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Abstract 

 

Low dosage hydrate inhibitors (LDHIs) is a cost-effective alternative to traditional 

thermodynamic inhibitors (THIs), like methanol and glycols, to prevent the occurrence of 

natural gas hydrates in gas and oilfield operations. One class of LDHIs is the kinetic hydrate 

inhibitors (KHIs). KHIs have been used commercially in the field for the last 15 years, and 

the development and search for new KHIs is an ongoing process. 

  

This report describes how high pressure rocker rigs can be used to rank KHIs based on their 

effectiveness and efficiency under different conditions.  

 

The high pressure rocker rig used for this thesis was delivered at the end of November, and 

the experiments started on December 1
st
. The last experiment took place May 2

nd
. The 

Rocking Cell RC5 has five cells that provide five individual results from every experiment. 

This makes it a very time-effective rocker rig compared to, say, autoclaves, where one 

normally only obtains one result per day. Since the start-up with the rocker rig in December 

there have been no major problems, and so it has been a very reliable piece of equipment. 

 

A procedure for the Rocking Cell RC5 has been established. Experiments are run using a 

constant cooling method and an isothermal method. The reproducibility was found to be best 

using the constant cooling method. Compared to alternative apparatus the reproducibility has 

proven to be very good. Reported information from experiences using autoclaves, say that the 

scattering in hold time using non-precursor methods is usually 30-40% on either side of 

average of series. Using the constant cooling method the scattering in hold time is found to be 

within 4.4%. 

 

The main focus of these thesis has been testing four already known KHIs; Luvicap 55W, 

Luvicap EG, Inhibex 101 and Inhibex 501. The chemicals are ranked based on how well they 

inhibit the gas hydrate formation. Inhibex 101 was found to be the best one, both using the 

constant cooling method and the isothermal method. 
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Since there are no thorough published studies available on the use of rocker rigs to rank the 

performance of KHIs, the results cannot be compared to experiments from other groups. For 

some results, more tests should therefore be run to check the validity of the results. 
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1. Introduction 

 

 

The formations of gas hydrates in pipes and wells are a big challenge in offshore drilling 

processes (Carroll 2009). These formations can lead to both operational and safety problems. 

The prevention of gas hydrate plugging of flowlines is considered one of the main production 

issues to deal with in deepwater field developments (Kelland 2009). Compared to typical fluid 

hydrates with specific gravities of 0.8 or less, the gravity of the hydrate solid is typically 0.9 

(E. Dendy Sloan 2003). This higher density leads to a problem of ensuring hydrate safety and 

preventing loss of property or lives (E. Dendy Sloan 2003).   

 

There are various options to prevent hydrate crystallization. These options include heating, 

insulation, water removal and the use of chemical hydrate inhibitors (Kashchiev and 

Firoozabadi 2002). The most common chemical class for preventing gas hydrate formations is 

thermodynamic hydrate inhibitors, THIs (Sloan and Koh 2008), like methanol and glycols. 

The dosages of inhibitor needed, in wt% relative to water phase, are high (Kelland 2009). The 

development of alternative, cost-effective and environmentally acceptable gas hydrate 

inhibitors is a technical challenge for the oil and gas production industry (Kelland, Svartås et 

al. 1995). A new class of inhibitors, called low dosage hydrate inhibitors (LDHIs), has been 

established and is still under development (Oskarsson, Uneback et al. 2005).  

 

The new class of hydrate inhibitors can lead to substantial cost savings, not only the reduced 

cost of the new inhibitor, but also for the size of the injection, pumping and storage facilities  

(Kelland, Svartås et al. 1995). The promise of LDHIs has been to provide a viable alternative 

to THIs such as methanol and glycol (Mehta, Hebert et al. 2002). These new chemicals are 

rapidly being adopted in the field and provide a fertile research era for molecular modeling 

(E. Dendy Sloan 2003). 

 

While THIs are used in concentrations up to 60 wt%, the concentrations of LDHIs are 

typically 0.1-1.0 wt% based on the water phase (Kelland 2006). 
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Alcohols and glycols are THIs used to prevent gas hydrate formations (Sloan and Koh 2008). 

Methanol (CH3OH) and monoethylene glycol, (MEG, HOCH2CH2OH) are widely used THIs 

used to protect against gas hydrate formation in production, workover, process operations and 

for melting hydrate plugs (Kelland 2009). 

 

The focus in this report will be to study and establish an instrument for gas hydrate research. 

The instrument is a steel multi-cell rocker rig used to test one class of LDHIs called kinetic 

hydrate inhibitors (KHIs). The effectiveness and efficiency of KHIs are tested using the 

rocker rig, Rocking Cell RC5.  

 

The measuring principle of the RC5 is based on a steady tilting of cooled, pressurized test 

cells. When the cells are tilting, a ball inside the chamber is rolling over the length of the test 

chamber mixing the fluid-gas mixture. Strong shear forces are created by the movement of the 

ball, and turbulence is created. In this way are the conditions in the pipelines reproduced in 

the test cells. The mixture inside the cells is distilled water and inhibitor, and an additional gas 

supply is used to achieve the right pressure conditions for the cells. 

 

To establish the RC5 the main focus will be to study four already existing KHIs. The 

chemicals are Luvicap 55W, Luvicap EG, Inhibex 101 and Inhibex 501.  

 

The chemicals is ranked according to how they work as hydrate inhibitors under pressure 

using two different cooling methods; a constant cooling method and an isothermal cooling 

method. 

 

Luvicap 55W is used as a base chemical in order to see how the different parameters affect 

the gas hydrate formation. Parameters of interest are the rocking angle, the rocking speed, the 

cell volume, the type of ball used in the cells, the concentration and the cooling rate. The 

parameters are varied to see how they affect the results. 

 

Chapter 2 gives a short introduction to gas hydrates, their composition and structure. The 

different classes of hydrate inhibitors are presented together with different test methods for 

LDHIs. 
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The relevant chemicals and the apparatus Rocking Cell RC5 are presented in Chapter 3, 

Materials and Methods. Standard parameters are introduced. 

 

The results and discussion are found in Chapter 4, followed by a conclusion in Chapter 5.  
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2. Theory 

 

 

2.1 Gas hydrates 

 

The occurrence of gas hydrates in nature is controlled by an interrelation among the factors of 

temperature, pressure, and composition (Kvenvolden 1993). In the pressure-temperature 

domain of methane hydrates the position of the phase boundary is not only determined by the 

composition of the gas mixture, but also by the ionic impurities in the water (Kvenvolden 

1993). 

 

The first to report about natural gas hydrates was Sir Humphrey Davy in 1810, while the 

problem with hydrates in natural gas pipes was first documented by Hammerschmidt in 1934 

(Sloan and Koh 2008). Since that the gas hydrate formation and dissociation phenomena have 

been the subject of numerous studies (Makogon 1997). 

 

In nature very specific pressure conditions are required for gas hydrate stability. These 

conditions can be found in deep seabed deposits and permafrost, where the hydrates in 

addition may be preserved from dissociation by an ice layer (E. Dendy Sloan 2003). Gas 

hydrates are also common in aqueous chemical injection in gas lift lines if the pressure-

temperature conditions are right (Kelland 2009). Gas hydrate stability in nature requires 

relatively high pressures, 100 – 300 bar, and low temperatures, from negative on the bottom 

of the sea up to 20 – 25 ᵒC,  though normally at temperatures lower than 15 – 20 ᵒC 

(Makogon 1997). 

 

Hydrates form at increasing pressures and at lower temperatures. It can be seen from Fig. 2-1 

that the temperature below which hydrates can form increases with increasing pressure 

(Kelland 2009). A phase diagram for the CH4-H2O system is shown in Fig. 2-2, where 

clathrate dissociates to H2O and CH4 gas at low pressures or high temperatures (Stern, Kirdy 

et al. 1996). 
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Fig. 2-1 Pressure-temperature graph for a typical natural gas hydrate (Kelland 2009). 

 

 

 
Fig. 2-2 Phase diagram for the CH4-H2O system. The field of methane clathrate stability is in the gray region. The 
metastable extension of the H2O melting curve is delineated by the gray curve. Dotted lines trace the sample fabrication 
reaction path (Stern, Kirdy et al. 1996). 

 

Methods to avoid hydrate plugs include raising the temperature by heating, lowering the 

pressure, removing the water and shifting the equilibrium for gas hydrate formations by 

adding anti-freeze chemicals (Kelland, Svartås et al. 2000).  
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2.1.1 Composition of gas hydrates 

 

Natural gas hydrates are crystalline solids composed of water and gas (Sloan and Koh 2008), 

and are termed “clathrates” or inclusion compounds (Sloan 2011). Small paraffin guest 

molecules, like methane, ethane and propane, can be trapped in the network of cages of water 

molecules (Sloan 2011). Fig. 2-3 shows an example of a water molecule cage with a gas 

molecule occupied in it (Heroit-Watt-Institute-of-Petroleum-Engineering 2011). The hydrates 

are in many ways similar to ice formations, but can be formed at higher temperatures (Sloan 

and Koh 2008). 

 

 

 

Fig. 2-3  A water molecule cage with gas molecule occupied in it. The figure is from (Heroit-Watt-Institute-of-Petroleum-
Engineering 2011) 

 

Hydrate nucleation is the process during which small clusters of water and gas grow and 

disperse in an attempt to achieve critical size for continued growth (Sloan and Koh 2008). The 

nucleation step is a microscopic phenomenon involving tens to thousands of molecules 

(Mullin 2001). 
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2.1.2 Gas hydrate formation and structure 

 

In gas hydrates the water molecules form an open structure containing cages held together by 

hydrogen-bonding (Kelland 2009). These cages are occupied by small molecules, such as 

small hydrocarbons, which stabilize the clathrate structure through Van der Waals interactions 

(Kelland 2009) and capillary forces (Anklam, York et al. 2008).  

 

There are three structures for gas hydrates to which all common natural gas hydrates belong. 

These are the cubic structure I, the cubic structure II and the hexagonal structure H, shown in 

Fig. 2-4 (Sloan and Koh 2008).  

 

       

 

Fig. 2-4 The three gas hydrate formations; structure I, structure II and structure H as a), b) and c), respectively (Sloan and 
Koh 2008). 

 

Structure I is mostly found in nature because methane is the major component in of most 

hydrates found outside the pipelines (Sloan 2011). These structures  are formed with small 

molecules (smaller than 6 Å), like with methane, ethane, carbon dioxide and hydrogen sulfide 

(Sloan and Koh 2008). 

 

Structure II hydrates occurs when somewhat larger molecules (6 Å < d < 7 Å) are present, for 

instance when the natural gas mixture include propane or iso-butane (Sloan and Koh 2008). 

The structure II hydrates are typically found in gas and oil operating processes (Sloan 2011), 

and is by far the most common hydrate structure found in the field, due to its stability 

whenever a natural gas mixture contains some propane or butane besides methane (Kelland 

2009). 
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If even larger molecules (7 Å < d < 9 Å), such as iso-pentane or neohexane, are present in 

mixture with smaller molecules, like methane, hydrogen sulfide or nitrogen, structure H 

hydrates may form (Sloan and Koh 2008). This structure crystals are seldom found in 

artificial or in natural processes (Sloan 2011). 

 

All three hydrate structures (I, II, and H) are approximately 85% (mol) water and 15% gas 

when all the cages are filled (Gabitto and Tsouris 2009). This fact suggests that the 

mechanical properties of the three hydrate structures are similar to those of ice (Gabitto and 

Tsouris 2009). 

 

 

2.2 Gas Hydrate Inhibitors 

 

There are generally two different classes of hydrate inhibition chemicals: (1) the traditional 

THIs, like methanol and monoethylene glycol, and (2) LDHIs, such as KHI and anti-

agglomerants (AAs) (Sloan 2011).  While the first class requires high concentrations of 

inhibitor to be successful is the latter one operated using low dosages of 

inhibitors/agglomerants (Kelland 2009). 

 

The development of LDHIs started in the mid 1990s (Kelland 2006) and have been in 

commercial use in the upstream oil and gas industry for about 15 years (Kelland 2009). 

LDHIs are a cost-effective alternative to the traditional THIs (Lovell and Pakulski 2003). 

Neither of the two classes of LDHI will change the thermodynamic equilibrium of the 

hydrates, but rather change the hydrate kinetics and agglomeration, respectively (Kelland 

2009). Both types are successfully used in fields applications (Kelland, Svartås et al. 2008).  

Economic drivers for further research on LDHIs are a wide range of OPEX savings, possible 

extended field lifetime and multi-million dollar CAPEX savings (Kelland 2006).  

