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Abstract 

 

Every year, approximately 200 million tones of produced water are discharged into the 

sea by the Norwegian oil industry. Although rapidly diluted, due to its large amount and 

possible long term (chronic) effects, the environmental risk of produced water discharge 

has been investigated widely. The risk prediction model called DREAM (Dose-related 

Risk and Exposure Assessment Model) has been used for environmental risk assessment 

of produced water discharges. Biological markers or so-called ‘biomarkers’, have been 

proposed as a suitable tool for pollutant-effect-monitoring of the discharges from the 

offshore industry. However, the links between environmental risk model predictions and 

biomarker responses in produced water exposed animals are still not clearly defined. 

Therefore, the objective of this study is to investigate the feasibility of linking these two 

risk tools for the purpose of enabling prediction of environmental risk which can be 

monitored. 

In practice, this is done by employing the DREAM model not only to perform a general 

risk assessment but also to predict the biomarker responses of produced water discharge 

and then compare the results with the biomarkers responses measured in a field survey. 

The link between the model and biomarker response is established using the species 

sensitivity distribution (SSD) approach.  

From the results, it is shown that predicting biomarker responses using the DREAM 

model was feasible by applying some assumptions and simplifications. The model could 

also predict a similar trend with the observation responses at different stations. In this 

case, the predicted biomarker responses give about 14% higher value compared to 

observation, which is related to the conservative approach (based on the maximum risk 

value) applied in the model and therefore the model cannot accommodate the duration 

variable in the biomarker response formation and recovery processes which may differ 

in biomarkers. 

Despite the remaining uncertainties and limitations, especially in relation with the 

model limitations, reliability of the SSD approach and also the available field data, this 

study could provide some essential basis for the study of linking the risk prediction with 

risk monitoring. 
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1 Introduction 

 

1.1 Background 
Produced water is water that is produced along with oil and gas and that originates from 

formation and injection water. It is a complex mixture containing hydrocarbons, metals, 

and potentially toxic production chemicals, (e.g. biocides, corrosion inhibitors, 

dispersants, emulsion breakers, detergents and scale inhibitors). Every year, 

approximately 200 million tons of produced water are discharged into the sea from the 

Norwegian oil industry (OLF, 2008). Although rapidly diluted, due to its large amount 

and possible long term (chronic) effects, the environmental risk of the produced water 

discharge has been investigated widely. 

To evaluate and estimate the environmental consequences of the discharge, the common 

environmental risk assessment (ERA) procedure using the PEC/PNEC approach (EC, 

2003) combined with the Environmental Impact Factor (EIF) concept (Johnsen et al., 

2000) has been adopted to establish the risk prediction model called DREAM (Dose-

related Risk and Exposure Assessment Model). The model enables the prediction of 

concentration fields, biological exposure, doses and potential effects of time-variable 

exposure to mixtures of chemicals. Therefore the model is much used as a basis for 

management of environmental risk assessment of produced water discharges. 

On the other hand, biological markers or so-called ‘biomarkers’ have been proposed as 

a suitable tool for pollutant-effect-monitoring of discharges from the offshore industry. 

Biomarkers can be defined as measurements carried out in body fluids, cells or tissues 

that indicate, in biochemical or cellular terms, the presence or effect of contaminants 

(McCarthy and Shugart, 1990). Since the biomarker responses are measured at the sub-

organismal level of organization (biochemical, physiological and histological), they are 

considered as early warning signals for the presence of contaminants and, thus, suitable 

for the environmental impact assessment (EIA) purpose. 



However, the links between environmental risk model predictions and biomarker 

responses in produced water exposed animals are still not clearly defined. Therefore, the 

objective of this study is to investigate the feasibility of linking these two risk tools for 

the purpose of enabling a prediction of environmental risk which subsequently can be 

monitored in the field. In practice, it was done by employing the DREAM model not 

only to perform risk assessment but also to predict the biomarker responses caused by a 

produced water discharge and then comparing the results with biomarkers responses 

measured in a field survey. 

 

1.2 Scope of the study 
To achieve the objective of this study, the following tasks were included for this master 

thesis project: 

 Develop an understanding of how the DREAM model works for EIF 

calculations and how PEC/PNEC ratios and species sensitivity distributions 

(SSDs) are utilized by the model. Corresponding to the available field data, the 

environmental risk assessment of produced water using DREAM was 

performed, with Ekofisk field as a study case. 

 Use biomarker responses results obtained from laboratory studies in IRIS-

Biomiljø in order to create simulations of predicted biomarker responses at 

different distances from the platform. 

 Comparison of predicted biomarker response results with actual biomarker 

responses obtained from the Water Column Monitoring surveys conducted at 

Ekofisk (2008).  

 Assessment of the use of the near-field module in DREAM for biomarker 

response predictions. 
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1.3 Report Outline 
The next chapter of this report is dedicated to the description of theories relevant to the 

background of this study including some concepts in ecotoxicology, description of the 

DREAM (Dose-related Risk and Exposure Assessment Model) and overview of several 

types of biomarkers. The methodology involving the simulation of Environmental Risk 

Assessment (ERA) in DREAM and biomarker responses prediction is described in 

chapter 3. The results are presented in Chapter 4 and discussed in the following chapter 

with the conclusions are shown in chapter 6. 
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2 Theoretical Background 

 

2.1 Basic Concepts in Ecotoxicology 
The term ecotoxicology was first introduced by Prof R. Truhaut in 1969, who defined it 

as a science describing the toxic effect of various compounds on living organisms, 

especially on population and communities within ecosystems (Connell et al., 1999). 

In this study, it is important to have some basic understanding in ecotoxicology that will 

be extensively used in the following part of this report. Some concepts in ecotoxicology 

such as bioconcentration or body burden, dose-response relationship, toxicity testing, 

species sensitivity distribution and environmental risk assessment (ERA) will be 

discussed in this sub-chapter. 

 

2.1.1 Body Burden 
When a chemical enters a marine ecosystem, not all of this pollutant could enter the 

organism and eventually cause some harmful effects, it may be partitioned between 

different phases (water, sediment or biota, etc). The internal exposure concentration in 

an organism is called body burden. Body burden is determined by uptake and 

elimination processes of chemical in an organism which are influenced by several 

factors such as temperature, ventilation rates, metabolism, type of species and also the 

characteristic of the chemical (Baussant et al., 2001). For risk assessment, it is important 

to estimate the body burden that may elicit a toxic response (Feijtel et al., 1997). Body 

burden usually is expressed as bioconcentration factors (BCF) that is the ratio of 

substance concentration in the organism to the concentration in the water at equilibrium 

condition (at which the competing rates of uptake and elimination are equal). 
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At equilibrium condition, the bioconcentration factor is calculated based on: 

w

b

C

C
BCF 

(eq. 2.1 )

where Cb is the concentration in biota and Cw is concentration in water. These 

bioconcentration factors are specific for each species and compound. The 

bioconcentration factors of poly-aromatic hydrocarbons (PAH) compounds that were 

calculated based on lipid weight of different samples of (Mytilus edulis) blue mussel 

and cod (Scopthalamus maximus) (Baussant et al., 2001) can be found in Table A-1 

(Appendix A). 

 

2.1.2 Toxicity Test 
Toxicity tests study the responses of individual organisms or groups of organisms to 

chemical exposure. The test is typically performed on a population exposed to different 

concentrations of a chemical under controlled conditions over a specific period of time.  

In the toxicity test, the adverse effects of chemicals on the organism depend on the dose 

and time of exposure. Tests that are based on lethality or survival and designed to 

evaluate short-term exposure (usually 24, 48 or 96 hours) are called acute toxicity test. 

The acute effects can be quantified by LC50 (the concentration that cause 50% mortality 

of the test organisms) or EC50 (the concentration at which 50% of the predicted effect is 

observed). On the other hand, the chronic toxicity tests that allow evaluation of 

chemical stress under long term exposure at sub-lethal concentrations are commonly 

quantified by NOEC (No-Observable Effect Concentration) and LOEC (Lowest 

Observable Effect Concentration).  

The results of the tests can be plotted on a graph that relates the chemical concentration 

to the percentage of organisms in test groups exhibiting a defined response, such a is 

relationship is called a concentration-response relationship (see Figure 2-1). 
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Figure 2-1. Cummulative dose response curve with LOEC, NOEC and LD50 are indicated. 
(Connell et al., 1999) 

To prevent the multiplication of the toxicity test, the internationally accepted standard 

testing protocols are organized by OECD (Organization for Economic Cooperation and 

Development). Some tests standardized by OECD i.e. growth inhibition test of algae, 

acute toxicity test of zooplankton and acute toxicity test of fish are mandatory tests for 

toxicity testing of offshore chemicals in Harmonized Offshore Chemical Notification 

Format or HOCNF (OSPAR, 2008). Due to the shorter time needed and therefore the 

lower cost involved, single-species acute toxicity tests have become the largest part of 

the toxicity studies. To estimate a safe or chronic concentration from acute tests, the 

acute-to-chronic-ratio (ACR) has been evaluated (Wright and Welbourn, 2002). 

