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ABSTRACT 

  

The present study aims to validate the method in enriching of iron carbide 

surface from carbon steels in CO2 corrosion. Applying an anodic current to carbon 

steel electrodes by galvanostatic measurement was a selected approach. Influence of 

magnitude of the applied current and exposure time on the corrosion process was 

studied. The experiments were conducted with CO2-saturated-0.5M NaCl solution as 

an electrolyte at room temperature and atmospheric pressure. Three different steels, 

X-65, St52 and Steel33, are used as materials. The corrosion behavior is monitored by 

weight loss measurement and potentiodynamic sweep, while steel surfaces are 

examined by SEM/EDS technique. The results show that carbide formation as the 

weight losses increased with the applied currents and the exposure time. The iron 

carbide was detected on steel surfaces and iron carbonate was observed on the steel 

surface which was applied with the highest current density. However, the effect of 

steel’s microstructure and composition on the corrosion cannot be identified clearly. 
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1 INTRODUCTION 

 

Corrosion issues have been concerned for many decades since they have been 

important causes of failure in equipment and structure made of metal. In oil and gas 

industry, the corrosion problems are generally found in pipelines, storage tanks and 

other equipment which have to operate with corrosive materials. Due to large effects 

on the operation, therefore, there are many studies and researches dedicating to these 

problems. Their investigations aim to uncover mechanisms and factors associating in 

the corrosion process. Many models have been developed in order to predict the most 

accurate corrosion mechanisms [1-3].  The main objectives are not only to understand 

the phenomenon, but also to formulate effective countermeasure and protection. 

Carbon steel is a material that has been widely used in various engineering 

applications due to its low cost, good mechanical properties, and simple fabrication. 

Thanks to large applications, the corrosion of carbon steels under different conditions 

has been continuously studied by many researchers and working groups. One 

condition of interest is the corrosion in CO2 environment, which is also called sweet 

corrosion. It is one of major and costly corrosion problem in oil and gas industry in 

which fluids containing dissolved CO2 are dealt with.  

In the process of CO2 corrosion, one of very important subjects is corrosion 

products or corrosion films. The corrosion films have significant effects on the 

corrosion mechanisms once they are formed. For carbon steel, iron carbide (Fe3C) and 

iron carbonate (FeCO3) are key compounds in the corrosion layers. Their mixed films 

possess different properties which depend on many factors, e.g. temperature, 

composition and micro structure of the metal substrate. The combination of the iron 

carbide and the iron carbonate films significantly influence corrosion rate in both 

positive and negative ways. This leads to difficulties in prediction of the mechanisms 

of corrosion. Thus, the characteristics of CO2 corrosion films of the carbon steel are 

currently one of attractive area for corrosion researchers. 

However, many studies focus on the formation of iron carbonate film and 

combination film of the iron carbide and the iron carbonate, not only the carbide 

layer. Some investigate the carbide film as pre-corrosion for further study on 

corrosion inhibitor performance [4, 5]. Therefore, iron carbide is of interest in the 

current study as it is the main corrosion product and, moreover, the carbide has an 
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important role in enhancing the protectiveness of the corrosion films under CO2 

environment even though the carbide itself is found non-protective [1, 2, 4-6]. 

In the present study, accelerating the corrosion process to obtain iron carbide 

is of interest. It is initiated from the real condition where the process forming Fe3C 

layer on the corroded surface consumes some time. Hence, provoking the corrosion 

will reduce the time in corrosion researches. Consequently, it could be a supplement 

for studying the corrosion films and also other investigation where the corroded 

carbon steel surface is required. 
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2 LITERATURE REVIEW 

 
 In CO2-containing environment, corrosion process of carbon steels produces 

corrosion layers on steel surface. These corrosion films have major effects on 

corrosion mechanisms. Depending on composition, location and structure of the films, 

they can increase or decrease corrosion rate. Complication in film properties results in 

difficulties of the corrosion rate prediction. Moreover, many other environmental 

factors, e.g. temperature, metal composition, CO2 partial pressure, flowrate and pH of 

electrolyte, could also affect the formation of corrosion product layers [6, 7].  

2.1 CO2 Corrosion Mechanism 

The process of corrosion consists of many electrochemical reactions at the 

metal surface and transportation of chemical species in the system [2]. The reactions 

include transportation of mass and charge [8]. The mass transportation occurs 

between metal surface and an electrolyte while the charge is transferred between 

atoms and ions.  

In CO2 Corrosion, carbonic acid is produced when dissolved CO2 combines 

with water as shown in the reaction below. 

 

3222 COH=OH+CO     (1) 

 

The process then is governed by the following cathodic and anodic reactions [1].  In 

the electrolyte, the cathodic reactions are from dissociation of the carbonic acid: 

 

       _
32

_
32 HCO2+H=e2+COH2     (2) 

 

        _2
32

__
3 CO2+H=e2+HCO2    (3) 

 

The anodic reaction at the metal surface generates Fe2+ and e- from an electrochemical 

dissolution: 

 

      _+2 e2+Fe=Fe      (4) 
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Hydrogen gas is produced by hydrogen evolution reaction. 

 

     2
_+ H=e2+H2      (5) 

 

Thus, the overall reaction of CO2 corrosion is: 

 

2332 H+FeCO=COH+Fe     (6) 

 

2.2 Corrosion Product Film 

 One important process in CO2 corrosion is the corrosion film formation since 

it governs the corrosion mechanisms and the corrosion rate. There are four types of 

main corrosion product layers formed in CO2 corrosion at temperature ranging from 

5oC to 150oC. Four types of the mentioned layers are (1) transparent films, (2) iron 

carbide film, (3) iron carbonate film, and (4) iron carbonate plus iron carbide film [9]. 

 

2.2.1 Transparent Film  

Transparent film can be observed at around room temperature. Without 

carbonate, it consists of iron and oxygen ions and has thickness less than 1 µm. Its 

protectiveness is improved by increasing concentration of the ferrous ions.  However, 

this layer is not important and normally ignored. It has not been identified clearly 

whether it affects on the formation of the other type of the corrosion films [9]. 

 

2.2.2 Iron Carbide Film(Fe3C) 

Iron carbide, which is also known as “cementite”, contains 6.67%C (by 

weight) and has chemical composition of Fe3C. Like austenite, ferrite, and perlite, 

iron carbide is one of constituents in the carbon steels. This microstructure is obtained 

during heat treatment in steel manufacture. In the corrosion process, the iron carbide 
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is simply generated by the anodic dissolution when the dissolved ferrous ions are 

dissociated and the uncorroded iron carbide is left remaining on steel surfaces. Figure 

2.1 is a scheme of the corrosion reactions of carbon steels in acid. The letter “A” and 

“C” in the figure denotes to anode and cathode, respectively. 

 

 

FIGURE 2.1 Corrosion of carbon steel in acidic solutions [10] 

 

 Once the carbon steels are corroded in acid, black deposit can be observed on 

the steel surfaces. The carbon powder is generated following a reaction in equation (7) 

shown below [10]. Figure 2.2 also shows a high-resolution image of the carbide layer.  

 

)l(2)g(2)s(
+2

)aq(
+

)aq(3)s(3 OH6+H3+C+Fe3=OH6+CFe   (7) 

 

 

FIGURE 2.2 A pure iron carbide layer formed at 60°C and 1 to 3 times 

supersaturation [9] 
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The iron carbide is stable structure which is uncorroded and undeformable. It 

is porous and brittle, however, it can form a strong network on the steel surface [9]. 

The iron carbide structure depends upon chemical composition and microstructure of 

carbon steel. Ueda and Takabe [11] found that after ferritic-pearlitic microstructure 

steel is corroded lamellar cementite is left behind while dispersed-cementite is found 

in martensitic microstructure steel. The difference of carbide structures varies the 

anchor property of the corrosion product. The carbon steel with dispersed-carbide 

undergoes more severe corrosion when compared to the carbon steel with lamellar 

carbide structure. It is because the structure of lamellar carbide has the cavities, which 

more efficiently carry the corrosion products. This characteristic of the carbide layer, 

thus, enhances stability of the corrosion film. 

However, the cementite is found metallic conductive, therefore, it is 

considered non-protective when it attaches directly to the metal surface. There are 

many studies working on the effects of the iron carbide on the corrosion rate [4, 9, 11-

13]. It was found that iron carbide film formed on the steel surface promotes the 

corrosion process by following approaches [9]: 

 

• Galvanic effect:  The Fe3C structure provides cathodic area to the steel surfaces 

due to lower overpotential of Fe3C compared to the carbon steel 

structure or ferrite. As shown in Figure 2.1, an iron acts as an 

anode while Fe3C is a cathode. This condition enhances further 

iron dissolution by accelerating the cathodic reactions. 

• Local acidification: When the cathodic reactions take place, water composition at 

cathodic and anodic regions will become more alkaline and 

acidic, respectively. As a sequence, internal localized 

acidification will occur at the steel surface and accelerate the 

corrosion process.  

 

 Apart from the increase in the corrosion rate, the iron carbide also has an 

effect on performance of corrosion inhibitor applied to the carbon steels. It was 

reported that the longer precorrosion time results in the thicker of iron carbide layer. 

Consequently, the thickness of iron carbide scales impaired the inhibitor performance 
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[4, 5]. The reason is that the iron carbide layer acts as a barrier preventing the 

transportation of the inhibitor to the active steel surfaces. 

 

2.2.3 Iron Carbonate Film (FeCO3) 

Iron carbonate or siderite film is formed by FeCO3 precipitation when +2Fe  

and _2
3CO concentrations are higher than solubility limit. As a result, the products 

from the cathodic (2), (3) and anodic (4) reactions form the iron carbonate film by 

precipitation. The chemical reactions forming the carbonate film follows. 

 

3
_2

3
+2 FeCO=CO+Fe     (8) 

 

       ( )
23

_
3

+2 HCOFe=HCO2+Fe     (9) 

 

   ( ) OH+CO+FeCO=HCOFe 22323                (10) 

 

The film is developed by two processes; nucleation and crystallization or 

partial growth [1]. Firstly, the nucleation process occurs on the metal surface or in the 

microstructure of an existing layer. Then the film thickness increases by the 

crystallization process. During the precipitation of iron carbonate scale, the corrosion 

process still carries on simultaneously. If the precipitation rate is equal or higher than 

the corrosion rate, the corrosion film will be compact and have the protective 

property. On the other hand, if the precipitation is slower than the corrosion, the film 

will be porous and found unprotective [3]. 

