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Abstract 

Peroxisomes are single-membrane organelles that have oxidative metabolic functions. 

Peroxisomes carry out major functions such as lipid degradation, photorespiration and 

glyoxylate cycle. However, new functions have been recently reported such as peroxisome 

mediation in plant innate immunity. To elucidate more on peroxisomal roles in pathogen 

defence in plants, identification and expression analyses of both new and established 

peroxisome-targeted pathogen defence proteins in plants was investigated in this study. 

Subcellular localization analysis of four PTS1 carrying proteins with a pathogen-defence 

annotation was done. In addition, gene expression analysis of established peroxisomal 

pathogen defence was carried out using Real-Time Quantitative PCR (qPCR). The four PTS1 

carry proteins that whose subcellular localization was studied are NUDT7, NUDT15, CHAT 

homolog and ATP-BP. NUDT15 and CHAT homolog targeted punctuate subcellular 

structures, which were later confirmed to be peroxisomes in double labelling experiment with 

a peroxisomal marker. NUDT7 and ATP-BP failed to target any subcellular structures, were 

therefore, putatively reported to be cytosolic in this study. Expression analyses were done on 

three NHL proteins (NHL4, NHL6 and NHL25) and also on three IAN proteins (IAN8, 

IAN11 and IAN12) using wild type Arabidopsis Col 0 plants, by mimicking pathogen attack 

with exogenously applied defence hormone-salicylic acid. All the NHL and IAN genes were 

induced after salicylic acid treatment. In addition, co-expression analyses were done on the 

aforementioned NHL and IAN proteins (except for NHL25). NHL6 and IAN8 were co-

expressed with other Arabidopsis defence proteins. Whereas NHL4, IAN11 and IAN12 were 

found not be co-expressed in the dataset generated. In conclusion, in this study, two new 

peroxisomal pathogen defence proteins were identified namely NUDT15 and CHAT 

homolog, and also NHL6 and NHL25 were induced by salicylic acid treatment. 
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1. Introduction 

1.1 Biogenesis and protein import of peroxisomes 

Peroxisomes are single-membrane bound organelles found in most of eukaryotic cells. They 

belong to a class of microbodies (Kagawa and Beevers, 1975). Phylogenetically, they are 

proposed to have an endosymbiotic origin. Ontogenetically, they have been proposed to have 

either an endoplasmic reticulum or de novo biogenesis (Gabaldon et al., 2006).  

 

Peroxisome biogenesis in plants is induced by a number of factors such as; change in cellular 

redox (reduction-oxidation)  state, pathogen and herbivore attack, and many more other 

abiotic and biotic stresses (Lopez-Huertas et al., 2000; Nyathi and Baker, 2006). The 

peroxisomal numbers are up-regulated through stress responses and down-regulated through a 

peroxisome degradation process called pexophagy. Pexophagy is a type of autophagy 

selectively meant for peroxisome degradation.  Macropexophagy and micropexophagy are the 

two modes of pexophagy employed (Sakai et al., 2006). Peroxisome biogenesis involves 

import of proteins to the peroxisome. Once brought to the peroxisome proximity, proteins are 

incorporated into the single lipid-bilayer membrane as integral or peripheral proteins, whilst 

other proteins are imported into the matrix as soluble peroxisomal matrix proteins. 

 

Proteins are termed as `working horses` for the cell. They carry out various critical and vital 

duties such as enzymatic, regulatory, metabolic, structural and mechanical activities. 

Organelles (subcellular compartments within the cell) equally need proteins. Peroxisomes 

being one of the eukaryotic cell organelle are not any exceptional to this profound need. 

Nonetheless, peroxisomes lack the critical material-DNA that is needed for protein synthesis. 

However, most peroxisomal proteins are nuclear encoded and synthesized on either 

endoplasmic reticulum-bound ribosomes or free ribosomes in the cytosol and imported post-

translationally into the peroxisomes (Gabaldon et al., 2006). 

Most of the peroxisomal proteome is of eukaryotic origin and a reasonable fraction of it 

comes from alpha-proteobacterial (Gabaldon et al., 2006). Peroxisomal proteins can be 

grouped roughly into peroxisomal membrane proteins and peroxisomal matrix proteins. 

Matrix proteins for the peroxisomes are much more characterized than the membrane ones. 

After being synthesized either on ribosomes in the cytosol or endoplasmic reticulum, some 

proteins target the peroxisomes distinctively. They do this through targeting signals called 

peroxisomal targeting signals (PTSs). PTSs found on matrix proteins are of two types, that is 
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peroxisomal targeting signal type 1 or type 2 (PTS1/2)(Reumann, 2004). Nonetheless, not all 

peroxisomal proteins carry these PTSs. The majority of matrix proteins carry PTS1s that are 

usually located at the carboxyl-terminus (C-terminus) of the protein. In some rare instances, 

PTS1 is internally located, however, it still exhibits a C-terminus bias (Kamigaki et al., 2003).  

PTS1 is a tripeptide sequence that is derived from a combination of position-specific amino 

acid residues such as ([SAPCFVGTLKI] [RKNMSLHGETFPQCY] [LMIVYF] >) 

(Reumann, 2004; Ma et al., 2006; Reumann et al., 2009; Lingner et al., 2011). There are 11 

amino acid residues at position -3, 15 residues at position -2, and six residues at position -1 

that allowed, in order to have a functional plant PTS1 tripeptides (Lingner et al., 2011). PTS1s 

can be either canonical-major or noncanonical-minor depending on their pattern and/or 

targeting efficiency. Tripeptide sequences such as SKL>  and SSL>  represent major and 

minor PTS1s respectively (Gould et al., 1987; Gould et al., 1989; Kamigaki et al., 2003; 

Reumann, 2004; Lingner et al., 2011),. There difference between major and minor PTS1s is 

that major PTS1s can target the peroxisomes entirely by themselves whereas minor ones need 

help from upstream residues such as Proline and basic amino acid residues for them to target 

the protein to the peroxisome (Reumann, 2004). Plant PTS1 tripeptides follow a distinct 

pattern, in which at least two high-abundance residues of presumably strong targeting strength 

([SA][KR][LMI] >) are combined with one low-abundance PTS1 residue to yield functional 

plant PTS1 tripeptides; (x[KR] [LMI]>, [SA]y[LMI]>, and [SA][KR]z>) (Lingner et al., 

2011). Unlike PTS1, PTS2 is an amino-terminus located nonapeptide such as RLx5HL and 

RIx5HL (Reumann, 2004; Reumann et al., 2009). RLx5HL and RIx5HL are examples of 

major PTS2 nonapeptides found in plants. Not so many matrix proteins carry PTS2, 

nevertheless, a significant number of matrix proteins with PTS2 have been studied. 

 

Peroxisomal matrix proteins need to be taken to the matrix post-translationally. However, to 

help them achieve this goal, there are two receptors found in the cytosol scavenging for 

proteins carrying PTSs. These receptors are encoded by PEX5 and PEX7 genes are called 

Peroxin5 and Peroxin7 (Pex5p and Pex7p respectively). Pex5p is needed for transportation of 

both PTS1 and PTS2 proteins in plants and mammals, and not required for transportation of 

PTS2 proteins in fungi (Bonsegna et al., 2005; Hayashi et al., 2005). Pex7p is required for 

PTS2 targeting of the peroxisome (Hayashi et al., 2005). The import system of both PTS1 and 

2 proteins can be summarized as a four step process; recognition of PTSs by the respective 

receptor, then cargo and receptor docking and translocation, then cargo offloading, receptor 

recycling (Dammai and Subramani, 2001; Brown and Baker, 2008). 
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1.2 Metabolic functions of plant peroxisomes 

Peroxisomes play crucial roles in seed germination, seedling development, overall plant 

growth, hormone biosynthesis and disease resistance (Queval et al., 2007; Reumann et al., 

2007; Reumann, 2011). All these important tasks are done through their involvement in lipid 

degradation, production and detoxification of Hydrogen peroxide (H2O2), hormone synthesis 

and signalling molecule production (Nyathi and Baker, 2006; Queval et al., 2007). Hydrogen 

peroxide is produced during Photorespiration by plants in the presence of light and air, and it 

plays an instrumental role as a signal molecule (Queval et al., 2007). H2O2 catabolism to 

water and oxygen is through catalase activities. Unlike in mammals, lipid catabolism (break 

down of fatty acids to a two carbon compound-acetyl CoA) in plants takes place solely in the 

peroxisome (Poirier et al., 2006). Lipid degradation process is called β-Oxidation.  β-

oxidation is a source of various metabolites for the cell. Several pathways derive metabolites 

from β-oxidation, which includes jasmonic acid biosynthesis pathway, glyoxylate cycle and 

indole-3-acetic acid synthesis (Nyathi and Baker, 2006; Poirier et al., 2006).  

 

Plant developmental phase, anatomy, cell type and environment tend to dictate peroxisome 

type and concentration. This phenomenon is termed plasticity. The `plastic` nature of 

peroxisomes makes possible for them to carry out such dynamic and diverse functions 

mentioned in the preceding paragraphs. Peroxisomes are referred to by different names 

according to the main function they are carrying out in a particular part of plant and 

environment. They are referred to as glyoxysomes during seedling development and 

senescence where they help in synthesizing carbohydrates from lipids. During greening they 

are called leaf peroxisomes. It has been reported that glyoxysomes are capable of changing 

into leaf peroxisomes during greening and back to glyoxysomes from leaf peroxisomes during 

senescence. The evident inter-conversion between types of peroxisomes is regulated at 

various levels, such as at gene expression, splicing of the mRNA and degradation of proteins 

(Nishimura et al., 1986; Mano et al., 1996; Nishimura et al., 1996). 
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1.3  Role of peroxisomes in plant innate immunity 

Plants growing in nature frequently encounter a wide range of environmental conditions 

comprising not only beneficial but also adverse conditions. Therefore, plants have to respond 

and cope with these dynamic adverse conditions in- and on-time to ensure their survival. Plant 

responses are both at cellular and physiological levels. Adverse conditions plants are 

frequently exposed to include biotic stresses such as pathogen and herbivore attack, and also 

abiotic stresses such as drought, heat, salinity and cold. Pathogens are more problematic to 

plants than the other stresses. 

 

Plant pathogens use diverse life strategies to survive in and/or on their hosts. Pathogenic 

bacteria proliferate in intercellular spaces (the apoplast) after entering through gas or water 

pores (stomata and hydathodes, respectively), or gain access via wounds. Nematodes and 

aphids feed by inserting a stylet directly into a plant cell. Fungi can directly enter plant 

epidermal cells, or extend hyphae on top of, between, or through plant cells. Pathogenic and 

symbiotic fungi and oomycetes can invaginate feeding structures (haustoria), into the host cell 

plasma membrane. Pathogens are classified as biotrophs, hemi-biotrophs and necrotrophs 

(Panstruga et al., 2009). Biotrophic pathogens live and complete their whole life cycle inside 

the host. Hemi-biotrophs spend part of their life cycle stage in the host. Necrotrophs do not 

depend on the host for any part of their life cycle stage. These aforementioned diverse 

pathogen classes all deliver effector molecules (virulence factors) into the plant cell to block 

defence reactions by the host. 

Plants, unlike animals, lack mobile defender cells and a somatic adaptive immune system. 

Instead, they rely on the innate immunity of each cell and systemic signals emanating from 

infection sites for resistance against invaders. Plant innate immunity operates at various 

levels. The first line of defence is called basal disease resistance. Basal disease resistance is 

activated by virulent pathogens on susceptible hosts. Thus, basal disease resistance is, at first 

glance, PAMP-triggered immunity (PTI) minus the effects of effector triggered susceptibility 

(ETS) (see Fig.1).  However, there is also likely to be weak effector triggered immunity (ETI) 

triggered by weak recognition of effectors (Jones and Dangl, 2006; Panstruga et al., 2009). 

PTI is triggered by PAMPs or MAMPs (Pathogen/Microbe associated molecule patterns) such 
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as Flagellin (flg22), bacterial cold shock proteins and elongation factor Tu (EF-Tu)(Jones and 

Dangl, 2006; Panstruga et al., 2009).  

 

The plant immune system can be represented as a four phased „zigzag‟ model (Fig.1; (Jones 

and Dangl, 2006). In stage 1, PAMPs are recognized by PRRs (Pathogen recognition 

receptors), resulting in a PAMP-triggered immunity that can halt further colonization.  In 

stage 2, successful pathogens inject effectors that contribute to pathogen virulence. Effector-

triggered susceptibility (ETS) results when effectors interfere with the PAMP-triggered 

immunity (PTI). Effectors that enable pathogens to overcome PTI are sometimes recognized 

by specific disease resistance (R) proteins. The recognition is either indirect or direct.  R 

proteins are encoded by genes. However, most R genes encode NB-LRR (Nucleotide binding 

leucine rich repeats) proteins. NB-LRR proteins are grouped into two classes; Toll-

Interleukin-1 receptor (TIR) and Coiled coil (CC-NB-LRR ) (Wiermer et al., 2005; Ge et al., 

2007; Panstruga et al., 2009; Knepper et al., 2011).  

 

TIR- NB-LRR proteins are regulated by ENHANCED DISEASE SUSCEPTIBILITY 1 

(EDS1) and together with its interacting partner, PHYTOALEXIN DEFICIENT 4 (PAD4). 

EDS1 and PAD4 constitute a regulatory hub that is essential for basal resistance to invasive 

biotrophic and hemi-biotrophic pathogens (Wiermer et al., 2005; Panstruga et al., 2009).  

EDS1 is negatively regulated by Nudix hydrolase homolog 7 (NUDT7) (Ge et al., 2007) 

The second type of R proteins i.e. CC-NB-LRR are regulated by Arabidopsis thaliana NDR1 

(NON-RACE SPECIFIC DISEASE RESISTANCE-1), a plasma membrane localized protein. 

NDR1 activates the R proteins by monitoring modification of RIN4 (RPM1-INTERACTING 

PROTEIN-4). RIN4 modifications include phosphorylation and cleavage(Knepper et al., 

2011). RIN4 is found to be always guarded by some specific R proteins. Therefore, this 

association keeps the R proteins involved, inactivated until some RIN4 modification which 

are perceived by NDR1 occur (Panstruga et al., 2009; Knepper et al., 2011). 

 

In stage 3 of the zig zag model, a given effector is „specifically recognized‟ by one of the NB-

LRR proteins, resulting in effector-triggered immunity (ETI). Recognition is again either 

indirect, or direct. (Jones and Dangl, 2006; Knepper et al., 2011). ETI is an accelerated and 

amplified kind of PTI response, resulting in disease resistance and, sometimes a 

hypersensitive cell death response (HR) at the infection site may happen. In phase 4 of zig zag 
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model, some pathogens evolve so that they can elude the mounted ETI either by shedding or 

diversifying the recognized effector gene, or by acquiring additional effectors that suppresses 

ETI. Equally the host improves its defence mechanism through acquisition of new R gene 

specific to the new effectors so that ETI can be triggered again. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic presentation of the plant innate immune system as a four phased model 

called `Zig Zag` model (Jones and Dangl, 2006). This model illustrates the quantitative output 

of the plant innate immune system. The ultimate amplitude of disease resistance or 

susceptibility is determined by the balance between PTI plus ETI`s amplitude and that of 

ETS. When PTI and/or ETI is greater than ETS the host becomes resistant to the infection or 

attack. In a situation where ETS is greater than PTI and/or ETI then the host becomes 

susceptible to infection. PTI is usually the first stage in plant innate immunity, then stage 2 is 

ETS where pathogens develop strategies to elude the PTI mounted against them by the host. 

Stage 3, host mounts a much stronger defensive mechanism-ETI. All the effectors that get 

recognized by R protein are termed avirulent (Avr) and the complex formed is Avr-R. In 

some cases ETI ends in HR. 

R protein activation results in a network of cross-talk between response pathways deployed, 

in part, to differentiate between biotrophic and/or hemi-biotrophic from necrotrophic 

pathogen attack. This is maintained by the balance between salicylic acid and a combination 

of jasmonic acid (JA) and ethylene. SA is a local and systemic signal for resistance against 

many biotrophs, whilst the combination of JA and ethylene accumulation are signals that 

promote defence against necrotrophs (Bruinsma et al., 2009). 
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Once the pathogen type has been identified or differentiated, various defensive mechanisms 

are put up by the plant under attack. For intracellular pathogens like bacteria, SA mediated 

responses such as HR PCD (Hypersensitive response programmed cell death), autophagy or 

exocytosis are possible options. Actions against herbivory which are JA mediated include 

production of phytotoxins such as camalexins and nitriles. The major chemical defence 

system is the glucosinolate-myrosinase system (Rask et al., 2000). In this system an amino 

acid derivative glucosinolate is metabolised to compounds such as nitriles, isocyanates and 

cyanates by myrosinases such as thioglucosinolase (Rask et al., 2000). These toxins are either 

toxic to herbivores or attract predators to the herbivores (Bruinsma et al., 2009). In case of a 

fungal infection, plant responses include polarized toxin production at the site of attempted 

entry site and also callose formation (Panstruga et al., 2009; Knepper et al., 2011). 

 

Peroxisomes contribute to all or most of the above mentioned responses through production of 

reactive oxygen species (ROS) that are needed for autophagy induction subsequently HR 

PCD (Liu et al., 2005; Scherz-Shouval et al., 2007; Hofius et al., 2009). They also produce 

signalling molecules such as reactive nitric species. JA biosynthesis takes place in the 

peroxisomes and JA is a very important defence hormone against necrotrophic attack as well 

as in cross-checking with SA actions.  Arabidopsis penetration (PEN2) is a peroxisomal 

protein. PEN2 together with PEN3 (plasma membrane ABC transporter) are recruited to 

attempted fungal entry sites, apparently to mediate the polarized delivery of a toxin to the 

apoplast (Panstruga et al., 2009; Knepper et al., 2011).  

 

Plants unlike animals they lack defence cells like B- and T-cells that are transported in the 

blood and are able to render pathogen resistance remotely. Nonetheless, when plants mount a 

local innate immunity against pathogens they simultaneously mount systemic acquired 

resistance (SAR) in remote parts of the plant (Schilmiller and Howe, 2005). SAR is mediated 

by salicylic acid-SA. SA accumulation in distal parts of the plant is by de novo synthesis via 

isochorismate synthase (Yasuda et al., 2008; Attaran et al., 2009). 
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1.4 Pathogen defence proteins of interest 

 

Proteins with a pathogen defence function that are established as localized in the peroxisomes 

and also those with a putative defence annotation and carrying PTS1s were of much interest in 

this study. The established peroxisomal defence proteins from two families i.e. NDR1/HIN1-

like (NHL) and immune-associated nucleotide-binding (IAN) protein family were of 

particular interest in this study. Additionally, four proteins carrying PTS1s and with a 

pathogen defence annotation were also of interest. 

 

The Arabidopsis genome contains a family of NHL genes that are  homologous to both the 

non race-specific disease resistance (NDR1)(Knepper et al., 2011) and the tobacco (Nicotiana 

tabacum) hairpin-induced (HIN1) genes. There are about 28 genes that encode NHL proteins. 

Therefore, NHL proteins are designated as NHL1-28. Some NHL proteins like NHL3 are 

pathogen-responsive hence, have a potential involvement in pathogen defence. Nonetheless, 

this study focuses on NHL4 (At1g54540   AKL>); NHL6 (At1g65690   LRL>); and NHL25 

(At5g36970   FRL>). In red prints are c-terminal tripeptides (PTS1s) and stop codon of the 

proteins (Lingner et al., 2011). These three NHL proteins are peroxisomal proteins 

(Unpublished data by A. Kataya and S. Reumann; (Lingner et al., 2011). Collectively, these 

NHL genes (NHL4/6 and 25) can be induced by conditions like SA treatment, FLG22, 

drought and salt only to mention but a few as shown from figures below obtained from 

publicly available microarray data from Genevestigator. NHL4/6 and 25 have a conserved 

domain (LEA superfamily domain) similar to that of NDR1. LEA (Late embrogenesis 

abundact) proteins have been reported to be involved in plant innate immunity (Knepper et 

al., 2011).  

 

IAN proteins belong to a family of AIG1-like GTPases. IAN proteins are also known as 

GTPase of immunity-associated proteins (GIMAP). All the IAN proteins have specific 

conserved amino acid domains: a AIG1 domain and a coiled-coil motif. The first IAN protein 

was found in Arabidopsis and designated as AIG (avrRpt2-induced gene).  The Arabidopsis 

AIG1 (IAN8) and AIG2, which are the first identified IAN proteins, are involved in plant 

resistance to bacteria. Recent analysis of the expression patterns of Arabidopsis IANs suggests 

that these IAN proteins may play regulatory roles during plant development and response to 

both biotic and abiotic stress(Wang and Li, 2009). 3 IAN proteins of interest in this study are 
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IAN8 (At1g33960), IAN11 (At4g09930), IAN12 (At4g09940). IAN12 is peroxisomal protein 

where as IAN8 and IAN11 target yet unkown punctuate subcellular structures (Unpublished 

Data by A. Kataya and S. Reumann).  

 

Publicly available microarray data from Genevestigator showed that NHL4 and NHL6 and 

also IAN8/11 and IAN12 proteins can be up- and /or down regulated by a number of biotic 

and abiotic stimuli. Stimuli which up-regulates gene expression, include SA treatment and 

Pseudomonas infection. Regulation of gene expression is time dependant (see results section).  