In addition to the acute toxicity tests, the bioaccumulation potential and biodegradation 

rate of a substance are also included guidelines in the HOCN information on chemicals 

discharged from offshore installations (EC, 2003; OSPAR, 2008). 

 

2.1.3 Species Sensitivity Distribution (SSD) 
Toxicity responses of different species vary due to biological differences. The variation 

in sensitivity of species to a certain compound or mixture, described by a statistical or 

empirical distribution of response is called species sensitivity distribution (SSD). The 

main assumption in the use of SSDs in risk assessment is that the distribution based on a 

selection of species (tested in laboratory experiments) is representative for all species in 

the ecosystem. 
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Figure 2-2. The basic form of an SSD curve, expressed as cumulative distribution function. The 
dots are input data from toxicity tests and the line is a fitted SSD (Posthuma et al., 2002). 

The SSD can be presented as a frequency distribution (cumulative normal distribution 

curve or other similar curves) of NOECs (No-Observable Effect Concentrations) or 

other results from toxicological tests as explained by Posthuma (2002) and Aldenberg 

(2002). Toxicity data (NOEC, EC50, etc) are log transformed and fitted to a distribution 

function (Figure 2-2).  

Figure 2 - 2 also shows the two ways of utilizing the SSD curve: forward and inverse. 

In the forward way, the distribution can be used to estimate risk at a specific 

concentration that is expressed by potentially affected fraction (PAF) i.e. the percentage 

of species that are exposed to concentrations above their NOEC. PAF can be used to 

represent the stress to the ecosystem caused by a single chemical, or to map the total 

stress on the ecosystem as a result of the concentration of several chemicals or chemical 

groups. The inverse usage of the model employs the distribution for calculating 

environmental quality criterion for a certain cut-off value, e.g. the 5th percentile or HC5 

(i.e. the concentration that corresponds to 5% risk). The 5th percentile of a chronic 

toxicity distribution has often been chosen as the concentration which is considered 

protective for most species in a biological community. 
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2.1.4 Environmental Risk Assessment (ERA) 
Environmental Risk Assessment (ERA) evaluates the possible occurrence of adverse 

ecological effects of pollutants in a manner as quantitative as possible. For this purpose, 

the main procedures of ERA consist of 4 main steps as seen in Figure 2-3 (EC, 2003; 

van der Oost et al., 2003; Wright and Welbourn, 2002):  

- hazard identification,  

- exposure characterization 

- effect characterization, 

- risk characterization. 

 

 

Figure 2-3. General Environmental Risk Assessment scheme (Wright and Welbourn, 2002). 

Hazard identification is a qualitative step, either based on former knowledge of the 

substance or on the fact that no knowledge exists, therefore applying precautionary 

principles on a new substance. 

The exposure characterization involves the method to quantify the concentration of a 

discharged chemical in the environment to obtain the PEC (Predicted Environmental 

Concentration). The PEC value can be calculated through measurement and also from 

modeling of chemical fates in the environment. 
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Effect characterization is a process to predict the adverse effect of chemicals in 

biological recipients that is represented by a Predicted No Effect Concentration (PNEC) 

which indicates a concentration, below which, an unacceptable effect will most likely 

not occur. When only a limited set of toxicity data is available, PNEC is calculated by 

dividing the laboratory effect concentrations (LC50, EC50, NOEC, etc) by appropriate 

assessment factors. Some example of assessment factors for marine ecosystem can be 

seen in Table 2-1. When sufficient data is available, PNEC value may also be derived 

from SSD based on chronic NOECs by taking the 5th percentile of the distribution (i.e. 

the concentration that corresponds to 5% risk) (Aldenberg and Slob, 1993) 

Table 2-1. Assessment factor scheme as used for calculating PNEC values (EC, 2003). 

Available toxicity data 
Assessment 

factors 

At least one short term EC50 from each of three trophic levels (algae, crustaceans and fish) 1000 
Long term NOEC representing two trophic levels ( fish and/or crustacean and/or algae) 100 
Long term NOEC from at least three thropic level (fish, crustaceans and algae) 10 

The next step is to compare the predicted environmental concentration (PEC) with the 

threshold concentration (PNEC) and present it in the form of PEC/PNEC ratio or Risk 

Characterization Ratio (RCR). This ratio will be used as a basis to evaluate the potential 

risk. An RCR that exceeds 1.0 indicates that there is reason for concern (i.e. an effect is 

foreseen) and thus some risk reduction measures are needed. 
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2.2 DREAM (Dose-related Risk and Exposure Assessment 
Model)  

2.2.1 Introduction 
DREAM is a software tool designed to meet the need of rational basis in management 

of environmental risk assessment associated with operational discharges of complex 

mixtures. It has been developed in cooperation of several research centers (Akvaplan-

niva, Battelle, MUST, IRIS-Akvamiljø, SINTEF, TNO and the University of Oslo) and 

petroleum companies operating in the Norwegian continental shelf (ConocoPhillips, 

Eni, ExxonMobil, StatoilHydro, Petrobras, Shell, and Total). 

Another model called a ‘chemical hazard assessment and risk and management’ 

(CHARM) model has also been much used. The CHARM model enables ranking of 

chemicals based on their properties and uses a fixed dilution factor, assuming equal and 

constant dispersion (Karman and Reerink, 1998). However, in reality, the chemical fates 

follow the three-dimensional dispersion that change over time. In order to provide more 

realistic dynamic risk assessment, DREAM (Dose-related Risk and Exposure 

Assessment Model) was developed. 

Environmental Risk Assessment with DREAM utilizes the Environmental Impact 

Factor (EIF) concept which is based on PEC/PNEC approach as described by the 

European Union in a Technical Guideline Document (EU-TGD) (EC, 2003). However, 

DREAM-EIF applies some modifications from the EU-TGD method that accounts for 

the complex mixture of chemicals in produced water and the differences in their fates 

and toxicities in the marine environment (Johnsen et al., 2000). 

 

2.2.2 Physical-chemical fate modeling 
Calculation of the environmental concentration (PEC) is the basis for risk assessment. 

In DREAM, PEC is calculated by modeling the fates of pollutants in the environment. 

The fate module of DREAM is a dynamic three-dimensional, multiple-component 

pollutant transport model.  
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Governing equation 

The fate model is based on the general transport equation (Reed et al.): 

 
Eq. 2.2 

where Ci is the concentration of the ith chemical constituent in the release, t is time, V is 

advective transport vector,   is the gradient operator and Dk is the turbulent dispersion 

coefficient in k=x,y,z direction. The term rj are process rate including: 



- addition of mass from continuous release 

- evaporation from surface slicks 

- spreading of surface slicks 

- emulsification of surface slicks 

- deposition from water surface onto coastline 

- entrainment and dissolution into water column 

- resurfacing of entrained oil 

- volatilization from water column 

- deposition from water column to bottom sediment, etc. 

Meanwhile, the term rij represents the degradation process in the model. 

The chemical concentration, Ci in the water column is calculated based on the time-and 

space-variable distribution of pseudo-Lagrangian particles. There are two types of 

particles, those representing dissolved substances and those representing oil droplets or 

particles with non-neutral buoyancy. The latter particles are pseudo-Lagrangian in the 

way that they do not move strictly with the current but may rise or settle according to 

their buoyancy (Reed et al.).  
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Physical-chemical Fate Processes 

When pollutants enter the marine environment, they will go through physical-chemical 

processes, such as advection, dispersion, volatilization, dissolution and degradation. The 

processes governing the pollutants fates in DREAM are described in Figure 2-4.  

 

Figure 2-4. General layout of the DREAM model (Reed et al.) 

 

Advection and dispersion of the entrained and dissolved hydrocarbons in the water 

column, are controlled by the mean local velocity as a result of tidal, wind-driven and 

wave-driven components. 

Pollutants near the water surface may evaporate to the atmosphere. The rate of mass 

transfer from the water column to atmosphere is calculated using the procedure outlined 

by Lyman et al. (1982). 

Adsorption is important in the transport and fate of pollutants in the marine environment 

since it determines the extent of partitioning of a pollutant between the suspended 

particulate phase and the dissolved phase and, therefore, governs toxic effects as well as 

the rate of removal from water column to the sediments. The partitioning between the 

particulate-adsorbed and dissolved states is calculated based on the linear equilibrium 

theory. The contaminant fraction that is adsorbed to suspended particulates settles to the 

bottom. 
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The DREAM model also takes into account the transformation of components via 

degradation transformation pathways since it is known that the degradation products 

may be more soluble and toxic than the parent compounds. 

Physical environments included in DREAM 

The physical environment in DREAM is defined by several parameters including: 

 Bathymetry (depths) 

 Wind and wave fields 

 Currents 

 Sea temperature, salinity. 

