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Abstract 
 

 Foods preserved by heat treatment have to meet several food safety criteria. 

These criteria requirements are not easy to meet, as heat causes protein denaturation 

which is considered to be one of the main reasons for quality changes in fish muscle. 

On the other hand consumers demand fresh or fresh-like minimally processed foods 

but there is a requirement also to consider the microbial safety and shelf life are 

increasing.  

  

Denaturation of proteins in Atlantic salmon was studied by differential 

scanning calorimetry (DSC) at a constant heating rate of 5 °C/min, for five different 

heating times with the range of temperatures of 26-72 °C and this gave four proteins 

denaturation peaks. The denaturation enthalpy is decreasing with increasing 

temperature and the time required for denaturation of all proteins is decreasing with 

increasing processing temperature.  

 

 Cook loss and loss in water holding capacity (WHC) was explained by 

denaturation of the proteins and it was shown that the protein denaturation occur in a 

lower temperature range (30-60 °C) when salmon is heated. At 50 °C, cook loss is 

maximized while at the same time WHC is minimized and myosin protein of salmon 

is in the process of denaturation.  
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1. Introduction 

1.1.  Background 
 

Norwegian Salmon is the best known fish product from Norway. 

Norwegian Salmon is known scientifically as Salmo salar (Atlantic salmon) 

which has good nutritional value (high amount plenty of omega-3 fatty acids).  

The market for chilled ready meals has grown strongly in recent years with 

good quality and contains no additives. Thermal processing or pasteurization  

is commonly used in the food industry to extend the shelf life. Pasteurization 

is a mild or moderate heat treatment, usually performed on fishery products 

after the product is placed in the hermetically sealed finished product 

container [1].  

 

During thermal processing operation, protein denaturation is 

considered to be one of the main reasons for quality changes in fish muscle. 

The high temperature may cause severe quality deterioration, such as 

degradation in color and texture, nutrient loss, cook loss (weight loss) and 

area shrinkage, rendering the products less attractive to most consumers. In 

particular, denaturation of heme proteins and oxidation of carotenoid (e.g. 

astaxhantin) pigments darken the products [2]. The denaturation of the 

proteins also leads to reduced water holding capacity and shrunken muscle 

fibers, subsequently leading to a harder and more compact tissue texture [3].  

  

Heating causes progressive shrinkage and disintegration of the 

myofibril; and water, soluble proteins, and fats are expelled from the tissue  

[4-6]. The expelled water soluble proteins may after cooling form a curd on 

the fish surface, causing a yellow or white appearance. 
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 Heating improves digestibility of some nutrients but also causes loss 

of others [7]. To avoid non-intended changes it is desired to use moderate 

temperatures and short processing times, but microbial safety and shelf life 

must also be considered. 

 

1.2.  Scope of the study 
 

The objective of this study is to provide information which can be used 

to improve quality of Atlantic salmon (Salmo salar). 

To achieve the objective of this study, the following tasks were 

included for this master thesis project : 

 

• Develop an understanding of how to quantify the kinetics of protein 

denaturation during thermal processing of farmed Atlantic salmon 

using differential scanning calorimetry (DSC). 

• Compare the protein denaturation to cook loss and loss of water 

holding capacity (WHC).   

• Estimate optimization of mild thermal processing of vacuum packed 

convenience fish products. 
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1.3.  Report Outline 
 

The next chapter of this report is dedicated to the description of 

theorities relevant to the background of this study including some concepts 

in protein denaturation of Atlantic salmon and description of thermal 

processing. The methodology of atlantic salmon using differential scanning 

calorimetry (DSC) and comparison the protein denaturation to cook loss and 

loss of water holding capacity (WHC) is described in chapter 3 The results 

and discussion are presented in chapter 4 while the conclusions are shown in 

chapter 5  
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2. Theoretical Background 

2. 1.  Atlantic  Salmon (Salmo salar) 

 Atlantic salmon, also known scientifically as Salmo salar commonly 

farmed in large scale is a species of fish in the family Salmonidae. Numerous 

species of salmon are found in the wild, and a several are cultured. The 

Atlantic salmon (Figure 1), though, is the most important salmon species 

produced by aquaculture. Morphologically, mature Atlantic salmon are 

compressed laterally and have a streamlined body. Color and shape of salmon, 

in general, will change at different life stages [8]. 

 

Figure 1. The Atlantic salmon (Salmo salar). 

Source : Atlantic Salmon Federation 

  

 Salmon spawns in fresh water and develops through several stages 

before becoming a smolt, the stage at which it migrates to the sea to feed. The 

big changes of habitat requires physiological, morphological and behavioural 

changes to prepare atlantic salmon for its new environment. These changes 

are called the parr-smolt transformation or smoltification, and pre-adapt the 

salmon for survival and growth in the marine environment. The development 

of hypo-osmotic regulatory ability plays an important part in facilitating the 

transition from rivers to the sea.    
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 The morphology of Atlantic salmon is almost similar to brown trout 

(Salmo trutta) because they often occur in the same areas.  Juvenile Atlantic  

salmon has  as small mouth , pointed head, long pectoral fins, narrow tail stalk  

and deeply forked, sharp-ended tail, whereas juvenile brown trout is more 

robust and has blunter head and tail. The differences between them in growth 

and ontogeny, and Atlantic salmon has a more fusi form body and fewer spots 

than brown trout. Hybridization between the two species may occur, often as a 

consequence of human activities, such as stocking and translocation [9]. The 

connective tissue forms (Figure 2) is a supporting network through the whole 

fish muscle.  