Using new PST1 prediction models four genes carrying PTS1s and with a pathogen defence 

related annotation were selected (Table.1). The plant PTS1 prediction model called position-

specific weight matrices (PWM) model was used to select the four genes from the whole 

Arabidopsis genome ((Lingner et al., 2011). These four PTS1 carry proteins are NUDT (for 

nucleoside diphosphates linked to some moiety X) hydrolases 7 and 15, acetyl CoA: (Z)-3-

hexen-1-ol acetyltransferase (CHAT; At5g17540) homolog and ATP binding protein (ATP-

BP; At1g72840).  

 

NUDT7 (At4g12720) and NUDT15 (At1g28960) belong to a gene family which hydrolyze 

ribonucleoside and deoxyribonucleoside triphosphates, nucleotide sugars, coenzymes, or 

dinucleoside polyphosphates (Ogawa et al., 2008). NUDT7 has four gene models 

(transcriptional and translational variants) and all the four have the same noncanonical PTS1- 

ASL>. NUDT7 was predicted to be a non peroxisomal protein by PWM model despite having 

a known PTS1 (Ogawa et al., 2008; Lingner et al., 2011). NUDT7 is a negative regulator of 

basal immunity in Arabidopsis, modulates two distinct defense response pathways and is 

involved in maintaining redox homeostasis (Ge et al., 2007). NUDT7 negatively regulates 

EDS1 which controls defence activation and programmed cell death conditioned by 

intracellular Toll-related immune receptors that recognize specific pathogen effectors. EDS1 

is also needed for basal resistance to invasive pathogens by restricting the progression of 

disease (Bartsch et al., 2006). NUDT15 has five gene models. Two of the five NUDT15 gene 

models contain the same noncanonical PTS1-PKM>. The other three NUDT15 gene models 

also have the same c-terminal tripeptide (CMP>) though it is not a known PTS1. Despite 

having some of its gene model with known PTS1, NUDT 15 was predicted to be a non 

peroxisomal protein (Ogawa et al., 2008; Lingner et al., 2011).CHAT homolog is a PTS1 

carrying protein with enzymatic activities and unlike the NUDT proteins it does not have 

more than one gene models (Lingner et al., 2011). CHAT homolog has a noncanonical PTS1-
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SSL>. It was predicted to be a peroxisomal protein (Lingner et al., 2011). ATP-BP is a PTS1 

carrying  R protein and has two gene models (Lingner et al., 2011). The two gene models of 

ATP-BP carry each a different c-terminal tripeptides. One of the two has a noncanonical 

PTS1-PKM>, whereas the other carries a non PTS1 tripeptide-CMP>. ATP-BP has the NB-

LRR conserved domain just like other R proteins. 

Table 1.1: PWM model-based PTS1 protein predictions for NUDT7, NUDT15, CHAT 

homolog and ATP-BP. All the gene models for our four proteins of interest were predicted 

and shown. The C-terminal tripeptide, allows the gene models to be sorted by their predicted 

PTS1 tripeptide. The thresholds of the prediction scores for predicted peroxisome targeting 

are 0.412.  Gene models predictions results are shown in the peroxisome prediction column 

as; 1 for PTS1 protein and 0 for non-PTS1 protein. Posterior probability (Post. Prob.) shows 

the chances of the gene model of targeting the peroxisomes. The highest for posterior 

probability is 1.  

AGI code Acronym C-terminal C-term. Peroxisome Post. Pred. 

(TAIR9 ID) 14 aa residues Tripep. prediction prob. score 

       

AT5G17540.1 

CHAT 

homolog RGSKSSNKLIMSSL SSL 1 0,850842 0,483865 

       AT4G12720.1  NUDT7 KRLKVSRDQASASL ASL 0 0,069248 0,315453 

AT4G12720.2  NUDT7 KRLKVSRDQASASL ASL 0 0,069248 0,315453 

AT4G12720.3  NUDT7 KRLKVSRDQASASL ASL 0 0,069248 0,315453 

AT4G12720.4  NUDT7 KRLKVSRDQASASL ASL 0 0,069248 0,315453 

       AT1G28960.4  NUDT15 AFIEQCPKFKYPKM PKM 0 0,026734 0,280752 

AT1G28960.2  NUDT15 AFIEQCPKFKYPKM PKM 0 0,026734 0,280752 

AT1G28960.1  NUDT15 FKYPKMVEKHTCMP CMP 0 0 -1,06092 

AT1G28960.3  NUDT15 FKYPKMVEKHTCMP CMP 0 0 -1,06092 

AT1G28960.5  NUDT15 FKYPKMVEKHTCMP CMP 0 0 -1,06092 

       AT1G72840.1 ATP-BP MNEEYSQEVRLSSL SSL 0 0,037061 0,292363 

AT1G72840.2 ATP-BP IILCGVEHVGFVLK VLK 0 0 -1,33342 
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1.5 Thesis goals 

Recently, peroxisomes have been implicated to having to play a role in disease resistance 

(Nyathi and Baker, 2006). It was due to this interesting new peroxisomal function (not so 

much explored) that the Reumann research group carried out a pathogen defence research 

study on peroxisomes. This study aimed at identifying new peroxisomal-targeting pathogen 

defence proteins and also analyse gene expression of already established peroxisomal defence 

proteins. 

 

Arabidopsis thaliana (Arabidopsis) was the model plant of study used to be used. Using, this 

model plant, four genes carry PTS1s and homologous to established defence proteins were 

identified and followed with subcellular localization analyses (Lingner et al., 2011). The four 

PTS1 carrying proteins were NUDT7, NUDT15, CHAT and ATP-BP.  

 

Again using our model plant (Arabidopsis), gene expression analyses of established 

peroxisomal proteins was to be carried out. The proteins investigated for expression were 

NHL 4, NHL6, NHL25, IAN 8, IAN11 and IAN12. RT-qPCR (Reverse Transcription 

Quantitative Polymerase Chain Reaction) was to be used in gene expression analyses (Livak 

and Schmittgen, 2001; Schmittgen and Livak, 2008). Furthermore, Co-expression analysis on 

the aforementioned NHL and IAN proteins were to be carried out.  Co-expression analyses 

were in silico studies were to be carried out using bioinformatics tool; the Expression Angler 

(http://bar.utoronto.ca/ntools/cgi-bin/ntools_expression_angler.cgi) and AtGenExpress 

Pathogen Set. 
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2 Materials and methods 

2.1 Molecular cloning 

Overview of subcloning steps of full-length cDNA of PTS1 protein candidates in the back of 

EYFP (Reporter protein) 

Plasmid isolation from Bacterial stock 

Analytical PCR (to verify correct insert in purchased INRA and RIKEN plasmids) 

 

Analytical agarose gel electrophoresis (to check fragment size and PCR specificity) 

 

Preparative PCR (to amplify the cDNA insert in purchased plasmids) 

 

Analytical agarose gel electrophoresis (to verify successful insert amplification) 

 

Preparative agarose gel electrophoresis (to isolate preparative PCR fragment) 

 

Preparative PCR fragment gel extraction (GE Healthcare GFX PCR DNA and Gel band 
purification kit) 

 

PCR fragment subcloning into pGEMT-Easy (TA cloning) 

 

E.coli transformation and pGEMT-Easy vector isolation 

 

Analytical double restriction digestion 

 

Analytical agarose gel electrophoresis (to verify correct insert size and determine the DNA 
concentration) 

 

Analytical PCR (to verify the presence of the insert in pGEMT-Easy) 
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Insert sequencing 

 

Preparative double restriction digestion 

 

Preparative agarose gel electrophoresis (to isolate double restriction digestion fragment) 

 

Preparation of the destination pCAT-EYFP vector 

 

Insert subcloning into the pCAT-EYFP vector 

 

E.coli transformation and colony PCR 

 

Plasmid miniprep.  and insert sequencing 

 

DNA precipitation onto gold particles and onion epidermal cell bombardment 

 

Subcellular localization analysis with fluorescence microscopy 
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2.1.1 cDNA constructs 

The full-length cDNA of the Arabidopsis proteins were obtained from public stock centres 

such as the French INRA and the RIKEN Biological Resource Centre (BRC, Japan). The 

stocks obtained from INRA were shipped as bacterial stabs while the stocks from RIKEN 

were shipped as plasmid DNA. All the purchased plasmids were ampicillin resistant. 

2.1.2 Oligonucleotide primers  

A pair of gene-specific oligonucleotide primers (forward and reverse) flanked with desired 

restriction endonuclease sites had been designed prior to the start of the thesis. The forward 

primers introduced a NotI site at the 5‟ end and the reverse primers at XbaI for NUDT7, 

NUDT15 and CHAT homolog. SacII sites at the 3‟ end of ATP-BP constructs were used 

instead of XbaI. Oligonucleotide primers were used for amplification of the full-length cDNA 

by polymerase chain reaction (PCR). The primer pairs that were used are shown in Table 2.2. 

The annealing temperature of the primers (i.e., the temperature at which the primers bind at 

highest specificity to the templates) was calculated according to the following formula: 

Tm = 69.3 °C + 41· %GC – 650/n 

Ta = Tm – 3 °C 

where Tm is the melting temperature at which the primers separate from the template, %GC is 

the ratio of the bases guanine (G) and cytosine (C) in the primer to the total number of bases, 

n is the number of bases, and Ta is the annealing temperature. 
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Table 2.1: Primer pairs used in PCR.  

 

cDNAs acronym Primers Sequences (5’→ 3’) 

 

NUDT7 (At4g12720) 

 

 

CM1f 

 

ACTGCGGCCGCTATGGGTACTAGAGCTCAGAAG  

 

 

CM2r 

 

CAAGTCTAGAGTCAGAGAGAAGCAGAGGCTTG 

 

NUDT15(At1g28960) 

 

CM3f 

 

AAGACTGCGGCCGCTATGTTTTTGCTTTATCGT 

 

 

CM4r 

 

CAAGTCTAGAGTCACATTTTAGGGTACTT 

 

ATP-BP full length 

(At1g72840) 

 

CM5f 

 

ACTGCGGCCGCTATGGCTTCCTCGTCATCAAAG 

 

 

CM7r 

 

GTACCGCGGTTATAGAGAAGAGAGCCT 

 

ATP-BP 420aa  

C-terminal 

(At1g72840) 

 

CM6f 

 

AAGACTGCGGCCGCTCTGCTTCCAAACCTACGGATA 

 

CM7r 

 

GTACCGCGGTTATAGAGAAGAGAGCCT 

 

CHAT homolog 

(At5g17540) 

 

CM8f 

 

AAGACTGCGGCCGCTATGTCCGGGTCACTCACG  

 

 

CM9r 

 

CAAGTCTAGAGTCACAGAGAAGACATGATCAA 
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2.1.3 Polymerase chain reaction (PCR)  

DNA was amplified by using a thermocycler to induce an enzymatic elongation of primers 

complementary to a template DNA. Both analytical and preparative PCR, as well as colony 

PCR, were performed. In both analytical and colony PCR Dream Taq DNA polymerase (MBI 

Fermentas) was used; in preparative PCR a proof-reading DNA polymerase was used 

(Expand High Fidelity 
PLUS

 PCR System from Roche Applied Science). Colony PCR was 

used to quickly screen for plasmid inserts directly from E. coli colonies. Analytical PCR was 

always done as a pilot PCR experiment prior to preparative PCR. Analytical PCR was used to 

verify correct insert in purchased INRA and RIKEN plasmids and also to verify the presence 

of the inserts in pGEMT-Easy after TA-cloning.  Preparative PCR was always used after 

analytical PCR. 

The components in Tables 2.3 and 2.4 were added to PCR tubes (NOTE: the enzyme was 

added last, after the reaction mix had been cooled on ice). Table 2.3 shows the components 

for a typical analytical PCR with homemade DNA polymerase, whereas Table 2.4 shows the 

components needed for a preparative PCR with proof-reading DNA polymerase.  

Table 2.2: Components of an analytical PCR 

Component Volume 

Sterile double-distilled H2O to 50 µl 

10x Taq buffer (final conc. 1x) 5 μl 

25 mM MgCl2 (final conc. 2.5 mM) 5 μl 

10 mM dNTP (final conc. 0.2 mM) 1 μl 

10 μM forward primer (final conc. 0.2 µM) 1 µl 

10 µM reverse primer (final conc. 0.2 µM) 1 µl 

Template DNA 0.5 µl 

Taq polymerase (ca. 1.5 U/µl) 1.5 µl 
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In colony PCR, instead of adding template DNA from a solution, a fractional amount of E. 

coli colony was added. This was done by touching a colony on a Luria Bertani (LB) plate 

with a fine pipette tip, and then stirring the PCR mix with the pipette tip. Table 2.5 shows 

PCR machine settings, in order to successful amplify cDNA and/or DNA. 

Table 2.3: Components of a preparative PCR 

Component Volume 

Sterile double-distilled H2O to 50 μl 

5x Expand HF buffer with 15 mM MgCl2 (final conc. 1x) 10 μl 

10 mM dNTP (final conc. 0.2 mM) 1 μl 

10 μM forward primer (final conc. 0.4 μM) 2 μl 

10 μM reverse primer (final conc. 0.4 μM) 2 μl 

Template DNA (0.1-10 ng plasmid) 1 μl 

Expand High Fidelity PCR system enzyme mix (5 U/μl) 0.5 µl 
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Table 2.4: Standard PCR program for preparative and analytical PCR 

Step Cycle Preparative PCR Analytical PCR 

Temperature (°C) Time Temperature (°C) Time 

Initial 

denaturation 

1 96 2 min 96 5 min 

Denaturation 1-5 96 30 sec 96 45 sec 

Annealing 1-5 Ta (1/2 primer) 30 sec Ta (1/2 primer) 45 sec 

Elongation 1-5 72 30 sec-4 min* 72 2 min 

Denaturation 1-5 96 30 sec 96 45 sec 

Annealing 6-25 Ta (full primer) 30 sec Ta (full primer) 45 sec 

Elongation 6-25 72 30 sec-4 min* 72 2 min 

Final elongation  72 10 min 72 10 min 

Cooling   12 ∞ 12 ∞ 

* For preparative PCR, the elongation time was adapted to the length of the PCR product; ca. 

1 minute per 1 kb was used. 
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2.1.4 Agarose electrophoresis  

 The two types of agarose gel electrophoresis were carried out after every PCR experiment, 

and also after restriction endonuclease digestions, namely analytical and preparative agarose 

gel electrophoresis. Analytical agarose gel electrophoresis was used to check fragment size 

and PCR specificity and also to verify successful insert amplification.  Correct insert size and 

DNA concentration determination was also done by running analytical agarose gel 

electrophoresis. Preparative agarose gel electrophoresis was used to isolate preparative PCR 

and double restriction digestion fragments, respectively. 

To make 1% (w/v) agarose gel, powdered agarose 1% (w/v) was melted in 1x TAE buffer 

(e.g. 0.5 g/50 ml) and then casted into a plate with the comb(s) for well-making.  

Table 2.5: 50x TAE buffer composition 

 

 

 

 

 

 

The gel with its gel plate was placed in the electrophoresis apparatus containing 1x running 

buffer (TAE) which covered the wells. To keep the loadings in the wells, 6x Fermentas 

Orange loading buffer was added (1:6 dilution). For an analytical electrophoresis the 

concentration of DNA in the loading mixture was significantly lower (10-70 ng, 1-3 µl) than 

for a preparative electrophoresis (0.2-1.5 µg, 15-25 µl). A 1:5 diluted size marker, 

GeneRuler
TM

1 kb DNA Ladder (Fermentas), was loaded (0.1 µg/µl, 5 µl) into the first well, 

followed by loading of the samples. The gel was electrophoresed at 70 V (ca. 150 mA) for 45-

60 minutes.  

The gel was exposed to UV light to obtain a photograph for result documentation. For 

preparative electrophoresis low intensity UV light (365 nm) and a short exposure time were 

50x TAE buffer:   g/l 

2 M Tris-Base 242 g 

Acetic acid (glacial), pH 8.3 57.1 ml 

EDTA  100 ml 0.5 M (pH 8.0) 

H2O 1000 ml 
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used while the band was cut out to minimize DNA damage.  The intensity and position of the 

band were compared to the size marker, and the concentration and size were determined.  

Table 2.6: 1Kb DNA ladder preparation 

1 kb standard: Volume 

sterile water 4 l 

Fermentas GeneRulerTM 1 kb DNA Ladder 

0.5 µg/µl 

1 l 

Fermentas 6x Loading Buffer Orange 

Gel Red   

1 l 

1 l 

NOTE: Gel Red made DNA bands visible under UV light 

2.1.5 Extraction of PCR fragments and restriction double digests  

Preparative PCR products or restriction endonuclease digests were separated on 1% agarose 

gels (2.1.4). By using low intensity UV light (365 nm), the DNA band of interest was cut out 

from the gel  and purified using illustra GFX™ PCR DNA and Gel Band Purification Kit (GE 

Healthcare). A DNase-free 1.5 ml microcentrifuge tube was weighed before and after adding 

the cut-out agarose gel band. The weight of the agarose gel slice was calculated and 10 µl 

capture buffer type 3 added for each 10 mg agarose gel slice. The sample was mixed and 

incubated at 60⁰C until the agarose gel was completely dissolved. The capture buffer type 3 

plus sample mixture (600 µl) was then transferred to a GFX Microspin column placed inside a 

collection tube and incubated for 60 seconds at room temperature.  The sample was 

centrifuged at 16000×g for 30 seconds and the flow-through discarded. This DNA binding 

step was repeated until the entire sample was loaded. The membrane bound DNA was then 

washed by adding 500 µl washing buffer type 1 and centrifuging at 16000×g for 30 seconds. 

The collection tube was discarded and the GFX microspin column transferred to a new 1.5ml 

DNase-free microcentrifuge tube. The DNA was then eluted from the filter by adding 15 µl 

elution buffer type 4, incubating for 60 seconds at room temperature and centrifuging at 

16000×g for 60 seconds.  
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2.1.6 Ligation of cDNA fragments into destination vectors  

Two different types of ligations were carried out; TA-ligation of cDNAs into the pGEMT-

Easy vector and “sticky end” ligations of cDNAs into the pCAT-EYFP plant expression 

vector. The insert in the TA-ligation was a double-stranded PCR product containing an A-

overhang at the 3‟ ends. pGEM-T Easy is a linearized vector with a T-overhang at the 3‟ends. 

For the pCAT-EYFP-cDNA ligation the insert was released from the pGEMT-Easy vector by 

restriction endonuclease cleavage. The back bone of the destination vector was cut with the 

same restriction endonuclease enzymes as the cDNA resulting in complementary overhangs 

(sticky ends) in each DNA molecule.    

 

 

 

 

 

 

Figure 2.1: pGEM-T Easy vector map. 

A stoichiometric ratio of vector-to-insert of approximately 1:3 was used in the reaction mix 

for DNA ligation. The size of pGEMT-Easy and pCAT vectors are 3 kbp and 4.5 kbp 

respectively. If the concentration of the cDNA was too low, the fragment was concentrated in 

a heating block (50 °C). The reaction was incubated at 4 C overnight. T4 DNA Ligase was 

inactivated by incubating at 65°C for 20minutes.  
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 Figure 2.2: pCAT vector map. Hind1R (At1g54540, 720 bp) had been previously subcloned 

via NotI/SacI into a modified version of the original pCAT vector (containing the extended 

MCS NotI-SacI-SacII-XbaI downstream of EYFP). This vector was to be used for subcloning 

of ATP-BP, NUDT7, NUDT15 and CHAT homolog in the back of EYFP. 

2.1.7   Transformation of competent E. coli cells  

An appropriate aliqout of competent cells of Escherichia coli (E. coli) was thawed on ice. 1 µl 

of plasmid DNA was added to the competent cells and mixed carefully by pipeting up and 

down. The tube was then incubated on ice for 30 minutes. To perform a heat shock, the tube 

was placed in a water bath at a temperature of 42 °C for 50 seconds and then quickly placed 

back on ice for two minutes. LB medium (500µl) was added to the tube which was then 

incubated at 37 °C for 1 hour in a roller drum to allow the cells to express the antibiotic 

resistance gene. The cells were then plated on LB plates with the ampicillin, since all the 

plasmid carried this resistance gene.  

When carrying out blue white screening, a preparation of 40 µl 100 mM isopropyl-β-D-1-

thiogalactopyranoside (IPTG) and 40 µl 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside(X-Gal) were spread on top of the LB plates prior to inoculation.  The plates 

were then incubated at 37 °C for 12-16 hours.  
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Table 2.7: LB medium and LB agar composition 

Component 

(final conc.) 

LB medium LB agar 

 

1% (w/v) Tryptone 10 g/l 10 g/l 

0.5% (w/v) Yeast 

extract 

5 g/l 5 g/l 

1%  (w/v) NaCl 10 g/l 10 g/l 

 0.2 ml/l NaOH (5 N) 1ml/l NaOH (1 N) 

1.5%  (w/v) Agar   15 g/l 

  2.1.8 Isolation of plasmid DNA 

The plasmid DNA was isolated from the bacterial cells using the Illustra
TM

 plasmidPrep Mini 

Spin Kit (GE Healthcare; 2.1.8.1) or the Wizard
®
 Plus SV Minipreps DNA Purification 

System (Promega; 2.1.8.2). The Promega purification kit was generally used to isolate to 

isolate pCAT plasmids due to the fact that it yields much more plasmid DNA than the GE 

Healthcare.  

2.1.8.1 Illustra
TM 

plasmidPrep Mini Spin Kit (GE Healthcare) 

A single bacterial colony with the cDNA of interest was inoculated in LB medium (5 ml). 

