
 

 

 

 
 

Faculty of Science and Technology 
 

MASTER’S THESIS 
 

Study program/ Specialization: 
 
Master of Science in Biological Chemistry 

 
Spring semester, 2013 

 
 

Open  
 

Writer:  
Kristin Reine 

 
………………………………………… 

(Writer’s signature) 
Faculty supervisor: Peter Ruoff 
 
External supervisor(s): Kjersti Tjensvoll and Oddmund Nordgård 
 
 
Title of thesis:  
 
Circulating and disseminated tumour cells as potential biomarkers for treatment response and 
disease progression in patients with locally advanced and/or metastatic pancreatic cancer  
 
 
Credits (ECTS): 60 
 
Key words: 
Pancreatic cancer 
Circulating tumour cells 
Disseminated tumour cells 
mRNA marker 
Enrichment method 
Detection technique 
RT-qPCR 
 

 
         Pages: 73 
     
     + enclosure: 0 

 
 

         Stavanger, 13.06.2013 



 

 

 
 

Circulating and disseminated tumour cells as potential 
biomarkers for treatment response and disease progression 
in patients with locally advanced and/or metastatic 
pancreatic cancer  

Kristin Reine 
Master of Science in Biological Chemistry 
Faculty of Science and Technology 
University of Stavanger 
 

Master’s thesis 
June 2013 



 

 I 

Abstract 
 
Introduction: Pancreatic cancer is the fourth most common cause of cancer related deaths in 

the Western countries. The poor prognosis of pancreatic cancer patients is often associated 

with early dissemination of the disease, late detection due to unspecific symptoms and 

chemotherapy resistance. There are two ways for tumour cells to enter the blood circulation, 

either by passive shedding of tumour cells from the primary tumour or by an active process 

called epithelial-to-mesenchymal transition (EMT). Circulating tumour cells (CTCs) that are 

resident in the bone marrow (BM) are called disseminated tumour cells (DTCs).  

 

Around 85% of pancreatic cancers harbour point mutations in the KRAS gene, and these 

mutations represent highly tumour-specific traits that might be applied as surrogate markers 

for tumour cell detection. Hence, we wanted to use both KRAS mutations and four mRNAs as 

surrogate markers for CTC/DTC detection in blood (PB) and BM from patients with locally 

advanced and/or metastatic pancreatic cancer before and during chemotherapy.  

 

Patients and methods: Six metastatic pancreatic cancer patients were included in the study 

and samples from nine healthy individuals constituted the control group. In the first part of the 

study we compared different strategies for enrichment of CTCs/DTCs, a manually prepared 

and a commercially RBC lysis buffer versus the LymphoprepTM protocol. A sensitivity 

analysis was performed to determine the detection limit of each mRNA marker with regard to 

the lowest amount of tumour cells detectable with RT-qPCR. The four mRNAs were also 

evaluated in six pancreatic tumour samples. Following tumour cell enrichment by 

Lymphoprep, CTCs and DTCs were detected indirectly using the epithelial-specific surrogate 

mRNAs CK8, CK19, EpCAM and CEACAM5, as well as KRAS mutations by real-time PCR.  

 

Results: All the mRNA markers were highly expressed in the six pancreatic tumour samples 

compared to PB and BM samples from nine healthy individuals emphasizing their use as 

surrogate markers for CTC/DTC detection. Furthermore, our preliminary data show that we 

detect CTCs and DTCs in PB and BM samples obtained before treatment in 5/6 and 5/5 

patients, respectively. Repeated blood sampling from three patients and BM samples from one 

patient, also confirmed the presence of CTCs and DTCs after initiation of the treatment. 

KRAS mutations were detected in CTCs and DTCs from 1/6 patients. 



 

 II 

Conclusion: We detect CTCs and DTCs in PB and BM samples obtained both before and 

during gemcitabine treatment of metastatic pancreatic cancer patients with mRNA 

quantification and KRAS mutation detection by real-time PCR. However, inclusion of more 

patients is required to conclude on the clinical value of these data.  

 



 

 III 

Acknowledgements 
 

This thesis was carried out at the Department of Haematology and Oncology, Laboratory for 

Molecular Biology, Stavanger University Hospital, related to my Master of Science in 

Biological Chemistry at the University of Stavanger. 

 

First and foremost, I would like to thank my supervisor, Kjersti Tjensvoll (PhD), whose 

patience and enthusiasm, as well as positive and constructive advice, have been of unique 

help and support. I am very grateful for the given opportunity to participate in this research 

project. I would also like to thank my co-supervisor Oddmund Nordgård (PhD) for a positive 

and solution oriented participation in my thesis. I thank everyone in the research group and 

others at the laboratory for Molecular Biology for their good reception and support. I would 

also like to thank Satu Oltedal (PhD) for all the help and training in relation to KRAS mutation 

analysis by the PNA clamp method and the Agilent 2100 Bioanalyzer. I thank Rune Småland 

(leader of the research group and oncologist at Stavanger University Hospital) for giving me 

the opportunity to perform this thesis at his research group and for professional discussions 

and interest in my thesis. Also a thanks to my co-supervisor at the University of Stavanger, 

professor Peter Ruoff for helping me arrange this master’s thesis at Stavanger University 

Hospital. 

 

 

 

 

Kristin Reine 

 

 

 
      



 

 IV 

 
Table of contents 
 
ABSTRACT ............................................................................................................................................ I 
ACKNOWLEDGEMENTS ................................................................................................................ III 
ABBREVIATIONS .............................................................................................................................. VI 
1 INTRODUCTION ........................................................................................................................... 1 

1.1 PANCREATIC CANCER ................................................................................................................. 1 
1.1.1 Symptoms ............................................................................................................................. 1 
1.1.2 Diagnosis ............................................................................................................................. 1 
1.1.3 Disease staging .................................................................................................................... 2 
1.1.4 Pancreatic cancer treatment ............................................................................................... 3 
1.1.5 Survival ................................................................................................................................ 3 
1.1.6 Risk factors .......................................................................................................................... 3 
1.1.7 KRAS mutations ................................................................................................................... 4 

1.2 CIRCULATING TUMOUR CELLS (CTCS) AND DISSEMINATED TUMOUR CELLS (DTCS) .............. 4 
1.2.1 Dissemination of tumour cells from the primary tumour into blood and bone marrow ..... 4 
1.2.2 Genetic heterogeneity of circulating and disseminated tumour cells ................................. 7 

1.3 METHODS FOR ENRICHMENT OF CTCS AND DTCS .................................................................... 7 
1.4 METHODS FOR DETECTION OF CTCS AND DTCS ....................................................................... 8 
1.5 CLINICAL IMPLICATIONS OF TUMOUR CELL DETECTION IN PB AND BM OF PANCREATIC 
CANCER PATIENTS ................................................................................................................................ 9 

1.5.1 Evidence of clinical relevance of CTC detection in pancreatic cancer patients ............... 10 
1.5.2 Evidence of clinical relevance of DTC detection in pancreatic cancer patients .............. 12 

1.6 AIMS OF THE STUDY ................................................................................................................. 13 
2 MATERIALS ................................................................................................................................. 14 

2.1 SAMPLES ................................................................................................................................... 14 
2.2 CELL CULTURE .......................................................................................................................... 16 
2.3 BUFFERS AND SOLUTIONS ......................................................................................................... 16 
2.4 REAGENTS ................................................................................................................................. 18 
2.5 GROWTH MEDIA FOR TUMOUR CELL LINE CULTURING ............................................................ 19 
2.6 KITS .......................................................................................................................................... 19 
2.7 PRIMERS AND PROBES FOR RT-QPCR AND THE PNA CLAMP ASSAY ....................................... 20 

3 METHODS ..................................................................................................................................... 21 
3.1 ENRICHMENT OF CTCS AND DTCS .......................................................................................... 21 

3.1.1 Enrichment of CTCs by RBC Lysis Buffer ......................................................................... 21 
3.1.2 CTC and DTC enrichment by density centrifugation ........................................................ 22 
3.1.3 Determination of the cell concentration by the use of a light microscope ........................ 23 

3.2 ISOLATION OF DNA/RNA AND PROTEIN .................................................................................. 25 
3.2.1 AllPrep® DNA/RNA/Protein Mini Kit ............................................................................... 25 
3.2.2 QIAamp® RNA Blood Mini Kit .......................................................................................... 28 
3.2.3 Isolation of DNA and RNA from tumour samples ............................................................. 29 

3.3 CONCENTRATION MEASUREMENTS ON NANODROP 2000C SPECTROPHOTOMETER ................ 30 
3.4 DNA AND RNA QUALITY ASSURANCE BY THE USE OF BIOANALYZER 2100 ........................... 30 
3.5 DNASE TREATMENT AND REVERSE TRANSCRIPTION ................................................................ 32 
3.6 QUANTITATIVE REAL-TIME PCR .............................................................................................. 34 

3.6.1 Calculation of the relative mRNA expression level ........................................................... 37 
3.6.2 Sensitivity analysis ............................................................................................................. 38 

3.7 GEL ELECTROPHORESIS (3% AGAROSE) ................................................................................... 38 
3.8 PEPTIDE NUCLEIC ACID CLAMP PCR ASSAY FOR KRAS MUTATIONS ...................................... 39 
3.9 CULTURING OF PANCREATIC CANCER CELLS ........................................................................... 41 



 

 V 

3.9.1 Culturing of AsPC-1 cells .................................................................................................. 41 
3.9.2 Subculturing of cells .......................................................................................................... 42 

4 RESULTS ....................................................................................................................................... 43 
4.1 AN OVERVIEW OF THE METHODOLOGICAL APPROACH ............................................................. 43 
4.2 OPTIMIZATION OF METHODS FOR ENRICHMENT OF CTCS AND DTCS ..................................... 45 
4.3 DETERMINATION OF THE SENSITIVITY FOR CK8, CK19, EPCAM AND CEACAM5 MRNA 
ASSAYS ............................................................................................................................................... 46 
4.4 RELATIVE EXPRESSION OF CK8, CK19, EPCAM AND CEACAM5 MRNA IN PB AND BM 
SAMPLES FROM HEALTHY INDIVIDUALS ............................................................................................. 47 
4.5 EVALUATION OF THE MRNA LEVELS IN TUMOUR SAMPLES FROM PANCREATIC CANCER 
PATIENTS ............................................................................................................................................ 48 
4.6 RNA QUALITY .......................................................................................................................... 50 
4.7 DETECTION OF CTCS AND DTCS BEFORE INITIATION OF GEMCITABINE TREATMENT ............ 50 
4.8 DETECTION OF CTCS AND DTCS AFTER TREATMENT START .................................................. 51 
4.9 COMPARISON OF THE MRNA MARKER LEVELS IN PB AND BM SAMPLES DRAWN BEFORE AND 
DURING TREATMENT WITH GEMCITABINE .......................................................................................... 52 
4.10 CLINICAL OUTCOME AND MRNA-POSITIVE CTCS AND DTCS .............................................. 54 
4.11 PEPTIDE NUCLEIC ACID CLAMP PCR ASSAY ......................................................................... 54 

4.11.1 Determination of a cut-off value for the PNA clamp PCR assay in PB and BM samples 
from healthy individuals ................................................................................................................ 54 
4.11.2 Detection of KRAS mutations in PB and BM samples from pancreatic cancer patients 
with the PNA clamp assay ............................................................................................................. 54 

5 DISCUSSION ................................................................................................................................. 56 
5.1 ENRICHMENT OF CTCS AND DTCS .......................................................................................... 56 
5.2 DETERMINATION OF THE SENSITIVITY FOR CK8, CK19, EPCAM AND CEACAM5 MRNA 
ASSAYS ............................................................................................................................................... 57 
5.3 DETECTION OF CTCS AND DTCS IN PANCREATIC CANCER PATIENTS BEFORE INITIATION OF 
GEMCITABINE TREATMENT ................................................................................................................. 58 
5.4 MONITORING OF THE CTCS AND DTCS BEFORE AND DURING TREATMENT ............................ 61 
5.5 KRAS GENE MUTATIONS AS A SURROGATE MARKER FOR CTC AND DTC DETECTION ............ 63 
5.6 CONCLUSION AND FUTURE PERSPECTIVES ............................................................................... 64 

REFERENCES ..................................................................................................................................... 66 



 

 VI 

Abbreviations 
 

ALDH   Aldehyde dehydrogenase  

BCR   Breakpoint cluster region 

BM   Bone marrow 

CA 19-9  Carbohydrate antigen 19-9 

CD   Cluster of differentiation 

cDNA   Complementary deoxyribonucleic acid 

CEACAM  Carcinoembryonic antigen-related cell adhesion molecule 

CK   Cytokeratin  

CSC   Circulating stem cell 

CTC   Circulating tumour cell 

Cq   Quantification cycle 

DNA   Deoxyribonucleic acid 

DTC   Disseminated tumour cell    

ECACC  European Collection of Cell Cultures 

EDTA   Ethylenediaminetetraacetic acid 

EGFR   Epidermal growth factor receptor 

EpCAM  Epithelial cell adhesion molecule 

LN   Lymph node  

LOC   Lab-on-a-chip  

MC   Mononuclear cell  

mRNA   Messenger ribonucleic acid     

NaCl   Sodium chloride 

NCBI   National Center for Biotechnology Information 

NTC   No template control 

PanIN   Pancreatic intraepithelial neoplasia 

PB   Peripheral blood  

PNA    Peptide nucleic acid 

qPCR   Quantitative polymerase chain reaction 

RBC   Red blood cell 

RNA   Ribonucleic acid 



 