Precipitation of FeCO3 is influenced by many factors such as temperature, pH, 

Fe2+ concentration, CO2 partial pressure, and H2S effect [3, 5, 9]. 

 

• Temperature: Temperature has an effect on the film formation since kinetics 

of the precipitation is accelerated by increasing the 

temperature. The results of many studies show that 

precipitation of iron carbonate increases with temperature at 

higher than 60oC.  Furthermore, the protection level of the film 
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is also improved at this temperature. In addition, morphology 

of the film is also affected by the temperature. 

• pH:  Solubility of iron carbonate is greatly affected by pH. The 

FeCO3 solubility decreases with increasing pH. Therefore, at 

high pH of the electrolyte, the precipitation occurs easier and 

the protective film can be formed. 

• Fe2+ concentration:  Ferrous ions concentration affects the precipitation as 

mentioned earlier that FeCO3 is formed by precipitation of Fe2+ 

and _2
3CO when their concentrations exceeds the solubility 

limit. Low level of Fe2+ concentration will prevent the iron 

carbonate formation and sometimes dissolve the existing film.  

• CO2 partial pressure: In the beginning of the corrosion, when there is no film 

formed, corrosion rate increases with CO2 partial pressure. 

Nevertheless, the film is produced faster at higher CO2 partial 

pressure. 

• H2S effect:  FeS and Fe2S are produced if the corrosion environment 

contains both H2S and CO2 and it also depends on the H2S 

partial pressure. Some studies have reported that the sulfide 

layer is more protective than the carbonate. Conversely, less 

protective is found at low H2S concentration when a 

combination has the FeCO3 at the inner part while the outer is 

sulfide.  

 

 As mentioned above, the formation of iron carbonate film consists of main 

two processes, nucleation and crystal growth. It was discovered by Gao M. et al [6] 

that the crystal growth step controls the formation of the films when the relative 

supersaturation of FeCO3 is low in the initial stage. On the other hand, nucleation is 

dominant at high supersaturation of the FeCO3. This condition develops the dense 

films which improve the protectiveness of the corrosion films. 

The iron carbonate is adherent, protective and non-conductive. Its 

protectiveness is affected by the temperature and pH [9]. Increasing temperature 

and/or pH will improve the protection characteristic and also adhesion and hardness 

of the iron carbonate film. At higher temperature, the more protective film is obtained. 
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Nevertheless, there is a proper temperature range reported, for instance, the films are 

protective when the temperature is higher than 70oC, and the performance and 

adhesion are improved when CO2 partial pressure exceeds 10 bar. The protection 

level of the iron carbonate increases proportionally to the exposure time. Beside, the 

adhesion property and thickness is also influenced by the metal composition and 

microstructure [7, 9]. The large crystal structures provide the dense film which 

improves the film adherence.  

After FeCO3 precipitation carries on the surface of the steels, and then the 

protective film is formed. This layer acts as a barrier between the steel surfaces and 

the corrosive species. This barrier prevents any substances associated in the corrosion 

reactions transporting to the active metal surfaces. Once this film covers the active 

area on the surface, the electrochemical activities are limited. Thus, this mechanism 

leads to decrease in corrosion rate.  

 

2.2.4 Iron Carbonate plus Iron Carbide Film 

Many studies of corrosion layers [9, 12] discovered that the uncorroded 

cementite formed the non-protective film if it directly attached to the metal surfaces. 

Nevertheless, if the pores in its porous structure were sealed with the iron carbonate, it 

could form the protective film. 

As mentioned previously, when the condition in CO2 corrosion is proper, the 

iron carbide and iron carbonate scales will be generated. They can settle on the steel 

surfaces as separate layers or they could be partially combined. The approach that the 

mixed films are constructed depends on where and when the iron carbonate is formed 

[9]. The structure of the mixed film greatly influences the properties, particularly the 

protectiveness of the films. 

For the first case, the iron carbide accumulates forming the layer directly on 

the steel surface and followed by precipitation of carbonate scales on the top. This 

structure leads to the formation of non-protective layer. The second case is when the 

porous iron carbide is filled up with the iron carbonate scales. This kind of film is still 

able to keep its protectiveness. Figure 2.3 shows the morphologies of the protective 

and non-protective films. 
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FIGURE 2.3 Morphologies of protective and non-protective corrosion layers [12] 

 

 Development and breakdown of carbonate film are affected by the structure 

of the Fe3C and FeCO3 combination. A important factor is the microstructure of the 

carbon steel which is influenced by carbon content and distribution of cementite [11].  

To improve the protectiveness of the corrosion product films, the carbide is 

one important part. Even though the Fe3C is non-protective, but it physically enhances 

the adhesion of the carbonate film to the steel surface by the anchor effect. The 

anchoring by the iron carbide helps the iron carbonate to resist shear force under high-

flowrate condition. Beside, the iron dissolution under the carbide layer provides high 

Fe2+ concentration gradient at the metal surface. This high concentration gradient 

increases the supersaturation of Fe2+ on the surface and leads to generating more 

protective iron carbonate film [9]. 

    

2.3 Accelerating Corrosion Process 

It is apparently seen that the iron carbide plays an important role in the CO2 

corrosion. It particularly affects on the protectiveness of the corrosion film. However, 

there are only few researches focusing on the iron carbide formation in the corrosion 

process. Corroding the carbon steel to gain the iron carbide is often carried as a 

precorrosion step prior to studying the formation of protective films. In other case, it 

was conducted to provide partially corroded surface for a particular test, which 

Metal 

Bulk solution 
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Metal 
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Fe3C+FeCO3 
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requires the surface with some scales as exists in the real situation. Some studies 

contributed to an investigation of inhibitor performance on the steel surface which is 

covered by the corrosion scales. For instance, Gulbrandsen E. et al. investigated the 

effects of precorrosion on the film formation and inhibition [4]. Nevertheless, those 

studies have not focused on the process of the iron carbide layer is generated.  

As described previously, the iron carbide can be simply obtained by allowing 

the carbon steel to be corroded, though; this process consumes quite long time. In the 

experiments of Gulbrandsen E. et al [4], they precorroded X-65 and St52 without 

applying external current density for 14 days and no iron carbonate was observed. 

Therefore, it will be more practical to prepare the precorroded steel in shorter period 

by accelerating the corrosion process to gain the iron carbide scales for further study. 

There are many factors are found able to accelerate the corrosion mechanisms i.e. pH 

and temperature. However, in the present study, the influence of applied current 

density, exposure time and steel composition are focused on.  

 

2.3.1 Effects of Applied Current on the Corrosion 

In order to accelerate the corrosion, applying anodic current density is 

considered as one alternative rather than changing the corrosion environment. 

According to Pourbaix diagram, pH and potential correlation of iron-water system 

provides a region where the iron dissolution or corrosion can take place. 

Pourbaix diagram, also called pH-potential diagram, in Figure2.4 shows the 

dominant species in the domains of iron-water system at 25oC. Following the solid 

curves on the left hand-side, ferrous ions can be generated or the corrosion takes 

place. Iron in the immunity area (Fe) will be dissolved and generate ferrous ions in 

corrosion area (Fe2+) by increasing potential at pH below 9. Even though the diagram 

can provide conception of kinetic process, but it does not give the information about 

the corrosion rate of the iron. In addition, the other limitation of Pourbaix diagram is 

that the other ionic species in the solution are not covered in the diagram. However, 

this principle introduces to the stimulation of corrosion mechanism by increasing the 

applied potential. Alternatively, the anodic current could be applied so as to accelerate 

the iron dissolution. 
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FIGURE 2.4 Potential-pH Equilibrium Diagram for the System Iron-Water, at 25oC 

(considering as solid substances only Fe, Fe3O4 and Fe2O3)[14] 

 

 With this approach, Muralidharan, et al. [15] studied the effects of applying 

currents on the corrosion rate of mild steel.  The investigation was conducted by 

applying alternating (AC), direct (DC) and superimposed alternating and direct 

(AC+DC) currents to the steels. The results revealed that applying the currents to the 

mild steel in marine environments caused an increase in the corrosion rates. They also 

found that the highest corrosion rate of the steel was obtained when the superimposed 

current was applied. The lower and the lowest corrosion rate were observed when 

applying DC and AC, respectively.  

 Focusing on the DC source, the study of Muralidharan, et al. found that the 

DC current is able to accelerate the corrosion at low current density even lower than 

icorr. There are two approaches to accelerate the corrosion process as shown in the 

following equations [15]. 
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First mechanism: 

  Fe + H2O = Fe.H2Oads              (11) 

 

                    Fe.H2Oads + Cl- = _
adsFeCl + H2O                   (12) 

 

   _
adsFeCl + _OH  = FeOH+ + _Cl  + _e2               (13) 

 

    FeOH+ + H + = Fe2+ + _e2               (14) 

Second mechanism: 

 

          Fe + Cl- = _
adsFeCl               (15) 

 

   _
adsFeCl + H2O = _

adsFeOH + H+ + _Cl                (16) 

 

    _
adsFeOH = FeOHads + _e               (17) 

 

    FeOHads = +
adsFeOH + _e               (18) 

 

    +
adsFeOH = Fe2+ + _OH               (19) 

2.3.2 Effect of Exposure Time on the Corrosion 

 In Gulbrandsen E. et al. [4] , it reported that the corrosion rate of the carbon 

steels increased proportionally to the exposure period during the pre-corrosion. This 

increasing corrosion rate can be explained by many reasons which are (1) protective 

oxide film removal (2) galvanic coupling between cementite and steel surface (3) true 

surface area of the specimen increase (4) acidification under the corrosion film. These 

conditions can be promoted by the accumulation of the iron carbide on the steel 

surfaces. The accumulation increases the area of Fe3C resulting to increasing the 

corrosion rate [16]. 
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2.3.3 Effect of Composition and Structure of Carbon Steel on CO2 Corrosion 

 The effects of composition and microstructure on CO2 corrosion are found in 

many researches. However, it is surprising that the general conclusion cannot be 

drawn as many studies still have conflicts in results [17]. Some carbon steels have the 

same composition, but their microstructure is different. In contrast, the steels with the 

same microstructure can be gained from different composition. Furthermore, large 

variation in corrosion behavior could be observed from the carbon steels that have the 

same composition and microstructure under the same corrosive conditions. 