Bathymetry (depth) of the selected location is defined by a gridded dataset, stored in a 

database. The standardized winds, wave and current fields are provided in the database 

as separated input files, but it is possible for the user to utilize different files. Alternative 

current, wind and wave fields can be utilized by importing selected format of file or by 

defining them through the user interface of DREAM. The vertical profile of temperature 

and salinity is added by the user to calculate the water density of the region. 

 

2.2.3 Environmental Risk Assessment using DREAM 
Risk assessment with DREAM uses the EIF (Environmental Impact Factor) concept. It 

is basically follows the PEC/PNEC approach which is comparing the predicted 

exposure concentration (PEC) and predicted environmental toxicity threshold (PNEC). 

However it also applies weighing factors to account for the persistence of chemicals and 

their tendency to bioaccumulate. The complete scheme of risk assessment in DREAM is 

presented in Figure 2-5. 

The environmental concentration (PEC) is calculated by fates modeling as described in 

section 2.2.2. The calculation is done by dividing the produced water into several 

chemical groups and each group represents a class of chemical with similar physical, 

chemical, toxicological and biological properties. Produced water chemicals were 

divided into 10 groups of naturally occurring compounds and 7 groups of additives 

(Johnsen et al., 2000). Additional chemicals specific to each release are user defined 
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according to the HOCNF data. These chemical groups are listed in Table B-1, Appendix 

B. A more detailed list of the compounds included in each group can be found in Table 

B-2, Appendix B. 

Although widely used in risk assessment, the PEC/PNEC approach doesn’t give the 

actual risk level. It only gives the indication whether the pollutant concentration in the 

ecosystem has exceeded the threshold level or not and, therefore, the PEC/PNEC 

approach is only a qualitative indication of potential risk level. To translate the 

PEC/PNEC into actual risk level, species sensitivity distribution is used (Karman and 

Reerink, 1998; Smit et al., 2005). When this distribution is based on long term NOECs, 

PNEC corresponds with the 5th percentile of this distribution. When insufficient, the 

same distribution can be estimated from the PNEC (that is obtained by applying the 

assessment factors) and an indication of the variation in sensitivity of species for this 

chemical (presented by the slope of the curve). Using this distribution, a corresponding 

risk value can be calculated at any given exposure concentration (refer to section 2.1.2 

about species sensitivity distribution [SSD]). The same method is applied for all 

components and combined to calculate the total risk representing the produced water 

discharge. 

The EIF concept also applies weighting to certain compounds based on biodegradability 

and bioaccumulation potential (see Table B-1, B-3 and B-4, Appendix B). The EIF is 

presented as total water volume for which PEC/PNEC ratio exceeds 1.0 with maximum 

resolution 100mx100mx10m (100,000 m3 volume). 
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Figure 2-5. Process scheme of the calculation of EIF for produced water discharge (Smit et al., 
2003) 

 

2.2.4 User defined parameters in DREAM calculations 
Substances setting 

The data of different groups of chemicals are combined in the release profile. Each 

substance is registered with the following characteristics: viscosity, mol weight, density, 

melting and boiling points, solubility, vapour pressure, octanol-water partition 

coefficient, and degradation rates. For the purpose of risk assessment, acute and chronic 

toxicity sensitivities for different species are also included. For the naturally occurring 

components, all the data are already available in the database, while for the added 

chemicals, these data can be obtained from the HOCNF (Harmonised Offshore 

Chemical Notification Format) document. 
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Scenario parameters 

To set up a new release scenario, some information such as location, depth and amount 

of the produced water release need to be set accordingly. The duration and start time for 

the simulation are also adjusted here. The physical environments such as current, wind, 

temperature and salinity of the ocean are set according to the release location. DREAM 

also facilitates multiple discharge points and long term simulations (stochastic). 

Model setting 

The model parameters affect accuracy, resolution in space and time, size of output files 

and computational speed. Therefore model parameters need to be set accordingly in 

order to have optimum simulation results. 

2.2.5 Simulation outputs 
The output from DREAM includes the concentration field of the pollutants, risk map for 

the modeled area, EIF value giving the recipient water volume which RCR (PEC/PNEC 

ratio) ≥ 1.0 and also a pie chart showing the contribution to risk from different groups of 

chemicals. In addition to graphical presentation, the value of environmental 

concentration and risk can be extracted from the model in text-file format. An example 

of the risk map is presented in Figure 2-6. 

 

Figure 2-6. Example of graphical output in DREAM 
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2.3 Biomarkers  

2.3.1 Introduction 
The marine environment is continuously loaded with foreign chemicals (xenobiotics) 

that are discharged directly or that come from land sources and via the atmosphere. The 

ability of pollutants to accumulate, transform and degrade complicates the study of 

pollutant exposure to marine ecosystem. The harmful effects on population become 

apparent after longer periods of exposure. When they finally become clear, they may 

have gone beyond the point where it can be reversed. Therefore, it is important to study 

the biological markers that could reflect the early responses to adverse pollutant stress, 

or early-warning signals (van der Oost et al., 2003). 

Biological markers or biomarkers can be defined as any measurement in body fluids, 

cells or tissues that indicate, in biochemical or cellular terms, the presence of 

contaminants or the magnitude of the response (McCarthy and Shugart, 1990). In a 

biomonitoring context, biomarkers can allow rapid assessment of organism health and 

also they are quantifiable biochemical, physiological or histological measures that relate 

in a dose-response or time-dependant manner the degree of dysfunction that the 

pollutant has produced (Mayer et al., 1992) 

 

2.3.2 Types of Biomarkers 
The responses of biomarkers can be considered as exposure or effect indicators. 

Biomarkers of exposure can be used to confirm and assess the exposure of species to a 

particular substance and thus providing the relationship between external exposure and 

internal dose. Biomarkers of effect include measurable biochemical, physiological or 

other alterations within tissues or body fluids of an organism that can be associated to 

external exposure of a chemical. PAH metabolites in bile is an example of a biomarker 

of exposure. DNA damage and lysosomal membrane stability alteration can be regarded 

as biomarkers of effect, although they can also serve as indicators of exposure. 
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2.3.3 Selection of Biomarker 
In selecting the appropriate and useful biomarkers for monitoring the pollutant exposure 

and effects, there are several criteria to be considered (Stegeman et al., 1992): 

1. The assay to quantify the biomarker should be reliable, relatively cheap and easy 

to perform; 

2. The biomarker response should be sensitive to pollutant and/or effects in order 

to serve as an early warning system; 

3. Baseline data of the biomarker should be well defined in order to distinguish 

between natural variability (noise) and contaminant induced stress (signal); 

4. The impacts of confounding factors to the biomarker response should be well 

established; 

5. The underlying mechanism of the relationship between biomarker response and 

pollutant exposure (dosage and time) should be well established; 

The toxicological significance of the biomarker, e.g. the relationship between its 

response and the (long term) impact to the organism should be established 

 

2.3.4 Biomarkers used in marine environmental risk assessment 
The concern about possible long term ecological impact from chemical contamination 

from offshore activities in the North Sea has introduced the need for monitoring tools 

capable of detecting subtle biological responses of exposed populations. Biomarkers 

have been proposed as suitable pollutant-effect monitoring tools for the offshore 

industry. For this purpose, various biomarker responses in produced water exposed fish 

and marine invertebrates have been investigated by IRIS-Biomiljø. Several biomarkers 

that have been studied and made available for this study by IRIS-Biomiljø include PAH 

metabolites as an exposure biomarker, DNA adduct formation as a biomarker of 

genotoxic pollutants and lysosomal membrane stability as nonspecific defence 

parameter.  
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2.3.4.1  PAH Metabolites Biomarker 
The exposure to certain common environmental contaminants such as poly-aromatic 

hydrocarbons (PAHs) usually cannot be assessed by direct analysis for these chemicals, 

because they are rapidly converted to a variety of metabolites (McCarthy and Shugart, 

1990; Melancon et al., 1992). The metabolites may accumulate to high levels in certain 

tissues or body fluids or bind to specific tissue macromolecules in a manner that 

facilitates detection of exposure and indicates potential harmful effects. 

In fish, detection of PAH metabolites in bile has been shown to be an excellent tool in 

assessing recent exposure to PAHs. The determination of PAH metabolites has been 

proposed as a biomarker of PAH exposure by international bodies such as OSPAR 

(Oslo-Paris Commission) and ICES (International Council for the Exploration of the 

Sea) (Hagger et al., 2006; ICES, 2004). 

Metabolite levels in bile can be determined either by quantitative assay of selected PAH 

metabolite or by analyzing the total level of PAH metabolites as fluorescent aromatic 

compound (FAC) (See Figure 2-7). The quantitative assay of selected PAH metabolites 

can be done using HPLC (High Perfomance Liquid Chromatography) or Gas 

chromatography/mass chromatography (GC/MS), meanwhile,  semi-quantitative assays 

can be performed using synchronous fluorescence spectrometry (SFS), fixed 

wavelength fluorescence (FF) or HPLC (Beyer and Bamber, 2004). 