 VII 

RT   Reverse transcriptase 

TGF-β   Transforming growth factor beta 

   



Introduction 

 1 

1 Introduction 
 

1.1 Pancreatic cancer 

 
Pancreatic cancer is the fourth most common cause of cancer-related deaths in the Western 

countries. 1 In Norway the number of new cases of pancreatic cancer in 2010 was 650, which 

is equivalent to approximately 7 incidences per 100.000. 2, 3 In Europe, pancreatic cancer 

leads to approximately 40.000 deaths per year. 3, 4 This high death rate is caused by several 

factors, including a late diagnosis due to lack of symptoms at an early stage, extensive 

metastasis at the time of diagnosis and drug resistance. 5, 6 Accordingly, only a small number 

of pancreatic cancer patients are presented with operable disease at the time of diagnosis 

(approximately 5-15%). 5 

 

1.1.1 Symptoms  

 
Early stage pancreatic cancer is generally clinically silent. Symptoms of pancreatic cancer 

first become apparent after tumour invasion of surrounding tissue or metastasis to distant 

organs. 1  

 

For tumours located in the head and body of the pancreas, symptoms are present due to 

compression of adjacent structures such as the bile duct, coeliac and mesenteric nerves, the 

pancreatic duct and the duodenum. Besides abdominal or mid-back pain, other signs 

connected to the disease may be the development of diabetes mellitus or malabsorption and 

weight loss. Pancreatic-duct obstruction may occasionally lead to pancreatitis. 5, 7 Digestive 

problems may occur if the cancer blocks the release of the pancreatic juice into the intestine. 

Venous thrombosis is not unusual and may be a presenting sign of malignant disease. 1 

 

1.1.2 Diagnosis 

 

Diagnosis of pancreatic cancer is most frequently done by computed tomography (CT) and/or 

magnetic resonance imaging (MRI). CT scans are most often used to diagnose pancreatic 

cancer and to determine the extent of its spread. It shows the organs near the pancreas, as 
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well as lymph nodes (LNs) and distant organs the cancer may have spread to and, it provides 

information about the tumours relation to the surrounding vessels. MRI, on the other hand, is 

most suited for examining soft tissue and can sometimes provide much more tissue details 

compared to a CT scan. 3, 7-9 In some situations, a biopsy is required to confirm the 

diagnosis.3, 8   

 

1.1.3 Disease staging 

 

The stage of the disease, grade and resection margin status is defined from pathologic 

examination of the primary tumour. 4, 5, 7 The majority of pancreatic tumours are 

adenocarcinomas, which originate in the ductal epithelium. According to the American Joint 

Committee on Cancer tumor-node-metastasis (TNM) classification, the patients are 

pathologically classified according to the size of the primary tumour (T), regional lymph 

node involvement (N) and distant metastases (M). 10 T1 to T3 tumours are classified as 

resectable, while T4 tumours affect the coeliac axis or superior mesenteric artery and are 

classified as unresectable primary tumours. 1  

 

Invasive pancreatic cancers are believed to arise from non-invasive precursor lesions called 

pancreatic intraepithelial neoplasia (Pan-IN I-III), which reflects different grades of dysplasia 

in epithelium in the pancreatic ducts. The high-grade Pan-Ins may be converted to invasive 

pancreatic ductal adenocarcinoma. 11, 12 Although the Pan-INs are well characterized there are 

still no diagnostic criteria for classifying these premalignant lesions for an earlier detection of 

the disease. 3, 7, 8, 12, 13  

 

Additionally, the serum tumour marker carbohydrate antigen 19-9 (CA 19-9, also called 

sialylated Lewis antigen) is a biomarker proven to be useful for monitoring and early 

detection of recurrent disease in pancreatic cancer patients. Unfortunately, the CA 19-9 

analyses have clear limitations because elevated CA 19-9 protein level also is observed in 

patients with non-malignant diseases, such as cirrhosis, chronic pancreatitis and cholestasis. 

New biomarkers and better staging of early pancreatic cancer are therefore highly needed.7, 14  
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1.1.4 Pancreatic cancer treatment 

 

Today, no curative therapies are present for pancreatic cancer patients. 8 Accordingly, the 

vast majority of pancreatic cancer patients are today primarily treated with a palliative intent 

to reduce symptoms as well as to prolong life for some patients. Gemcitabine is generally 

advised as the standard first-line treatment for pancreatic cancer patients. 15 Gemcitabine is a 

deoxycytidine analogue that must be phosphorylated to become active (gemcitabine 

diphosphate and gemcitabine triphosphate). When activated, gemcitabine diphosphate 

inhibits ribonucleotide reductase and reduces the intracellular pool of deoxynucleotide 

triphosphate required for DNA synthesis. Gemcitabine triphosphate can be fused into an 

elongating DNA chain and result in premature chain termination. 5, 15 Although gemcitabine 

administration leads to a statistically significant longer progression-free and overall survival, 

the magnitude of the objective, radiographically measured response is rather small. 15 The 

pancreatic cancer drug resistance is believed to be caused by the very dense, fibrotic stroma 

surrounding the tumours (consisting of connective tissue, fibroblasts, leukocytes and blood 

vessels) and this stroma seems to be involved in the blockage of drug penetration and thus 

contribute to tumour survival. 7, 11, 16, 17 However, various combinations of drugs that result in 

“stromal collapse” are being tested in clinical trials and the results increase the optimism for a 

more effective treatment of pancreatic cancer patients in the future. 7, 18-20  

 

1.1.5 Survival 

 

The overall 5-year survival rate for pancreatic cancer patients is less than 5%. 5, 21 

Approximately 90% of the patients who present with advanced pancreatic cancer survive less 

than one year. About 80-85% of the patients with resectable disease experience disease 

relapse and die within 5 years of diagnosis. In average, metastatic patients treated with 

chemotherapy die within 5-6 months. 5-7 

 

1.1.6 Risk factors 

 

Several factors contribute to an increased risk of pancreatic cancer. These include increasing 

age, diabetes mellitus, obesity, familial history of pancreatic cancer (genetic factors), chronic 

pancreatitis, chronic cirrhosis and cigarette smoking. 1, 5, 7 
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Roughly 20% of pancreatic tumours arise due to cigarette smoking and genetic analyses have 

discovered an increased number of mutations in cancer-related genes correlated to smoking. 
22 In addition to smoking, an important risk factor for pancreatic cancer is mutations. Patients 

with a familial history of pancreatic cancer constitute approximately 7-10% of the incidences. 

Germline mutations in the BRCA2 gene are reported as the most known causes of inherited 

pancreatic cancer. However, germline mutations in the genes PALB2, CDKN2A, STK11 and 

PRSS1 are also associated with a significantly increased risk of pancreatic cancer. 1 Recent 

research has also shown an increased risk of pancreatic cancer in non-O blood group. 23 

 

1.1.7 KRAS mutations 

 

Somatic mutations in the KRAS gene are present in 80-90% of pancreatic cancers. 7, 24 

Transcription of a mutant KRAS gene results in an abnormal Ras protein locked in its active 

form, leading to an abnormal constitutive activation of proliferative pathways. 7 KRAS 

mutations seem to be present at an early stage of pancreatic cancer development, as it has 

also been detected in the premalignant Pan-IN lesions. 25 This suggests that KRAS activation 

may be one of the earliest genetic events leading to pancreatic cancer. 6, 8, 13, 25 Nonetheless, a 

prognostic value for KRAS mutations has not been demonstrated in pancreatic cancer 

patients. 26, 27 

 

1.2 Circulating tumour cells (CTCs) and disseminated tumour cells (DTCs) 
 

1.2.1 Dissemination of tumour cells from the primary tumour into blood and bone 

marrow 

 

Most cancer-related deaths are caused by dissemination of tumour cells from the primary 

tumour through the blood to distant organs to form metastases. Pancreatic tumour cells often 

disseminate to the liver, rarely to the lungs and skeleton. 3, 5 Dissemination of tumour cells 

may occur both hematogenously and lymphatically. By the lymphatic dissemination route the 

tumour cells may transit LNs before accessing the peripheral blood (PB). In contrast, other 

tumour cells appear to be able to enter the blood circulation directly, a process called 

haematogenous dissemination 6, 28-30, either by passive tumour cell shedding from the primary 
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tumour 30, 31 or by an active mechanism called epithelial-to-mesenchymal transition (EMT). 

Passive shedding is supposed to occur from the early stages of tumour formation and a large 

number of tumour cells can disseminate into the blood circulation in this way. 30, 32 EMT, on 

the other hand, is characterized by several molecular and cellular changes, where the tumour 

cells loose their differentiated epithelial features and obtain mesenchymal properties. Thus, 

EMT increases the motility and invasiveness of the tumour cells and is presumed to be 

required for invasion and metastatic dissemination of carcinoma cells. 14, 28, 30, 33-36 This has 

been confirmed in a recent study published by Yu and colleagues in Science 37 where they 

investigated the EMT process in CTCs from breast cancer patients. In this study the CTCs 

showed expression of both mesenchymal and epithelial markers. However, mesenchymal 

cells were highly enriched in the CTC population proposing an association between CTCs 

and disease progression. Yet, overt metastasis is only achieved by a minority (0.01%, 38, 39) of 

these tumour cells, the so-called cancer stem cells (CSCs) or tumour-initiating cells 14, 40. In 

pancreatic cancer different CSC populations have been identified. 41-44 These cells are 

assumed to survive in the blood stream (short half-life of CTCs 28, 45), have the capacity of 

self-renewal and produce the heterogeneous lineages of cancer cells present in a tumour. 41, 46 

The CSCs also seem able to persist in an inactive, non-proliferative dormant (G0) state for 

years. 47, 48 Cancer dormancy is clinically defined as a “recurrence of cancer, either locally or 

systemically, after a long period of time following successful treatment and removal of the 

primary tumour”. 49, 50 The fact that CSCs show resistance to chemotherapy and radiation 

therapy makes the targeting of these cells especially challenging. 7, 41, 48-50 Furthermore, the 

mechanisms behind the transition of dormant tumour cells into proliferative cells again are 

largely unknown, but tumour cell interaction with the microenvironment, blood supply 

limitations or an active immune system is believed to be mechanisms involved in this 

process. 50 Tumour cells that are resident in PB are called circulating tumour cells (CTCs), 

while tumour cells, which home to the bone marrow (BM), are called disseminated tumour 

cells (DTCs). 6, 28-30  

 

The extravasation of tumour cells from the blood to form metastases in distant organs is 

thought to involve the reverse process of EMT, a process called mesenchymal-to-epithelial 

transition (MET). In this way the tumour cells are converted back to a more differentiated, 

epithelial cell state with similar phenotypes as observed in the primary tumour, thus making 

them capable of establishing new tumours. 28, 34, 35 A model of the tumour cell dissemination 

is presented in figure 1.1. 
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Figure 1.1: A model of tumour cell circulation and cancer dormancy. Tumour cells with stem cell properties 
(presented as red cells) and without stem cell properties (presented as blue cells) are released into the blood 
circulation from the primary tumour. In this figure the tumour cells metastasize to the BM (1) where they may 
transform into a dormant state or establish micrometastases (2). At each step of the metastatic cascade, the 
tumour cells can recirculate through the blood stream and in this way contribute to a heterogenic CTC 
population. The CTCs are also hypothesized to recirculate back to the primary tumour, thus enriching the 
tumour with more aggressive tumour cells. The figure is obtained, with permission, from Pantel et al. 2009. 29 
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mass dormancy (Figure 1).30 Tumor-cell dormancy 
occurs when single DTCs have entered a non proliferative 
‘quiescent’ state, whereas tumor-mass dormancy 

describes a stage where cancer cells are more active and 
proliferate but the growth of the tumor mass (that is, 
micro metastasis) is inhibited because an equal fraction 
of tumor cells undergo apoptosis. However, this concep-
tual framework is still under debate. At present, little is 
known about the factors that might have a role in the 
‘awakening’ of dormant tumor cells that leads them into 
the dynamic phase of metastasis formation. As shown in 
Figure 2, the steady state that regulates dormancy might 
be disturbed by both changes in DTCs (for example, 
additional mutations or epigenetic modifications in 
genes controlling cell proliferation and apoptosis) and 
the surrounding microenvironment (for example, release 
of growth and angiogenic factors).30

The role of the immune system as a potentially impor-
tant host component for controlling metastatic pro-
gression is still under debate. Koebel and coauthors70 
highlighted the importance of immune surveillance 
for the process of tumor dormancy in an osteosarcoma 
mouse model. They showed that immunity can restrain 
cancer growth for extended time periods, called equi-
librium. Escape and equilibrium are distinct. Whereas 
equilibrium represents a time of tumor cell persistence 
without expansion, escape is characterized by progres-
sive tumor growth. Using another mouse model, Mahnke 
et al.71 reported that tumor-associated-antigen-specific 
memory CD8+ T cells could be adoptively transferred 
to tumor-inoculated T-cell-deficient nude mice, and 
showed the persistence of a high number of these cells 
in the bone marrow. The authors suggested that the bone 
marrow microenvironment has special features for the 
maintenance of tumor dormancy and immunological 
T-cell memory. In addition to the presence of vital growth 
factors and cytokines produced by stromal cells and the 
continuous presence of tumor-associated antigen, other 
characteristics of the bone marrow microenvironment, 
such as the micro vasculature, might also contribute to 
the enrichment of memory T cells.71 By contrast, certain 
subsets of macrophages can support metastatic spread 
by facilitating angiogenesis and extracellular matrix 
breakdown and remodeling.72 Galon and coworkers 
provided indirect evidence that the immune system 
might control minimal residual disease in patients with 
cancer by demonstrating a strong positive correlation 
between T-cell activation and survival in patients with 
colon cancer, independent of primary tumor size and 
nodal status.73 However, the role of the immune system 
in dormancy control and metastatic progression has not 
been proved. In particular, the postulated interactions 
between dormant tumor cells and immune effector cells 
in patients with cancer are unknown.