 

Composition of Steel  

Carbon steels are defined as low-alloy steels. An alloying elements added, as a 

definition of carbon steel, should not be more than 2%wt of the total additions [10, 

18]. This results to insignificant difference in corrosion rate of the most grades of the 

carbon steels [18, 19]. However, alloying elements are found to have effects and make 

some changes in steel properties. The elements which are generally added and affect 

the corrosion behavior on the carbon steels are chromium, copper, nickel, sulfur, 

phosphorus and manganese. Here below are briefs of the effects of some alloying 

elements on the corrosion performance. 

 

• Carbon: Carbon is added to an iron in order to improve the mechanical 

properties.  It is dissolved and mixed with the iron, forming iron 

carbide.  Gulbrandsen E. et al. [4] found that during the precorrosion 

without applying current at room temperature, the corrosion rate of the 

carbon steel increased due to the increase in cathodic sites. Those 

increasing active areas were from the remaining of iron carbide layer 

after the steel corroded. In addition, more amount of cementite was 

observed on St52 steel surface than X-65 which has lower carbon 

content. The other research also found that the corrosion rate in CO2 

corrosion of the carbon steels increased with the carbon content [20]. 

Figure 2.5 below shows the effect of carbon content on the corrosion 

rates. 
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FIGURE 2.5 Effect of carbon content on corrosion rates [20] 

 

• Chromium: Chromium is a very important alloying element used to improve 

corrosion resistance by increasing protectiveness of the corrosion film 

[13]. It is a major element which is focused to reduce the corrosion rate 

in many studies. Depending on the amount added to the steel, 

chromium can combine with iron and form double carbide [Fe.Cr3)3C] 

or carbide of chromium (Cr7C3 or Cr23C6). Chromium carbide has 

properties in amend for hardness, tensile strength, wear resistance and 

heat resistance [21]. The corrosion rate can be reduced by the addition 

of chromium since it forms the passive film and decrease the anodic 

dissolution rate. Moreover, the chromium lowered the corrosion rate 

by protecting the alloy and preventing Fe3C formation [20]. It is found 

in many studies that the corrosion rate decreased with the addition of 

chromium [13, 20, 22]. The effect of Cr can be seen in Figure 2.6. 
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FIGURE 2.6 Effect of composition of low alloy steels on corrosion rate [17] 

 

• Copper:  Copper is added in order to improve atmospheric-corrosion resistance. 

It is normally added to structural steels. Copper will not affect the 

mechanical properties if it is added not more than 0.6% [21] . 

• Nickel: Nickel is also normally added to the structural steels because it 

enhances the mechanical properties without decrease in ductility. 

Furthermore, the corrosion and oxidation resistances are improved by 

adding nickel higher than 5% [21]. 

However, there is a study that reported disagreement on addition of Cu 

and Ni. It was found that mesa attack and general corrosion can be 

accelerated by increasing the content of Cu and Ni [22]. 

• Sulfur and Phosphorus:  Sulfur and phosphorus are normal components in 

commercial steels. They increase the rate of the corrosion, particularly 

in acidic solutions. It is because they form compounds with low 

potentials. For mild steels at neutral pH, sulfide compound also serves 

as a site for pitting corrosion to initiate. However, there is no marked 

effects from sulfur content noticed when the steels contains copper 

more than 0.01% [23]. 

• Manganese: The corrosion rate in acid can be reduced by adding manganese to the 

steels containing low sulfur content. Manganese recovers the anodic 
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polarization lowered by the sulfur since MnS has lower electrical 

conductivity than FeS [23]. 

 

Other alloying elements and their effects on the corrosion rate are shown in 

Figure 2.7. 

 

 

FIGURE 2.7 Effects of alloying elements on corrosion rate of 3%Cr Steels [22] 

 

However, it cannot be clearly identified that how corrosion behavior of carbon 

steels changes by adding the alloying element. It is because the effects of alloying 

also depend on the corrosion environments and the combination effects of all 

elements. The corrosion performance can not be concluded as a function of only one 

added element. 

 

Structure 

Apart of compositions, structure of the steels also affects on the CO2 

corrosion, particularly the morphology of the corrosion product films [13]. Difference 

in microstructure of the steels is obtained from steel manufacturing by different heat 

treatments. For instance, cooling slowly will combine the cementite with the ferrite 

and form a mixture called pearlite [19]. 

The structure of carbide layers strongly depends on the microstructure of the 

parental steels. It is reported by Ueda M. and Takabe H. that the steel with ferritic-
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pearlitic structure gave the lamellar carbide layer. On the other hand, the martensitic-

structure steels provided disperse-cementite after they were corroded [11].  

The adhesion of the mixed films, iron carbide and iron carbonate inclusion, is 

also influenced by the microstructure of the steels. For example, ferritic-pearlitic 

steels provided porous carbide on the corroded steel surface [24]. This structure helps 

anchoring the iron carbonate to the steel surface forming protective corrosion films.  

Considering the corrosion rate, there are some researches studying the 

corrosion reactions of different steel microstucture. Some reported that the ferritic-

pearlitic aturcture is more resistant to the corrosion than martensitic [17], however, 

the opposite results of the ferritic-pearlitic are also found [25] 

Nevertheless, the effects of microstructure and composition sometimes depend 

on certain condition. It was found that the effect microstructure is significant at high 

temperature. St52 microstructure effect increased with temperature from 25oC to 51oC 

[20]. In addition, the literature revealed that chromium addition improved the 

corrosion performance rather than the microstructure [17]. Therefore, the influence of 

microstructure and composition of the carbon steels on the corrosion process still 

remains complicated and should be investigated in more detail. 

 

2.4 Corrosion Testing and Monitoring 

Nowadays many techniques are established to investigate the corrosion 

behavior including the characteristics of corrosion product films and the corrosion 

rate. The commonly used, for example, are corrosion potential, weight loss 

measurement, potentidynamic polarization and scanning electron microscope (SEM), 

While SEM is the method to observe the corrosion products appearance, weight loss 

measurement and potentiodynamic sweep are the electrochemical techniques used to 

monitor and determine the corrosion rate for many studies[4-7, 26]. In addition, for 

the present study, galvanostatic polarization is used to stimulate the corrosion process 

by applying the anodic current to the tested electrodes. 
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2.4.1 Corrosion Potential Measurement 

 Corrosion potential (Ecorr) technique is the measurement of the voltage of 

corroding metal surface with respect to the reference electrode at open circuit. 

Corrosion potential, on the other hand, is the potential where the oxidation and the 

reduction reactions have the same rates without applying external current. Corrosion 

potential is an important indicator of corrosion status since it shows the changes of 

free-corrosion potential over time; however, it doesn’t provide any information about 

the corrosion rate. Nevertheless, it is suggestive that specimen having more negative 

potential is more sensitive to corrosion or has more corrosivity. In addition, corrosion 

potential measurement can be conducted in order to ensure that the potential reaches 

steady-state condition. 

 

2.4.2 Galvanostatic Polarization 

 In galvanostatic polarization, current density applied to working electrode is 

controlled while responding potential is measured with time. This technique can be 

performed in order to determine Tafel curve and linear polarization, which are related 

to the corrosion rate [19]. 

However, in the current study, the galvanostatic technique is not used to 

determine the corrosion rate. It is used to accelerate the corrosion process by applying 

the constant anodic current density to the specimens. In this measurement, the applied 

current and exposure time will be specified. The potential corresponding to the 

current then will be shown as a result. 

 

2.4.3 Determination of Corrosion Rate 

 Two methods are selected to determine corrosion rate in the present study. 

They are weight loss measurement and potentiodynamic polarization. 

 

Weight Loss Measurement 

 Measuring mass of metal loss is a common method to determine the corrosion 

rate. This technique provides the constant corrosion rate based on average rates over 

the exposure time. In reality, linear corrosion with time is rarely found, especially in 

sweet corrosion where film formation significantly affects the corrosion rates. Even 
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though this measurement is valid for linear corrosion process, however, it is the 

exception and the result is acceptable. This method is simply performed by measuring 

the weight of specimens before and after the exposure to the corrosive solutions. Then 

the weight losses over the corrosion period can be calculated. However, this method is 

not applicable when applied to the industry scale due to size and location of the metal 

needing to be investigated. The corrosion rate can be determined by the weight loss 

using the equation below. 

 

D•T•A

W•K
=CR 1                (20) 

 

where  

     CR  = the corrosion rate (mm/y) 

       K1 = the constant (8.76×104 for the corrosion rate unit of mm/y) 

        T  = the exposure time (hour) 

        A = the exposure area (cm2) 

       W  = the mass loss (g), and 

        D = the metal density (g/cm3) 

 

Potentiodynamic Polarization Measurement 

Potentiodynamic sweep is one of the polarization techniques. It is the common 

method in the corrosion studies [27, 28]. For the potentiodynamic polarization, the 

correlation of potential and current is observed by varying potential applied to the 

working electrode and recording the generated current. In this measurement, reaction 

rate or the response current is measured when the potential is shifted away from the 

free-corrosion potential at a constant rate.  

In the current study, the potentiodynamic sweep is used for two objectives. 

First, it is performed in order to activate the surface of the working electrode. Being 

polarized for several minutes, the electrode will oxidize or reduce all the deposits on 

its surface [29]. 

Another objective is to determine the corrosion rate. Potentiodynamic 

measurement consists of cathodic and anodic polarization. Cathodic polarization is to 

make the working electrode become a cathode. The potential is swept in more 

negative direction from the free-corrosion potential. In contrast, the potential is 
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changed in more positive direction to make working electrode as an anode in anodic 

polarization. 

This technique provides the data for plotting a polarization curve between the 

corrosion cell potential versus the current as depicted in Figure 2.8 below.  