 

                

    Source : http://www.callandermcdowell.co.uk 

    

 

Figure 2. The metameric structure of fish muscles. The pattern of lines on the  

                  cross (1) and longitudinal (2) section represents the arrangement of  

                    sheets of connective tissue in the muscles [10] 
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2.2. Main components in Atlantic Salmon 

2.2.1.Water 

The main constituent of fish flesh is water, which usually accounts for 

about 80% of the weight of a fresh white fish fillet. Whereas the average 

water content of the flesh of fatty fish is about 70%. The water is bound to 

approximately 95% within the muscle cells. “Binding” means that the water is 

restricted in its molecular movements; it is immobilized by charged or 

hydrophilic side chains of amino acids and capillary forces. Approximately 

80% water is immobilized by the myofibrillar and cytoskeletal proteins [11].  

 

In the sarcoplasm with its soluble (sarcoplasmic) proteins between the 

fibres, approximately 15% of the water is partially immobilized by the protein 

surfaces, water-solute, and water-water interactions. A part of this water is 

“free”, it means unbound by protein side chains, ions, or capillary forces. 

Nevertheless, this water is inhibited from free flowing out of the cell by the 

cellular and sub cellular lipid bilayer membranes [11].  The approximate 

moisture content of fresh salmon is usually between 66% and 72%  [12]. 

 

2.2.2. Protein 

All proteins sources are chains of chemical units linked together to make 

one long molecule of which there are about twenty types. These types are 

called amino acids, and certain of them are essential in the human diet for the 

maintenance of good health. Two essential amino acids called lysine and 

methionine are generally found in high concentrations in fish proteins. Thus 

fish and cereal protein can supplement each other in the diet. Fish protein 

provides a good combination of amino acids which is highly suited to man’s 
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nutritional requirements and compares favourably with that provided by meat, 

milk and eggs [13]. 

After water, protein is the most important component of fish fillet and this 

justifies the relevance of studying their denaturation, particularly that of 

myofibrillar proteins.  Salmon muscle contains approximately 20-22% protein 

[14]. Proteins from skeletal muscle of Atlantic salmon can be separated into 

three group, based on solubility properties (Table 1) [14, 15].  

 

                          Table 1. Distribution of Protein fractions in fish Muscle [15] 

Source 
 
 

Sarcoplasmic 
Protein (%) 

 

Myofibril 
Protein (%) 

 

Stroma 
Protein (%) 

 

Fish, general 
 

10-25 
 

70-90 
3-10 

 

Atlantic Cod 
 

21 
 

76 
3 
 

Carp 
 

24 
 

71 
5 
 

Flounder 
 

21 
 

76 
3 
 

Beef 
 

16-28 
 

39-68 
16-28 

 

Atlantic salmon 30 75-80 10 

 

 

 In functional and technological terms, the myofibrillar proteins are the 

more important proteins, constituting 50% of the muscle proteins. Among 

them, the contractile proteins, myosin and actin, correspond to 75-80% of 

myofibrillar proteins  [16-19]. 
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2.2.2.1. Sarcoplasmic proteins 

Sarcoplasmic proteins, referred to as ‘myogen’, are soluble in the 

muscle sarcoplasm. They include a large number of proteins such as 

myoglobin, enzymes and other albumins. Sarcoplasmic proteins may be 

used to fingerprint fish species using electrophoretic and isoelectric focusing 

technique [20]. 

 

 The content of sarcoplasmic proteins is generally higher in pelagic 

fish species as compared with demersal fish. Dark muscles of some species 

contain less sarcoplasmic proteins than their white muscle counterpart [21]. 

The sacroplasmic proteins, mainly albumins, account for approximately 

30% of the total muscle proteins. A large proportion of sarcoplasmic 

proteins may be composed of haemoproteins [22]. 

 

2.2.2.2. Myofibrillar proteins 

The largest amount of myofibrillar proteins present in muscle of 

aquatic species are myosin, actin, tropomyosin and troponins C ,I and T 

[21].  

 

2.2.2.2.1. Myosin 

Myosin is the most abundant myofibrillar fraction of fish muscles and 

contributes 50 to 60% to its total protein amount (Figure 3). The myosin 

molecule consists of two heavy chains, associated non-covalently with two 

pairs of light chains. 
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 Figure 3. a. Myosin molecule [23], b. S1 unit of a myosin molecule [24] 

 

 

 In contrast to most proteins of mammalian origin, the loss of ATPase 

activity occurs at a faster rate in fish muscle [25, 26]. Myosin consists of 

two heavy chains and four light chains. Each of the two S-1s contains a 

a 

b 
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party of heavy chain and two light chains. Together, they comprise the head 

of myosin, which has ATPase activity and actin-binding ability. The rod, 

which forms an α-helical coiled-coil structure in heavy chains, has filament-

forming ability [27]. 