 

During deep-water oil and gas drilling, THIs are normally used while the KHIs and AAs are 

still under investigation (Ning, Zhang et al. 2010). The research on new LDHIs that can 

compete with the properties of the THIs is an ongoing process (Ning, Zhang et al. 2010). 

Extensive research has been conducted for the past few years in order to enhance the 

performance of LDHI and to improve the environmental profile (Fu, Housten et al. 2005). 
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2.2.1 Thermodynamic Hydrate Inhibitors  

 

Thermodynamic hydrate inhibitors are the most common chemical class used to prevent gas 

hydrate formation. The objective of THIs is to maintain the pressures and temperatures of the 

flowline fluid (the black “S”-shaped line in Fig. 2-5) outside the gray hydrate region in Fig. 

2-5 (Sloan 2011). To be effective for the flowline, the hydrate region should be displaced to 

the left, so that higher pressures or lower temperatures are required to form hydrates. In Fig. 

2-5 about 23 wt% methanol is required in the free water in the flowline in order to keep the 

line outside of the gas hydrate formation region (Sloan 2011).  

 

 

Fig. 2-5 Gas hydrate formation pressures and temperatures (gray region) as a function of methanol concentration in free 
water for a given gas mixture. Flowline fluid conditions are shown at distances along the bold black curve (Sloan 2011). 

 

The addition of methanol and monoethylene glycol acts by preventing the water molecules 

from participating in the solid hydrate structure, but keeps them in the liquid flowable phase. 

The more inhibitor added to the system, the more water is prevented from participating in the 

hydrate structure, so higher pressures and lower temperatures, shown in Fig. 2-5, are required 

for gas hydrate formation from the remaining, uninhibited water (Sloan 2011).  

 

By changing the bulk thermodynamic properties of the fluid system, the equilibrium 

conditions for gas hydrate formation are shifted to lower temperatures or higher pressures 

(Kelland 2009).  
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A big disadvantage with the THIs is the high concentrations needed, typically 20-60 wt% 

based on the water phase (Kelland 2006). The most common classes of THIs are alcohols, 

glycols and salts. Methanol and monoethylene glycol are two examples of respectively 

alcohol and glycols widely used (Kelland 2009). The correct dosing of THIs is very important 

since under-inhibition (when using a lower dose which won’t totally protect against gas 

hydrate formation) can instead, at certain dosages, increase the plugging potential (Kelland 

2009). Different calculation methods are used to find the correct amount of THI needed to 

avoid hydrate formation. They won’t be discussed in this report.  

 

Because of the high volume requirements of THIs, the costs for subsea multiphase 

transportation over long distances due to storage capacities, injection and regeneration 

facilities needed, are high (Kelland 2009). This was one of the starting points for research and 

development of a new class of hydrate inhibitors with the intention to find inhibitors that 

would achieve the same, or better, effect used at lower doses (Mehta, Hebert et al. 2002).  

 

It has been reported that a mixture including methanol and a LDHI (Poly Vinyl Methyl Ester) 

was tested with real natural gas under gas hydrate formation conditions (Heidaryan, 

Salarabadi et al. 2010). The performance and efficiency of this combination turned out to be 

much better than using methanol alone. Advantages, such as significantly less volume 

injected, reduced freight costs, low toxicity, higher flash point and that the treatment was 

proven economical were found (Heidaryan, Salarabadi et al. 2010). 

 

 

2.2.2 Kinetic Hydrate Inhibitors 

 

The high costs of THIs have stimulated the search for KHIs (Lovell and Pakulski 2003). 

 

KHIs are generally water-soluble polymeric compounds (Kelland 2006). Kinetic inhibition 

methods are based on injection of polymer-based chemicals at low dosage in the water phase 

(Fu 2002; Koh, Westacott et al. 2002). KHIs are delaying the initial hydrate nucleation, and 

have been used commercially in fields since around 1995 (Kelland 2009). KHIs make it 

possible for the produced fluid to be transported in a subsea multiphase from the field to the 

process facilities prior to the formation of hydrates in the pipes will start (Kelland 2009). 
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KHIs adsorb onto growing hydrate crystals at the hydrate/water interface and prevents the 

growth of hydrate crystals (E. Dendy Sloan 1997).  

 

Typical concentrations that are used are less than 1 wt% of the water phase, usually around 

0.3-0.5 wt% (Kelland 2009). 

 

Since the first commercial use of KHI in Hyde/West Sole by BP in 1996, the number of KHI 

applications have grown exponentially over the last few years (Fu, Housten et al. 2005). The 

first generations of KHI are very effective in controlling hydrates up to 8ᵒC subcooling and 

with extension of induction time to 24 hours (Fu, Housten et al. 2005). For the latest 

technology the application window was expanded to 13ᵒC subcooling and for at least a 48-

hour shut-in protection (Fu, Housten et al. 2005). 

 

To test the performance of the KHIs, several methods are used. A common technique is by 

determine the minimum hold-time (the duration between the moment when the system enters 

the hydrate stability domain and the onset of gas hydrate formation) at the worst case 

subcooling field conditions (Klomp and Mehta 2007). Since the flowlines won’t be at the 

maximum subcooling and pressure at all time, the result will give a conservative value of the 

dosage required to eliminate hydrate problems (Kelland 2009). For field verification under 

planned or unplanned shut-in conditions, shut-in tests with no flow have to be included. 

Experiments with the presence of other production chemicals (like corrosion inhibitors) 

should be run, since its known that many film-forming corrosion inhibitors may affect the 

performance of the KHIs negatively (Kelland 2009). 

 

For optimal performances, the ideal molecular weight for a KHI polymer is usually around 

1500-3000 (Del Villano 2009). If the molecular weight is below 1000 the performance of the 

KHI drops rapidly. At increasing molecular weights above 3000 the performance drops 

slowly, but does not disappear. A low molecular weight polymer has the added advantage of 

keeping the viscosity low, which is beneficial for the flow (Del Villano 2009).  

 

KHIs work successfully by delaying the nucleation and growth of crystals, but fail to inhibit 

agglomeration of the crystals once nucleation starts (Oskarsson, Uneback et al. 2005). Due to 

this limitation the KHIs are less desirable for situations with long shut-in periods. But still, 

KHIs are used in low concentrations and are cost effective (Oskarsson, Uneback et al. 2005). 
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2.2.3 Anti-Agglomerants 

 

AAs are surface active chemicals used in pipelines, not in drilling (Sloan and Koh 2008). As 

the name indicates, AAs prevent agglomeration. They do not attempt to prevent nucleation of 

hydrate crystals, rather they prevent the agglomeration and deposition of hydrate crystals and 

the consequent formation of plugs, such that a transportable hydrate slurry is formed (Kelland 

2006). This class works better than KHIs when it comes to preventing gas hydrate formation 

plugging at higher subcooling. AAs are applicable for deepwater applications (Kelland 2009).  

 

Two classes of AAs are commercially in use; production or pipeline AAs and gas well AAs 

(Kelland 2009). The first class allows the hydrates to form as transportable non-sticky slurry 

of hydrate particles dispersed in the liquid hydrocarbon phase. The second class, gas well 

AAs, disperse hydrate particles in an excess of water.  

 

AAs require the presence of a liquid hydrocarbon phase to transport the suspension of the 

converted hydrate crystals. AAs cannot be used at high water cuts. (Kelland 2009). 

 

 

2.3 Test apparatus for LDHIs 

 

There are different types of equipment designed to study LDHIs. A very effective and simple 

technique to study growth inhibition involves measuring the growth rate of a single 

tetrahydrofuran, THF, hydrate crystal (Zeng, Wi et al. ; Makogon, Larsen et al. 1997). 

Threshold hydrate inhibitors form structure II hydrates, the same structure that is usually 

formed by natural gas hydrates. 

 

Another apparatus is the ball-stop rig or rocker rig (Kelland 2006). The technique using 

rocking cells is based mainly on visual observation of a metal ball in motion (Oskarsson, 

Uneback et al. 2005). The ball moves back and forth in the cell, which rocks at a steady rate 

in a mixture of oil, water and gas under pressure and declining temperature. When formed, the 

hydrates can be seen through a sapphire window. If the formation of hydrates impacts the 

movement of the metal ball, it will be observed and usually considered catastrophic 

(Oskarsson, Uneback et al. 2005). When evaluating AAs, as in the case of hydrates where 
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they are allowed to form, they must be limited in size and spread to allow continuous 

movement of the ball (Oskarsson, Uneback et al. 2005). The rocking cells are in many cases 

used by service companies as the first step in qualifying a product (Kelland 2009). Both THF 

hydrate (Jussaume, Canselier et al. 1999; Talley, Mitchell et al. 2000) and natural gas hydrate 

(Deaton and Frost 1937; Talley, Mitchell et al. 2000) can be made in such ball-stop cells. The 

rocking rig using natural gas hydrate is a simple but excellent test equipment for AAs 

(Kelland 2006). 

 

According to Klomp and Mehta (Klomp and Mehta 2007) Shell used rocking cells to assess 

the anti-hydrate activity of KHIs. The equipment is shown in Fig. 2-6. 

 

 

Fig. 2-6 The rocking cells used by Shell GSI. The picture to the left shows the whole cell assembly (containing 24 cells), as 
it is mounted to the seesaw. The figure to the right shows an individual cell and the main parts of which comprise: the 1’’ 
tee (1), the end-nuts (2), the pressure transducer (5), a HP quick-connect gas inlet (6), a ball valve (8) and O-ring 
tightened blind flanges (11) (Klomp and Mehta 2007). 

 

The University of Stavanger has recently invested in a Sapphire Rocking Cell (in co-operation 

with Statoil) to test LDHI. The sapphire test cells are entirely transparent and the whole 

sample chamber is visible for close observation of the samples behavior and the structure of 

the composed gas hydrates (PSL-Systemtechnik 2011). The measuring principle of the 

rocking cell is based on the constant rocking of temperature-controlled, pressurized test cells 

(PSL-Systemtechnik 2011). The technique using the sapphire rocking cells is based on the 

visual observation of a metal ball in motion, described earlier (Oskarsson, Uneback et al. 

2005). 
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A high-pressure stirred cell or autoclave is also a commonly used apparatus (Arjmandi, 

Tohidi et al. 2005). An autoclave is an apparatus in which special conditions (high or low 

pressures or temperatures) can be established for a variety of applications, and make an ideal 

vessel for fast hydrate inhibitor hold-time determination (Sloan 2011). The cell is placed in a 

cooling bath where the pressure, temperature, and sometimes torque exerted on the stirrer are 

measured. Some cells have windows for visual observations while others are entirely made of 

sapphire (Kelland 2006). Mini-autoclaves have been developed for rapid screening of LDHIs 

(Lund, Akporiaye et al. 2004; Oskarsson, Lund et al. 2005; Oskarsson, Uneback et al. 2005).  

 

Fig. 2-7 shows the set-up of a high pressure autoclave apparatus used to test KHI 

performances (Kelland 2006). 

 

 

Fig. 2-7 Sapphire cell high pressure test equipment (Kelland, Svartås et al. 2000) 

 

A more complex apparatus is the vertical placed pipe-wheel or loop-wheel. The pipe is 

usually of 1-3 inches in diameter, and can have a window for visual observation (Kelland 

2006). It is pressurized before it’s rotated in a cooling chamber (Kelland 2006). Pressure, 

temperature, and torque exerted on the wheel can be measured (Lippmann, Kessel et al. 1995; 

Urdahl, Lund et al. 1995; Lund, Urdahl et al. 1996). Tests in large loops and pipe wheels are 

generally the last and best step before the field trials or field implementation of the KHI 

(Kelland 2009). 
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Alternatively a horizontal flow loop can be used. A simple flow loop can used for tests using 

THF hydrates at atmospheric pressure, however, this type of loop has limited scope of use 

(Pakulski 1997). Most loops used today are high-pressure loops using natural gas, condensate, 

or oil and an aqueous phase (Kelland 2006). They can range from the mini-loop (e.g. ¼ inches 

in diameter) to the full scale pilot loop of 4 inches in diameter or more (Reed, Kelley et al. 

1993; Talley, Mitchell et al. 2000).  
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3. Materials and methods 

 

 

3.1 Solutions and chemicals  

 

Four major KHIs are tested. Two are delivered by BASF Corporation and two from 

International Specialty Products, ISP. Luvicap 55W and Luvicap EG are both delivered by 

BASF, while Inhibex 101 and Inhibex 501 are delivered by ISP.  