 

 

 

FIGURE 2.8 General polarization diagram of a passivable metal [29] 

 

Beside, the curve in E-logI plot can be used to determine Tafel constants and 

corrosion current. The Tafel constants are acquired from slopes of anodic and 

cathodic currents. In addition, the interception of the anodic and the cathodic currents 

extrapolation is a position of the corrosion currents. Figure 2.9 illustrates the variables 

that are obtained from the polarization plot. 

However, there are many factors that might have effects on the polarization 

measurement [29]. 

 

• Scan rate: The scan rate should be slow enough to minimize surface 

capacitance charging. If the sweep rate is too high, some 

currents can be generated and they will charge the surface 

capacitance. It results in measuring the greater currents than the 

actual current from lone corrosion. 
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• Solution resistance: The distance between the reference electrode and the working 

electrode should be minimized in order to avoid the effect of 

solution resistance. However, this effect is significant in high-

resistive electrolyte, e.g. concrete, soils, and organic solutions. 

• Surface conditions:  Since a surface of corroded metal is changed by the corrosion 

process, therefore, the different polarization curves could be 

obtained. 

 

 

 

FIGURE 2.9 Polarization curve showing Tafel constants and corrosion current [30] 

 

Regarding to ASTM G102 standard [31], the corrosion current is normally 

obtained from the linear Tafel extrapolation of anodic and cathodic currents near the 

corrosion potential. The common value is ±5 and ±20 mV from the corrosion 

potential.  

The variables from the polarization curve are simply applied to calculate the 

corrosion rate which is directly proportional to the corrosion current. The corrosion 

rate and the corrosion current have a relationship as shown in equation below [31]. 
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D

EW•K•i
=CR 2corr               (21) 

 

where  

     CR  = the corrosion rate (mm/y) 

     icorr  = the corrosion current density (μA/cm2) 

       K2 = the constant (3.27x10-3 mm g/µA cm y) 

    EW  = the equivalent weight 

        D  = the metal density (g/cm3), and 

 

2.5 Corrosion Film Examination 

 To investigate the corrosion product films, scanning electron microscope with 

energy dispersive X-Ray spectroscopy (SEM/EDS) is widely used. SEM technique is 

normally used to examine the cross section of specimens with the corrosion films on 

top. EDS is performed in order to analysis chemical components contained in the 

films. 

Scanning Electron Microscope (SEM) is widely used to make a high-

resolution image especially in an analytical work. For the corrosion investigation, 

SEM is commonly used to examine corroded surfaces and corrosion product films [3]. 

SEM is capable of providing the image of the corroded metal surfaces and external 

morphologies of the films. Furthermore, with an additional instrument, it also 

provides chemical composition of the selected area of the samples. 

 SEM operates by scanning the solid surface with an electron beam. The 

selected area of the examined surface is bombarded by electrons with certain amount 

of kinetic energy. A detector records backscattered and secondary electrons after the 

beam strikes the surface. After that signals are collected above the surface and stored 

in a computer before using in generating an image [32]. 

As mentioned earlier, the current technology also provides qualitative and 

quantitative analysis with SEM by attaching the additional instrument. In the present 

study, the energy-dispersive instrument with an X-ray source is used. It is briefly 

called as SEM/EDS technique, where EDS stands for Energy Dispersive X-Ray 

Spectroscopy. In this technique, the emitted X-ray lines are detected with their energy 
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and the signals are converted to produce an energy-dispersive spectrum for further 

analysis. Beside, EDS provides chemical composition of each element present in the 

sample. Base on these data, the compound contained in the selected area can be 

identified. 

The limitation of this technique which decreases the efficiency is the 

accelerating of microscope beam. The voltage applied to the electrons should be in the 

proper level. Too low voltage is not able to generate the characteristic radiation. On 

the other hand, too high energy results in excessive absorption when the lower-energy 

X-rays are needed. This can cause the less accuracy in the result. 

 

 In summary, corrosion films are very important issue since they markedly 

affects on the mechanisms in CO2 corrosion. The mixed films consist of iron carbide 

and iron carbonate as key components. Protectiveness of the films depends on their 

composition and structure. Even though the iron carbide is found metallic conductive, 

but it plays an important role in enhancing the adhesion of the protective iron 

carbonate to the steel surfaces. Moreover, studying in the carbide layer is needed in 

establishing the accurate model of the protective films. Nevertheless, many studies 

and researches have not clearly indicated the factors which affect the formation of 

iron carbide. 

In the current study, the formation of carbide layer is focused on. The iron 

carbide scales are basically formed by having carbon steels corroded. After the steels 

are corroded and ferrous ions are generated, the iron carbide is then left behind on the 

steel surfaces. However, this process consumes quite long time. Hence, the 

experiment in this study is proposed mainly to accelerate the corrosion by applying 

the anodic current to the steels. In addition the effects of exposure time and steel 

composition are also observed. 
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3 EXPERIMENTAL 

3.1 Experimental Settings 

Since the main objective of the study is to gain the iron carbide from carbon 

steels in CO2 environment by applying anodic current. Thus, the effect of the applied 

current on the corrosion reactions is mainly focused on. In addition, effects of 

exposure time and steel’s composition and microstructure are also studied. The 

experiments are set up in three series which are denoted as A, B and C. 

 

Series A: It is to study the effect of applied current on the carbide formation. The 

corrosion behaviors with different applied current densities are of interest. The 

experiments are conducted by applying different currents to working electrodes for a 

fixed duration of 24-hours. 

 

Series B: With the same amount of the current applied to the specimens, the exposure 

time is varied in order to investigate the corrosion performance over time of the steels. 

In these experiments, the working electrodes are applied with the fixed current density 

(0.25 mA/cm2) for different durations. 

 

Series C: In this series, both current density and exposure time are varied in the 

opposite way. The applied current is reduced while the exposure time is increased. 

 

The applied current density and exposure time for each series are established as 

shown in Table 3.1. 

 

TABLE 3.1  

Applied current density and exposure time used in the experiments 

i (mA/cm2) 0.125 0.25 0.5 1.0 Series A 

t (h) 24 24 24 24 

i (mA/cm2) 0.25 0.25 0.25 0.25 Series B 

t (h) 12 24 48 96 

i (mA/cm2) 1.0 0.5 0.25 0.125 Series C 

t (h) 6 12 24 48 
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 Apart from applied current and exposure time, different composition and 

microstructure of carbon steels are also studied. The experiments are done on three 

different carbon steels. The specimens made of X-65, St52 and steel 33 are received 

from Institute for Energy Technology (IFE). The composition of the steels is listed in 

Table 3.2 and the microstructure is given in Table 3.3. 

 

TABLE 3.2   

Chemical composition of carbon steels from material certificates 

 C Si Mn S P Cr Ni Mo Cu Al 

X-65 0.08 0.25 1.54 0.001 0.019 0.04 0.03 0.01 0.02 0.038 

St52 0.13 0.38 1.29 0.008 0.015 0.07 0.09 0.01 0.34 0.05 

Steel33 0.07 0.19 0.87 0.004 0.012 0.56 0.01 0.01 0.01 0.035 

 

 

TABLE 3.3 

Microstructure of carbon steels from material certificates 

 Structure 

X-65 Ferrite - pearlite 

St52 Ferrite - some pearlite 

Steel33 Coarse ferrite -  some Widmanstätten ferrite 

 

  

 CO2 saturated environment is developed by purging CO2 gas into an 

electrolyte before and during the experiments at atmospheric pressure. CO2 gas is 

supplied from Yara Praxair as a cylinder. The physical properties of CO2 gas are 

molecular weight 44.0 g/mol, density (1 bar, 15oC) 1.53, boiling point -78.5oC. The 

experiments are conducted in a condition shown in Table 3.4. 

 

TABLE 3.4  

Experimental Conditions 

Electrolyte saturated CO2, 1 g/kg NaCl 

Temperature 20oC (room temperature) 

pH ~ 4 
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3.2 Equipment 

 Three-electrode system is used as a corrosion cell for all experiments. The 

configuration is shown in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.1 Schematic of three-electrode configuration used in the experiments  

 

 The equipment and materials needed in the experiment are a working 

electrode, a reference electrode, a counter electrode, a glass cell, an electrolyte, a 

potentiostat, a pH meter and a balance. Following below is description and set up 

method of the equipment. 

 

• Working Electrode (WE): After the specimen is treated as mentioned in the 

instruction in 3.3, it is sandwiched by Teflon rings and mounted 

on the holder. The electrode contacts to the metal inside the 

holder which is connected to a potentiostat. The Teflon rings 

prevent the electrolyte get into a gap between the electrode and 

the holder. In case the electrolyte contacts to the metal part of 

the holder, the corrosion could occur inside the holder in 

addition to the electrode surface, which is not desirable. 

Reference electrode

Electrolyte

Specimen holder

Counter electrode

Working electrode

CO2 tube



 28 

Therefore, the electrode should be tightened properly to the 

holder. 

• Reference Electrode (RE): Saturated Calomel Electrode, Radiometer Red rod 

(REF201) electrode, is used as a reference electrode. The 

electrode has to be filled up with saturated KCl solution. KCl 

crystals should be observed when used as it indicates 

supersaturation of the solution. Before and after the 

experiments, the electrode is calibrated by measuring potential 

deviation compared to a dedicated standard reference electrode. 

• Counter Electrode (CE): Radiometer Pt100 electrode is selected. The electrode is 

made from platinum plate and connected to sensing elements. 

• Glass cell:  The glass cell is added with 1800 ml of the NaCl solution. The 

glass is covered with a plastic lid with holes for three 

electrodes, pH electrode and CO2 supplying tube.  The 

electrolyte is deaerated by bubbling CO2 for two hours before 

starting and throughout the experiments. In order to allow the 

reactions in CO2 corrosion mechanisms proceed effectively. 

The cell and the cover plate are well sealed with a rubber ring 

and silicone to prevent air ingress. Moreover, they are secured 

tightly by two clamps with a cell holder. 

• Electrolyte:  The electrolyte in this experiment is 1g/kg NaCl in ion-

exchanged water which is the typical salinity. The solution is 

prepared by mixing distilled water and sodium chloride. The 

electrolyte should be transparent throughout the experiment, 

which indicates that there is no oxygen getting into the cell. 