Previously, Kaplan and coworkers demonstrated that 
bone-marrow-derived hematopoietic progenitor cells 
that express vascular endothelial growth factor receptor 1 
(VEGFR1) are able to travel to tumor-specific premeta-
static sites and form cellular clusters before the onset of 
tumor cells—which makes VEGFR an interesting target 
in the clinical setting.74 Angiogenesis is the formation of 

Local relapse

Tumor-cell
dormancy

1

2

Primary tumor

Tumor-mass
dormancy

Micrometastases

Escape

Recirculation
DTC

Blood

Distant tissue
(e.g. bone marrow)

Metastasis

?

Figure 1 | Model of tumor cell circulation and cancer dormancy. Tumor cells with stem 
cell properties (red cells) and without stem cell properties (blue cells) are released 
from the primary tumor into the blood circulation. These circulating tumor cells can 
reach distant tissue (for example, bone marrow). According to the stem-cell 
hypothesis, only (1) the disseminated tumor cells with stem-cell properties30, and  
(2) micrometastases established by these cells, can escape from dormancy and give 
rise to an overt metastasis. DTCs and micrometastases lacking stem-cell properties 
are unable to undergo this important transition. At each stage of the metastatic 
cascade, tumor cells can recirculate via the bloodstream into other distant organs. It 
can even be speculated that tumor cells might recirculate to the primary tumor site 
and contribute to local relapse as indicated by the correlation between DTCs detected 
in the bone marrow and local relapse.34 Abbreviation: DTC, disseminated tumor cell.
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1.2.2 Genetic heterogeneity of circulating and disseminated tumour cells 

 

Studies have revealed cellular heterogeneity within CTC populations. This is of great 

importance with regard to adjuvant therapy as the intention is to eliminate residual disease. 33, 

51, 52 The heterogeneity within the CTC populations may be caused by both active (EMT) or 

passive tumour cells shedding from the primary tumour as well as from established 

metastases in distant organs. The results published by Yu et al. 37 seem to support these 

speculations as CTCs with both mesenchymal and epithelial mRNA markers expressed were 

found in the blood of the breast cancer patients investigated. Kim et al. 31 investigated 

whether CTCs derived from metastatic lesions could reinfiltrate their tumour of origin, and in 

this way enrich the primary tumour with more aggressive CTCs that have been adapted to 

new microenvironments (both in blood and in distant organs). This process known as 

“tumour self-seeding” seems to be driven by the CTCs’ ability to sense the attraction signals 

from the tumour and then extravasate in response to these signals. 31 In another study by 

Klein et al. 51, screening of BM, PB and LN samples from breast, prostate and 

gastrointestinal cancers also showed high genetic differences among disseminated tumour 

cells, regardless of the cancer type. 51 Figure 1.1 also illustrates the process of tumour self-

seeding by DTCs from the BM.  

 

1.3 Methods for enrichment of CTCs and DTCs 
 

CTCs/DTCs are present at a very low number in PB and BM (approximately 1 per 1x106 

leukocytes) 53, which make the detection of these cells difficult. Hence, the detection of 

CTCs/DTCs is usually performed with an initial enrichment procedure to increase the 

sensitivity. 29, 53, 54 The enrichment methods used are either based on morphological features 

(size or density) or selection of tumour cells by immunological techniques. 54 Commonly, 

enrichment of tumour cells is performed using density gradient centrifugation. The 

enrichment of mononuclear cells (MCs) (monocytes and lymphocytes), including tumour 

cells, is then done by centrifugation in an isosmotic medium (LymphoprepTM  (Axis-Shield 

PoC AS), Ficoll-HyPaqueTM (Sigma-Aldrich) or OncoQuick® (Greiner Bio One). Red cell 

lysis is another approach, optimized for gentle lysis of erythrocytes and to have marginal 

effect on the leukocytes. Cell filtration, i.e. ISET (Isolation by Size of Epithelial Tumor cells) 
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on the other hand, is the most known membrane filter device used to separate the 

CTCs/DTCs according to size since CTCs/DTCs often are larger than leukocytes. 6, 53-55  

  

Immunomagnetic selection is used to achieve a more specific enrichment of CTCs. The 

principle of immunological capture techniques is that antibodies attached to paramagnetic 

beads bind to proteins present on the cell surface. When exposing the sample to a magnet, 

cells bound to the beads are separated from unbound material. By the use of antibodies 

against epithelium-specific antigens, as for instance the commonly used antigen epithelial 

cell adhesion molecule (EpCAM), 56 the tumour cells are captured by the magnet (positive 

selection). Another strategy is, however, to magnetically label the leukocytes by using 

antibodies against the leukocyte antigen CD (cluster of differentiation) 45 (negative 

selection). 29, 53, 54 Several immunomagnetic bead separation systems are commercially 

available as for instance the CellSearch® System (Veridex, the only FDA-approved system 

for breast, colon and prostate cancer), EasySep cell separation (StemCell Technologies), 

Dynabeads (InvitrogenTM), magnetic-activated cell sorting system (MACS) (Miltenyi Biotec 

GmbH). Microfluidic methods are used to improve the sensitivity in CTC detection. 57 The 

CTC chip or the herringbone (HB) chip is the most acknowledged enrichment flow cell 

system. 6, 54, 58-60 A recently published study demonstrated the detection of both EpCAM 

positive and negative tumour cells. 57 They developed a multistage microfluidic device called 

the “CTC-iChip”, which is used to detect CTCs from whole blood. The “CTC-iChip” 

strategies are either dependent or independent of tumour membrane epitopes and can 

therefore be used for different cancer types. 57 

 

1.4 Methods for detection of CTCs and DTCs 
 

For detection of CTCs/DTCs in pancreatic cancer patients, two main methodological 

approaches are mostly used. These include: 1) immunological assays, the use of antibody-

based detection techniques and 2) PCR-based techniques. 14 In immunocytochemistry, cells 

are attached to a solid support before fixation and staining for detection of CTCs/DTCs. The 

staining is performed by incubation with antibodies against different antigens, usually 

cytokeratins (CKs) and/or surface adhesion molecules like e.g. EpCAM. Enzymatic colour 

reactions or fluorescence are used to visualize the antigens and the detection and enumeration 

of CTCs/DTCs are done with fluorescence or light microscope. 6, 14, 29, 54, 61  
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The PCR-based approaches detects highly expressed tumour-associated mRNAs as a measure 

for presence of CTCs/DTCs. 6, 29, 54 As tumour specific mRNA markers are lacking, 

epithelial-specific mRNAs, which are also expressed at low levels in normal blood cells, are 

frequently used for detection of CTCs/DTCs. However, a cut-off value for CTC/DTC 

positivity needs to be established from the highest mRNA level in the normal blood cells 

when using this strategy. 4, 6, 62 The PCR approach is indirect, as it detects elevated marker 

levels in cell lysates caused by the presence of CTCs/DTCs. Reverse transcriptase 

quantitative polymerase chain reaction, RT-qPCR, which enables quantitative detection of 

mRNA, is now the most frequently used PCR method. Some studies are based on the 

quantification of a single mRNA marker while other studies have increased the sensitivity for 

CTC/DTC detection by combining several mRNAs in multimarker assays (e.g. de 

Albuquerque and colleagues (ref. 73)). 14, 53, 54, 61, 62  

 

Peptide nucleic acid (PNA) clamp PCR is another approach for PCR-based detection of 

CTCs and DTCs. This method was first introduced in 1996 for detection of KRAS mutations 

in tumour samples. 63 The principle behind this method is that the PNA only binds to wild-

type KRAS templates and in this way block primer annealing and amplification and enable 

the amplification of mutated KRAS templates. KRAS mutations are present in approximately 

80-90% of pancreatic cancer patients. Thus, KRAS mutations may be used as a surrogate 

marker for CTC and DTC detection pancreatic cancer patients. 7, 24, 64 

 

1.5 Clinical implications of tumour cell detection in PB and BM of pancreatic 

cancer patients 

 

Studies based on breast cancer and colorectal cancer patients show noteworthy indications 

that detection of CTCs in PB is related to a high risk of relapse. 65-69 Furthermore, CTC 

detection in breast cancer has been proven to be highly predictive of progression-free survival 

and overall survival. 67, 69 DTCs in BM have in many studies been shown to have prognostic 

value for several cancer types. 70-72 In pancreatic cancer, the number of relevant studies on 

CTC/DTC detection is few, but the clinical relevance of CTCs/DTCs has also in this respect 

been linked to poor prognosis in some of the studies. 6, 62, 73-83 Furthermore, the ability to 

monitor CTCs/DTCs and to molecularly characterize the tumour cells in PB and BM of 

cancer patients, can be a useful tool for guiding personalized therapy. 28, 29 Some of the 
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published studies with evidence of CTCs in pancreatic cancer patients did not evaluate the 

clinical associations, e.g. Ren et al. 84 and Zhou et al. 85 The studies mentioned below only 

include pancreatic cancer studies with survival analyses.  

 

1.5.1 Evidence of clinical relevance of CTC detection in pancreatic cancer patients 

 

Although the relevant studies are few, there are some evidence of clinical relevance of CTCs 

as a prognostic and predictive marker in pancreatic cancer patients. De Albuquerque et al. 73 

recently published an evaluation of CTC detection by immunomagnetic enrichment followed 

by RT-qPCR using a multimarker mRNA panel consisting of the five markers, CK19, 

MUC1, EpCAM, CEACAM5 and BIRC5. Of the 34 pancreatic cancer patients (unresectable) 

included in this study, 16 (47.1%) were found to have elevated mRNA levels of at least one 

tumour-associated mRNA marker before systemic treatment. The CTC detection was 

associated with shorter progression-free survival (p = 0.01). 73 

 

Sergeant et al. 62 used EpCAM as a surrogate marker for quantification of CTCs with RT-

qPCR in 49 pancreatic cancer patients, both resectable and unresectable. In preoperative PB 

samples EpCAM positivity were detected in 10/40 (25%) patients compared to 27/40 (67.5%) 

patients after pancreatic resection (p < 0.0001). Six weeks after surgery, 8/34 (23.5%) 

patients were EpCAM positive. 2/8 (25%) of unresectable patients were EpCAM positive. 