 

Figure 2-7. Overview of method alternatives for detection of PAH metabolites in fish bile using 
pyrene as an example contaminant (Illustration by Jonny Beyer) 
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2.3.4.2 DNA Damage 
Many pollutants investigated have shown to be chemical carcinogens and mutagens 

with the capacity to cause various types of DNA damage. The interaction of toxicants 

with DNA is demonstrated primarily by structural alterations to the DNA molecule and 

can take the form of adducts, strand breakage or chemically altered bases. These lesions 

may raise irreversible changes to the DNA molecule and result in the expression of 

subsequent cellular responses such as chromosomal aberrations and oncogene 

activation. The detection and quantification of DNA alteration and subsequent effects 

may be employed as biomarkers in organisms exposed to genotoxic substances in the 

environment. 

DNA adducts 

A DNA adduct is formed when a non-DNA chemical, e.g. carcinogenic chemical or its 

metabolite, binds covalently to DNA. As an example, a model of DNA adduct 

formation of benzo[a]pyrene is described in Figure 2-8. In fish, DNA adducts are most 

often measured in the liver since it is the key organ for biotransformation of 

xenobiotics, though other tissues can also be used for this analysis. DNA adducts can 

also be formed in invertebrates following exposure to pollutants, but this occurs at much 

lower intensity than in fish.  

Detecting and quantifying DNA adducts are not simple tasks because analytical 

techniques currently available are limited in their sensitivity or specificity. The most 

sensitive assay available for measuring DNA adducts is 32P-postlabeling, but other 

methods e.g. HPLC/fluorescence spectrometry and immunoassays using adduct-specific 

antibodies are also available. 
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Figure 2-8. Model of DNA with addcuted molecule of benzo[a]pyrene diol-epoxide 

DNA strand breakage 

Beside direct adduct formation, damage due to carcinogenic pollutant exposure also 

include DNA strand breaks. Several methods including the alkaline unwinding assay 

and the comet assay can be used to investigate the strand breaks level in organisms 

exposed to pollutants. 

The alkaline unwinding technique takes advantage of the characteristic that DNA strand 

separation under defined conditions of pH and temperature occurs at sites of single-

strand breaks within the DNA molecule. The amount of double stranded DNA 

remaining after a given period of alkaline unwinding is inversely proportional to the 

number of strand breaks present at the initiation of the alkaline exposure. 

The comet assay is based on the detection of DNA fragments from single cells which, 

when following electrophoresis under alkaline conditions migrate away from the 

nuclear core, resulting in the formation of a comet like ‘tail’ when the cell preparation is 

stained and viewed under UV light. The length of the tail is a measure of the number of 

small DNA fragments and thus the amount of strand breaks present in the sample. 
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Micronuclei  

Micronuclei are chromosomal fragments or whole chromosomes that are not 

incorporated into daughter nuclei during mitosis. The micronucleous test detects 

micronuclei resulting from either chromosomal breakages during cell division or 

chromosome loss events in anaphase damages (Kirsch-Volders et al., 2003). The 

micronuclei assay has been shown to be a useful in vivo technique for genotoxicity 

testing in fish, invertebrates and marine mammals (Al-Sabti and Metcalfe, 1995; 

Gauthier et al., 1999; Hongell, 1996). 

 

2.3.4.3 Lysosomal Membrane Stability 
Lysosomal membrane stability is considered to be a general measure of stress (both 

chemical and other) (Moore, 1985). Theoretically, membrane stability decreases in 

response to stress as membrane permeability increases. The mechanism of this alteration 

in membrane stability may involve direct effects of chemicals or the increased 

frequency of secondary lysosomes in toxicant-stressed cells (Mayer et al., 1989). 

Lysosomal membrane stability in macrophages (or white blood cells) is used as a 

measure of pollutant stress in several species of invertebrates such as blue mussels, 

whelks, hermit crabs and sea stars. It is also possible to carry out analysis on samples 

taken from fish. A large number of pollutant effect studies using invertebrates have 

included this parameter as a biomarker. It has been shown to be responsive to major 

classes of environmental pollutants including heavy metals (in particular Cu), PAHs, 

HCHs, PCBs and biocides such as TBT 

The lysosomal stability condition is measured by means of the so-called Neutral Red 

Retention Time (NRRT) assay. The assay basically quantifies the retention time of red 

dye by the lysosomes of contaminant exposed mussels (Lowe and Pipe, 1994; Lowe et 

al., 1995). 

 



3 Methodology 

 

3.1 Concept 
The motivation for this study is to establish links between environmental risk model 

predictions of offshore discharges and the biological effect of produced water 

contamination by using the DREAM model not only to perform risk assessment but also 

to predict biomarker responses. The link is established by applying the species 

sensitivity distribution (SSD) approach. As explained before, DREAM applies SSDs 

based on toxicity tests to predict the possible risk (EIF) of produced water discharge. 

SSDs based on biomarker responses called Biomarker Response Distribution (BRD) are 

then used to simulate the possible effects measured by means of biomarker assays.  

In general, there are four steps involved in order to establish the links between 

environmental risk model prediction and biomarker responses. The first step is to 

perform risk assessment of produced water using DREAM. Then, the SSD based on 

biomarker response is built using biomarker data in produced water exposed fish and 

mussels, made available by IRIS-Biomiljø. This SSD based on individual biomarker is 

applied to the model in order to predict the biomarker responses at different distances 

from produced water discharge point. As a validation, the predicted biomarker 

responses are compared to the biomarker data obtained from a field survey at Ekofisk. 

These processes are illustrated in Figure 3-1. 

In this project, the Ekofisk field is chosen as the study area due to the coherency with 

the field measurement of biomarker responses available. This field data of biomarker 

responses are obtained from the Water Column Monitoring Project (IRIS-Biomiljø) and 

kindly made available for this master thesis by the project clients (ConoccoPhillips). 
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Figure 3-1. The complete scheme of the methodologies used in predicting biomarker 
responses using DREAM. 
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3.2 Ekofisk Field 
Ekofisk is the oldest field complex in operation on the Norwegian continental shelf 

started its production in 1971 (Figure 3-2). The sea depth in the area is about 70-75m 

meters. The field is owned by several oil companies including ConoccoPhillips who are 

also the operator. Ekofisk consists of several platforms, but only Ekofisk J will be 

considered in the simulation since it is the main processing facility and has the largest 

contribution to the total produced water discharge.  

 

Figure 3-2. Map of Ekofisk region (source: www.npd.no) 

 

3.3 Risk Assessment of Produced Water using DREAM 

3.3.1 Data input and scenario set up 
To perform environmental risk assessment of produced water discharge using DREAM, 

there are two types of information used as input: produced water discharge data and the 

physical environment data. The discharge information includes the amount, location, 

depth and also the concentration of different chemical compounds in the discharge. 

Meanwhile, the physical environment data that are already incorporated in the DREAM 

database include depth, wind and ocean current.  

The discharge information for Ekofisk region used in this study are available from 

ConocoPhillips. The toxicological properties needed for risk calculation (e.g. 

biodegradation, logPow and PNEC) of natural occurring compounds are standardized in 

the model database, while data for added chemicals are obtained from HOCNF. The 

overview of the discharge information is presented in Table 3-1. 
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Table 3-1. Overview of the discharge information from Ekofisk field includes the location, 
depth, amount and concentration of the naturally occurring compounds. 

Position 3° 13.26’ E 
56° 32.8’ N 

Depth 39 m 
Discharge amount 23 688 tones/day 
  
Natural occurring 
compound 

Concentration  
(mg/l) 

BTEX 10.8000
Napthalenes 1.3063
PAH 2-3 ring 0.2791
PAH 4 ring+ 0.0066
Phenols C0-C3 6.9560
Phenols C4-C5 0.0204
Phenols C6-C9 0.0030
Aliphatic hydrocarbons 20.0000
Zinc 0.0227
Copper 0.0042
Nickel 0.0069
Lead 0.0012
Cadmium 0.0001
Mercury 0.0005

 

Standardized current fields and wind time series are chosen based on the region of the 

release site. The standardized modeling period is 1.5 – 30.5.1990 (30 days). For 

Ekofisk, the current and wind files from North Sea region are selected; 

Current : May90.DIR 

Wind : Ekofisk.wnd 

To enable the use of the near field profile in this simulation, the temperature and salinity 

profile of the region is set based on the data CTD measurement from the Water Column 

Monitoring (presented in Figure C-1(b), Appendix C). It is assumed that the salinity and 

temperature of the water mass don’t change so much in time and also the horizontal 

variation of salinity and temperature can be ignored.  

All release information and physical environment data are set in the scenario 

parameters while the produced water chemicals are combined in release profile (see 

Figure 3-3). 

34 
 



 

Figure 3-3. Overview of windows for setting-up release scenario and environmental parameters 

 

 

3.3.2 Model Set up 
To have an optimum computation process, there are several model parameters that have 

to be adjusted. These parameters include: 

 Habitat grid is the domain in which the model operates. This has to be defined 

before starting the simulation.  