The electrolyte will turn yellowish if Fe2+ is oxidized by the 

oxygen. 

• Potentiostat:  Gamry’s PC4/750 potentiostat is connected to three electrodes 

by cables. The potentiostat is installed in CPU of a personal 

computer which processes data and provides information for 

further analysis. 
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• pH meter:  pH of the electrolyte is measured by pH meter immediately 

before running the measurement. The pH meter has to be 

calibrated periodically for reliable results. 

• Balance: Sartorius 4-digit electronic balance (BP310S) is used to 

measure the weight of the specimens before and after the 

exposure. The maximum capacity of the balance is 310g with d 

= 0.001g. 

 

  The equipment is set up as shown in Figure 3.2. The three-electrode system is 

mounted on the metal glass holder by the wooden plate and clamps. The electrodes 

are then connected to the potentiostat by cables. To avoid the short circuit to the glass 

holder which causes the error to the result, the metal parts of the cables should be 

insulated by non-conductive material e.g. paper. 

 

 

            

 

FIGURE 3.2 Three-electrode corrosion cell used in the experiments 

 

3.3 Specimen Preparation 

 A specimen used in the experiment is cylindrical steel with 1 cm in diameter 

and 1 cm long. Thus, the exposure area of the specimen is 3.14 cm2. In order to have 
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homogeneously clean surface, all working electrode is treated as described in the 

following instruction. 

a. Polish the specimen by grinding its surface with 1000 mesh silicon carbide paper 

with rotation rate of 300 rpm until homogeneous surface is obtained. After polishing, 

the specimen should not be touched directly by hand to avoid any grease or 

contaminant left on the surface. 

b. Degrease the specimen by rinsing with isopropanol and let it dry in a chemical 

fume hood. 

c. Weight the specimen. 

d. Mount the specimen on a holder carefully and tightly enough. The specimen with 

the holder is immersed to the electrolyte immediately before starting the experiment. 

 

3.4 Procedure 

 The electrochemical measurements used in this study are listed orderly below. 

There are four steps excluding the examination of the surface by SEM. 

3.4.1 Corrosion Potential Measurement 

After finishing equipment setup, deaeration and pH measurement, corrosion 

potential (Ecorr) test is conducted to measure the open-circuit potential of the electrode 

for 15 minutes. Parameters set up is shown in the below table. 

 

TABLE 3.5  

Parameter setting for measuring corrosion potential 

Total times (s) 900 

Sample period (s) 5 

Sample area (cm2) 1 

 

3.4.2 Cathodic Polarization 

 Before applying anodic current, the specimen surface is activated by cathodic 

polarization with the parameters given in Table 3.6. This is a technique to clean the 

surface by removing air formed films. 
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TABLE 3.6  

Parameter setting for activating electrode surface 

Initial E (mV vs. Ecorr) 5  

Final E (mV vs. Ecorr) -300 

Scan rate (mV/s) 0.5 

Sample period (s) 1 

Sample area (cm2) 1 

Density (g/cm3) 7.87 

Equivalent weight 27.92 

 

3.4.3 Galvanostatic measurement 

 Anodic current is applied to the working electrode in order to provoke the 

corrosion of the specimen by using galvanostatic mode following the parameters in 

Table 3.7. 

  

TABLE 3.7 

Parameter setting for galvanostaticscan 

Initial I (mA/cm2) see Table 3.1 

Final I (mA/cm2) same as initial I 

Initial time (s) 0 

Final time (s) See Table 3.1 

Sample period (s) 3 

Sample area (cm2) 1 

Density (g/cm3) 7.87 

Equivalent weight 27.92 

 

3.4.4 Potentiodynamic Polarization 

 After applying the current, the working electrode is cathodically polarized 

with the parameters shown in Table 3.8. The anodic sweep is not conducted to 

preserve the steel surface for analysis by SEM technique. 
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TABLE 3.8  

Parameter setting for potentiodynamic polarization 

Initial E (mV vs. Ecorr) 5  

Final E (mV vs. Ecorr) -300 

Scan rate (mV/s) 0.2 

Sample period (s) 1 

Sample area (cm2) 1 

Density (g/cm3) 7.87 

Equivalent weight 27.92 

 

3.5 Sample Preservation 

 After finishing the electrochemical measurements, the specimen is removed 

from the electrolyte. It has to be handled very carefully in order to preserve the 

corrosion film on the surface. The preservation including mounting of the specimen is 

done by the following steps. 

a. Immerse the specimen with the holder into isopropanol. 

b. Remove the specimen from the holder and let it completely dry. 

c. Weigh the specimen. 

d. Store the specimen in a decicator in case that sample does not need to do SEM 

analysis 

For the specimen that needs to do SEM analysis, it has to be mounted by epoxy 

following an instruction below. 

e. Mix the epoxy with the hardener by the ratio of 7:1 

f. Apply vacuum to the mix in order to remove any air trapped 

g. Pour the mixed epoxy throughout the surface of the specimen 

h. Minimize air entrapment by applying vacuum to the epoxy-coated specimen 

i. Dry the mount in the oven at 50oC overnight  

j. Store the mount in a decicator 
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3.6 Scanning Electron Microscopy (SEM) 

 Preserved samples are sent for SEM analysis performed by IFE. The samples 

sent to IFE are listed below. 

 

TABLE 3.9  

List of samples for SEM analysis 

Steel Applied current 

density (mA/cm2) 

Exposure time 

(h) 

X-65 0.125 24 

X-65 1.0 24 

St52 1.0 24 

Steel33 1.0 24 

 

 SEM instrument used in IFE is an ultra-high resolution Hitachi S-4800. It is 

also attached with a Noran System Six energy dispersive spectrometer (EDS) for 

element analysis. Figure 3.3 shows the picture of SEM  instrument.  

 

FIGURE 3.3 IFE’s Scanning electron microscope (www.ife.no) 

 

 The SEM is a conventional semi-in-lens. It can be used for large sample 

accommodation while achieving ultra-high resolution (UHR). Specifications of SEM 

used in the experiments are listed in Table 3.10.  
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TABLE 3.10 

Specification of IFE’s scanning electron microscope 

Secondary electron image resolution 1.0 nm (at 15 kV) 

Electron optics Electron gun 

Cold field emission electron source 

Acc. voltage 

 

0.5 ~ 30 kV (variable at 0.1 kV/step) 

Magnification x30 ~ x800,000 

Detector Secondary electron detector 

(upper/lower/upper+lower), 

Energy dispersive X-ray detector 

Specimen stage PC-controlled 5 axis motor drive 

Traverse X: 0-110 mm 

Y: 0-110 mm 

Z: 1.5-40 mm 

R: 0-360o 

T: -5~+70 degrees (depends on Z) 

 

 The chemical composition analysis uses Noran System Six energy dispersive 

spectrometer; the specifications are shown in Table 3.11. 

 

TABLE 3.11 

Specifications of Noran System Six energy dispersive spectrometer 

Crystal area 30 mm2 

Mn resolution 134 eV 

F resolution 65 eV 

Light element detection down to Beryllium 
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4 RESULT AND DISSCUSSION 

 

The results of the experiments discussed below are categorized by the effects 

of each parameter following the study objectives. The corrosion reactions are 

represented by weight loss measurements and corrosion rates. The corrosion rates are 

determined by two methods which are from weight loss conversion and Tafel’s linear 

extrapolation. An example of corrosion rate calculation following the equation (20) 

and (21) is explained in Appendix A. For the results of SEM/EDS analysis, only main 

alloy elements, C and Cr, which directly affect the corrosion, will be discussed. The 

other trace elements can be found from the results in Appendix B. 

However, the results of the corrosion rates are only used as guidance of the 

corrosion behavior since the methods in the experiments have some limitations as 

follows: 

• The error of the results could be from the specimen handling. Less carefully 

handling can damage the surface of the specimen. It was found that after the 

corrosion the deposit on the surface of some specimens is easily to peel off.  

• As the corrosion is simulated at low temperature, the process will proceed with 

low rate. Hence, the weight loss will be very low and the error could occur as the 

capacity of the balance used in the weight measurement is not in the proper scale 

and sensitive enough. 

• The potentiodynamic sweep is done when there is no current applied (after 

finishing galvanostatic mode). Therefore, it is not the corrosion rate of the steel 

with the applied current, but the free-corrosion rate of the steel after the corrosion. 

However, the results can be used to indicate the change and difference of the 

steel’s surface. 

 

Electrolyte pH 

 After bubbling with CO2 for two hours, pH values of electrolytes were 

measured immediately before starting electrochemical measurements. The results 

show that the average value was 3.92 with allowance of ±0.3. It should be noted that 

CO2 flows were kept constant throughout the experiments. 
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Corrosion Potential 

 Corrosion potential measurements were performed as the first sequence of all 

experiments. In theory, Ecorr obtained from the experiments of the same material 

should ideally be equal since freshly-prepared specimens were measured at open 

circuit condition. However, the results show some variations which are acceptable. 

The variations could be from many reasons e.g. the difference in microstructure of 

different electrodes, or there is some noise in the experiments. The corrosion 

potentials of three different steels are shown in Figure 4.1 (a) through (c) and the 

values at the end of the measurement are also listed in Table 4.1. 

 It is obvious that the allowances of Ecorr for all steels are quite broad which are 

possibly from the reasons mentioned above. In Figure 4.1 (a), some specimens had 

significant higher values than the others. This could be from an error of reading from 

the reference electrode. However, their values seemed to reach the average values of 

the others after some time. Nevertheless, these variations can generally happen in Ecorr 

measurements which are acceptable and do not make significant effects to the 

experiments. In addition, the values are used as “0” point for later potential 

measurement. The figures also showed that the electrodes can be stabilized within 15 

minutes, or even in 10 minutes.  
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(b) St52 
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(c) Steel33 

 

FIGURE 4.1 Corrosion potentials (Ecorr) of three different steels 
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TABLE 4.1  

Corrosion potentials of the three steels used in the experiments  

 
Ecorr  

(mV vs ref.) 