 

2.2.2.2.2. Paramyosin 

Paramyosin is a protein found in invertebrates and is present in quantities 

ranging from 0.1 to 10 times that of myosin [28].Paramyosin molecules 

constitute a core of the thick myofibrils of invertebrate muscles which is 

covered by a layer of myosin. Paramyosin is known to maintain the tension 

in the muscle tissues. 

2.2.2.2.3.  Actin 

Actin, the second most abundant myofibrillar protein, constitutes 

approximately 20% of the total content of these proteins in fish muscles. G-

actin is the monomeric form of the molecule and in the presence of neutral 

salts polymerizes to F-actin (Figure 4). 

 

 

 

a 
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Figure 4.a. G-actin subdomains [29], b. Actin filament (F-actin)  

(http://www.cryst.bbk.ac.uk/PPS2/course/section11/assembli.html) 

 

 

  Similar to myosin, actin shows Ca2+ and Mg2+ activated ATPase 

characteristics. Other constituents of myofibrillar proteins include 

tropomyosin and troponins which account for 10% of the total amount. 

Several isoforms of tropomyosin have been described for different sources 

of muscle foods. Their number depends on the species from which the 

muscle is originated, however, sequence of the homogenous isoforms from 

different species are nearly identical. Similarly troponins exist in several 

isoforms [30]. 

 

2.2.2.3. Stroma proteins 

The residue after extraction of sarcoplasmic and myofibrillar 

proteins is known as stroma. It is composed of collagen and elastin from the 

connective tissues. Stroma is soluble in dilute solutions of HCl or NaOH 

and contributes up to 10% of the crude muscle proteins. The collagen 

b 
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content in muscle depends on the species, feeding regime and state of 

maturity of the fish. In general, fish muscle contain approximately 0.2 to 

2.2% collagen [31].  

 

2.2.3. Fat 
 

  In animals in general, increasing dietary fat tends to increase whole 

body fat [32]. In fish, the location of the deposition of the additional fat 

appears to differ depending on the species and fish size [33, 34]. Einen et al. 

showed that fat deposition, when a given diet was fed, is fish size dependent 

[35]. Hillestad et al. reported that ration affected fillet fat in Atlantic salmon 

but that increasing dietary fat affected visceral but not fillet fat [36]. Salmon 

muscle contains approximately 15-18% fat [14].  

 

 The fat content and polyunsaturated fatty acid (PUFA) composition in 

salmon are important quality parameters [37], which affect the taste, texture 

and colour of the fillet [38]  and are influenced by environmental factors such 

as diet, season, ranching condition, temperature and biological differences 

such as stage of maturity, age, sex and size [39-44]. 

 

2.3. Denaturation  

2.3.1. Definition  

 
Denaturation is understood as being any modification of its structure 

(secondary, tertiary or quaternary) without necessarily breaking the peptidic 

chains in their primary structure. The denaturation may be produced by 

physical means (heat and cold, mechanical treatment, irradiation, etc.) and/or 
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chemical agents (acids, alkalis, salts, metals, organic colvents, etc.) and 

should be considered as an irreversible endothermic transition [45]. 

 

2.3.2. Thermal denaturation 

 

As the name implies, thermal denaturation is brought about by 

increasing the temperature. It is also the oldest mode since it has become part 

of man’s preparation of food. [46].  Heating is one of the most important 

treatments of food processing. Heat denaturation or thermal denaturation and 

aggregation of proteins are therefore the most typical events in food 

processing. The heat denaturation involves a cooperative or non cooperative 

transition of a protein from its folded to its unfolded state.  

 

It is related to some structural disorganization of the three-dimensional 

structure of native molecules. The unfolding changes the interaction of the 

protein with aqueous medium and induced aggregation governs the structure, 

flavour, texture, and other qualities of food. It also contributes to the 

nutritional qualities and physical stability of the foods during storage .  

 

The heat effects of denaturation and aggregation of proteins are 

usually small and have the opposite sign, namely, heat absorption 

(endothermic) and release (exothermic), respectively [47].  
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2.4. Analysis for heat denaturation of protein 

2.4.1. Differential Scanning Calorimetry 

 

Differential scanning calorimetry (DSC) is a powerful technique to 

characterize the energetics and mechanisms of temperature-induced 

conformational changes of biological macromolecules [48]. DSC is also a 

very useful means of studying the thermal properties of muscle proteins 

(Figure 5)  [49]. 

 

 

 

Figure 5. The DSC machine and Crucible sealing press (Mettler Toledo) 

 

Modern differential scanning calorimeters are designed to 

determine the enthalpies of these processes by measuring the differential heat 

flow required to maintain a sample of the material and an inert reference at the 

same temperature. This temperature is usually programmed to scan a 

temperature range by increasing linearly at a predetermined rate. The 

apparatus can also be used to measure heat capacity, thermal emissivity and 
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the purity of solid samples. In addition, it can be used to yield phase diagram 

information and to provide kinetic data [50].  