 Concentration grid defines grid sizes at which the model computes and reports 

concentration in the water column. 

 Time step specifies the time interval between subsequent calculations. Smaller 

time steps are required when rates of change are more rapid.  

 Number of particles influences the statistical stability of the results. It is 

suggested that 1000 active particles will produce stable results for 100mx100m 

concentration grid and 5-minute time step (OLF, 2003). 

 Lower concentration limit:  the lowest concentration that will be recorded in the 

output files. The lower concentration limit is set to be 10% of the lowest PNEC 
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 Output interval determines at which frequency the concentration fields and risk 

results are written to the output files. 

The values for these model parameters used in this simulation are summarized in Table 

3-2. These values are adjusted on model parameters as presented in Figure 3-4. 

 

Table 3-2. Some model parameters used in the simulation 

Model parameters Values  

Size of habitat grid 20km x 20km x 100m 
Concentration grid 
Gird resolution 

200 x 200 x 10 cells 
100m x 100m x 10m 

Time step 5 minutes 
Number of solid and liquid particles 1000 
Number of dissolved particles 1000 
Lower concentration limit 0.001 ppb 
Output interval 6 hours 

 

 

Figure 3-4. Overview of windows for model parameters set-up 
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3.4 Constructing SSD Based on Biomarker Responses 

3.4.1 Biomarker data 
To build a SSD based on biomarker responses, biomarker measurements from different 

marine organisms (fish, crustacean, mollusk and echinoderm) exposed to dispersed oil 

obtained from laboratory studies at IRIS-Biomiljø are used. Dispersed oil is used as an 

approximation to produced water. The biomarkers selected for this purpose are PAH 

metabolites, DNA damage, and lysosomal membrane stability. The available 

biomarkers for DNA damage include DNA adducts and DNA strand breaks (measured 

with alkaline unwinding and comet assay). For lysosomal membrane stability, the data 

of Neutral Red Retention Time (NRRT) are available in the database.  

Due to the larger dataset available, the lowest oil concentration that gives significant 

biomarker response from controls or lowest observed effect concentrations (LOECs) are 

selected, instead of NOECs. Since it will be used as monitoring parameter, it seems 

more convenient to use the lowest concentration where the responses are actually 

measured rather than the highest concentration where the responses are not measured. If 

a species was tested by more than one type of oil, resulting in more than one LOEC data 

per species, the geometric mean value was taken to represent the LOEC (Slooff, 1992). 

These data are presented in Table 3-3. 

Table 3-3. Overview of lowest observed effect concentration (LOECs) for biomarkers as total 
hydrocarbon concentration indicating PAH metabolites in bile, DNA damage, oxidative stress 
and lysosomal membrane stability in different marine organisms exposed to dispersed oil from 

IRIS-Biomiljø. 

Species Group 
No. of 
LOECs 

Biomarker assay 
Duration 
(days) 

Geometric 
mean LOEC 
(μg THC/L) 

PAH metabolites      
Cyprinodon variegates Fish 2 Fixed Fluorescence 35-42 100 
Gadus morhua Fish 3 Fixed Fluorescence 3-30 57.8 
Scophthalamus maximus Fish 1 Fixed Fluorescence 30 16 
      

DNA damage      
Pandalus borealis Crustacean 2 DNA strand breaks 30-90 21.2 
Mytilus edulis Mollusk 1 DNA strand breaks 210 2.8 
Chlamys islandica Mollusk 1 DNA strand breaks 30 14.4 
Strongylocentrotus droebachiensis Echinoderm 1 DNA strand breaks 210 4 
Gadus morhua L. Fish 3 DNA adducts 24-31 46.9 
Cyprinodon variegates Fish 1 DNA adducts 21 100 

Scophthalamus maximus Fish 1 DNA adducts 30 413 
      

Lysosomal membrane stability      
Chlamys islandica Mollusc 1 NRRT 30 14.4 
Pandalus borealis Crustacean 2 NRRT 150 9.7 
Strongylocentrotus droebachiensis Echinoderm 1 NRRT 120 29 

THC= Total Hydrocarbon Concentration 
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3.4.2 SSD based on Biomarker response 
The SSD is estimated from the biomarker LOECs data and visualized as a cumulative 

normal distribution function of concentration (logarithmically transformed) and 

presented in Figure 3-5. Risk is expressed as the potentially affected fraction (PAF) 

which is calculated from: 

1


N

i
PAFi  

(3.1 )

where i represents species number and  N the total number of species. As a comparison, 

the SSD from fitness effects are also added into the plot which shows that biomarkers 

indicate more sensitive responses than the whole organism effects (e.g. growth, 

reproduction, mortality) (Smit et al., 2009). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 10 100 1000 10000 100000
concentration (μg THC/L)

P
ro

b
a

b
ili

ty
 a

ff
e

c
te

d
 f

ra
c

ti
o

n
(r

is
k

)

LOECs PAH metabolites

LOECs DNA damage

LOECs Lysosomal membrane stability

SSD PAH metabolites

SSD DNA damage

SSD Lysosomal membrane stability

SSD NOECs fitness effects

 

Figure 3-5. Species sensitivity distribution (SSD) curves using normal cumulative distribution 
based on LOECs from biomarker responses collected from IRIS-Biomiljø and SSD based on 

NOECs from fitness parameters (Smit et al., 2009). 
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3.5 Predicting Biomarker Reponses  
SSDs based on biomarker response data from the previous step were used to predict the 

biomarker responses in the Ekofisk region at different distances from the discharge 

point. For this purpose, several assumptions were made regarding the types of the 

biomarker that are used. 

Assumptions: 

1. Lysosomal membrane stability biomarker is considered to be a general measure 

of stress, therefore the simulation is done based on exposure to all chemicals 

(naturally occurring and added components) in the discharge.  

2. PAH metabolites is considered to be a biomarker of exposure to PAHs and DNA 

damage is considered to be a biomarker of response to PAHs. Therefore, for 

these two biomarkers, the simulation is done using chemical groups of 

polyaromatic hydrocarbons (PAHs) including Napthalenes, PAH 2-3 ring and 

PAH 4 ring+ as inputs. 

Using these assumptions, the risk assessment simulation was performed twice: for all 

groups of chemicals and for poly-aromatic hydrocarbon (PAH) compunds. The results 

are then transformed into biomarker response prediction using the SSDs based on 

biomarker LOECs. Therefore, the predicted biomarker response resulting from the 

model is in the form of potentially of affected fraction (PAF) of species in the 

ecosystem. 
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3.6 Comparison with biomarker responses measured from the 
field survey 

The predicted biomarker responses were then compared with the biomarkers measured 

from the field survey at Ekofisk. The field biomarker data was obtained from the Water 

Column Monitoring (WCM) project in 2008 done by IRIS-Biomiljø in collaboration 

with NIVA, and financed by The Norwegian Oil Industry Association (OLF). 

The Water Column Monitoring (WCM) project has investigated the area influenced by 

produced water discharge in the Ekofisk region since 2006. This project includes the 

measurement of some core biomarkers in cod and blue mussels located at six 

observation stations surrounding the discharge at 15 meters depth (see Figure 3-6 for the 

location of the observation stations). Besides biological responses, the physical 

environment i.e. current, temperature and salinity were also measured in the field. 

 

Figure 3-6. Water column monitoring project: deployment of caged cod and blue mussels (left) 
and Location of 6 stations of cages (right) 

 

For this study, the data collected from WCM includes body burden, lysosomal 

membrane stability biomarker and micronuclei for mussels, PAH metabolites (both with 

FF and GC/MS method) and DNA adducts for fish biomarkers. The data from the 

WCM project in 2008 including the biological responses and physical environment are 

presented in Appendix C. To have a better validation, wind measurement data in the 

Ekofisk field from the Norwegian Meteorological Institute (Furevik et al., 2008) is also 

included.  
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The biomarker responses for micronuclei and lysosomal membrane stability from 6 

observation stations were transformed into contour plots and bubble plots. The contour 

maps, that are plotted based on the ratio of the responses in each station against the 

reference value, visualize the level of response. On the other hand, the bubble plots 

visualize the percentage of individuals for the same species that shows a significant 

response at different stations compared to the reference value. These contour plots and 

bubble plots are then overlaid with the predicted biomarker results at the corresponding 

depth that is at 10-20 meter (second vertical layer). 

In addition to the biomarkers, the comparison was also made between the PAH body 

burden data collected from observation and the predicted body burden calculated using 

concentration predicted from the model. Using the equation 2.1 (section 2.1.1), the body 

burden was estimated from the PAH concentration in water based on the 

bioconcentration factors of PAH compounds in mussel that are available in Table A-1, 

Appendix A. The PAH concentration results from the model are classified the PAH into 

three different groups i.e. Naphthalene, PAH 2-3 ring and PAH 4+ ring (list of the 

compounds included in these groups are available in Table B-2, Appendix B). 

Therefore, the BCF values from Table A-1 must be simplified in to three corresponding 

groups. This was done by taking average of different BCF values in the same group. 