 

The first break-through in KHI technology came at CSM (Colorado School of Mines) in 1991, 

when they, during a ball-stop test, came across a polymer, poly(vinylpyrrolidone) (PVP), that 

delayed the formation and the agglomeration of THF hydrates, see Fig. 3- 1 (Long, Lederhos 

et al. 1994; Sloan 1995). 

 

 

Fig. 3- 1 The structure of poly(vinylpyrrolidone). 

 

PVP has five rings and is a member of the series of polyvinyllactams which have two main 

suppliers, BASF and ISP (Kelland 2006). CSM tested a hair-care product from ISP called 

Gaffix VC-713, a terpolymer, which contains a high proportion of the seven-ring monomer, 

vinylcaprolactam (VCap) as well as vinyl pyrrolidone (VP) and dimethylaminoethyl 

methacrylate (DMAEMA) (Kelland 2006). CSM also tested the homopolymer 

polyvinylcaprolactan (PVCap), see Fig. 3- 2 (Kelland 2006). 
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Fig. 3- 2 The structure of polyvinylcaprolactam (Kelland 2006). 

 

It can be seen from Fig. 3- 3 that KHIs are polymers composed of polyethylene strands, from 

which are suspended lactam (with a N atom and a C=O group) chemical rings that are both 

approximately spherical in shape and polar (Sloan 2011). The key to the function of these 

KHI polymers is that they adsorb onto the surface of the hydrate, with the polymer pendant 

group as a “pseudo-guest”, in a hydrate cage growing at the crystal surface (Sloan 2011). 

 

 

 

Fig. 3- 3 Repeating chemical formulas for four KHIs. Every line angle in the figure represents a CH2 group. The upper 
horizontal angular line with a repeated parenthesis “( ) x or y” in each structure suggests that the monomer structure is 
repeated “x or y” times to obtain a polymer (Sloan 2011). 
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The pendant lactam groups act to “anchor” the polyethylene polymer backbone to the 5
12

6
4
 

hydrate cages surface, and will not allow the polymer to dislodge (Sloan 2011). Two of the 

key KHI properties are (1) the pendant group on the polymer must fit into an incomplete, 

growing 5
12

6
4
 cage; and (2) the spacing of the pendant groups on the polymer backbone must 

match the spacing of the growing 5
12

6
4
 cages on the hydrate crystal surface, see Structure II in 

Fig. 3- 4 (Sloan 2011). 

 

 

 

Fig. 3- 4 The three repeating hydrate unit crystals and their constitutive cages (Sloan 2011). 

 

 

The concentrations of the four different gas hydrate inhibitors can be seen in Table 3- 1. 

 

Table 3- 1 The concentrations of the relevant gas hydrate inhibitors. 

Hydrate Inhibitor Concentration  

Luvicap 55W 53.8 wt%  in water 

Luvicap EG 41.1 wt% in monoethylene glycol (MEG) 

Inhibex 101 50.0 wt%  in butyl glycol ether (BGE) 

Inhibex 501 50.0 Wt% in butyl glycol ether (BGE) 
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3.1.1 Composition of the Synthetic Natural Gas 

 

The composition of the synthetic natural gas, SNG, used for the experiments is presented in 

Table 3- 2. 

 
Table 3- 2 The composition of the SNG. 

Component Mole% 

Methane 80.4 

Ethane 10.3 

Propane 5.0 

Iso-butane 1.65 

n-butane 0.72 

N2 0.11 

CO2 1.82 

 

 

3.2 The Rocking Cell RC5 

 

The test rig used for the experiments was delivered by PSL in the end of November 2010, and 

the first experiment was run the 1
st
 of December. The rig is called Rocking Cell RC5, 

shortened RC5, and consists of 5 independent 40 ml rocker cells. Each of the cells has two 

magnets on the underside of them, used to fasten them on the contrary magnet in the cell bath.  

 

Fig. 3- 5 shows the set-up of the rig. The set up includes the computer and the screen, the 

cooling bath placed under the computer, the vacuum pump on the left side of the computer 

and the RC5 Control Panel placed on top of the booster. A bottle of natural gas is connected 

to the RC5 control. The booster is used to reach the right pressure when the pressure in the 

natural gas bottle is below operational pressure. 

 

The gas used for flushing the cells is transported through a pipeline out of the room and into a 

ventilation chamber. When flushing are the cells filled with 2-3 bar of nature gas and rocked 

for ca. 10 minutes. After rocking is the gas removed using a vacuum pump and released in the 

room. The amount of gas small and the emission is considered harmless.  
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Fig. 3- 5 The complete set-up of the rig. The bottle with natural gas is barely visible in the left corner. The blue spiral pipe 
on top of the booster is a air gun used to dry the cells. 

 

Fig. 3- 6 shows a picture of the cell bath and the 5 cells. The cells are connected to a 

temperature sensor, the white unit, and to a pressure sensor, the thin, orange unit. In the right 

corner of the bath is the cell bath temperature sensor. 

 

 

Fig. 3- 6 The 5 cells of the Rocking Cell 5. 

 

A cooler device, the cooling bath, is located under the computer. Water circulates from the 

cooler to the cell bath and controls the temperature in the bath. The temperature can be 
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administrated either from the computer software WinRC or directly from the cooler, the 

Huber cryostat 230cc cooling bath.  

 

There have been some problems with the temperature sensors as they have stopped working. 

They show no visible damage, but the temperatures they’re logging are of big variation and 

log temperatures going from 16 ᵒC to negative 30 ᵒC in a matter of seconds. The 

consequences are not severe as there are 5 sensors and even if one is damaged there will still 4 

sensors working. 

 

New temperature sensor should be calibrated in accordance with the method described in the 

manual that followed the RC5. 

 

From the start-up in December 2010 several new versions of the software have been uploaded 

on the customer page of PSL. 

 

A big spanner is used to open and close the cover caps of the cells, see Fig. 3- 7. The cover 

should be tight, but not difficult to open. When placing the cells in the holder make sure that 

the temperature sensors won’t have any sharp bends that may cause them damage. 

 

 

Fig. 3- 7 The cover of the cells are fastened and loosened with a big spanner.  
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3.2.1 Test procedure 

 

 

1) Starting the equipment 

 

Make sure that the Huber cryostat 230cc cooling bath is started before turning on the 

computer using the button on the front of the RC5 – hold in for 3-4 seconds. This is to avoid 

problems controlling the temperature from the WinRC software. 

 

 

2) Preparing the cells 

 

The different cells should be placed on the same spot in the cell bath every time. The cells are 

marked from 1-5 on the temperature sensors. When the temperature sensors are changed, 

make sure to mark the new ones correctly. Use the same screw cap and ball for each of the 

cells. 

a) For simplicity; start with cell 5. Place the ball in the cell and add wanted volume of 

solution. Some of the liquid may be lost due to splashing if the ball is added after the 

liquid. 

Be careful not to tilt the cell, as fluid may spill through gas inlet pipe. 

b) When the cell is filled, fasten the cover cap using spanner, see Fig. 3- 7. The cap 

should be tight to avoid leakages. 

c) Place the cell in the bath, and connect the temperature sensor (the white cable) and the 

gas cable (the orange cable). 

 

Repeat this procedure for all the cells. 

 

For safety reasons, place the plastic cover over the bath before flushing, rocking and 

pressurizing. The cover should be on until the experiment is finished. 
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3) Flushing 

 

Flushing can be done in two ways:  

i) Flushing the rocking cells 2 times at ca. 30 bar to remove air. 

ii) Using a vacuum pump and pressurize with 2-3 bar of gas to remove air. 

 The second method, using a vacuum pump, is preferred in order to save gas.  

 

i) Flushing using 30 bar pressure 

 

On the “RC5 Control Panel”: 

a) Make sure that all valves are closed. 

b) Open the gas bottle. 

c) Open “Gas 1”. 

d) Open “Gas Out”. 

 

On the “Rocking Cell RC5”: 

a) Open the valves of the cells ready for flushing. 

b) Close the “Inlet”/”Outlet” valve. 

c) Close the valves of the cell. 

d) Close “Gas Out” 

e) Close the gas bottle. 

 

Start rocking for 5-10 minutes. Be aware of potential leakages. This is seen as pressure drops 

higher than what is expected due to the temperature decrease. Use WinRC software to check 

the pressure. 

 

Since this only takes 5-10 minutes can pkt. d) and e) above can be dropped. If the rocking 

goes on for a longer period pkt. d) and e) should be executed. 

f) When the rocking is completed, stop the motor. 

g) Start depressurizing the cells by opening the valves of the cells. 
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h) Depressurize slowly by opening the “Outlet” valve. Typical “outlet-speed” should not 

expand 1 bar per second. Some chemicals tend to start foaming, and high outlet-speed 

will increase the foam production. 

i) When the (gauge) pressures in the cells are 0 bar: close the valves. 

 

Repeat the procedure. When finishing pkt. i) the second time, start rocking again to see if the 

cell pressure increases. If there is any pressure left, open the cell valves and use the “Outlet” 

valve to release the pressure.  

 

 

ii) Flushing using a vacuum pump 

A safety device, a valve, is installed on the gas outlet pipe. The valve should point to the left 

(towards the screen) when the vacuum pump is not in use. As the valve points to the left, the 

gas (using the “Outlet” valve) is transported to the ventilation chamber. 

 

When flushing the cells: 

a) Make sure that the “Outlet” and “Inlet” valves are closed. 

b) Turn the valve (found on the back of the computer) and make sure that the arrow 

points to the right (towards the vacuum pump). 

c) Open the cells that should be flushed. 

d) Turn on the vacuum pump. 

e) Open the “Outlet” valve and let it pump for 5-10 minutes. 

According to the instruction manual of the vacuum pump, 99% of the air is removed from the 

cells. 

 

f) Close the “Outlet” valve. 

g) Turn off the vacuum pump. 

h) Fill the cells with 2-3 bar of natural gas, same procedure as for method i). 

i) Close the cells and the “Inlet” valve and leave it rocking for 5-10 minutes. 
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The vacuum pump should be used again: 

j) Open the cells. 

k) Turn on the vacuum pump. 

l) Open “Outlet” and leave it for 5-10 minutes. 

 

The 2-3 bar of gas found in the cells will now be transported from the cells and out of the 

vacuum pump. The gas is released into the laboratory.  

 

Another 99% of the air in the cells is removed, leaving a total of 0.01% air left in the cells. 

m) Close the “Outlet” valve. 

n) Turn off the pump. 

o) Turn the valve (found on the back of the computer) 180ᵒ so that the arrow points 

towards the screen. 

The cells are ready to be pressurized. 

 

 

4) Pressurizing 

 

On the “RC5 Control Panel”: 

If the pressure in the gas bottle is lower than operation pressure, boosting is necessary. This is 

explained in paragraph 5) Boosting.  

 

Make sure all the valves are closed. 

a) Open the gas bottle.  

b) Open “Gas 1”. 

c) Open “Gas Out”. 

 

On the “Rocking Cell RC5”: 

d) Open the valves ready for pressurizing. 

e) Adjust the pressure with the “Inlet” and “Outlet” valves until wanted pressure is 

reached. 
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f) Close the “Inlet”/”Outlet” valve. 

g) Close the valves of the cell. 

h) Close “Gas Out” 

i) Close the gas bottle. 

 

 

5) Boosting 

 

If the pressure in the gas bottle is lower than the operation pressure, boosting is necessary to 

reach the right pressure. 

 

Make sure that the 5 cell valves are closed, as well as the outlet/inlet valves before starting the 

booster. 

 

The booster is placed under the “RC5 Control Panel”, and has one on and off button, and a 

big, red emergency button.  

 

a) As the booster is started, an increase in pressure can be seen on the Pneumatic 

pressure gauges on the “RC5 Control Panel”. When the pressure is sufficiently high, 

the booster should be turned off. The booster will stop automatically when the 

maximum pressure of 140 bar is reached. 

b) Open the “Shift valve” on the “RC5 Control Panel” and boost as long as necessary. 

Close it as operation pressure is reached. 

c) Open the cells before carefully opening the “Inlet” valve. Close when operation 

pressure is achieved. 

 

If the pressure is still too low, repeat the process until sufficient pressure is achieved.  

77 bar of pressure can be reached until there is ca. 8 bar left in the bottle. 

 

 

  



36 

 

6) Computer settings 

 

The computer settings will vary depending on the type of experiment. 