X-65 -640 ±27 

St52 -629 ±34 

Steel33 -637 ±36 

 

4.1 Effect of Applied Anodic Current 

 After activating the electrode surfaces by cathodic polarization, anodic 

currents were applied to the working electrodes by galvanostatic method. Figure 4.2 

shows the trend lines of potential response with different applied current densities for 

24 hours.  

From Figure 4.2 (a), X-65 specimens took around 15 hours to reach the 

equilibrium condition. It is unexpected that the responding potentials of electrodes 

applied with 0.25 and 0.5 mA/cm2 overlapped. St52 specimens, as shown in Figure 

4.2 (b), spent less than five hours to adapt to the equilibrium. Furthermore, the 

potentials are more consistent than another two steels. In Figure 4.2 (c), Steel33 had 

the responding potentials with small oscillations and the potential seemed not steady 

when the measurement finished. 

 The potentials at the end of the measurements are shown in Figure 4.3. It 

shows that the potentials of the electrodes increases with increasing applied anodic 

currents. At low applied currents (0.125 and 0.25 mA/cm2), X-65 had the highest 

potentials followed by Steel33 and St52, respectively, but the reversed order showed 

at high applied currents (0.5 and 1.0 mA/cm2).  

However, it is seen that the higher currents applied to the working electrode 

shifted the potentials in a positive direction. According to the Pourbaix diagram, 

increase in potential at pH < 4 will force the iron to dissolute to Fe2+. Therefore, the 

corrosion of the steels is accelerated. 
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(c) Steel33 

 

FIGURE 4.2 Responding potentials of the working electrodes which are applied with 

various applied current densities and 24-hour exposure time  
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FIGURE 4.3 Potentials at the end of galvanostatic measurement with different 

applied anodic currents for 24-hour exposure time 
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 After the exposure, the specimens were removed from the solutions and black 

powder was observed on the surfaces. Figure 4.4 is the pictures of a specimen before 

and after the exposure to the corrosion which are taken by an optical microscope. The 

black deposit indicates the corrosion and presence of iron carbide according to eq. (7) 

 

 

 

Before                       After 

FIGURE 4.4 Picture of the specimen before and after the corrosion exposure 

 

 

The weight losses of the specimens are shown in Figure 4.5 and Table 4.2. 

Figure 4.5 shows that the weight loss increased with increasing applied anodic 

current. This means that the steels are more corroded when applying higher current 

density. Therefore, more amount of carbide should be found when applying high 

current density. At the lowest applied current (0.125 mA/cm2), X-65 and Steel33 had 

the same weight loss lower than St52. When increased the applied current to 0.25 

mA/cm2, St52 still got the highest value followed by Steel33 and X-65. The weight 

loss of X-65 increased rapidly and reached the highest among the others when 

applying the current at 0.5 mA/cm2. However, these weight losses are not different 

significantly when compared to each other at the same applied current density. 

In term of corrosion rate, as mentioned earlier, the rates are determined by two 

methods. The comparison of the results is shown in Figure 4.6 (a) through (c). By 

means of weight loss calculation, it is evident that all three steels corroded at faster 

rates with higher applied anodic currents. The corrosion rates from Tafel’s linear 

extrapolation are far lower than the corrosion rates from weight loss. The weight 

losses gave the larger corrosion rates than polarization around one order of 

magnitude.  
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As mentioned in the beginning, the corrosion rate from polarization cannot 

represent the actual corrosion rate of the specimen during the external current is 

applied. However, the values can be used as an indicator of the changes occurring on 

the steel surfaces. In Figure 4.6, the general trend of the corrosion rates from 

polarization showed some small decrease. It can be explained in the way that the 

surface of the specimen applied with high current density got more corrosion leaving 

more iron carbide on the steel surface. As the iron carbide is uncorroded, therefore it 

is not active for further corrosion resulting to low corrosion rate. On the other hand, 

the steel with low applied current density is less corroded providing more general iron 

surface available for corrosion. Hence, high corrosion rate of the steel was observed. 

In that way, however, the carbide content on the carbon steel surface will reach the 

maximum level and the corrosion rate then is not changed. 

The values from polarization were very low; thus, they even can be considered 

indifferent since the difference could be from the error in equipment or reading data. 

It can be seen that the available data still could not make a clear conclusion for the 

corrosion rate. 

 

 

TABLE 4.2  

Weight losses, corrosion currents and corrosion rates of the specimens which are 

applied with different anodic currents for 24 hours 

X-65 St52 Steel33 

Weight loss 

method 

Polarization 

method 

Weight loss 

method 

Polarization 

method 

Weight loss 

method 

Polarization 

method 

 

Applied 

Current 

Density 

(mA/cm2) 

WL 

(g) 

CR* 

(mm/y) 

icorr 

(mA/cm2) 

CR** 

(mm/y) 

WL 

(g) 

CR* 

(mm/y) 

icorr 

(mA/cm2) 

CR** 

(mm/y) 

WL 

(g) 

CR* 

(mm/y) 

icorr 

(mA/cm2) 

CR** 

(mm/y) 

0.125 0.010 1.48 0.0095 0.11 0.013 1.92 0. 0110 0.13 0.010 1.48 0.0087 0.10 

0.25 0.011 1.62 0.0043 0.05 0.015 2.22 0. 0031 0.04 0.014 2.07 0.0095 0.11 

0.50 0.021 3.10 0.0025 0.03 0.020 2.95 0. 0110 0.13 0.016 2.36 0.0063 0.07 

1.0 0.035 5.17 0.0059 0.07 0.031 4.58 0. 0150 0.17 0.030 4.43 0.0047 0.05 

* Corrosion rate calculated from respectively weight loss 

** Corrosion rate calculated from icorr 
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FIGURE 4.5 Weight losses of the specimens which are applied with different anodic 

currents for 24 hours 
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(a) X-65 
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(b) St52 
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(c) Steel33 

FIGURE 4.6 Corrosion rates of the electrodes applied with different anodic currents 

for 24 hours 

 

There were two of X-65 samples with different applied anodic currents 

examined by SEM analysis. The cross-section images of the specimen which is 

exposed to 0.125 mA/cm2 are shown in Figure 4.7. It can be seen that there was a 

layer between epoxy used for preserving the surface and steel substrate. The chemical 

analysis result from EDS reveals that there was Fe3C contained in the layer, but no 

FeCO3 was detected. It is as expected that FeCO3 is difficult to form at low pH (<4) 

and temperature [16]. 

 

  

FIGURE 4.7 SEM images of the X-65 electrode applied with anodic current density 

of 0.125 mA/cm2 for 24 hours 

 

Fe3C Epoxy 

Steel substrate 
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FIGURE 4.8 SEM images of the X-65 electrode applied with anodic current density 

of 1.0 mA/cm2 for 24 hours 

 

The images of another X-65 specimen with higher applied current (1.0 

mA/cm2) are shown in Figure 4.8. From the pictures, the surface of the steel had more 

severe damage compared to the electrode with lower applied current. In addition, EDS 

results show that the film contained both iron carbide and iron carbonate at the 

locations pointed out in the picture. The formation of the iron carbonate can indicates 

high Fe2+ concentration from the iron dissolution. However, the increase in the 

corrosion rate at applied current density of 1.0 mA/cm2 showed that FeCO3 formed 

non-protective layer under this condition.  

 The results from the electrochemical techniques and SEM/EDS can be 

summarized that the applied current density had an effect on the corrosion rate and the 

film formation. The variation of corrosion rates indicated the difference in 

microstucture of the electrodes with different applied current densities. Severe 

corrosion was noticed at high applied current. Therefore, it can be concluded that 

applying the higher current causes more severe damage on the steel surfaces and, as a 

consequence, more iron carbide is obtained. 

 

4.2 Effect of Exposure Time 

In these experiments all three kinds of steel were applied with fixed 0.25 

mA/cm2 anodic current. The exposure time is the parameter which varied as 12, 24, 

48 and 96 hours. Figure 4.9 (a) through (c) shows the responding of the potential 

during galvanostatic measurements. 

FeCO3 
Fe3C 

Epoxy 

Steel substrate 
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St52 specimens still showed faster approaching to equilibrium condition than 

other two steels. They spent around 15 hours while some electrodes made of X-65 and 

Steel33 needed more than 20 hours to be at the equilibrium. Furthermore, St52 

potentials are very close and more consistent. X-65 and Steel33 have a variation in the 

potentials and it seemed they did not reach the equilibrium before 20 hours of the 

corrosion period. The significant variation in potential of X-65 and Steel33 could be 

due to the difference in the structure of each electrode. 
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(a) X-65 
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(c) Steel33 

 

FIGURE 4.9 Responding potentials of the working electrodes which are applied with 

0.25 mA/cm2 for different exposure periods 

  

The potentials at the end of the galvanostatic measurements are depicted in 

Figure 4.10. The figure shows that Steel 33 had the highest potentials for all exposure 

periods, except at 24 hours. The potential slightly decreased when the electrodes 

exposed for longer time. X-65 behaved differently as the potential reach the peak at 

24 hours and after which it decreased to the lowest compared to other steels at 96 

hours. Unlike the others, St52 had increasing potentials, even though its potentials are 

the lowest for the short period of experiments. All three steels had the potentials very 

closed when they were corroded for 48 hours. For the longest exposure (96 hour) 

Steel33 had the highest potential, followed by St52 and X-65, respectively. 

The inconsistent results of the potential might caused from many reasons. 

However, as they were done under the same conditions, the main cause is focused on 

the structure or surface change during the corrosion process. 

 

 

24 hours 12 hours 
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FIGURE 4.10 Potentials at the end of galvanostatic measurement with fixed applied 

currents for different exposure time 

  

The weight loss measurement results are shown in Figure 4.11 and Table 4.3. 

