SFR with best polymer and polymer dose, 

and polymer addition combined with filtration through anthracite and centrifugation.  
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Table 28, chemical parameters, before and after treatment (SFR) 
 Chemical 

Parameters 

 
 
Original 

 
 
Centrifuge 

 
% reduction 
from original 
sample 

C-496 25mg/l 
+ 
centrifugation 

% reduction 
from original 
sample 

C-496 
25mg/l + 
filtration 
through 
anthracite 

% 
reduction 
from 
original 
sample 

TSS (mg/L) 636 73 89 32 95 130 80 

VSS (mg/L) 580 63 89 26 96 106 82 

COD (mg/L) 4503 4139 8 3892 14 4542 -1 

sCOD 
(mg/L) 

3627 3391 7 3745 -3 3607 1 

Tot-N 
(mg/L) 

382,5 371 3 347 9 327 15 

NO3-N 
(mg/L) 

0,629 0,71 -13 0,664 -6 0,59 6 

NO2-N 
(mg/L) 

0,025 0,031 -24 <0,015  - <0,015  - 

NH4-N 
(mg/L) 

308 339,5 -10 340,5 -11 306 1 

Tot-P 
(mg/L) 

4,09 0,956 77 0,385 91 0,874 79 

PO4-P 
(mg/L) 

0,061 0,083 -36 <0,05  - <0,05  - 

Table shows values and % reduction of parameters after treatment.  

 

 

 
Table 29, physical parameters, before and after treatment (SFR) 
Physical parameters Original Centrifuge  C-496 25mg/l + 

centrifugation 
C-496 (25mg/l) + 

Anthracite 

Turb 556 70,3 19,3 85,5 

Alkalinity (mmol/L) 20,6 20 21,7 17,3 

Conductivity (mS/cm) 4,02 3,98 3,74 3,86 

% T (670 nm) 21,1 75,9 92,3 64,6 

pH 6,28 6,25 6,74 6,86 

Table shows values and % reduction of parameters after treatment.  

 

 

  
Table 30; Particle concentrations and size distribution in percentage (SFR) 

 Measured 
particle 

concentration 
(mg/l) 

d0.1 d0.5 d0.9 

Original 1380 9 64,13 161,73 

Centrifuge 15 0,66 1,16 23,42 

C-496 25mg/l + 
centrifugation 

10 0,71 2,03 14 

C-496 (25mg/l) + 
Anthracite 

40 0,78 3,19 14,86 

Values corresponding to d0.1, d0.5 and d0.9, means the particle size, in μm, that is  

represented in 10%, 50% and 90% of the particles. 
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7.6.4  Nordre Follo wastewater plant 
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Figure 35; the results in transmittance properties after coagulation and flocculation with all polymers, 

with the best result for 1, 10 and 25mg/l for NFR 
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Figure 36; testing the optimal polymer dose of the polymers which worked the best in first 

testing. NFR.  
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Figure 37; comparing original value of sludge liquor from NFR with best polymer and 

polymer dose, and polymer addition combined with filtration through anthracite and 

centrifugation.  

 

 
Table 31; chemical parameters, before and after treatment (NFR) 
 Chemical 

Parameters 
Original Centrifuged 

% 
reduction 

ZG 8125 
150mg/l + 

centrifugation 
% 

reduction 

ZG 8125 
150mg/l + 
Anthracite 

% 
reduction 

TSS (mg/L) 2125 634 70 255 88 750 65 

VSS (mg/L) 1825 524 71 243 87 670 63 

COD 
(mg/L) 3850 2774 28 1660 57 2165 44 

sCOD 
(mg/L) 1037 1867 -80 1240 -20 1300 -25 

Tot-N 
(mg/L) 930 860 8 875 6 934 0 

NO3-N 
(mg/L) 7,16 4,41 38 5,07 29 6,06 15 

NO2-N 
(mg/L) 0,221 0,123 44 0,091 59 0,086 61 

NH4-N 
(mg/L) 476 747 -57 600 -26 620 -30 

Tot-P 
(mg/L) 63,5 37,6 41 5,26 92 12,3 81 

PO4-P 
(mg/L) 3,78 1,8 52 0,758 80 0,715 81 

Table shows values and % reduction of parameters after treatment.  

 

 

 
Table 32; physical parameters, before and after treatment (NFR) 
Physical parameters 

Original Centrifuge 
Polymer + 

centrifugation 
Polymer + 
Anthracite 

Turb >1000 629 192 331 

Alkalinity (mmol/L) 52,6 48,2 36,6 43,0 

Conductivity (mS/cm) 5,65 5,41 4,11 4,9 

% T (670 nm) 2 17 64 56 

pH 8,13 8,22 8,46 8,51 

Table shows values and % reduction of parameters after treatment.  
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Table 33; Particle concentrations and size distribution in percentage (NFR) 

 Measured 
particle 

concentratio
n (mg/l) 

d0.1 d0.5 d0.9 

Original 700 0,68 1,39 144,9 

Centrifuge 90 0,64 1,03 96,9 

Polymer + 
centrifugation 30 0,65 1,09 8,71 

Polymer + 
Anthracite 150 0,69 1,53 13,03 

Values corresponding to d0.1, d0.5 and d0.9, means the particle size, in μm, that is  

represented in 10%, 50% and 90% of the particles. 
 

 

7.7 Microalgae growth 

Chlorella sp. was grown in diluted treated sludge liquor (from FREVAR), see section 6.3. 

Growth pattern was compared with growth in a standard nutrient media (figure 38-41). The 

relationship between loss of nutrients and growth is shown in figures 42-46. The relationship 

between pH and DO during growth is shown in figure 47.  
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Figure 38; growth of Chlorella sp. in sludge liquor media 
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Algae growth in nutrient media
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Figure 39; growth of Chlorella sp. in standard nutrient media.  

 

 

 

Growth curve based on absorbance in sludge liquor media
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Figure 40; growth of Chlorella sp. in sludge liquor media based on absorbance at 440nm 
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Figure 41; growth of Chlorella sp. in standard nutrient media based on absorbance at 440nm 
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Algae growth in sludge liquor media
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Figure 42; Changes in NH4-N concentration during growth of Chlorella sp. in sludge liquor media  
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Figure 43; Changes in NO3-N concentration during growth of Chlorella sp. in sludge liquor media  
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Figure 44; Changes in total nitrogen concentration during growth of Chlorella sp. in sludge liquor 

media  
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Figure 45; Changes in PO4-P concentration during growth of Chlorella sp. in sludge liquor media  
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Figure 46; Changes in COD concentration during growth of Chlorella sp. in sludge liquor media  
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Figure 47; Changes in pH and DO concentrations during growth of Chlorella sp. in sludge 

liquor media  
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8. Discussion 

 

8.1 Characterization 

 

Frevar has the highest TS and SS values. SFR has considerably higher TS content then SS, 

only 28% of the total solids are suspended solids, meaning that SFR has a higher ratio of 

dissolved solids, while the other sites has a ratio of approximately 50%. By comparing the 

solid analysis (figure 3 and 4) against the particle distribution analysis measured on Malvern 

mastersizer (figure 5), the numbers are not corresponding. The higher the TS and TSS values 

are, the larger the difference in particle concentration measured by Malvern. One reason for 

this might be during dilution of the samples done before particle size analysis, excluding the 

bigger particles and thereby lowering the total particle concentration. In solid analysis of SFR 

it shows that SFR has a high % shear of dissolved solids, in the graph for particle size 

distribution done by Malvern, the peak lies in the range of 75-200μm and less then 10% is 

under 1.2μm. Most lightly there has been an error during measurement in Malvern, bubbles or 

other objects disturbing the particle content and distribution. While looking at the particle size 

distribution in figure 3, Frevar and NFR have the highest particle concentrations and have a 

higher distribution in the lower range (0.5-2μm), a higher distribution of dissolved solids.  