Prior to the inoculation ampicillin was added to LB medium. The culture was then incubated 

at 37°C overnight to allow bacterial amplification of the plasmid containing our cDNA of 

interest to take place. The bacterial cells were first harvested by transferring 1.5 ml of the 

bacterial culture to an Eppendorf tube and centrifugation at 16000×g for 30 seconds. The 

supernatant was poured off and discarded. The same procedure was then repeated for another 

1.5 ml culture volume. The pellet of bacterial cells was re-suspended in 200 µl lysis buffer 

type 7. Buffer type 8 (200 µl) was added and the tube was gently inverted to mix. This alkali 

treatment was done to lyse the cells and to denature genomic DNA and proteins. Lysis buffer 

type 9 (400 µl ) was added right after. Type 9 buffer is an acetate buffered solution, 

containing a chaotropic salt and neutralized the pH of the lysate. The lysate was centrifuged at 
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16000×g for 4 minutes. The plasmid DNA remained in the supernant whilst cellular debris 

including genomic DNA, proteins and lipids were precipitated. The supernatant was 

transferred to a plasmid mini column inside a collection tube, centrifuged at 16000×g for 30 

seconds and the flow-through discarded. During this step the plasmid was bound to the 

membrane due to the presence of chaotrope. 400 µl washing buffer type 1 was added and 

centrifuged at 16000×g for one minute. The ethanolic washing buffer removed residual salts 

and other contaminants. The flow-through and collection tube were discarded. The plasmid 

mini column was then transferred to a DNase free microcentrifuge tube and the plasmid DNA 

was eluted from the plasmid mini column by adding 50 µl water, followed by incubation for 

30 seconds at room temperature and centrifugation at 16000×g for 30 seconds.  

2.1.8.2 Wizard® Plus SV Minipreps DNA Purification System (Promega) 

10 ml of LB medium with ampicillin was inoculated with a single bacterial colony that was 

transformed with the cDNA of interest. Overnight incubation as above in section 2.1.8.1 but 

10 ml of bacterial culture was harvested by centrifugation at 10000×g for 5 minutes. The 

supernatant was poured off and the bacterial pellet thoroughly resuspended in 250 µl cell 

resuspension solution. Resuspension was done by pipetting up and down repeatedly. 250 µl of 

cell lysis solution was added. The tube containing the sample was mixed by inverting it four 

times. Then 10 µl of Alkaline Protease Solution was added inorder to inactivating 

endonucleases and proteins. The tube was again inverted four times and incubated for five 

minutes at room temperature. After the incubation 350 µl Neutralization Solution were added 

and mixed by inverting the tube four times. The bacterial lysate was centrifuged at maximum 

speed (20000×g) for 10 minutes. The supernatant was transferred to a spin column inside a 

collection tube and centrifuged at maximum speed for one minute. The flow-through was 

discarded. 750 µl Column Wash Solution was added and centrifuged at maximum speed for 

one minute. The flow-through was discarded and the washing step repeated with 250 µl 

column wash solution. The sample was later on centrifuged at maximum speed for two 

minutes. The spin column was then transferred to a DNase free microcentrifuge tube and the 

plasmid eluted by adding 50 µl of Nuclease-free water and centrifuging at maximum speed 

for one minute. 
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2.1.9 Restriction digestion  

Restriction digestion was performed for both analytical and preparative purposes. The 

preparative restriction digestions with single enzymes about 1 µg plasmid DNA, 1 µl of 10x 

reaction buffer, 0.2µl restriction enzyme (10 U/µl) and water (to add up to 10 µl) were added 

to one tube. The mixture was incubated at 37⁰C overnight. It is important that the total 

volume of enzymes does not exceed 10% (v/v) of the reaction mix to avoid unspecific star 

activity. To achieve quantitative digest, the mixture was incubated for another hour and 

analyzed by agarose electrophoresis. For analytical restriction digest 1 µl DNA (ca. 0.1-0.6 

µg), 1 µl of the appropriate 10x reaction buffer, 1 µl of each restriction enzyme (1-5 U) and 

water (to add up to 10 µl) were mixed together and incubated (37⁰C, 1 h). For double 

digestions the plasmid DNA or PCR product was digested with two restriction enzymes at the 

same time, and an appropriate reaction buffer ensuring the highest activity of both enzymes 

was used. Depending on the enzymes‟ activities in the chosen buffer the number of units of 

enzyme was adjusted to compensate for reduced activity. For example, for an analytical 

double digest with NotI and XbaI, buffer O (MBI Fermentas) was used. In this buffer NotI 

has a restriction enzyme activity of 100% while XbaI has an activity of 20-50%. Routinely 1 

U NotI was used, and the reduced activity of XbaI was compensated by using 5 U XbaI.  

2.1.10 Sequencing  

Sequencing was done every time the cDNA had been ligated into a new vector and 

successfully amplified by transformation of E. coli cell. Sequencing was done by Seqlab 

(Goettingen, Germany). The purpose was to verify the correct nucleotide sequence of the 

cDNA as mutations could have occurred during template amplification, due to primer errors, 

or by the cDNA exposure to UV light. Two extended HotShot sequence runs (covering ca. 

800 bp) were done on the cDNA of interest in pGEM-T Easy and the pCAT expression 

vector. T7 primer (5‟-TAATACGACTCACTATAGGG -3‟)was used to sequence inserts in 

pGEM-T Easy from the forward end. Inserts in pCAT were sequenced using SR321f primer 

(5‟- ACT ACC TGA GCT ACC AGT CC- 3‟) designed according to the specific region that 

had to be sequenced. If the cDNA size was longer than 800 bp, two separate sequencing runs 

were required, one with a reverse primer and one with a forward primer. It was very important 

to only use a single primer in each tube; two primers would result in two overlapping 

sequences that cannot be read. The samples to be sequenced were prepared adding the 

components in Table 2.10 to a PCR tube. 
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Table 2.8: Components of samples sent out for sequencing at seqlab 

 

Component Amount 

Plasmid DNA 600-700 ng 

Tris buffer pH 8.0  final concentration of 7.1 mM (e.g. 1 µl 50 mM) 

Primer 20 pmol (e.g. 2 µl 10 pmol/µl) 

dH2O to a final volume of 7 µl 
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2.2 Subcellular localization studies in Allium cepa L. (Onion) 

2.2.1   DNA precipitation onto gold particles 

An aliquot of 50 mg gold particles was resuspended in 1 ml ethanol and vortexed for 3-5 

minutes. The gold particles were then sedimented by centrifugation at 10000×g for three 

seconds and the supernatant was discarded. The washing step was repeated three times. After 

the last washing the gold particles were resuspended in 1 ml water and then vortexed and 

centrifuged as before. The supernatant was discarded and resuspended the gold particles in 1 

ml water. The suspension was aliquoted in 50 µl aliquots. The next steps were performed on 

ice. The following components were added one after the other in given order and vortexed 

thoroughly for two minutes after each addition: 5 to 7 µl plasmid DNA (1 µg/µl) (final conc.: 

about 40 ng/µl), 50 µl 2.5 M CaCl2 (final conc.: about 1 M) and 20 µl 0.1 M Spermidine (final 

conc.: about 10 mM). The DNA was then precipitated onto the gold particles by 

centrifugation at 10000×g for 3 seconds. The supernatant was removed. The particles were 

resuspended in 250 µl ethanol, vortexed and sedimented by centrifugation at 10000×g for 3 

seconds. The supernatant was removed. This washing step was repeated three times. The 

particles were finally resuspended in 60 µl ethanol and ready for use for the transformation of 

onion epidermal cell by bombardment. 

2.2.2   Transformation of onion epidermal cells by bombardment 

A biolistic system (PDS-1000/He Particle Delievery system, Biorad) was used in the 

transformation of onion epidermal cells (Allium cepa L.). The aforementioned biolistic system 

uses highly pressurized helium, which builds up above a rupture disk that bursts at a 

predefined pressure. When the rupture disk bursts, a helium shock wave is generated into the 

cell bombardment chamber. The helium shock wave propels the macrocarrier loaded with 

DNA coated gold particles toward the target cells at high velocity. The macrocarrier is 

stopped by a stopping screen while the DNA coated particles continue to the target and 

transform the onion epidermal cells.   

Onion has to be made ready for bombardment before putting it in the biolistic system. A 

healthy onion was peeled and cut into well-sized slices. A quarter of a slice with the 

epidermal cell layer still attached was placed in a Petri dish on a wet piece of paper. The gun 

chamber was sterilized with 70% ethanol. The helium bottle was opened and the pressure 
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adjusted to 1400 PSI. The pressure should be adjusted a little higher than where the disc 

ruptures. The suspension of gold particles coated with the desired plasmids was vortexed 

thoroughly and 5 µl were loaded onto the macrocarrier holder in the shooting device. The 

gold particles were spread with the side of a pipette tip over an area of about 1 cm
2
. A rupture 

disk was sterilized in ethanol and loaded into the retaining cap. The retaining cap was secured 

to the end of the gas acceleration tube and tightened with a torque wrench. The macrocarrier 

containing the DNA and the stopping screen were loaded into the microcarrier launch 

assembly. The microcarrier launch assembly was placed into the top shelf and the targeted 

onion cells placed into the third shelf. The chamber room was closed, the vacuum pump 

turned and the power switch on the bombardment device turned on. The vacuum was lowered 

to about 270 inches Hg and then held. The fire button was pushed until rupture of the rupture 

disc. The pump was turned off and the vacuum slowly released. The vacuum pump was 

turned off, the chamber door opened and the dish with the onion removed. The macrocarrier 

and stopping screen from the microcarrier launch assembly were unloaded and discarded as 

well as the spent rupture disk. When all the experiments were completed the helium bottle 

was closed. The helium pressure was released from the tubing by applying vacuum and 

shooting a couple of times. The onion was left in the Petri dish and incubated in the dark for 

about 18 hours to allow for transient expression of the cDNA of interest using the onion 

epidermal cells. After incubation, analysis by fluorescence microscopy followed. NUDT7, 

NUDT15 and ATP-BP were also incubated at 4⁰C for three to six days (Lingner et al., 2011). 
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2.2.3 Fluorescence microscopy  

After being transiently expressed in onion epidermal layer cells, microscopic analysis was 

done on the PTS1 protein candidates. An inverted fluorescence microscope was used to in 

subcellular analysis of the transformed onion epidermal cells. The epidermal cell layer was 

peeled off, put onto a microscope slide and covered with a cover slide. The prepared sample 

was placed on the stage with the cover slide upside down. The cells were either single- or 

double-labelled. In single-labelled cells, only the vector containing EYFP was transformed 

into onion cells. Double-labelled cells contained one extra plasmid, the DsRed-SKL (in 

pWEN vector) that targeted to peroxisomes using SKL - major PST1 (Matre et al., 2009).  

Fluorescence image acquisition was performed on a Nikon TE-2000U
 
inverted fluorescence 

microscope and filters for YFP (exciter HQ500/20, emitter S535/30) and
 
CFP (exciter

 

S436/10, emitter S470/30), equipped with a Hamamatsu Orca
 
ER 1394 cooled CCD camera. 

Volocity II software (Improvision)
 
was used for picture capture. The different fluorescent 

proteins were distinguished from each other by using different filters on the microscope. A 

Macintosh computer was connected to the microscope which was used for picture storage. 

Emitted fluorescent light was changed to green (EYFP) and red (Ds-Red-SKL) to allow the 

detection of double-labelled peroxisomes. Two pictures of one cell (one observed with EYFP 

filter and one with DsRed-SKL filter) were overlaid in PhotoShop.       
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2.3  Gene expression analysis with qPCR 

2.3.1 Plant growth conditions 

Standard healthy Arabidopsis thaliana ecotype Columbia-0 plants were grown on a mixture of 

soil and vermiculite in the ratio 3:1 for 6 to 7 weeks. The growth chambers, where a 16-h-

light/8-h-dark cycle at 22°C under a light intensity of 100 to 150 µE m
–2

s
–1   

were used. After 

sowing the seeds, they were covered with a plastic dome for the first week to maintain 

humidity until germination. 

2.3.2 RNA isolation 

RNA isolation was carried out with RNeasy Plant Kit (Qiagen Kit). All the steps were carried 

out at room temperature, including centrifugation. 

Previously harvested leaves that were stored at -80⁰C were thoroughly and quickly crushed 

pestle and mortar. Pestle and mortar were maintained at cryogenic temperature by liquid 

nitrogen. The thoroughly crushed leaf powder along with liquid nitrogen was transferred to an 

RNase free, liquid Nitrogen cooled 2 ml Microcentrifuge tube. Liquid nitrogen was left to 

evaporate but not allowing the leaf tissue to thaw. RLT buffer (450 µl) was added. Prior to 

use, an appropriate amount of mercaptoethanol was added to RLT buffer. Vigorously 

vortexing for 30 sec was done. The lysate was transferred to a QIAshredder spin column and 

centrifuged at 14,000 g for 2 minutes. Supernatant was carefully transferred to a new tube and 

96 -100 % ethanol (225 µl) was added and mixed immediately by pippeting. The mixture was 

transferred to an RNeasy spin column and centrifuged at 8000 g for 15 sec. The flow through 

was discarded after centrifugation and reinserted the collection tube, to which, 700 µl of RW1 

buffer was added. This step was repeated twice. RPE buffer (500 µl) was added to the same 

RNeasy spin column in two separate steps and centrifuged at 8000 g for 15 seconds and 2 

minutes respectively before discarding the collection tube along with the flow through. To 

ensure that no carry-over solutions was extracted with the isolated RNA, the RNeasy column 

was placed in a new empty 2 ml collection tube and centrifuged at 14000 g for 1 minute 30 

seconds. RNA was eluted into a new 1.5 ml collection tube by adding 50 µl of RNase free 

water directly to the spin column, and centrifuging at 8000 g for 1 minute.  

Nano-Drop Spectrophotometer was used to determine RNA concentration and purity. Prior to 

determining the concentration and purity, 1 µl of extracted RNA was diluted in 2 µl of sterile 

water.  1.5% (w/v) non denaturing agarose gel was used to determine the extracted RNA 

integrity. Use only 1 µl of extracted RNA for this purpose. 45 µl of RNA from the total eluted 



Materials and Methods 
 

 

31 
 

amount (ca. 250 ng/ µl) was used in cDNA synthesis after diluting it to a concentration of 100 

ng/ µl. The remaining 3 µl of RNA from the total volume eluted was aliquoted into 1 µl and 

stored for future use such as reassessment of concentration, purity and integrity.  

2.3.3 cDNA synthesis 

cDNA was synthesized using the High Capacity cDNA Reverse Transcription kits. 

Three major steps were followed in order to synthesize single-stranded cDNA from total 

RNA. 

1. 2X Reverse Transcription master mix was prepared as shown in the table below using 

the kit components 

Table 2.9: Reverse Transcription master mix preparation 

 

Component 

Volume/Reaction 

(µL) 

10X RT Buffer 2.0 

25X dNTP mix (100mM) 0.8 

10X RT Random Primers 2.0 

Multiscribe™ Reverse 

Transcriptase 1.0 

Nuclease-free water 4.2 

Total per Reaction 10 

Note: Allow the kit components to thaw on ice and prepare the RT master mix on ice 

 

2. Addition of 10 µl of total RNA (100ng/ µl) to the 2X Reverse Transcription master mix 

to create a 1X mix 

3. Performing Reverse Transcription in a thermal cycler (traditional PCR machine). The 

thermal cycler settings were; 25°C for 10 min (step 1), then 37°C for 2 hours (step 2) 

then 85°C for 5minutes (step 3) and last step at 10°C for indefinite. 

2.3.4 Standard qPCR reaction 

96 plate wells were used in all qPCR experiments. The qPCR reaction cocktail per well was 

as shown below in Table. 2X PCR master mix containing SYBR Green I dye, water, and 

cDNA were almost always mixed to form a master mix before adding gene-specific primer 

pairs. 20 µl of qPCR reaction components was dispatched into appropriate wells in order to 
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increase the triplicate precision by lessening the number of pipeting steps. The thermal cycle 

profile of the qPCR machine was set-up as shown in table . 

Table 2.10: Real time PCR reaction mix  

Component Volume/Reaction (µL) 

2X PCR master mix 10 

cDNA (10ng/ µl) 1 

Gene-specific Forward 

Primer (300nM/ µl) 1.2 

Gene-specific Reverse 

Primer (300nM/ µl) 1.2 

Nuclease-free water 6.6 

Total volume/well 20 

 

Table 2.11: qPCR Thermal Cycler Profile 

  Stage Repetitions Temperature Time Ramp Rate 

1 1 50.0 °C 02:00 100 

2 1 95.0 °C 10:00 100 

3 40 95.0 °C 00:15 100 

    60.0 °C 01:00 100 

4 (Dissociation) 1 95.0 °C 00:15 Auto 

    60.0 °C 00:20 Auto 

    95.0 °C 00:15 Auto 

    60.0 °C 00:15 Auto 

    2.3.5 Method establishment 

Real time PCR had never been used in the Reumann laboratory as a gene expression analysis 

method. Therefore, a major goal of this master thesis was to establish the method in the group. 

To this end, before it qPCR for gene a number of validation experiments had to be carried out 

in order to establish the method. Primer testing, primer optimization, dynamic test and PCR 

amplification efficiencies of target and endogenous gene validation experiments were 
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performed prior to relative quantitation of gene by qPCR with the 7300 Applied Biosystem 

PCR machine.  

 

2.3.5.1 Primer testing and optimization 

The primer pairs used in this present study (e.g., for endogenous control, SA positive markers 

and genes of interest) in gene expression analysis are listed in the table below. 

Table 2.12: qPCR primer pairs 

Gene AGI Forward primer Reverse primer 

ACT2 AT3g18780  TGCCAATCTACGAGGGTTTC CAGTAAGGTCACGTCCAGCA  

PR2 At3g57260 AGCTTCCTTCTTCAACCACACAGC TGGCAAGGTATCGCCTAGCATC 

PR5 At1g75040 ATCACCCACAGCACAGAGACAC AGCAATGCCGCTTGTGATGAAC 

Ubi10 
 

CGGATCAGCCAGAGGCTTATT AGCCTGAGGACCAAGTGGAG 

NHL4 At1g54540  TGCAGCAGCAACAACAAACAGG  TTCCGAGTTTGATGGCGACAGG 

NHL6 At1g65690  TGGGAGCAAGATTACCGTGTGG TTTGGCAACGACCCATTGCTTA  

NHL25 At5g36970  CCAGAATCAGTAATGGGTCGTT CCTGTTAACCGTTGTTGCTCTT  

IAN8 At1g33960  TCAATGTGATTGACACTCCTG ACTAAGAGCACAGCGTGTAGC  

IAN11 At4g09930  TGGCCAAGAAGGTAGAGAAGG  TCTTCGCTGGATTCTTCGTGG 

IAN12 At4g09940  AGAGTTCAACGCTACCCAATG  TGGCGACAGACTAAACAGACC 
 

 

Each primer pair for the genes listed in the table was tested at various concentrations of 

forward and reverse primers. First, the forward primer concentration was kept constant i.e 150 

nM/150 nM, 150 nM/300 nM and150 nM/600 nM.  Next, the forward primer concentrations 

were varied as well as the reverse primer concentrations; 300 nM/150 nM, 300 nM/300 nM, 

300 nM/600 nM, 600 nM/150 nM, 600 nM/300 nM and 600 nM/600 nM. The qPCR 

components that were used through the qPCR reactions are given in Table 

 Primer testing for dimer formation and non specific amplification was done simultaneously 

with primer optimization. No Template Control (NTC) for each primer pair optimized was 

run. The dissociation curve that formed after amplification was used in the primer testing 

analysis (refer to results, section 3.2.). 

2.3.5.2  ΔΔCT validation experiment 

A specific validation experiment was done in order to determine if the downstream ΔΔCt 

calculation would be valid. A summary of guidelines that were followed in this very vital 

experiment are provided here: 

i. The input of cDNA shall span 5 logs (i.e 20 ng to 0.001 ng) and the expression levels 

of all targets  
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ii.  Run triplicates for each standard curve point in order to determine the precision of the 

assay. 

iii.  The target and endogenous control reactions shall run in separate wells  

iv. The primer concentration shall be adjusted to 300nM for both forward and reverse 

primers.   

2.3.6 SA treatment of wild type Arabidopsis plants 

Arabidopsis thaliana Col-0 were grown under standard conditions aforementioned in section 

and treated with SA (100 µM) as a way of mimicking pathogen infection. The SA was 

exogenously administered to plants by spraying using a simple laboratory hand sprayer of 

approximately 500 ml. Three biological replicates were treated with the same solution of SA.  

Leaves from each of the respective biological replicate were harvest at 0 hour 

(calibrator/untreated), 24hours (treated) and 72 hours (treated) post SA treatment and stored at 

-80°C.  
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3 Results 

Research on peroxisome-mediated functions of plant innate immunity is a new research focus 

in the Reumann group, initiated by the PhD student, Amr Kataya. The goal of the present M. 

Sc. thesis was to perform subcellular localization analysis, relative quantification of gene 

expression by qPCR and co-expression analyses. Subcellular localization studies were done 

for four newly predicted PTS1 protein candidates, namely NUDT7, NUDT15, CHAT 

homolog and ATP-BP (see section 1.4). The methodology of qPCR was established in the 

group and used to determined relative SA-inducible expression of three putative pathogen 

defence genes of the family of NHL proteins (NHL4, NHL6, and NHL25) and three genes of 

the family of IAN proteins (IAN8, IAN11 and IAN12). The comparative Ct method was used 

as the relative quantitative method of choice with β-actin (ACT2), PR2 and PR5 as 

endogenous control and positive marker genes for SA treatment, respectively. Lastly, about 

30 Arabidopsis defence proteins (including the proteins of interest, i.e., NHL4/6 and 

IAN8/11/12) were subjected to co-expression analyses.  