Although the study did not demonstrate significant associations between EpCAM positivity 

and disease-free and cancer-specific survival, tendencies were detected in the preoperative 

samples (p = 0.28 and 0.17, respectively). 62 

 

Khoja et al. 74 compared The CellSearch® system and the ISET technique for CTC detection 

in PB samples from 54 patients with newly diagnosed or progressive metastatic unresectable 

adenocarcinoma of the pancreas. ISET detected higher levels of CTCs than the CellSearch® 

system. However, only CTC detection with the CellSearch® system showed a nonsignificant 

trend towards shorter survival (decreased progression-free survival (p = 0.13) and overall 

survival (p = 0.26)). 74 

 

Kurihara et al. 75 investigated whether CTC detection could predict survival in 26 pancreatic 

cancer patients, both resectable and unresectable with the CellSearch® system. CTCs were 
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detected in 11/26 (42%) of the recruited patients and the median survival times of the CTC-

positive vs. negative patients were 110.5 and 375.8 days, respectively. The study revealed a 

significant association between median overall survival time and CTC detection (p < 0.001). 
75 

 

Hoffmann et al. 76 evaluated the diagnostic potential of CK19 mRNA detection in PB, BM 

and peritoneal lavage in resectable pancreatic cancer patients. The study included 37 

pancreatic cancer patients and the authors compared RT-qPCR and nested PCR for 

CTC/DTC detection. CK19 mRNA positivity (above cut-off value) in PB and BM was 

detected in 24/37 (64%) samples and 0/37 samples with RT-qPCR, respectively. In 15 (40%) 

of the pancreatic cancer patients, disseminated tumour cells were detected in PB and BM 

and/or in peritoneal lavage by RT-qPCR. The CK19 mRNA levels in PB samples obtained 1 

and 10 days after surgery tended to be lower than the levels in preoperative samples by RT-

qPCR. The results showed that pancreatic cancer patients with at least one CK19 mRNA 

sample indicated a trend towards shorter survival (p = 0.15). 76 

 

Soeth et al. 77 evaluated the diagnostic value of CK20 RT-PCR for detection of disseminated 

tumour cells in preoperative PB and BM samples . Of the 172 patients that were recruited, a 

CK20 positive signal was detected in 81 (47.1%) in PB and/or BM. CTCs/DTCs were 

detected in 52/154 (33.8%) PB samples and 45/135 (33.3%) BM samples, respectively. 

Survival analysis revealed a statistically significant association between overall survival and 

the detection of CTCs and/or DTCs (p = 0.05). The mean survival time of CK20 positive 

patients in PB and/or BM were significantly reduced compared to CK20 negative patients 

(17.9 months vs. 26.1 months, respectively). 77 

 

Mataki et al. 78 detected CEA mRNA positive CTCs in PB by nested RT-PCR in 20 

resectable pancreatic cancer patients. PB samples were obtained every 3 months after 

surgery. 6/20 (30%) of the pancreatic cancer patients were detected with CEA mRNA CTCs. 

In the overall patient group, which included ampullary and biliary duct cancers (n = 53), a 

higher CEA positivity rate was detected in 16 (75%) of the patients with relapse compared to 

37 (5.4%) patients without relapse (p < 0.0001). CEA mRNA expression in PB may be an 

early indicator of relapse. 78 
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Z’graggen et al. 79 used an immunocytochemical assay to detect tumour cells in PB and BM 

samples obtained from 105 pancreatic cancer patients. CTCs were detected in 26% of the PB 

samples and in 24% of the BM samples. CTCs were detected in 3/32 (9%) patients with 

resectable cancer compared to 24/73 (33%) in patients with unresectable disease (p = 0.023). 

There was a tendency towards a statistically significant association between CTC detection 

and disease progression (p = 0.08). 79 

 

1.5.2 Evidence of clinical relevance of DTC detection in pancreatic cancer patients 

 

DTC detection in BM samples of pancreatic cancer patients is correlated with reduced overall 

survival. Detection of DTCs may therefore be advantageous as a prognostic marker. 77, 81-83 A 

study performed by Effenberger et al. 80 included one of the largest cohorts of pancreatic 

cancer patients with DTC detection in BM samples. All patients included in this study 

underwent pancreatic surgery and of the 175 pancreatic cancer patients, 24 (13.7%) patients 

had a positive DTC status detected by immunocytochemical cytokeratin assay. The presence 

of DTCs was associated with a significant decrease in overall survival (p = 0.036). 80 

 

Van Heek et al. 81 investigated the DTC status in 31 pancreatic cancer patients (resectable) 

with an immunocytological approach. CK positive cells were detected in 10 (32%) of these 

patients, indicating DTCs in their BM. Survival analysis further showed a reduced overall 

survival (p < 0.04) in this patient group. 81 

 

Roder et al. 82 analysed BM samples from 48 patients with resectable ductal adenocarcinoma 

of the pancreas. An immunocytochemical cytokeratin assay was used to detect DTCs and 

25/48 (52.1%) of the patients were defined as DTC positive. By survival analysis it was 

demonstrated a statistically significant association between DTC positivity and decreased 

overall survival (p < 0.03). 82 

 

Vogel et al. 83 used immunocytochemistry to detect DTCs in BM from 71 patients who 

underwent surgery for adenocarcinoma of the pancreas. They found that 27/71 (38%) patients 

were DTC positive and among these patients there were a statistical trend towards reduced 

survival (p = 0.06). 83 
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Other studies revealing DTC detection and insignificant association with progression-free 

and overall survival 86, and studies of gastrointestinal cancer patients 87 where only a few 

pancreatic cancer patients were included, are not mentioned in larger detail in this thesis. 86, 87 

 

1.6 Aims of the study 
 

This master thesis is part of a larger project entitled “A novel therapy for locally advanced 

and/or metastatic pancreatic cancer based on nanoparticle albumin-bound paclitaxel and 

gemcitabine: Circulating tumour cells as a potential biomarker for treatment monitoring, - 

response and survival”. The primary aim of the larger project is to investigate whether 

molecular detection of CTCs and DTCs can be potential biomarkers for treatment response in 

patients with locally and/or metastatic pancreatic cancer. However, specific aims for the 

present master thesis include: 

 

• Comparison of different strategies for enrichment for CTCs/DTCs. 

• Investigation of the epithelial-specific mRNAs CK8, CK19, EpCAM and CEACAM5 

as surrogate markers for indirect detection of CTCs and DTCs by RT-qPCR. 

• Investigation of KRAS gene mutations as a surrogate marker for CTC/DTC detection 

in pancreatic cancer patients. 

• Comparison of the CTC/DTC levels in numerous PB and BM samples from the same 

patients.
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2 Materials  
 

2.1 Samples 
 

Written informed consent was obtained from all participants included in this study and the 

regional ethical committee approved the project.  

 

The patients (n = 6) included in this prospective study were consecutively recruited from 

September 2012 to April 2013. They were admitted to Stavanger University Hospital with 

advanced and/or metastatic pancreatic cancer. All the patients were treated with gemcitabine 

according to the national guidelines. 88 PB samples were obtained before initiation of 

treatment and every month for a maximum of two months during treatment with gemcitabine. 

Whole blood was collected into 9 mL EDTA tubes and the first few millilitres were discarded 

to prevent contamination of epithelial cells. BM samples (10 mL in EDTA) were drawn 

unilaterally from the posterior iliac crest under general anaesthesia prior to initiation of 

treatment and after one month of treatment. To avoid contamination of epithelial cells in the 

BM samples, a small incision with a scalpel was done prior to the BM sampling. The patient 

samples were either processed the same day as sampling or stored at room temperature until 

the next day. 

 

One tumour tissue sample from a liver metastasis in one pancreatic cancer patient was 

included in the study as well as five human tumour tissue samples from adenocarcinoma of 

the pancreas (obtained from Asterand®). 

 

PB and BM samples from nine healthy individuals constituted the control group in this 

project.  
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Table 2.1: Clinopathological parameters for the included pancreatic cancer patients. 

Variable Number of patients 
(n = 6) 

Sex  
Male 5 
Female 1 
Pathology cell type  
Adenocarcinoma 6 
Primary tumour localization  
Head 2 
Body 1 
Tail 3 
Tumour size  
pT1 0 
pT2  4 
pT3 0 
pT4  0 
Unknown 2 
Lymph node status  
pN0  0 
pN1  2 
pNX  4 
Metastatic stage  
M0  0 
M1 6 
MX 0 
Metastatic sites  
Liver 5 
Lung 1 
cTNM disease stage  
IA  0 
IB  0 
IIA  0 
IIB  0 
III  0 
IV  6 
Tumour grade  
I 1 
II 2 
III 1 
Unknown 2 
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2.2 Cell culture  
 

The human pancreatic tumour cell line AsPC-1 (Sigma-Aldrich®) originates from mouse 

xenografts where cells from a patient with pancreatic cancer were introduced. The cell line 

express carcinoembryonic antigen (CEA), human pancreas associated antigen, human 

pancreas specific antigen and mucin. 89 

 

2.3 Buffers and solutions 
 

0.9 % NaCl 

- 9 g NaCl 

- dH2O up to 1000 mL 

 

5 x TBE 

- 27 g TRIS Buffer 

- 13.75 g boric acid 

- 10 mL EDTA (0.5M) 

- dH2O up to 500 mL 

 

0.5 x TBE 

- 100 mL 5 x TBE Buffer 

-  dH2O up to 1000 mL 

 

0.5 M EDTA 

- 186.1 g Ethylendiamin-tetra acetate x 2H2O 

- dH2O up to 1000 mL 

- Adjust pH to 8.0 

 

Hayem’s staining solution 

- 0.025 g Crystal violet 

- 2.5 g acetic acid 

- dH2O up to 50 mL 
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RBC Lysis Buffer 

- 8 g NH4Cl 

- KHCO3 (2M) 

- 1.0 mL EDTA (0.1mM, 1 mL of 100 mM EDTA) 

- dH2O up to 1000 mL 

- Adjust with KHCO3 to achieve a pH of 7.2 – 7.6 

 

2M KHCO3 

- 125.15 g KHCO3 

- dH2O up to 250 mL 

 

100 mM EDTA 

- 37.224 g Ethylendiamin-tetra acetate x 2H2O 

- dH2O up to 1000 mL 

- Adjust pH to 8.0 

 

6x Loading Buffer 

- 2.5 mL 99% glycerol 

- 0.5 mL EDTA 

- 2.0 mL dH2O 

- Bromophenol Blue 

 

Agarose (3%) 

- 1.5 g agarose 

- 50 mL 0.5 x TBE 

- dH2O 

 

1xPBS 

- 5 Phosphate buffered saline tablets 

- dH2O up to 1000 mL 
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2.4 Reagents 
 
Table 2.2: An overview of the reagents used in this study. 

Reagents Producer/ 
supplier 

Product 
number 

Area of 
utilization  

5 x First Strand Synthesis (5x FSS Buffer) InvitrogenTM  P/N Y02321 DNase treatment 
and reverse 
transcription 

RQ1 RNase-Free DNase Promega M610A DNase treatment 
RQ1 DNase Stop Solution Promega M199A DNase treatment 
Random Primers (1µg/µl random nonamer) InvitrogenTM P/N 58875 Reverse 

transcription 
RNaseOUTTM Recombinant Ribonuclease 
Inhibitor 

InvitrogenTM P/N 
100000840 
-10777-019 

DNase treatment 
and reverse 
transcription 

25 mM dNTP: 
2´Deoxyadenosine 5´-Triphosphate (dATP) 
2´Deoxycytidine 5´-Triphosphate (dCTP) 
2´Deoxyguanosine 5´Triphosphate) (dGTP) 
2´Deoxythymidine 5´Triphosphate (dTTP) 

GE Healthcare  
28406501V 
28406511V 
28406521V 
28406531V 

Reverse 
transcription  

0.1 M DTT InvitrogenTM P/N Y00147 Reverse 
transcription  

M-MLV Reverse Transcriptase InvitrogenTM 28025-021 Reverse 
transcription 

LymphoprepTM Axis-Shield 1114545 CTC/DTC 
enrichment 

Trypan Blue Solution (0.4%) Sigma-Aldrich® T8154 Determination of 
cell numbers 

Hayem’s dye: Crystal violet, Microscopy 
Cerstistain 

Merck 1.15940.002
5 

Determination of 
cell numbers 

Agarose NA  GE Healthcare 17-0554-02 Gel 
electrophoresis 

2‐Mercaptoethanol (β‐ME) Sigma M3148 CTC/DTC 
enrichment 

Loading buffer (gel): 
Blue/Orange 6x Loading Dye 

Promega G190A Gel 
electrophoresis 

100bp DNA ladder Promega G2101A Gel 
electrophoresis 

GelRedTM Nucleic Acid Gel Stain,  
10.000x in DMSO 

Biotium 800-304 
5357 

Gel 
electrophoresis 
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2.5 Growth media for tumour cell line culturing 
 
Table 2.3: Overview of the reagents included in the cell culture medium. 

Reagents Producer/supplier Product number 
RPMI 1640 Sigma R0883 
2mM Glutamine Sigma  G7513 
1mM Sodium Pyruvate (NaP) Sigma S8636 
10% Foetal Bovine Serum (FBS) Sigma F7524 
Penicillin Streptomycin (100x) Sigma P4333 
 

2.6 Kits 
Table 2.4: An overview of the kits used in this study.  

Kit Producer/ 
supplier 

Product 
number 

Area of utilization 

AllPrep® DNA/RNA/Protein Mini 
Kit (50) 

Qiagen® 80004 Isolation of nucleic acids 

QIAamp® RNA Blood Mini Kit 
(50) 

Qiagen® 52304 Isolation of nucleic acids 

QIAshredderTM Qiagen® 79656 Homogenization  
qPCRTM Core kit for SYBR® 
Green I 

Eurogentec RT‐SN10‐05 RT-qPCR 

Agilent RNA 6000 Nano Kit Agilent 
Technologies 

5067-5111 For measurements of RNA 
quality/degradation 
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2.7 Primers and probes for RT-qPCR and the PNA clamp assay 
 

All the primers were purchased from Eurofins MWG Operon. The PNA clamp was 

purchased from Eurogentec.  