 

The settings in Table 3- 3 were used for the constant cooling method. The start temperature is 

20.5ᵒC. By choosing “Ramp” a stepwise decrease or increase in temperature is selected. In 

this case the temperature is said to decrease by 0.1ᵒC every 6
th

 minute. The time it takes to go 

from 20.5ᵒC to 2.0ᵒC which is the chosen temperature, is seen in the “Time” column. In this 

case, 18:30 (hh:mm). 

 

2ᵒC will be kept for 1 hour, before it is heated to 25ᵒC in 1 hour. This is to make sure that all 

of the hydrates are melted. The temperature is kept at 25ᵒC for 20 minutes. Finally the 

temperature is decreased to the start temperature, 20.5ᵒC. 

  

Table 3- 3 Computer settings used for the constant cooling method. 

Step Command Rocking 

Rate 

Angle Set 

Temp 

[⁰C] 

Time 

[hh:mm] 

Ramp Target 

Temp 

[⁰C] 

Step 

Width 

[⁰C] 

Step 

duration 

[m] 

1 Flowing 20 40 20.5 18:30*  2.0 0.1 6 

2 Flowing 20 40 2.0 01:00  - - - 

3 Flowing 20 40 25.0 01:00  - - - 

4 Flowing 20 40 25.0 00:20  - - - 

5 Flowing 20 40 20.5 00:30  - - - 

* This value is based on step width and step duration. 

 

Press “Start Recording”. 

 

The computer settings used for the isothermal method are shown in Table 3- 4. The rocking 

should start as wanted temperature is reached. The subcooling temperature is 7ᵒC, and the 

start temperature is 20.5ᵒC. If the temperature is reduced by 0.3ᵒC every minute will the 

subcooling temperature be reached after 45 minutes. The rocking will start, and the cells are 

set to rock long enough for hydrate to form. The heating procedure is the same as for the 

constant cooling method.  
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Table 3- 4 Computer settings used for the isothermal method. 

Step Command Rocking 

Rate 

Angle Set 

Temp 

[⁰C] 

Time 

[hh:mm] 

Ramp Target 

Temp 

[⁰C] 

Step 

Width 

[⁰C] 

Step 

duration 

[m] 

1 Flowing 1* 1* 20.5 00:45**  7.0 0.3 1 

2 Flowing 20 40 7.0 19:00  - - - 

3 Flowing 20 40 25.0 01:00  - - - 

4 Flowing 20 40 25.0 00:20  - - - 

5 Flowing 20 40 20.5 00:30  - - - 

* The lowest rate and angle possible. 

** Depends on the width and step duration. 

 

 

7) Depressurizing 

 

On the “Rocking Cell RC5”: 

a) Open the cell valves. 

b) Release pressure slowly (ca. 1 bar per second) until (gauge) pressure is 0, and rock for 

5-10 minutes. If the pressure increases, open the relevant cells and release the 

pressure. The safety valve on the back of the computer should point towards the screen 

to avoid releasing the gas into the lab. 

 

8) Cleaning the cells 

 

Make sure there is no pressure in the cells as the cells are disconnected from the pressure 

sensors. 

 

Note that the volume in the bath will decrease when the cells are removed. An alarm may go 

off on the Huber cryostat 230cc cooling bath. By closing the red pump valve on the cooling 

bath, the liquid will be kept in the cell bath. Distilled water can be added if the volume 

decreases. To restart the circulation, press start on the Huber menu  Scroll down to start 

circulation  Enter. Make sure to open the pump valve when the circulation is started.   
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a) For simplicity; start with cell 1. 

b) Remove the screw cap and empty the cell. 

c) Wash the cell, the ball and the screw cap according to this procedure: 

a. Zalo + water 

b. Tap water (make sure to remove ALL the Zalo from the equipment) 

c. Acetone 

d. Tap water 

e. Distilled water 

 

A special sponge brush may be used if necessary. 

d) Dry the equipment by using an air gun. 

e) Place the cell, ball and screw cap in the special fitted suitcase. Make sure that the cells 

are placed on the right place; every cell has its own place, marked from 1-5. 

 

Repeat this procedure for all 5 cells. 

 

When not in use, the cells should be covered to protect them from the environment.  

 

 

9) Updating the software 

 

Software updates is found on the homepage of PSL Systemtechnik, http://www.psl-

systemtechnik.de/haupt.html?&L=1. Username and passwords are found in the lab-book. 

  

http://www.psl-systemtechnik.de/haupt.html?&L=1
http://www.psl-systemtechnik.de/haupt.html?&L=1
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3.3 Cooling method 

 

The performance of KHIs on gas hydrates can be tested using several methods, for instance: 

A. An isothermal method (Cohen, Wolf et al. 1998; Sloan, Subramanian et al. 1998; 

Cingotti, Sinquin et al. 2000; Kelland, Svartås et al. 2000; Arjmandi, Tohidi et al. 2005; 

Lee and Englezos 2006; Del Villano, Kommedal et al. 2008). 

B. A constant cooling method (Kelland, Svartås et al. 1994; Ajiro, Takemoto et al. 2010). 

C. The ramping method (Reed, Kelley et al. 1993; Colle, Oelfk et al. 1999; Del Villano, 

Kommedal et al. 2009). 

 

The methods used in this report is method A (isothermal) and B (constant cooling), and these 

are presented in Chapter 3.3.1 and 3.3.2. Method C is not used in this report, but is briefly 

mentioned in Chapter 3.3.3.  

 

 

3.3.1 Constant cooling method 

 

When using a constant cooling method the computer settings are similar to what is found in 

Table 3- 3 in the test procedure in section 3.2.1. The cells are filled with distilled water and 

inhibitor and cooled down to a very low temperature (high subcooling) (Del Villano and 

Kelland 2011). For the experiments in this report the water and the inhibitor was cooled down 

to 2ᵒC. Typical results of pressure, temperature and time can be seen in Fig. 3- 8. 

 

The cooling is carried out in a closed vessel over a short period of time, and the induction 

time, ti, is difficult to determine since the pressure also drops due to the cooling of the fluid 

(Del Villano and Kelland 2011). The induction time in gas hydrate crystallization is an 

important characteristic of the kinetics of the process. Long induction time would allow 

transport of fluids through the production facilities to the processing plant without 

crystallization of hydrates in the system (Kashchiev and Firoozabadi 2002). The induction 

time, also called the nucleation delay time, is dependent on the subcooling in the system – 

higher subcooling gives a lower induction time (Del Villano and Kelland 2011). 
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In Fig. 3- 8 the lines on the bottom represents the data of the temperature sensors. The 

temperature can be read on the vertical axis to the right. The lines on the top show the data of 

the pressure sensors. The pressure slowly starts to decrease after ca. 900 minutes. At this point 

the pressure is ca. 69 bar and the temperature is ca. 7ᵒC. After ca. 1000 minutes a fast pressure 

drop can be seen, at a pressure of ca. 66 bar and temperatures around 4ᵒC. 

 

 

 

Fig. 3- 8 Testing Luvicap 55W at 5000 ppm 03.12.10.  

   

 

3.3.2. Isothermal method 

 

The isothermal method is based on cooling the fluids in the cells to a certain subcooling 

without rocking. The computer settings are similar to what is presented in Table 3- 4 in 

section 3.2.1. The cells will start rocking as the temperature is reached. The first sign of 

pressure drop is called the induction time, ti. Hydrates may have formed earlier than this, but 

they are not detected. The time between the ti and ta (rapid gas hydrate formation, see Chapter 

3.3.5) is the period in which the hydrate crystals are growing slowly, and the pressure is 
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slowly decreasing. The rapid growth of gas hydrates can be seen as a strong decrease in 

pressure (Del Villano and Kelland 2011), see Fig. 3- 9. 

 

In Fig. 3- 9 the lines on the bottom represents the temperature sensors. The temperature can 

be read from the vertical axis to the right. From the readings it’s visible that the rocking 

temperature is 6ᵒC and it is reached after ca. 60 minutes, ti. The lines on the top are the data 

from the pressure sensors. Ca 400 minutes after 6ᵒC was reached (to-ti, in this case: 460 mins 

– 60 mins) the pressure slowly starts to decrease. At this point the pressure is ca. 68 bar. 460 

minutes after 6ᵒC was reached (ta-ti, in this case: 520 mins – 60 mins) a rapid pressure drop is 

observed. The pressure is ca. 64 bar. 

 

 
Fig. 3- 9 Testing Luvicap 55W at 5000 ppm 18.03.11.  

 

 

3.3.3 Ramping method 

 

This method is carried out by stepwise cooling. The fluids are cooled (with agitation) to a 

certain subcooling, held at this temperatures for typically a few hours, then cooled rapidly to a 

higher subcooling and then held again (Del Villano and Kelland 2011). This is repeated 



42 

 

several times until hydrates have formed. As mentioned earlier in the report this method was 

not used, but a typical graph of a ramping KHI test can be seen in Fig. 3- 10 (Del Villano and 

Kelland 2011). 

 

 

Fig. 3- 10  A ramping test of a KHI in a closed vessel. Rapid gas hydrate formation can be seen at 1180 min after the start 
of the experiment (Del Villano and Kelland 2011). 

 

 

3.4 Gas hydrate onset temperature 

 

The gas hydrate onset temperature, To, is defined as the temperature of a system being cooled 

at which hydrates are first detected (Sloan 2011). Invisible hydrate nucleation and crystal 

growth events actually takes place before a system reaches To. This is found where the linear 

pressure line starts to deviate from its path. This exact point may be difficult to spot, but by 

drawing a linear line following the pressure and see where the pressure line is deviating from 

the drawn line, To can be found, see Fig. 3- 11. 

 

In Fig. 3- 11 a linear line is drawn following the pressure drop. At 6.3ᵒC the pressure line 

clearly starts to deviate from the drawn line, and gas hydrates have started to form. 
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The gas hydrate onset temperature is named To [ᵒC] for constant cooling method and to [mins] 

for the isothermal method for the rest of the report. 

 

  
Fig. 3- 11 Luvicap 55W 5000 ppm tested 03.12.10, cell number 5.  

 

 

3.5 Rapid gas hydrate formation temperature 

 

After the first gas hydrates starts to form there is a snow ball effect and at a certain point the 

formation will reach its maximum. This point when the gas hydrate formation is most rapid is 

called the point of rapid gas hydrates formation. From the graph this point is found where the 

slope is the steepest, see Fig. 3- 12. 

 

In Fig. 3- 12 a vertical line is drawn from the steepest point at the pressure line until it crosses 

the temperature line. In this case the rapid gas hydrate formation temperature is at 3.8ᵒC. 

 

The rapid gas hydrate formation temperature is named Ta [ᵒC] for constant cooling method 

and ta [mins] for the isothermal method for the rest of the report. 
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Fig. 3- 12 Luvicap 55W 5000 ppm tested 03.12.10, cell number 5.  

 

 

3.6 Isobaric operation 

 

The start pressure is ~76 barg (77 bar) for all the experiments, and no pressure is released 

during the test. The first pressure drop is due to decreasing temperature. In isobaric operation 

the system pressure is maintained constant, by the exchange of gas or liquid with an external 

reservoir (Sloan and Koh 2008). The temperature is decreased until the formation of hydrate 

is indicated by significant addition of gas (or liquid) from a reservoir (Sloan and Koh 2008). 

After gas hydrate formation the temperature is slowly increased (maintaining constant 

pressure by fluid withdrawal) until the last crystal of hydrate disappears (Sloan and Koh 

2008). This point, taken as the equilibrium temperature of gas hydrate formation at constant 

pressure, may be determined by visual observation of hydrate dissociation or at a constant 

temperature as simple hydrate dissociate with heat input (Sloan and Koh 2008). 
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3.7 Delta pressure 

 

 

In the Appendix [A] Table of Results is a column reporting the pressure drop for each cell, 

due to gas hydrate formation. This value is not exact, but it still gives an estimate on what the 

pressure drop caused by the hydrates will be. 

 

The pressure drop is found by subtracting the pressure before hydrates started to form from 

the pressure after hydrates have formed, and before the temperature starts increasing (from 

2ᵒC), see Fig. 3- 13. For simplicity are the pressure before hydrates start to form said to be 

around 66 bar for all the experiments. The delta pressure, DP, for Fig. 3- 13 is therefore 12 

bar (66 bar – 54 bar). 

 

 

Fig. 3- 13 Luvicap 55W 5000 ppm tested 03.12.10.  

 

 

  



46 

 

3.8 Parameters 

 

Some parameters are changed in order see how they’ll impact the gas hydrate formations.  

 

3.8.1 Standard parameters 

 

Some standard conditions are set in order to get comparable results from the experiments. The 

standard parameters are shown in Table 3- 5. 