 

3.1  cDNA subcloning and subcellular localization analysis of four PTS1 protein 

candidates 

 

3.1.1 Bioinformatic analysis of the four PTS1 candidates 

 

Bioinformatic analyses of the four PTS1 protein candidates of interest were carried out in 

order to obtain an overview of the different possible protein variants that could be synthesized 

from each gene of interest. One gene can result in transcriptional and translational protein 

variants that often differ in subcellular localization. Therefore, bioinformatics analysis was a 

crucial step prior to cDNA subcloning in expression vectors during subcellular localization 

studies. 

 

NUDT7 (AT4G12720) has four splice variants according to data obtained from publicly 

available database, The Arabidopsis Information Resource (TAIR; 

http://www.arabidopsis.org/) (data not shown). In general, eukaryotic gene models consist of 

three parts; the untranslated region (UTR), introns and exons. All four gene models of 

NUDT7 have the same last four exons. Three gene models have the same total number of 

exons but differ in their respective 5`- and 3`- UTR. The fourth gene model has one additional 

http://www.arabidopsis.org/
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exon compared to the others and, additionally, has also a different and shortened UTR. cDNA 

from any of the four gene models can be used in subcellular localization analysis of NUDT7. 

NUDT15 (AT1G28960) has five gene models (Fig. 3.1). Two gene models (AT1G28960.2 

and AT1G28960.4) have the same exons with respect to number and size. The other three 

gene models are clearly different from the first 2 but identical. Apparently they differ in their 

respective 3` UTR. However, UTR differences among gene models do not affect the 

transcriptional and translational protein variants that are synthesized by the gene in question. 

Furthermore, NUDT15 gene models were analysed at amino acid sequence level (Fig 3.2). 

This analysis was done so that similarities and differences in PTS1 domains could properly be 

understood. Gene models AT1G28960.2 and AT1G28960.4 have the same predicted PTS1 

domain and PTS1, whilst AT1G28960.1, AT1G28960.3 and AT1G28960.5 also have a 

different but common C-terminus that lacks the prediction of a PTS1 domain (see Table 1.1). 

Taken together, gene models AT1G28960.2 and AT1G28960.4 were likely to target 

peroxisomes, whereas, AT1G28960.1, AT1G28960.3 and AT1G28960.5 are likely to be 

cytosolic protein variants. Gene models AT1G28960.2 and AT1G28960.4 were selected for 

subcloning because of their higher probability of being localized in peroxisomes. 

 

 

 

 Figure 3.1: NUDT15 gene models. NUDT15 has five gene models. Gene models 

(AT1G28960.2 and AT1G28960.4) are identical. The other remaining gene models 

(AT1G28960.1, AT1G28960.1 and AT1G28960.5) are also identical. 

http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT4G12720.1
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Figure 3.2: PTS1 domain analysis of NUDT15. The sequence alignment of five NUDT15 

protein variants at the amino acid level was made in order to compare the different domains. 

The PTS1 domains of AT1G28960.2 and AT1G28960.4 have the same PTS1 tripeptide 

sequence (PKM>) and also AT1G28960.1, AT1G28960.3 and AT1G28960.5 have the same 

C-terminal tripeptide (CMP>), however, this domain is not predicted as a PTS1 domain (see 

Table 1.1). 

 

The CHAT homolog (AT5G17540) has only one and a very simple gene model; one intron, 

and two exons (data not shown).  The second exon is larger than the first one. The CHAT 

homolog was predicted with high probability to be localized in peroxisomes (see Table 1.1). 

Unlike the CHAT homolog, ATP-BP has two gene models (AT1G72840.1 and 

AT1G72840.2) (Fig. 3.3). Gene model AT1G72840.1 was predicted to be likely peroxisomal 

more than AT1G72840.2 (see Table 1.1).  Nevertheless, prediction scores for both gene 

models were below peroxisomal localization threshold score. Gene model AT1G72840.1 has 

a predicted PTS1 (SSL>) whilst AT1G72840.2 lacks a predicted PTS1 tripeptide at the C-

terminal. In conclusion, AT1G72840.1 was selected for use in subcellular targeting studies of 

ATP-BP since it was predicted to be peroxisome than AT1G72840.2.  

 

 

Figure 3.3: ATP-BP gene models. ATP-BP has two gene models which differ at the 3` end 

of their models. ATP-BP full length protein is encoded by AT1G72840.2 which has an extra 

exon and intron 3` end AT1G72840.1.  

 

http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT1G72840.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT1G72840.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT1G72840.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT1G72840.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT1G72840.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT1G72840.1
http://www.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/?name=AT1G72840.1
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3.1.2 Cloning of the four PTS1 protein candidates into pCAT via pGEM-T Easy vectors 

 

3.1.2.1 cDNA verification and amplification 

 

Purchased plasmids with the cDNAs of interest were supplied either as bacterial stocks or as 

already isolated plasmids. The purchased plasmids were verified to contain the correct inserts 

by running a PCR with gene-specific primers and analyzing the PCR products by agarose gel 

electrophoresis (Fig. 3.4). The approximate sizes of the cDNAs were NUDT7 (800 bp), ATP-

BP full (3000 bp), ATP-BP c-terminal (1200 bp), NUDT15 (850 bp) and lastly CHAT 

homolog (1400 bp). Purchased plasmids were verified to contain correct cDNAs of interest, 

which were then subcloned into pCAT via pGEM-T Easy vectors. 

 

 

 

Figure 3.4: cDNA insert verification. PCR was done to check if the purchased plasmids 

contained the correct insert of the PTS1 protein candidates. 5 µl of each PCR product were 

used for agarose gel electrophoresis. Loaded in lane 1 was 1Kb DNA ladder; Lane 2 was 

NUDT7 (800 bp) Lane 3 ATP-BP full (3000 bp); Lane 4 is ATP-BP c-terminal (1200 bp); 

Lane 5 is NUDT15 (850 bp); Lane 6 is CHAT Homolog (1400 bp). 

 

After verifying the inserts in purchased plasmid, second PCR was carried out in order to 

amplify the cDNA that was later on cloned into the open pGEM-T Easy vector.  . Respective 

gene-specific primers of cDNA were again used just like in the preceding PCR.  To check if 

PCR products were formed by their respective gene-specific primers, analytical agarose gel 

electrophoresis was run before preparative agarose gel electrophoresis.  Preparative agarose 

gel electrophoresis was performed so that the cDNAs of the PTS1 candidates could be 

extracted and be cloned into pGEM-T Easy (see Fig. 3.5). Indeed, all the four PTS1 

1       2       3      4       5      6 
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candidates (cDNAs) were specifically amplified by their respective primer pairs. NUDT15 

had the thickest and brightest gel band formed, hence the highest concentration of all. ATP-

BP full-length had the thinnest gel band of around 3 kbp that was compared to the DNA 

ladder. The gel bands for CHAT homolog, NUDT7 and ATP-BP 420 amino acid c-terminal 

were similar in size and brightness and formed at their respective marks corresponding to 

their cDNA sizes. The DNA bands were extracted and purified and successfully cloned 

pGEM-T Easy vector. 

 

 

 

 

Figure 3.5: PCR-amplified cDNA isolation. 15 µl of PCR amplified cDNA was loaded on 

an agarose gel. The 1 kb DNA ladder was loaded in lane 1, and lane two to six was NUDT15, 

CHAT homolog, NUDT7, ATP-BP full length and ATP-BP 420aa c-terminal.  

 

3.1.2.2 PCR fragment isolation  

PCR fragment isolation involves agarose gel electrophoresis and PCR fragment extraction 

from the gel slices. Agarose gel electrophoresis was run with 15 µl PCR product. The aim was 

to isolate cDNA for NUDT7, NUDT 15, ATP-BP (full length and 420aa C-terminal) and 

CHAT homolog on the agarose gel. The insert bands were separated on the agarose gel.  

Therefore, they were then extracted using GE Healthcare GFX PCR DNA and Gel band 

purification kit (see section 2.1.5).  

1 µl of purified PCR product was used to check if the DNA band had been successfully 

extracted from the gel (data not shown). The agarose gel electrophoresis was also used to 

determine the DNA band extracted concentration. It was important to precisely determine the 
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cDNA concentration because an insert to vector molar ratio of 3:1 was required in the DNA 

ligation step.   

Concentration was determined as: 

(1) NUDT 7   = 20 ng/µl 

(2) ATP-BP full length  = 15 ng/µl 

(3) ATP-BP 420aa C-terminal  = 20 ng/µl 

(4) NUDT 15   = 20 ng/µl 

(5) CHAT homolog   = 20 ng/µl 

After the DNA concentration was determined by agarose gel electrophoresis, the isolated PCR 

fragments were ligated into pGEMT-Easy overnight via TA-cloning. The masses of 

respective cDNAs subcloned into pGEM-T Easy were 14.4 ng of NUDT 7, 53.3 ng of ATP–

BP full-length, 21.4 ng of ATP–BP 420aa, 14.6 ng of NUDT 15 and 23.6 ng of CHAT 

homolog. 17 ng of pGEM-T Easy was used in all TA-cloning experiments. pGEM-T Easy 

vector has a Thymine (T) base over hang and the cDNAs when digested with restriction 

enzymes NotI and XbaI/SacII have an Adenine (A). Therefore, when cDNA with such an 

over-hang is ligated into the open pGEM-T easy vector, the process is called TA-cloning. 

  

3.1.2.3 Directional cloning into pCAT via pGEM-T Easy vector 

E. coli cells were transformed with pGEM-T Easy vector containing the respective cDNA 

inserts of the four PTS1 protein candidates. Blue-white screening and ampicillin resistance to 

were used to select E.coli cells that were transformed with pGEM-T Easy containing the 

cDNA of interest.  The blue-white screening technique allows for the quick and easy detection 

of successful DNA ligation, without the need to individually test each colony. The competent 

cells were grown in the presence of X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galacto-

pyranoside). X-Gal yields colourless and blue products once hydrolyzed by β-galactosidase. 

A bacterial colony was white if the DNA ligation was successful and blue if ligation was not 

successful. Colony PCR was done on selected white bacterial colonies to verify the presence 

of the insert, and then the plasmids were isolated from the successful colony after an 

overnight incubation in LB medium.  To ensure that pGEM-T Easy contained the correct 

insert, in addition to colony PCR, double restriction enzyme digestion was also done (see next 

section 3.1.2.5). Indeed, bands for the inserts and backbone vector formed at the correct 

position. That was also used in double-checking that cDNA of interest had been cloned into 

http://en.wikipedia.org/wiki/DNA_ligase
http://en.wikipedia.org/wiki/X-gal
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pGEM-T Easy. After verifications that the insert were correct, the samples were sent out for 

sequencing in Germany to check if there is any mutations.  T7 primer was used for 

sequencing (see section 2.1.6). None of the inserts had any mutations at amino acid level (see 

section 7.1). cDNA sequences were then ready to be subcloned into the final destination 

expression vector pCAT-EYFP. 

The successfully cloned inserts of PTS1 protein candidates into pGEM-T Easy were digested 

out from the plasmid after plasmid amplification using E.coli cells. Two restriction enzymes 

were used to cut out the insert from pGEM-T Easy. Restriction enzymes NotI and XbaI were 

used to digest pGEM-T Easy vector containing NUDT7, NUDT15 and CHAT homolog. NotI 

and SacII were used to digest the pGEM-T Easy vector containing the ATP-BP insert. The 

inserts were isolated on an agarose gel. Indeed, all the inserts were isolated from the backbone 

pGEM-T Easy vector except for ATP-BP full length (Fig. 3.6). ATP-BP full length cDNA 

and pGEM-T Easy both have the same size (3 kbp), therefore only one band was formed in 

Lane 3 of the figure shown below. 

 

 

 

 

Figure 3.6: cDNA isolation from the pGEM-T Easy vector. The cDNAs were cut out of 

pGEM-T Easy by using the restriction enzymes NotI/XbaI and NotI/SacII. 20 µl of double 

digest was separated by agarose gel electrophoresis. Lane 1 to 6 were loaded with NUDT7, 

NUDT15, ATP-BP full length cDNA, ATP-BP 420aa, CHAT homolog and 1kb DNA ladder 

(marker) respectively. All lanes had a clear-cut distinction of bands formed between the 

plasmid backbone and the insert except for lane 3 where ATP-BP (3.1 kbp) and plasmid (3 

kbp) formed a single band. 
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pCAT-EYFP-Hin1R is the vector construct that was used as final destination expression 

vector that was used  subcellular targeting analysis of this MSc thesis (see Fig. 2.2).  EYFP is 

the reporter gene that was N-terminally located to the PTS1 protein candidates. Hin1R was 

the insert that had to be digested out from the vector so that the cDNA of interest could be 

expressed as a fusion protein with the report protein (EYFP). The volume of the expression 

vector needed to be amplified by transformation of E. coli cells and then cut out the Hin1R 

insert so that cDNA of interest could be subcloned into it.  

Restriction enzyme double digestion of pCAT with NotI, XbaI and SacII was carried out.  

NotI and XbaI was the pair of restriction enzymes used to double digest cDNAs of NUDT7, 

NUDT15 and CHAT homolog. SacII was used instead of XbaI in restriction double digestion 

of ATP-BP cDNAs. Separate proper bands of pCAT vector backbone and the cut-out Hin1R 

fragment could be visualized on the gel (data not shown).   

 

The isolated cDNA inserts of PTS 1 proteins were then subcloned into the pCAT-EYFP 

vector using a directional cloning strategy. NUDT 7, NUDT15 and the CHAT homolog were 

ligated into pCAT via NotI and XbaI. ATP-BP 420aa was cloned into pCAT-EYFP via Not I 

and SacII. Ligation of inserts into the pCAT vector was carried out at a stoichiometric ratio of 

vector to insert of 1:3 like in TA-cloning. E.coli cells were then transformed with pCAT-

EYFP-PTS1_cDNA. No blue-white screening was done, only colony PCR was used to screen 

for positive transformants because pCAT plasmid lacks the Lac operon. pCAT plasmids from 

positive transformants were then isolated and sent for sequencing (see section 7.1.). Only the 

ligation region between EYFP and inserts was sequenced. Sequencing results showed that all 

four inserts were in correct orientation and that a fusion protein would be expressed. In 

addition, no mutations were introduced into the insert cDNAs. The pCAT expression vectors 

were then ready to transiently express the fusion protein (i.e. EYFP and cDNAs of interest) in 

onion epidermal layer cells (see section 3.1.3). 
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3.1.3 In vivo validation of predicted peroxisome targeting 

Onion epidermal cells were transformed biolistically with EYFP fusion constructs that were 

C-terminally extended by one of the four PTS1 protein candidates. Subcellular targeting was 

analyzed by fluorescence microscopy after about18 h expression time at room temperature. 

An additional 3 to 6 days expression time at 4⁰C was added for some constructs that did not 

target any subcellular structures under standard conditions. The EYFP fusion proteins for the 

CHAT homolog and NUDT15 targeted punctuate subcellular structures which were 

confirmed to be peroxisomes in double labelling experiment by using a DsRed-SKL as a 

peroxisomal marker (Matre et al., 2009). EYFP-NUDT7 and EYFP-ATP-BP_420aa did not 

target any subcellular structures. They remained in the cytosol of the onion epidermal cells. 

Cytosolic and peroxisomal constructs   were reproducibly confirmed either cytosolic or 

peroxisomal proteins after both short- and long-term expression. EYFP a cytosolic fluorescent 

protein was used as a negative control to check if there was bacterial contamination. EYFP 

remained in the cytosol and did not target any subcellular structures whatsoever. 
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Figure 3.7: In vivo subcellular targeting analysis of the four PTS1 protein candidates. 

Onion epidermal cells were transformed biolistically with EYFP fusion constructs that were 

C-terminally extended by four PTS1 protein candidates. Subcellular targeting was analyzed 

by fluorescence microscopy after about18 h expression at room temperature only for ([A1-3], 

and [B1-3]) or after an additional 3 to 6 days at 4⁰C for (C, and E). EYFP-CHAT homolog 

[A1] and EYFP-NUDT15 [B1] targeted punctuate subcellular structures (green dots) that 

were confirmed to be peroxisomes (yellow dots) by using a peroxisomal marker, DsRed-SKL 

([A2] and [B2]) in merge ([A3] and [A3]). EYFP-NUDT7 [C] and YFP-ATP-BP_420aa [E] 

did not target any subcellular structures, whilst DsRed-SKL (D and F) targeted punctuate 

structures. Cytosolic constructs [C], and [E] were reproducibly confirmed as cytosolic 

proteins after both short- and long-term expression. EYFP alone, a cytosolic fluorescent 

protein [G] was used as a negative control. 

 

A1 EYFP-CHAT hom A2                              DsRed-SKL A3                                   Merge 

B1                           EYFP-NUDT15   B2                             DsRed-SKL      B3                                    Merge 

C                              EYFP-NUDT7    D                                DsRed-SKL     G                                         EYFP 

E                      EYFP-ATP-BP_420   F                                 DsRed-SKL 
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3.2 Gene expression analysis of selected NHL and IAN proteins 

 

3.2.1 Bioinformatics analyses of NHL proteins 

NHL4, NHL6 and NHL25 (NHL4/6/25) are homologs of NDR1, one of the major pathogen 

defence protein (Knepper et al., 2011). Bioinformatics analysis on NHL4/6/25 was done so 

that the function and stimuli for these NDR1 homologs could be know. Conserved domain 

analysis and various stimuli for NHL4/6/25 were investigated using publicly available 

databases. 

 

Conserved domains analysis for NHL4/6/25 using from publicly available database, National 

Centre for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov) was carried out. 

These selected NHL proteins have similar conserved domains called the LEA (Late 

Embryogenesis Abundant) domains (Fig. 3.8 and appendix section 7.2). The LEA domain has 

been implicated to have a role during various stress conditions such as dehydration.  

 

Figure 3.8: NHL25 Conserved domains. NHL25 has one conserved domain called the 

LEA_2 superfamily (Late Embryogenesis Abundant) located at the C-terminus.  

 

 

Since, the NHL proteins have the LEA superfamily domain that was reported to be involved 

in dehydration stress responses (Knepper et al., 2011), gene expression of these proteins is 

might be stress related. Genevestigator (www.genevestigator.com) was used to search for 

other stress conditions that would cause the NHL genes of interest to be expressed. Indeed, 

several conditions were found to either up-regulate or down-regulate the gene expression 

levels of NHL 4 and NHL6, for NHL25 no microarray data were available. The conditions 

included both biotic and abiotic stress such as bacterial infection and plant defence hormones. 

SA treatment was analysed further in detail since it`s the signaling molecule in pathogen 

defence pathway where NDR1is found interacting with R proteins and RIN4 (Panstruga et al., 

2009; Knepper et al., 2011)(Fig. 3.9). Only gene expression of one gene has been presented, 

nonetheless all our genes of interest were analysed in the same way, provided that their 

http://www.ncbi.nlm.nih.gov/
http://www.genevestigator.com/
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microarray data was present at Genevestigator. NHL6 gene expression was up-regulated or 

down-regulated when Arabidopsis plants of different ecotypes were treated with SA. The 

observed NHL6 gene expression regulation was dependant on, (1) how SA treatment was 

done. (2) SA concentration, (3) SA treatment duration, (4) Developmental stage of the plant 

used in the assay and (5) the part (anatomy) of plant used. Other NHL and IAN genes were 

also regulation by SA treatment (data not shown). In conclusion, in order to validated the 

bioinformatics analyses carried out, gene expression studies by qPCR method on SA treated 

plants had to be carried out. 

 

 

 

 

Figure 3.9: NHL6 gene expression analysis. SA treatment gene expression conditions were 

analysed using Genevestigator. NHL6 gene expression was determined by the way SA 

treatment was carried out on plants.  

 

 

 

 

 

Treatment                                                                 down-regulated                    up-regulated 

                                                                                   -4      -3       -2        -1         0        1         2        3       4 
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3.2.2 RNA isolation and cDNA synthesis 

RNA that was isolated needed to have quality and quantity assessment before it could be used 

in cDNA synthesis. RNA quality was categorized into two i.e RNA integrity and RNA purity. 

RNA quantity was based on the RNA yield obtained as a result of RNA extraction process. 

RNA yield was in the range between 12 and 30 µg. RNA integrity was assessed to ensure that 

samples being compared were of similar integrity.  Agarose gel electrophoresis was used for 

isolated RNA integrity assessment (data not shown). All the RNA used in this study was of 

good integrity. RNA sample with good integrity had discrete, though thick 28S:18S ribosomal 

RNA (rRNA) gel bands and in an approximate mass ratio of 2:1.  

 

RNA samples may get contaminated with proteins, phenols and other molecules that interfere 

with downstream applications. RNA absorbance is measured at a wavelength of 260 nm and 

proteins absorb at 280nm.
  
All RNA samples used had an A

260
:A 

280
ratio of >2.0. Pure RNA 

samples should have an A
260

:A 
280

ratio of ~2.0 hence the RNA samples used in assays  had  of 

high purity levels. 
 

 

The two-step reverse transcription method was used to synthesize cDNA (refer to section 

2.2.3 in materials and methods). In two step method first cDNA was synthesized from RNA 

and the qPCR later. RNA input concentration was always 100 ng/µl resulting in 50 ng/µl of 

cDNA synthesized each time reverse transcription was done. Random primers were primers 

of choice, in order to reverse transcribe all mRNAs (that is targets and endogenous control 

gene).  The High-Capacity cDNA Reverse Transcription kits were used in cDNA synthesis. 

Synthesized cDNA was diluted to 10ng/µl in most cases and then used in qPCR assays. 



Results 

48 
 

 

3.2.3  Validation experiments 

SYBR
® 

Green I chemistry was used in qPCR. SYBR
® 

Green I is a fluorescent dye that binds 

to the minor grooves of double-stranded DNA (dsDNA). It fluoresces when bound to dsDNA 

and is excited by a light source. Because SYBR
® 

Green I dye also binds and fluoresces when 

bound to primer dimers and non-specific amplification products, additional optimization steps 

were needed to ensure robust amplification and accurate quantitation. 