 

Frevar and NFR has almost no light penetration, with a transmittance as low as 0.1% and 2%, 

and both with a turbidity over 1000 NTU (see figure 6 and 7).  Visually the liquid was very 

black for both Frevar and NFR but Frevar was darkest. GRA and SFR show significantly 

better light penetration properties with having less turbidity (611NTU and 566NTU) and 

higher transmittance of 16% and 21%. Visually the sample from SFR was a yellow-brown 

liquid and separated itself by its light colour. Solid content is the main character that affects 

the transmittance negatively and increase turbidity (Metcalf and Eddy, 2004).  In pH (figure 

8), SFR has a unexpected low pH of 6,28 (expected pH for reject water lies at 7-9 (Thornton 

et al. 2008). Not surprisingly Frevar has a high alkalinity and conductivity. The conductivity 

(figure 10) values shows a relation to the measured dissolved solid concentrations (DS= TS- 

SS), and this suit good with theory as the conductivity increases with increased dissolved 

solid concentration.  

 

SFR has a very high fraction of soluble COD and soluble nitrogen compared to the total COD 

and nitrogen concentrations, (81% and 86%), while the soluble COD and soluble nitrogen 

fraction for the other lies around 50-60% and 40-50%. NH4 percentage of total nitrogen is 

around 50% except for SFR which ammonium stands for 80% of total nitrogen and 93% of all 

soluble nitrogen (see figure 11 and 12). This can be related to the solid concentrations, where 

SFR shows a high fraction of dissolved solids. Frevar also distinguish by having a high 

percentage of ammonium of the soluble nitrogen (90%). Frevar has high nitrate concentration, 

and GRA has a very high nitrite concentration compared to the others. SFR is significantly 

low in nitrate concentration. NFR has a very high phosphate concentration and.    

 

 

The sample collected from Frevar shows the most resemblance to sludge liquor as described 

in literature, NFR and GRA also stays within the range that characterize sludge liquor; high 

pH, alkalinity, conductivity,  SFR is the sample that deviates from described literature. 

Differences in sludge liquor comes from the variations in inlet flow, treatment proceure, 

dewatering procedure and efficiency and polymer addition.    
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8.2 Centrifugation 

Centrifugation alone gave good results (see figure 16), the maximum speed we could achieve 

on available centrifuge was 4000 rpm. With higher speed there could have been achieved 

better results.  

 

8.3 Aeration 

Aeration as pre-treatment did not change much in the samples, as seen in graph 14 the 

transmittance hardly change. pH (see graph 15) slightly increase with time but not 

significantly, the dissolved oxygen concentration slightly changes, for SFR its decreases 

rapidly after 0,5 hours for then to slowly increase. Aeration of the samples did not change 

properties of the sludge liquor to any extent. Increased oxygen rate should give increased 

activity of microbial digestion. Since the sludge has been through an anaerobic digestion, 

most micro organisms are anaerobic, and thereby the aerobic degradation will not be that 

efficient. And the aeration time (24 hours) might have been to short to for the aerobic algae to 

adapt. Aeration has no effect as pre-treatment method 

 

8.4 Oxidation 

 

Oxidation of the samples with hydrogen peroxide, peracetic acid and Fenton showed little 

effect. Transmittance was lowered during oxidation for all three oxidation methods (see graph 

18 and 20). There was no significantly difference between H2O2, PAA, or Fentons reagent, 

visually the samples looked more turbid after oxidation, with larger particles. COD increased 

after 24 hours of oxidization for both PAA and H2O2, at 0,5 hours the samples oxidized with 

H2O2 (see tables 10-21), decreased in COD concentrations, while with PAA it increased 

already after 0,5 hours (except for Frevar). The reason for the increase in COD after 24 hours 

may be the physical agitation the stirring is creating. Also in the controls there are COD 

increase up to 40%, indicating that the stirring itself is because of that. Comparing the values 

to the controls it is seen that there is a slightly decrease in COD after addition of hydrogen 

peroxide, and its decreased the most after 0,5 hours, except for SFR where COD removal 

increased with time. With addition of PAA the COD values compared to the control also 

decreases slightly, but the COD removal increases with time. Ammonium increases during 

agitation as it is shown on the control taken, that without addition of oxidants only stirring the 

samples gives increased ammonium values, this happens for all controls, except for the 

control of GRA. Comparing the ammonium values of the oxidized samples to the controls the 

ammonia level has slightly been reduced for both PAA and H2O2. Comparing the other 

oxidized samples with the control shows that they have increased of GRA to the control, 

ammonium has increased. Nitrate is also increased based on comparing the results against the 

control that has increased nitrate concentration, except for GRA. The uneven results makes it 

hard to draw a conclusion of the effect of oxidization, the stirring itself seems to have 

influenced the measured parameters significantly, and the oxidation concentration used may 

have been to low to get a good result.  This indicates that oxidation is not a good solution for 

treating sludge liquor.  

 

The main reason can be that pH was not lowered before oxidization, studies show that 

oxidation improves it effectiveness with decreasing pH in the solution getting oxidized. For 

Fenton reaction pH 3 is optimal for best results for oxidation.   
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8.45 Media filtration 

The media filtration shows that activated carbon has a good effect, but varies with the 

different samples. Anthracite also shows good effect on some of the samples, variances here 

can lye in that the anthracite was not dried after each run, so even sample was run through 

once before sampling, water can have still been remaining in the voids of the anthracite 

contributing to a dilution effect. 

Media filtration with anthracite and/or activated carbon is also normally used for drinking 

water treatment (Zouboulis et al. 2007) and sludge liquor may have to high nutrient 

composition and a too high solid content for media filtration alone as pretreatment.  

 

 

 

8.6 Coagulation and flocculation 

 

The testing of different polymers for GRA showed that ZG 8125, ZG 7550 and A-120 gave 

the best results, using concentrations of 1, 10 and 25mg/l , and was tested further for optimal 

polymer dosage.  ZG 8125 was the most effective polymer, even if ZG 7550 reached higher 

transmittance results, ZG 8125 achieved a good transmission result with a much less polymer 

dose (se figure 27), considering the  economical aspect ZG 8125 at the concentration of 

50mg/l was further treated at tested. Filtration after coagulation was done and improvement 

from 71% to 80% transmission after filtration through anthracite. There was achieved a higher 

reduction of soluble COD after anthracite filtration, from 12% to 36% reduction (see table 22) 

and nitrite was also decreased significantly more after anthracite filtration then with only 

flocculation. In general the treated sludge liquor from GRA had high reduced values of solids, 

turbidity, COD, nitrate and phosphorous. There was little change in alkalinity, conductivity 

and pH. Centrifugation after coagulation and flocculation was not done, this might have been 

better then coagulation and flocculation combined with anthracite.  