 

The DSC thermograms obtained as a result of thermal denaturation 

of muscle proteins during measurement are usually interpreted in terms of 

peak temperatures and corresponding entalphy changes for the different 

subfragments with myosin and actin as most dominant in determination of the 

entalphy changes (Figure 6) [51, 52]. 

 

 

Figure 6.  Schematic of the principle of  calorimeter. 1 Specimen,  2 Thermocouple, 

                  3 P1 Thermometer for temperature measurement, 4 P1 Thermometer for  

                     temperature control, 5 Thermal bath, 6 Heater [53] 
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2.4.2. Water holding capacity and cook loss 

 

 Water holding capacity (WHC) is the ability of muscle to resist water 

loss, and it is very important from both commercial and consumer acceptance 

points of view. The water is found in both free and bound forms. The water-

binding ability of myosin has been related to polar amino acids, especially the 

negatively charged aspartic acid and glutamic acid residues [54].   

  

  WHC equipment used in this thesis project (Figure 7) has even been 

used as measure for quality [55] and for characterising protein denaturation 

[56]. Several methods can be used for measuring WHC, the first one reported 

was developed by Childs and Baldelli in 1934 [57]. 

 

Figure 7. Benchtop Centrifuge ROTINA 420 R Without rotor. 

      Source : http://www.hettichlab.com 
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3. Material and Methods 

3.1. Material 
 

Farmed Atlantic salmon (Salmo salar) were obtained from a fish farm  

(Bremnes Seashore AS, Bremnes Norway), with a fat content of 14%, protein 

content of 19,9 gr/100gr and water 67 gr/100gr. The fish were kept on ice 

during transportation and 4 days storage. The 40 loins were divided into 30 

loins for ground frozen and 10 loins for fresh sample (5 for ground and 5 for 

whole sample).  

 

3.2. Methods 

3.2.1. Sample preparation 

 
The 30 loins were coarsely ground in a grinder (Food Processor TC RF 

Forniture Sirman) and mixed manually. The mixture was packaged in plastic 

food beakers (510 x 360 x 392 mm, Polimoon AS, Kristiansand Norway) and 

sealed under vacuum (vacuum machine Webomatic) before freezing. The 

beakers were stored in a freezer at -80±1 °C until further use, while the fresh 

samples were analyzed on the fifth day after transportation. After 1 month of 

storage at -80 °C, the material was used over a period of 3 months.  
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3.2.2. DSC Analysis 

 

 For differential scanning calorimetry the protocol of Skipnes et al. [58] 

was used except instrument, pan (medium pressure crucibles) , heating rate and 

the amount of water in reference pan (75% of salmon samples). DSC was 

performed at heating rate of 5 °C/min over the range from 2 °C to 110 °C on 

Mettler Toledo DSC-1/200. Pans containing water were used as reference and 2 

min equilibration at 0 °C was done before each run. Samples were measured in 

triplicate. The residual denaturation enthalpy (∆H), was defined as the area 

under the denaturation peak using a straight base line as shown in Figure 8. 

3.2.3. Screening Test 

Protein denaturation was screened by heating in the water bath (Water 

Bath Grant GR150) at temperatures 26, 40, 46, 54, 64, 68, 70, 71 and 72 °C 

every 4, 5, 6, 8 and 10 minute. All samples were cooled in ice water 

immediately after heat treatment and scanning by DSC and scanned once again 

to investigate if the denaturation was irreversible and to establish a base line.   

 

 

 

 

3.2.4. Water Holding Capacity and Cook Loss 

 The methods of Water holding capacity and cook loss used in this experiments 

was developed by Skipnes et al [56].  
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3.2.4.1. Preparation of the fish sample 

Raw fish sample was cutted into pieces or cut samples so that they have a 

diameter of 31 mm. Weight out approx. 5 g of muscle tissue with a total height of 

approx. 6 mm. The muscle tissue should be homogeneous and free of connective 

tissue. 

 

3.2.4.2. Preparation of the samples cups 

The sample cups should be kept on ice until used. Before filling with the 

sample cup, the top lid is screwed onto the sample cup. The sample cup was 

weighed with the top lid (weight g1). 

 

3.2.4.3. Filling the cup with the sample 

The sample cups (the top lid now forms the bottom) was inverted, and prepared 

sample material was filled into the cup and weighed once again (weight g2). The 

filter was screwed in until it makes contact with the sample. The bottom lid was 

screwed as far as it will go (until it is in contact with the filter) and weigh the sample 

cups again (weight g3). 
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3.2.4.4. Heating of the sample 

The sample cup was placed for a specific periode of time in a water bath 

preheated to the required temperature (e.g., 10 minutes at 80 °C). Note: Ensure 

that no air bubbles form on the sample cup in the water bath as they would 

prevent uniform heat exchange. 