 

All primer sets that used in qPCR had to first be optimized. Primer optimization was done so 

that the best primer pair concentrations could be determined and later on be used in the 

downstream qPCR experiments. Ideally, good primer pairs give relatively low threshold cycle 

(C
T
) value and high delta normalized fluorescence (ΔRn). C

T 
is the PCR cycle number where 

the SYBR Green dye fluorescence crosses the baseline. ΔRn is defined as the fluorescence 

from SYBR Green dye minus the baseline. Primer pair concentrations of 300 and 600nM 

gave low C
T
 and high ΔRn (Fig. 3.10). 150 nM primer pair concentrations gave high Ct and 

low delta normalized fluorescence. Therefore, in all follow-up qPCR experiments shall have 

minimum primer concentration of 300 nM for both forward and reverse primers. This shall 

ensure that optimum PCR amplification efficiency of approximately 100%. However, primer 

optimization shall be coupled with other conditions such as good master mixes, accurate 

pipeting and Applied Biosystems-approved reagents. 
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Figure 3.10: qPCR primer optimization. The green and blue curves represent primer pair 

concentrations of 600 nM and 300 nM respectively. The red curve represents a primer pair 

concentration of 150 nM. Curves for 600 and 300 nM marked with the letter A, had the same 

delta normalized fluorescence (ΔRn). ΔRn is the normalized fluorescence minus baseline. 

primer pairs of 150 nM concentration marked by  letter B had lower ΔRn. Curve A gave 

lower threshold cycle (C
T
 ) values than B. A good primer set should give low C

T 
values and 

high ΔRn, therefore, it was concluded that the optimal primer pair concentrations to use in the 

follow-up qCPR experiments were 300 nM and/or 600 nM. 

 

 

 PCR cycle number 

Normalized 

fluorescence  

A 

 

B 

ΔRn 
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The selection of an appropriate endogenous control is one of the most important steps in 

relative quantitation experimental design. Normalization to an endogenous control ensures 

that differences in amounts of input nucleic acid template do not affect the quantitation of 

genes. Any gene shown to be expressed at the same level in all study samples can potentially 

be used as an endogenous control. Nonetheless, the selection was between two of already 

established endogenous control genes (Livak and Schmittgen, 2001). The endogenous control 

genes were actin (ACT2) and Ubiquitin (Ubi10) refer to Table 2.12. ACT2 (AT3g18780) 

formed a single peak along its melting (dissociation) curve and no amplification in No 

Template Control (NTC) represented by a green line (Fig. 3.11A). This meant that the ACT2 

primer pair were specifically designed to amplify only the ACT2 gene and formed no primer 

dimers. Ubi10 primer pair was nonspecific but formed no primer dimers. 

 

 

Figure 3.11: Endogenous control gene selection. Specific amplification and primer dimer 

formation where used as a criterion for a good primer pair for the two endogenous control 

genes i.e actin (ACT2) and ubiqutin (Ubi10), also see Table 2.12 for more primer 

information). Green and red curves were for specificity and primer dimer formation tests, 

respectively. The primer pair for ACT2 (AT3g18780) showed no nonspecific amplification as 

well as no primer dimer formation (Fig. 3.11A). Ubi10 primer pair showed nonspecific 

amplification but had no primer dimer formed (Fig. 3.11B).  

A B 
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From primer testing experiment carried out on ACT2 and Ubi10, it was deduced that ACT2 

primer pair was better than those for Ubi10, therefore, more validation tests on endogenous 

control were focused only on ACT2. ACT2 was further tested for uniformity in gene 

expression in SA treated and untreated samples (Fig. 3.12). ACT2 was found to be uniformly 

expressed in all samples whether treated or not treated. Taken together, ACT2 gene passed all 

the endogenous control selection tests and was used, in downstream validation experiments 

such as comparison of PCR amplification efficiencies of target genes to endogenous control 

and also in relative quantitation of genes by comparative C
T 

method. 

 

 

 

Figure 3.12: Consistency of ACT2 expression level. ACT2 had an average C
T
 21±0.3 in all 

the tested samples. SA treated and untreated samples were tested. SA (100 µM) was 

exogenously applied to plants and leaves were harvested after 24 hours (see section 2.2.6).  

 

Relative quantitation of genes can be carried out by either Standard relative curve or 

comparative C
T 

method. In this present study, comparative C
T 

method was the method of 

choice that was used in gene expression analsyis (see section 3.2.5). When performing the 

comparative C
T 

method, the target(s) and endogenous control have to have similar or 

relatively equal PCR efficiencies. The slope of a standard curve was used to estimate the PCR 

amplification efficiencies of individual genes (Fig. 3.13A and B) or a comparison between 

ACT2 and target genes i.e. NHL4/6/25 and IAN8/11/12(Fig. 3.13C and D). A real-time PCR 

standard curve was graphically represented in two ways either as a semi-log regression line 

plot of; CT value vs. log of input nucleic acid (Fig. 3.13A and B) or ΔCT value vs. log of input 
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nucleic acid (Fig. 3.13C and D). Refer to discussion section 4.2.4 for details on how 

calculations that were carried out in order to determine the respective PCR amplification 

efficiencies. A standard curve slope of –3.32 for CT value vs. log of input nucleic acid line 

plot indicates a PCR reaction with 100% efficiency (Fig. 3.13B). Additionally, standard curve 

with a slope of <0.1 for ΔCT value vs. log of input nucleic acid line plot indicated the two 

genes (target and endogenous control gene) had an approximately equal efficiency (Fig. 

3.13D). 

Figures 3.13A and C represents amplification efficiencies of NHL4 alone and a comparison of 

amplification efficiencies NHL4 and ACT2 respectively. NHL4 had a PCR efficiency of less 

than 100% because the slope of the graph should be -3.32 and NHL4 had a slope of  -0.66 

(Fig. 3.13A). NHL4 and ACT2 amplification efficiencies were not approximately in the 

qPCR because the slope was 3.19 instead of <0.1(Fig. 3.13C). PR5 and ACT2 Real-time PCR 

amplification efficiencies are approximately equal due to the fact that the slope of the semi-

regression curve was 0.031 which is < 0.1 (Fig 3.13D). PR2 Real-time PCR amplification 

efficiency was 100%  since the slope of a semi-log regression line plot of Ct value Vs log of 

was -3.32 (Fig. 3.13B).  

 

In order for the two genes (target and endogenous control) to be used in gene expression 

relative quantitation, their respective amplification efficincies had be 100±10% and 

approximately equal. NHL6, NHL25,  PR2 and PR5 had PCR amplification efficiency 

approximately equal to that of ACT2, therefore, these four genes have been fully optimized 

and ready to be used in their expression analyses. Whilst NHL4, IAN8, IAN11 and IAN12 

amplification efficiencies are not approximately equal to ACT2 and need new primer pairs or 

using an alternative relative quantitation method such as the relative standard curve method. 
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Figure 3.13: qPCR amplification efficiency comparisons.  

A real-time PCR standard curve was graphically represented in two ways either as a semi-log 

regression line plot of; CT value vs. log of input nucleic acid (Fig. 3.13A and B) or ΔCT value 

vs. log of input nucleic acid (Fig. 3.13C and D). Refer to discussion section 4.2.4 for details 

on how calculations that were carried out in order to determine the respective PCR 

amplification efficiencies. A standard curve slope of –3.32 for CT value vs. log of input 

nucleic acid line plot indicates a PCR reaction with 100% efficiency (Fig. 3.13B). 

Additionally, standard curve with a slope of <0.1 for ΔCT value vs. log of input nucleic acid 

line plot indicated the two genes (target and endogenous control gene) had an approximately 

equal efficiency (Fig. 3.13D). 

A B 

C D 

ΔCT 

ΔCT 

CT CT 
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3.2.4 Gene expression analysis with qPCR 

 

3.2.4.1 SA treatment of plants 

 

Seven weeks old wild type Arabidopsis plants were treated with 100 µM of SA. The defence 

hormone treatment was by spraying healthy leaves of three biological replicates. Salicylic 

acid positive markers were used to confirm the success of the treatment. The positive 

treatment indicators were pathogenesis related genes (PR2 and PR5). PR2 and PR5 were both 

induced after treatment with highest recorded fold-change at 24hours post-treatment. PR2 was 

highly induced than PR5 (Fig. 3.14). 

 

 

 

Figure 3.14: PR2 and PR5 (PR2/5) gene expression in three different samples.  

 

PR2 is represented by blue bars whereas PR5 is represented by brown bars. PR2/5 gene 

expression induction was due to salicylic acid (100µM) treatment of Arabidopsis plants. 

PR2/5 expression was higher in treated samples than in the untreated sample, with the highest 

fold change at 24 hours post-treatment. PR2 was highly induced than PR5 in all treated 

samples with approximately 12 and 4 fold change in 24 and 72 hour treated samples. 
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3.2.4.2 Relative quantitation of peroxisomal pathogen defence genes 

 

It was evident from the gene expression the salicylic acid (SA) treatment of wild type 

Arabidopsis plants was successful as SA positive marker genes (PR2 and PR5) were induced 

(Fig. 3.14). Peroxisomal-targeted pathogen defence genes of interest were also induced (Fig. 

3.15). Gene expression levels at 24 hours post treatment was more than before treatment (0 

hour) for all the genes tested. However, gene expression levels reduced at 72 hours post 

treatment for all the genes. IAN12 expression levels had reduced about 15% at 72 hours 

relative to that at 24 hours. IAN11, NHL4, NHL 6 and NHL25 gene expression levels reduced 

the most. Only about 30% of these genes relative to their respective expressions at 24 hours 

were expressed at 72 hours. PR2 gene expression had reduced to about 50% gene expression 

relative to that at 24 hours. Lastly, PR5 had only 75% gene expression (25% reduction) at 72 

hours post treatment (see Fig. 3.14).  

 

Figure 3.15: Relative quantification of NHL and IAN genes.  

10ng/µl of cDNA was used in the relative quantitation of peroxisomal-targeted defence genes. 

Untreated sample was used as the calibrator in the gene expression qPCR assay of NHL and 

IAN genes. SA treated samples had NHL and IAN genes expression more at 24 hour 

posttreatment than at 72hour. Actin was the endogenous control gene hence it was not 

relatively quantified like the other genes, it was instead used in normalizing the imput cDNA 

concentration differences among the samples. 
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3.3 Co-expression analysis 

 

3.3.1 Dataset generation for co-expression analysis 

28 Arabidopsis defence proteins were used as queries in the dataset generation for co-

expression analysis. Among the 28 queries used was NHL6, NHL4, IAN8, IAN11 and IAN12 

(our pathogen defence proteins of interest). Co-expression studies were done the 

bioinformatics; the Expression Angler (http://bar.utoronto.ca/ntools/cgi-

bin/ntools_expression_angler.cgi) and AtGenExpress Pathogen Set. The raw dataset 

generated was by setting the threshold for correlation score at 0.6 per query (see table 7.3 in 

appendix). The raw dataset generated then further analysed in order to be able to make proper 

inferences as to which signal transduction pathways our proteins of interest belong to. 

 

3.3.2 Co-expression groups 

 

28 Arabidopsis pathogen defence proteins were used as queries in co-expression analysis. 

Correlation score of 0.6 was used as the lowest threshold for co-expression partners. Based on 

the lowest correlation score used per query, the 28 Arabidopsis defence proteins were grouped 

into two groups; those highly co-expressed with the higher co-expression score and those not 

highly co-expressed (Fig. 3.15). 17 pathogen defence proteins were highly expressed (Fig. 

3.15A). NHL6 was second highest co-expressed defence protein after RPM1. 8 pathogen 

defence proteins not highly co-expressed (Fig. 3.15B) and IAN8 was among them. NHL4, 

IAN11 and IAN12 not co-expressed at all (Fig. 3.15B). 
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Figure 3.16: Co-expression analysis. 28 Arabidopsis pathogen defence proteins were used 

as queries in co-expression analysis. Correlation score of 0.6 was used as the lowest threshold 

for co-expression partners and based on the lowest correlation score used per query the 28 

Arabidopsis defence proteins were grouped into two groups; highly co-expression proteins 

(Fig. 3.16A) and those not highly co-expressed (Fig. 3.16B).  

28 Arabidopsis pathogen defence proteins 

A B 
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3.3.3 Co-expression patterns of the 28 Arabidopsis pathogen defence proteins                                                                                                                                                      

5 defense proteins with a common co-expression protein 
 
                                                                       RIN4/EDS1/PAD4/EDM1/RPS2                            

                                                                                                                           PAD4    

  

4 defense proteins with two common co-expression proteins 

                                                                           RIN4/EDS1/EDM1/RPS2                                                                

 
                                                                                                          
 
 

3 defense proteins (in Red) sharing a common co-expression protein 
 
1.RIN4/EDS1/EDM1 2. RIN4/EDM1/RPS2 3. EDS1/PAD4/RPS2 4. EDS1/PAD4/EDM1  

5. RIN4/PBS2/EDM1/RPS2  6. DRP/RIN4/EDM1/RPS2 

 

 
 

2 common defense proteins (in Red) sharing a common co-expression protein. In  Green is one 
of our proteins of interest with its co-expression partners. In Blue is NDR1 (NHL4/6/25 
homolog) with its co-expression partners  
 
1. IAN8/SID2/EDS1/PAD4   2. LIMDP/EDS1/PAD4  3. NPR1/EDS1/PAD4  4. SID2/EDS1/PAD4  

5. PAD4/EDM1/PBS2 6. PAD4/EDM1/PBS2-RAR1  7. DRP/EDM1/RPS2  8. DRP/RIN4/EDM1 

9. DRP/RIN4/RPS2 10. EDS1/EDM1/NDR1   11. EDS1/PAD4/NDR1 

12. EDM1/RPS2/NDR1 13. EDS1/RPS2/NDR1 

 
 

 
Co-expression of our proteins of interest and their close homologs 

 
 

NDR1 
 

NHL10/NtHin1 
 

NHL6 
 

IAN8 

EDS1-NDR1                    NHL10/NtHin1-MIF1  
 

NHL6-MIF1 
 

IAN8-SID2 

RPS2-NDR1                    NHL6-NHL10/NtHin1                                                   NHL6-NHL10/NtHin1 IAN8-ZAT12  

EDS1/EDM1/NDR1     
 

NHL10/NtHin1-NHL6 
 

NHL6-SID2 
 

IAN8-NHL6 

EDS1/PAD4/NDR1   
 

NHL10/NtHin1-ZAT12 
 

NHL6-HSP90  
 

IAN8-PAD4  

EDM1/RPS2/NDR1  
 

NHL10-SID2  
 

NHL6-IAN8  
 

IAN8-CPR5  

EDS1/RPS2/NDR1 
 

NHL10-PBS2  
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4 Discussion 

 

Peroxisomes carry out metabolic functions important to plants. Much research has been done 

on the involvement of peroxisomes in lipid metabolism, photorespiration, and hormone 

biosynthesis. By contrast, very little is known about the role of peroxisome in plant innate 

immunity (Reumann, 2011). To investigate the recently reported peroxisome function in 

pathogen defence, gene expression of proteins established to be peroxisomal and homologous 

to defence proteins was analysed in the present study. Additionally, in order to expand 

propound more on the peroxisomal pathogen defence role and because of most of peroxisomal 

matrix proteins that have been identified are PTS1 proteins (Reumann, 2004; Lingner et al., 

2011). Four PTS1 carrying proteins previously identified were experimentally validated 

through in vivo subcellular localization analysis. 

 

4.1 Subcellular localization studies 

 

Proteins target the peroxisomes by either PTS1/2 or piggy backing pathways (Reumann, 

2004, 2011). Peroxisomal targeting by the PTS1 pathway is dependent in part on the type of 

PTS1 tripeptide (canonical or noncanonical) and the PTS1 domain (last 15aa residues) 

(Reumann, 2004; Lingner et al., 2011). The four proteins of interest all carried predicted 

PTS1 non-canonical (minor) PTS1s (see table 4.1). Often, the targeting efficiency of minor 

PTS1s depends on enhancing targeting patterns found in the domain immediate upstream of 

the PTS1. The characteristic features of targeting enhancing targeting patterns include a 

relative basic PTS1 domain, proline residues and a lack of inhibitory residues upstream of the 

PTS1(Reumann, 2004; Lingner et al., 2011). Despite carrying predicted non-canonical PTS1 

the four proteins were differentially localized in onion epidermal layer cells after being 

transiently expressed. CHAT homolog and NUDT15 targeted the peroxisomes, whereas 

NUDT7 and ATP-BP 420aa C-terminal remained cytosolic. The subcellular localization data 

obtained in this study, for the four PTS1 protein candidates are summarized in Table 4.1 given 

below. 
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Table 4.1: Subcellular localization results 

Gene locus Acronym Annotation Predicted          Localization     
PTS1                     data 
                    

    

At1g72840 ATP-BP 420aa C-
terminus 

ATP binding protein (Last 
Exon) 

 
 

SSL>                         Cytosol 

At5g17540 CHAT-Homolog Acetyl  CoA: (Z)-3-hexen-1-ol 
acetyltransferase 

 

SSL>                          Peroxisome 

At4g12720 NUDT 7 Nudix hydrolase 7 
 
 
 
 

ASL>                          Cytosol 

At1g28960.2/.4   NUDT15 Nudix hydrolase Homolog  15 PKM>                         Peroxisome 

  
 
 
 
 
 

4.1.1 NUDT7 is a cytosolic pathogen defence protein in Arabidopsis 

 

NUDT7 has four gene models, which apparently have the same C-terminal domain (last 15 aa 

residues). They all have the same C-terminal tripeptide (ASL>) that might function as a non-

canonical PTS1. NUDT7 has a basic PTS1 domain with an overall charge of +3. Nonetheless, 

the predicted PTS1 domain lacks residues such as prolines which could help in the enhancing 

peroxisomal targeting of a protein with a minor predicted PTS1 like ASL> (Reumann, 2004; 

Lingner et al., 2011). 

 

NUDT7 is a known important pathogen defence protein. It functions as a negative regulator to 

pathogen defence proteins in Arabidopsis plants (Ge et al., 2007).Latest PTS1 prediction 

models used such as PWM model, predicted all the four gene models for NUDT7 to be 

nonperoxisomal (Lingner et al., 2011). Previously, NUDT7 had been reported to be a 

nonperoxisomal but a cytosolic Arabidopsis protein (Ogawa et al., 2008). Nonetheless, 

NUDT7 was reported to be a peroxisomal protein in mouse (Gasmi and McLennan, 2001). 

All this put together, in the quest to identify new peroxisomal targeted defence proteins. 
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NUDT7 was selected as our PTS1 protein candidate. NUDT7 was successfully cloned in the 

back of EYFP in pCAT via pGEM-T Easy vector and transiently expressed in onion 

epidermal cells. NUDT7 subcellular targeting was subsequently analysed by fluorescence 

microscope after, first 18 hours incubation at room temperature (short-term expression) and 

then after three to six days cold incubation a 4⁰C (long-term expression). NUDT7 did not 

target any subcellular structures after all these varied transient expression conditions. Future 

subcellular studies on NUDT7 could include creation of Arabidopsis stable lines since only 

the transient expression was carried out in this current study. Transient expression methods 

such as tobacco protoplasts should also be carried so that results from both transient 

expression methods (onion epidermal layer cells and tobacco protoplasts) could be compared. 

Additionally, C-terminal domain constructs (last 10aa) of NUDT7 such as EYFP-7aa-ASL> 

should be concomitantly used in subcellular localization analysis with full-length cDNA. 

 

NUDT7 has a basic PTS1 domain and a known functional plant PTS1 but it still failed to 

target the peroxisomes. The domain lacked known and noticeable enhancing patterns like 

Proline residue(s) in the upstream region of the PTS1. This shows that basicity of the PTS1 

domain alone was not enough to help the minor functional PTS1 to target the protein to the 

peroxisomes. Nonetheless, NUDT7 has been reported to have a pathogen defence role (Ge et 

al., 2007). In summary, from the current study, it could not confirm the hypothesis that 

NUDT7 might be a peroxisomal pathogen defence protein. 
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4.1.2 NUDT15 is localized in peroxisomes 

 

NUDT15 like NUDT7 had several gene models. It had five gene models that were categorized 

into two groups; those with a predicted PTS1 and the other group lacking a predicted PTS1. 

Two gene models have apparently the same predicted PTS1 domain (last 15 aa residues) and 

the other three gene models also have the same domain. Only two gene models carried a C-

terminal tripeptide that might function as a noncanonical PTS1 (PKM>) (see Fig. 3.2). The 

two gene models with a noncanonical PTS1 have a relatively basic PTS1 domain with an 

overall charge of +2 (refer to section 1.4). The PTS1 domain also contains residues such as 

proline and glutamic acid upstream of the PTS1.  Proline residues are predicted to enhance 

peroxisome targeting (Reumann, 2004; Lingner et al., 2011). Residues such as glutamic acid 

were previously predicted and reported to have an inhibitory effect on peroxisomal targeting 

(Ma and Reumann, 2008). Nevertheless, PTS1 domain was recently predicted and reported to 

be very relaxed, implying that it takes a combination of a number of targeting enhancing or 

inhibitory patterns for a minor PTS1 to localize a protein (Lingner et al., 2011). The 

relaxation of the PTS1 domain was evident in NUDT15, despite of the presence of acidic 

residues in the PTS1 domain the noncanonical PTS1 (PKM>) to target the peroxisomes.   

