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Abstract

In drilling operations, drilling fluid containing magnetic materials
is used when drilling a well. The materials can significantly shield
the Earth’s magnetic field as measured by magnetic sensors inside
the drilling strings. The magnetic property of the drilling fluid is
one of the substantial error sources for the determination of magnetic
azimuth for wellbores. Both the weight material, cuttings, clay and
other formation material plus metal filings from the tubular wear may
distort the magnetometer readings. This effect is obviously linked to
the amount and kind of magnetic material in the drilling fluid, and
the development of corrective means has therefore highlighted the
drilling fluid.
The influence on directional Measurement While Drilling (MWD)
from drilling fluids has been studied using finite element modeling
techniques. The simulations have been performed for several cases
with realistic representations of MWD tool geometries and varying
location of Bottom Hole Assembly (BHA) versus the wellbore. The
wellbore, tools and magnetic fields were modeled by finite element
methods. The wellbore is modelled as a perfect circular cylinder. With
unsymmetrical geometry the placement of the magnetic MWD sen-
sors may become more sensitive to magnetic shielding effects, and
small position changes may result in significant errors in the mea-
sured magnetic field components, both attenuation and amplification
[1]. One important result is that for situations with perfect axial sym-
metry, the magnetometer readings are attenuated proportionally to
the square of the magnetic susceptibility. Since the magnetic suscep-
tibility is a small number, this means that the effect on magnetometer
readings is generally negligible. However, if the symmetry is broken,
the distortion on the magnetometer readings can be increased signifi-
cantly. This means that segregation of cuttings, metal filings or weight
material can strongly influence the strength of the measured magnetic
fields [1].
It has been shown sometimes to cause significant errors in the accu-
racy of drilling hole positioning using magnetic surveying. Here we
present a general physical approach for correcting the measured mag-
netic fields from paramagnetism by the paramagnetic material for such
in drilling fluid. Based on information of the paramagnetic properties
of the drilling fluid and the well geometry, applied to a sufficiently
long straight section of a well [2] this paper will show how the mag-
netic field in a cylindrical wellbore can be calculated analytically by
using conformal mapping .
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Chapter 1

1 Introduction

1.1 Introduction to magnetism

Magnetism is the force of attraction or repulsion in and around a material
that respond to an applied magnetic field. All materials responds differ-
ently to magnetic fields :

• attracted to a magnetic field paramagnetism;

• repulsed by a magnetic field diamagnetism;

• ferromagnetism is a strong form of paramagnetism. Ferromagnetic ma-
terials may form permanent magnets.

• spin glass and antiferromagnetism are complex forms of strong diamag-
netic behaviour.

Certain materials such as magnetite, iron, steel, nickel, cobalt and alloys of rare
earth elements, exhibit magnetism at levels that are easily detectable [11].
Substances that are negligibly affected by magnetic fields are known as
non-magnetic substances. They include copper, aluminium, gases, and plas-
tic. Pure oxygen exhibits magnetic properties when cooled to a liquid state.
The magnetic state of a material depends on temperature, pressure and ap-
plied magnetic field so that a material may exhibit more than one form of
magnetism depending on its temperature, etc [3].

1.2 History

The word magnetic comes from Magnesia, the name of the district and Greece
where the mineral magnetite was found.The ancient Greeks observed elet-
ric and magnetic phenomena possibly as early as 700BC. The Greeks knew
about magnetic forces from observations that the naturally occurring min-
eral magnetite Fe3O4, called synthetic magnetite, is attracted to iron. There are
documents in ancient China, between 481BC and 403BC, in books named
after its author, The Master of Demon Valley (Guiguzi) [4]: "The lodestone
makes iron come or it attracts it." By the 12th century the Chinese were
known to use the lodestone compass for navigation. In 1819 with work
by Hans Oersted, a professor at the University of Copenhagen, it was dis-
covered that an electric current could influence a compass needle. In 1831
Michael Faraday and, almost simultaneously, Joseph Henry found further
links between magnetism and electricity. In 1873, James Clerk Maxwell
synthesized and expanded for formulating the laws of electromagnetism
in Maxwell’s equations. His work is as important as Newton’s work on the
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laws of motion and the theory of gravitation. In 1905, Einstein used these
laws in motivating his theory of special relativity [5], requiring that the
laws held true in all inertial reference frames [6].
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Chapter 2

2 Basic concepts

Before we try to understand the force between magnets , it is useful to de-
fine the B-magnetic field and the H-magnetic field . Examine the magnetic
pole model given the following:

2.1 Magnetism

The magnetic field vector B, also called the magnetic flux density , or the mag-
netic induction , is usually defined by the vector product force equation. The
electric field E is here assumed to be zero. The equations are in the interna-
tional System of Units, which will be used through out the thesis.

FM = qv× B (2.1)

Here v is the velocity of the electric charge q and FM is the resulting force
on the moving charge [2].
In most cases it is more convenient to measure B by the magnetic torque
T on a magnetic dipole of magnetic moment m (e.g. a compass needle or a
current loop):

T = m× B (2.2)

The Maxwell’s equations [7] , in a medium are the so-called macroscopic
Maxwell equations , which are obtained from the microscopic equations aver-
aging over a large number of particles.

Here

• E is the electric field. ∇E =
ρ

ε
, D = εE,

• ρ is the free electric charge density.

• J is total current density (including both free and bound current).
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Figure 1: Maxwell’s equations

• Jf is free current density (not including bound current).

• ε0 is the electric permittivity [10], andµ0 is the magnetic permeability,

with ε0µ0 =
1
c2 , c being the velocity of light.

• B = µH
The auxiliary magnetic field H, where the vacuum permeability is
a proportionality constant. The above formulas remain valid in the
presence of magnetic materials, except that the relation between B
and H is not necessarily simple.

The relation has important consequences. Because ε0,µ0 can be measured
in any frame, the velocity of light is the same in and frame. The mag-
netic field B (also called magnetic flux density or magnetic induction) in
a system is caused by local current distributions, in addition to possible
superimposed external fields (caused by currents external to the system
under discussion). The effect of a current density j on the magnetic field is
conventionally expressed through an auxiliary field, H, traditionally - and
unfortunately - called the magnetic field strength (or magnetic intensity).
In a region with no charges (ρ = 0) and no currents ( j = 0), such as in a
vacuum, Maxwell’s equations reduce to:

∇ · E = 0 in vacuum

∇ · B = 0 in vacuum

∇× E = −∂B
∂t

Faraday's law of induction

∇× B =
1
c2

∂E
∂t

Displacement current
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2.2 The Magnetization

As we shall see shortly, the magnetization of a substance is the average
magnetic moment . The magnetic properties of matter are caused by molecules
possessing a magnetic dipole moment. A number, N, of such molecular
dipoles mi (i = 1 . . . N) contained in a macroscopically small volume V
will act as single dipole of strength ∑i mi. The average combined dipole
moment is the magnetization, M:

M =
1
V ∑

i
mi =

N
V

< m >= n < m > (2.3)

where <. . .> denotes the space average (assumed equal to the time average
in the case of fluctuations), and n is the number density of the dipoles.
In the presence of a magnetizable medium the relation between B and H is
modified to:

B = µ0(H + M) (2.4)

In this formula H has the same value, given by Ampère’s law, as it would
have in the absence of the microscopic dipoles, assuming the same current
distribution j. Thus H can be interpreted as the external magnetic forcing of
the material, causing a magnetic field B, or, equivalently, as the magnetic
moment per unit volume of the external macroscopic electric currents.

2.3 Magnetic permeability

In general, there is no simple relation between M and H, and hence not
between B and j. Indeed, for permanent magnets M can have an an arbitrary
direction, with magnitude up to a certain maximum, even in the absence
of an external field. However, in most materials the molecular magnetic
dipoles are randomly oriented with a vanishing average, so M = 0 if H =
0, and they respond only weakly and practically linearly to an external
field. If the magnetic medium is also isotropic (no preferred direction), this
leads to the relations:

M = χH (2.5)
m

B = µ0(1 + χ)H = µH (2.6)

Here χ is a dimensionless number, called the magnetic susceptibility 1, which is
a thermodynamic material property. The permeability of the material - µ
defined as:

1Determination of the susceptibility entails evaluation of the magnetization produced
by an applied magnetic field.
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µ = µ0(1 + χ) = µ0Km (2.7)

is called the magnetic permeability.

Table 1: Material’s magnetic susceptibility
χ[dimensionless] Material

χ� 1 ferromagnetic, depends on H
in a rather non-trivial way(hysteresis)

χ > 0 paramagnetic
0 < χ� 1 can in most cases be treated as a temperature

dependent material constant
χ < 0 diamagnetic

Since χ is a material property, so is µ, and in inhomogeneous systems
µ is generally position dependent, µ = µ(r). In physical data tabulations
one often does not tabulate χ directly, as most experimental set ups instead
measure the mass susceptibility indexmass susceptibility [ m3

kg ] in SI or in [ cm3

g ]
in Centimetre-gram-second system (CGS):

χm =
χ

ρ
(2.8)

where ρ is the mass density [ kg
m3 ] (SI) or [ g

cm3 ] (CGS) of the substance.

Also the molar susceptibility [ m3

mol ] (SI) or [ cm3

mol ] (CGS):

χA = Aχm =
χA
ρ

(2.9)

is often tabulated, where A is the molecular mass(molecular weight) [
kg

mol
]

(SI) or [
g

mol
] (CGS) of the substance.

If there are mixed two volumes, V1 and V2, of different materials with dif-
ferent susceptibilities, χ1 and χ2, and it can be assumed that the two ma-
terials do not interact chemically or magnetically, the relation (M) leads to
Wiedemann′s law for the susceptibility of a mixture:

χ =
χ1V1 + χ2V2

V1 + V2
(2.10)
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with an obvious generalization to more complex mixtures. For χm one cor-
respondingly has:

χm =
χm

1 M1 + χ
m
2 M2

M1 + M2
(2.11)

Because the average magnetic dipole moment <m> is often quite sensitive
to the molecular surrounding, Wiedemann′s law is not always very accurate
in practice. Since tables give CGS units, we see also after these descriptions,
that we could find that the magnetic field at any point in a paramagnetic
material rises when replaced by vacuum, by a factor named the relative
permeability Km [dimensionless]. The factor’s worth depends on the kind
of materials. In generally paramagnetic solids and liquids at room temper-
ature, Km is normally from 1.00001 to 1.003 in the CGS). The susceptibility
is defined differently in the SI and the CGS systems.