 

Testing out polymers and doses for the sludge liquor from Frevar, ZG 8125 and C-492, both 

cationic, gave best transmittion results with very similar results, but ZG 8125 was slightly 

better. The optimal polymer dose was 250mg/l, something that is very high, considering 

Frevar had a very bad start with a original sample, having only 0,1% in transmittance, it needs 

such a high polymer dose to achieve acceptable light penetration properties. Achieved 

transmittance with flocculation was 47%, centrifugation after flocculation gave 66% 

transmittance and filtration through anthracite increased transmittance to 77% (figure 31).  

There is high reduction in solids for all three methods; centrifugation, flocculation and 

centrifugation, flocculation and anthracite filtration, but only flocculation combined with 

anthracite filtration reduces COD and soluble COD significantly. Total nitrogen, ammonium 

and phosphate are reduced during this treatment (table 25 and 26) compared to the others; also 

conductivity alkalinity is decreased a lot compared to the others. Since the conductivity and 

alkalinity is decreased as much as one can see here, it implies that there has been a diution of 

the sample. This can have happened because water has been left over in voids of the 

anthracite filter and have interfered with filtration of sample.  

 

 

For SFR, two cationic polymers showed the best result, ZG 7550 and C-496. The sludge 

liquor form this site has a very high initial transmittance (21%) and low turbidity and visually 
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its brown to yellow, and separates from the other (see section 8.1). Centrifugation alone gives 

a transmittance at 76% (see figure 34). The optimum polymer dose is quit low, 25mg/l, and C-

496 seems to be the best polymer. Centrifugation after flocculation gives higher transmittance 

values then flocculation combined with anthracite filtration, 92% transmittance is achieved by 

flocculation and centrifugation, centrifugation alone gives higher transmittance then 

combined flocculation and anthracite filtration. The treatment methods, centrifugation, 

flocculation and centrifugation, flocculation and anthracite filtration gives high removal of 

solids but not that much COD removal, anthracite filtration after flocculation remove a lot of 

the total nitrogen compared to the others, but little ammonium or nitrate is removed. The total 

phosphorous content is significantly reduced. Initial pH for SFR was very low, 6,28, and 

increased with flocculation combined with centrifugation and flocculation combined with 

filtration. There was little reduction in alkalinity and conductivity (see table 29).  

 

 

Two cationic polymers of the tested showed best results in transmission results after 

flocculation of the NFR sample, C-492 and ZG 8125. Optimal polymer and dosage was 150 

mg/l ZG 8125 as seen in figure 36. Treatment after flocculation gives best results combined 

with centrifugation; 64 % transmittance is achieved (see figure 37). Flocculation combined 

with anthracite filtration gives higher reduction in solids removal and COD, while soluble 

COD and ammonium values are increased (with all treatments). Total phosphorus and 

phosphate is reduced after flocculation and combined treatment.  

 

NFR and SFR achieved best results with the combination of coagulation and flocculation 

combined with centrifugation. FREVAR showed highest transmittance values with anthracite 

filtration, but this sample indicates that dilution has occurred under filtration. There was not 

done centrifugation after polymer addition for GRA. This makes the combination of 

coagulation and flocculation combined with centrifugation to seem the most feasible option 

for sludge liquor pre-treatment.  

 

 

8.7 Microalgae growth 

Growth of Chlorella sp. in standard nutrient media showed an expected growth curve, both 

based on absorbance at 440nm and mg/l dry weight, with a lag phase, log phase and a long 

stationary phase, then death phase. 440 nm was used since the highest absorption occurred 

here. The calculated growth rate g/m
2
/d, is a bit uneven. The growth curve based on 

absorbance shows a longer lag phase, probably because the algae needs longer time to adapt 

to the sludge liquor media. The growth curve is of a very shorter time-period compared to the 

nutrient solution media, this because of the limitations of nutrients in the sludge liquor media 

as nitrogen and phosphorous compounds. Light penetration is also less then in the nutrient 

media, but the lack of nutrients are probably more significant to the algae growth.  Total 

nitrogen and nitrate first slowly decrease, then after 2 days when growth rate increases they 

rapidly decrease and then after 5 days they slowly decreases as growth rate slows down. 

Ammonium decreases rapidly instantly until 2 days, where it slowly decreases until death 

phase.  

Inhibition of nitrate uptake is caused by high ammonium concentrations (Cochlan and 

Harrison, 2003), here we see that before the total nitrogen and nitrate is consumed rapidly, 

ammonium is utilized and rapidly decreased. This may also be a reason for the long lag phase 

in sludge liquor media.  
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The study shows that microalgae grow in diluted sludge liquor with addition of phosphorus. 

The growth can be further induced by adding more phosphate and other nutrients as 

phosphorpus and nitrogen are the limiting nutrient, affecting algae growth (Kunikane at al, 

2003). Also nitrogen in the form of urea can be added, Pustizzi et al. 2004; found that algae 

has higher growth in low light conditions with addition of nitrogen in the form of urea then 

without.   

 

 

9. Conclusion 

 

The characteristics of sludge liquor vary between different wastewater treatments plants due 

to variation in inlet flow, treatment methods and dewatering methods. But they share 

similarities as high TSS, COD and ammonium levels.  

  

Oxidization and aeration did not improve light penetration properties, as removing solids and 

reducing COD, in fact the transmittance and turbidity increased cause of the mechanical 

agitation. The doses of oxidizing agents added also might be to low to get any wanted effect, 

still the effect over oxidization of higher doses is doubtful. The pH was not lowered before 

addition and therefore the efficiency decreased even more.  

Values after media filtration, either anthracite or activated carbon, varied a lot in effectiveness 

as treatment. Because of the variations and only some good results for media filtration it is not 

recommended as a single pretreatment procedure for such dark sludge liquor. Centrifugation 

alone gave high transmittance results, but not significantly enough to recommend as pre-

treatment alone.  

The pre-treatment that occurred feasible was coagulation and flocculation by addition of 

polymers combined with centrifugation. It increased the transmittance and lowered turbidity 

and reduced COD and TSS with around 80% of original value.  

There are difficulties with reducing TSS, COD and turbidity without removing nutrients as 

nitrogen and phosphorous. Addition of nutrients to microalgae growth media is needed.  

 

Algae grew in diluted (1:5.5) pre-treated sludge liquor only added phosphate. It had a longer 

lag phase and shorter growth period compared to algae grown in a conventional nutrient 

media, but it gave a positive indication on the feasibility to use treated sludge liquor as 

nutrient media for algae growth.  

 

 

 

Further objectives: 

 

Further testing of coagulation and flocculation with polymers combined with dual media 

filtration; anthracite and activated carbon as pre-treatment.   

 

Optimization of coagulation and flocculation with polymers combined with centrifugation, 

testing with higher speed.   

 

Experiments of microalgae growth in treated sludge liquor with varying dilutions and nutrient 

additions, for optimization of media and growth rates.   
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Appendix: 
 

1A.  