The bioconcentration factors are presented in mg/kg lipid weight, therefore the results 

have to be translated into ug/kg wet weight, using the average lipid content of 2% of 

body wet weight in mussel (Baussant et al., 2001) 
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4 Results 

 

4.1 Environmental risk assessment of produced water 
discharge in Ekofisk 

In the first step of this study, produced water risk assessment in Ekofisk region was 

simulated in DREAM. The output of this simulation includes the concentration field 

(Figure 4-1), risk map (Figure 4-2) and also the EIF value and pie chart (Figure 4-3).  

Figure 4-1.Snapshots of concentration field of produced water release during one day (day 10) 
with 6 hour intervals. The arrows show the current pattern. Wind direction and magnitude are 
shown in the inserted box. 
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Figure 4-1 shows the snapshots of the concentration field during one day (day 10) from 

fate modeling including wind and current pattern. From this picture, it is clear that the 

contaminant concentration is very dynamic and its distribution follows the movement of 

current and wind.  

Following the concentration field, the risk to the ecosystem due to produced water 

discharge is also very dynamic. Since decision makers are usually concerned about the 

maximum risk to the ecosystem that might be caused by the exposure of chemicals 

(“conservative approach”), then the risk summary map is based on the maximum risk 

(expressed in percentage) recorded in each cell during the simulation period (Figure 4-

2). From the map, it is shown that in the area near the discharge point, there is a 

significant risk to the ecosystem where the potentially affected fraction of species is 

greater than 5%.  

 

Figure 4-2. Maximum risk in the water column due to produced water discharge in the Ekofisk 
region. The insert (to the right) shows the vertical distribution along the arrow (in the figure to 
the left). The red color (risk > 5%) represents PEC:PNEC (RCR) > 1.0.  

 

Besides risk map, the model also calculates the total volume of water that subjected to 

risk 5% or RCR>1.0 (EIF value). After applying weighting criteria for some groups of 

chemicals (see Table B-2, Appendix B), the modified EIF value is 718, which means 

that 71,800,000 m3 volume of water is subjected to risk greater than 5%. The 

contribution of the compounds to the total risk is presented in the pie chart (Figure 4-3). 

From the chart, it is shown that poly-aromatic hydrocarbons (PAHs) and added biocides 

are the dominant contributors of the total risk to the ecosystem. 
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Weighted contribution to risk, EIF = 718
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Figure 4-3. EIF value and pie chart of the contribution of chemical groups to the total risk value.  

 

Beside the risk due to all components of produced water discharge, risk assessment due 

to poly-aromatic hydrocarbons (PAHs) only was also performed (the results are not 

presented here). Then these results were transformed into the biomarker response 

(potentially of affected fraction) using the species sensitivity distributions (SSDs). 

4.2 Predicted Biomarker Responses 
The simulation results for three types of biomarkers: PAH metabolites as a biomarker of 

exposure, DNA damage as a genotoxicity marker and lysosomal membrane stability as 

general marker of stress are presented in this section. Figures 4-4 to 4-6 visualize the 

distribution of the fraction of species that might show responses at the biomolecular 

level due to produced water exposure in Ekofisk region. The predicted biomarker 

responses show high levels in the northeast and southwest direction.  
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Figure 4-4. Biomarker response prediction at Ekofisk during 30 days period shown as max risk 
(potentially affected fraction [PAF]) in the water column: PAH metabolites. 

 

 

 

Figure 4-5. Biomarker response prediction at Ekofisk during 30 days period shown as max risk 
(potentially affected fraction [PAF]) in the water column: DNA damage. 
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Figure 4-6. Biomarker response prediction at Ekofisk during 30 days period shown as max risk 
(potentially affected fraction [PAF]) in the water column: lysosomal membrane stability. 

These results also show that the high biomarker response in lysosomal membrane 

stability covers wider area. This pattern is determined by the SSD curves (Figure 3-5) 

used to transform the ecosystem risk into biomarker response that shows lysosomal 

membrane stability as the most sensitive biomarker.  

4.3 Comparison with the Field Measurement 
To assess the predicted biomarker responses, the results from the simulations were 

compared with field measurements. The comparison was made by plotting the field data 

into contour maps and bubble plots then overlaying them with the predicted results. It 

has to be remembered this comparison is done in two different units. The model (in risk 

map) shows the predicted fraction of species that demonstrate alterations at their sub-

organismal level. Meanwhile, each line in the contour plot corresponds to the same level 

of biomarker response (the degree of alterations) compared with reference. For 

comparison with the bubble plots, it is assumed that both units are comparable, although 

the bubble plots show the percentage of affected individuals for the same species at six 

different stations, not a potentially affected fraction of species in an ecosystem. It is 

done in this way because the availability of field data is very limited.  

46 
 



(a) 
 

(b) 

Figure 4-7. Overlay of predicted biomarker response at depth 10-20 m (visualized in 
risk/response map) with field biomarker measurement (in contour plot) for (a) Lysosomal 
membrane stability and (b) Micronuclei. Each line corresponds to the same level of decreasing 
biomarker responses as increasing distance from discharge point. 

 

The comparison with contour plots is presented in Figure 4-7. Figure 4-8 and 4-10 show 

the comparison between predicted results and the bubble plots. The values of the 

validation with the bubble plots are produced in table form (Table 4-1). 

Although the response maps and the contour plots are not presented in the similar unit, 

the comparisons are made to observe the pattern. The contour plots in Figure 4-7 were 

not given an exact scale, but each line represents the same level of response which is 

decreasing with increasing distance from the discharge. The biomarker response contour 

lines show an asymmetrical decreasing pattern which has the lowest response in the 

southeast of the discharge.  
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 (a) 
 

 (b) 

Figure 4-8. Comparison of predicted DNA damage biomarker responses from depth 10-20 m 
(visualized in risk/response map) with measured responses (in bubble plot) of: (a) DNA adduct 

and (b) micronuclei. The DNA adduct data is only available at 2 stations. 
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Figure 4-9. Comparison of PAH metabolites biomarker between predicted responses from 
depth 10-20 m (risk map) with measured responses (bubble plot). 

 

 

Figure 4-10. Comparison of lysosomal membrane stability biomarker between predicted 
responses (risk map) with measured responses (bubble plot). 
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Table 4-1. The comparison of biomarker responses (in probability of affected species) from 
simulations and observations, assuming that both of them are comparable 

(a)Lysosomal membrane stability 
Biomarker responses (%) 

Locations 
model observation 

ST1 95 93 
ST2 94 80 
ST3 93 71 
ST4 97 73 
ST5 91 67 
ST6 85 73 

 
(b)DNA damage (model) –micronuclei (observation) 

Biomarker responses (%) 
Locations 

model observation 
ST1 64 80 
ST2 63 55 
ST3 60 45 
ST4 66 85 
ST5 57 65 
ST6 52 35 

 
(c)DNA damage (model) -DNA adduct (observation) 

Biomarker responses (%) 
Locations 

model observation 
ST3 60 36 
ST4 66 50 

 
(d)PAH metabolites 

Biomarker responses (%) 
Locations 

model observation 
ST3 40 100 
ST4 55 94 

 

Table 4-2. Average responses of lysosomal membrane stability and DNA damage biomarkers 
(both observation and model) 

Average biomarker 
responses (%) 

Locations model observation

Deviation = 
(Ymodel – Yobservation)/ 

Yobservation 
(%) 

ST1 80 87 -8 

ST2 79 68 16 

ST3 77 58 32 

ST4 82 79 3 

ST5 74 66 12 

ST6 69 54 27 

  Average= 14 
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Figure 4-11. Comparison of biomarker responses between model and observation, 
average results of lysosomal membrane stability and DNA damage 

 

In Figure 4-8 to 4-9, the simulation results are zoomed and then compared with the 

percentage of affected individuals in the same species (presented as bubble plots). In a 

brief look, the predicted response maps show some agreements with the bubble plots 

pattern. The values of the predicted responses and the measured responses are presented 

in tables (Table 4-1 (a)-(d)). The predicted results (PAF of species) are calculated by 

taking the average of the corresponding cell of each station and its surrounding cells. 

The average responses of lysosomal membrane stability and DNA damage-micronuclei 

biomarkers in each corresponding station are calculated for both predicted and 

observed, and the results are presented in the Table 4-2 and Figure 4-11. In Table 4-2 

the deviations between the predicted and observed results were also calculated. The 

deviations were defined as the percentage of the difference between the model and the 

observation (not to be confused with the biomarker responses that are also expressed in 

percentage). The results show that the model and the observation have the same trend. It 

is also found that the model gives, in average, 14% higher response than the 

observation, except at ST1 which is about 8% lower than the observation. 
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Beside the biomarker response comparison, the body burden data of PAHs in mussels 

from field measurement were also collected to study the internal exposure. The data 

were then compared with the concentration data from the model. This is shown in 

Figure 4-12. The figure shows a good comparison between the model and observation, 

especially at the stations far from the discharge point (ST1, ST5 and ST6). Meanwhile 

at the locations near the discharge point (ST2, ST3 and ST4), the comparison was rather 

poor. 