 

Subcellular localization predictions of NUDT15 gene models were made using the PWM 

model (Lingner et al., 2011). Gene models AT1G28960.2 and AT1G28960.4 were predicted 

with higher scores to be likely peroxisomal than the other gene models; AT1G28960.1, 

AT1G28960.3 and AT1G28960.5. Nonetheless, all the five gene models scores were below 

threshold for predicted peroxisomal proteins by PWM model but within grey zone (Lingner et 

al., 2011). Based on the prediction scores and the presence of a recognizable functional plant 

PTS1, gene models AT1G28960.2 and AT1G28960.4 were selected to be used in the current 

study of subcellular localization studies for NUDT15. 

 

NUDT15 was previously characterized to be a  mitochondrial protein (Ogawa et al., 2008). In 

this study using the cDNAs from AT1G28960.2 and/or AT1G28960.4, NUDT15 was found 

to be localized in the peroxisomes (Fig. 3.7). It is however possible for a protein like 

NUDT15 to have dual targeting signals (one to the mitochondria and the other to the 

peroxisomes). Additionally, depending on which splice variant yields a mature protein, 

NUDT15 could either be localized in the peroxisomes or mitochondria. Alternatively, the 
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other three gene models (AT1G28960.1, AT1G28960.3 and AT1G28960.5) were used in the 

previously localization studies hence NUDT15 distribution in the mitochondria. Therefore, in 

future further localization analysis should be done on the other three gene models to ascertain 

which of them could possibly localize NUDT15 to the mitochondria as previously reported. 

 

NUDT15 was transiently expressed in biolistically transformed onion epidermal layer cells. 

Visible peroxisome targeting took three to six days cold incubation at 4⁰C, in addition to the 

standard expression conditions (Lingner et al., 2011). Cold incubation was done because 

plasmid and report protein degradation at refrigerator temperatures are slower. Therefore, this 

treatment could have given a low abundance protein such as NUDT15 ample time to be 

expressed above threshold required for peroxisomal targeting. Secondly, PTS1 domain of 

NUDT15 had predicted inhibitory residues such as glutamic acid, possibly requiring more 

time to target peroxisomes. All in all, from this study NUDT15 targeted small punctuate 

structures which were confirmed to be peroxisomes by using a peroxisomal marker DS-Red-

SKL. Future research on NUDT15 would include, investigating its role in pathogen defence 

by carrying out gene expression analysis assays, and also carrying out assays which would 

shade light on its interacting partners. Protein to protein interaction assays such as Yeast two 

Hybrid screening and/ or co-immunoprecipitation. 
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4.1.3 The CHAT homolog is a peroxisomal protein 

 

The CHAT homolog had only one gene model from the bioinformatics analysis done. The 

putative PTS1 domain of CHAT homolog had a functional non-canonical PTS1 (SSL>) 

(Lingner et al., 2011). The PTS1 domain had an overall charge of +3. Other characterized 

upstream enhancing residues such as proline were lacking in the CHAT homolog PTS1 

domain. Nonetheless, inhibitory residues such as the glutamic and aspartic acid were equally 

absent in the domain.  

 

Using PWM prediction model, the CHAT homolog was highly predicted to be a peroxisomal 

protein with more than 85% probability (Lingner et al., 2011). Based on annotation and PTS1 

prediction high score and microarray data indicating a role in pathogen defence, CHAT 

homolog was selected and cloned into pCAT so that its subcellular localization could be 

validated experimentally using biolistically transformed onion epidermal layer cells. 

 

The CHAT homolog was expressed within 18 hours of incubation at room temperature and its 

subcellular localization was subsequently analysed by fluorescence microscopy. CHAT 

homolog was targeted to punctuate subcellular structures which were afterwards confirmed to 

be peroxisomes by using a known peroxisomal protein DsRed-SKL (Fig. 3.7). CHAT 

homolog did not need any additional incubation at 4⁰C, in order for it to target the 

peroxisomes. This implied that the enhancing patterns in the PTS1 domain were very efficient 

since CHAT homolog carries a noncanonical PTS1 at its extreme C-terminus, which by itself 

could not have targeted the protein to the peroxisomes as efficiently as observed. In 

conclusion, CHAT homolog was validated through in vivo subcellular localization studies to 

be a peroxisomal protein in agreement with PWM model prediction. CHAT homolog 

functional analysis assays would shade light on its involvement in pathogen defence. Gene 

expression analysis on SA treated and/or pathogen infected plants should be among the future 

research studies on CHAT homolog. 
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4.1.4 ATP-BP is a cytosolic R protein 

ATP-BP has a very long gene coding for proteins that could be as big as 100 kDa. It had two 

gene models AT1G72840.1 and AT1G72840.2 (Fig. 3.3). AT1G72840.2 had a predicted non-

canonical PTS1 (SSL>), and its PTS1 domain had an overall charge of -2. This was due to 

that fact that glutamic acid residue was the most occurrent amino acid in the domain.   

 

The two gene models were predicted to be nonperoxisomal by PWM prediction model. 

AT1G72840.1 scored very low, way below threshold getting a negative score. AT1G72840.2 

was slightly below threshold but in grey zone where several true positive peroxisomal 

proteins with non-canonical PTS1s are located. Based on ATP-BP sequence homolog to R 

proteins and possession of a functional PTS1 (SSL>) gene model (AT1G72840.2) was cloned 

into pCAT vector via pGEM-T Easy vector. Due to that fact that ATP-BP is a big protein, a 

cloning strategy was employed. Both ATP-BP full length cDNA and the last exon cDNA 

(420aa C-terminal) were used in the subcellular analysis of ATP-BP.  

 

pGEM-T Easy vector of 3 kbp was used in TA-cloning step. Both the full length and the last 

exon were successfully cloned into pGEM-T Easy and which was later on double digested 

with two restriction enzymes. ATP-BP full length cDNA of about 3 kbp could not be isolated 

from the vector backbone as they were both of the same size (Fig. 3.6). Nevertheless, since 

there was already a backup plan and that peroxisomal targeting is mediated by the PTS1 

domain, ATP-BP subcellular localization analyses proceeded with the ATP-BP 420aa c-

terminal. Alternatively, the full-length cDNA should be cloned directly into pCAT vector so 

that TA-cloning is by-passed. 

 

The biolostically transformed onion epidermal layers cells with pCAT vectors containing 

ATP-BP 420aa C-terminal cDNA were analysed by fluorescence microscopy. ATP-BP C-

terminal 420aa protein remained in the cytosol under both standard and alternated expression 

conditions. Non peroxisomal targeting by ATP-BP could have been as a result of a negatively 

charged PTS1 domain. Additionally, enhancing residues such as proline and the basic 

residues were lacking upstream of the functional plant PTS1 (SSL>). Therefore, ATP BP 

based on subcellular localization of its last exon, is putatively a cytosolic R protein. 
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ATP-BP full length separation from the pGEM-T Easy backbone in future studies could be 

achieved by; (1) using two restriction enzymes that would cut the backbone vector at sites 

further away from those that were used in this study. This would make the ATP BP full length 

insert larger than the vector backbone, hence separation by preparative agarose gel 

electrophoresis could be possible.  Then, the ATP-BP insert could be double digested like 

done in this study. (2) Using a vector that is either greater or less than the size of ATP-BP full 

length cDNA. 
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4.2   Gene expression analysis 

 

By measuring the amount of cellular RNA, it was possible to determine to what extent the 

NHL and IAN genes of interest had been inducible due to SA treatment. qPCR was used in 

quantifying gene expression levels. Quantitative gene expression using qPCR almost always 

relied on PCR replicates (Schmittgen and Livak, 2008). 

 

4.2.1 Plant growth and SA treatment 

 

Several conditions could either up-regulate or down-regulate gene expression levels our genes 

of interest. The conditions included both biotic and abiotic ones. To ensure gene expression of 

the NHLs and IANs under study was SA-induced, plants were grown in stress free growth 

chambers. However, had plants been stressed in any way prior to the intended gene induction 

treatment with exogenously applied SA, gene quantitation as a result of the treatment would 

have been futile. 

 

SA treatment was among the conditions that caused gene expression of NHL and IAN 

proteins according to publicly available microarray data. However, these are large-scale data 

that need to be validated thoroughly before considered reliable. 

  

Healthy seven weeks old Arabidopsis thaliana of ecotype Columbia 0 were used as SA 

treatment was dependent on plant ecotype, age, anatomy and developmental stage. 

Additionally, how SA treatment was carried out was also crucial to accurate quantification of 

gene expression levels.100 µM of SA was exogenously sprayed to plants. Spraying of SA was 

preferred to other ways of application because no wounding or stress was imposed on plants. 

Leaves were used for RNA extraction because our genes were relatively expressed in such 

parts of the plant. 

 

4.2.2 RNA extraction  

A major critical step in performing qPCR is the isolation of high quality, intact RNA. Proper 

treatment and handling of samples prior to RNA isolation and storage of the isolated RNA are 

crucial components of obtaining high quality RNA. The quality of isolated RNA is crucial for 

the success of downstream applications such as cDNA synthesis and qPCR.  



                                                                           Discussion 

68 
 

  

Quick and thorough sample disruption is another essential component of RNA isolation and 

affects RNA yield and quality. Samples had to be disrupted quickly as slow disruption would 

have resulted in RNA degradation by endogenous RNases. Additionally, thorough disruption 

of samples is recommended because incomplete disruption results in decreased yield, as a 

result of some RNA remaining trapped in intact cells and unavailable for purification. 

 

RNA yield (concentration) was assessed by Spectrophotometry which measures the 

absorbance of RNA at a wavelength of 260 nm. This is a very easy and fast assay but there 

were some disadvantages such as readings may be affected by other molecules that absorb at 

260 nm. Accurate RNA concentration determination was very critical as cDNA synthesis was 

dependant on correctly determined RNA concentrations. 

  

RNA integrity was assessed by agarose gel electrophoresis to ensure that samples being 

compared were of similar integrity. For total RNA samples, discrete, though thick 28S:18S 

ribosomal RNA (rRNA) gel bands and in an approximate mass ratio of 2:1 are indications of 

high integrity. RNA samples may get contaminated with proteins, phenols and other 

molecules that later on interfere with downstream applications. Pure RNA has an A
260

:A 

280
ratio of ~2.0. A

260/280 
values < 2.0 may indicate high protein levels in an RNA preparation. 

An A
260/280 

value < 2.0 does not predict that protein levels are high enough to cause PCR 

inhibition, but, the more the A
260/280 

deviates from 2.0, the greater the chance of obtaining 

spurious results. Moreover, genomic DNA is often co-extracted with RNA (especially if 

lightly fragmented) and can serve as a template in downstream processes such as qPCR. 

However, the primers were designed such that they span an exon-exon junction. By this 

strategy genomic DNA was then excluded from serving as a template that would have been 

detected as second PCR products in the real-time PCR reactions. In addition, genomic DNA 

contamination could lead to inaccurate RNA quantitation. 

  

In summary, in order to obtain high quality RNA, certain steps were followed carefully; (1) 

Samples were carefully stored at -80⁰C prior to RNA isolation, (2) samples were rapidly and 

completely disrupted mechanically to prevent RNA degradation and to increase RNA yield, 
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(3) A proper RNA isolation kit (Qiagen kit) was used, (4) RNA was stored in RNase-free 

solutions and lastly (5) RNA was accurately assessed to confirm that indeed it was of high 

integrity and purity. 

 

4.2.3 cDNA synthesis and selection of endogenous control gene 

Reverse transcription is the process by which RNA was used as a template to synthesize 

cDNA. This cDNA then served as the template in the real-time reaction. The two-step RT 

method was used to perform the reverse transcription that cDNA could be used later for 

qPCR. Random primers were used in order to reverse transcribe all mRNAs (that is targets 

and endogenous control). 50ng/µl of cDNA was synthesized each time as 100ng/µl of input 

RNA was used.  The High-Capacity cDNA Reverse Transcription kits were used in cDNA 

synthesis.  

 

A major step in experimental design of relative quantitation is the selection of an appropriate 

endogenous control. Normalization to an endogenous control (often referred to as a 

housekeeping gene) allows a correction of results that can be skewed by differing amounts of 

input nucleic acid template (Livak and Schmittgen, 2001). Any gene shown to be expressed at 

the same level in all study samples can potentially be used as an endogenous control. 

Selection of either ACT2 or ubiquitin as an endogenous control was based on the uniformity 

of endogenous control expression levels and specific amplification (see Fig. 3.11 and .12). 

Ubiquitin was not selected because there was some nonspecific amplification of cDNA by the 

primer pair used. ACT2 was instead selected as the endogenous control gene in all qPCR 

assays in this present study.  

 

The endogenous control was used to normalize differences in the amount of cDNA that was 

loaded into PCR reaction wells, therefore, endogenous control expression levels were 

supposed to be the same in all samples. So, it was critical to determine if the SA treatment 

affected the expression level of Act2 (endogenous control gene). Act2 was constantly 

expressed in all types of samples whether treated or untreated. Act2 had an average Ct value 

of 21.12±0.3 in SA treated and untreated samples (see Fig. 3.12). Therefore, ACT2 was a 

good endogenous control gene for SA treatment gene expression analysis like previously 

reported (Livak and Schmittgen, 2001). 
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4.2.4 Validation of gene expression analysis  

 

The two most commonly used methods to analyze data from real-time, quantitative PCR 

experiments are absolute quantification and relative quantification. Absolute quantification 

determines the input copy number of the transcript of interest, usually by relating the PCR 

signal to a standard curve. Relative gene expression presents the data of the gene of interest 

relative to some calibrator or internal control gene (Livak and Schmittgen, 2001; Schmittgen 

and Livak, 2008). 

 

In this present study, it was unnecessary to determine the absolute transcript numbers, 

therefore relative change in gene expression was carried out. Relative quantification was 

easier to perform than the absolute method because the use of standard curves was not 

required. Comparative C
T
 method was selected as the method of choice presenting relative 

gene expression. Advantages of the comparative C
T
 method include ease of use and the ability 

to present data as „fold change‟ in expression. Disadvantages of the comparative C
T
 method 

include the PCR amplification efficiency of endogenous control and target genes must be 

approximately equal or the PCR must be further optimized (Livak and Schmittgen, 2001). 

 

Prior to using the comparative C
T 

method (also known as the ΔΔC
T 

method), it was important 

to ensure that the target(s) and endogenous control had similar or relatively equivalent PCR 

efficiencies. PCR amplification efficiency is the rate at which a PCR amplicon is generated, 

and expressed as a percentage of the maximum possible value. If a particular PCR amplicon 

doubles in quantity during the geometric phase of its PCR amplification then the PCR assay 

has 100% efficiency.  

The slope of a standard curve was used to estimate the PCR amplification efficiency of a real-

time PCR reaction. A real-time PCR standard curve was graphically represented in two ways, 

as a semi-log regression line plot of either CT or Δ CT value vs. log of input nucleic acid (see 

Fig. 3.13). A standard curve slope of –3.32 or < 0.1 indicates a PCR reaction with 100% 

efficiency (Livak and Schmittgen, 2001).  

 For the comparative C
T 

method of relative quantitation to be valid, the efficiency of the target 

amplification and the efficiency of the active reference (endogenous control) amplification 
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had to be approximately equal. Assessing the relative efficiencies of the target amplification 

and the endogenous control amplification was achieved by running standard curves for each 

amplicon utilizing the same sample. The sample in the validation experiment had to express 

both the target and reference genes. The C
T 

values generated from equivalent standard curve 

mass points (target vs. endogenous control) were used in the ΔC
T 

calculation  

(C
T target 

– C
T endogenous  

). 

 

 ΔC
T 

values were plotted against log input amount to create a semi-log regression line. The 

slope of the resulting semi-log regression line was then be used as a general criterion for 

passing a validation experiment (Livak and Schmittgen, 2001). In a validation experiment that 

passes, the absolute value of the slope of ΔC
T 

vs. log input is < 0.1 (approximately zero).  

Ideally, the absolute values of the slope of the validation experiment were supposed to be 

<0.1. Nonetheless, not all experimental data gave slopes that were either -3.32 or <0.1, for 

example slopes in figure 3.13A and C, respectively. In those cases data was re-assessed in an 

effort to improve the slope. When examining the validation experiment results, it was 

important to assure that rigorous analysis was done on the data. The outer points of the 

standard curves (high input and low input) were used in re-assessment of the data; as if 

inhibitors affect the higher concentration points. Additionally, low levels of target were 

present at the lower concentration points hence needed to be removed as the lower limits of 

detection might have been reached. It was also important to look at the precision among the 

replicates of each dilution set. Any outliers were removed and data re-analysed. 

 

In order for the two genes (target and endogenous control) to be used in gene expression 

relative quantitation, their respective amplification efficiencies had be 100±10% and 

approximately equal. Therefore, NHL6, NHL25,  PR2 and PR5 had PCR amplification 

efficiencies approximately equal to that of the endogenous control, ACT2. By contrast, 

NHL4, IAN8, IAN11 and IAN12 amplification efficiencies were not approximately equal to 

ACT2. Therefore, the relative quantification could not be accurately done using the 

comparative Ct method, unless with the relative standard curve method where there is no need 

to normalize target genes to an endogenous control gene. Nevertheless, all the genes under 
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expression analysis were studied with the comparative Ct method while bearing in mind that 

NHL4, IAN8, IAN11 and IAN12 amplification efficiencies were not approximately equal to 

to the endogenous control gene, ACT2. Relative quantitation of these genes with comparative 

Ct method was done in order to known whether they could be induced by SA treatment 

despite not being accurately determined due to their PCR amplification efficiency differences 

with the endogenous control. 

 

4.2.5 Relative quantification of NHL and IAN genes by the comparative CT method  

Gene relative quantification by the comparative CT method (ΔΔCt method) was advantageous 

as no standard curves had to be run on each plate. This could have resulted in reduced usage 

of very expensive qPCR reagents. However, since the primers were custom-made, an initial 

validation relative standard curve was necessary in order to validate the PCR efficiencies of 

the target and endogenous control, and also due to the hypothesis that our genes of interest 

were of low expression level under standard plant growth conditions like most pathogen 

defence genes. 

 

The amount of target (fold increase), normalized to an endogenous control and relative to a 

calibrator (untreated), is given by the formula: 

 

When the ΔΔCt method is used, data is presented as the fold change in gene expression 

normalized to an endogenous reference gene and relative to the untreated control. For the 

untreated control sample, ΔΔCT equals zero and 2⁰ equals one, so that the fold change in gene 

expression relative to the untreated control equals one, by definition (Livak and Schmittgen, 

2001). 

 

The peroxisomal-targeted defence proteins under study were expressed in all the three 

samples except for IAN8 that was below qPCR detectable amount in untreated sample. 

Expression of the NHL and IAN proteins in untreated sample could have been due to some 

unforeseen stress plants could have been subjected to. However, plants were grown and 

subjected to less or no stress at all as it was clear from the bioinformatics analysis done on the 

proteins that they were stress inducible. The genes were highly expressed at 24 hour post-

treatment than at 72 hours. This could have been due to the fact that SA treatment was 
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exogenous and only applied once, the defence hormone concentration could have go too low 

to keep on inducing the genes by 72 hours post-treatment. In addition, innate immunity of 

plants has negative regulators such as NUDT7, therefore the expression of the NHL and IAN 

genes had been negatively regulated. Negative regulation of pathogen defence proteins when 

there is no more need for the plant to mount defensive mechanisms is important as fatal 

defensive actions such as hypersensitive response programmed cell death are stopped. NHL4, 

NHL25 and IAN11 expression levels below their respective expression levels in the untreated 

sample at zero hour. That could imply that these proteins were more negatively regulated than 

NHl6 and IAN12. However, NHL6 and IAN12 were also reduced at 72 hours post-treatment. 

IAN8 was below qPCR detectable amounts in untreated sample therefore, the sequence 

detecting software (SDS) of qPCR machine could not calculate the fold changes in treated 

samples. Nonetheless, IAN8 minimum fold change was calculated manually and it had 509 

and 26 fold change in 24 hour and 72 hour post treatment samples respectively. Since the least 

possible Ct value was 40, the undetected Ct value was then assumed to be 40 so that at least 

the fold change for IAN8 could manually be known. 

 

4.3 Signal transduction pathway analysis for two NHL and three IAN proteins 

 

Co-expression analyses were done on two proteins (NHL4 and NHL6) from the NHL family 

and also on three proteins (IAN8, IAN11 and IAN12) from the IAN family, so that the signal 

transduction cascade for these proteins could be known. Co-expression analyses of our five 

putative defence protein of interest were done concomitantly with the other Arabidopsis 

established defence proteins. In total, 28 Arabidopsis defence proteins were used in co-

expression studies, in an effort to allocate our proteins of interest to known defence pathways. 

The known and characterized defence pathways in plants are shown in the figure below. 

Therefore, one of the goals of the current MSc study was to place the proteins of interest to 

these pathways. 
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Figure 4.1: Plant immune response pathways (Panstruga et al., 2009). Plant innate 

immunity comprises of different pathways namely, MAMP recognition pathway, effector 

recognition and phytohormone pathways. 

Multiple and often parallel defence signaling pathways are activated in plants following 

pathogen infection. Plant innate immunity comprises of different pathways namely, MAMP 

recognition pathway, effector recognition and lastly phytohormone biosynthesis. The 

activation of these pathways, still remains to be fully understood as more and more pathogen 

related proteins and molecules are being discovered. 

 

R-proteins play a pivotal role in the activation of resistance after plants perceive pathogens or 

effectors (Jones and Dangl, 2006). Nevertheless, R-proteins alone are not sufficient for the 

initiation of resistance against pathogens. Therefore, numerous auxillary proteins and 

chaperones are found serving as co-activators of resistance. For example, EDS1 has been 
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shown to mediate defence signaling through the activation of the TIR domain-containing R-

proteins, while NDR1 has been shown to be required for R-proteins that contain the CC 

domain (Wiermer et al., 2005; Panstruga et al., 2009; Knepper et al., 2011). 