χCGS
m =

χCGS
υ

ρCGS , ρCGS[
g

cm3 ]

χCGS = 4πχSI

For the mass susceptibility, χm, one must also take into account the different
units for the density, thus many use lists with χCGS

m to convert to SI units.
We will show how to change the CGS to SI system. For example for water
in 20 ◦C ,

χCGS
m =

χCGS
v
ρCGS =

−7, 190 · 10−7

0, 9982[g/cm3]
= −7, 203 · 10−7[

cm3

g
]

χSI
m = 4π · 10−3 · χCGS

m = −9, 051 · 10−9[
m3

kg
]

Examples are given magnetic susceptibility, denoted by:

χ[dimensionless quantities] = Km − 1

Water is a diamagnetic material. Put a layer of water on a powerful magnet,
then the magnet field significantly repels the water by its reflection, a slight
dimple in the water’s surface [22] [8].
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2.4 Paramagnetism

Paramagnetic matters have a weakly magnetism resulting from the pres-
ence of atoms (or ions) that have permanent magnetic moments. The mo-
ments are tiny and randomly oriented in the absence of an external mag-
netic field. When a paramagnetic substance is placed in an external mag-
netic field, its atomic moments tend to line up with the field. The process
must compete with temperature, which tends to randomize the magnetic
moment orientations [19].
Paramagnetism is a form of magnetism whereby the paramagnetic material
is only attracted when in the presence of an externally applied magnetic
field [15]. Some materials exhibit a magnetization which is proportional to
the applied magnetic field in which the material is placed. Right-hand rule
for the magnetic field vectors due to current element d

−→
l :

Figure 2: Right-hand rule for the magnetic field

Both equations named the law of Biot and Savart. From I = n|q|υd A
the magnitude of the magnetic field d

−→
B at any field point P is:

dB =
µ0

4π
Idl sin ∅

r2

d
−→
B =

µ0

4π
Id
−→
l × r̂
r2 (magnetic field of a current element)

where d
−→
l is a vector with length dl, direction is the same as the current in

the conductor. With the same method, assumed the total magnetic moment
−→µ total , per unit volume V in the material, we can denote by

−→
M = −→µ total/V

[A/m].

• the vector quantity
−→
M is the magnetization of the material.
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• The additional magnetic field
−→
B 1 is produced by a current loop which

is proportional to the loop’s magnetic dipole moment per unit vol-
ume in this material:

−→
B 1 = µ0

−→
M (SI unit T). (2.12)

• The equation to the total magnetic field
−→
B total :

−→
B total =

−→
B 0 +

−→
B 1 (2.13)

where
−→
B 0 comes from the current magnetic field in the conductor.

All atoms have inherent sources of magnetism because electron spin con-
tributes a magnetic moment and electron orbits act as current loops which
produce a magnetic field. In most materials the magnetic moments of
the electrons cancel, but in materials which are classified as paramagnetic,
the cancellation is incomplete [23]. Paramagnetic materials have a relative
magnetic moment with a rather weak positive magnetic susceptibility.

2.5 Induced magnetism

In this thesis it is assumed the simplest analytical situation - that the Earth’s
magnetic field is time-independent. The Earth’s magnetic field is the magnetic
field that extends from the Earth’s inner core to where it meets the solar
wind. A stream of energetic particles are emanating from the Sun, and mag-
netic position measurements are discontinued during geomagnetic storms.
Data from the Time History of Events and Macroscale Interactions during
SubstormsTHEMIS[12] show that the magnetic field, which interacts with
the solar wind, is reduced when the magnetic orientation is aligned be-
tween Sun and Earth. In this thesis we assume that the Earth’s magnetic

12



field is constant since any change is of such a short duration and in this
time the drilling operation is paused. It is obvious that the drill pipes are
under the influence of the Earth’s magnetic field. The time scale for mag-
netic field variations to penetrate inside the drilling pipe is in the order of

τ = R2
0µσ (2.14)

where R0 is the borehole radius andσ the (maximum) electric conductivity
of the pipe [16]. Under realistic operating conditions τ will be some fraction
of a second, and the field inside the borehole will adjust itself practically
instantaneously to variations much slower than this. Another assumption
that is present is that there are no macroscopic electric fields, and no elec-
tric currents inside the system, so only magnetization is the external field 2.
From Figure 1, ∇H = j and Ampère’s law then j = 0. From Helmholtz the-
orem then we can find that H can be derived from a scalar magnetic potential,
Φ:

H = −∇Φ

In an inhomogeneous system of known geometry Φ is then determined by
the remaining Maxwell equation, ∇B = 0, which becomes ∇[µ(r)∇Φ] =
0. In any region of constant material composition this reduces to:

∇2Φ = 0 Laplace’s equation (2.15)

The above equation must be solved in each region of different magnetic
permeabilities. These solutions must then be joined via implementing the
appropriate boundary conditions on the interfaces between the regions.
The joining relations can be found using both equations: If I and I I are
two regions of permeability µ I and µ I I , and n is the unit vector perpen-
dicular to their mutual interface at some point, the conditions on the field
components normal and parallel to the interface at this point are [30] [31]:

BI
⊥ = µ I H I

⊥ = µ IHIn = BI I
⊥ = µ I IHI I

⊥ = µ I IHI In (2.16)

and for the auxiliary magnetic field,

2any currents flowing in the borehole would effect the magnetic measurements indepen-
dently of the magnetic properties of the drilling fluid

13



HI
‖ = HI × n = HI I

‖ = HI I × n (2.17)

Figure 3: Wellbore geometry and coordinates.

The borehole is centered on the z-axis, and the external magnetic field B
is in the XY-plane. One important result is that for situations with perfect
axial symmetry, the magnetometer readings are attenuated proportionally
to the square of the magnetic susceptibility. Because the magnetic suscep-
tibility is a small number, the effect on magnetometer readings is generally
negligible. However, if the symmetry is broken, the distortion on the mag-
netometer readings can be increased significantly. This means that form
and characters of material can have a strong influence on the strength of
the measured magnetic fields [1]. For more-complex geometries, one must
resort to numerical modelling. The remaining boundary conditions are that
H must be everywhere finite, and that far outside the borehole we have the
asymptotic behavior:

H→ 1
µ0

B0 ⇐⇒ Φ→ − 1
µ0

B0r; r→ ∞ (2.18)

where r is the radial distance from the center of the borehole and B0 is
the external magnetic field. It should be noted that in practice there may
be some uncertainty in the asymptotic conditions for the magnetic field
inside or close to the borehole. The Earth’s "radius" is nearly 6, 384 km ,
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denoted by R in the drawing. The depth of drilling, 4d, is from Earth’s
surface to the bottom. The Earth’s magnetism changes, 4B, depending by
distance d v (4d/R). Additionally, the dipole magnetic field is reduced
after comparison to the depth of the borehole with Earth’s radius.

Figure 4: Earth’s Cross-section

As record in the world the depth of the borehole at 13 km is still "shal-
low" compared to the Earth’s radius of 6384 km. In the non-magnetic drill
collar housing the magnetic sensors only have a finite length, and are con-
nected to the steel drill pipe and the bottom hole assembly, with poorly
specified magnetic properties. Therefore we don’t need to take into ac-
count how the Earth’s magnetic field changes when the borehole becomes
deeper.

Figure 5: The drill string’s angles with gravity and B0

B0 is the magnetic field of Earth. If this drill collar is too short, one
can have additional stray magnetic fields influencing the measurements
[24]. We want to consider how the pipe’s field is influenced by the Earth’s
magnetic field. B0, Earth’s magnetic field can be found by measurements.
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There are two estimated angles, one is between the drill string and gravity
of Earth,α. The other angle is between the drill string and Earth’s magnetic
field, γ. The field could have some rest magnetization on the drill string
when we are trying to measure it. This could be indicated for if there are
no other sources of error.

Below is a list of the three deepest of all the wells in the world:

• Finished in 2011 and 12, 345 meters long in Sakhalin−I Odoptu OP−
11 Well (offshore the Russian island Sakhalin) [29].

• Finished in 2008 and 12, 289 m long Al Shaheen oil well in Qatar.

• Finshed in 1989, SG − 3, and 12, 262 meters in Russia, project was
named The Kola Superdeep Borehole [25].
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Chapter 3

3 Case

3.1 The general case

Measurement While Drilling (MWD) in the oil and gas industry is measure-
ments of the Earth’s magnetic field. In fact the Earth’s Magnetospheric
field changes all the time due to the Solar Wind Interaction [26], charged
electrical particles from the sun wind. Solutions to analyze the magnetic
MWD - measurement after high solar activity are missing. The influence
on directional MWD from drilling fluids has been performed for several
cases with realistic representations of MWD-tool geometries and varying
location of the Bottom Hole Assembly (BHA) vs. the wellbore. Components
and contamination in drilling fluids shield the Earth’s magnetic field is as
recorded by the magnetic sensors in MWD equipment used for directional
surveying of oil wells. This shielding can cause azimuth errors of 1 to 2◦,
and even lager errors may occur for certain wellbore directions under un-
favorable conditions. There effects reduce the borehole-position accuracy
sufficiently to increase the costs of hitting the planned target [1]. Our ge-
ometry is shown in Figure 3. We chose coordinates so that the drill string
is along the Z - axis. The X - axis is selected so that the local gravitational
field −→g is left in the XZ - plane, it means that the X - axis is pointed to-
wards the upside of the drill string. The total −→g is summarized by three
vectors measurements. The Earth’s magnetic field, B0, is separated by three
components.