 
Table 2.5: Primers for amplification of CK8, CK19, EpCAM, CEACAM5 and BCR by quantitative real-
time PCR. All primers were designed to span exon/exon boundaries. 

Primer Primer sequence Product size, 
bp 

CK8 - FF forward 5’-CATGGGAGGCATCACCGCAG-3’ 164 bp 
CK8 - RF reverse 5’-GCTCCAGGAACCGTACCTTGTC-3’ 
CK19 - F forward 5’-GATGAGCAGGTCCGAGGTTA-3’ 96 bp 
CK19 - R reverse 5’-TCTTCCAAGGCAGCTTTCAT-3’ 
EpCAM - FB forward 5’-CGCAGCTCAGGAAGAATGTG-3’ 88 bp 
EpCAM - RB reverse 5’-TGAAGTACACTGGCATTGACG-3’ 
CEACAM5 - FC forward 5’-GGGACCTATGCCTGTTTTGTCTC-3’ 151 bp 
CEACAM5 - RC reverse 5’-GAGCAACCCCAACCAGCAC-3’ 
BCR - sg1F forward 5’-GCTCTATGGGTTTCTGAATG-3’ 99 bp 
BCR - sg1R reverse 5’-AAATACCCAAAGGAATCCAC-3’ 
bp = base pair 
 
Table 2.6: Primers and probe for the PNA clamp assay. 

Primer Primer sequence  Product size, 
bp 

KRAS-PNA-FB forward 5’-GCCTGCTGAAAATGACTGAATATAA-3’ 71 bp 
KRAS-PNA-RB reverse 5’-CGTCAAGGCACTCTTGCCTAC-3’ 
PNA clamp - 5’-CCTACGCCACCAGCTCC-3’ - 
bp = base pair
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3 Methods 
 

3.1 Enrichment of CTCs and DTCs 

 

Due to a low CTC and DTC concentration in PB and BM (1 per 1x106 leukocytes), an 

enrichment step is essential to increase the sensitivity of the assay. 54 Traditional methods 

used for enrichment are Red Blood Cell (RBC) lysis buffer and density centrifugation. The 

RBC lysis buffer is optimized for gentle lysis of the erythrocytes with marginal effect on the 

leukocytes. 55  

 

The principle of density centrifugation is that the MCs, i.e. monocytes and lymphocytes, have 

a lower density compared to leukocytes and erythrocytes. Thus, the erythrocytes and 

leukocytes will sediment through the medium to the bottom, while the MCs, including 

tumour cells, will be retained at the sample/medium interface, see figure 3.1. 54, 90  

 

3.1.1 Enrichment of CTCs by RBC Lysis Buffer 

 

• The PB samples were transferred into 50 mL Falcon tubes and added RBC lysis 

buffer in a ratio of 9:1 (e.g. 5 mL blood sample and 45 mL RBC lysis buffer). 

• The cell suspension was vortexed and put on ice for 10 minutes to allow the red blood 

cells to lyse.  

• The other cells were then pelleted by centrifugation at 370 x g (1400 rpm) for 5 

minutes before the supernatant was discarded.  

• The cells were washed with 5 mL recommended medium before centrifugation at  

370 x g (1400 rpm) for 5 minutes. The supernatant was discarded and this step was 

repeated once more.  

• The cells were then transferred to a new 15 mL Falcon tube (i.e. approximately 8 mL) 

and centrifuged at 370 x g (1400 rpm) for 5 minutes before the supernatant was 

discarded.  

• The cell pellet was resuspended in 1 mL PBS added 2% FBS and 1mM EDTA. 
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• Counting of the cells was performed by the use of Hayem’s staining solution, which 

lyses the red blood cells and stains the nucleus in the leucocytes purple.  

• A centrifugation step at 370 x g (1400 rpm) for 5 minutes was then performed and the 

supernatant was discarded. 

• The pellet was resuspended in 600 µl Buffer RLT (added 10 µl ß-Mercaptoethanol 

per 1 mL Buffer RLT), transferred into a new eppendorf tube and stored at -80°C for 

later use. 

 

3.1.2 CTC and DTC enrichment by density centrifugation 

 

• The PB and BM samples were transferred into a 50 mL Falcon tube and an equal 

amount of 0.9% NaCl was added (e.g. 9 mL blood sample, 9 mL 0.9% NaCl). The 

solution was mixed thoroughly. 

• An equal amount (9 mL) of Lymphoprep was added to a new 50 mL Falcon tube and 

the NaCl-PB/NaCl-BM solution was carefully transferred onto the Lymphoprep 

media. The solution was centrifuged at 2000 rpm (755 x g) for 30 minutes. 

• The buffy coat (MCs) was then carefully transferred to a new 50 mL Falcon tube 

followed by washing with 40 mL 0.9% NaCl. Centrifugation was then performed at 

1100 rpm (228 x g) for 10 minutes and the supernatant was discarded.  

• A second wash with 40 mL 1xPBS was then performed before a new centrifugation at 

1100 rpm (228 x g) for 10 minutes and the supernatant was discarded.  

• Finally, the cells were resuspended in 1 mL of 1xPBS. 

• The number of cells in the sample was determined by counting using Hayem’s 

staining solution, (47.5 µl Hayem’s staining solution, 2.5 µl cell suspension), which 

lyse the red blood cells. 

• The desired number of cells (1x107 cells) was transferred to new 1.5 mL eppendorf 

tubes, centrifuged at 1100 rpm (228xg) for 10 minutes and then lysed in either 600 µl 

(added to 5x106 – 1x107 cells) or 350 µl (added to < 5x106 cells) Buffer RLT. The 

samples were thoroughly mixed to ensure a homogenised lysate before they were 

stored at -80°C for later use.  
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Figure 3.1: An overview of the LymphoprepTM procedure used for tumour cell enrichment. The blood 
sample is diluted 1:1 with physiological saline and carefully transferred to a tube containing Lymphoprep. The 
mononuclear cells (MCs) are then separated from the blood cells by centrifugation and the cells can be 
transferred to a new tube for further use. 90 The figure is copied from the LymphoprepTM protocol published by 
Axis-Shield and is available online. 90 

 

3.1.3 Determination of the cell concentration by the use of a light microscope 

 

When determining the number of cells in a sample using a Bürker counting chamber, the cell 

suspension was diluted with either Hayem’s staining solution (47.5 µl dye and 2.5 µl cell 

suspension) or 0.4% Trypan Blue (50 µl 0.4% Trypan Blue, 45 µl PBS and 5 µl cell 

suspension). The cells are counted using a light microscope. Hayem’s staining solution lyses 

the red blood cells and the nucleus in the leukocytes is stained with a purple colour. In 

contrast, Trypan Blue discriminates between living and dead cells (dead cells absorb the dye 

and are seen as blue spots). 

 

• The Bürker counting chamber is carefully cleaned and the coverslip is placed over the 

counting surface.  

• The stained cell suspension is pipetted onto the Bürker counting chamber.  

• Cells in A squares are counted using the 10x objective, see figure 3.2 below.  

• The cell concentration is calculated as shown in equation 1, when the cell counting 

has reached > 200 cells. 
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Equation 1: 

 

! =    !
!  !  !  !  !  

  !  1000 = !"##$/!"   

 

C = cell concentration (cells/mL) 

N = the number of cells counted 

a  = the number of squares (A) counted 

V = volume of the counting chamber (0.1 µl) 

D = dilution factor (1:20) 

 

 
Figure 3.2: The image illustrates the 9 squares (A) in the Bürker counting chamber. When counting cells, 
one counts the cells within the A squares as well as cells lying on the top and left hand lines of each square. This 
is illustrated in the right picture (B) where all the cells marked in black are counted, while the cells marked in 
white are not. 

 

 

 

 

 

 

 

 

 

 

 A  B 
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3.2 Isolation of DNA/RNA and protein  
 

3.2.1 AllPrep® DNA/RNA/Protein Mini Kit 

 

The AllPrep® DNA/RNA/Protein Mini Kit is designed for purification of genomic DNA, 

total RNA and total protein content from the same cell or tissue sample. In the first step the 

samples are lysed and homogenized with a guanidine-isothiocyanate-containing buffer. This 

buffer inactivates DNases, RNases and proteases, to ensure isolation of intact DNA, RNA 

and proteins. The lysate is first transferred to an AllPrep DNA spin column, which enables 

selective and efficient binding of genomic DNA (15-30 kb). The flow-through from the 

AllPrep DNA spin column is used to isolate total RNA (> 200 nucleotides). The DNA spin 

column has a restricted capacity of 1x107 cells. After washing, ready-to-use DNA is eluted 

from the column. 91 The flow-through from the AllPrep DNA spin column is added ethanol to 

get the suitable binding conditions for RNA before the sample is applied to an RNeasy spin 

column. Total RNA will bind to the column and after washing the RNA is eluted with 

RNase-free water. For protein purification an aqueous protein precipitation solution is added 

to the flow-through of the RNeasy spin column. Proteins are pelleted by centrifugation and 

intact proteins are redissolved in an appropriate buffer and ready for further use. An overview 

of the purification steps is presented in figure 3.3. 91   
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Figure 3.3: An overview of the DNA, RNA and protein isolation procedure. The figure is obtained from the 
AllPrep® DNA/RNA/Protein Mini Handbook. 91  

 

Procedure 

• In brief, the cells were lysed in Buffer RLT according to table 3.1 below.  

 
Table 3.1: Volumes of Buffer RLT to be added for lysing pelleted cells. 

Number of pelleted cells Volume of Buffer RLT 
< 5x106 350 µl 
5x106 – 1x107 600 µl 
 

• The lysate was homogenized through a QIAshreddder spin column and centrifuged at 

17.000 x g for 2 minutes.  

10 AllPrep DNA/RNA/Protein Mini Handbook   09/2011

Wash AllPrep
column

Elute DNA

Total protein

Add ethanol to
flow-through

Bind RNA to
RNeasy column

RNA

Cells or Tissue*

Lysis

Bind DNA to Allprep
column

RNA and protein

DNA

Wash RNeasy
column

Elute RNA

Precipitate
protein

Redissolve
protein

Protein

Total RNA

Genomic DNA

AllPrep DNA/RNA/Protein Procedure
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• Homogenized lysate was transferred to an AllPrep DNA spin column and centrifuged 

for 30 seconds at ≥ 8000 x g.  

• The AllPrep DNA spin column was moved to a new collection tube and stored at 

room temperature (15-25°C) for later DNA purification steps. 

• The flow-through was used for RNA purification. 

 

Total RNA purification 

• Either 250 µl 96-100% ethanol (if 350 µl Buffer RLT was used) or 400 µl 96-100% 

ethanol (if 600 µl Buffer RLT was used) was added to the flow-through from the 

previous step before the mixture was transferred to an RNeasy spin column and 

centrifuged for 15 seconds at ≥ 8000 x g. The flow-through was used for protein 

purification.  

• The total RNA was washed several times before it was eluted by adding 40 µl RNase-

free water to the spin column membrane and centrifuged at 1 minute at 8000 x g.  

• The RNA samples were stored at -80°C.  

 

In this study the flow-through used for protein purification was stored at -80°C for further 

use. 

 

Genomic DNA purification 

• 500 µl washing buffer was added to the AllPrep DNA spin column before the column 

was centrifuged for 15 seconds at 8000 x g.  

• The DNA was washed with a second washing buffer before 50 µl preheated (70°C) 

elution buffer (EB) was added to the column. The column was incubated at room 

temperature for 2 minutes followed by the elution of DNA by centrifugation for 1 

minute at 8000 x g. This step was performed twice (total volume = 100 µl).  

• The DNA samples were stored at -80°C.  
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3.2.2 QIAamp® RNA Blood Mini Kit 

 

QIAamp® RNA Blood Mini Kit may be used for isolation of total RNA from a maximum of 

1.5 mL human whole blood (up to 0.5 mL whole blood equals 2x106 leukocytes and from 0.5 

- 1.5 mL whole blood equals 2x106 – 1x107 leukocytes). The principle of the method is first 

to lyse the erythrocytes, while the leukocytes are regained by centrifugation. The leukocytes 

are then lysed during the RNA isolation steps, under denaturing conditions where RNases are 

inactivated to ensure isolation of intact RNA. A high-salt buffering system is used in this 

process for binding of RNA longer than 200 bases to a silica-based membrane. The RNA is 

eluted from the membrane by addition of RNase-free water. 92 An overview of the RNA 

isolation is presented in figure 3.4. 