 

EDS1 serves as a central regulatory protein involved in both biotic and oxidative stress 

signaling. In this capacity, EDS1, through its interaction with PAD4 and SAG101, is required 

for elicitation of the HR during bacterial infection (Panstruga et al., 2009). RIN4 was co-

expressed with RPS2, EDS1, PAD4 and EDM1 (refer to section 3.3.3). RIN4 regulates and 

activates resistance mediated by the two R proteins namely; RPM1 and RPS2, both belonging 

to the class CC-NB-LRR of R proteins (see Fig. 4.1). EDS1 together with its interacting 

partner PAD4 were found to be co-expressed with IAN8 and SID2. SID2 belongs to SA 

biosynthesis pathway (Abreu and Bosch, 2008). IAN and SID2 were also found to be co-

expressed as a pair. IAN8 was also co-expressed as a pair with PAD4. Taken together, IAN8 

could be expressed after effector recognition R proteins and signalling by SA. Interestingly, 

IAN8 was co-expressed with NHL6 another protein of interest in this study. NHL6 is a 

homolog of NDR1, and NDR1 activates R proteins by its association with RIN4. Apparently, 

neither IAN8 nor NHL6 were co-expressed with NDR1. NHL6 like IAN8 was co-expressed 

with SID2. 

 

NHL6 was second highest co-expressed of the 28 Arabidopsis defence proteins used in the 

co-expression analysis. The highest co-expressed defence protein was an R protein RPM1. 

RPM1 is negatively regulated by RIN4. RIN4 as NDR1 has its interacting partner (Knepper et 

al., 2011). NDR1 is an Arabidopsis homolog of NHL6. Taking all this together, NHL6 

putatively somewhat positioned in along the effector recognition pathway. 

 

NHL4, IAN11 and IAN12 were not co-expressed with any protein(s). This could have been 

due to the model limitation of the bioinformatics tools used, as only certain signal 

transduction settings were possible. Therefore, zero co-expression data of NHL4, IAN11 and 

IAN12 shows that they do not belong to the major pathogen signal transduction pathways like 

NHL6 and IAN8. They could however, belong to atypical pathways, which are activated by 

abiotic stress such as dehydration, salinity, cold, heat and ROS. Future studies on co-

expression analysis of NHL4, IAN11 and IAN12 should be done by changing the stimuli from 

pathogen to any of the aforementioned abiotic stresses. This would help in elucidating the 

signal transduction pathway they belong to. 
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5 Conclusion 

 

In this present study, peroxisome-targeted pathogen defence proteins have been identified and 

validated through subcellular localization studies. By contrast, two pathogen defence proteins 

possibly carrying PTS1 also could not yet be confirmed peroxisomal proteins and might be 

cytosolic. Previously predicted PTS1 carrying proteins, NUDT15 and CHAT homolog were 

validated to peroxisomal proteins through in vivo subcellular targeting analysis. NUDT7 and 

ATP-BP were the two proteins that were also previously predicted to possibly be carrying 

PTS1s, nonetheless, their subcellular localization still requires validation by alternative 

methods.  

 

Three proteins (NHL4, NHL6 and NHL25) from NHL family and three proteins (IAN8, 

IAN11 and IAN12) from IAN family had their gene expression levels increased after SA 

treatment.  Therefore, NHL4, NHL6, NHL25, IAN8, IAN11 and IAN12 are SA inducible 

pathogen defence proteins. Additionally, co-expression analysis showed that NHL6 and IAN8 

belong to major pathogen signal transduction pathways in plant innate immunity, whereas 

NHL4, IAN11 and IAN12 do not belong to the typical pathogen pathway. 
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7 Appendix 

 

7.1 cDNA sequence analysis in pGEM-T Easy and pCAT vectors 

7.1.1 NUDT7  

7.1.1.1 NUDT7 (AT4G12720, ASL>) sequence in pGEM-T Easy  

Subcloning method: The full-length cDNA amplified was PCR amplified from the ABRC 

clone NUDT7 and subcloned into pGEMT-Easy. The insert was sequenced from forward end 

using T7 primer (see section 2.1.10 for more sequencing information).  

  

Nucleotide sequence from Seqlab: 

CTGCTCCGGCCGCCATGGCGGCCGCGGGAATTCGATTCAAGTCTAGAGTCAGAGAGAAGCAGAGGCTTGGTCACG

CGATACTTTAAGGCGCTTGGCATGATCCGCATTGCAGTAGATAAAGCTCTCTTTACCAGATGATGTGGTAGTTGG

CACAATGGCGAATCCCAAGTATTCTTCCTCACACTTCTTTTGGCAAATGTTAGCCATGAACTTGAACATCTCGTT

CTTCTTGTTCCATGGTTGGTCTACATACTCTTGGATCGGCATCCACTTAGCTTGCAAGATCTCAGATTTTTGTTC

AGTAATATCGTAAGAGCGCGGACTTAAGACACACAGGAAAAACATATCTGTTTTCTTTTTTAAGATGGCTTTGTG

GCTTTGCCTGAAAGCCAGTACTTCGACAAAATCTGCAATAATTCCAGTTTCTTCTTCCACTTCCCTAGCTACTCC

AGTCCATATATCCTCGCCCTCGTTGATAACACCAGTAGGCAGCTTCCACACATTTTTATCTTTGAAAAACCCACT

CCTCTCCTGGACAACGAGGACCTCTTTAGTATTTTTGTTGATGACCAAAGCACCAGCACCTACAACATGAGAAGC

ATTGGCTGGGATTGTATCAGGAGTTTCAGAGATCCAAGATACAAGCATCAAGTACTCAGGCTCCGCGTGGTGATA

TCTAAATCCTTCACTAACTGCAGCCTCCACAAGATTAGCCAATCCAAGAGGCAGCTTTATCCAAATTCCCTTCTT

CCCCTCTTCTCTCCAATGCGAAAGAGAAGCCCTAAGACTTTCAGTAAAAACCTCAGAATCCATAGGTTCCACCAT

GGTTACAGTAACACCATCGTAATTATCAGTCTCACCTTCAAGTAAAGGAATCTGCTGAGCTCTAGTACCCATAGC

GGCCGCAGTCTTAATCACTAGTGAATTCGCGGCCGCCTGCAGGTCGACCATATGGGAGAGCTCCCAACGCGTTGG

ATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAA

ATTGTTATCCGCTCACATTCCNCACAACANCGAGCCGAGCATAAGTGTAAAGCTGGGNTGCTATGANNGAGCTAA

CTCACATTAATTGCNNNTGCGCTNNNNNNCCGNTNCANNCGGANNNNNNNGNCAGCTGCATATGATCGGNNATCG

CTNGGNAAGAAN 

 

This Seqlab sequence is 100% identical at the amino acid level to the cDNA of NUDT7 in the 

database and the NUDT7 was manually translated at ExPASy for verification. 

7.1.1.2 Sequence analysis of NUDT7 in pCAT  

Subcloning method: The full-length cDNA amplified was PCR amplified from the ABRC 

clone NUDT7 and subcloned into pCAT via pGEMT-Easy. The insert was sequenced from 

forward end using SR321F primer (see section 2.1.10 for sequencing procedure)  
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Nucleotide sequence from seqlab 

CCACGAGAAGCGCGATCCATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTG

TACAAGGCGGCCGCTATGGGTACTAGAGCTCAGCAGATTCCTTTACTTGAAGGTGAGACTGATAATTACGATGGT

GTTACTGTAACCATGGTGGAACCTATGGATTCTGAGGTTTTTACTGAAAGTCTTAGGGCTTCTCTTTCGCATTGG

AGAGAAGAGGGGAAGAAGGGAATTTGGATAAAGCTGCCTCTTGGATTGGCTAATCTTGTGGAGGCTGCAGTTAGT

GAAGGATTTAGATATCACCACGCGGAGCCTGAGTACTTGATGCTTGTATCTTGGATCTCTGAAACTCCTGATACA

ATCCCAGCCAATGCTTCTCATGTTGTAGGTGCTGGTGCTTTGGTCATCAACAAAAATACTAAAGAGGTCCTCGTT

GTCCAGGAGAGGAGTGGGTTTTTCAAAGATAAAAATGTGTGGAAGCTGCCTACTGGTGTTATCAACGAGGGCGAG

GATATATGGACTGGAGTAGCTAGGGAAGTGGAAGAAGAAACTGGAATTATTGCAGATTTTGTCGAAGTACTGGCT

TTCAGGCAAAGCCACAAAGCCATCTTAAAAAAGAAAACAGATATGTTTTTCCTGTGTGTCTTAAGTCCGCGCTCT

TACGATATTACTGAACAAAAATCTGAGATCTTGCAAGCTAAGTGGATGCCGATCCAAGAGTATGTAGACCAACCA

TGGAACAAGAAGAACGAGATGTTCAAGTTCATGGCTAACATTTGCCAAAAGAAGTGTGAGGAAGAATACTTGGGA

TTCGCCATTGTGCCAACTACCACATCATCTGGTAAAGAGAGCTTTATCTACTGCAATGCGGATCATGCCAAGCGC

CTTAAAGTATCGCGTGACCAAGCCTCTGCTTCTCTCTGACTCTAGAGTCCGCAAAAATCACCAGTCTCTCTCTAC

AAATCTATCTCTCTCTATTTTTCTCCAGAATAATGTGTGAGTAGTTCCCAGATAAGGGAATTAGGGTTCTTATGG

NTTCGCTCATGTGTGAGCATATAANAAACCTTAGTATGTNTTGTATTTGTAAAATACTNNATCATAAATTTCTAT

CNAACAANTCANNACTGCAGGCATGCAGCTNNNNCNTCNNTNNACGTCTGACTGGAACCTGNCGTTACCAACTAA

TN 

 

Translation of Seqlab sequence  5` end 99 base pairs at ExPASY gave the amino sequence 

shown below and the highlighted part is the N-terminal ligation region of the NUDT7 with 

EYFP via NotI: 

5'3' Frame 1 

P R E A R S Met V L L E F V T A A G I T L G Met D E L Y K A A A Met G T 

 

>YFP_withNotI 

MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLV

TTFGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRI

ELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQN

TPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKAAAM 

  

The C-ternimus of YFP_NotI together with the NUDT7 N-terminus were analysed. The 

NUDT7 was in a proper orientation, therefore, the anticipated fusion protein would be 

expressed. 

http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.30992,1
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7.1.2 NUDT15 (AT1G28960.2/4) 

The PTS1 prediction algorithms indicated that 2 splice variants of AtNUDT15 (.2 and .4), 

which terminate with PKM>, were peroxisomal. However, nucleotide and protein sequences 

of the five gene models of NUDT15 are presented here together with their respective 

sequence alignment figures: 

Nucleotide sequences of the five NUDT15 gene models 

 

 

 

 

 

Figure 7.1: NUDT15 gene models sequence alignment at nucleotide level (position 781-

882) 
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Figure 7.2: NUDT15 gene models sequence alignment at amino acid level.  

7.1.2.1 NUDT15 (AT1G28960.2) sequence in pGEM-T Easy  

The full-length cDNA amplified was PCR amplified from the RIKEN clone and subcloned 

into pGEMT-Easy. The insert was sequenced from forward end using T7 primer 

Nucleotide sequence from seqlab: 

TGCTCCGGCCGCCATGGCGGCCGCGGGAATTCGATTAAGACTGCGGCCGCTATGTTTTTGCTTTATCGTAGGCTT

CCTTCATTTGCACGAACAACAACAACAACCCTTCTCTGCAAATCTATGGAGCCTGCGATAACAGCGACTTCTTCT

TCTTCTTTCGGTGGTGGCTCTTCTCGTCTCGCCGCTTTAGCCCAGCAACTTCGCCAATACAAGCCCCCACCTTCT

TCATCGTTCGATGACTCCGAGGAGATGCAGACAGATCAGGAGACCGCTGGGAAAGTCGTTTCTCAGGTTGGGTTT

CAGGAATCTATTGCTCCTCTTTCGAAAGACCCTGATAGGTTTAAACCCAAGAGAGCCGCTGTGTTGATCTGTCTC

TTTGAAGGAGATGATGGTGATTTGCGTGTTATTCTTACTAAGAGATCTTCCAAATTGTCTACTCACTCTGGAGAA

GTTTCATTGCCAGGTGGTAAAGCGGAGGAGGATGATAAAGATGATGGGATGACTGCTACCAGAGAGGCTGAGGAA

GAGATTGGATTGGACCCTTCTCTTGTTGATGTTGTTACTTCTCTTGAACCATTTCTGTCTAAGCATCTTCTTAGA

GTAATTCCTGTGATAGGCATCTTGAGGGACAAAAATAAATTCAATCCGATACCAAATCCTGGGGAAGTGGAAGCT

GTGTTTGATGCACCCTTGGAAATGTTCCTTAAGGATGAGAATCGAAGATCTGAAGAGAGAGAGTGGATGGGTGAA

AAGTATTTGATCCATTACTTTGACTACAGAACAGGAGATAAGGATTATATGATATGGGGTTTAACTGCTGGGATT

TTGATCAGAGCTGCATCTGTGACTTATGAAAGACCACCTGCTTTTTATCGAGCAGTGCCCGAAGTTTAAGTACTC

TAAATGTGACTTCTAGACTTGAATCACNTAGTGAATTCGCGGCCGCCTGCAGGTCGACCATWATGGGAGAGCTCC

CAACGCGTTGGATGCATAGCTGGAGTATTCTAATAGTGTCACCTTAANNAGCTTNGACGTAATCATGGGTCATAG

CTTGTTTCCTGNGTGAAATTGTTATCCGCTCACATTCNCNNCANCANNNANNNNCGGAAGCNNTAAAGNNTAANC

CTGGGGGGCTAATGATGGAGCTACTCANATTANNGGCNNTGNNCTNNTNGNCCGGCTATTTCANNNGNNANACNN

GGTCTNGTGCNN 
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Figure 7.3: NUDT15 sequence alignment. NUDT15 sequence in pGEM-T Easy and that 

from the database were aligned. 

The Seqlab NUDT15 sequence was 99% identical at the amino acid level to the cDNA of 

NUDT15 in the database and after the SeqLab sequence was translated at ExPASy for 

verification. The mismatches are only found toward the 3`end of the sequence (after 980 

onwards) as shown in figure 7.3. This could be have been due to low confidence level in the 

sequence efficiency after 800 bp. Therefore, since the sequences are 100% identical upto 870 

bp it was assumed that no mutations had been introduced in the subcloning. 

 

7.1.2.2 NUDT15 cDNA in pCAT plasmids 

The full-length cDNA amplified was PCR amplified from the RIKEN clone and subcloned 

into pCAT via pGEMT-Easy. The insert was sequenced from forward end using SR321F 

primer (see section 2.1.10). 

 

Nucleotide sequence from Seqlab: 

AACCACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAG

CTGTACAAGGCGGCCGCTATGTTTTTGCTTTATCGTAGGCTTCCTTCATTTGCACGAACAACAACAACAACCCTT

CTCTGCAAATCTATGGAGCCTGCGATAACAGCGACTTCTTCTTCTTCTTTCGGTGGTGGCTCTTCTCGTCTCGCC

GCTTTAGCCCAGCAACTTCGCCAATACAAGCCCCCACCTTCTTCATCGTTCGATGACTCCGAGGAGATGCAGACA

GATCAGGAGACCGCTGGGAAAGTCGTTTCTCAGGTTGGGTTTCAGGAATCTATTGCTCCTCTTTCGAAAGACCCT

GATAGGTTTAAACCCAAGAGAGCCGCTGTGTTGATCTGTCTCTTTGAAGGAGATGATGGTGATTTGCGTGTTATT

CTTACTAAGAGATCTTCCAAATTGTCTACTCACTCTGGAGAAGTTTCATTGCCAGGTGGTAAAGCGGAGGAGGAT

GATAAAGATGATGGGATGACTGCTACCAGAGAGGCTGAGGAAGAGATTGGATTGGACCCTTCTCTTGTTGATGTT

GTTACTTCTCTTGAACCATTTCTGTCTAAGCATCTTCTTAGAGTAATTCCTGTGATAGGCATCTTGAGGGACAAA

AATAAATTCAATCCGATACCAAATCCTGGGGAAGTGGAAGCTGTGTTTGATGCACCCTTGGAAATGTTCCTTAAG
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GATGAGAATCGAAGATCTGAAGAGAGAGAGTGGATGGGTGAAAAGTATTTGATCCATTACTTTGACTACAGAACA

GGAGATAAGGATTATATGATATGGGGTTTAACTGCTGGGATTTTGATCAGAGCTGCATCTGTGACTTATGAAAGA

CCACCTGCTTTTATCGAGCAGTGCCCNAAGTTAANNNCCCTAAAATGTGACTCTNGAGTCCGCAAAATCACCNGT

CTCTCTNTACAATNTATCTCNNNCTATTTTTCTCNNAAATATGTGTGAGTANNTCCNNNAANAGGNAATAAGGNT

CANATAGGNTTCGCTCATGTGTGAGCANNTAGAAACCCTAGNNGNANTNNNTTGTANANACTCNTATCANTAANT

TNTNANTCTGAANCGAATTCTAGNACTGAAGNATNNNGACTGNNNTGNNCGTNNTTNNNACGTCAGGTACNTGAN

AAC 

Translation of Seqlab sequence  5` end 99 base pairs at ExPASY gave the amino sequence 

shown below and the highlighted part is the N-terminal ligation region of the NUDT7 with 

EYFP via NotI: 

5'3' Frame 1 
E K R D H Met V L L E F V T A A G I T L G Met D E L Y K A A A Met F N H 

>YFP_withNotI 
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARY

PDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHN

VYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFV

TAAGITLGMDELYKAAAM 

The Seqlab sequence is 100% identical at the amino acid level to the cDNA of NUDT15 in 

the database. The C-ternimus of YFP_NotI together with the NUDT15 N-terminus would be 

expressed into the fusion protien as anticipated.  

7.1.3 TIR-NBS-LRR1 (ATP-BP, At1g72840, SSL>) 

Cloning strategy of a very long protein such as ATP-BP, possibly containing in the middle 

two transmembrane domains was by cloning separately of two constructs: a) full-length, b) C-

terminal 420-aa domain. NOTE: C-terminal 420aa-domain that was used in the cloning 

strategy was from 624-1042 amino acid residues. 

 

7.1.3.1 Sequence analysis of ATP-BP full-length in pGEM-T Easy  

Subcloning method: The full-length cDNA amplified was PCR amplified from the RIKEN 

clone pda19420 and subcloned into pGEMT-Easy. The insert was sequenced from forward 

end using T7 primer. 

 

 

 

http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.19497,1
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Nucleotide sequence from seqlab: 

CATGCTCCGGCCGCCATGGCGGCCGCGGGAATTCGATTAAGACTGCGGCCGCTATGGCTTCCTCGTCATCATCTT

CTGCAACTCGTCTCAGGCACTACGATGTCTTCCTCAGTTTTCGAGGGGTAGATACCCGCCAAACCATCGTCAGCC

ATTTGTATGTGGCTCTACGTAATAATGGAGTTCTTACTTTTAAAGATGATCGGAAGCTCGAGATTGGCGACACCA

TTGCCGATGGTCTAGTCAAAGCTATACAAACTTCGTGGTTTGCGGTGGTTATTCTCTCTGAAAACTACGCTACTT

CGACGTGGTGCTTGGAGGAGCTCCGGTTGATAATGCAGCTTCACAGTGAGGAGCAGATCAAAGTGCTTCCTATCT

TCTACGGCGTAAAACCCTCTGACGTGAGATACCAGGAAGGAAGCTTCGCGACTGCCTTTCAAAGGTACGAAGCAG

ATCCGGAGATGGAGGAGAAGGTTTCTAAATGGAGAAGAGCTCTCACCCAAGTCGCTAATCTATCAGGCAAGCATT

CCAGAAATTGCGTGGATGAGGCAGATATGATAGCCGAGGTAGTTGGAGGCATCTCAAGTCGACTGCCAAGGATGA

AGTCGACAGATTTGATTAATTTAGTTGGAATGGAAGCTCATATGATGAAGATGACTCTCCTTCTGAATATTGGTT

GTGAAGACGAGGTTCATATGATAGGGATCTGGGGAATGGGAGGCATAGGCAAATCCACCATTGCCAAGTGTCTCT

ATGATCGATTTTCACGTCAATTTCCAGCTCACTGTTTTTTGGAAAACGTGTCTAAAGGCTATGATATTAAGCATC

TACAAAAGGAATTGCTTTCCCATATCCTCTATGATGAAGATGTCGAGTTATGGAGCATGGAAGCTGGATCCCAAG

AGATAAAGGAGAGACTCGGGCATCAAAAAGTTTTTGTCGTGCTTGATAATGTCGATAAAGTGGAGCAGTTACATG

GGCCTGACAAAGGACCCAAGCTGGGTTCGTTCCAGGGAGCCGTATCATCATAACCACACGAAGAACAAAGTTTGC

TCAATTCCTGCGGAGTAAACAATTANTATGAGTAAGTGCTGNCGATAGATGCGCTCAGTTTNNAGTTAGCTTTGG

GGAANAAACTNNTCGATGTTNGACNNNNTTAATCANAGCTNTCGGCCNGGCTCACAGNN 

This Seqlab sequence is 94% identical at the amino acid level to the cDNA of ATP-BP in the 

database and the Seq Lab sequence has been translated at ExPASy for verification. The 

mismatches are only found toward the the end of the sequence (after 980 onwards). This 

could be have resulted due to low sequence efficiency after 800. Therefore, since the 

sequences are 100% identical upto 980bp the sample can be assumed not to contain any 

mutations or alternatively sequence it from the reverse end. 