B0 = B0(sinγ, 0, cosγ) (3.1)

so B0 is in the XZ-plane.
In cylindrical coordinates r, ϕ, Z, defined by x = r cosϕ, y = r sinϕ, by
equation H = −∇ϕ takes the form:

Hr = −
∂Φ

∂r
, Hφ = −1

r
∂Φ

∂ϕ
, HZ = −∂Φ

∂Z
(3.2)

By denoting the solution in the region outside the borehole by the super-
script ′O′, the asymptotic condition (2.18) becomes:

17



ΦO(r,ϕ, Z)→ −B0

µ0
(r sinγ cosϕ+ Z cosγ) (3.3)

HO
r (r,ϕ, Z)→ B0

µ0
sinγ sinϕ (3.4)

HO
ϕ (r,ϕ, Z)→ −B0

µ0
r sinγ cosϕ (3.5)

HO
z (r,ϕ, Z)→ B0

µ0
cosγ (3.6)

Laplace’s equation (2.15) in cylindrical coordinates takes the form:

∂2Φ

∂r2 +
1
r

∂Φ

∂r
+

1
r2

∂2Φ

∂ϕ2 +
∂2φ

∂Z2 = 0 (3.7)

It can be solved by the standard method of separation of variables. It is
convenient first to split off the z-dependency by searching for solutions of
the from Φ(r,ϕ, z) = Ψ(r, z)Z(z). Inserting this in above eq., finds:

1
H
(

∂2Φ

∂r2 +
1
r

∂Φ

∂r
+

1
r2

∂2Φ

∂ϕ2 ) = −
1
Z

∂2Φ

∂Z2 = −κ2 (3.8)

where κ is a (possibly complex) separation constant. The most general so-
lution of (3.8) is then a linear superposition of such solutions. The solution
of the z-dependent part of (3.8) is simply [27].

Z(z) =

{
CI
κeκz + CI I

κ e−κz, ifκ 6= 0
CI + CI I z, ifκ = 0

(3.9)

where the C’s are integration constants. In the region external to the bore-
hole (O) these solutions for κ 6= 0 lead to asymptotically non-vanishing
fields inconsistent with (3.6) in at least one of the limits z→ ±∞. Thus the
only possible solutions for ΦO are those withκ = 0. Furthermore, since the
field along the borehole is continuous at the interfaces, according to (2.17),
the z− dependency of the potential must be of the form (3.9) also inside the
borehole. Hence all solutions with κ 6= 0 are disallowed throughout space.
We put the equations left side with a general solution of the form

Φ(r,ϕ, z) = ΨI(r,ϕ) + ΨI I(r,ϕ)Z (3.10)

18



where ΨI(r,ϕ) and ΨI I(r,ϕ) partly met the two-dimensional Laplace equa-
tion:

∇2
2Ψκ = (

∂2Ψκ

∂r2 +
1
r

∂Ψκ

∂r
+

1
r2

∂2Ψκ

∂ϕ2 ) = 0 κ = I, II (3.11)

Here∇2
2 is the two-dimensional Laplacian in the XY−plane, therefore ΨI(r,ϕ)

and ΨI I(r,ϕ) are harmonic functions. Because both the above equations are
derived from the Z-axis dependence of the boundary conditions ΦO, they
are correct with any geometry with translation invariance along the Z-axis.
In this thesis we will consider transformation of the magnetic field from
one plane to another . Ferromagnetic materials will not be considered. The
simple models are chosen to represent idealized situations: A semicircle
represents segregated fluids in a horizontal wellbore, while slots represent
shielding by struts or fasteners. The MWD tools are places in the well-
bore eccentrically to represent tools without centralizers, and the tools are
even allowed to touch the wellbore walls in order to model broken shield-
ing. This is done to highlight how undesired situations may influence the
MWD readings. In real situations, the stabilizers will in most cases pre-
vent the tool from direct contact with the wellbore wall [1]. Supposing one
knows the position of the magnetic measurement tool inside the drilling
pipe, and the magnetic properties of the drilling fluid etc., it is possible to
calculate the magnetic shielding by using strong and effective analytical
and numerical techniques to solve the two - dimensional Laplace equation
(3.10).

3.2 The coaxial case

A magnetometer is a measuring instrument used to measure the strength
and the direction of magnetic fields. Normally the magnetometer is placed
inside a narrow non-magnetic air-filled cylinder, which ideally is in a cen-
tralized position in the drill pipe. If we take for granted that the drilling
fluid is magnetically uniform, we can pattern the borehole, as far as mag-
netic properties are concerned, as comprising effectively of three coaxial 3

cylindrical regions:

• an internal circle with radius Ri bordering the measurement tool,
graphic symbol by the I.

• drilling fluid in the intermediate region, graphic symbol by the M.

3Coaxial in geometry means that two or more forms share a common axis; it is the three
dimensional linear analogue of concentric.
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• the external circle with radius R0, to describe the structure surround-
ing the borehole, graphic symbol by the O.

Figure 6: Coaxial Cylinder

The method is readily generalized to any number of coaxial regions.
This gives more detailed and realistic modelling e.g. in order to treat the
zone treatment between the magnetic tool housing and the drill collar, the
drill collar itself, and the zone between the borehole wall individually.
For less complexity it is assumed that the central and outer sections have
equivalent magnetic permeability, µI = µO = µ0 - hence neglecting possi-
ble magnetic properties of the surrounding rock. The permeability of the
drilling fluid in the intermediate region will be denoted by µM = µ. With
these assumptions eqs. (2.16) and (2.17), H(r,ϕ, z) on the two interfaces:

BO
r (Ro,ϕ, z) = µ0HO

r (Ro,ϕ, z) = BM
r (Ro,ϕ, z) = µHM

r (Ro,ϕ, z)(3.12)
BM

r (Ri,ϕ, z) = µHM
r (Ri,ϕ, z) = BI

r (Ri,ϕ, z) = µ0H I
r (Ri,ϕ, z)(3.13)

HO
z (R0,ϕ, z) = HM

z (R0,ϕ, z)(3.14)
HM

z (Ri,ϕ, z) = H I
z(Ri,ϕ, z)(3.15)

HO
φ (R0,ϕ, z) = HM

ϕ (R0,ϕ, z)(3.16)

HM
φ (Ri,ϕ, z) = H I

ϕ(Ri,ϕ, z)(3.17)

By noting that the Laplacian (3.11) and the boundary conditions (3.17) and
(3.3)-(3.6) have well defined properties with the mirror symmetry
ϕ ↔ (−ϕ) that must also to the case for the solutions. So one has the
symmetry relations (in the following, we shall drop the superscripts O, M, I
for formulas valid in all three regions):
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Φ(r,−ϕ, z) = Φ(r,ϕ, z) (3.18)
Hr(r,−ϕ, z) = Hr(r,ϕ, z) (3.19)
Hϕ(r,−ϕ, z) = −Hϕ(r,ϕ, z) (3.20)
Hz(r,−ϕ, z) = Hz(r, , z) (3.21)

Solving the two - dimensional Laplace equation in cylinder coordinates,
eq.(3.11), by the method of separation of variables, H(r,ϕ) = R(r) ·Φ(ϕ).
We using the complex form Φ(ϕ) = ce±imϕ, the real part R(r) = arm +
br−m, we can get the expansion solution

Φ(ϕ) = A cos(mϕ) + B sin(mϕ), where A and B are constants.

Since magnetic potential works on the well periodically, and must have
Φ(ϕ) = Φ(ϕ + 2mπ), where m is an integer, by the method of Fourier
series, is well known [39].

Φ(ϕ) =
∞
∑

m=0
am cos(mϕ) + bm sin(mϕ)

After considering the mirror symmetry, from (3.18), Φ(r,−ϕ, z) = Φ(r,ϕ, z)
⇒ bm = 0.

Φ(ϕ) =
∞
∑

m=0
am cos(mϕ) = a0 +

∞
∑

m=1
am cos(mϕ)

By Euler method to find the solution of R(r), when m = 0 is

R0(r) = a0 + b0 ln(r), here C and D are constants, (3.22)

General real solution:

Φ(ϕ) =
∞
∑

m=0
[amrm cos(mϕ) + bmrm cos(mϕ)

+ cmr−m sin(mϕ) + dmr−m sin(mϕ)] (3.23)

The Laplacian equation (3.11) can be solved by the method of separation
of variables. So the harmonic equations finds (the indices J = (I, M, O)
refer to the three regions):

Ψ
J
I(r,ϕ) = aJ

0 + cJ
0lnr +

∞
∑

m=1
(aJ

mrm +
cJ

m

rm ) cos(mϕ) (3.24)

Ψ
J
I I(r,ϕ) = bJ

0 + dJ
0lnr +

∞
∑

m=1
(bJ

mrm +
dJ

m

rm ) cos(mϕ) (3.25)
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The absence of terms involving sin(mϕ) in these expressions is a conse-
quence of the mirror symmetry (3.18). As a matter of fact eg.3.2 and eq.3.20,
we see that

ΨI I = −HO
Z (3.26)
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Chapter 4

4 Conformal mapping

By previous work [20] it is shown that conformal mapping can be used to
solve the specific tasks in this thesis. The main reason to use complex anal-
ysis is because the solutions has both real part and imaginary parts which
satisfy the Laplacian equation. In physics, the Laplacian equation is the most
important partial differential equation which applies to two and three di-
mensions. The second partial derivative is continuous in a range for exam-
ple in fluid flow, gravity, thermal conductivity and electrical statistics. It
can handle a situation for two dimensions using complex analysis, since it
is known that the imaginary and real part of the analytic function is har-
monic.

4.1 Cauchy-Riemann Equations

A complex equation, z, can be analyzed in an open region, D. (3.24) and
(3.25) are continuous in the borehole. The primary concern is trying to
calculate them with complex analysis. Supposed that

z = x + iy
f(z) = u(x, y) + iν(x, y)(function of a complex number z)

Cauchy - Riemann equations [37] in coordinate systems, we could get a
differentiable pair of functions u and ν, then so

ux = νy =
∂u
∂x

, uy = −νx =
∂u
∂y

.

By polar representation, z = r(cosϕ+ i sinϕ) = r · eiϕ, the equation’s form
becomes:

ur =
1
r
νϕ,

∂u
∂r

=
1
r

∂ν

∂ϕ
, νr = −

1
r

uϕ,
1
r

∂u
∂ϕ

= −∂ν

∂r
.