I. Tests 
GARDERMOEN 

Conc 
mg/l 

TSS 
(mg/L) 

VSS 
(mg/L) 

TS 
(mg/L) 

VS 
(mg/L) 

COD 
(mg/L) 

sCOD 
(mg/L) 

% T 
(670 
nm) 

Original     787 673 1335 1038 1872 751 16,1 

Centrifuge     272 224  -  - 987 354 57,1 

Aeration 2 hours    -  -  -  - 1850  - 15,2 

Aeration 24 hours    -  -  -  - 1902  - 14,3 

H2O2 0,5hours 80  -  -  -  - 1577  - 16,9 

H2O2 24hours 80  -  -  -  - 1941  - 7,6 

PAA 0,5hours 40  -  -  -  - 1643  - 16,1 

PAA 24hours 40  -  -  -  - 1960  - 11,7 

Fenton 24hours        -  -    - 31,4 

DAF  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um    -  -  -  -  - 751 91,6 

  Antracit    -  -  -  -  -  - 23 

  GAC    -  -  -  -  -  - 17,8 

Polymers ZG 8125 50 104 84  -  - 937 660 68,4 

  ZG 7550 150 49 47  -  - 549 438 87,5 

  MF 155 25      -  - 1278   34,2 

  MF 342 25      -  - 1104   29,9 

  MF 919 25 363 327  -  - 1196   33,6 

  C-496 25 460 344  -  - 1017   39,3 

  C-492 10 668 532  -  - 962   34,4 

  A-120 25 300 243  -  - 1240   53,8 

Polymer + 
Antracite ZG 8125 50 93 87  -  - 600 480 85 
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I. Tests 
GARDERMOEN 

Conc 
mg/l 

Particle 
size 

d10% 
(um) 

Particle 
size 

d50% 
(um) 

Particle 
size 

d90% 
(um) 

Par 
conc 

(mg/L) 
Tot-N 
(mg/L) 

NO3-
N 

(mg/L) 

NO2-
N 

(mg/L) 

NH4-
N 

(mg/L) 

Original     1,23 20,03 210,3 525 640 5,6 0,044 280 

Centrifuge     0,66 1,33 63,34 50 492  -  - 258 

Aeration 2 hours    -  -  -  -  -    - 270 

Aeration 24 hours    -  -  -  -  -    - 183 

H2O2 0,5hours 80  -  -  -  -  - 5,5  - 182 

H2O2 24hours 80  -  -  -  -  - 4,3  - 170 

PAA 0,5hours 40  -  -  -  -  - 5,1  - 238 

PAA 24hours 40  -  -  -  -  - 3,4  - 182 

Fenton 24hours    -  -  -  -  -  -  -   

DAF  -  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um   0,63 1,05 2,34 6  - 5,6 0,044 280 

  Antracit    -  -  -  -  -  -  -  - 

  GAC    -  -  -  -  -  -  -  - 

Polymers ZG 8125 50 0,88 7,66 32,4 50 518 0,32 0,036 248 

  ZG 7550 150 0,86 3,8 16,86 20 490 0,58 0,022 274 

  MF 155 25  -      -  -  -  - 308 

  MF 342 25  -      -  -  -  - 278 

  MF 919 25  -      -  -  -  - 290 

  C-496 25  -      -  -  -  - 265 

  C-492 10  -      -  -  -  - 255 

  A-120 25  -      -  -  -  - 268 

Polymer + 
Antracite ZG 8125 50 1,2 3,1 28 45 508 0,4 0,021 244 
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I. Tests 
GARDERMOEN 

Conc 
mg/l 

Tot-P 
(mg/L) 

PO4-P 
(mg/L) pH Turb 

DO 
(mg/l) 

Alkalinity 
(mmol/L) 

Conductivity 
(mS/cm) 

Original     2,8 <0,05 7,77 611 8,78 25 2,93 

Centrifuge     <2 <0,05 7,88 172  -  -  - 

Aeration 2 hours    -  - 7,82 555 8,71  -  - 

Aeration 24 hours    -  - 8,16 564 8,86  -  - 

H2O2 0,5hours 80  -  - 7,84 659  -  -  - 

H2O2 24hours 80  -  - 8,24 909  -  -  - 

PAA 0,5hours 40  -  - 7,93 631  -  -  - 

PAA 24hours 40  -  - 8,31 >1000  -  -  - 

Fenton 24hours    -  -  -  -  -  -  - 

DAF  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um    - <0,05  - 19  -  -  - 

  Antracit    -  -  -  -  -  -  - 

  GAC    -  -  -  -  -  -  - 

Polymers ZG 8125 50 1,09 <0,05 7,59 60,9  - 23 2,74 

  ZG 7550 150 <0,5 <0,05 7,56 18,2  - 16 2,44 

  MF 155 25  - <0,05  -  -  -  -  - 

  MF 342 25  - <0,05  -    -  -  - 

  MF 919 25  - <0,05  -    -  -  - 

  C-496 25  - <0,05  -    -  -  - 

  C-492 10  - <0,05  -    -  -  - 

  A-120 25  - <0,05  -    -  -  - 

Polymer + 
Antracite ZG 8125 50 1,02 <0,05 7,64 20  - 20,2 2,69 
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1B 
GARDERMOEN 
(GRA)     Polymer Matrix 

  Units                   

Polymer   Value 
ZETAG 

8125 
ZETAG 

7550 

MAGNA 
FLOC 
155 

MAGNA 
FLOC 
342 

MAGNA 
FLOC 919 CIBA C-496 

CIBA C-
492 

CIBA A-
120 

Density g/cm3       0,75 0,75         

Total vol supplied mL   50 50 50 50 50       

Conc %   0,50 % 0,50 % 0,50 % 0,50 % 0,50 %       

State     Liquid Liquid Liquid Liquid Liquid Granules Granules Granules 

Type     Cationic Cationic Anionic Anionic Anionic Cationic Cationic Anionic 

Conc for stock 
soln %   0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 

Amount added for 
dilution mL   5 5 5 5 5       

Total volume of 
stock prepared mL   25 25 25 25 25       

                      

Weight of added 
granules mg             100 100 100 

Total volume mL             100 100 100 

                      

Concentrations 
tested                     

Conc 1 mg/L 1 X X X X X X X X 

Height of 
supernatant cm   7,6 7,6 7,6 7,7 7,6 7,6 7,5 7,6 

Height of flocs cm   <0,1 <0,1 <0,1 <0,1 0,3 <0,1 <0,1 <0,1 

                      

Conc 2 mg/L 10 X X X X X X X X 

Height of 
supernatant cm   7,7 7,7 7,6 7,7 7,8 7,8 7,7 7,6 

Height of flocs cm   0,3 0,4 <0,1 <0,1 0,3 0,5 <0,1 0,3 

                      

Conc 3 mg/L 25 X X X X X X X X 

Height of 
supernatant cm   7,8 7,8 7,7 7,8 7,8 7,8 7,7 7,8 

Height of flocs cm   1 0,4 <0,1 <0,1 0,5 0,5 0,3 0.3 

                      

Conc 4 mg/L 50 X X           X 

Height of 
supernatant cm   7,9 7,9           7,8 

Height of flocs cm   1 0,5           0.3 

                      