 

3.2.4.5. Removal of the exudate 

The sample cup was removed from the water bath and allow it to cool in ice 

water at  0 – 1.8 °C and then dry the outside of the cup inside wall the sample cup 

by  blowing with pressurised air. The remainder of the exudate from the bottom 

lid and the inside wall of the sample cup was wiped. Ensure that not to touch the 

filter during the drying procedure. The sample in the sample cups was weighed  

together with the dried lid (weight g4).  

 

3.2.4.6. Centrifugation 

The bottom lid was screwed back on, this time in its base position and 

centrifuge for 15 minutes at 1800 min-1 and 4 °C. 

 

3.2.4.7. Removal of the exudate 

After centrifugation, the bottom lid was unscrew in which the liquid that was 

lost during centrifugation has collected, and blowing with pressurised air. The 

remainder of the exudate from the bottom lid and the inside wall of the sample 

cup was wiped. When drying the inside of the cup ensure again that the filter is 
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not touched. The sample in the sample cup was weighed together with the dried 

lid.  

 

Step 3.b.4.d and 3.b.4.e are omitted for the determination of the WHC of raw 

samples. The samples were measured in quadruplicate. 

 

3.2.5. Water content and cook loss 

Cook loss was measured as weight of sample before and after draining for 

30 s. The surface of the cup lid was dried with a cloth. The dry matter content of 

fish muscle was determined gravimetrically after drying at 105 °C for 16 h in 

drying ovens termaks (NKML 23, 1991). The dry matter content of cook loss was 

determined the same way as for the fish [56]. 

 

3.3.  Calculations 

3.3.1. Determination of cook loss 

The cook loss is the difference between the g3 (part 3.2.4.3) value and the g4 

(part 3.2.4.5) value . The weight of the sample is given by g2 (part 3.2.4.3) 

minus g1 (part 3.2.4.2). The percentage weight loss can therefore be calculated 

from these values. 
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3.3.2. Determination of WHC of raw samples 

The WHC of raw samples is calculated as the ratio of the water remaining after 

centrifugation to the initial water content of the sample, using the following 

formula : 

 

%100 

%100 

%100 

x
DoVo

Vo
W

x
DoVo

Vo
Wo

x
Wo

WWo
WHC

+
∆=∆

+
=

∆−=

 

 

 
V0    = Initial water content of the sample 

∆V0  = Difference in water content of the sample, before and after centrifugation 

D0 = Initial dry mass of the sample. The dry mass can be determined 

gravimetrically, for instance by drying it for 16 hours at 105 °C. 

 

 

 

 

 

 

 

 

 



 31 

 

3.3.3. Determination of WHC of heated samples 

The fish sample loses liquid when it is cooked. The liquid comprises 

water, dissolved protein, ash, salt and fat. The remaining dry material D1 is 

therefore somewhat less than the initial dry mass D0. The sample will lose not 

just water but also additional dry mass during the centrifugation procedure. As a 

result, the remaining dry mass D2 after heating and after centrifugation will be 

significantly lower than D0. 

This method calculates the water holding capacity on the basis of water 

content of the raw sample and takes into account the weight loss on cooking as 

the total loss WHCTot. 

 

 

%100 
11

11

%100 

x
CV

CV
WTot
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x
Wo

WTotWo
WHCTot

+
+∆=

∆−=

 

 
 
 
V0 = Initial water content of the sample 

D0 = Initial dry mass of the sample 

V1 = Water loss from the heated sample through centrifugation 

C1 = Weight loss on cooking of the sample 
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This leads to the following new definition of water holding capacity: 
 

%100 
)11(

x
VO

CVVO
WHCTot

−∆−=  

 

This calculation method describes the change in water holding capacity from raw 

samples to cooked samples. The percentage of dry mass in the exudate is also taken 

into consideration in the calculation. 

 

3.4. Statistical Analysis 

 

The data for quality attributes of raw and heated samples were compared 

using analysis of variance (ANOVA). Statistical significance was set at              

P < 0.050. 
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4. Result and disscusion 

 

To meet the needs of premium quality of minimally processed convenience 

salmon, it is important to prevent undesired changes (i.e. protein denaturation, 

flaking, tenderness and juiciness). To avoid the changes, the measurement results of 

protein denaturation during thermal processing of farmed Atlantic salmon using DSC 

have been done. Further, cook loss and loss of WHC has been quantified and 

explained by protein denaturation. 

 

4.1. Differential scanning calorimetry 

 

The DSC curve for untreated salmon muscle with four peaks as shown in 

Figure 8. According to the literature, denaturation of myosin is expected to occur at 

temperature from 44 °C and 54 °C with any possibilities other protein like collagen 

will denature in this region [49] as well.  The last peak which occur around  73 °C  – 

74 °C is due to actin denaturation, while others peaks between myosin and actin are 

due to sarcoplasmic denaturation [49, 51]. This corresponds well with peak in the 

thermogram of figures. 
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   Figure 8. DSC thermogram of untreated Atlantic salmon muscle (whole)      

                            obtained at a scanning rate of 5 °C/min 

 

  

The temperature range of endothermic peaks correspond with the temperature 

range in which the α-helix unfolded greatly, although the number of denaturation 

peaks are different between salmon and with other fish species [27]. The type of DSC 

machine and heating rate also cause differences in the thermograms. Ofstad et.al [59] 

who analyzed fresh and frozen Atlantic salmon (Salmo salar) using a Setaram micro 

Calorimeter with 1 °C/min heating rate found 5 peaks.  