If u and v satisfy both the Cauchy-Riemann equations and Laplace’s equation
(continuity equations ) in two dimensions:
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∇2u = ux·x + uy·y = 0

∇2ν = νx·x + νy·y = 0
⇒

∂2u
∂x2 +

∂2u
∂y2 =

∂

∂x
(

∂ν

∂y
) +

∂

∂y
(−∂ν

∂x
) = 0

∂2ν

∂x2 +
∂2ν

∂y2 =
∂

∂x
(−∂u

∂y
) +

∂

∂y
(

∂u
∂x

) = 0

The analytical equation f (z) has two harmonic equations (u and ν), here ν
is a harmonic function of u in zone D. Laplace’s Equations: ∇2ψ = 0 is the
most important partial differential equation.

4.2 Möbius Transformation

Complex analysis mathematics can be used when considering the drill string
in an asymmetrical position in the bore hole. By conformal image we can
see equations under the group of Möbius function4, a rational function [37]:

Definition Möbius(or Moebius) transformation

w = f (z) =
az + b
cz + d

where |a|+ |c| > 0, ad 6= bc, here the coefficients a, b, c, d are complex
or real numbers, z ∈ ∀C (all complex numbers), so that w is not a
constant function.

Notice that since

f ′ =
∂ f
∂z

=
dw− b
−cw + a

does not vanish, the Möbius transformation f (z) is conformal at every

point except its pole z = −d
c

. The inverse function z = f−1(w), (that is

f ◦ f−1 ≡ I, I− the identity), can be computed directly:

f−1(w) =
dw− b
−cw + a

4sometimes known as a homographic transformation, or linear fractional transforma-
tion, bilinear transformations, or fractional linear transformations
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Theorem 4.1. (Möbius transformation) A Möbius transformation is
uniquely determined by three points zi, i = 1, 2, 3, zi 6= z j, i, j = 1, 2, 3.

Let zi, and wi, be given, zi 6= z j, wi 6= w j, i. j = 1, 2, 3. We are looking for a
transformation w = f (z) such that

f (zi) = wi (4.1)

Consider the cross-ratio (z, z1, z2, z3) of the points z, zi, i = 1, 2, 3, that is

T(z) = (z, z1, z2, z3) :=
(z− z1)(z2 − z3)

(z− z3)(z2 − z1)
. (4.2)

The function T(z); z ∈ C; zi−fixed maps C in a one-to-one way onto itself.
Notice that the desired transformation (4.1) is given by the composition

(z, z1, z2, z3) = (w, w1, w2, w3).

It remains only to equate w. w = f (z) is the only transformation with (4.1).

Proposition 4.2. Möbius transformations form the group of transformations
C̃→ C̃ generated (under composition) by:

• translations â maps of the form z 7−→ z + k where k ∈ C̃;

• scalings or dilations â maps of the form z 7−→ kz where non-zero
k ∈ C̃ and k 6= 0;

• inversion â the map z 7−→ 1
z . (Note this map is not an actual inver-

sion in the sense of inverting in a circle.)

4.3 Decomposition and elementary properties

A Möbius transformation is equivalent to a sequence of simpler transfor-
mations. Let f be any Möbius transformation. Then

• f1(z) = z + d
c (translation by d

c )

• f2(z) = 1
z (inversion and reflection with respect to the real axis)

• f3(z) = − (ad−bc)
c2 · z (dilation and rotation)

• f4(z) = z + a
c (translation by a

c )
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then these functions can be composed, giving

f4 ◦ f3 ◦ f2 ◦ f1(z) = z = f (w) =
aw + b
cw + d

(4.3)

The inverse Möbius transformation is obviously derived by, that is, define
function g1, g2, g3, g4 so each gi is the inverse of fi. We can get inverse
formula is

g4 ◦ g3 ◦ g2 ◦ g1(z) = w = f−1(z) =
dz− b
−cz + a

(4.4)

Definition We will use the term circline to denote anything which is
a circle or a line in the complex plane.

Proposition 4.3. The Möbius transformations map circlines to circlines.

Example Supposed [21] that z0, w0 ∈ C and r1, r2 > 0 are fixed, and that
we are required to find a Möbius transformation T : C→ C which maps
the disc {z :| z− z0 |< r1 } to the annulus {w :| w− w0 |> r2 } . This can
be achieved by taking T = T4 ◦ T3 ◦ T2 ◦ T1, where

T1(z) = z− z0 and T2(z) =
1
z

and T3(z) = r1r2z and T4(z) = z + w0

We have the picture below
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Note that T1 is a translation which takes the centre of the disc {z :| z− z0 |< r1 } .
Then the inversion T2 turns into an annulus. We now apply a magnification
T3 and then use the translation T4 to position the disc so that its centre is at
w0. It shows that

T(z) =
r1r2

z− z0
+ w0 =

w0z + (r1r2 − w0z0)

z− z0

We first observe that z0 = 0, w0 = 0, T(z) =
r1 r2

z
,

T(0) = ∞
T(∞) = 0
T(r1) = r2

T(r2) = r1

Further, we see that

T(z0) = ∞
T(0) = w0 −

r1r2

z0

T(∞) = w0

As a result of our previous deliberations, we can summarize some proper-
ties of Möbius transformations [32].

Theorem 4.4. Let f be any Möbius transformation. Then

• f can be expressed as the composition of a finite sequence of transla-
tions, magnifications, rotations, and inversions.

• f maps the extended complex plane one-to-one itself.

• f maps the class of circles and lines to itself.

• f is conformal at every point except its pole.

The third property is distinguished as follows. If a line or circle

• passes through the pole(z = −d
c

) of the Möbius transformation, it
gets mapped to an unbounded figure. Hence its image is a straight
line.
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• that avoids the pole is mapped to a circle.

Example The bilinear mapping w = s(z) maps the disk D

under the mapping w = s(z) =
2 + (1− i)z
2 + (1 + i)z

s[−2] = −1, s[−1− i] = 0, s[0] = 1

We try to transfer the original drill pipe in the original plane to the trans-
formed plane, but the outside drill pipe, here we say it is the big circle can-
not change, but the small drill string, the small circle, can be transformed
with a new center. Therefore we can try to show the method which is de-
pendent on the complex analysis.

Theorem 4.5. (Symmetry Principle [37]) Let C2 be a line or circle in the
z−plane, and let = f (z) be any Mòbius transformation. Then two points z1
and z2 are symmetric with respect to Cz if and only if their images 1 = f (z1),
w2 = f (z2) are symmetric with respect to the image of Cz under f .
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Chapter 5

5 Cylindrical coordinate system

Cylindrical coordinates (cylindrical coordinate system) is the extension of
the two-dimensional polar coordinates to the Z-axis which is in a three-
dimensional coordinate system. After we added the third coordinate that
could designed to indicate the height of the point P from the XY-plane.
Three factors: the radial distance, azimuth (or the angular position) and
height (by the International Organization for Standardization (ISO31 −
11)) are labelled in the figure, below,

Definition The three coordinates (ρ,ϕ, z) of a point P are defined as:

• The radial distance ρ is the Euclidean distance from the z axis to the
point P.

• The azimuth ϕ is the angle between the reference direction on the
chosen plane and the line from the origin to the projection of P on the
plane.

• The height z is the signed distance from the chosen plane to the point
P [35].

5.1 Laurent’s Theorem

Definition Let f : D → C be differentiable on the annulus AR
r (z0) =

{z : r <| z− z0 |< R }⊂ D (where r ≥ 0 and R may be ∞). Then f (z) can
be expressed uniquely by

f (z) =
∞
∑
j=0

a j(z− z0)
j +

∞
∑
j=1

b j

(z− z0) j (5.1)
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on AR
r (z0). For any choice of simple closed contour C ⊂ AR

r (z0) with
nC(z0) = 1, the coefficients a j and b j are given by

a j =
1

2π i

∮
C

f (ξ)
(ξ − z0) j+1 dξ for j ≥ 0 (5.2)

and

b j =
1

2π i

∮
C

f (ξ)
(ξ − z0)− j+1 dξ for j ≥ 1 (5.3)

Figure 7: Laurent’s theorem

Figure 7 is satisfying r < r2 <| z |< r1 < R.

Theorem 5.1. (Laurent’s Theorem [13]) Let f (z) be analytic throughout
the closed annular region R bounded by two concentric circles, C1 and C2,
centered at point a and let z be a point in R. Then f (z) can be represented by

f (z) =
∞
∑

k=−∞ ak(z− a)k (5.4)

where ak =
1

2π i
∮
C

f (w)

(w− a)k+1 dw, (k = 0,±1, · · · ) is a constant and

each integral is taken in the counter clockwise direction around any closed
curve C in the annular region that encircles the inner boundary.
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5.2 Complex analysis

In complex form Φ(w) = ΦRe + iΦIm, that ΦO(rw,θ, Z)→ −B0

µ0
(rw sinγ cosθ+

Z cosγ), since ΦO(z) is analytical function, then it should satisfy the Cauchy-

Riemann equations, i
∂ΦRe

∂rw
=

∂ΦIm

∂θ
, we assume

ΦRe = −B0

µ0
(rw sinγ cosθ+ Z cosγ)

∂ΦRe

∂rw
= −B0

µ0
sinγ cosθ

ρ
∂ΦRe

∂rw
=

∂ΦIm

∂θ
Cauchy-Riemann

= −rw
B0

µ0
sinγ cosθ (5.5)

We try to solve this

ΦI =
∫
(−rw

B0

µ0
sinγ cosθ)dθ = −rw

B0

µ0
sinγ sinθ+ g(rw) (5.6)

g(rw) is a function of parameter rw. So we can find that

d(g(rw))

drw
= 0 (5.7)

to

ΦImrw = − 1
rw

ΦReθ Cauchy-Riemann (5.8)

= −rw
B0

µ0
sinγ sinθ+

dg(rw)

drw

ΦIm = −B0

µ0
rw sinγ sinθ (5.9)

Since we have found ΦRe, ΦIm in Φ = ΦRe + iΦIm, we can write the fol-
lowing:

Φ = ΦRe + iΦIm

= −B0

µ0
(rw · sinγ · cosθ+ Z · cosγ) + i(−B0

µ0
· rw · sinγ sinθ)

= −B0

µ0
[rw · sinγ(cos ·θ+ i · sinθ) + Z · cosγ]

= −B0

µ0
(sinγ · rw · eiθ + Z · cosγ)

= −B0

µ0
(sinγ · w + Z · cosγ) (5.10)

We assume that
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ΦO(r,θ, z) = Ψ
J
I(r,θ) + Ψ

J
I I(r,θ) · Z

= −B0

µ0
(sinγ · w + Z · cosγ)

here w = X + iY = rw · eiθ , rw =

√
arctan(

Y
X
), J in areas I, O, M. We see

here the solution of ΨI is real part of Φ, the solution of ΨI I is the imaginary
part of Φ. From equations (3.2), we get in the outside H- field,

HO
r → −B0

µ0
sinγ · eiθ (5.11)

HO
θ → B0

µ0
sinγ · i · eiθ (5.12)

HO
Z → −B0

µ0
cosγ (5.13)

We will now map the "physical" w = X + iY- plane conformally onto an-
other plane, z = x + iy, in such a manner these the inner and outer pipe
walls are mapped onto two concentric circles. This is achieved by the

Möbius transformation. z = r · eiϕ with inner w =
z + s

zs + 1
.