Conc 5 mg/L 75 X X           X 

Height of 
supernatant cm   8,1 7,8           7,8 

Height of flocs cm   1 0,5           0.3 

                      

Conc 6 mg/L 100 X X             

Height of 
supernatant cm   8,1 7,8             

Height of flocs cm   1 0,5             

                      

Conc 7 mg/L 200 X               

Height of 
supernatant cm   8,5               

Height of flocs cm   1               



 73 

2A 

 

 

Tests FREVAR 
Conc 
mg/l 

TSS 
(mg/L) 

VSS 
(mg/L) 

TS 
(mg/L) 

VS 
(mg/L) 

COD 
(mg/L) 

s
C

O
D

 (
m

g
/L

) 

% T 
(670 
nm) 

Original     3740 2940 6688 4945 7525 3330 0,1 

Centrifuge     313 237  -  - 5326 3272 12,4 

Aeration 2 hrs    -  -  -  -  -  - 0,1 

Aeration 24 hrs    -  -  -  -  -  - 0,2 

H2O2 0,5hrs 80  -  -  -  - 7000  - 0,1 

H2O2 24hrs 80  -  -  -  - 7047  - 0,1 

PAA 0,5hrs 40  -  -  -  - 7625  - 0,1 

PAA 24hrs 40  -  -  -  - 8982  - 0,1 

Fenton 24hrs 150  -  -  -  - 8042  - 0,1 

DAF  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um    -  -  -  -  - 3330 62,4 

  Antracit    -  -  -  -  -  - 0,0 

  GAC    -  -  -  -  -  - 0,4 

  GAC    -  -  -  -  -  -  - 

Polymers 
ZG 

8125 250  -  -  -  -  -  - 46,7 

  
ZG 

7550 25  -  -  -  -  -  - 0,1 

  MF 155 25  -  -  -  -  -  - 0,1 

  MF 342 25  -  -  -  -  -  - 0,1 

  MF 919 10  -  -  -  -  -  - 0,1 

  C-496 25  -  -  -  -  -  - 0,1 

  C-492 250  -  -  -  -  -  - 41,1 

  A-120 25  -  -  -  -  -  - 0,1 

Polymer + 
Antracite 

ZG 
8125 250 64 52  -  - 1888 1800 76,9 

Polymer + 
centrifugation 

ZG 
8125 250 122 107  -  - 3957 3390 65,9 
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Tests FREVAR 
Conc 
mg/l 

Particle 
size 

d10%(um) 

Particle 
size 

d50%(um) 

Particle 
size 

d90%(um) 

Par 
conc 

(mg/L) 
Tot-N 
(mg/L) 

NO3-
N 

(mg/L) 

NO2-
N 

(mg/L) 

NH4-
N 

(mg/L) 

Original     0,72 2,26 571,2 1500 1655 18,9 0,026 831 

Centrifuge     0,6 0,89 1,4 120 1370 12,1  - 612 

Aeration 2 hrs    -  -  -  -  -  -  -  - 

Aeration 24 hrs    -  -  -  -  -  -  -  - 

H2O2 0,5hrs 80  -  -  -  -  - 22,8  - 1080 

H2O2 24hrs 80  -  -  -  -  - 37,4  - 739 

PAA 0,5hrs 40  -  -  -  -  - 25,5  - 1080 

PAA 24hrs 40  -  -  -  -  - 44,6  - 658 

Fenton 24hrs 150  -  -  -  -  - 39,3  - 726 

DAF  -  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um   0,64 1,09 4,12 18 924 18,9 0,026 831 

  Antracit    -  -  -  -  -  -  -  - 

  GAC    -  -  -  -  -  -  -  - 

  GAC    -  -  -  -  -  -  -  - 

Polymers 
ZG 

8125 250  -  -  -  -  -  -  -  - 

  
ZG 

7550 25  -  -  -  -  -  -  -  - 

  MF 155 25  -  -  -  -  -  -  -  - 

  MF 342 25  -  -  -  -  -  -  -  - 

  MF 919 10  -  -  -  -  -  -  -  - 

  C-496 25  -  -  -  -  -  -  -  - 

  C-492 250  -  -  -  -  -  -  -  - 

  A-120 25  -  -  -  -  -  -  -  - 

Polymer + 
Antracite 

ZG 
8125 250 0,66 1,17 4,79 25 517 13,8 0,019 370 

Polymer + 
centrifugation 

ZG 
8125 250 0,67 1,31 11 30 997 18,7 0,023 640 
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Tests FREVAR 
Conc 
mg/l 

Tot-P 
(mg/L) 

PO4-P 
(mg/L) pH Turb 

DO 
(mg/l) 

Alkalinity 
(mmol/L) 

Conductivity 
(mS/cm) 

Original     37,1 3,79 8,1 >1000 8,62 73 8,63 

Centrifuge       1,48 8,19 503  -  -  - 

Aeration 2 hrs    -  - 8,15 >1000 8,74  -  - 

Aeration 24 hrs    -  - 8,88 >1000 7,16  -  - 

H2O2 0,5hrs 80  -  - 8,11 >1000  -  -  - 

H2O2 24hrs 80  -  - 8,27 >1000  -  -  - 

PAA 0,5hrs 40  -  - 8,16 >1000  -  -  - 

PAA 24hrs 40  -  - 8,37 >1000  -  -  - 

Fenton 24hrs 150  -  - 8,36 >1000  -  -  - 

DAF  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um    - 3,79  -    -  -  - 

  Antracit    -  -  -  -  -  -  - 

  GAC    -  -      -  -  - 

  GAC    -  -  -  -  -  -  - 

Polymers 
ZG 

8125 250  -  -  -  -  -  -  - 

  
ZG 

7550 25  -  -  -  -  -  -  - 

  MF 155 25  -  -  -  -  -  -  - 

  MF 342 25  -  -  -  -  -  -  - 

  MF 919 10  -  -  -  -  -  -  - 

  C-496 25  -  -  -  -  -  -  - 

  C-492 250  -  -  -  -  -  -  - 

  A-120 25  -  -  -  -  -  -  - 

Polymer + 
Antracite 

ZG 
8125 250 1,83 0,087 8,14 28  - 32 4,05 

Polymer + 
centrifugation 

ZG 
8125 250 3,24 1,18 8,22 35,4  - 49 7,19 
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2 B. 