  
Figure 3.4: An overview of the procedure for isolation of ready-to-use RNA with QIAamp® RNA Blood 
Mini Kit. The figure is obtained from the QIAamp® RNA Blood Mini Handbook. 92 

QIAamp RNA Blood Mini Handbook   04/2010 9

Blood

Selectively lyse
erythrocytes

Wash 3x

Bind total RNA
to QIAamp
membrane

Elute

Lyse leukocytes

Intact leukocytes

Homogenize with
QIAshredder

Add ethanol

Lysed erythrocytes

Ready-to-use RNA

QIAamp RNA Blood Mini
Procedure

1063021_HB  22.04.2010  19:52 Uhr  Seite 9



Methods 

 29 

Procedure 

Enrichment of MCs 

• One volume (1.5 mL) of whole blood was mixed with five volumes of Buffer EL and 

incubated on ice for 10-15 minutes before centrifugation at 400 x g for 10 minutes at 

4°C.  

• The supernatant was discarded. 

• Two volumes of Buffer EL (3 mL) were then added and the pellet was resuspendeded 

quickly by vortexing followed by centrifugation at 400 x g for 10 minutes at 4°C. 

• The pellet was resuspended in 600 µl Buffer RLT (added 10 µl ß-Mercaptoethanol 

per 1 mL Buffer RLT) per 2x106 – 1x107 leukocytes for further RNA purification.  

 

RNA purification 

• Before purification the lysate was homogenized through a QIAshredder spin column 

by centrifugation at 17.000 x g for 2 minutes. 

• One volume of 70% ethanol was added to the homogenized lysate and the sample was 

mixed before it was transferred to a silica-based membrane column and centrifuged 

for 15 seconds at ≥ 8000 x g.  

• The total RNA was then washed several times before 40 µl RNase-free water was 

added to the column for elution of RNA by centrifugation for 1 minute at ≥ 8000 x g. 

• All RNA samples were stored at -80°C for further use. 

 

3.2.3 Isolation of DNA and RNA from tumour samples 

 

When DNA and RNA are isolated from tumour biopsies it is necessary to homogenize the 

tissue before the nucleic acid purification procedure. Homogenization will shear high-

molecular-weight components and create a homogenous lysate. 91 

 

Procedure 

• The frozen tumour biopsy was transferred from liquid nitrogen to RLT lysis buffer 

and homogenized by an Ultra-Turrax T8 (IKE Works, Staufen, Germany) rotor-stator 

homogenizer before centrifugation at 17.000 x g for 3 minutes. 

• The supernatant was then transferred into an AllPrep DNA spin column and 

centrifuged for 30 seconds at ≥ 8000 x g. 



Methods 

 30 

• Isolation of RNA/DNA was performed as described in section 3.2.1. 

 

3.3 Concentration measurements on NanoDrop 2000c Spectrophotometer 
 

The DNA and RNA concentration in a sample can be determined spectrophotometrically by 

measuring the absorbance at wavelength 260 nm. An optical density value of 1 corresponds 

to a concentration of 50 µg/mL for double-stranded DNA and 40 µg/mL for single-stranded 

RNA. The absorbance is however also measured at 280 nm for detection of possible protein 

contamination. Thus, the 260/280 ratio is used to define the purity of DNA and RNA. Highly 

purified DNA result in a ratio of approximately 1.8, while a ratio of approximately 2.0 is 

defined as pure RNA. The presence of protein or other contaminants in the samples will 

result in a lower ratio. 93  

 

Procedure 

• 2 µl of “blank” sample (Milli-Q water for RNA measurements, Buffer EB for DNA 

measurements) was used to reset the instrument. 

• 2 µl of fresh sample (RNA and DNA) was pipetted directly on to the bottom pedestal, 

the absorbance at 260 nm and 280 nm and the sample concentration as well as the 

sample purity was automatically calculated by the NanoDrop 2000c instrument. 

  

3.4 DNA and RNA quality assurance by the use of Bioanalyzer 2100  

 

Bioanalyzer 2100 (Agilent Technologies) is a microfluidics-based platform, which use the 

“lab-on-a-chip technology” (LOC) to perform analyses in a single chip. The LOC-technology 

reduces both the separation time and sample volumes. 94 

 

The chip contains micro-channels of glass, which create organised networks among several 

wells and before analysis the micro-channels are filled with both polymer and a fluorescence 

dye. Samples and a ladder with marker are loaded in each well. Fluorescence dye molecules 

are inserted into the DNA or RNA strands making them detectable with laser scanning. After 

loading of samples the negatively charged DNA and/or RNA molecules are separated 

according to size by migration towards the anode due to a voltage gradient. Small fragments 
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migrate faster than large fragments. The size and concentration of the DNA/RNA fragments 

correlates with the fluorescence detected.  94 

 

A software algorithm filters the data and presents the results as electropherograms (see figure 

3.5) where fluorescence intensity versus migration time is plotted (the data can also be 

displayed as a densitometry plot, a “gel-like image”.) The software automatically compares 

the unknown samples to the ladder, which contains a mixture of RNA of known 

concentrations, to determine the concentration of the unknown samples. The 18S and 28S 

ribosomal peaks are used for evaluation of the integrity of RNA and well-separated peaks 

indicate high quality RNA. The “lower” marker is used to align the samples and compensate 

for drift effects. 94, 95 The RNA integrity is presented as the RNA integrity number (RIN), 

which is scaled from 1-10, where 10 is the best. Samples with RIN values of 10 are 

considered as RNA samples of ideal quality. 94-97  

 

 
Figure 3.5: The figure shows a RNA electropherogram from the Bioanalyzer 2100 for a pancreatic 
tumour sample (PC6). The 18S and 28S ribosomal peaks are used for evaluation of the integrity of RNA and 
well-separated peaks indicate high quality RNA. The marker solution contains a 50 bp DNA fragment, which is 
used as a lower marker to align the samples within the same run. The marker is displayed as the first peak in the 
electropherograms. 94  

 

 

 

 

 

 

18S 28S Marker 
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Procedure 

The RNA 6000 Nano Kit was used in this procedure. The procedure was performed as 

described in Agilent RNA 6000 Nano Kit Guide. 95 A brief explanation is described below. 

 

• 550 µl of RNA 6000 Nano gel matrix was passed through a spin filter and centrifuged 

at 1500 x g for 10 minutes. Aliquots of 65 µl were transferred into RNase-free 

microfuge tubes and added 1 µl of RNA 6000 Nano dye concentrate before the gel-

dye mix was centrifuged at 13.000 x g for 10 minutes.  

• Gel-dye mix (9 µl), Agilent RNA 6000 Nano Marker (5 µl), ladder (1µl) and samples 

(1 µl) was pipetted into marked wells on the chip. Fully prepared chip was vortex on a 

IKA vortexer at 2400 rpm at 1 minute. 

• The chip was run at the Bioanalyzer 2100 within 5 minutes.   

 

3.5 DNase treatment and reverse transcription 
 

DNase treatment is performed on the RNA samples for degradation of contaminating single-

stranded and double-stranded DNA. Reverse transcription results in single-stranded 

complementary DNA (cDNA), which is the template for tumour cell detection and 

characterization by RT-qPCR. Total single-stranded RNA is reverse transcribed by binding 

the M-MLV (Molony Murine Leukemia Virus) Reverse Transcriptase (RT), a recombinant 

DNA polymerase, to the random primers for initiation of the cDNA synthesis.  RNaseOUTTM 

Ribonuclease Inhibitor is added to the mixture to protect RNA from degradation by RNases 

and will in this way improve the total cDNA yield. In addition, a negative control sample, 

without the addition of reverse transcriptase (NO RT), is included in every run for detection 

of inefficient DNase treatment and thus contaminating DNA in the RNA samples. 54, 98, 99  
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Procedure 

DNase treatment 

• Thaw the RNA samples on ice. 

• To 0.5 µg RNA sample add the following reagents: 

- 2 µl 5 x FSS Buffer 

- 1 µl RQ1 DNase 

- 0.25 µl RNaseOUT RNase inhibitor 

• dH2O is then added to a total reaction volume of 10 µl. 

• Incubate the samples for 30 minutes at 37°C (water bath). 

• Add 1.0 µl RQ1 Stop Solution to each tube. 

• Incubate the samples for 10 minutes at 65°C to inactivate the DNase enzyme and then 

stop the DNase treatment.  

 

Reverse transcription of DNase-treated RNA 

• Add the following reagents to each tube with DNase treated RNA: 

- 0.2 µl 1 µg/µl random nonamer 

- 0.4 µl 25 mM dNTP 

- 0.4 µl dH2O 

• Incubate the RNA samples for 5 minutes at 65°C before cooling on ice for a 

minimum of 2 minutes. Then add the following to each tube: 

- 2.0 µl 5 x FSS Buffer 

- 2.0 µl 0.1 M DTT 

- 1.0 µl RNaseOUT RNase inhibitor 

- 2.0 µl dH2O 

• Incubated the samples for 2 minutes at 37°C (water bath). 

• After this incubation, add 1.0 µl MMLV reverse transcriptase to each tube and 

incubate for 10 minutes at room temperature, following the reverse transcription at 

37°C (water bath) for 1 hour. 

• Inactivation of the enzyme is done by incubating the cDNA samples for 15 minutes at 

65°C. 

• Finally, 30 µl dH2O is added for a concentration of 10 ng/µl (total volume of 50 µl). 

• All samples were stored at -80°C for further use. 
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3.6 Quantitative real-time PCR 
 

Reverse transcriptase quantitative polymerase chain reaction, RT-qPCR, allows the 

monitoring of PCR product formation during every PCR cycle, thus the name “real-time”, by 

the use of different fluorescence chemistries (the DNA binding dye SYBR® Green I, 

hydrolysis probes, hybridization probes, molecular beacons among others). The principle of 

detection is that an increase in the fluorescence signal is directly proportional to the amount 

of target mRNA in the sample at the threshold value. 54, 100, 101 The threshold value is defined 

at the point where the mRNA target doubles for every cycle. The amplification is at this point 

described as 100% effective. The number of cycles at which the fluorescence exceeds the 

threshold is called the threshold cycle (Ct), crossing point (CP) or quantification cycle (Cq). 
54, 100, 102 A low Cq-value reflects a high concentration of target mRNA present in the sample 

(see figure 3.6). 

 

Figure 3.6: An amplification plot showing an increase in the fluorescence signal as a function of the 
number of PCR cycles. Sample A (Cq = 15.61) contains a higher amount of target mRNA compared to sample 
B (Cq = 18.29).  The amplification plot is obtained from analysis of the tumour samples on the LightCycler® 480 
real-time PCR instrument (Roche Applied Science). 
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When SYBR® Green I is used as the detection method the PCR products can be verified by 

dissociation curve analyses. As different PCR products have different melting temperatures 

(Tm), the dissociation curve analysis makes it possible to separate between specific and non-

specific PCR products. 100-102 See figure 3.7 for an example of a dissociation curve.  

 

  
Figure 3.7: Dissociation curve analysis presented by the fluorescence as a function of temperature. The 
figure clearly shows that the correct PCR products have been amplified, this is demonstrated by similar melting 
temperatures (Tm), as expected. The dissociation curve is obtained from analysis of the tumour samples on the 
LightCycler® 480 real-time PCR instrument (Roche Applied Science). 
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Procedure 

• Thaw all reagents on ice. 

• Prepare mastermixes for each mRNA marker according to the volumes described in 

table 3.2 below. 

 

Table 3.2: Mastermixes for quantification of CK8, CK19, EpCAM, CEACAM5 and BCR by RT-qPCR. 

 CK8 CK19 EpCAM CEACAM5 BCR 
Reagents Final 

[conc.] 
Vol. 
(µl) 

Final 
[conc.] 

Vol. 
(µl) 

Final 
[conc.] 

Vol. 
(µl) 

Final 
[conc.] 

Vol. 
(µl) 

Final 
[conc.] 

  Vol. 
(µl) 

dH2O  17.38  16.13  16.51  17.01  16.88 
10x PCR 
Buffer 

1x 2.50 1x 2.50 
 

1x 2.50 1x 2.50 1x 2.50 

50 mM 
MgCl2 

1.50 0.75 2 1.00 1.25 0.63 1.25 0.63 2 1.00 

5 mM 
dNTP-U-
mix 

0.2mM 1.00 0.2mM 1.00 0.2mM 1.00 0.2mM 1.00 0.2mM 1.00 

10 µM F 
primer 

0.10µM 0.25 0.3µM 0.75 0.3µM 0.75 0.2µM 0.50 0.15µM 0.38 

10 µM R 
primer 

0.10µM 0.25 0.3µM 0.75 0.3µM 0.75 0.2µM 0.50 0.15µM 0.38 

1:200 
SYBR® 
Green I * 

1x 0.75 1x 0.75 1x 0.75 1x 0.75 1x 0.75 

Hot Goldstar 
enzyme 

 0.12  0.12  0.12  0.12  0.12 

Volume  23.0  23.0  23.0  23.0  23.0 
Vol. = Volumes per reaction 
[Conc.] = concentrations 
* SYBR® Green I in dimethyl dulfoxide  
 

• 23 µl of each mastermix was distributed to each well on the PCR plate before 2 µl (20 

ng) cDNA was added. 

• All samples were analysed in duplicates.  