See Figure 8. Under this mapping the center of the outer pipe wall remain
at the circle [20].

For example. In this big circle

w =
az + b
cz + d

, c 6= 0

Here c 6= 0 for linear transformation. Furthermore, there becomes

w =

a
c

z +
b
c

z +
d
c

=
A′z + B′

z + D′

We try to hold the same points on the new plane w(z), it means transform-
ing these points at the center (0, 0), and two limit points (1, 0), (−1, 0) in
Z -plane→ to (s, 0), (1, 0), (−1, 0) in w(z) -plane. We get that the result is

A = D, B = 1. The point (
1
s

, 0) in w(z)-plane,

w(z) =

1
s

z + 1

z +
1
s

=
z + s

zs + 1
(5.14)
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Figure 8: Conformal mapping between two of coordinates.

• if s→ 0, w(z)→ z, then we will get the unchanged mapping.

• if s → 1, w(z) → 1, the mapping in the w(z)− plane must be inside
the big circle. The value is, s < 1.

• So s 6= ±i is singular point.

From Figure 8 we can see the original point (−R, 0) in f (z)-plane to (A, 0)
in w(z)-plane,

w(−R) =
s− R

1− Rs
= A (5.15)

and the original point (R, 0) in f (z)-plane to (B, 0) in w(z)-plane, then,

w(R) =
s + R

1 + Rs
= B (5.16)

the radius ρ to the new small circle is

rw =
B− A

2
=

R(1− s2)

1− (Rs)2 when s→ 0, rw(s→0) = R (5.17)

in the circle ξ with the center is (s, 0) to the new little circle is

ξ =
A + B

2
=

S(1− R2)

1− (Rs)2 when s→ 0,ξs→0 = 0 (5.18)

In this mapping, the point at | w |= ∞ is mapped to z∞ = −1
s

. The
transformed potential

Φ(w) = Φ(w(z)) (5.19)
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is still a solution for the Laplace’s equation ∇2Φ = 0. Furthermore this
transformation also concerns all boundary conditions.

5.3 Mapping

By mapping an analytical function, image angles between curves are pre-
served. An analytical function is differentiable and the derivative is con-
tinuous and can never be zero. We get conformal mapping except in the
critical point where the derivative is zero, f ′(z) = 0. Conformal mapping
is a good tool if we are to solve the boundary problem for the Laplacian
equation. This is because the analytical function comprising two harmonic
functions remains harmonic functions under conformal mapping. An ex-
ample of this is the electrical statistics where the potential can be written
as a function comprising a real and an imaginary part [34]. In a magne-
tostatic system (with no macroscopic currents) having translational sym-
metry along some axis which shall be taken as the Z-axis, takes the form
from (3.10) and the components of the magnetic field strength, H in the
equations (3.2), and then

Hrw = − ∂Φ

∂rw
= −∂ΨI

∂rw
− Z

∂ΨI I

∂rw
(5.20)

Hθ = − 1
rw

∂Φ

∂θ
= − 1

rw

∂ΨI

∂θ
− Z

rw

∂ΨI I

∂θ
(5.21)

HZ = −∂Φ

∂Z
= −HI I (5.22)

If the regions have permeabilities µ0 and µm, the boundary conditions for
the fields at their common boundary are:

BI
⊥ = B‖⊥ ⇐⇒ µ0H′⊥ = µmH′′⊥ (5.23)

H′‖ = H′′‖ (5.24)

H′Z = H′′Z (5.25)

Here the subscripts ⊥ and ‖ denotes the directions in the XY-plane normal
and parallel to the interface, respectively. This means that the angleα j ( j =
1, 2) between the magnetic field strength in the xy-plane and the surface
normal, n, is simply given by:

tanα =
H‖
H⊥

(5.26)

The relation between the direction angles of the magnetic fields at a bound-
ary point is thus, from equations (5.23):

tanα I =
H′‖
H′′⊥

=
H′′‖
µm

µ0
H′′⊥

=
µ0

µm
tanα I I (5.27)
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If one performs a conformal mapping of the xy-plane, regarded as a func-
tion of the complex variable x+ iy, into another complex plane, these bound-
ary conditions remain unchanged, since a conformal mapping conserves
angles. If the field component in the z-direction, HZ, is left unchanged by
the mapping, any solution of the equation ∇2Φ = 0 remains a solution
after the mapping, and with the same boundary conditions as before, as
given in equation (5.23).
There are two regions, both the inner pipe and between two pipes. In the
outside area, from equations (3.2), we get in the outside H- field, z > 1,
z→ ∞, H → ∞.

ΨO
II

z→−
1
s

→ LI I , there LI I = −
B0

µ0
cosγ (5.28)

to compare the solution of the Laplace equations. Now we can try with the
point z0 = 0.

w(z) =
z + s

zs + 1
=

z +
1
s

zs + 1
+

s− 1
s

zs + 1
=

1
s
+

s− 1
s

zs + 1

=
1
s
+

s− 1
s

zs
· 1

1 +
1
zs

since z <
1
s

, we can write
1

1 +
1
zs

in a geometric series [17],

1

1 +
1
zs

=
∞
∑

m=0
(− 1

zs
)m

ΨO
I z→0(W(z)) = LI [

1
s
+

s− 1
s

zs

∞
∑

m=0
(− 1

zs
)m]

= LI ·
1
s
− LI · (s−

1
s
)

∞
∑

m=0
(− 1

zs
)m+1
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there

bO
0 = L1 ·

1
s
= −1

s
· B0

µ0
sinγ

dO
0 ln(z) = 0

dO
m = −LI(s−

1
s
) =

B0

µ0
sinγ(s− 1

s
)

bO
m = 0

This is a result of the asymptotic effect of magnetic field number with neg-
ative potencies, but we transfer the equation with positive potencies, then
we can get a series that is

ΨO
I z→0(z) = LI ·

1
s
− LI · (s−

1
s
)

∞
∑

m=0
(− 1

zs
)m+1 +

∞
∑

m=1
gm · (zs)m

≡ aO
0 + cO

0 · ln(z) +
∞
∑

m=1
(aO

m · zm + cO
m · z−m)

there LI = −B0

µ0
· sinγ

coefficients for the series with positive potencies, we try to find the solution
of ∑

∞
m=1 gm · (zs)m. Both functions ΨO

I
z→−

1
s

(z) = ΨO
I z→0(z) applies for the

area in the figure.

Ψ
J
I I(r,ϕ) = bJ

0 + dJ
0lnz +

∞
∑

m=1
[(bJ

mzm +
dJ

m

zm
) cos(mϕ)]

When ΨO
II z→0 → LI I → 1

From equations we can get potentials, where z = r · eiϕ, z’ is showing in
Figure 7. Earlier it gives H′z = −ΨI I , here we see now ΨO

I (z). Generally in
the area J, applies the equation,

Ψ
J
I(z) = aO

0 + cO
0 ln(z) +

∞
∑

m=1
(aO

mzm + cO
mz−m), z = reiϕ.

Ψ
J
I(z) = aO

0 + cO
0 ln(z) + icO

0 +
∞
∑

m=1
(aO

mrmeimϕ + cO
mr−me−imϕ)
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Expressed in the transformed variable z = x + iy, the problem to be solved
in thus the same as in [2], with the same geometry, except that the boundary
conditions at infinity (3.3) ,

ΨO
I (w)w→∞ → LI · w (5.29)

is placed by

ΨO
I (z)

z→−
1
s

→ LI · w(z) = LI
z + s

zs + 1
(5.30)

This is the series describing the asymptotic behaviour of the magnetic field,
but it also has a contributions nearby well, as shown in this contribution

must also be considered. First of all conditions, w→ ∞, z0 = −1
s

,

w =
z + s

z · s + 1
=

z +
1
s
+ s− 1

s

s(z +
1
s
)

=
1
s
+

1− 1
s2

z +
1
s

→
1− 1

s2

z +
1
s

(5.31)

In region I,

ΨI
I(w) =

∞
∑

m=0
aI

m · zm (5.32)

The sum starts at m = 0 because there are no magnetic poles. Between the
two pipes

ΨM
I (w) =

∞
∑

m=−∞ aM
m zm + am′

0 lnZ m 6= 0 (5.33)

From eq.(3.10),

ΦI(r,ϕ, Z) = ΦM(r,ϕ, Z) (5.34)
⇒

ΨI
I(r,ϕ) + ΨI

I I(r,ϕ)Z = ΨM
I (r,ϕ) + ΨM

II (r,ϕ)Z, for all Z

⇐⇒
ΨI

I(r,ϕ) = ΨM
I (r,ϕ)

ΨI
I I(r,ϕ) = ΨM

II (r,ϕ)
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We find similar in (3.15) and (3.17), and Ψz = HI I ,

Hr = ΨI,M
I,r (r,ϕ) + ΨI,M

II,r (r,ϕ)Z (5.35)

HI,r(r,ϕ) = −∂ΨI

∂r
, HI I,r(r,ϕ) = −

∂ΨI I

∂r
Hϕ = ΨI,M

I,ϕ (r,ϕ) + ΨI,M
II,ϕ(r,ϕ)Z (5.36)

HI,ϕ(r,ϕ) = −1
r

∂ΨI

∂r
, ΨI I,ϕ(r,ϕ) = −

1
r

∂HI I

∂r
µI H I

I,r(r,ϕ) = µMHM
I,r(r,ϕ), µM = µ

µI H I
I I,r(r,ϕ) = µMHM

II,r(r,ϕ), µ I = µ0

H I
I,ϕ = HM

I,ϕ

H I
I I,ϕ = HM

II,ϕ

Inner wall is at | z |= R, yielding the boundary condition (3.2). Here z =
reiϕ = Reiϕ

Hr = −∂Φ

∂r
= −∂Z

∂r
· ∂Φ

∂Z
(5.37)

Hϕ = −1
r
· ∂Φ

∂ϕ
= −1

r
· ∂Z

∂ϕ
· ∂Φ

∂Z
= − i

r
· reiϕ · ∂Φ

∂Z
(5.38)

HZ = −∂Φ

∂Z
= −ΨI I (5.39)

From (3.13), we got that
µMHM

r = µI H I
r (5.40)

And similarly in the area I → I I-region. In the inner area, m > 0. So we
get the new equation,

ΨI
I =

∞
∑

m=0
aI

mZm (5.41)

then we try to find two solutions H I
Z = −∂ΨI

I
∂Z

, and HM
Z = −

∂ΨM
I

∂Z
.