      Polymer Matrix 

FREVAR Units                   

Polymer   Value 
ZETAG 

8125 
ZETAG 

7550 

MAGNA 
FLOC 
155 

MAGNA 
FLOC 
342 

MAGNA 
FLOC 
919 

CIBA C-
496 

CIBA C-
492 CIBA A-120 

Density g/cm3       0,75 0,75         

Total vol supplied mL   50 50 50 50 50       

Conc %   0,50 % 0,50 % 0,50 % 0,50 % 0,50 %       

State     Liquid Liquid Liquid Liquid Liquid Granules Granules Granules 

Type     Cationic Cationic Anionic Anionic Anionic Cationic Cationic Anionic 

Conc for stock soln %   0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 

Amount added for 
dilution mL   5 5 5 5 5       

Total volume of 
stock prepared mL   25 25 25 25 25       

                      

Weight of added 
granules mg             100 100 100 

Total volume mL             100 100 100 

                      
Concentrations 
tested                     

Conc 1 mg/L 1                 

Height of 
supernatant cm                   

Height of flocs cm                   

                      

Conc 2 mg/L 10 X X X X X X X   

Height of 
supernatant cm   7,8 7,8 7,6 7,6 7,8 7,8 7,7   

Height of flocs cm   0,5 0,3 <0,1 <0,1 <0,1 0,3 0,5   

                      

Conc 3 mg/L 25 X X X X   X X X 
Height of 
supernatant cm   8 8 7,7 7,8   8 7,9 7,9 

Height of flocs cm   1 0,3 <0,1 <0,1   0,3 1 <0,1 

                      

Conc 4 mg/L 50 X           X   

Height of 
supernatant cm   7,9           7,6   

Height of flocs cm   1           1   

                      

Conc 5 mg/L 75                 
Height of 
supernatant cm                   

Height of flocs cm                   

                      

Conc 6 mg/L 100 X           X   
Height of 
supernatant cm   8,1           7,8   

Height of flocs cm   1           1   

                      

Conc 7 mg/L 150 X               

Height of 
supernatant cm   8               

Height of flocs cm   1               
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Conc 8 mg/L 250 X           X   
Height of 
supernatant cm   7,8           8   

Height of flocs cm   1           1   

 

 

3A. 

 

Tests SØNDRE FOLLO 
Conc 
mg/l 

TSS 
(mg/L) 

VSS 
(mg/L) 

TS 
(mg/L) 

VS 
(mg/L) 

COD 
(mg/L) 

sCOD 
(mg/L) 

% T 
(670 
nm) 

Original     636 580 2260 1350 4503 3627 21,1 

Centrifuge     73 63  -  - 4139 3391 75,9 

Aeration 2 hours    -  -  -  -  -  - 18,4 

Aeration 24 hours    -  -  -  -  -  - 23,2 

H2O2 0,5hours 80  -  -  -  - 4326  - 20,3 

H2O2 24hours 80  -  -  -  - 5277  - 14,7 

PAA 0,5hours 40  -  -  -  - 4641  - 20,8 

PAA 24hours 40  -  -  -  - 6137  - 14,1 

Fenton 24hours 150  -  -  -  - 5392  - 15,6 

DAF  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um    -  -  -  - 3627 3627 91,8 

  Antracit    -  -  -  -  -  - 24,1 

  GAC    -  -  -  -  -  - 66,1 

Polymers ZG 8125 10  -  -  -  -  -  - 23,8 

  ZG 7550 25  -  -  -  -  -  - 44,2 

  MF 155 10  -  -  -  -  -  - 25,5 

  MF 342 25  -  -  -  -  -  - 24,8 

  MF 919 25  -  -  -  -  -  - 32,4 

  C-496 25  -  -  -  -  -  - 47,9 

  C-492 25  -  -  -  -  -  - 26,5 

  A-120 25  -  -  -  -  -  - 23,4 

Polymer + 
centrifugation C-496 25 32 26  -  - 3892 3745 92,3 

Polymer + 
centrifugation ZG 7550 25 48 43  -  - 3978 3922 86,1 

Polymer + 
Anthracite C-496 25 130 106  -  - 4542 3607 64,6 
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Tests SØNDRE FOLLO 
Conc 
mg/l 

Particle 
size 

d10%(um) 

Particle 
size 

d50%(um) 

Particle 
size 

d90%(um) 

Par 
conc 

(mg/L) 
Tot-N 
(mg/L) 

NO3-
N 

(mg/L) 

NO2-
N 

(mg/L) 
NH4-N 
(mg/L) 

Original     9 64,1 162 1380 383 0,63 0,03 308 

Centrifuge     0,66 1,16 23,4 15 371 0,71 0,03 340 

Aeration 2 hours    -  -  -  -  -  -  -  - 

Aeration 24 hours    -  -  -  -  -  -  -  - 

H2O2 0,5hours 80  -  -  -  -  - 1,42  - 437 

H2O2 24hours 80  -  -  -  -  - 1,39  - 545 

PAA 0,5hours 40  -  -  -  -  - 1,13  - 466 

PAA 24hours 40  -  -  -  -  - 1,56  - 600 

Fenton 24hours 150  -  -  -  -  - 1,44  - 615 

DAF  -  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um   0,61 0,91 1,43 3 330 0,63 0,03 308 

  Antracit    -  -  -  -  -  -  -  - 

  GAC    -  -  -  -  -  -  -  - 

Polymers ZG 8125 10  -  -  -  -  -  -  -  - 

  ZG 7550 25  -  -  -  -  -  -  -  - 

  MF 155 10  -  -  -  -  -  -  -  - 

  MF 342 25  -  -  -  -  -  -  -  - 

  MF 919 25  -  -  -  -  -  -  -  - 

  C-496 25  -  -  -  -  -  -  -  - 

  C-492 25  -  -  -  -  -  -  -  - 

  A-120 25  -  -  -  -  -  -  -  - 

Polymer + 
centrifugation C-496 25 0,71 2,03 14 10 347 0,66 <0,015 341 

Polymer + 
centrifugation ZG 7550 25 0,68 1,42 13,3 15 353 0,69 <0,015 350 

Polymer + 
Anthracite C-496 25 0,78 3,19 14,9 40 327 0,59 <0,015 306 
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Tests SØNDRE FOLLO 
Conc 
mg/l 

Tot-P 
(mg/L) 

PO4-P 
(mg/L) pH Turb 

DO 
(mg/l) 

Alkalinity 
(mmol/L) 

Conductivity 
(mS/cm) 

Original     4,09 0,06 6,28 556 8,31 20,6 4,02 

Centrifuge     0,96 0,08 6,25 70,3  - 20 3,98 

Aeration 2 hours    -  - 6,72 575 7,5  -  - 

Aeration 24 hours    -  - 6,53 496 4,91  -  - 

H2O2 0,5hours 80  -  - 6,23 607  -  -  - 

H2O2 24hours 80  -  - 6,44 671  -  -  - 

PAA 0,5hours 40  -  - 5,71 615  -  -  - 

PAA 24hours 40  -  - 6,06 761  -  -  - 

Fenton 24hours 150  -  - 6 827  -  -  - 

DAF  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um   0,58 0,06  - 19,1  -  -  - 

  Antracit    -  -  - 514  -  -  - 

  GAC    -  -      -  -  - 

Polymers ZG 8125 10  -  -  -  -  -  -  - 

  ZG 7550 25  -  -  - 179  -  -  - 

  MF 155 10  -  -  - 495  -  -  - 

  MF 342 25  -  -  - 522  -  -  - 

  MF 919 25  -  -  - 383  -  -  - 

  C-496 25  -  -  - 128  -  -  - 

  C-492 25  -  -  - 486  -  -  - 

  A-120 25  -  -  - 514  -  -  - 

Polymer + 
centrifugation C-496 25 0,39 <0,05 6,74 19,3  - 21,7 3,74 

Polymer + 
centrifugation ZG 7550 25 0,51 <0,05 6,82 35,9  - 18,8 3,77 

Polymer + 
Anthracite C-496 25 0,87 <0,05 6,86 85,5  - 17,3 3,86 
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3B. 