• No template control samples, containing 2 µl dH2O instead of cDNA, were included 

for every mRNA marker in every run to assure no existence of non-specific PCR 

products. 

• cDNA from the pancreatic cancer cell line AsPC-1 was used as a calibrator (positive 

control) and included for every mRNA marker in every run. 

• Every run included the reference gene BCR used for normalization (see section 3.6.1). 
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• The PCR plate was placed in the LightCycler® 480 real-time PCR instrument (Roche 

Applied Science) and run at 95°C for 10 minutes to activate the enzyme, 40 cycles of 

30 seconds at 95°C (denaturation) followed by 1 minute at 60°C (annealing and 

synthesis). 

• The purity of the PCR products was verified by dissociation curve analysis at 95°C 

for 1 minute (denaturation) followed by 55°C for 30 seconds (renaturation) and 95°C 

for 30 seconds (denaturation).  

 

3.6.1 Calculation of the relative mRNA expression level 

 

In relative quantification all samples are normalized to a constantly expressed housekeeping 

mRNA (reference mRNA) to control for variations between the samples. A calibrator sample 

is also included to both correct for sample-to-sample variations and for run-to-run variation in 

the quantification process. 103 Mean Cq-values, based on two replicates analysed, are used in 

the calculations. Moreover, the mRNA levels were normalized against the BCR 

(NM_004327) mRNA levels and expressed in relation to the calibrator sample in this study. 

Relative gene expression was calculated for each mRNA marker using the 2-ΔΔCq method as 

shown below (equation 2 and equation 3). 102-104  

 

Equation 2: 

 

! = 2!∆∆!"     

 

R = relative mRNA concentration for target biomarker. 

2 = the amplification efficiency where the template doubles in each cycle during exponential 

amplification. 102, 104  

 

Equation 3: 

 

- ΔΔCq = - (ΔCqsample - ΔCqcalibrator)   where, 

 

ΔCqsample = (Cqbiomarker - Cqreference) and ΔCqcalibrator = (Cqbiomarker - Cqreference) 
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3.6.2 Sensitivity analysis 

 

A sensitivity analysis was performed to determine the lowest number of CTCs detectable by 

each mRNA marker with RT-qPCR. After enrichment of MCs from PB by LymphoprepTM, 

2x106 cells were distributed in 6 eppendorf tubes and added 0, 2, 20, 200, 20 000 and 200 

000 AsPC-1 cells, respectively. Two replicates for each standard were prepared and 

quantified by RT-qPCR. 

 

Procedure 

• Enrichment of MCs was done by LymphoprepTM, as described in section 3.1.2. 

• The amount of cells/mL was determined as described in section 3.1.3 and 2x106 cells 

were distributed in 6 eppendorf tubes and added 0, 2, 20, 200, 20 000, 200 000 AsPC-

1 cells, respectively. Two parallel series were made. 

• DNase treatment and reverse transcription was performed as described in section 3.5. 

• Finally, the level of each mRNA marker in AsPC-1 cells was quantitated by RT-

qPCR described in section 3.6 and the sensitivity was determined for each mRNA 

assay.  

 

3.7 Gel electrophoresis (3% agarose) 
 

By agarose gel electrophoresis DNA fragments (e.g. PCR products) are separated according 

to size. When applying an electrical field across the agarose gel the DNA, which is negatively 

charged, will migrate towards the anode. The larger fragments migrate slowly because their 

progress is more impeded by the agarose matrix. The DNA bands, which consist of a 

collection of DNA molecules of identical length, on the agarose gel are either labelled or 

stained for visualization. 105, 106  

 

Procedure 

• 1.5 g of agarose was dissolved in 50 mL of 0.5 x TBE Buffer, by boiling to compose a 

3% agarose gel.  

• The solution was poured into a tray and a comb was added for creation of the wells.  

• The gel was stained with GelRedTM. The gel was set to polymerize for at least 30 

minutes before the comb was carefully removed.  
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• The samples were then added 6x loading buffer and loaded into the wells and 

separated by an electrical field of 80 V. 

• Finally the PCR products were visualized by ultra violet light using the INgenius 

detector (Syngene). 

 

3.8 Peptide Nucleic Acid Clamp PCR assay for KRAS mutations 
 

In this study, genomic KRAS mutations in codons 12 and 13 were detected by a peptide 

nucleic acid (PNA) clamp method based on SYBR® Green I and a high-fidelity DNA 

polymerase. 64 The PNA clamp method is based on competitive binding of the PNA and the 

primer during the analysis. That is, the PNA suppress elongation of the wild-type templates 

by binding to wild-type KRAS templates and in this way block primer annealing (figure 3.8 

A). In contrast, when a mutation is present it results in a mismatch between the PNA and the 

DNA, resulting in an unstable PNA/DNA complex, allowing the primer to bind to the DNA 

making elongation possible (figure 3.8 B) Thus, the binding of PNA to wild-type templates 

favour amplification of mutated templates. 64, 107 

 

 
Figure 3.8:  Schematic presentation of the PNA clamp assay. The primer and the PNA will bind 
competitively to part of the same DNA sequence. A) With wild-type KRAS as template, the PNA binds to the 
DNA and blocks primer annealing and elongation. B) When a mutation is present, there is a mismatch between 
the PNA and DNA leading to a weaker binding, allowing the primer to bind DNA and elongation can take 
place. The figure is obtained, with permission, from Gilje et al. 2008. 64  
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Procedure 

• Thaw all samples on ice and reagents at room temperature.  

• Prepare PNA mastermixes according to the volumes described in the table 3.3 below. 

 
Table 3.3: PNA mastermixes for Peptide Nucleic Acid Clamp PCR assay. 

Reagents Final [conc.] Vol. 
(µl) 

dH2O  7.987 
5x Phusion HF Buffer 1x 5.000 
25 mM dNTP 0.2 mM 0.200 
KRAS-PNA-FB primer 0.15 µmol/L 0.375 
KRAS-PNA-RB primer 0.15 µmol/L 0.375 
1:200 SYBR® Green I *  0.750 
2 U/µl Phusion Polymerase 1x 0.250 
Volume  15.0 
   
100 µM PNA 0.25 µM 0.063 
Vol. = Volumes per reaction  
[conc.] = concentration 
*1:200 SYBR® Green I in dimethyl sulfoxide 
 

• 15 µl of PNA mastermixes were distributed to each well on the PCR plate before 10 

µl (200 ng) DNA was added to each well.  

• All samples were analysed in triplicates, both with and without PNA. 

• No template control samples, containing 10 µl dH2O instead of DNA, were included 

in every run to assure no existence of non-specific PCR products. 

• DNA from the pancreatic cancer cell line AsPC-1 was used as a positive control and 

included in every run. In addition, a 1:1000 dilution of DNA from the colorectal 

carcinoma cell line LS174T (heterozygous GGT>GAT codon 12 KRAS mutation 

[c.35G>A]) in wild-type DNA was analysed in every experiment to monitor the 

sensitivity of the assay. 108 Wild-type DNA was analysed as a negative control.  

• The PCR plate was placed in the Mx3000P real-time PCR instrument (Stratagene®) 

and run at 98°C for 30 seconds (initial denaturation and activation of the enzyme) 

followed by 45 cycles of 20 seconds at 98°C (denaturation), 10 seconds at 76°C (PNA 

annealing), 20 seconds at 60°C (primer annealing) and 72 seconds at 72°C 

(elongation). Fluorescence measurements for SYBR® Green I were completed at the 

end of the elongation step.  
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• The purity of the PCR products was verified by dissociation curve analysis at 95°C 

for 1 minute (denaturation) followed by 60°C for 30 seconds (renaturation) and 95°C 

for 30 seconds (denaturation).  

 

For each sample, the relative ΔCq parameter was calculated as shown in below.  

 

Equation 4: 

 

ΔCq = Cq+PNA – Cq-PNA  

 

Cq+PNA and Cq-PNA is the mean Cq-values based on the three replicates with PNA and without 

PNA, respectively. To obtain a more easily interpreted parameter, ΔΔCq was calculated.  

 

Equation 5: 

 

ΔΔCq = ΔCqwt, min – ΔCqsample  

 

Where ΔCqwt, min denoted the lowest ΔCq measured for the control population. A sample was 

defined as positive for KRAS mutations when ΔΔCq > 0, i.e. that the ΔCq of the sample was 

lower than the ΔCqwt, min. 108 For samples without an amplification curve, the Cq-value was 

set to 45, to not exclude these samples from further analyses.  

 

3.9 Culturing of pancreatic cancer cells 
 

3.9.1 Culturing of AsPC-1 cells 

 

The pancreatic cancer cell line AsPC-1 was cultured in flasks containing RPMI 1640 (Sigma) 

supplemented with 2mM Glutamine (Sigma), 1mM Sodium Pyruvate (NaP, Sigma), 10% 

Foetal Bovine Serum (FBS, Sigma) and 5 mL Penicillin Streptomycin (Sigma). The cells 

were harvested by trypsination.  
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All practical work with cultured cells was performed with good sterile technique. UV light 

was used for disinfection of the sterile bench before and after use. 

 

• Medium was preheated to 37°C before 10 mL was added to a 25 cm2 flask. 

• One ampoule with cells (2-4 x106 cells), stored in liquid nitrogen, was quickly thawed 

in a water bath at 37°C before the cells were transferred to the medium. 

• The cells were grown at 37°C with 5% CO2 for 2-3 days. 

 

3.9.2 Subculturing of cells 

 

• All reagents (phosphate buffered saline, trypsin and growth medium) were preheated 

to 37°C before use. 

• The cells were examined in the microscope and split when they were 70-80% 

confluent.  

• The medium was then removed and the cells were washed by adding 5 mL (to a 25 

cm2 flask) or 10 mL of 1xPBS (to a 75 cm2 flask). 

• After the washing, 1 mL (25 cm2 flask) or 2 mL trypsin (to a 75 cm2 flask) was added 

and the flask was incubated at 37°C with 5% CO2 for approximately 5 minutes.  

• 4 mL (25 cm2 flask) or 3 mL (to a 75 cm2 flask) of preheated medium was then added 

for deactivation of the trypsin in a total volume of 5 mL. 

• After trypsination the cells were counted with Trypan Blue as described in section 

3.1.3 and 2-4x104 cells were transferred to a new 75 cm2 flask containing 25 mL of 

preheated medium.  

• The cells were grown at 37°C with 5% CO2.
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4 Results 
 

4.1 An overview of the methodological approach 
 

In this study we wanted to investigate whether we could detect CTCs and DTCs in PB and 

BM samples from locally advanced and/or metastatic pancreatic cancer patients. Before the 

recruitment of the patient samples could start, parallel experiments with two red cell lysis 

buffers versus LymphoprepTM for the enrichment of CTCs/DTCs, followed by DNA and 

RNA isolation with different kits were compared. A sensitivity analysis was performed to 

determine the lowest number of CTCs detectable by each mRNA marker with RT-qPCR. 

MCs, which include the tumour cells, were enriched from the PB and BM samples by density 

centrifugation using LymphoprepTM before cell lysis and RNA and DNA isolation using 

AllPrep® DNA/RNA/Protein Mini Kit. Afterwards, the RNA samples were treated with RQ1 

DNase before cDNA was synthesized using M-MLV reverse transcriptase. Quantification of 

the four epithelial-specific mRNAs CK8, CK19, EpCAM and CEACAM5 were then 

performed with the LightCycler® 480 real-time instrument using the qPCR Core Kit for 

SYBR® Green I. The mRNA concentrations were normalized against the BCR reference 

mRNA and expressed relative to the calibrator sample (AsPC-1 cell line) by the 2-ΔΔCq 

method. For detection of KRAS mutations in codon 12 and 13 the DNA samples were 

analysed by the Peptide Nucleic Acid Clamp Assay. In PNA clamp PCR, wild-type specific 

PNA oligomers are used to suppress amplification of wild-type alleles during PCR. Any 

mutant allele will show unhindered amplification. An overview of the methodological 

approach is presented in figure 4.1. 
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Figure 4.1: An overview of the different methodological approaches used in this study.   
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4.2 Optimization of methods for enrichment of CTCs and DTCs 
 

Three different buffers (LymphoprepTM, RBC lysis buffer and EL buffer) were compared for 

enrichment of CTCs/DTCs followed by isolation of DNA and RNA using different kits (see 

section 3.2.1 and 3.2.2). Figure 4.2 shows an overview of the different methods used in the 

experiments.  

 

 
Figure 4.2: An overview of three different methods used for enrichment of CTCs and DTCs. Different 
DNA/RNA kits were used to verify the compatibility between the different enrichment methods and the 
DNA/RNA purification.  