7.1.3.2 ATP-BP 420aa C-terminal sequence in pGEM-T Easy  

Subcloning method: The full-length cDNA amplified was PCR amplified from the RIKEN 

clone and subcloned into pGEMT-Easy. The insert was sequenced from forward end using T7 

primer. 

Nucleotide sequence from seqlab: 

GCTCCGGCCGCCATGGCGGCCGCGGGAATTCGATTAAGACTGCGGCCGCTCTGCTTCCAAACCTACGGATACTAG

ATGTAACAGGATCGAGGAATCTCAGAGAACTTCCAGAACTTTCGACCGCAGTAAATCTTGAAGAGTTGATATTGG

AAAGCTGTACGAGCCTGGTGCAAATCCCAGAGTCTATTAATAGATTATATCTGAGGAAACTAAATATGATGTACT

GTGATGGTCTTGAGGGAGTGATACTCGTCAATGACCTTCAAGAAGCCAGCCTCAGCCGCTGGGGCCTCAAACGGA

TTATACTGAACCTTCCTCATTCAGGGGCGACACTGAGTTCTCTGACAGATCTAGCTATCCAGGGGAAAATATTCA

TTAAGTTGTCGGGTCTCTCGGGTACGGGAGACCATCTGTCTTTTAGTTCTGTGCAGAAGACCGCTCATCAATCAG

TAACACATCTACTTAACTCTGGTTTCTTTGGTTTGAAATCACTCGACATCAAGTGGTTCAGTTACAGGTTGGATC

CTGTTAATTTCAGCTGTCTTAGCTTTGCAGACTTTCCATGTCTGACCGAGCTAAAGCTGATAAACTTAAACATTG

AAGACATCCCTGAAGACATATGTCAGTTGCAGCTCCTAGAGACACTGGACCTCGGTGGAAATGATTTCGTGTATC

TACCCACATCCATGGGACAACTTGCCATGTTAAAGTACCTCAGCCTCAGTAACTGTCGCAGACTTAAGGCACTGC

CACAACTTTCTCAGGTGGAGAGACTCGTACTTTCTGGCTGTGTGAAGCTCGGATCATTGATGGGAATTCTTGGTG

CACGCAGATACAATTTGCTTGATTTTTGCGTTGAAAAATGCAAGAGTCTTGGATCATTGATGGGGAATTCTTAGT

GTGGAAAAATCAGCTCCAGGCAGAAACGAGTTGCTTGAGCTTAGCCCTTGAAAACTGTAAGAGTCTTGTGTCATT

ATCAGAGGAGCTTAGTCATTCNCCAAGTTAACATATCTAGATCTCAGCAGCCTNGAGTTTAGGAGATCCAACAAG
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CATCANANAGTTATCCTTTATGAGACTCTCTACCTCAACANTNGCACAAATCTTTTCACTGANNGATCCTNNNNN

AGCNNAAGTATNTCTATGGCATGNNCNAATCNTGGACANGTTAACNTCCTTCGGANTCNATTCCNTTNCANN 

 

7.1.3.3 ATP-BP 420aa C-terminal sequence in pCAT vector 

The full-length cDNA amplified was PCR amplified from the RIKEN clone ATP-BP last 

exon and subcloned into pCAT vector via pGEM-T Easy. The insert was sequenced from 

forward end using SR321f primer:   

Nucleotide sequence from Seqlab: 

GTNCCACGAGAAGCGCGATCCATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAG

CTGTACAAGGCGGCCGCTCTGCTTCCAAACCTACGGATACTAGATGTAACAGGATCGAGGAATCTCAGAGAACTT

CCAGAACTTTCGACCGCAGTAAATCTTGAAGAGTTGATATTGGAAAGCTGTACGAGCCTGGTGCAAATCCCAGAG

TCTATTAATAGATTATATCTGAGGAAACTAAATATGATGTACTGTGATGGTCTTGAGGGAGTGATACTCGTCAAT

GACCTTCAAGAAGCCAGCCTCAGCCGCTGGGGCCTCAAACGGATTATACTGAACCTTCCTCATTCAGGGGCGACA

CTGAGTTCTCTGACAGATCTAGCTATCCAGGGGAAAATATTCATTAAGTTGTCGGGTCTCTCGGGTACGGGAGAC

CATCTGTCTTTTAGTTCTGTGCAGAAGACCGCTCATCAATCAGTAACACATCTACTTAACTCTGGTTTCTTTGGT

TTGAAATCACTCGACATCAAGTGGTTCAGTTACAGGTTGGATCCTGTTAATTTCAGCTGTCTTAGCTTTGCAGAC

TTTCCATGTCTGACCGAGCTAAAGCTGATAAACTTAAACATTGAAGACATCCCTGAAGACATATGTCAGTTGCAG

CTCCTAGAGACACTGGACCTCGGTGGAATGATTTCGTGTATCTACCCACATCCATGGGACAACTTGCCATGTTAA

AGTACCTCAGCCTCAGTAACTGTCGCAGACTTAAGGCACTGCCACAACTTTCTCACGTGGAGAGACTCGTACTTT

CTGGCTGTGTGAAGCTCGGATCATTGATGGGAATTCTTGGTGCAGGCAGATACAATTTGCTTGATTTTTGCGTTG

AAAAATGCAAGAGTCTTGGATCATTGATGGGAATTCTTAGTGTGGAAAAATCAGCTCCAGGCAGAAACGAGTTGC

TTGAGCTTAGCCTTGAAAACTGTAAGAGTCTTGTGTCATTATCAGAGGAGCTTAGTCATTTCNCCAAGTTANCAT

ATCTAGATCTCAGCAGCNCGAGTTTAGGANATCCANNGCATCAGAGAGTTATNCNTATGAGANTCTCTACTCACA

CTGCACNAANCTTTNNNGACGAATCTCNANGCCTAGATCNNNTGCATGNNCCNNNTGGACCATGTTTANNNN 

 

Translation of Seqlab sequence  5` end 99 base pairs at ExPASY gave the amino sequence 

shown below and the highlighted part is the N-terminal ligation region of the NUDT7 with 

EYFP via NotI: 

5'3' Frame 1 

X P R E A R S Met V L L E F V T A A G I T L G Met D E L Y K A A A L L P N L R I L 

>YFP_withNotI 

MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLV

TTFGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRI

ELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQN

TPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKAAA 

This Seqlab sequence is 96% identical at the amino acid level to the cDNA of ATP-BP 420aa 

C-Terminus in the database and the ATP-BP 420aa C-Terminus has been independently 

translated at ExPASy for verification. The C-ternimus of YFP_NotI together with the ATP-

BP 420aa were analysed. The ATP-BP 420aa C-Terminus is in a proper orientation therefore, 

YFP, NotI and ATP-BP 420aa C-Terminus will be expressed correctly and the anticipated 

fusion protein will result. 

http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.11325,1
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7.1.4  The CHAT homolog ( formerly „TF1”, At5g17540) 

7.1.4.1 The CHAT homolog sequence in pGEM-T Easy  

The full-length cDNA amplified was PCR amplified from the French INRA clone, BX830423 

and subcloned into pGEMT-Easy. The insert was sequenced from forward end using T7 

primer.  

Nucleotide sequence from seqlab: 

GCTCCGGCCGCCATGGCGGCCGCGGGAATTCGATTAAGACTGCGGCCGCTATGTCCGGGTCACTCACGTTTAAGA

TTTACCGGCAGAAGCCGGAGTTAGTTTCTCCGGCGAAGCCAACGCCAAGAGAGCTCAAACCCCTCTCAGATATTG

ACGACCAAGAAGGACTAAGATTTCACATTCCCACTATCTTTTTCTATAGACACAACCCTACTACTAACTCTGATC

CTGTCGCAGTCATTCGGAGAGCTCTCGCAGAGACGCTGGTTTACTACTATCCGTTCGCCGGTAGGCTTCGGGAAG

GACCGAACCGGAAACTGGCTGTGGATTGTACCGGTGAAGGCGTTTTGTTTATTGAGGCTGATGCTGACGTGACAC

TTGTTGAGTTTGAAGAGAAGGATGCTCTTAAGCCTCCTTTCCCTTGCTTTGAAGAGCTTCTGTTTAACGTTGAAG

GTTCTTGTGAAATGCTCAACACTCCTTTGATGCTCATGCAGGTCACGCGCTTGAAATGCGGCGGTTTTATCTTCG

CCGTCCGTATCAACCACGCAATGTCCGATGCCGGCGGTCTCACGCTGTTCCTCAAAACGATGTGCGAGTTCGTGC

GTGGTTATCATGCACCTACGGTTGCTCCGGTGTGGGAACGTCACCTGCTGAGCGCCAGAGTCCTGCTGCGTGTGA

CACACGCACACCGAGAGTACGACGAAATGCCGGCAATAGGTACAGAACTCGGCAGTAGAAGAGACAATCTGGTAG

GCCGGTCACTCTTCTTCGGTCCCTGCGAGATGTCCGCAATACGCAGGCTCCTCCCACCAAATCTTGTCAACAGCA

GCACCAATATGGAAATGCTAACGTCTTTCTTATGGCGTTATCGCACCATCGCTCTACGACCAGACCAGGACAAGG

AGATGCGGCTCATATTAATTTGTCAACGCACGTTCTAGCTTAAAAATCCACCACTACCTCGAGGATACTACGGAA

ATGCCATTTGCNTCCAGTCNCCATNGCAACAGCTAATGAACTAACTAAGAAACCGTAGANTTTGCNNTGAGACTT

ATNAATGANGNNGAAANCNNAGCGTGANCGGAGGAGTACAGGNNATNACTNGCGGATNNTGATGGTGAAAGGNAG

AACCAAGCTTCTCGTCGGACGGACCTACTTGNNNNNNNTAGANTTTCNNTATGAATTTCGGNATTTTGGGGGNAA

CATCCTNG 

 

 

Figure 7.4: The CHAT homolog sequence alignment. 
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The Seqlab CHAT homolog sequence is 99% identical at the amino acid level to the cDNA of 

the CHAT homolog in the database and that from Seqlab were aligned (Fig. 7.4). The 

mismatches were only found toward the end of the sequence (after 920 onwards). This could 

be have resulted due to low confidence level in the sequence efficiency after 800bp. 

Therefore, since the sequences are 100% identical upto 920bp the sample can assumed not to 

contain any mutations. 

 

7.1.4.2 The CHAT homolog sequence in pCAT vector 

The full-length cDNA amplified was PCR amplified from the French INRA clone, 

BX830423, and subcloned into pCAT via pGEMT-Easy. The insert was sequenced from 

forward end using SR321f primer (see section 2.1.10). 

Nucleotide sequence from Seqlab: 

GACTACGAGAAGCGCGATCCATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGC

TGTACAAGGCGGCCGCTATGTCCGGGTCACTCACGTTTAAGATTTACCGGCAGAAGCCGGAGTTAGTTTCTCCGG

CGAAGCCAACGCCAAGAGAGCTCAAACCCCTCTCAGATATTGACGACCAAGAAGGACTAAGATTTCACATTCCCA

CTATCTTTTTCTATAGACACAACCCTACTACTAACTCTGATCCTGTCGCAGTCATTCGGAGAGCTCTCGCAGAGA

CGCTGGTTTACTACTATCCGTTCGCCGGTAGGCTTCGGGAAGGACCGAACCGGAAACTGGCTGTGGATTGTACCG

GTGAAGGCGTTTTGTTTATTGAGGCTGATGCTGACGTGACACTTGTTGAGTTTGAAGAGAAGGATGCTCTTAAGC

CTCCTTTCCCTTGCTTTGAAGAGCTTCTGTTTAACGTTGAAGGTTCTTGTGAAATGCTCAACACTCCTTTGATGC

TCATGCAGGTCACGCGCTTGAAATGCGGCGGTTTTATCTTCGCCGTCCGTATCAACCACGCAATGTCCGATGCCG

GCGGTCTCACGCTGTTCCTCAAAACGATGTGCGAGTTCGTGCGTGGTTATCATGCACCTACGGTTGCTCCGGTGT

GGGAACGTCACCTGCTGAGCGCCAGAGTCCTGCTGCGTGTGACACACGCACACCGAGAGTACGACGAAATGCCGG

CAATAGGTACAGAACTCGGCAGTAGAAGAGACAATCTGGTAGGCCGGTCACTCTTCTTCGGTCCCTGCGAGATGT

CCGCAATACGCAGGCTCCTCCCACCAAATCTTGTCAACAGCAGCACCAATATGGAAATGCTAACGTCTTTCTTAT

GGCGTTATCGCACCATCGCTCTACGACCAGACCAGGACAAGGAGATGCGGCTCATATTAATTGTCAACGCACGTT

CTAAGCTTAAAAATCCACCACTACCTCGAGGATACTACGGAAATGCCTTTGCGTTCCCAGTCGCAATCGCAACAG

CTAATGAACTACTAGAACCGTTAGAGTTTGCTCTGAGACTAATAAAAGAGCGAAATCGAGNGNGACGAGNAGTNN

TGCGATCACTGNNGATNTGATGGTGATAAAGNAAGAANNGCTCNGTCGACGACTACTGNNNNANTAGANTTNNGA

ATTNNATTCGGANNTTGGGGGG 

 

 

Translation of  5` end 99 base pairs of the Seqlab sequence: 

5'3' Frame 3 

L R E A R S M V L L E F V T A A G I T L G M D E L Y K A A A M S 

 

>YFP_withNotI 

MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLV

TTFGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRI

ELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQN

TPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKAAA 

 

http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.1882,3
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The Seqlab CHAT homolog sequence is 99% identical at the amino acid level to the cDNA of 

CHAT homolog in the database and the SeqLab sequence. The mismatches are only found 

toward the end of the sequence (after 920 onwards). This could be have resulted due to low 

confidence level in the sequence efficiency after 800bp. Therefore, since the sequences are 

100% identical upto 920bp the sample can assumed not to contain any mutations. The C-

ternimus of YFP_NotI together with the CHAT homolog have been analysed. The CHAT 

homolog is in a proper orientation therefore, YFP, NotI and CHAT homolog will be 

expressed correctly. 
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7.2 Gene expression analysis supplementary data 

7.2.1 Microarray data of NHL proteins from Genevestigator and NCBI databases 

NHL4(At1g54540) 

 

NHL6(At1g65690) 

 
 

NHL25(At5g36970)  

 

Figure 7.5: Conserved Domains for NHL proteins from publicly available database, National 

Centre for Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov/  Different types 

of LEA (Late Embryogenesis Abudant) proteins are expressed at different stages of late 

embryogenesis in higher plant seed embryos and under conditions of dehydration stress. 

 

 
 

Figure 7.6: NHL6 expression in Arabidopsis plants at different developmental stages 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/
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Figure 7.7: NHL6 expression in different parts of the Arabidopsis plant 

 

 

 

 

 

Low   Medium              High Arabidopsis thaliana 

Anatomy 0                2000            4000            6000              8000 

0                2000            4000            6000              8000 
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7.2.2 Relative gene quantification results 

Table 7.1: Gene expression of NHLs, IANs and Salicylic acid positive markers (PR2/5) 

Gene ACT2       NHL4       IAN8     

Sample 0 Hour 24 Hours 72 Hours   0 Hour 24 Hours 72 Hours   0 Hour 24 Hours 72 Hours 

Mean Ct 20.671 21.489 20.366   27.081 27.243 27.724   >40 31.827 34.996 

Fold 

Change N/A N/A N/A   1 1.576 0.519   N/A N/A N/A 

                        

Gene PR2       NHL6       IAN11     

Sample 0 Hour 24 Hours 72 Hours   0 Hour 24 Hours 72 Hours   0 Hour 24 Hours 72 Hours 

Mean Ct 25.313 22.119 22.020   28.639 27.359 27.891   29.962 30.494 30.843 

Fold 

Change 1 16.137 7.936   1 4.279 1.359   1 1.219 0.440 

                        

Gene PR5       NHL25       IAN12     

Sample 0 Hour 24 Hours 72 Hours   0 Hour 24 Hours 72 Hours   0 Hour 24 Hours 72 Hours 

Mean Ct 24.378 22.972 22.198   34.830 34.061 35.276   29.953 30.263 29.271 

Fold 

Change 1 4.671 3.669   1 3.002 0.594   1 1.422 1.299 
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7.3 Co-expression analysis supplementary data 

 

Table 7.2: Raw dataset generated from the bioinformatics tool  

AGI Query Number of co-expressed genes Lowest 

correlation 

score 

# of genes used 

At3g07040 RPM1 very many, >100 with score > 0.6 0.772 100 

At1g65690 NHL6 very many, >100 with score > 0.6 0.749 100 

At3g51660 MIF1 very many, >100 with score > 0.6 0.738 100 

At2g35980 NHL10/NtHin1 very many, >100 with score > 0.6 0.729 100 

At5g52640 HSP90 very many, >100 with score > 0.6 0.707 100 

At5g59820 ZAT12 many, >100 with score > 0.6 0.692 100 

At3g54920 PMR6 many, >100 with score > 0.6 0.677 100 

At4g11260 EDM1 many, >100 with score > 0.6 0.674 100 

At3g52430 PAD4 many, >100 with score > 0.6 0.673 100 

At3g48090 EDS1 many, >100 with score > 0.6 0.670 100 

At5g51700 PBS2/RAR1 many, >100 with score > 0.6 0.664 100 

At4g26090 RPS2 many, >100 with score > 0.6 0.644 100 

At1g74710 SID2 many, >100 with score > 0.6 0.625 100 

At4g37980 ELI3 many, >100 with score > 0.6 0.620 100 

At3g25070 RIN4 many, >100 with score > 0.6 0.612 100 

At5g58600 PMR5 many, >100 with score > 0.6 0.609 100 

At1g58807 DRP many, >100 with score > 0.6 0.604 102 

At4g16890 SNC1 some 0.600 46 

At1g33960  IAN8 some 0.698 34 

At5g17890 LIMDP some 0.606 28 

At3g20600 NDR1 some 0.568 15 

At5g55390 EDM2 some 0.600 13 

At5g64930  CPR5 some 0.601 11 

At1g64280 NPR1 few 0.602 7 

At4g18470 SNI1 few 0.604 2 

At4g09940 IAN12 none 0 0 

At1g54540 NHL4 none 0 0 

At4g09930  IAN11 none 0 0 

 

http://www.arabidopsis.org/servlets/TairObject?id=36178&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=131312&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=133809&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=37052&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=128492&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=36581&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=39706&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=133473&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=26550&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=28521&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=38403&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=135287&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=128629&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=134602&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=136494&type=gene
http://www.arabidopsis.org/servlets/TairObject?id=27831&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=127952&type=locus
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Table 7.3: Annotations of the 28 Arabidopsis defence proteins 

Acronym Annotation 

RPM1 RESISTANCE TO PSEUDOMONAS SYRINGAE PV MACULICOLA 1 

NHL6 NDR1/HIN1-like 6  

MIF1 Macrophage migration Inhibitory Factor 1 

NHL10 NDR1/HIN1-like 10 

HSP90 HEAT SHOCK PROTEIN 90 

ZAT12 zinc finger protein involved in high light and cold acclimation 

PMR6 POWDERY MILDEW RESISTANT 6 

EDM1 ENHANCED DOWNY MILDEW 1, 

PAD4 PHYTOALEXIN DEFICIENT 4 

EDS1 ENHANCED DISEASE SUSCEPTIBILITY 1 

PBS2/RAR1 PPHB SUSCEPTIBLE 2, REQUIRED FOR MLA12 RESISTANCE 1 

RPS2 RESISTANT TO P. SYRINGAE 2 

SID2 SALICYLIC ACID INDUCTION DEFICIENT 2 

ELI3 elicitor-activated gene 3 

RIN4 RPM1 INTERACTING PROTEIN 4 

PMR5 POWDERY MILDEW RESISTANT 5 

DRP Disease resistance protein (CC-NBS-LRR class) family 

SNC1 SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 

IAN8 Immune-Associated Nucleotide-binding 8 

LIMDP DA1-related protein  

NDR1 non race-specific disease resistance  

EDM2 ENHANCED DOWNY MILDEW 2 

CPR5 CONSTITUTIVE EXPRESSION OF PR GENES 5 

NPR1 NONEXPRESSER OF PR GENES 1 

SNI1 SUPPRESSOR OF NPR1-1, INDUCIBLE 1 

IAN12 Immune-Associated Nucleotide-binding12 

NHL4 NDR1/HIN1-like 4 

IAN11 Immune-Associated Nucleotide-binding11 
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7.4 Abbreviations 

aa amino acid 

Amp ampicillin 

bp base pair 

cDNA complementary DNA 

CT Threshold cycle 

DNA deoxyribonucleic acid 

dNTP deoxynucleoside triphosphates 

E. coli Escherichia coli 

ER endoplasmic reticulum 

EYFP enhanced yellow fluorescent protein 

H2O2 hydrogen peroxide 

IPTG isopropyl-β-D-thiogalactopyranoside 

kbp kilobase pair 

LB medium Luria-Bertani medium 

PCR polymerase chain reaction 

PTS protein targeting signal 

qPCR Real-time quantitative polymerase chain reaction 

ROS reactive oxygen species 

Rn Normalized fluorescence 

SA Salicylic acid 

Ta annealing temperature 

Taq Thermus aquaticus 

Tm melting temperature 

UV ultraviolet 

w/v weight to volume 

X-gal 5-bromo-4-chloro-3-indonyl-β-D-galactopyranoside 
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