 

Table 3- 5 Standard parameters used for testing gas hydrate formations at the RC5. 

Parameter Value 

Cell volume 20 ml 

Rocking rate 40 rocks per minute 

Rocking angle 40ᵒ 
Rocking ball Steel ball 

Concentration 2500 ppm and 5000 ppm 

 

 

For the isothermal method experiments the standard subcooling temperature is set to 7ᵒC. 

 

 

3.8.2 Changes in the parameters 

 

In order to see how the different parameters would affect the gas hydrate formation, the 

parameters were changed, one at the time. 

 

 The cell volume was increased from 20 ml to 30 ml in each cell, and decreased from 

20 ml in each cell to 10 ml. 

 

 The rocking rate was reduced from 20 rocks per minute to 10 rocks per minute. 

 

 The rocking angle was reduced from 40ᵒ to 25ᵒ. 

 

 The steel balls were replaced with glass balls with a rougher surface. 
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 The concentration was also tested at 1000 ppm and at 10 000 ppm. 

 

 The cooling rate was tested at “fast”, where cooling process took ca. 6 hours, at 

“normal” where the cooling process lasted for ca. 18 hours, and “slow” where the 

cooling process took ca. 54 hours.  

 

 

The results from these changes can be seen in Chapter 4 Results and Discussion. 
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4. Results and Discussion 

 

 

The experiments were set to start rocking at 7ᵒC using the isothermal method. 

 

KHI performance tests were carried out in a high pressure rocker rig, and initial pressure was 

ca. 77 bar. Standard natural gas was used for all the experiments. Structure II hydrates were 

formed. For all the experiments the aqueous phase was distilled water. 

 

The calculations of percentage deviation can be seen in Appendix [C] Calculations. 

 

 

4.1 How changing the aqueous liquid volume in the cells affects the result s 

 

The cell volume was decreased from standard 20 ml to 10 ml in each cell, and increased from 

standard 20 ml in each cell to 30 ml in each cell. Using the constant cooling method the 

experiments were run at concentrations of 2500 ppm and 5000 ppm, while only 5000 ppm 

was tested using the isothermal method. 

 

 

Constant cooling method 

 

Results show that an increase in cell volume lead to a decrease in To and Ta values. This can 

be seen graphically in Fig. 4-1 (2500 ppm), and in Fig. 4-2 (5000 ppm), and in numbers in 

Table 4-1 (2500 ppm) and Table 4-2 (5000 ppm). 

 

At 2500 ppm the average To values were: 

At 10 ml : 8.3ᵒC 

At 20 ml : 7.1ᵒC 

At 30 ml : 6.4ᵒC 
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At 2500 ppm the average Ta values were: 

At 10 ml : 6.7ᵒC 

At 20 ml : 5.8ᵒC 

At 30 ml : 5.0ᵒC 

 

When the volume was reduced from 20 ml in each cell to 10 ml, the average To value 

increased with 16.9%. The corresponding average Ta value increased with 15.5%.  

 

When the volume was increased from 20 ml in each cell to 30 ml, the average To value 

decreased with 9.9%. The corresponding average Ta value decreased with 13.8%.  

 

Table 4-1 Data used to make Fig. 4-1. The content of the cells is Luvicap 55W and distilled water at a concentration of 
2500 ppm. The tests were performed 08.03.11 (10 ml), 27.01.11 (20 ml) and 10.03.11 (30 ml). The data is extracted from 
Appendix [A] Table of Results. 

Volume [ml] To [ᵒC] Ta [ᵒC] 

10 8.0 6.3 

10 8.3 6.8 

10 8.2 6.7 

10 8.6 6.9 

10 8.2 6.8 

20 7.0 5.9 

20 7.0 5.8 

20 7.1 5.8 

20 7.4 5.8 

30 6.3 5.0 

30 6.8 5.0 

30 6.4 5.0 

30 6.4 5.0 

30 6.3 5.0 
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At 5000 ppm the average To values were: 

At 10 ml : 6.3ᵒC 

At 20 ml : 6.2ᵒC 

At 30 ml : 4.8ᵒC 

 

At 5000 ppm the average Ta values were: 

At 10 ml : 4.3ᵒC 

At 20 ml : 3.4ᵒC 

At 30 ml : 2.2ᵒC 

 

When the volume was reduced from 20 ml in each cell to 10 ml, no statistically significant 

difference was observed on the average To. The corresponding average Ta value increased 

with 26.5%.  

 

When the volume was increased from 20 ml in each cell to 30 ml, the average To value 

decreased with 22.6%. The corresponding average Ta value decreased with 35.3%.  
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Fig. 4-1 The relationship between To and Ta values and different cell volumes, using Luvicap 55W at 2500 ppm. The 
highest temperatures at each volume are from 2500 ppm. 
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Table 4-2 Data used to make Fig. 4-2. The content of the cells are Luvicap 55W and distilled water at a concentration of 
5000 ppm. The tests were performed 09.03.11 (10 ml), 02.02.11 (20 ml) and 14.03.11 (30 ml). The data is extracted from 
Appendix [A] Table of Results. 

Volume [ml] To [ᵒC] Ta [ᵒC] 

10 6.9 4.3 

10 6.4 4.2 

10 6.0 4.1 

10 5.9 4.2 

10 6.4 4.8 

20 6.3 3.5 

20 6.2 3.3 

20 6.1 3.5 

20 6.1 3.5 

20 6.5 3.4 

30 4.4 2.2 

30 4.9 2.3 

30 4.9 2.0 

30 4.8 2.3 

30 5.1 2.0 

 

 
Fig. 4-2 The relationship between To and Ta values and different cell volumes, using Luvicap 55W at 5000 ppm. The 
highest temperatures at each volume are from 2500 ppm. 
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Isothermal method 

 

Results show that an increase in cell volume lead to an increase in to and ta values. This can be 

seen graphically in Fig. 4-3, and in numbers in Table 4-3. 

 

At 30 ml the experiment was stopped after 1132 minutes as no gas hydrates were formed.  

 

At 5000 ppm the average to values were: 

At 10 ml : 211 mins 

At 20 ml : 650 mins 

At 30 ml : >1132 mins 

 

At 5000 ppm the average ta values were: 

At 10 ml : 243 mins 

At 20 ml : 699 mins 

At 30 ml : >1132 mins 

 

When the volume was reduced from 20 ml in each cell to 10 ml, the average to value 

decreased with 67.6%. The corresponding average ta value decreased with 65.2%.  

 

When the volume was increased from 20 ml in each cell to 30 ml, the average To value 

increased with > 74.2%. The corresponding average ta value increased with > 61.9%.  
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Table 4-3 Data used to make Fig. 4-3 and Fig. 4-4. The content of the cells are Luvicap 55W and distilled water at a 
concentration of 5000 ppm. The experiments were performed 04.04.11 (10 ml), 28.03.11 (20 ml) and 03.04.11 (30 ml). 
The data is extracted from Appendix [A] Table of Results.  

Volume [ml] to [mins] ta [mins] 

10 197 213 

10 226 238 

10 141 - 

10 281 294 

10 208 226 

20 504 542 

20 657 718 

20 677 721 

20 871 932 

20 543 582 

30 >1132 >1132 

30 >1132 >1132 

30 >1132 >1132 

30 >1132 >1132 

30 >1132 >1132 

 

 

 

 

Fig. 4-3 The relationship between to and ta values and different cell volumes, using Luvicap 55W at 5000 ppm. 
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Fig. 4-4 The relationship between to and ta values and different cell volumes, using Luvicap 55W at 5000 ppm 

 

 

Comments: 

 

Though the equilibrium temperature remains the same for all the experiments, the result show 

that the induction time increased as the volume increased. 

 

One explanation may be that when going from 10 ml water to 30 ml of water, one may go 

from a gas excess system to a water excess system. This may affect the PVT response, but 

most likely not the “true growth”.  

 

More water means more inhibitor and more hydrates can be formed by a smaller gas volume 

and at a correspondingly greater pressure drop in the cells. From Appendix [A] Table of 

Results, the pressure drop in the cells (due to gas hydrate formations) increased with increased 

cell volume: 

 

10 ml in each cell gives a pressure drop of (2500 ppm/5000 ppm) : 3.2/2.5 bar 

20 ml in each cell gives a pressure drop of (2500 ppm/5000 ppm) : 10.3/9.8 bar 

30 ml in each cell gives a pressure drop of (2500 ppm/5000 ppm) : 36.5/26.3 bar 

 

The gas – water ratio could affect contact surface between these phases in some way that 

affect the probability of nucleation. 
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4.2 How changing the rocking rate affects the results 

 

The rocking rate was decreased from standard 20 rocks per minute to 10 rocks per minute. 

Using the constant cooling method the experiments was run at concentrations of 2500 ppm 

and 5000 ppm, while only 5000 ppm was tested using the isothermal method. 

 

 

Constant cooling method 

 

Results at 2500 ppm show that a decrease of the rocking rate lead to an increase in average To, 

while average Ta was the same at both rates. This can be seen graphically in Fig. 4-5, and in 

numbers in Table 4-4. 

 

Results at 5000 ppm show that a decrease of the rocking rate lead to a decrease in average To 

and a small increase in average Ta value. This can be seen graphically in Fig. 4-6, and in 

numbers in Table 4-5. 

 

At 2500 ppm the average To values were: 

At 10 rocks per minute : 8.1ᵒC 

At 20 rocks per minute : 7.1ᵒC 

 

At 2500 ppm the average Ta values were: 

At 10 rocks per minute : 5.8ᵒC 

At 20 rocks per minute : 5.8ᵒC 

 

When the rocking rate was reduced from 20 rocks per minute to 10 rocks per minute, the 

average To value increased with 14.1%. 
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Table 4-4 Data used to make Fig. 4-5. The content of the cells are Luvicap 55W and distilled water at a concentration of 
2500 ppm. The experiments were performed 23.02.11 (10 rocks per minute) and 27.01.11 (20 rocks per minute). The data 
is extracted from Appendix [A] Table of Results. 

Rocking rate  

[rocks per minute] 

To [ᵒC] Ta [ᵒC] 

10 8.2 5.9 

10 8.2 5.8 

10 8.7 5.8 

10 8.1 5.7 

10 7.2 6.0 

20 7.0 5.9 

20 7.0 5.8 

20 7.1 5.8 

20 7.4 5.8 

 

 

 
Fig. 4-5 The relationship between To and Ta values and different rocking rates, using Luvicap 55W at 2500 ppm. 

 

 

At 5000 ppm the average To values were: 

At 10 rocks per minute : 5.6ᵒC 

At 20 rocks per minute : 6.6ᵒC 

 

At 5000 ppm the average Ta values were: 

At 10 rocks per minute : 3.7ᵒC 

At 20 rocks per minute : 3.5ᵒC 

 

When the rocking rate was reduced from 20 rocks per minute to 10 rocks per minute, the 

average To value decreased with 15.2%. The corresponding average Ta increased with 5.7%.  
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Table 4-5 Data used to make Fig. 4-6. The content of the cells are Luvicap 55W and distilled water at a concentration of 
5000 ppm. The experiments were performed 21.02.11 (10 rocks per minute) and 02.02.11 (20 rocks per minute). The data 
is extracted from Appendix [A] Table of Results. 

Rocking rate  

[rocks per minute] 

To [ᵒC] Ta [ᵒC] 

10 5.3 3.7 

10 5.9 3.4 

10 5.7 3.6 

10 5.3 3.8 

10 5.8 3.8 

20 6.8 3.5 

20 6.8 3.5 

20 6.8 3.5 

20 6.2 3.3 

20 6.2 3.7 

 

 

 

 
Fig. 4-6 The relationship between To and Ta values and different rocking rates, using Luvicap 55W at 5000 ppm. 

 

 

Isothermal method 

 

Results show that a decrease in rocking rate leads to a decrease in to and ta values. This can be 

seen graphically in Fig. 4-7 (to) and Fig. 4-8 (ta), and in numbers in Table 4-6. 

 

At 5000 ppm the average to values were: 

At 10 rocks per minute : 589 mins 

At 20 rocks per minute : 650 mins 
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At 5000 ppm the average ta values were: 

At 10 rocks per minute : 660 mins 

At 20 rocks per minute : 699 mins 

 

When the rocking rate was reduced from 20 rocks per minute to 10 rocks per minute, the 

average to value decreased with 9.4%. The corresponding average ta value decreased with 

5.6%.  