 

Figure 9 shows DSC thermograms for the fresh whole (a), fresh ground (b) 

and frozen ground (c) samples. The peak positions are listed in Table 2 (together with 

the literature data). The peak maximum temperature, Tm of myosin from whole fresh 

salmon is higher (2.1 °C) than the ground fresh salmon and 0.9 °C higher than the 

ground frozen salmon but there is no significant differences between those three 

samples myosin peaks (P>0.050). Valeria et. al [60] also found no significant 



 35 

differences between ground fresh and ground frozen of Tm myosin peak of Sea 

salmon (Pseudopercis semifasciata). It has also been confirmed by literature that 

freezing followed by immediate thawing has little effect on the characteristic thermal 

transitions of fish muscle [49]. 

 

 

 

    Figure 9. Comparison DSC-thermogram between fresh whole (a/red line),  

                     fresh ground (b/black line) and frozen ground samples (c/blue line) 
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Table 2.  Average value and standard deviation for peak maximum temperature  

                 (Tm) for untreated salmon. 

Material Apparatus/ 
Heating rate 

Peak 1 
(°C) 

Peak 2 
(°C) 

Peak 3      
(°C) 

Peak 4 
(°C) 

References 

 
Atlantic 
salmon (Salmo 
salar) 
 
Whole Fresh 
Ground Fresh 
Ground Frozen 

 
DSC-1           
5 °C/Min 

 
 
 
 
 
48,9±1,1 
46,8±0,4 
48,0±0,2 

 
 
 
 
 
60,6±0,3 
59,3±0,2 
59,4±0,2 

 
 
 
 
 
70,3±0,2 
68,6±0,4 
69,1±0,1 

 
 
 
 
 
79,5±0,2 
77,3±0,2 
78,2±0,1 

 
Present 
work 
(n=4) 

 
Atlantic 
salmon (Salmo 
salar) 
 
Ground frozen 
 

 
Setaram 
Micro  
1 °C/min 

 
 
 
 
 
44-45 
 

  
 
 
 
 
     65 

 
  
 
 
 
   76 
 

 
Ofstad et 
al. (1996) 

 
Sea Salmon 
(Pseudopercis 
semifasciata) 
 
 
Ground Fresh 
Ground Frozen 
 

 
Polymer 
Laboratories 
calorimeter 
10 °C/Min 

 
 
 
 
 
 
50,7±0,1 
49,8±0,7 

   
 
 
 
 
 
76,8±0,2 
77,4±0,6 

 
Valeria 
et.al. 
(2010) 

 
Atlantic Cod 
(Gadus 
morhua) 
 
ground frozen 
 
 

 
DSC-7 
10 °C/min 

 
 
 
 
 
44.1±0.2 

 
 
 
 
 
57.3±0.1 

 
 
 
 
 
69.5±0.3 

 
 
 
 
 
76.1±0.7 

 
Skipnes 
et.al 
(2008) 

 

 

The whole fresh salmon also have a higher heat absorption of a sarcoplasmic 

and actin proteins among three samples. The Tm for each peak in the present study 

was quite high compared to same fish species measured by other apparatus and 

different heating rate [59], but it is quite similar compared to other species even it 
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was measured by different apparatus and different heating rate [60].                  

Atlantic salmon (present study) have higher Tm for each peaks compared to Atlantic 

cod except for peak 3, the differences between cod and salmon also found in Ofstad 

et al. [59] that salmon had higher Tm than cod.  This fact shows that salmon muscle 

is more heat stable than cod. 

 

The differences were also found in denaturation entalphy Table 3 for each 

peak. Peak 1 and peak 2 for whole fresh and ground frozen samples was found 

significantly different (P<0.050). The differences between whole and ground fresh 

was found in peak 2 and 3. Whole and ground fresh salmon was found significant 

different in peak 4 and both also different statistically with ground frozen salmon 

(P<0.050). 