H I
Z = −∂ΨI

I
∂Z

=
∞
∑

m=1
maI

mZm−1 (5.42)

HM
Z = −

∂ΨM
I

∂Z
=

∞
∑

m=1
maM

m Zm−1 (5.43)

Put these two equations in (5.40), Zm−1 = rei(m−1)ϕ. | Z |= R radius of the
inner circle. From (5.33), am=0 = 0.

H I
I,r = −

∞
∑

m=1
maI

meimϕrm−1

HM
I,r = −

∞
∑

m=1
maM

m eimϕrm−1 − aM′
0

1
r
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µI H I
I,r(R,ϕ) = µMHM

I,r(R,ϕ)⇒

−µI

∞
∑

m=1
maI

meimϕRm−1 = −µM

∞
∑

m=−∞ maM
m eimϕRm−1 −µM

aM′
0
R

m 6= 0

• m < 0⇒ aM
m = 0 for m < 0;

• m > 0, µImaI
mRm−1 = µMmaM

m Rm−1 ⇒ aM
m =

µI

µM
aI

m

• m = 0, µM
aM′

0
R

= 0⇒ aM′
0 = 0.

aM′ is a contribution of the magnetic field near the well, and we must also
determine the coefficients by boundary conditions. These coefficients for
the nearby magnetic field must be decided on the basis of boundary condi-
tions. Similarly for HI I ,

H I
I I,r = −∂ΨI

I I
∂r

= −
∞
∑

m=1
mbI

meimϕRm−1

HM
II,r = −

∂ΨM
II

∂r
= −

∞
∑

m=−∞ mbM
m eimϕRm−1 + bM′

0
1
R
+ bM

0

if and only if two equations expressed as Fourier series are the same,

−µI(
∞
∑

m=1
mbI

mRm−1eimϕ + bI
0) = −µM(

∞
∑

m=−∞ mbM
m Rm−1eimϕ + bm′

0
1
R
+ bm

0 )

• m < 0⇒ bM
m = 0.

• m > 0, µ ImbI
mRm−1 = µMmbM

m Rm−1 ⇒ bM
m =

µI

µM
bI

m.

• m = 0, bI
0 = µMbM′

0
1
R

= 0⇒ bM′
0 = 0.

Using the same method from (3.13),

H I
I,ϕ = −1

r
∂ΨI

I
∂ϕ

= − 1
R

∞
∑

m=1
imaI

mRmeimϕ

HM
I,ϕ = −1

r
∂ΨM

I
∂ϕ

= − 1
R
(

∞
∑

m=−∞ imaM
m Rmeimϕ + iaiM′

0 )

H I
I I,ϕ = −1

r
∂ΨI

I I
∂ϕ

= − 1
R
(

∞
∑

m=1
imbI

mRmeimϕ + 0)

HM
II,ϕ = −1

r
∂ΨM

II
∂ϕ

= − 1
R
(

∞
∑

m=−∞ imbM
m Rmeimϕ + ibiM′

0 )
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When two of the Fourier-series are equal, it is if and only if they have the
same coefficients.

∞
∑

m=−∞ Xmeimϕ =
∞
∑

m=−∞ Ymeimϕ

∞
∑

m=−∞(Xm −Ym)eimϕ = 0

∞
∑

m=−∞(Xm −Ym)
∫ 2π

0
ei(m−m′)ϕdϕ = 0

If m 6= m′ →
∫ 2π

0 ei(m−m′)ϕdϕ = 0.

(Xm′ −Ym′) · 2π = 0 ⇔ Xm = Ym

HM
I,ϕ = H I

I,ϕ, And similarly in the area I → I I-region HM
II,ϕ = H I

I I,ϕ ⇒

∞
∑

m=0
maI

meimϕRm =
∞
∑

m=−∞ maM
m eimϕRm

• m < 0⇒ aM
m = bM

m = 0.

• m > 0⇒ aI
m = aM

m , bI
m = bM

m .

• m = 0⇒ aiM′
0 = biM′

0 = 0.

So we can begin with ΨI I ,

ΨI
I I =

∞
∑

m=−∞ bI
mZm + bI′

0 lnZ, m 6= 0 (5.44)

H is a measurable magnetic field , so there is no singularity point. It means
that ΨI

I I(0) has to find a final place (no monopoly),

ΨI
I I(0) = ΨI

z(0) (5.45)

here bI
m = 0, for m < 0. So we get the following,

ΨI
I I(Z) =

∞
∑

m=0
bI

mZm (5.46)

Corresponding equations in the two areas,

ΨM
II (Z) =

∞
∑

m=−∞ bM
m Zm + bM

o + bM′
0 lnZ (5.47)
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H I
Z = Re(ΨI

I I) and HM
Z = Re(ΨM

II (Z)) is physically measurable. ( Z =
Reiϕ, lnZ = lnR + iϕ.)

H I
I I =

∞
∑

m=1
bI

mRmeimϕ + bI
0

HM
II =

∞
∑

m=−∞ bM
m Rmeimϕ + bM

0 + b
′M
0 (lnR + iϕ) (5.48)

Here we can try to use the following method - Fourier-series to find the
coefficients of ieimϕ.∫ 2π

0
ei(m−m′)ϕdϕ =

{
2π , if m = m′

0, if m 6= m′
(5.49)

Two Fourier- series are the same when if and only if coefficients of ieimϕ are
equal. ⇒

for m < 0 : bI
m = 0.

for m > 0 : bI
m = bM

m .

for m = 0 : bM
0 + bM′

0 (lnR + iϕ) = bI
0. Since the left side of the equa-

tion is independent ofϕ⇒ bM′
0 = 0. So bI

0 = bM
0 .

Figure 9: Analytical region in wellbore.

The area is applicable [20]. To show the series solutions about the

point −1
s

is valid. Conformal mapping in to regions, inner region I
and outer region M. ΨI of ΨI I is analytical inside the circles, 0 ≤ z ≤
R and R ≤ z ≤ 1, and along the ranges of them. Between points
e1 and e2 in the red region, indicates where the series solution about
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the point −1
s

can set equal the series solution in region M. From the

above figure, we try to find θ′, θ′ in a isosceles triangle, so

sin
θ′

2
=

1/2
1/s

=
s
2

, 0 ≤ s ≤ 1.

Solution to θ′(s → 1) = π/3 ⇒ in the circle with | z |≤ 1 forϕ(s →
1) = 2θ′.

• In the inner region, I, 0 ≤ z ≤ R.

• In the outer region, M, R ≤ z ≤ 1.

The below equations are valid in the striped area (Analysis area in
Figure 5.3).

ΨO
I z→−1/s(z) = ΨO

I z→0(z)

From (3.16), HO
Z = HM

Z we got

HO
II(z = reiϕ) = HM

II (z = reiϕ), r = 1. (5.50)

Series expansion in the point z0 = 0 and z→ −1/s is valid for HI . As
binomial-series, on the point z0 = −1/s,

(z +
1
s
)m =

∞
∑
k=0

zk
(

m
k

)
(

1
s
)m−k = sk

m

∑
k=0

(
m
k

)
eikϕs−m

∞
∑

m=0
Xm

m

∑
k=0

Ym,k =
∞
∑
k=0

m

∑
m=k

XmYk
m (5.51)

By choosing the coefficients in the boundary conditions we should
find the solutions,

∞
∑

m=0
dO

m(z +
1
s
)m =

∞
∑
k=0

m

∑
k=m

dO
m

(
m
k

)
eikϕsk−m

(5.52)

After ∑
∞
m=0 dO

m(eiϕ+
1
s
)m = ∑

∞
m=0 bM

m eimϕ, we assumed that n = m− k,

bM
k =

∞
∑

n=0
dO

k+n

(
n + k

k

)
1
sn (5.53)
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Theorem 5.2 (Maximum Modulus Principle). If f is analytic in a do-
main D and | f (z) | achieves its maximum value at a point z0 in D, then f
is constant in D.