From the figure, it is obviously seen that the weight losses increased proportionally 

with the exposure time. It also shows general trend that St52 had the highest weight 

loss followed by Steel33 and X-65. However, the weight loss of X-65 was slightly 

higher than Steel33 at 96 hours. This increase in weight loss of X-65 was probably 

from some error in the measurement. 
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FIGURE 4.11 Weight losses of the specimens which are applied with 0.25 mA/cm2 

for different exposure periods 
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TABLE 4.3  

Weight losses, corrosion currents and corrosion rates of the specimens which are 

applied with current density of 0.25 mA/cm2 for different exposure time 

X-65 St52 Steel33 

Weight loss 

method 

Polarization 

method 

Weight loss 

method 

Polarization 

method 

Weight loss 

method 

Polarization 

method 
 

Exposure 

Time (hr) WL 

(g) 

CR* 

(mm/y) 

icorr 

(mA/cm2) 

CR** 

(mm/y) 

WL 

(g) 

CR* 

(mm/y) 

icorr 

(mA/cm2) 

CR** 

(mm/y) 

WL 

(g) 

CR* 

(mm/y) 

icorr 

(mA/cm2) 

CR** 

(mm/y) 

12 0.006 1.77 0.0031 0.04 0.008 2.36 0.0150 0.17 0.009 2.66 0.0050 0.06 

24 0.011 1.62 0.0043 0.05 0.015 2.22 0.0031 0.04 0.014 2.07 0.0095 0.11 

48 0.021 1.55 0.0073 0.08 0.030 2.22 0.0100 0.12 0.026 1.92 0.0048 0.06 

96 0.051 1.88 0.0100 0.12 0.062 2.29 0.0096 0.11 0.050 1.85 0.0100 0.12 

* Corrosion rate calculated from respectively weight loss 

** Corrosion rate calculated from icorr 

 

For the corrosion rate determination, the comparison of the corrosion rates 

from polarization and weight loss are shown in Figure 4.12. The values calculated 

from two methods showed the difference which the values from polarization method 

are lower than the weight loss approach.  

According to the figures, the corrosion rates of all steels slightly high in the 

short-period experiment. It might be from attack in the beginning of the corrosion 

before the electrodes got stabilized. The corrosion rates of X-65 and St52 from the 

weight loss are almost constant. Steel33, on the other hand, had decreasing trend in 

the corrosion rate, but the change is not large. However, this can be implied that the 

steels corroded with the constant rates over time; therefore, the weight loss is a 

function of the exposure time.  

For polarization, St52 had decreasing trend in corrosion rate. Like the previous 

experiments, it can be explained by the structure of the steel surfaces. As the steels 

exposed to the corrosion longer, more iron carbide is left on the surface. Thus, lower 

corrosion rate is from the less active areas for corrosion.  

However, X-65 gave the results in the opposite way as its corrosion rates 

slightly increased over time while Steel33 showed unpredicted corrosion rates. It is 

difficult to explain this phenomenon with these limited data as the steel surfaces were 

not analyzed further. Therefore, the structure of the steel surface after corrosion 

should be examined in more detail in other study in the future. Nevertheless, it was 
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noticed again that the difference of the corrosion rate is very low and can be 

neglected.  

In conclusion, it was found that the iron dissolution is proportional to the 

exposure time.  This increase in the weight loss is also in agreement with other studies 

[4, 16]. As the weight loss increased, hence, the iron carbide is expected to 

accumulate more on the surface with longer exposure. 
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(a) X-65 
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(b) St52 
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(c) Steel33 

 

FIGURE 4.12 Corrosion rates of the electrodes applied with current density of 0.25 

mA/cm2 for different exposure time 

 

4.3 Effect of Applied Current Density and Exposure Time 

 As it is seen that weight losses were dependent on the applied anodic current 

and exposure time, the idea of the present experiments, therefore, is to reduce the 

duration of corrosion by applying higher current density. To study the relationship of 

the applied current density and exposure time, electrodes would be applied with the 

high current for a short time and vice versa. If these two parameters are proportional 

to the corrosion reactions, the weight losses of electrodes made from the same 

material should be equal, since the current is lowered halfway while the exposure time 

is doubled. According to the proposed correlation, the corrosion process is possibly 

accelerated in shorter time by applying higher current. 

 The electrodes were corroded by using galvanostatic method same as the 

previous experiments. The trend lines of the potentials during the measurements are 

shown in Figure 4.13. 
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(b) St52 

 

0.25 mA 24 hrs 0.125 mA – 48 hrs 
1 mA – 6 hrs 0.5 mA – 12 hrs 

0.25 mA 24 hrs 0.125 mA – 48 hrs 
1 mA – 6 hrs 0.5 mA – 12 hrs 



 53 

-650

-630

-610

-590

-570

-550

-530

-510

-490

-470

-450

0 10 20 30 40 50

Time (hr)

E
 (

m
V

 v
s.

 r
e

f.
)

 

(c) Steel33 

 

FIGURE 4.13 Responding potentials of the working electrodes which are applied 

with different current densities for different exposure times 

 

 For the short periods with high applied current, it seemed that X-65 and 

Steel33 electrodes were still not in the equilibrium conditions. It probably needs at 

least 15 to 20 hours for stabilization. This is also found in the previous experiments. 

 High applied currents shifted the potentials to be at higher levels as expected. 

However, the X-65 electrode applied with 0.5 mA/cm2 and St52 with 0.25 mA/cm2 

showed significant deviation as their potentials were too low and high, respectively. 

This could be due to some defects on the surface caused from the surface treatment 

because it was observed at the starting of the experiments.  

The potentials at the end of each condition are shown in Figure 4.14. The 

figure shows that the potentials declined when decreasing applied currents and 

prolonging the exposure, except for X-65 which 0.25 mA/cm2 is applied for 24 hours 

which its potential was surprisingly high. However, it is difficult to get the accurate 

results of the short-period experiments for the short-period since they did not reach 

the stabilized state. Comparing the results of different steels shows that the trends 

going randomly as also experienced in the previous experiments. With high current 

density of 1 and 0.5 mA/cm2, steel33 had the highest potential followed by St52 and 

X-65. Lowering the current to 0.25 mA/cm2, the potential of X-65 increased higher 

0.25 mA 24 hrs 0.125 mA – 48 hrs 
1 mA – 6 hrs 0.5 mA – 12 hrs 
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than Steel33 and St52. At the lowest current with the longest exposure time, their 

potentials are very close. The disagreement is shown when comparing with the results 

in 4.1 (Figure 4.3). Hence, it cannot draw the general conclusion of the behavior of 

three steels influenced by the anodic current under these conditions. 
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FIGURE 4.14 Potentials at the end of galvanostatic measurement of the electrodes 

which are applied with different currents for different exposure time 
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FIGURE 4.15 Weight losses of specimens which are applied with different anodic 

current and exposure times 
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 The weight losses of the specimens are listed in Table 4.4. For an overview 

shown in Figure 4.15, they increased over time in non-linear manner. The weight 

losses of three steels were closed when applying the highest current 1.0 mA/cm2 for 6 

hours and 0.5 mA/cm2 for 12 hours. The significant increase was observed when the 

steels exposed to the lower current densities for the longer periods.  

 

TABLE 4.4  

Weight losses, corrosion currents and corrosion rates of the specimens which are 

applied with different current density and exposure time 

X-65 St52 Steel33 

Weight loss 

method 

Polarization 

method 

Weight loss 

method 

Polarization 

method 

Weight loss 

method 

Polarization 

method 

Applied 

current 

(mA/cm2) - 

Exposure 

time (hr) 

WL 

(g) 

CR* 

(mm/y) 

icorr 

(mA/cm2) 

CR** 

(mm/y) 

WL 

(g) 

CR* 

(mm/y) 

icorr 

(mA/cm2) 

CR** 

(mm/y) 

WL 

(g) 

CR* 

(mm/y) 

icorr 

(mA/cm2) 

CR** 

(mm/y) 

1 - 6 0.009 5.32 0.0056 0.06 0.010 5.91 0.0100 0.12 0.008 4.73 0.0027 0.03 

0.5 - 12 0.010 2.95 0.0040 0.05 0.008 2.36 0.0110 0.13 0.009 2.66 0.0091 0.11 

0.25 - 24 0.011 1.62 0.0043 0.05 0.015 2.22 0.0031 0.04 0.014 2.07 0.0095 0.11 

0.125 - 48 0.022 1.62 0.0080 0.09 0.027 1.99 0.0056 0.06 0.018 1.33 0.0042 0.05 

* Corrosion rate calculated from respectively weight loss 

** Corrosion rate calculated from icorr 

 

  

The corrosion rates from both methods are shown in Figure 4.16. The rates 

obtained from weight loss conversion significantly decreased when reduced the 

applied current density and increased the exposure time. Based on the fact that the 

corrosion rate calculated from the weight loss is the average corrosion rate of the 

specimen over the exposure time, with high applied current densities, the steels 

corroded very fast resulting in high rates. On the other hand, low applied currents 

resulted in low corrosion rates.  

For polarization, it is difficult to make a conclusion as the values varied in 

unpredictable manner and also the magnitude is very small. The small differences 

could be due to the uncertainty of the measurements. Like the previous experiment, 

the investigation on the surfaced in more detail should be performed. 
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(a) X-65 

 

(b) St52 

 

(c) Steel33 

 

FIGURE 4.16 Corrosion rates of the electrodes applied with different current density 

for different exposure time 
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In principle, the metal losses of each kind of steel should be equal except in 

case over corrosion occurs. As the results in Figure 4.15 showed increasing weight 

losses, it could probably due to the over corrosion from kinetic reasons that made 

non-linear relationship between corrosion rate and exposure time.  

From the discussion above, it cannot be clarified exactly that if reducing 

exposure time can be compensated directly by applying the higher current density. It 

is due to non-linear behavior affected by applied current and exposure time. 

Therefore, studying the relationship of both parameters and the corrosion behavior 

should be extended further. 

 

4.3 Effect of Chemical Composition and Structure of Steels 

Comparison of corrosion behavior of three different steels, in term of weight 

loss, had been shown in Figure 4.5, 4.11 and 4.15 in the previous sections. Those 

figures illustrate the metal loss trend of three different steels under different 

conditions.  
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(b) Fixed 0.25 mA/cm2 is applied with different exposure time 

 

 

(c) Different current is applied for different exposure time 

 

FIGURE 4.17 Corrosion rates of the three steels in the different conditions 

 

Figure 4.17 shows the comparison of the corrosion rates of the three steels 

under different conditions. It is evident that the corrosion rates from polarization of 

three steels under different conditions are very close and the difference can be 

neglected. Thus the discussion would be mainly on the results from weight loss. 