 

Table 4-6 Data used to make Fig. 4-7 and Fig. 4-8. The content of the cells are Luvicap 55W and distilled water at a 
concentration of 5000 ppm. The experiments were performed 29.03.11 (10 rocks per minute), 28.03.11 (20 rocks per 
minute). The data is extracted from Appendix [A] Table of Results. 

Rocking rate  

[rocks per minute] 

to [mins] ta [mins] 

10 630 704 

10 648 721 

10 479 548 

10 586 652 

10 600 674 

20 504 542 

20 657 718 

20 677 721 

20 871 932 

20 642 582 

 

 

 

Fig. 4-7 The relationship between to values and different rocking rates, using Luvicap 55W at 5000 ppm. 
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Fig. 4-8 The relationship between ta values and different rocking rates, using Luvicap 55W at 5000 ppm. 

 

 

Comments: 

 

At 5000 ppm (constant cooling method) the reduction of the rocking rate improves the 

performance of the hydrate inhibitor, while at 2500 ppm (constant cooling method) the 

performance of the hydrate inhibitor decreased as the rocking rate is reduced. For the 

isothermal experiment the performance of the hydrate inhibitor decrease as the rocking rate is 

reduced. 

 

Anklam (et  al.) writes that if particles are held together by dispersion forces alone, and if the 

particles are separated by a steric barrier of a few nanometers, then shear forces under typical 

flow conditions should be sufficient to break apart flocks to particles (Anklam, York et al. 

2008). Reducing the rocking rate may give weaker shear forces and flocks won’t be broken 

apart. Though reducing the rocking rate of the cells in the RC5 might not affect the shear rates 

enough to see a change the induction time/temperature.  

 

More experiments should be performed to get a better answer on how the rocking rate affects 

the inhibition of gas hydrates. 
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4.3 How changing the rocking angle affects the results 

 

The rocking angle was decreased from standard 40ᵒ to 25ᵒ. Using the constant cooling method 

the experiments were run at concentrations of 2500 ppm and 5000 ppm, while only 5000 ppm 

was tested using the isothermal method. 

 

 

Constant cooling method 

 

Results at 2500 ppm show that a decrease of rocking angle just lead to a small increase in 

average To while the average Ta was the same at both concentrations. This can be seen 

graphically in Fig. 4-9, and in numbers in Table 4-7. 

 

Results at 5000 ppm show that a decrease of rocking angle lead to a decrease in average To 

while the average Ta was the same for both angles. This can be seen graphically in Fig. 4-10 

and in numbers in Table 4-8. 

 

At 2500 ppm the average To values were: 

At 25ᵒ : 7.4ᵒC 

At 40ᵒ : 7.1ᵒC 

 

At 2500 ppm the average Ta values were: 

At 25ᵒ : 5.8ᵒC 

At 40ᵒ : 5.8ᵒC 

 

When the rocking angle was reduced from 40ᵒ to 25ᵒ no statistically significant difference 

was observed, neither for average To nor average Ta. 
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Table 4-7 Data used to make Fig. 4-9. The content of the cells are Luvicap 55W and distilled water at a concentration of 
2500 ppm. The experiments were performed 02.03.11 (25ᵒ) and 27.01.11 (40ᵒ). The data is extracted from Appendix [A] 
Table of Results. 

Rocking angle [ᵒ] To [ᵒC] Ta [ᵒC] 

25 7.4 5.5 

25 8.0 6.0 

25 7.8 5.8 

25 6.9 5.9 

25 7.0 5.7 

40 7.0 5.9 

40 7.0 5.8 

40 7.1 5.8 

40 7.2 5.8 

 

 

 
Fig. 4-9 The relationship between To and Ta values and different rocking angles, using Luvicap 55W at 2500 ppm. 

 

 

At 5000 ppm the average To values were: 

At 25ᵒ : 6.2ᵒC 

At 40ᵒ : 6.6ᵒC 

 

At 5000 ppm the average Ta values were: 

At 25ᵒ : 3.5ᵒC 

At 40ᵒ : 3.6ᵒC 

 

When the rocking angle was reduced from 40ᵒ to 25ᵒ, the average To value decreased with 

6.1%. No statistically significant difference was observed for average Ta.  
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Table 4-8 Data used to make Fig. 4-10. The content of the cells are Luvicap 55W and distilled water at a concentration of 
5000 ppm. The experiments were performed 03.03.11 (25ᵒ) and 02.02.11 (40ᵒ). The data is extracted from Appendix [A] 
Table of Results. 

Rocking angle [ᵒ] To [ᵒC] Ta [ᵒC] 

25 6.9 3.9 

25 5.8 3.4 

25 6.0 3.4 

25 6.1 3.6 

25 6.3 3.6 

40 6.8 3.5 

40 6.8 3.5 

40 6.8 3.5 

40 6.2 3.3 

40 6.2 3.7 

 

 

 

 
Fig. 4-10 The relationship between To and Ta values and different rocking angles, using Luvicap 55W at 5000 ppm. 

 

 

Isothermal method 

 

Results show that a decrease in rocking angle leads to an increase in to and ta values. This can 

be seen graphically Fig. 4-11 (to) and Fig. 4-12 (ta), and in numbers in Table 4-9. 
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At 5000 ppm the average to values were: 

At 25ᵒ : 654 mins 

At 40ᵒ : 650 mins 

 

At 5000 ppm the average ta values were: 

At 25ᵒ : 723 mins 

At 40ᵒ : 699 mins 

 

When the rocking angle was reduced from 40ᵒ to 25ᵒ, no statistically significant difference 

was observed, neither for average to nor average ta.  

 

Table 4-9 Data used to make Fig. 4-11 and Fig. 4-12. The content of the cells are Luvicap 55W and distilled water at a 
concentration of 5000 ppm. The experiments were performed 02.04.11 (25ᵒ) and 28.03.11 (40ᵒ). The data is extracted 
from Appendix [A] Table of Results. 

 

 

 

 

Fig. 4-11 The relationship between to values and different cell volumes, using Luvicap 55W at 5000 ppm. 
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Fig. 4-12 The relationship between ta values and different cell volumes, using Luvicap 55W at 5000 ppm. 

 

 

Comments: 

 

By changing the rocking angle for the cells, the speed of the balls will be affected. Yet the 

results from the experiments don’t seem to change significant when the rocking angle is 

changed.  

 

When the speed of the balls is reduced, the shear rates might be affected. But, as for the 

changes in the rocking rate; the changes might be so small that it won’t affect the gas hydrate 

formation noticeably. 

 

More experiments should be performed to get a better answer on how the rocking angle 

affects the inhibition of gas hydrates. 
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4.4 How the type of rocking balls will affect the results 

 

The steel balls were replaced with rougher glass balls, and experiments were run for Luvicap 

55W, Luvicap EG, Inhibex 101 and Inhibex 501 by using the constant cooling method, and 

for Luvicap 55W using the isothermal method. 

 

 

Constant cooling method 

 

No clear results were observed. 

 

Results for Luvicap 55W at 2500 ppm using glass balls and steel balls can be seen graphically 

in Fig. 4-13 (To values) and in Fig. 4-14 (Ta values), and in numbers in Table 4-10. 

  

At 2500 ppm the average To values were: 

Glass balls : 7.4ᵒC 

Steel balls: 7.1ᵒC 

 

At 2500 ppm the average Ta values were: 

Glass balls : 5.8ᵒC 

Steel balls : 5.8ᵒC 

 

When the steel balls were replaced with glass balls no statistically significant difference was 

observed, neither for average To nor average Ta. 

 

Results for Luvicap 55W at 5000 ppm show that replacing the steel balls with glass balls 

would decrease average To and average Ta. This can be seen graphically in Fig. 4-13 (To 

values) and in Fig. 4-14 (Ta values), and in numbers in Table 4-10. 

 

At 5000 ppm the average To values were: 

Glass balls : 5.7ᵒC 

Steel balls : 6.6ᵒC 

 

At 5000 ppm the average Ta values were: 

Glass balls: 3.4ᵒC 
Steel balls : 3.5ᵒC 
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When the steel balls were replaced with glass balls the average To value decreased with 

13.6%. No statistically significant difference was observed on the average Ta values. 

  

Table 4-10 U used to make Fig. 4-13 (To values) and Fig. 4-14 (Ta values). The 2500 ppm steel ball experiment was 
performed 27.01.11, the 2500 ppm glass ball experiment was performed 21.01.11, the 5000 ppm steel ball experiment 
was performed 02.02.11 and the 5000 ppm glass ball experiment was performed 20.01.11. The data is taken from 
Appendix [A] Table of Results. 

 

  

 

 

Concentration 

[ppm] 

Ball To 

[ᵒC] 

Ta 

[ᵒC] 

2500 Steel 7.0 5.9 

2500 Steel 7.0 5.8 

2500 Steel 7.1 5.8 

2500 Steel 7.4 5.8 

2500 Glass 7.0 5.8 

2500 Glass 8.0 5.8 

2500 Glass 6.8 5.8 

2500 Glass 7.0 5.8 

2500 Glass 8.0 5.8 

5000 Steel 6.8 3.5 

5000 Steel 6.8 3.5 

5000 Steel 6.8 3.5 

5000 Steel 6.2 3.3 

5000 Steel 6.2 3.7 

5000 Glass 5.7 3.4 

5000 Glass 5.8 3.5 

5000 Glass 5.4 3.2 

5000 Glass 6.0 3.5 

5000 Glass 5.6 3.4 
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Fig. 4-13 The relationship between To values and different balls, using Luvicap 55W. 

 

 

 

Fig. 4-14 The relationship between Ta values and different balls, using Luvicap 55W. 

 

 

 

To values and Ta values using glass and steel balls for Luvicap EG, Inhibex 101 and Inhibex 

501 can be found in Appendix [A] Table of Results, and a summary of the results of interests 

can be seen in Table 4-11. 
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Table 4-11 The table shows the To and Ta values for Luvicap EG, Inhibex 101 and Inhibex 501 at 2500 ppm and 5000 ppm 
tested with steel balls and glass balls. The data is taken from Appendix [A] Table of Results. 

Chemical Concentration 

[ppm] 

Average values: 

To steel/To glass 

[ᵒC]/[ᵒC] 

Average values: 

Ta steel/Ta glass 

[ᵒC]/[ᵒC] 

Luvicap EG 2500 8.7/8.7 8.1/8.0 

 5000 6.5/5.8 6.3/5.5 

Inhibex 101 2500 7.1/5.0 2.4/2.0 

 5000        No gas hydrate formation 

Inhibex 501 2500 8.4/6.9 4.9/4.6 

 5000 7.1/5.0 2.4/2.0 

 

 

For Luvicap EG, Inhibex 101 and Inhibex 501 are the average To and Ta values the same, or 

lower, for the tests using glass balls instead of steel balls. 

 

No hydrates were formed using Inhibex 101 at 5000 ppm.  
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Isothermal method 

 

Results for Luvicap 55W at 5000 ppm (isothermal method) show that using glass balls instead 

of steel balls will decrease average to and the average ta. This can be seen graphically in Fig. 

4-15 and Fig. 4-16, and in numbers in Table 4-12. 

 

At 5000 ppm the average to values were: 

Glass balls : 546 mins 

Steel balls : 650 mins 

 

At 5000 ppm the average ta values were: 

Glass balls: 601 mins 
Steel balls : 699 mins 

 

When the steel balls were replaced with glass balls the average to value decreased with 

16.0%., and average Ta decreased with 14.0%.  

 

Table 4-12 Data used to make Fig. 4-15 and Fig. 4-16. Steel balls and glass balls are tested at concentrations of 5000 ppm 
using Luvicap 55W. The steel ball experiment was performed 28.03.11, and the glass ball experiment was performed 
11.04.11. Data is taken from Appendix [A] Table of Results. 

Concentration 

[ppm] 

to glass 

[mins] 

to steel 

[mins] 

ta glass 

[mins] 

ta steel 

[mins] 

5000 550 504 600 542 

5000 647 657 691 718 

5000 574 677 660 521 

5000 508 871 561 932 

5000 453 542 491 582 
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Fig. 4-15 The graph shows the time before the gas hydrate formations started, to using steel balls and glass balls. 

 

 

 

Fig. 4-16 The graph shows the time before the rapid gas hydrate formations started, ta, using steel balls and glass balls. 
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Comments: 

 

There were no clear results by replacing the steel balls with rougher glass balls. For Luvicap 

55W, at 2500 ppm using the constant cooling method, the average To value didn’t show any 

statistically significant difference using steel or glass balls, the average Ta value decreased 

with 13.6% at 5000 ppm.  