      Polymer Matrix 

SØNDRE FOLLO 
RENSEANLEGG Units                   

Polymer   Value 
ZETAG 

8125 
ZETAG 

7550 

MAGNA 
FLOC 
155 

MAGNA 
FLOC 
342 

MAGNA 
FLOC 
919 

CIBA C-
496 

CIBA C-
492 

CIBA A-
120 

Density g/cm3       0,75 0,75         

Total vol supplied mL   50 50 50 50 50       

Conc %   0,50 % 0,50 % 0,50 % 0,50 % 0,50 %       

State     Liquid Liquid Liquid Liquid Liquid Granules Granules Granules 

Type     Cationic Cationic Anionic Anionic Anionic Cationic Cationic Anionic 

Conc for stock 
soln %   0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 

Amount added for 
dilution mL   5 5 5 5 5       

Total volume of 
stock prepared mL   25 25 25 25 25       

                      

Weight of added 
granules mg             100 100 100 

Total volume mL             100 100 100 

                      

Concentrations 
tested                     

Conc 1 mg/L 1 X               

Height of 
supernatant cm   8               

Height of flocs cm   0,3               

                      

Conc 2 mg/L 10 X X X X   X X   

Height of 
supernatant cm   7,9 8 7,8 7,8   7,8 7,7   

Height of flocs cm   0,3 0,1 0,2 0,1   0,4 0,3   

                      

Conc 3 mg/L 25 X X X X X X X X 

Height of 
supernatant cm   7,9 7,9 7,9 7,8 7,8 7,9 7,8 7,8 

Height of flocs cm   0,3 0,4 0,2 0,1 0,2 0,6 ¨0,3 0,2 

                      

Conc 4 mg/L 50           X     

Height of 
supernatant cm             7,9     

Height of flocs cm             0,4     

                      

Conc 5 mg/L 75           X     

Height of 
supernatant cm             8     

Height of flocs cm             0,4     

                      

Conc 6 mg/L 100                 

Height of 
supernatant cm                   

Height of flocs cm                   

                      

Conc 7 mg/L 150           X     
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Height of 
supernatant cm             7,9     

Height of flocs cm             0,4     
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4A. 

Tests NORDRE FOLLO 
Conc 
mg/l 

TSS 
(mg/L) 

VSS 
(mg/L) 

TS 
(mg/L) 

VS 
(mg/L) 

COD 
(mg/L) s

C
O

D
 (

m
g

/L
) 

% T 
(670 
nm) 

Original     2125 1825 4300 3445 3850 1037 2 

Centrifuge     634 524  -  - 2774 1867 17 

Aeration 2 hours    -  -  -  -  -  - 3 

Aeration 24 hours    -  -  -  -  -  - 3 

H2O2 0,5hours 80  -  -  -  - 3510  - 3 

H2O2 24hours 80  -  -  -  - 5050  - 2 

PAA 0,5hours 40  -  -  -  - 3455  - 3 

PAA 24hours 40  -  -  -  - 4880  - 2 

Fenton 24hours 150  -  -  -  - 4265  - 2 

DAF  -  -  -  -  -  -  -  -   

Filtration 1.2 um    -  -  -  -  - 1037 65 

  Antracit    -  -  -  -  -  - 5 

  GAC    -  -  -  -  -  - 17 

Polymers ZG 8125 150  -  -  -  -  -  - 50 

  ZG 7550 25  -  -  -  -  -  - 4 

  MF 155 25  -  -  -  -  -  - 3 

  MF 342 25  -  -  -  -  -  - 3 

  MF 919 25  -  -  -  -  -  - 4 

  C-496 25  -  -  -  -  -  - 3 

  C-492 50  -  -  -  -  -  - 17 

  A-120 25  -  -  -  -  -  - 3 

Polymer + 
centrifugation ZG 8125 150 255 243  -  - 1660 1240 64 

Polymer + 
centrifugation C-492 50 447 390  -  - 1860 1255 32 

Polymer + 
Anthracite ZG 8125 150 750 670  -  - 2165 1300 56 
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Tests NORDRE FOLLO 
Conc 
mg/l 

Particle 
size 

d10% 
(um) 

Particle 
size 

d50% 
(um) 

Particle 
size 

d90% 
(um) 

Par 
conc 

(mg/L) 
Tot-N 
(mg/L) 

NO3-
N 

(mg/L) 

NO2-
N 

(mg/L) 

NH4-
N 

(mg/L) 

Original     0,68 1,39 144,9 700 930 7,16 0,221 476 

Centrifuge     0,64 1,03 96,9 90 860 4,41 0,123 747 

Aeration 2 hours    -  -  -  -  -  -  -  - 

Aeration 24 hours    -  -  -  -  -  -  -  - 

H2O2 0,5hours 80  -  -  -  -  - 8,63  - 605 

H2O2 24hours 80  -  -  -  -  - 10,4  - 377 

PAA 0,5hours 40  -  -  -  -  - 9,02  - 630 

PAA 24hours 40  -  -  -  -  - 11,8  - 429 

Fenton 24hours 150  -  -  -  -  - 10,9  - 409 

DAF  -  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um   0,64 0,99 1,95 20 652 7,16 0,022 476 

  Antracit    -  -  -  -  -  -  -  - 

  GAC    -  -  -  -  -  -  -  - 

Polymers ZG 8125 150  -  -  -  -  -  -  -  - 

  ZG 7550 25  -  -  -  -  -  -  -  - 

  MF 155 25  -  -  -  -  -  -  -  - 

  MF 342 25  -  -  -  -  -  -  -  - 

  MF 919 25  -  -  -  -  -  -  -  - 

  C-496 25  -  -  -  -  -  -  -  - 

  C-492 50  -  -  -  -  -  -  -  - 

  A-120 25  -  -  -  -  -  -  -  - 

Polymer + 
centrifugation ZG 8125 150 0,65 1,09 8,71 30 875 5,07 0,091 600 

Polymer + 
centrifugation C-492 50 0,64 1,12 11,48 60 912 6,07 0,086 625 

Polymer + 
Anthracite ZG 8125 150 0,69 1,53 13,03 150 934 6,06 0,086 620 
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Tests NORDRE FOLLO 
Conc 
mg/l 

Tot-P 
(mg/L) 

PO4-P 
(mg/L) pH Turb 

DO 
(mg/l) 

Alkalinity 
(mmol/L) 

Conductivity 
(mS/cm) 