 

Figure 4-12. Comparison of predicted body burden calculated using maximum concentration 
from model and body burden data from observation. PAH body burden in mussels are measured 

in μg/kg wet tissue. 
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5 Discussion 

 

In establishing the link between the risk prediction model (DREAM) and biological 

monitoring, the DREAM model is utilized to predict the three types of biomarker 

responses (i.e. lysosomal membrane stability, PAH metabolites and DNA damage) then 

the results are compared with the biomarker responses from field measurement.  

The methodology of predicting biomarker response in DREAM in this study utilizes the 

species sensitivity distribution curves based on biomarker’s LOECs or so-called 

biomarker response distributions (BRDs). Therefore, the accuracy of the SSD curves is 

essential to produce good results.  The accuracy of the curves mainly relies to the 

number of data and the accuracy of the data. The biomarker’s LOECs obtained from 

laboratory experiments are currently only available for a few species. Another source of 

uncertainty in the SSD curves is that few LOEC data collected from the experiments 

were the lowest concentration tested. This means that the true LOECs could be 

considerably lower than the value obtained.  

Despite the remaining uncertainties, SSD curves for different biomarker responses 

(Figure 3-5) show a clear pattern: the biomarker responses are more sensitive than the 

whole organism effect (fitness). Lysosomal membrane stability is the most sensitive 

marker compared to others. It might be because LOECs of lysosomal membrane 

stability are mostly taken from exposures to invertebrates (although it can also be 

measured on fish) and fish, in general, have more efficient detoxification defenses than 

invertebrates. On the other hand, the PAH metabolites biomarker which is a biomarker 

exposure is shown to be less sensitive than the biomarker effect, DNA damage. This is 

because the PAH metabolites in bile is only available for fish (vertebrates). Meanwhile, 

the DNA damage SSD is based on the exposures of both invertebrates and vertebrates. 

The prediction of biomarker responses using the DREAM model is determined by how 

the model works. The DREAM model enables a dynamic risk prediction and also takes 

into account the different properties in a complex mixture. In the model, the predicted 

risk is expressed as the potentially affected fraction of species in the ecosystem, where 

the risk values above 5% have been considered to be unacceptable. Therefore, the 

results of predicted biomarker response are expressed as the fraction of species in the 



ecosystem that show alterations in a certain biological marker. However, for validation 

or comparison purpose, the field measurement biomarkers cannot be translated into the 

same unit as the model, since the available field data only consist of two species which 

are not sufficient to represent an ecosystem. The comparison was done in two possible 

ways: comparing the model with pattern of the responses measured from field 

(expressed in contour plots) and comparing the model with percentage of affected 

individuals for the same species at six different points (presented as bubble plots). 

The simulation results show a common pattern that is the high values of response 

(probability affected fraction) are mainly distributed in the northeast and southwest 

direction. The observation results for lysosomal membrane stability, micronuclei and 

DNA adduct biomarkers show that ST4 is higher than ST3 and the south west direction 

shows higher response (potentially affected fraction of species) than the north east 

direction. This pattern can be explained by the current and wind distribution in the 

region as the contaminant fates are highly determined by the physical environment. The 

dominant current pattern in Ekofisk is distributed in northeast and southwest directions 

(see Figure C-1(a), Appendix C). In addition to the current effect, the southwest side of 

the discharge point is subjected to higher wind velocity (see Figure C-2, Appendix C) 

which might explain higher response in that direction compared to northeast direction. 

The average responses of lysosomal membrane stability and DNA damage-micronuclei 

biomarkers in each corresponding station are calculated for both predicted and 

observed, and the results are presented in the Table 4-2 and Figure 4-11. In Table 4-2 

the deviations between the predicted and observed results were also calculated. The 

average biomarker response comparison (Figure 4-11) shows that in general the model 

and the observation have a similar trend. The result also shows that the model gives 

about 14% higher response than the observation, except at ST1 which is 8% lower than 

the observation.  

The higher response of the predicted biomarkers may be due to the fact that the 

response map from the model is based on the highest risk recorded for the simulation 

period. Since the simulation results are based on the highest response during the 30 days 

period, those prediction values must be treated carefully. It has to be remembered that 

the actual exposure processes are very dynamic. One maximum response value might 

not be able to adequately represent the potential biological response at one location.  
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To obtain more representative predicted values in relation to the field measurement, the 

comparison could instead have been based on the average values throughout the 

simulation period or on the last part of it. This is not done, as it would require 

modification of the standard calculation of the model output, which would be too time 

demanding for this thesis project. 

For the results on PAH metabolites observation, the average level of response (see 

Figure C-3, Appendix C) and also the percentage of affected species (bubble plot in 

Figure 4-9 or values in Table 4-1 (d)) show quite a different pattern than the other 

biomarkers. The percentage affected individuals of PAH metabolites from field 

measurement in ST3 is slightly higher than ST4 which is contradictive to the biomarker 

prediction result. It may be due to the fact that the results from the biomarker response 

prediction in Table 4-1(d) have been smoothed with the surrounding cells. 

PAH metabolites biomarker is mostly used as biomarker of exposure since it can 

provide information of the recent (ongoing) exposure of fish to poly-aromatic 

hydrocarbons (PAHs). As mentioned earlier, the exposure of produced water in one 

location is very dynamic due to the physical environment (i.e. current and wind 

circulation). Therefore, the possible explanation for this condition is that around the 

time when the samples were taken, the ST3 were subjected to higher concentration than 

in ST4. 

In general, the time variable or duration of the exposure is important in interpreting the 

biomarker responses. For enzymatic biomarkers in fish, the process induction and 

recovery of the responsive system might last for some days up to few weeks, whereas 

some other biomarkers may require longer time (Beyer and Bamber, 2004). This is will 

also be the case for PAH metabolites which will vary dynamically with the enzymatic 

processes of metabolism, while DNA damage will be more accumulated and less 

dynamic in its formation and recovery process as its link to metabolism process is 

slightly less direct. 

As for the model, although the DREAM model is able to estimate the time variable 

exposure process in the biomarker response prediction, it cannot accommodate the 

duration variable in the response formation and recovery processes.  
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As the biomarker responses are highly determined by the level of exposure, in addition 

to the biomarker response data, the body burden data of PAHs in mussels were also 

collected. The result is then compared to the maximum concentration profile in 6 

stations which have been transformed into the same unit as the measured values by 

using the bioconcentration factors from experiments (Baussant et al., 2001) (Figure 4-

12). The figure shows a good comparison between the predicted and observed body 

burden at the stations far from the discharge point (ST1, ST5 and ST6), meanwhile at 

the locations near the discharge point (ST2, ST3 and ST4), the comparison was rather 

poor. The predicted PAH body burden results are also based on the maximum 

concentration recorded during the simulation, therefore, the results depend greatly to the 

concentration profile. At the location near the discharge source, the concentration varies 

greatly in time and ST3 and ST4 could be subjected to a very high concentration in a 

very short time. Meanwhile, at the locations further from the discharge source the 

concentration profiles do not have so much fluctuation compared to the area near the 

discharge point, thus give more stable results and a better comparison with the 

observation. This condition suggests that the internal exposure of contaminants in biota 

is influenced by the dynamic concentration of the contaminants.  

It has to be noted, in performing the biomarker response prediction, several assumptions 

and simplifications have been applied including the time frame of the simulation. The 

simulation is performed for a 30 days period based on wind and current data in May 

1990, which are the standard wind and current inputs, while the field data are based on 6 

weeks observation from April - May 2008.  

The salinity and temperature inputs for the simulation were based on the actual field 

data. This was done to study more about the vertical profile of the discharge pattern in 

relation to the near-field module. The results show that the vertical density profile 

(represent by salinity and temperature profile) which may cause a vertical stratification 

of water mass does not give any considerable influence to the concentration profile, 

since the concentration is more accumulated at the surface. This is due to the fact that 

the produced water discharge usually has a quite high temperature and also includes 

hydrocarbons and causing the produced water to have very low density and thus 

spreading up to the surface. 

 .

56 
 



57 
 

6 Conclusion 

 

The aim of this study is to investigate the possibility of linking a risk prediction model 

with biomarker responses which was done by utilizing the DREAM model to predict 

biomarker responses applying the species sensitivity distribution (SSD) approach.  

From the results, predicting biomarker responses using the DREAM model can be done 

with some assumptions applied. It is also shown that the model could predict similar 

trend with biomarker responses measured at different distance from the discharge point. 

In this study, the predicted biomarker responses give about 14% higher value compared 

to observation. It may be related to the fact that the model applies the conservative 

approach (based on the maximum risk value) and therefore the model cannot 

accommodate the duration variable in the biomarker response formation and recovery 

processes which may differ in biomarkers which is also the case for the body burden. 