 

Using the isothermal method (Luvicap 55W at 5000 ppm), the average to value decreased with 

16% as the steel balls were replaced with glass balls. The biggest difference was seen using 

the isothermal method.  

 

Experiments using Luvicap EG show no statistically significant difference in average To 

(using glass vs. steel balls). 

 

Inhibex 101 and Inhibex 501 show a decrease in average To when changing the steel balls to 

glass balls. 

 

More experiments should be performed to get a clearer answer on how the type of ball affects 

the inhibition of gas hydrates. 

 

 

4.5 How the concentration of KHIs affects the results 

 

The concentration of Luvicap 55W was tested at 1000 ppm, 2500 ppm (only for constant 

cooling method), 5000 ppm and 10000 ppm. 
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Constant cooling method 

 

 

Results show that an increase of concentration lead to a decrease in average To and a decrease 

in average Ta. This can be seen graphically in Fig. 4-17 (To) and in Fig. 4-18 (Ta), and in 

numbers in Table 4-13. 

 

 

Average To values were: 

At 1000 ppm  : 10.2ᵒC 

At 2500 ppm  : 7.1ᵒC 

At 5000 ppm  : 6.6ᵒC 

At 10000 ppm: 5.2ᵒC 

 

Average Ta values were: 

At 1000 ppm  : 9.2ᵒC 

At 2500 ppm  : 5.8ᵒC 

At 5000 ppm  : 3.5ᵒC 

At 10000 ppm: 2.0ᵒC 

 

When the concentration was reduced from 2500 ppm to 1000 ppm, the average To value 

decreased with 43.7%. The corresponding average Ta value decreased with 58.6%. 

 

When the concentration was increased from 2500 ppm to 5000 ppm, the average To value 

increased with 7.0%. The corresponding average Ta value increased with 39.7%. 

 

When the concentration was increased from 5000 ppm to 10000 ppm, the average To value 

increased with 21.2%. The corresponding average Ta value increased with 42.9%. 
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Table 4-13 Data used to make Fig. 4-17 and Fig. 4-18. The concentration is Luvicap 55W in distilled water. The 
experiments were performed 09.04.11 (1000 ppm), 27.01.11 (2500 ppm), 02.02.11 (5000 ppm) and 10.04.11 (10000 
ppm). The data is extracted from Appendix [A] Table of Results. 

Concentration [ppm] To [ᵒC] Ta [ᵒC] 

1 000 10.3 9.7 

1 000 9.4 9.0 

1 000 10.8 10.0 

1 000 10.0 9.6 

1 000 10.4 9.3 

2 500 7.0 5.9 

2 500 7.0 5.8 

2 500 7.1 5.8 

2 500 7.4 5.8 

5 000 6.8 3.5 

5 000 6.8 3.5 

5 000 6.8 3.5 

5 000 6.2 3.3 

5 000 6.2 3.7 

10 000 4.3 2.0 

10 000 6.2 2.0 

10 000 6.3 2.0 

10 000 4.3 2.0 

10 000 4.8 2.2 

 

 

 

 
Fig. 4-17 The relationship between To values and different concentrations. 
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Fig. 4-18 The relationship between Ta values and different concentrations. 

 

 

Isothermal method 

 

At 1000 ppm the hydrates started to form before 7ᵒC was reached. 

 

Results show that an increase of concentration lead to an increase in average to and an increase 

in average ta. This can be seen graphically in Fig. 4-19 (to) and Fig. 4-20 (ta), and in numbers 

in Table 4-14. 

 

Average to values were: 

At 1000 ppm  : 0 mins 

At 5000 ppm  : 650 mins 

At 10000 ppm: 1048 mins 

 

Average ta values were: 

At 1000 ppm  : 8 mins 

At 5000 ppm  : 699 mins 

At 10000 ppm: 1189 mins 

 

When the concentration was reduced from 5000 ppm to 1000 ppm, the average ta value 

decreased with 98.9%. 
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When the concentration was increased from 5000 ppm to 10000 ppm, the average to value 

increased with 61.2%. The corresponding average ta value increased with 70.1%. 

 

Table 4-14 Data used to make Fig. 4-19 and Fig. 4-20. The concentration is Luvicap 55W in distilled water. The 
experiments were performed 07.04.11 (1000 ppm), 28.03.11 (5000 ppm) and 08.04.11 (10000 ppm). The data is extracted 
from Appendix [A] Table of Results. 

Concentration [ppm] to [mins] ta [mins] 

1 000 0 10 

1 000 0 7 

1 000 0 13 

1 000 0 7 

1 000 0 5 

5 000 504 542 

5 000 657 718 

5 000 677 721 

5 000 871 932 

5 000 542 582 

10 000 1043 1163 

10 000 1243 1503 

10 000 993 1123 

10 000 1084 1159 

10 000 877 998 

 

 

 
Fig. 4-19 The relationship between to values and different concentrations. 
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Fig. 4-20 The relationship between ta values and different concentrations. 

 

 

Comments: 

 

The results fits the theory; as more inhibitor added to the system, more water is prevented 

from participating in the hydrate structure and higher pressure and lower temperatures are 

required for gas hydrate formation from the remaining uninhibited water (Sloan 2011). 

 

 

4.6 How the molecular weight of the KHIs affects the result 

 

According to literature, the molecular weight will impact the ability of a chemical to inhibit 

the gas hydrate formation. There are too few interactions with the hydrate surface per polymer 

chain to cause any inhibition when the molecular weight is too low. As the molecular weight 

increases, there will be a decrease in the number of polymer strands in solution, and some of 

the alkylamide side chains may become less available for interaction with hydrate surfaces 

(Kelland, Svartås et al. 2000). At increasing molecular weights the performance drops slowly, 

but it won’t disappear (Del Villano 2009).  

 

In section 2.2.2 Kinetic Hydrate Inhibitors it is said that the ideal molecular weight for a KHI 

polymer usually is around 1500-3000 (Del Villano 2009). 
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The results can be seen graphically in Fig. 4-21, and in numbers in Table 4-15 and seem to fit 

the theory. 

 

Table 4-15 Data used to make Fig. 4-21. The concentration is 5000 ppm for the inhibitors. The tests were performed 
28.02.11 (PVP Plasdone), 02.05.11 (PVP 30k) and 01.03.11 (PVP 120k). The data is extracted from Appendix [A] Table of 
Results. 

Cell number To PVP Plasdone (Mw 

4000) [ᵒC] 

To PVP 30k (Mw 

60000) [ᵒC] 

To PVP 120k (Mw 3 

mill) [ᵒC] 

1 10.3 11.3 13.4 

2 10.3 13.0 13.4 

3 12.0 12.8 14.0 

4 12.0 12.9 13.9 

5 10.8 11.0 13.2 

 

 

 

 

Fig. 4-21 The relationship between To and different molecular weights for PVPs.  

 

 

4.6 How adding of synergist affects the results 

 

Polymers of two classes can be blended in order to obtain a synergistic action (Clark and 

Anderson 2007; Huang, Wang et al. 2007). Luvicap EG was mixed with TBAB (Tetra 

Butylammonium Bromide) which is a synergist (Duncum, Edwards et al. 1996). The 

concentration was 2500 ppm with a ratio of 1:1. It was expected that the performance of 

Luvicap EG would improve, which it did. 
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The results show that adding TBAB to Luvicap EG causes to a decrease in average To, and a 

decrease in average Ta. This can be seen graphically in Fig. 4-22 (To) and Fig. 4-23 (Ta) and 

in numbers in Table 4-16. 

 

When TBAB was added to Luvicap EG, the average To value decreased with 23.9%. The 

corresponding average Ta value decreased with 24.6%. 

 

 
Table 4-16 Data used to make Fig. 4-22 and Fig. 4-23. The concentration of Luvicap EG in a mixture with TBAB is 2500 
ppm, with a ratio of 1:1. The experiments were performed 10.01.11 (Luvicap EG) and 07.02.11 (Luvicap EG + TBAB).  The 
data is extracted from Appendix [A] Table of Results. 

Cell number Luvicap EG 

To [ᵒC] 
Luvicap EG  

+ TBAB 

To [ᵒC] 

Luvicap EG 

Ta [ᵒC] 
Luvicap EG  

+ TBAB 

Ta [ᵒC] 

1 8.1 6.3 7.9 5.9 

2 9.3 7.0 8.0 6.2 

3 8.8 6.8 8.0 6.2 

4 8.7 7.0 8.2 6.2 

5 8.7 6.1 8.2 5.9 

 

 

 

Fig. 4-22 The relationship between To values and Luvicap EG with and without a synergist, at 2500 ppm. 

 

5,0

5,5

6,0

6,5

7,0

7,5

8,0

8,5

9,0

9,5

10,0

1 2 3 4 5

Te
m

p
e

ra
tu

re
 [

ᵒC
] 

Cell number 

Luvicap EG
Luvicap EG + TBAB



80 

 

 

Fig. 4-23 The relationship between Ta values and Luvicap EG with and without a synergist, at 2500 ppm. 

 

Luvicap EG was mixed with BGE (Butyl Glycol Ether) to check if this would improve the 

inhibition. The reason for doing this is that ISP’s Inhibex 101 is PVCAP in BGE solvent. It is 

claimed that BGE improves the performance of the PVCap, and to be “fair” to BASF who 

make Luvicap EG (PVCap in ethylene glycol), their PVCap was tested with BGE. The ratio 

of Luvicap EG and BGE were 1:1, and they were tested at 2500 ppm and 5000 ppm. The 

results from the experiments can be found in Appendix [A] Table of Results. 

 

At 2500 ppm the average To values were: 

Luvicap EG : 8.7ᵒC 

Luvicap EG + BGE : 7.4ᵒC 

 

At 2500 ppm the average Ta values were: 

Luvicap EG : 8.1ᵒC 

Luvicap EG + BGE : 4.0ᵒC 

 

When BGE was added to Luvicap EG (ratio 1:1, 2500 ppm), the average To value decreased 

with 14.9%. The average Ta value decreased with 50.6%.  

 

 

At 5000 ppm the average To values were: 

Luvicap EG : 6.5ᵒC 

Luvicap EG + BGE : 3.2ᵒC 
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At 5000 ppm the average Ta values were: 

Luvicap EG : 6.3ᵒC 
Luvicap EG + BGE : 2.7ᵒC 

 

When BGE was added to Luvicap EG (ratio 1:1, 5000 ppm) average To value decreased with 

50.8%. The average Ta value decreased with 57.1%.  

 

 

4.7 Possible conditioning of the cells  

 

Some of the results found in these experiments gave a reason to believe that there have been 

conditionings of the cells. This means that the results from an experiment run in December 

will vary from the results from the same experiment run later, for example in February/March, 

due to manufacturing impurities or that the inside of the cells have lost some of its roughness. 

 

Experiments using only distilled water were performed under same conditions 02.12.2010 and 

01.02.2011. The graphically results are shown in Fig. 4-24, and in numbers in Table 4-17. 

 
 
Table 4-17 Data used to make Fig. 4-24. The experiment is run using distilled water only. The data is extracted from 
Appendix [A] Table of Results. 

Cell number To [ᵒC] 

02.12.2010 

To [ᵒC] 

01.02.2011 

1 18.9 17.4 

2 18.5 17.2 

3 18.2 17.5 

4 18.3 17.2 

5 18.8 18.6 
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Fig. 4-24 Possible conditioning of the cells. The experiment is run using distilled water. 

 

Average To values are: 

02.12.2010 : 18.5 ᵒC 

01.02.2011 : 17.6 ᵒC 

 

Average To was reduced with 24.3% from December 2010 to February 2011. 

 

Experiments using Luvicap 55W (5000 ppm) were performed under same conditions 

03.12.2010 and 04.03.2011. The graphically results are shown in Fig. 4-25, and in numbers in 

Table 4-18. 

 
 
Table 4-18 Data used to make Fig. 4-25. The experiment is run using Luvicap 55 (5000 ppm). The data is extracted from 
Appendix [A] Table of Results. 

Cell number To [ᵒC] 

03.12.2010 

To [ᵒC] 

04.03.2011 

1 6.9 6.3 

2 7.0 6.2 

3 7.4 6.1 

4 6.5 6.1 

5 6.5 6.5 
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Fig. 4-25 Possible conditioning of the cells. Luvicap 55W (5000 ppm) is used. 

 

 

Average To values are: 

03.12.2010 : 6.9 ᵒC 

04.03.2011 : 6.2 ᵒC 

 

Average Ta values are: 

03.12.2010 : 4.1 ᵒC 

04.03.2011 : 3.4 ᵒC 

 

 

The average To was reduced with 10.1% from December 2010 to March 2011. 