We knew already ΨO
II = HZ,

HO
Z =

∞
∑

m=0
dm(z +

1
s
)m (5.54)

Since the magnetic field inevitably will fade away between two drilling
pipes so by Maximum Modulus Principle, function (5.54) is analytical
(possibly by analytical continuation) for all | z |> 1. HZ is constant
which we already know HI I = HO

Z . Then the resulting solution is in
two parts⇒

• for m > 0⇒ dm = 0,

• or rest part is (5.53), dm = ∑
∞
n=0 dO

k+n(
n+k

k )
1
sn

get further, in the I−area, and (5.32), Z = reiϕ,

HO,M
r = −∂Φ

∂r
= ΨI,r + ΨI I,rZ = −(∂ΨI

∂r
+ Z

∂ΨI I

∂r
)

HO,M
ϕ = −1

r
∂Φ

∂ϕ
= ΨI,ϕ + ΨI I,ϕZ = −1

r
(

∂ΨI

∂ϕ
+ Z

∂ΨI I

∂ϕ
)

HO
I,ϕ = −1

r
∂ΨI

∂ϕ
= −1

r
∂Z
∂ϕ

∂ΨI

∂Z
= −1

r
rieiϕ ∂ΨI

∂Z

= −ieiϕ ∂ΨI

∂Z
(5.55)

HO
I,r = −∂ΨI

∂r
= −∂Z

∂r
∂ΨI

∂Z
= −eiϕ ∂ΨI

∂Z

we can find that

∂ΨI

∂Z
=

∞
∑

m=1
maM

m rm−1eimϕ (5.56)

put r = 1 and 5.56 in the equations 5.55 and 5.56, we got

HM
I,r = −

∞
∑

m=1
maM

m eimϕ (5.57)

HM
I,ϕ = −i

∞
∑

m=1
maM

m eimϕ (5.58)
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Here we can obviously see that HM
I,r is the real part and HM

I,ϕ is the
imaginary part of the solutions. From earlier z→ 1/s in (5.29),

ΨO
I =

∞
∑

m=0
cO

m(z +
1
s
)m

= cO
0 + cO

1 (z +
1
s
) +

∞
∑

m=2
cO

m(z +
1
s
)m (5.59)

The reason that the magnetic field impossibly can be infinitely large
is because it has to end somewhere. So the last subsection in the func-
tion must to be zero.

∞
∑

m=2
cO

m(z +
1
s
)m = 0 (5.60)

and at the same time cO
0 = 0. From (3.12) and z = reiϕ, r = 1

µ0HO
I,r = µmHM

I,r

µ0cO
1 eiϕ = µm

∞
∑

m=1
maM

m eimϕ, aM
m = 0 f or m ≥ 2. (5.61)

=⇒

µ0cO
1 = µmaM

1

µ0cO
0 = µIcI

0 = µmcM
0

From (5.3)⇒ µ0cO
1 = µ1aI

1

In additional of (5.35), HO
II = ∑

∞
m=0 bI

mzm, HM
II = ∑

∞
m=−∞ dm(z+

1
s
)mzm

µMHM
II,r = µOHO

II,r (5.62)

µMHM
II,r = −µm

∞
∑

m=−∞ bM
m mrm−1eimϕ − bM

0 − bM′
0

1
R

(5.63)

µOHO
II,r = −µO

∞
∑

m=−∞ dO
mm(z +

1
s
)m−1rm−1eimϕ (5.64)

Following the conditions (3.12), and together with (3.13) =⇒

• m = 0⇒ bM
0 + bM′

0
1
R

= 0

• m = 1⇒ µmbM
1 = µ0dO

1

• m ≥ 2⇒ bM
m = 0
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And (5.3) this leads to:

HO
ϕ = HO

I,ϕ + HO
II,ϕZ (5.65)

HO
ϕ = − i

R

∞
∑

m=−∞ maO
mRmeimϕ − aiO′

0
i
R
− Zi

R

∞
∑

m=−∞ mbO
mRmeimϕ − Zi

R
bO′

0

HM
ϕ = HM

I,ϕ + HM
II,ϕZ (5.66)

HM
ϕ = − i

R

∞
∑

m=0
mcM

m (z +
1
s
)m−1eiϕ − Zi

R

∞,m 6=0

∑
m=−∞ mdM

m r(z +
1
s
)m−1eiϕ

HO
I,ϕ = HM

I,ϕ (5.67)

HO
II,ϕ = HM

II,ϕ (5.68)

=⇒

• m < 0⇒ aO
m = 0,

• For m = 0⇒ aO
0 = cO

0 = aO′
0 = bO′

0 = 0,

• m = 1⇒ cM
1 = aO

1 , bO
1 = dM

1 ,

• For m ≥ 2⇒ cM
m = aO

m = 0 and bO
m = dM

m = 0.

The same as µoHO
r = µmHM

r = µI H I
,r in the area I I and I,

µ0d1 = µmbM
1 = µIbI

1 (5.69)

then according HO
I,ϕ = HM

I,ϕ = H I
I,ϕ when r = 1,

ic1eiϕ = i
∞
∑

m=0
aO

mmeimϕ (5.70)

as the similar requirement as (5.61), HI,ϕ ⇒

ic1eiϕ = iaO
1 eimϕ ⇒ c1 = aO

1 when m = 1 (5.71)

Kind of relative to HI I,ϕ ⇒

d1rieiϕ = ibO
1 eiϕ ⇒ d1 = bO

1 when m = 1 (5.72)

also HI,z and HI I,z is that we trying to find out, with (5.56),

HI,I I,z = −
∂ΨI,I I

∂z

dM
1 = aO

1 (5.73)

dO
1 = bM′

0 + bI
1 (5.74)
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In inner area I,

H = HI + HI I Z (5.75)

Hi
I =

∞
∑

m=−∞ ai
mZm + a′ilnZ (5.76)

Hi
I I =

∞
∑

m=−∞ bi
mZm + b′ilnZ (5.77)

Hi
r = Hi

I,r + Hi
I I,rZ (5.78)

Hi
ϕ = Hi

I,ϕ + Hi
I I,ϕZ (5.79)

in outer area I I, HI I = −HZ, will not change in Z− axis, HZ,inner =

HZ,outer on both surfaces, (5.13) HZ = −B0

µ0
cosγ,

H = HI − Hz · Z (5.80)

Hz does not contain r,ϕ⇒,

HI I,r = HI I,ϕ = 0 b′m = 0(m 6= 0) (5.81)

On the basis of these factors we can discuss this problem in area I,

Hi
r = −∂Hi

I
∂r

= −eiϕHi′
I

= −
∞
∑

m=1
ai

mmrm−1eimϕ − a
′i 1

r
(5.82)

Hi
ϕ = −1

r
∂Hi

I
∂ϕ

= −Z
i
r

Hi′
I = iHi

r (5.83)

i = I, M, O. (5.84)

aI
m = 0 for m < 0, a′I = 0, aI

0 is irrelevant.

H I
r = −

∞
∑

m=1
maI

mrm−1eimϕ (5.85)

HM
r = −

∞
∑

m 6=0
maM

m rm−1eimϕ − a′M

r
(5.86)

Here if

Hr = A + iB
iHr = iA− B A, B is real number. (5.87)

Boundary demands gives the following
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µ0Re[HO
r (Ri,ϕ, z)] = µRe[HM

r (Ri,ϕ, z)] (5.88)

We considered Re indicating the real part of the H− field,
if Ri = 1 in considered physics. Boundary demands will be satisfied
from symmetry, and lead to

Re[Hr(r,−ϕ, z)] = Re[Hr(r,ϕ, z)] (5.89)

according to (3.19), Hr(r,−ϕ)− Hr(r,ϕ) = 0.

Re
∞
∑

m=1
mrm−1aI

m(e
imϕ − e−imϕ) = Re

∞
∑

m=1
mrm−1aI

m2i sin(mϕ) = 0

⇒ aI
m = aI∗

m is real number

we can check withϕ component,

ReHϕ(r,−ϕ) = −ReHϕ(r,ϕ)
−ImH I

r (r,−ϕ) = ImH I
r (r,ϕ)

Im
∞
∑

m=1
mrm−1aI

m(−e−imϕ − e−imϕ) = Im
∞
∑

m=1
mrm−1aI

m2 cos(mϕ) = 0

It means

H I
r + H I

ϕ = Re
∞
∑

m=1
maI

mrm−1eimϕ − Im
∞
∑

m=1
maI

mrm−1eimϕ

⇒ aI
m = aI∗

m (5.90)

From (3.20) HM
ϕ (r,ϕ)− HM

ϕ (r,−ϕ) = 0,

Re
∞
∑

m=−∞ mrm−1aI
m(e

imϕ − e−imϕ) = Re
∞
∑

m=1
mrm−1aM

m 2i sin(mϕ) = 0

Re
∞
∑

m=1
[aM

m rm−1 +
aM
−m

rm+1 ]2i sin(mϕ) = 0

⇒ aM
m rm−1 +

aM
−m

rm+1 is real number for ∀r ∈ [RI , R0]
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Here aM
m and aM

−m is real number. then

Im{HM
ϕ (r,−ϕ) + HM

ϕ (r,ϕ)} = 0

Im
∞
∑

m=1
m(aM

m rm−1 − aM
−m

rm+1 )2 cos(mϕ) + 2Im
a′m

r
= 0

if and only ifa′M = a′M∗ (5.91)

Solving the equations for m = 1, all coefficients with m ≥ 2 vanishes.

⇒ Im ∑
∞
m=1(aM

1 −
aM
−1

r2 )2cos(2ϕ) = 0, and Im
a′M

r
= 0. In the inner

pipe with radius with RI ,

H I
r = −

∞
∑

m=1
mrm−1aI

m cos(mϕ)

HM
r = −

∞
∑

m=1
m(aM

m rm−1 − aM
−m

rm+1 ) cos(mϕ)−m
a′M

r
, a′M = 0

Following (3.13), µI H I
r = µmHM

r , r = Ri = R inner, got we

mµI Rm−1
I aI

m = mµM(aM
m Rm−1

i − aM
−m

Rm+1
i

)

aI
m =

µm

µI
(aM

m −
aM
−m

R2m
i

) (5.92)

use the same way,

H I
ϕ =

∞
∑

m=1
mrm−1aI

m sin(mϕ)

HM
ϕ =

∞
∑

m=1
m(aM

m rm−1 +
aM
−m

rm+1 ) sin(mϕ)

Following (3.13), H I
ϕ = HM

ϕ , r = Ri = R inner , we got

aI
m = aM

m +
aM
−m

R2m
i

(5.93)

when m ≥ 1,

aM
m =

aI
m
2
(1 +

µI

µm
) (5.94)

aM
−m =

aI
m
2
(1− µI

µm
)R2m

I (5.95)

In O−area,

HO
r =

∞
∑

m=1
maO
−m

1
rm+1 eimϕ − aO

1 eiϕ
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HO
r (r,−ϕ) = HO

r (r,ϕ)⇒ aO
−m is real number

aO
1 = −B0

µ0
sinγ = aO∗

1 (5.96)

when m = 1,

H j
r = (a j

1 −
a j
−1

r2 ) sinϕ+
∞
∑

m=2
ma j
−m

1
rm+1 sin(mϕ)