In figure 4.17 (a) where the electrodes exposed to varied applied anodic 

current for fixed corrosion periods, three steels had the corrosion rates close to each 

other. Higher weight losses of St52 than Steel33 were observed. X-65 had low 

corrosion rate when applying low currents, however the rate increased faster than two 

other steels when high current (1.0 mA/cm2) is applied.  
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For Figure 4.17 (b) when the fixed currents is applied for different corrosion 

periods, St 52 corroded faster than other steels while X-65 seemed to corrode with the 

lowest rate. In the last case (Figure 4.17 (c)) which both applied current and exposure 

time are varied, the corrosion rate of Steel33 remained lower than St52. For X-65, its 

corrosion rates in almost all conditions are also lower than St52 and higher than 

Steel33. 

It is evident that St52 had higher corrosion rate than Steel33 for almost every 

conditions. It can be explained by the difference of composition of the steels. As listed 

in Table 3.1, St52 contains higher carbon than Steel33 while Steel33 has much more 

chromium than St52. This compostion leads to high corrosion rate in St52 and low 

corrosion rate in Steel33 as it is also observed from many studies [17]. 

In case of X-65, it can be seen that the corrosion rates of X-65 did not show 

the general trend compared to the others. Comparing the results of X-65 with St52 

which has the same ferritic-pearlitic microstructure, it was expected that St52 would 

corroded faster than X-65 due to its higher carbon content. However, the corrosion 

rates of X-65 results showed the inconsistency. Including the results of galvanostatic 

method, the corrosion of X-65 seemed to be sensitive when the electrodes exposed to 

the corrosion less than 20 hours where they probably did not reach the equilibrium 

condition. 

Comparing the results from SEM/EDS analysis of the samples applied with 

the current density of 1.0 mA/cm2 for 24 hours, it was found that the iron carbonate 

scales was observed on the X-65 specimen only (Figure 4.8). Furthermore, it seemed 

that the surface of X-65 got more severe damage than the others. The analysis of St52 

and Steel33 is shown in Figure 4.18. For St52, there is Fe3C detected on the surface, 

but no FeCO3 was observed. The results of Steel33 showed that Cr is contained in the 

corrosion layer which confirmed the effect of Cr content on the corrosion rate 

reduction. 
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(a) St52 

  

  

(b) Steel33 

FIGURE 4.18 SEM images of the electrodes which are applied with the anodic 

current density of 1.0 mA/cm2 for 24 hours 

 

 From the discussion above, it can be concluded that Steel33 has lower 

corrosion rate than St52 due to the addition of carbon and chromium. The behavior of 

X-65 remains in doubt as its unpredictable weight loss is shown. Therefore, like other 

researches [17], it is difficult to speculate the exact effects of microstructure and 

composition of the carbon steels on CO2 corrosion process. 
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5 CONCLUSION 

 
 
 The corrosion behaviors of X-65, St52 and Steel33 specimens under CO2-
saturated-NaCl solution are concluded as follow: 

 

1. The applied anodic current density influences the corrosion rate X-65, St52 and 
Steel33 steels. The corrosion rates increased when applying higher current density.  

 

2. The weight losses of the metals increased with the exposure time. 

 

3. Steel33 has higher corrosion resistance than St52 due to high Cr and low C content. 
However, the corrosion behavior of X-65 can not be stated clearly compared to St52 
and Steel33. 

 

4. Accelerating the corrosion in order to obtain carbide structure in CO2 corrosion can 
be done by galvanostatically applying anodic current to an electrode. 
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APPENDIX 

 

APPENDIX A Determination of Corrosion Rate 

Specimen: X-65 with 1.0 mA/cm2 current density and 24-hour exposure 

 

Weight loss measurement: 

Using equation (20), 

D•T•A

W•K
=CR 1  

when 

       K1 = 8.76×104 

        T  = 24 hours 

        A = 3.14 cm2 

       W  = 0.035 g, and 

        D = 7.87 g/cm3 

 

thus 

87.7•24•14.3

035.0•10•76.8
=CR

4

 

 

         = 5.17 mm/y 

 

 

 

 

 

 

 

 

 

 

 



 66 

Polarization curve: 

According to ASTM G102 standard, the linear area selected to find the 

corrosion current should be ±20 mV from the free-corrosion potential. Therefore, the 

tangent lines are placed as shown in the below figure. 

 

substitute the values of each variable in equation (21) 

 

D

EW•K•i
=CR 2corr  

    

  icorr  = 5.9 x 10-6 A/cm2 

       K2 = 3.27 x 10-3 

    EW  = 27.92, and 

        D  = 7.87 g/cm3 

thus, 

87.7

92.27•10•27.3•10•9.5
=CR

3_6_

 

         = 0.07 mm/y 
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APPENDIX B SEM/EDS Analysis 

B.1 SEM/EDS analysis of X-65 specimen which is applied 0.125 mA/cm2 current 

density for 24 hours 

Accelerating voltage: 15.0 kV 

Magnification: 5000 

 

 

SEM image 
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Atom % 

 C-K N-K O-K Mg-K Al-K Si-K P-K Cl-K Ti-K Mn-K Fe-K Nb-L 

1N_pt1 36.30    1.42     1.15 61.12  

1N_pt2 92.14  6.00     1.56   0.30  

1N_pt3 66.15 10.68 19.58  0.21 0.53  0.19 0.11  2.43 0.13 

1N_pt4 80.07  16.34  0.17 0.83  0.26 0.06  2.14 0.13 

1N_pt5 78.54  18.10 0.05 0.16 0.78  0.25 0.11  1.88 0.15 

1N_pt6 78.70  18.14  0.17 0.80 0.04 0.21 0.07  1.66 0.21 
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B.2 SEM/EDS analysis of X-65 specimen which is applied 1.0 mA/cm2 current 

density for 24 hours 

Accelerating voltage: 15.0 kV 

Magnification: 2500 
 
 

 

SEM image 

 

 

 

 



 71 

 

 

 

 

 

 

 

 



 72 

 

 

 
Atom % 

 C-K O-K F-K Mg-K Al-K Si-K S-K Cl-K Ca-K Ti-K V-K Mn-K Fe-K Ni-K 

7N_pt1 72.88 22.02 0.65  0.14 0.20 0.23 0.33   0.08  2.69 0.79 
7N_pt2 79.40 17.94   0.08 0.11  0.37     1.82 0.27 
7N_pt3 27.82 45.54  0.69 21.16 0.23   3.78 0.29  0.09 0.40  

7N_pt4 43.06    1.11       1.03 54.80  
7N_pt5 83.77 15.34      0.73     0.16  

 

 

B.3 SEM/EDS analysis of St52 specimen which is applied 1.0 mA/cm2 current 

density for 24 hours 

Accelerating voltage: 15.0 kV 

Magnification: 2500 

 

 

SEM image 
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Atom % 

 
 

 

B.4 SEM/EDS analysis of Steel33 specimen which is applied 1.0 mA/cm2 current 

density for 24 hours 

Accelerating voltage: 15.0 kV 

Magnification: 5000 
 
 

 
SEM image 

 
 

   C-K   O-K  Al-K  Si-K   P-K  Cl-K   V-K  Cr-K  Mn-K  Fe-K  Ni-K  Cu-K  Mo-L 

21N_pt1   70.70    8.75    0.25      0.24     0.31    0.76   19.01    
21N_pt2   71.17   10.26    0.35      0.17     0.26    0.51   17.27    
21N_pt3   70.92   12.00    0.31      0.28     0.16    0.47   15.86    

21N_pt4   76.35   11.59    0.18      0.31     0.28    0.27   11.01    
21N_pt5   70.98   13.20    0.24      0.22     0.25    0.51   14.60    
21N_pt6   78.77   17.59    0.09    0.10    0.12    0.38    0.30    0.34     1.59     0.66    0.07 

21N_pt7   82.44   14.36    0.07     0.13    0.29    0.21    0.33     1.38    0.12    0.57    0.09 
21N_pt8   24.90     1.04    0.44        1.13   72.48    
21N_pt9   88.58   10.50       0.68       0.23    
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Atom % 
   C-K   O-K  Al-K  Si-K  Cl-K  Cr-K  Mn-K  Fe-K  Cu-K 
32N_next_pt1   84.72    8.58    0.18     0.39    0.63     5.33    0.16 
32N_next_pt2   79.54   13.90    0.32     0.60    1.57     4.08  
32N_next_pt3   74.03   15.71    0.25    0.26    0.33    0.79     8.63  
32N_next_pt4   30.71     1.14      0.58    1.11   66.47  
32N_next_pt5   90.79    7.82      1.16      0.23  
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Accelerating voltage: 15.0 kV 

Magnification: 5000 
 

 
SEM image 
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Atom % 
   C-K   O-K  Na-K  Al-K  Si-K   P-K   S-K  Cl-K   V-K  Cr-K  Mn-K  Fe-K  As-L  Mo-L 
32N_pt1   27.93      1.15    0.40        0.59    0.94   68.99   
32N_pt2   88.83   10.65     0.04       0.35       0.14   
32N_pt3   79.06   10.54     0.31    0.47      0.35     0.48    0.18    8.46    0.01    0.13 
32N_pt4   60.91   24.75    0.15    0.50    0.31    0.03    0.07    0.20     0.68    12.41   
32N_pt5   78.89   12.94     0.17    0.65     0.14    0.22     0.22     6.77   
32N_pt6   73.65   15.15     0.27    0.54      0.23     0.56    0.19    9.37     0.05 
32N_pt7   80.53   13.65     0.14    0.59     0.13    0.25    0.06    0.43     4.20   
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APPENDIX C Polarization Curves 

 
The polarization curves measured from the experiments are shown by following 

figures. 

C.1 Polarization curves of the specimens which are applied with different 

applied anodic currents for 24 hours. 
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Steel33
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C.2 Polarization curves of the specimens which are applied with 0.25 mA/cm2 for 

different exposure time 
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C.3 Polarization curves of the specimens which are applied with different 
applied anodic current for different exposure time 
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Steel33
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