  

  Table 3. Mean ± SD of denaturation enthalpy for each peak of Atlantic salmon  

                (Salmo salar) (n=5) 
 

 
          Denaturation Enthalpy (J/g) 
 
Type of salmon    Peak 1   Peak 2   Peak 3   Peak 4 
 
 
Fresh whole 0.87±0.001 0.04±0.001 0.05±0.001 0.11±0.001 
Ground fresh 0.86±0.020 0.02±0.001 0.03±0.001 0.09±0.001 
Ground frozen 0.83±0.001 0.03±0.001 0.04±0.001 0.08±0.001 
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      Figure 10. DSC thermograms for Atlantic salmon (Salmo salar)  

                        for 4 minute pre-heating time obtained at a scanning rate of              

                        5 °C/min 
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   Figure 11. DSC thermograms for Atlantic salmon (Salmo salar)   

                    for 5 minute pre-heating time obtained at a scanning rate of              

                    5 °C/min 
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  Figure 12. DSC thermograms for Atlantic salmon (Salmo salar)   

                    for 6 minute pre-heating time obtained at a scanning rate of              

                    5 °C/min 
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 Figure 13. DSC thermograms for Atlantic salmon (Salmo salar)  

                    for 8 minute pre-heating time obtained at a scanning rate of              

                    5 °C/min 
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    Figure 14. DSC thermograms for Atlantic salmon (Salmo salar)   

                      for 10 minute pre-heating time obtained at a scanning rate of              

                      5 °C/min 
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The thermograms in Figure 10 to Figure 14 are obtained by DSC of Atlantic 

salmon at pre-heating time 4, 5, 6, 8 and 10 minute respectively. The peak heights of 

the endothermic curve as well as total denaturation enthalpy of all peaks in Figure 15 

decreased with increasing temperature. The values for Tm and areas of the curve 

from samples pre-heated at 26-39 °C for each heating time were the same as for 

untreated samples. For each heating time the peak 1 (myosin) were strongly reduced 

after 40 °C. After 54 °C, peak 2 and 3 starts to reduced and the peaks disappeared at 

higher temperature. 

 

Salmon myosin proteins can be denatured by heating. Chan et al. [61] found 

that some regions of the myosin molecule are less thermo stabile than others and have 

a tendency to denature before the whole myosin molecule is completely denatured. 

Actin, on the other hand is not denatured by freezing and more heat stable than 

myosin [49]. 

 

 The time required for denaturation of all proteins in question is decreasing 

with increasing processing temperature. At 70 °C, 8 min heating is required for 

completing the denaturation, at 71 °C  it is sufficient to heat for 6 min while on 4 and 

5 min heating is enough at 72 °C. This behaviour make it feasible to determine 

inactivation parameters for thermal denaturation of salmon proteins. 
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Figure 15. Average denaturation Enthalpy of salmon for each heating  

                  time and temperature investigated ( n=3) 

 

4. 2. Water Holding capacity 

 
The WHC of fresh whole samples was found to be significantly different 

(P<0.050) from the ground ones (Figure 16), this is in agreement with Skipnes et.al 

[56], who found a significant difference between whole and coarsely minced Atlantic 

cod (Gadus morhua).  

 

In whole meat muscle, very little drip loss occurs, while evaporative losses 

from the surface of the carcass may occur. However, once the muscles are cut the 

opportunity for drip to escape exists. The size of the piece of fish can affect the 

percentage of the product that is lost as drip. Smaller cuts of fish lose relatively more 

drip than the larger one [62]. The drip tends to flow along the length of the fibers 

[63].   
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    Figure 16. WHC of fresh whole and fresh ground Atlantic salmon    

                              (Salmo salar) and standard error (n = 8) 
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        Figure 17.  WHC of fresh ground and frozen Atlantic salmon (Salmo salar) 

                            and standard deviation (n = 8) 
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There is a significant difference (P<0.050) in WHC between the fresh and 

frozen ground fish, as shown in Figure 17. Ground fish is more vulnerable to freezing 

damage than fish fillets [64]. If freezing damage to ground fish could be reduced, it 

would increase flexibility in the manufacture of added-value fish products. The loss 

of additional liquid when a force is applied to the fish has relevance for fish products 

made from compressed blocks of fillets or ground. The water content for thawed fish 

are likely to be lower than for fresh fish due to water migration during frozen storage 

and drip loss during thawing [65].  
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     Figure 18. WHC of fresh ground Atlantic salmon (Salmo salar) heated at 

                       50 °C, 60 °C, and 70 °C (n = 8) and standard deviation compared 

                       to raw salmon 
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The differences in WHC of fresh ground salmon after pre-heat treatment at 

temperature 4, 50, 60 and 70 °C can be seen in Figure 18.  A significant difference 

was found between the WHC of salmon at 4 °C compared to others temperature               

(P < 0.001). The WHC seemed to decreased when it was pre-heated at 50 °C, 60 °C 

and 70 °C but no significant differences were found (P>0.050).  
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        Figure 19.  WHC of frozen ground Atlantic salmon (Salmo salar)  

                            as a function of temperature plotted for each pre-heating time  

                            (4, 5, 6, 8 and 10 minute) 

 

 

Figure 19 shows the results from measurement of WHC of frozen ground 

salmon after heat treatment at temperatures 26-95 °C. The WHC showed similar 

pattern for the frozen salmon as seen in Figure 18 for fresh fish, decreasing WHC 
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until the temperature reaches 50 °C and increasing WHC with increasing temperature 

until 70 °C to 85 °C depending on processing time.  