H j
ϕ = (a j

1 +
a j
−1

r2 ) sinϕ+
∞
∑

m=2
ma j
−m

1
rm+1 sin(mϕ)

µ0HO
r = µmHM

r , when r = Ro = R outer, when m = 1,

µ0(aO
1 −

aO
−1

R2
0
) = µM(aM

1 −
aM
−1

R2
0
) (5.97)

we know already that HO
ϕ = HM

ϕ ,

aO
1 +

aO
−1

R2
0

= aM
1 +

aM
−1

R2
0

(5.98)

when m ≥ 2,

µ0
aO
−m

Rm+1
0

= µm(−aM
m Rm−1

0 +
aM
−m

Rm+1
0

)

aO
−m

Rm+1
0

= aM
m Rm−1

0 +
aM
−m

Rm+1
0

For the present purpose we are mostly interested in the magnetic field
inside the inner cylinder, where the magnetometers are located. Go-
ing back to Cartesian coordinates and the B− field, which is what is
actually being measured, by help of Maple to find the solution BI

x.
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Magnetic field B_x in horizontal when z->0 in Maple. 
>  

>  

 

ri=μm/μI=μ/μ0 =μr = 1+χ; 

>  

 

>  

 

>  

 

ro=μO/μm=μO/μ=1/(1+χ); 

>  

 

>   



>  

 

>  
 

>  
 

>  

 

>  

>  

 



Magnetic field B_y in horizontal when a->0 in Maple 
>  

>  

 

ri=μm/μI=μ/μ0 =μr = 1+χ; 

>  

 

>  

 

>  

 

ro=μO/μm=μO/μ=1/(1+χ); 

>  

 

>  
 

>  
 

>  
 

>  

 

>  
 

>  
>  

 

 



We finally have:

ΦI = −B0

µ0
(z cosγ +

4χ(1 + χ) sinγ

(2 + χ)2 − (
Ri

Ro
)2χ2

) (5.99)

BI
x = −µ0

∂ΦI

∂x
=

4B0(1 + χ) sinγ

(2 + χ)2 − (
Ri

Ro
)2χ2

(5.100)

BI
y = −µ0

∂ΦI

∂y
= 0 (5.101)

BI
z = −µ0

∂ΦI

∂z
= B0 cosγ (5.102)

From this it is showed that the magnetic field strength along the bore-
hole, Z-axis, is not influenced at all by the magnetic shielding [33],and
neither is By. However, the field transverse to the borehole axis is
damped by a factor [28].

D =
BI

x
BO

x (∞)
=

4(1 + χ)

(2 + χ)2 − (
Ri

R0
)2χ2

= 1− 1
4
[(1− Ri

R0
)2](χ2 − χ3) + O(χ4) (5.103)

This equation is the main result of this section.

5.4 Numerical in the second boundary

When the drilling pipe moves from the centre (0, 0) to (s, 0), we as-
sume that the magnetic field should be ending on the second bound-

ary z→ −1
s

,

ΨO
O =

∞
∑

m=−1
cO

m(
1
z
+ s)m

HO
r = Re− eiϕ

∞
∑

m=1
mcO

m(
1
z
+ s)m−1(− 1

z2 )
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• m > 1 : (Z +
1
s
)m|

Z→−
1
s

→ 0. Validity condition.

• m = 1 : HO
r → aO

1
eiϕ

z2 when z → −1
s
→ s2eiϕaO

1 The solution
shows that is constant, not depend on the radius or angles.

• m = 0 : HO
r = 0.

• m = −1 :
eiϕ

z2 aO
−1(

1
z
+ s)−2 =

−eiϕaO
1

(1 + zs)2 , there is a singular point:

z = −1
s

Then we could use the function

ΦO
0 =

−∞
∑

m=−1
aO
−m(

1
z
+ s)−m =

∞
∑

m=1
aO

m(
1
z
+ s)m

The magnetic field will disappear in some place when Z→ −1
s

, with
the same method that

HO
r = Re(−eiϕ

∞
∑
m

maO
m(

1
z
+ s)m−1)

ı.e.

HO
r = Re(−e−iϕ

∞
∑

m=1
maO

m(
1
z
+ s)m−1)||Z|=1

= Re(−e−iϕ
∞
∑

m=1
maO

m(
1

eiϕ + s)m−1)||Z|=1

suppose m = n + 1

HO
r = Re(eiϕ

∞
∑

n=0
(n + 1)aO

n+1

n

∑
k=0

(
n
k

)
e−ikϕsn−k)

=
∞
∑

n=0
(n + 1)aO

n+1

n

∑
k=0

(
n
k

)
(cos(k + 1)ϕ)sn−k (5.104)

The reason of this thesis ending here is because of the parameter
in 5.104 that shows that we should use numerical methods to solve
5.104. The most useful information of this equation is that there is a
chance to use mathematical methods to find out the relationship be-
tween magnetic field in drilling pipe and effects of differences condi-
tions. In geophysical logging, the measured parameters generally in-
clude Earth’s magnetic field, the magnetic susceptibility of the drilling
fluid material, and the angles between the force vectors that can be
measured.
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Chapter 6

6 Conclusion

In practice, it can be some uncertainty in the asymptotic condition
for the magnetic field inside the wellbore and near wellbore. The
steel drill pipe containing the magnetic sensors is of a non-magnetic
material, but can get magnetic properties by friction from solids/par-
ticles in the drilling mud. If the section of the magnetic sensors are
too short, this can in addition to magnetic field caused by mud, get a
field from above also gives a contribution to influence the magnetic
sensors [2].
For the simplest case in this thesis the first assumption is that there is
no electrical flow in any regions of the borehole ( j = 0), mentioned
in Chapter 2. We have learned the definition of the auxiliary magnetic
field H and try to find the method of solution in drilling pipe. It is only
the Earth’s magnetic field which induces magnetism in the borehole.
Since the technology improves, the components in the wells get more
developed ("intelligent wells") and this leads to increased electronics.
Hydraulic steering vs. electrically controlled components in the well
must be considered, as this may affect the magnetic measurements in
the well (you get a field in additional to that induced by Earth’s mag-
netic field). It is assumed that the drilling fluid does not change in
its magnetic characteristics, but in practice this is not the case. After
a certain period of time steel will wear away from the drill pipe and
therefore steel particles will be included in the drilling mud and this
will increase their magnetic properties (susceptibility increases). To
make the drilling mud as little magnetic as possible, procedures must
be implemented to replace and clean the drilling mud as often as pos-
sible. Drilling mud viscosity is also a factor to be taken into account,
where there has been made a study on that low viscosity mud gives
a maximum erosion rate (cuttings), and therefore the quicker more
magnetic due to increasing wear on the drill pipe [2]. After Maxwell’s
equations, and through a series of definitions and theorem of mag-
netism the results showed a clear trend: The magnitude of magnetic
susceptibility, and thereby potential distorted magnetic azimuth, is
correlated with the magnetic contamination of the drilling fluid [1].
As mentioned in the introduction of the thesis, there are many fac-
tors that can affect the magnetic field in a well. Shielding of magnetic
fields in the case where the string is centric in annulus has shown that
this contribution has been too small to describe the maximum devia-
tion observed from the Earth’s magnetic field in MWD [1]. Therefore,
we here considered an asymmetric situation as a source of the greatest
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deviation in magnetic measurements in MWD. The results forming
the task is given by the transformation in Figure 8. The thesis has
shown, in Chapter 3, that in order to calculate the shielding of the
magnetic field inside a drill pipe, we find that the ideal test form is
are perfect cylinder with the circular cross section(the second assump-
tion), and filled with drilling fluid of known susceptibility. The inner
drilling pipe’s activity is only allowed within an outer circle. The
third assumption is show in Figure 8 representing a cross-section of
the drilling pipes that the starting point is the centre point for both
pipes. For a long straight well the magnetic fields along the well are
not influenced by magnetic materials inside the wellbore.Fourth, after
the correlation between the radius of Earth and the depth of the well,
there is a general presumption that we can ignore the depth of the
drilling hole on the vertical axis.
It has been shown that it is possible to use complex mathematics to
formulate boundary conditions to the magnetic field in a well when
the drill string is in a asymmetrical annulus [1]. In this thesis, Chap-
ter 4, through the Cauchy- Riemann equations and Möbius transforma-
tion it is therefore sufficient to solve two two-dimensional Laplacian
equations with well defined boundary conditions (2.16), (2.17) and
(3.3)-(3.6), only to consider the transverse magnetic field and is given
explicitly by equation (5.103) in a plane, taken to be the xy-plane, per-
pendicular to the well axis. The magnetic sensors are on the axis of
the borehole, the shielding of the transverse factor is quadratic in the
susceptibility of the drilling fluid.
Combining complex analysis and conformal mapping presented in
Chapter 5, we could like to show how these main methods can be
used to solve the case in this thesis. As a lucky result, the solution of
magnetic field in the drilling fluid has been found in the singularity
point z → 0. The solution is 5.99-5.102 proved that magnetic shield-
ing is changed on the vertical X-axis, while is on the horizontal Z-axis
is constant when the Earth’s magnetic field is not changing, and for
the Y-axis it is zero. Amundsen et al. [41] [42] have shown that a
magnetic sensor placed at the centre of a cylindrical wellbore filled
with a fluid magnetic susceptibility in SU units, χ, will be reduced
by a factor of (1 − 1/4χ2) plus higher order terms. With the fields
off centre in a cylindrical wellbore this can be calculated analytically
using conformal mapping. For more complex geometries one must
resort to numerical modeling. We see from (5.103) that since in real-
istic cases Ri << Ro, the magnetic shielding is not very sensitive to
the geometry of the situation, at least not as long as the magnetome-
ters are positioned on the cylinder axis. With enough iron residues in
the drilling fluid, the susceptibility χ may exceed valued of 0.1 [43],
which is significant for the accuracy of magnetic surveys.
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Unfortunately, we did not found out the magnetic shielding on z →
−1/s. One should here instead resort to numerical analysis methods.
Numerical models have also been made of more realistic geometries
like collar and probe based tools, where the shielding material is dis-
tributed in a more complicated manner.
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