Original     63,5 3,78 8,13 >1000 7,89 52,6 5,65 

Centrifuge     37,6 1,8 8,22 629  - 48,2 5,41 

Aeration 2 hours    -  - 8,18 >1000 8,09  -  - 

Aeration 24 hours    -  - 8,35 >1000 7,23  -  - 

H2O2 0,5hours 80  -  - 8,17 >1000  -  -  - 

H2O2 24hours 80  -  - 8,21 >1000  -  -  - 

PAA 0,5hours 40  -  - 8,16 >1000  -  -  - 

PAA 24hours 40  -  - 8,25 >1000  -  -  - 

Fenton 24hours 150  -  - 8,2 >1000  -  -  - 

DAF  -  -  -  -  -  -  -  -  - 

Filtration 1.2 um   4,15 3,78  - 21,1  -  -  - 

  Antracit    -  -  - >1000  -  -  - 

  GAC    -  -   830  -  -  - 

Polymers ZG 8125 150  -  -  - 312  -  -  - 

  ZG 7550 25  -  -  - >1000  -  -  - 

  MF 155 25  -  -  - >1000  -  -  - 

  MF 342 25  -  -  - >1000  -  -  - 

  MF 919 25  -  -  - >1000  -  -  - 

  C-496 25  -  -  - >1000  -  -  - 

  C-492 50  -  -  - 649  -  -  - 

  A-120 25  -  -  - >1000  -  -  - 

Polymer + 
centrifugation ZG 8125 150 5,26 0,758 8,46 192  - 36,6 4,11 

Polymer + 
centrifugation C-492 50 9,04 0,695 8,33 356  - 38,4 4,78 

Polymer + 
Anthracite ZG 8125 150 12,3 0,715 8,51 331  - 43,0 4,9 
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4B. 

      Polymer Matrix 
NORDRE 
FOLLO 
RENSEANLEGG Units                   

Polymer   Value 
ZETAG 

8125 
ZETAG 

7550 

MAGNA 
FLOC 
155 

MAGNA 
FLOC 342 

MAGNA 
FLOC 
919 

CIBA C-
496 

CIBA C-
492 

CIBA A-
120 

Density g/cm3       0,75 0,75         

Total vol 
supplied mL   50 50 50 50 50       

Conc %   0,50 % 0,50 % 0,50 % 0,50 % 0,50 %       

State     Granules Liquid Liquid Liquid Liquid Granules Granules Granules 

Type     Cationic Cationic Anionic Anionic Anionic Cationic Cationic Anionic 

Conc for stock 
soln %   0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 0,10 % 

Amount added 
for dilution mL     5 5 5 5       

Total volume of 
stock prepared mL     25 25 25 25       

                      

Weight of 
added granules mg   100         100 100 100 

Total volume mL   100         100 100 100 

                      

Concentrations 
tested                     

Conc 1 mg/L 1 X               

Height of 
supernatant cm   8               

Height of flocs cm   0,3               

                      

Conc 2 mg/L 10 X X X X     X X 

Height of 
supernatant cm   7,9 8 7,8 7,8     7,7 7,8 

Height of flocs cm   0,3 0,1 0,2 0,1     0,3 0,2 

                      

Conc 3 mg/L 25 X X X X X X X X 

Height of 
supernatant cm   7,9 7,9 7,9 7,8 7,8 7,9 7,8 7,8 

Height of flocs cm   0,3 0,4 0,2 0,1 0,2 0,6 ¨0,3 0,2 

                      

Conc 4 mg/L 50 X           X   

Height of 
supernatant cm   8           7,9   

Height of flocs cm   0,3           0,4   

                      

Conc 5 mg/L 75             X   

Height of 
supernatant cm               8   

Height of flocs cm               0,4   

                      

Conc 6 mg/L 100 X               

Height of 
supernatant cm   7,9               
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Height of flocs cm   0,3               

                      

Conc 7 mg/L 150 X         X     

Height of 
supernatant cm   7,9         7,9     

Height of flocs cm   0,3         0,4     

                      

Conc 8 mg/L 200 X               

Height of 
supernatant cm   7,9               

Height of flocs cm   0,3               

 

 

5A 

 

Date 
Sampling 

time 

Volume 
of 

sample Light  Abs 
Wavelength 

scan Turbidity pH DO Conductivity 

    mL lux 440nm Yes/No NTU   mg/L mS/cm 

                    

30.apr 11:00 10 8000 0,018 Y 13,2 7,65 7,32 2,4 

02.mai 12:00 6   0,175 Y  - 7,61 7,45  - 

03.mai 10:45 6   0,624 Y  -      - 

04.mai 11:00 6   1,32 Y  - 6,13 7,62  - 

05.mai 10:30 6   1,547 Y  - 3,81 6,37  - 

06.mai 10:30 10 8000 1,686 Y >1000 3,64 6,43 0,63 

08.mai 12:00 6   1,272 Y >1000 3,85 6,54  - 

09.mai 11:00 10 8000 0,896 Y >1000 3, 56 7,69 0,698 

                    

                    

 

Date 
Sampling 

time 

Volume 
of 

sample 
Tweight 
of filter 

weight 
after 

drying 
(105*C) 

Vol of 
sample 

dry 
matter 
mg/L 

NH4-
N Tot-N 

    mL mg mg mL mg/L mg/L mg/L 

                  

30.apr 11:00 10 1,1129 1,1145 3 533 44,25 92,1 

02.mai 12:00 6 1,1187 1,1218 4 775 9,75 90 

03.mai 10:45 6 1,1165 1,1202 4 925 - - 

04.mai 11:00 6 1,108 1,1109 3 967 4,6 56,6 

05.mai 10:30 6 1,1025 1,1056 3 1033 4,2 49,4 

06.mai 10:30 10 1,107 1,11 3 1000 8,91 41,2 

08.mai 12:00 6 1,1121 1,1147 3 867 11,6 39,5 

09.mai 11:00 10 1,092 1,0925 1 500 5,92 36,8 
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Date 
Sampling 

time 

Volume 
of 

sample PO4-P Tot-P COD sCOD 

New 
volume 
added 
(SL + 

Nutrient) 

    mL mg/L mg/L mg/L mg/L mL 

                

30.apr 11:00 10 2,55 2,73 207,5 - 10 

02.mai 12:00 6 1,16 - 309 - 6 

03.mai 10:45 6 - -   - 6 

04.mai 11:00 6 0,892 - 981 - 6 

05.mai 10:30 6 0,765 - 1068 - 6 

06.mai 10:30 10 0,881 1,32 1100  - 10 

08.mai 12:00 6 0,501 - 1094  - 6 

09.mai 11:00 10 0,325 1,65 1105  - - 

 

  
Sludge liquor 
media    

DAYS 
mg/l dry 
matter g/m2/d 

abs 
440nm 

0 533 0 0,018 

2 775 6,360653 0,175 

3 925 7,895984 0,624 

4 967 2,193329 1,32 

5 1033 3,509326 1,547 

6 1000 -1,75466 1,686 

8 867 -3,50055 1,272 

9 500 -19,3188 0,896 

 

 

5B. 
  Nutrient solution   

DAYS 
mg/l dry 
matter g/m2/d 

abs 
440nm 

0 1200 0 0,004 

2 1475 7,237985 0,032 

3 1650 9,211981 0,462 

4 1833 9,650647 1,172 

5 1900 3,509326 1,91 

6 2033 7,018652 2,279 

8 2267 6,141321 3,32 

9 2500 12,28264 3,396 

11 2800 7,895984 3,814 

13 3150 9,211981 3,814 

14 3300 7,895984 3,816 

16 3250 -1,316 3,813 

18 3133 -3,07066 3,808 

20 2500 -16,6693 3,802 

21 2267 -12,2826 3,52 

23 2167 -2,63199 1,856 

25 1200 -25,4426 0,418 

 

 