 

             Figure 20.  Thawed ground Atlantic salmon (Salmo salar)  WHC in blue  

                                line (Mean) and DSC-thermogram in red line obtained at  

                                scanning rate 5 °C/min 

 
 
 

Figure 20 shows both protein denaturation and WHC, the protein-water 

interaction is essential for protein solubility as well as WHC. Aspartic acid and 

glutamic acid have the highest water-binding ability, and myosin ability has been 

related to those amino acids [54, 66]. A minimum of WHC is reached at temperature 

where the myosin denaturation has been completed.  
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4.3. Cook Loss 
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Figure 21. Comparison of cook loss between fresh and frozen ground Atlantic  

                   Salmon (Salmo salar) after 10 min heating at 50 °C, 60 °C and 70 °C     

                   (n=8) and SE 

 
 
 

Fresh and frozen salmon was found significantly different in cook loss at       

50 °C (P<0.050). Figure 21, cook loss at 50 °C for frozen salmon with others 

temperature was also found significantly different (P<0.050). The differences 

between fresh and frozen ground salmon in cook loss at 50 °C related with the Tm of 

myosin peak of DSC thermograms Table 2. Frozen ground salmon has higher Tm 

than fresh ground salmon in all peaks, and myosin for fresh ground salmon was 

denatured earlier than frozen ground salmon.  
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  As shown in Figure 22, cook loss is strongly dependent on processing 

temperature and increases when heating from 26 up to 50 °C. Cook loss is reaching a 

maximum at 50 °C and then decreased rapidly to the minimum cook loss at 70 °C. 

The previous study about salmon Ofstad et al. [67], found that the water loss 

increased from 30 °C until maximum temperature 45-50 °C which is similar pattern 

with the cook loss in the Figure 21.   
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  Figure 22.  Cook loss of thawed Atlantic salmon (Salmo salar) average over    

  heating time and determined for each temperature investigated (n=20) and   

  standard error 
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Figure 23. Denaturation Enthalpy (J/g), % WHC and % Cook loss of Atlantic  

                  salmon (Salmo salar) average over heating time and determined for 

                  each temperature investigated 

 

 

 The relation between WHC, cook loss and denaturation enthalpy can be seen 

in Figure 23. When salmon was heated at 50 °C, WHC reached a minimum peak and 

cook loss reached a maximum. At 30 °C cook loss start to increase to the high level at 

50 °C, at the same time WHC decrease rapidly until reached minimum temperature 

which also coincident with the denaturation enthalpy that drop for the first time from 

30 °C to 40 °C.  Above 60 °C WHC was moderate until 95 °C and cook loss start to 

increase from 70 °C with increasing temperature.  
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WHC in fish tissue is strongly related to myofibril proteins. The increased 

cook loss might be explained by the reduced water-imbibing capacity of the tightly 

bound myofibrillar proteins, which causes the immobilized cellular water to move 

and flow out at lower pressure  [68, 69]. Increase of expressible moisture is a sign of 

reduction of WHC due to denaturation of proteins [70].  

 

The reduction of water loss may be caused by aggregates of sarcoplasmic 

proteins and collagen are able to hold water and/or plug the intercellular capillaries, 

thus preventing water from being released during centrifugation [67]. Ofstad et al. 

[67] found at increased temperatures, the extracellular spaces had increased and 

breakage of the pericellular layers concomitant with shrinkage of the myofibrils has 

occurred and at maximum temperature intracellular gaps appeared.  

 

Water is a dipolar molecule and as such is attracted to charged species like 

proteins. In fact, some of the water in muscle cells is very closely bound to protein 

[71]. One amino acid of an ionic chain has been claimed to bind 4-7 water molecules 

in aspartic acid, glutamic acid and lysine [54].  

 

As proteins are denatured they begin to open up and expose their hydrophobic 

core. Consequently, they begin to interact with other hydrophobic regions on the 

same protein (intra) or with other denatured proteins (inter). The hydrophobic regions 

of the proteins are excluded from water, which leads to a stronger interaction between 

them. It has been suggested that the exposure of hydrophobic domains is a 

prerequisite for the formation of large myosin aggregates [72] 
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5. Conclusion 

 

 Protein denaturation obtained by DSC at a constant heating rate of 5 °C/min, 

cook loss and WHC of Atlantic salmon have been quantified. There were found four 

proteins denaturation peaks of salmon muscle. These proteins are myosin, 

sarcoplasmic and actin protein. The time required for denaturation of all proteins is 

decreasing with increasing processing temperature.  

  

 Actin protein of salmon muscle is more heat stable than myosin protein. 

Myosin denaturation of salmon muscle occurs at temperature from 46.8 and 48.9 °C 

and actin protein denatures from 77.3 – 79.5 °C.  

 

The cook loss and changes in WHC has been expected to be a result of protein 

denaturation by several authors. The major cook loss occurs at the temperature where 

the myosin had been denatured when heating salmon. Increasing cook loss and 

decreasing WHC at 50 °C was attained correspondingly with the appearance of 

transverse shrinkage of the muscle cells, intercellular gaps and widening of the 

extracellular spaces.  

 

  

. 
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