Despite the remaining uncertainties and limitations, this study could provide some 

general backgrounds for the study of linking the risk prediction with the monitoring. 

From this study it can also be concluded that the results in biomarker responses 

prediction is determined by three factors: the reliability of the SSD approach, the model 

limitations (how the model works) and also the available field data for validation. 

Therefore, in future, there are several improvements that could be applied for studies 

related to this topic: 

 The accuracy of the curves mainly relies on the number of data and their 

accuracy. In this study, the SSD curves are mainly constructed based on LOECs 

from few species. Including LOEC data from more species that represent more 

diverse taxonomy is one way to increase the reliability of the SSD curves. Some 

LOEC data from the experiments used in this study are actually the lowest 

concentration tested, which makes them to be rather imprecise data. Therefore, 

improvement in the accuracy/quality of the LOEC data is also important in 

improving the accuracy of the SSD curves. 



 So far, the simulation results selected from the model are based on the maximum 

risk, since the risk summary results are based on maximum exposure during the 

simulation. It would be interesting to compare the observed results with the 

average summary results from the model. 

 It is also suggested to perform the simulation in the same time frame with the 

observation to increase the consistency between the prediction and observation. 

 In this study, the results (predicted affected fraction of species) from the model 

are compared with the percentage of affected individuals in the same species 

from observation, due to the limited observation data available. Therefore, 

increasing the species number from observation would make it possible to make 

the validation/comparison in exactly the same unit. 
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Appendix A 

Table A-1. Lipid base bioconcentration factors (BCF) in sample tissues and devices 
(SPMD=semi-permeable membrane device) of blue mussel (Mytilus edulis) and cod 
(Scopthalamus maximus) (Bausssant, 
2001).
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Appendix B 

Table B-1. Produced water compound groups representing naturally occurring components and 
man-added components with their PNEC values and weighing factors (OLF, 2003) 

Group Main group 
Representative 

compound 
PNEC values (ppb) Weighing factor 

1 BTEX Benzene 17 1 
2 Napthalenes Napthalene 2,1 1 
3 PAH 2-3 ring Phenanthrene 0,15 1 
4 PAH 4 ring+ Benzo[a]pyrene 0,05 2 
5 Phenols C0-C3 Phenol  10 1 
6 Phenols C4-C5 Pentylphenol 0,36 1 
7 Phenols C6-C9 Nonyphenol 0,04 2 
8 Aliphatic 

hydrocarbons 
Hepthane 40.4 2 

9 Metals 1  
Zinc 
Copper 
Nickel 

  
0,46 
0,02 
1,22 

 
1 
1 
1 

10 Metals 2 
Lead 
Cadmium 
Mercury 

  
0,182 
0,028 
0,008 

 
1 
1 
1 

11 Corrosion inhibitor  HOCNF specific data see Table A-4 
12 Biocide  HOCNF specific data see Table A-4 
13 Scale inhibitor  HOCNF specific data see Table A-4 
14 Anti foam  HOCNF specific data see Table A-4 
15 Emulsion breaker  HOCNF specific data see Table A-4 
16 Flocculant  HOCNF specific data see Table A-4 
17 H2S scavanger  HOCNF specific data see Table A-4 

 

Table B-2. List of the compounds included in groups of naturally occurring components of 

produced water (OLF, 2003) 
Main groups Compounds 
Naphthalene  Naphthalene 

 C1- Naphthalene 
 C2-Naphthalene 
 C3- Naphthalene 

PAH 2-3 ring Compounds on the EPA 16 PAH list with 2-3 rings, other than 
Naphthalenes: 

 Acenaphthylene 
 Acenaphthene 
 Fluorene 
 Phenanthrene, including C1-C3 alkylhomologues 
 Anthracene 
 Dibenzothiphenes, including C1-C3 alkylhomologues 

PAH 4+ ring Compounds on the EPA 16 PAH list with 4 rings or more 
 Fluoranthene 
 Pyrene 
 Chrysene 
 Benzo(a)anthracene 
 Benzo(b)fluoranthene 
 Benzo(k)fluoranthene 
 Benzo(a)pyrene 
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 Indeno(123,cd)pyrene 
 Dibenzo(ah)anthracene 
 Benzo(ghi)perylene 

Phenol C0-C3 Phenols C1-C3 alkylhomologues: 
 Phenol 
 C1-Phenols 

o o-cresol 
o m-cresol 
o p-cresol 

 C2-Phenols 
o 2,5-Xylenol 
o 3,5-Xylenol 
o 2,4-Xylenol 
o 4-Ethylphenol 
o other C2-phenol alkylhomologues defined by analytical 

method 
 C3-Phenols 

o 2-n-Prophylphenol 
o 2.3.5-Trimethylphenol 
o 4-n- Prophylphenol 
o 2.4.6-Trimethylphenol 
o other C3-phenol alkylhomologues defined by analytical 

method 
Phenol C4-C5 C4-C5 alkylphenol homologues: 

 C4-Phenols 
o 4-tert-Butylphenol 
o 4-iso-Propyl-3-Methylphenol 
o 4-n- Butylphenol 
o other C4-phenol alkylhomologues defined by analytical 

method 
 C5-Phenols 

o 2-tert-Butyl-4-Methylphenol 
o 4-tert-Butyl-4-Methylphenol 
o 4-n-Pentylphenol 
o other C4-phenol alkylhomologues defined by analytical 

method 
Phenol C6+  Sum C6-Phenols 

o 2,6,-Di-iso-Propylphenol 
o 2,5,-Di-iso-Propylphenol 
o 4-n-Pentylphenol 
o 2-tert-Butyl-4-Ethylphenol 
o 6-tert-Butyl-2,4-Dimethylphenol 

 Sum C7-Phenols 
o 4-n-Hepthylphenol 

 Sum C8-Phenols 
o 2,4,-Di-sec- Butylphenol 
o 4-tert-Octylphenol 
o 4-n-Pentylphenol 
o 2,6-Di-tert- Butylphenol 
o 2,6-Di-tert-Butyl-4-Methylphenol 
o 4-n-Octylphenol 

 Sum C9-Phenols 
o 2-Methyl-4-tertt-Octylphenol 
o 4-n-Nonylphenol 
o 4,6-Di-tert-Butyl-2-Methylphenol 
o 2,6-Dimethyl-4-(1,1-Dimethylpropyl)phenol 
o 4-(1-ethyl-1-methylpropyl)-2-methylphenol 
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Table B-3. Standard biodegradation rates for produced water compounds (Johnsen et al., 
2000) 

Group Main group 
Biodegradation rate 

½ life (days) 
1 BTEX 0,5 
2 Napthalenes 1,5 
3 PAH 2-3 ring 17 
4 PAH 4 ring+ 350 
5 Phenols C0-C3 1,2 
6 Phenols C4-C5 10 
7 Phenols C6-C9  
8 Aliphatic hydrocarbons 60 
9 Metals 1  No degradation 

10 Metals 2 No degradation 
11-n Poduction chemicals HOCNF (BOD 28d) specific data 

 

 

Table B-4. Weighing criteria in EIF based on bioaccumulation and biodegradation 
potential (Johnsen et al., 2000) 

Bioaccumulation (log Pow) Biodegradation 
(BOD, 28 days test) <3 3-5 >5 

>60% 1 1 1 
20-60% 1 2 2 
<20% 2 2 4 

 
 



Appendix C 

C.1. Physical Environment Data 

 (a) (b) 

Figure C- 1. Physical environment data from WCM 2008:  (a) Ocean current distribution;  
(b) Salinity and Temperature Profile 
 

 

 

Figure C-2. Wind rose for in-situ observation during 8.5 year period at Ekofisk from 

Norwegian Meteorological Institute: www.met.no (Furevik et al., 2008) 
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C.2. Biomarker responses from Water Column Monitoring 2008 
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Figure C-3. PAH metabolites biomarker data from cod are only available from 2 stations (ST3 

and ST4). PAH metabolites is measured in ng metabolites/ g bile. The data presentation is 
divided into three groups of polyaromatic hydrocarbons (PAHs) in accordance with the EIF 

concept; (a)Napthalenes, (b)PAH 2-3ring, (c)PAH 4ring+ (Sundt et al., 2008) 
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Figure C-4. Lysosomal membrane stability biomarker from mussels in 6 stations, REF is 
reference value and PRE EXP is condition before experiment. Lysosomal membrane stability is 

measured in Neutral Red Retention Time (NRRT) assay (Sundt et al., 2008). 
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Figure C- 5. Micronuclei biomarker from mussels in 6 stations, REF is reference value and PRE 

EXP is condition before experiment (Sundt et al., 2008). 
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Figure C-6. DNA adduct responses from fish in 2 stations, REF is reference value and PRE 
EXP is condition before experiment. DNA adduct response is measured in nmol adduct/mol 

normal nucleous (Sundt et al., 2008) 

68 
 



C.3. Body Burden Data from Water Column Monitoring 2008 
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Figure C-7. Body burden data for PAHs in mussels (Sundt et al., 2008) 
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