The average Ta was reduced with 17.1% from December 2010 to March 2011. 

 

 

Experiments using Inhibex 101 (2500 ppm) were performed under same conditions 

09.12.2010 and 22.02.2011. The graphically results are shown in Fig. 4-26, and in numbers 

Table 4-19. 
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Table 4-19 Data used to make Fig. 4-26. The experiment is run using Inhibex 101. The data is extracted from Appendix [A] 
Table of Results 

Cell number To [ᵒC] 

09.12.2010 

To [ᵒC] 

22.02.2011 

1 7.0 5.0 

2 7.2 5.0 

3 5.7 4.8 

4 5.6 5.2 

5 5.2 4.2 
 

 

 

 

Fig. 4-26 Possible conditioning of the cells. Inhibex 101 (2500 ppm) is used. 

 

 

Average To values are: 

09.12.2010 : 6.1 ᵒC 

22.02.2011 : 4.8 ᵒC 

 

Average Ta values are: 

09.12.2010 : 3.3 ᵒC 

22.02.2011 : 3.1 ᵒC 

 

 

The average To was reduced with 21.3% from December 2010 to February 2011. 

The average Ta was reduced with 6.1% from December 2010 to February 2011. 
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Comments: 

 

For all the experiments presented above, To and Ta values have decreased from the early 

experiments to the same experiments run later. There might seem as if there has been 

conditioning of the cells. 

 

 

 4.8 The reproducibility of the results  

 

The scattering based on the deviation from the results of each cell compared to the average 

value for the experiment is calculated to find the reproducibility. The calculations are found in 

Appendix [B] Percentage Deviation From Average, and a summary of the results are 

presented in Table 4-20. 

 

KHI experiments using small, sapphire steel cells do usually obtain a scattering in the 

induction times of about 40-50% using the isothermal method (Del Villano and Kelland 

2009). From the University of Stavanger its reported that the scatter in hold time using non-

precursor methods generally is about 30-40% on either side of the average of a series (Del 

Villano and Kelland 2009). 

 

Using the RC5, constant cooling method, most of the deviations are < 10%. From Table 4-20 

and Appendix [B] Percentage Deviation From Average, only 9.6% of the reported values 

divagates from the average with < 10%. 

 

Using the RC5, isothermal method, the deviations are higher compared to using constant 

cooling method, as 46.6% of the reported values divagates from the average with <10%. 

 

The average deviations are 4.4% using the constant cooling method, and 16.2% using the 

isothermal method.  
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Table 4-20 The deviations for each cell compared to average using the constant cooling method and the isothermal 
method. 

Cooling 

method 

Average 

deviation 

Maximum 

deviation 

Deviation of 

more than 

10% 

Deviation 

of more 

than 20% 

Deviation of more 

than 30% 

Constant 

cooling 

method 

4.4% 25.7% 9.6% 1.6% 0% 

Isothermal 

method 

16.2% 134.9% 46.6% 22.3% 16.9% 

 

It can be concluded, based on Table 4-20, it can be concluded that RC5 provides reliable 

results. 
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4.9 The results from RC5 compared to literature 

 

From Table 4-21 and the equilibrium curve in Fig. 4-27 using SNG (Synthetic Natural Gas) 

and distilled water, the subcooling at 77 bar is ca. 19.8ᵒC. According to the Appendix [A] 

Table of Results, hydrates started to form at 18.5ᵒC in December 2010 and 17.6ᵒC in 

February 2011. The results from experiments using the RC5 are lower than expected based on 

literature. 

 
 
 
Table 4-21 Data used to make Fig. 4-27  Hydrate PT curve from UiS SNG (Synthetic Natural Gas), DI water, calculated by 
PVTSim software from Calsep, Denmark. 

 

 

 

Temperature 

[ᵒC] 

Pressure 

[bar] 

0 6.25 

3.1 8.06 

5.1 10.35 

7.1 13.27 

9.1 17.00 

11.1 21.82 

13.1 28.15 

15.1 36.67 

16.82 46.67 

18.11 56.67 

19.10 66.67 

19.89 76.67 

20.52 86.67 

21.04 96.67 

21.48 106.67 

21.88 116.67 

21.99 120.00 
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Fig. 4-27 Hydrate PT curve from UiS SNG (Synthetic Natural Gas), DI water, calculated by PVTSim software from Calsep, 
Denmark. 

 

 

4.10 Ranking of the chemicals  

 

The chemicals were ranked according to their performances on inhibiting gas hydrate 

formations using both the constant cooling method and the isothermal method. The results 

from the experiments can be seen graphically in Fig. 4-28, Fig. 4-29, Fig. 4-30, Fig. 4-31, Fig. 

4-32 and Fig. 4-33. The cooling method and concentrations are varied. The figures are made 

based on information in Table 4-22. 

 

The results show that Inhibex 101 is the best chemical to prevent/postpone gas hydrate 

formation under all experiment conditions.  

 

The total ranking can be seen in Table 4-23. 
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Table 4-22 Data used to make Fig. 4-28, Fig. 4-29, Fig. 4-30, Fig. 4-31, Fig. 4-32 and Fig. 4-33. The data is taken from 
Appendix [A] Table of Results. 

Chemical Constant cooling method 

2500 ppm 

To/Ta [ᵒC]/[ᵒC] 

Constant cooling method 

5000 ppm 

To/Ta [ᵒC]/[ᵒC] 

Isothermal method 

5000 ppm 

to/ta [mins]/[mins]  

Luvicap 55W 7.1/5.8 6.6/3.5 589/660 

Luvicap EG 8.7/8.1 6.5/6.3 113/141 

Inhibex 101 4.8/3.1 3.1/- 1278/1296 

Inhibex 501 8.4/4.9 7.1/2.4 113/116 

 

 

 

 

 

Fig. 4-28 Constant cooling method. The chemicals are ranked based on average To values at 2500 ppm. 
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Fig. 4-29 Constant cooling method. The chemicals are ranked based on average Ta values at 2500 ppm. 

 

 

 

Fig. 4-30 Constant cooling method. The chemicals are ranked based on average To values at 5000 ppm. 
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Fig. 4-31 Constant cooling method. The chemicals are ranked based on average Ta values at 5000 ppm. 

 

 

 

 
Fig. 4-32 Isothermal method, 7ᵒC. The chemicals are ranked based on average to values at 5000 ppm. 
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Fig. 4-33 Isothermal method, 7ᵒC. The chemicals are ranked based on average ta values at 5000 ppm. 

 

 

 Comments: 

 

An overview of the ranking of the chemicals can be seen in Table 4-23. 

 

Since the experiments run over a long period of time (5 months) possible conditioning of the 

cells may have impacted the results when it comes to ranking the inhibitors. The experiments 

using the isothermal method are all performed in March/April, and conditioning of the cells 

have not impacted these results. 

 

Inhibex 101 is the better inhibitor during all the experiments presented in Table 4-22. As 

explained earlier, Inhibex 101 and Inhibex 501 are mixed with BGE (which is said to act as a 

synergist) and may be part of the solution why one of these ranks as the better inhibitor.  

 

The molecular weight of Inhibex 101 is from 2000-5000, and, also mentioned earlier, for 

optimal performances, the ideal molecular weight for a KHI polymer is usually around 1500-

3000 (Del Villano 2009). This explains the advantage Inhibex 101 has compared to Inhibex 

501 with a molecular weight of 5000-8000. 

 

More experiments should be performed to be able to rank the kinetic hydrate inhibitors using 

the RC5.  
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Table 4-23 Ranking based on average values for Luvicap 55W, Luvicap EG, Inhibex 101 and Inhibex 501 using isothermal 
method (at 5000ppm) and constant cooling method (at 2500 ppm and 5000 ppm). 

Cooling method and inhibitor 

concentration 

Rank Inhibitor 

Constant cooling 2500 ppm 

Based on average To values 

  

Fig. 4-28 1 Inhibex 101 

 2 Luvicap 55W 

 3 Inhibex 501 

 4 Luvicap EG 

Constant cooling 2500 ppm 

Based on average Ta values 

  

Fig. 4-29 1 Inhibex 101 

 2 Inhibex 501 

 3 Luvicap 55W 

 4 Luvicap EG 

Constant cooling 5000 ppm 

Based on average To values 

  

Fig. 4-30 1 Inhibex 101 

 2 Luvicap EG 

 3 Luvicap 55W 

 4 Inhibex 501 

Constant cooling 5000 ppm 

Based on average Ta values 

  

Fig. 4-31 1 Inhibex 101 

 2 Inhibex 501 

 3 Luvicap 55W 

 4 Luvicap EG 

Isotherm at 7ᵒC 5000 ppm 

Based on average to values 

  

Fig. 4-32 1 Inhibex 101 

 2 Luvicap 55W 

 3 Luvicap EG/Inhibex 101 

 4 Luvicap EG/Inhibex 101 

Isotherm at 7ᵒC 5000 ppm 

Based on average ta values 

  

Fig. 4-33 1 Inhibex 101 

 2 Luvicap 55W 

 3 Luvicap EG 

 4 Inhibex 501 
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5. Conclusion 

 

 

A standard procedure has been established using the RC5 to test KHIs. The initial pressure for 

all the experiments is 77 bar. The reproducibility of the experiments is very good, and using 

the RC5 is a clean and simple way of testing inhibitors under pressure.  

 

Results indicate that there has been a conditioning of the cells since the start-up in December. 

This might be because of manufacturing impurities or that the inside of the cells have lost 

some of its roughness. Average To value for distilled water tested in February was 4.9% lower 

than the average To value for an experiment in December. It is recommended that the results 

from the first weeks are discarded. Possible conditioning of the cells might have affected the 

results and the validation of the comparison of how the parameters affect the results. 

 

The average To value found by testing distilled water in the RC5 was compared to an 

equilibrium curve for synthetic natural gas and distilled water calculated by Calsep’s PVTSim 

program. The experimental To values were lower than the values from Calsep’s PVTSim 

program. In February was the average To 11.6% lower than the value from Calsep’s. 

 

Experiments show that the gas hydrate inhibition improved as the aqueous liquid volume 

increased. This is valid both using the constant cooling method and the isothermal method. 

 

The impact of the rocking rate is not clear and more experiments should be performed to get a 

better answer on how the rocking rate affects the inhibition of gas hydrates. 

 

The rocking angle does not seem to impact the results, as no statistically significant difference 

was observed. More tests should be run to check the validity of this conclusion. 

 

The type of ball used for the experiments does not show any clear results. By using the 

constant cooling method to test Luvicap 55W the average Ta value didn’t show any 

statistically significant difference at 2500 ppm, while at 5000 ppm the average Ta value 

increased with 13.6%.  
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Using the isothermal method, the induction time decreased when the steel balls were replaced 

with glass balls. 

 

The concentration is directly correlated with the effect of the hydrate inhibitor; higher 

concentrations gives lower To and Ta values, and higher to and ta values, and better inhibition 

of gas hydrates. 

 

A synergist (TBAB) was added to Luvicap EG (ratio 1:1), and the inhibition effect (based on 

average To and Ta values) increased with ca. 24% compared to the average values using 

Luvicap EG alone.  

 

Luvicap EG was also added BGE (ratio 1:1), and as predicted did BGE improve the inhibition 

effect, average To dropped with 50.8% compared to experiments using only Luvicap EG.  

 

The reproducibility is very good as the scatter, based on deviations from the results from each 

cell compared to the average of all cells (in the same experiment), is 4.4 using the constant 

cooling method, and 16.9% using the isothermal method. 

 

The ranking of the chemicals, based on how they inhibit hydrate growth (To, Ta, to and ta 

values) does not give the same results when using constant cooling method and isothermal 

method. The exception is Inhibex 101 which is the best inhibitor under all test conditions. 

 

Future work and experiments are recommended in order to check the validity of these 

conclusions. 

 

Further work should include using liquid hydrocarbon instead of gas, testing the effect of 

salinity (which affects subcooling) and testing the effect of pressure (which also affects 

subcooling). How the presence of Zalo or other surfactants (e.g. silica, sandstone, clay, chalk 

or scale) will affect the results, as well as the influence of pH, should also be determined.  

 

The rocker rig, if used properly, can give reliable results for ranking KHIs. As several tests 

can be conducted simultaneously, results will be gained in less time than using autoclaves. 
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Appendix 

 
[A] Table of Results 

[B] Percentage Deviation From Average 

[C] Calculations 
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