 

All experiments were performed by spiking 1000 pancreatic AsPC-1 cancer cells into 9 mL 

of PB in EDTA tubes (section 3.9.2), followed by tumour cell enrichment and DNA/RNA 

isolation. Before resuspension of the MCs in RLT buffer, the number of cells was counted 

(see section 3.1.3) to avoid overloading of the DNA/RNA column (the columns have a 

restricted capacity of 1x107 cells). The low RNA concentrations (see table 4.1), measured by 

the NanoDrop instrument (section 3.3), revealed that neither RBC lysis buffer (section 3.1.1) 

nor EL buffer (section 3.2.2) is compatible with nucleic acid isolation using the AllPrep® 

DNA/RNA/Protein Mini Kit. In contrast, enrichment of MCs by LymphoprepTM (section 

3.1.2) followed by nucleic acid isolation using the AllPrep® DNA/RNA/Protein Mini Kit 

(section 3.2.1) did result in a sufficient amount of high quality RNA (table 4.1). This was also 

the case when QIAamp® RNA Blood Mini Kit (section 3.2.2)was used in combination with 

the EL buffer, a commercially available erythrocyte lysis buffer, for enrichment of MCs. 

LymphoprepTM • AllPrep® DNA/RNA/Protein 
Mini Kit 

RBC lysis 
buffer 

• AllPrep® DNA/RNA/Protein 
Mini Kit 

• QIAamp®  RNA Blood Mini Kit 

EL buffer 
• AllPrep® DNA/RNA/Protein 
Mini Kit 

• QIAamp®  RNA Blood Mini 
Kit 
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However, due to the capability of isolating DNA, RNA and protein from the same patient 

sample, the LymphoprepTM/AllPrep® strategy was chosen for further analyses in this study. 

Table 4.1 shows some relevant examples from the different experiments of RNA quantity and 

quality measured as the A260/A280 ratio when different enrichment procedures and different 

kits for RNA purification are being used.  

 
Table 4.1: Some examples of the RNA concentrations obtained in the verification of the most appropriate 
enrichment and isolation procedure to be used in this study. The ratio of absorbance at 260 and 280 nm is 
used to assess the purity of RNA and a ratio of ~2.0 is generally accepted as “pure” for RNA.  

Enrichment method Sample 
number 

AllPrep® DNA/RNA/Protein 
Mini Kit 

QIAamp® RNA Blood Mini 
Kit 

  RNA (ng/µl) A260/A280  RNA (ng/µl) A260/A280 
LymphoprepTM 1 82.9 2.04 ND ND 

2 90.0 2.04 ND ND 
3 144.1 2.05 ND ND 
4 137.0 2.07 ND ND 

RBC Lysis Buffer 5 1.6 1.44 88.4 1.92 
6 1.3 1.80 90.5 1.95 
7 1.6 1.67 33.1 1.88 
8 1.7 1.95 39.5 1.92 

EL Buffer 9 3.7 2.05 84.4 1.97 
10 4.4 1.80 87.8 1.96 
11 ND ND 70.8 1.98 
12 ND ND 92.7 1.99 

ND = not determined. 
 

4.3 Determination of the sensitivity for CK8, CK19, EpCAM and CEACAM5 

mRNA assays 
  

To define the sensitivity of the four RT-qPCR assays, the detection limit of each assay was 

determined by mixing 2x106 MCs from a healthy individual with 0, 2, 20, 200, 20 000 and 

200 000 pancreatic AsPC-1 tumour cells, respectively. Two parallel dilution series were 

made for each marker. After DNA/RNA isolation with the AllPrep® DNA/RNA/Protein Mini 

Kit (section 3.2.1) and reverse transcription to cDNA (section 3.5), the four mRNA markers 

CK8, CK19, EpCAM and CEACAM5 were quantified in duplicates for each sample using 

the LightCycler® 480 real-time instrument (section 3.6).   
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For the mRNA markers CK8, EpCAM and CEACAM5, the lowest number of AsPC-1 cells 

detectable (higher marker mRNA level than in normal blood) was ≤ 200 per 2x106 MCs 

(figure 4.3 A, C and D). For CK19 the sensitivity was ≤ 2 AsPC-1 cells per 2x106 MCs 

(figure 4.3 B).  

 

 
Figure 4.3: The assay sensitivity for CK8, CK19, EpCAM and CEACAM5 was determined by 
quantification of the four mRNAs in 2x106 mononuclear cells (MCs) added 0, 2, 20, 200, 20 000 and 200 
000 pancreatic AsPC-1 tumour cells. Samples added zero AsPC-1 cells show the levels of the epithelial 
mRNA markers in normal blood. The error bars are based on the standard deviation of two replicates. The figure 
shows a detection limit of A) ≤ 200 AsPC-1 cells for the CK8 assay, B) ≤ 2 AsPC-1 cells for the CK19 assay, 
C) ≤ 200 AsPC-1 cells for the EpCAM assay and D) a sensitivity of ≤ 200 AsPC-1 cells for the CEACAM5 
assay.   

 

4.4 Relative expression of CK8, CK19, EpCAM and CEACAM5 mRNA in PB 

and BM samples from healthy individuals 

 

The levels of CK8, CK19, EpCAM and CEACAM5 mRNA in normal PB and BM were 

established from analyses of nine healthy individuals. For all the markers, the highest relative 

mRNA level in the control population was used as a cut-off value for normal mRNA 
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expression in further analyses. The cut-off values for CK8, CK19, EpCAM and CEACAM5 

in PB were 3.34x10-5, 3.08x10-6, 2.30x10-5 and 2.45x10-6, respectively. For the BM samples 

the cut-off values were 3.92x10-5, 1.90x10-5, 1.30x10-2 and 4.09x10-6 for CK8, CK19, 

EpCAM and CEACAM5.  

 

4.5 Evaluation of the mRNA levels in tumour samples from pancreatic cancer 

patients 

 

To confirm that the mRNA markers chosen for this study are highly expressed in pancreatic 

tumour samples, and thus can be used as surrogate markers for the presence of tumour cells 

in PB and BM, we analysed the CK8, CK19, EpCAM and CEACAM5 mRNA levels in one 

liver metastasis from a pancreatic cancer patient and five tumour samples from 

adenocarcinoma of the pancreas by RT-qPCR. All tumour samples showed high levels of the 

four mRNA markers compared to the levels seen in PB and BM of healthy individuals (see 

figure 4.4). For CK8 mRNA, 6/6 tumour samples showed elevated mRNA levels compared 

to the normal expression in PB and BM samples in the control population. This was also the 

case for CK19 and EpCAM mRNA levels. Four of six tumour samples had a highly increased 

CEACAM5 mRNA level compared to PB and BM.  

 

For comparison of the mRNA levels in tumours and the levels in normal PB and BM samples 

we calculated the specificity index for the different mRNA markers (table 4.2) with the 

equation shown below (equation 6). 

 

Equation 6:  

 

!"#$%&%$%'(  !"#$% =   !"#$%&  !"#$%  !"  !"#$%&"'($  !"#!$%  !"#$"%&
!!"!!"#  !"#$%  !"  !"/!"

   109 

 
Table 4.2: Specificity indexes for the four mRNA markers in PB and BM.  

 CK8 CK19 EpCAM CEACAM5 
PB 7.05x103 1.41x105 1.25x104 3.10x104 
BM  6.01x103 2.29x104 2.21x101 1.86x104 
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The specificity indexes show that the CK19 assay had the best specificity in both PB and BM 

compared to the other markers. A specificity of 1.41x105 means that, in average, one tumour 

cell can be detected among 1.41x105 normal cells in PB and similarly detection of one tumour 

cell among 2.29x104 normal cells in BM. The median tumour level of CK19, EpCAM and 

CEACAM5 in PB were more than 104-fold higher than the highest level in normal blood and 

indicates that the markers are suitable for CTC detection. In BM, the 104-fold higher level 

compared to the highest level in BM from the control population indicates that CK19 and 

CEACAM5 have the highest specificity in relation to DTC detection. 110 

 

 
Figure 4.4: The relative mRNA expression in A) CK8, B) CK19, C) EpCAM and D) CEACAM5 in one 
liver metastasis from a pancreatic cancer patient and five tumour samples from adenocarcinoma of the 
pancreas compared to the mRNA levels in PB and BM samples from nine healthy volunteers.  
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4.6 RNA quality 
 

We obtained PB samples before initiation of gemcitabine treatment from all the included 

patients (n = 6). However, only five patients accepted BM sampling before treatment start. 

Patient characteristics are listed in table 2.1 (section 2.1). A random selection of the patient 

RNA samples were analysed on the Bioanalyzer 2100 instrument (section 3.4) for quality 

assurance according to the RNA integrity, purity and concentration. The only pancreatic 

tumour tissue sample available was selected to see whether the isolation of DNA and RNA 

from tumour tissue gave high quality RNA. The RNA integrity numbers (scale 1-10, where 

10 is the best) are presented in table 4.3. 

 
Table 4.3: RNA integrity numbers (RIN) of randomly selected samples for RNA quality assurance with 
Bioanalyzer 2100.  

Patient ID RIN 
PC1B1 9.5 
PC1BM1 9.5 
PC1BM2 9.6 
PC2B1 9.5 
PC3B1 9.5 
PC3BM1 9.4 
PC4B1 9.3 
PC5B1 9.5 
PC5BM1 9.1 
PC6 tumour 8.3 
PC = pancreatic cancer patient, B1 = PB sample before initiation of treatment, BM1 = bone marrow sample 
before initiation of treatment, BM2 = bone marrow sample taken four weeks after treatment start, PC tumour = 
pancreatic cancer patient tumour tissue from liver metastasis. 
 

4.7 Detection of CTCs and DTCs before initiation of gemcitabine treatment 
 

Five of the six patients showed elevated levels of at least one mRNA marker in PB and five 

of five patients in BM before initiation of the gemcitabine treatment, indicating the presence 

of CTCs and DTCs (see table 4.4 and 4.5).  Compared with the highest normal CK8 level, 4/6 

and 4/5 patients showed elevated CK8 mRNA level in PB and BM, respectively. Two of six 

patients had an increased CK19 mRNA level in PB, while none of the patients were detected 

with positive CK19 mRNA levels in BM. Increased EpCAM mRNA levels were 

demonstrated in 2/6 patients in PB samples and 1/5 patient in BM samples, respectively. 
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None of the patients were positive for CEACAM5 mRNA level in PB samples, however 1/5 

patients was detected with an increased CEACAM5 mRNA level in BM samples. Of the four 

mRNA markers investigated, CK8 mRNA marker levels were demonstrated in 4/6 PB1 

samples and 4/5 BM1 samples. We evaluated the combination of CK8, CK19, EpCAM and 

CEACAM5 mRNA detection.  

 

4.8 Detection of CTCs and DTCs after treatment start 

 

Three pancreatic cancer patients had repeated PB samples after start of gemcitabine 

treatment. We obtained three PB2 samples (4 weeks after treatment start) and two PB3 

samples (8 weeks after treatment start). BM2 samples (four weeks after treatment start) were 

only obtained from one patient.  

 

All three patients were defined as positive for at least one mRNA marker in PB2 (4 weeks 

after treatment start). One of the patients was also detected as CTC positive for one of the 

mRNA markers in PB3 (8 weeks after treatment start). The patients had different mRNAs 

expressed after initiation of the gemcitabine treatment (see table 4.4). Elevated CK8 mRNA 

levels were observed in 2/3 and 1/1 patients in PB and BM samples, respectively. Two of 

three patients had an increased CK19 mRNA level in PB, while 0/1 patient was detected with 

CK19 positive DTCs in BM. One of three patients showed elevated levels of EpCAM mRNA 

in PB samples, while 0/1 patient was positive for EpCAM mRNA level in the BM sample. 

Two of the three patients had an increased CEACAM5 mRNA level in PB and 1/1 patient in 

BM.  

 

Of the included patients, one patient had PB2 and BM2 samples taken 4 weeks after 

treatment start. This patient was detected with both CTCs and DTCs (see table 4.5).  
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Table 4.4: Results from indirect detection of CTCs by quantitative real-time PCR in peripheral blood 
samples obtained before initiation of treatment (PB1), 4 weeks (PB2) and 8 weeks (PB3) of gemcitabine 
treatment from six patients with locally advanced and/or metastatic pancreatic cancer. mRNA positivity is 
indicated by X. 

  
Marker 

PC1 PC2 PC3 PC4 PC5 PC6 
PB1 PB2 PB3 PB1 PB2 PB3 PB1 PB1 PB1 PB2 PB1 

 
mRNA 

CK8 x x  x x x  x x   
CK19 x x   x    x   
EpCAM x x     x     
CEACAM5     x     x  

PC = pancreatic cancer patient, CK8 = cytokeratin 8, CK19 = cytokeratin 19, EpCAM = epithelial cell adhesion 
molecule, CEACAM5 = carcinoembryonic antigen-related cell adhesion molecule 5.  
 
Table 4.5: Results from indirect detection of DTCs by quantitative real-time PCR in bone marrow 
samples obtained before initiation of treatment (BM1) and after 4 weeks of gemcitabine treatment (BM2) 
from five patients with locally and/or metastatic pancreatic cancer. mRNA positivity is indicated by X. 

 Marker PC1 PC2 PC3 PC4 PC5 
BM1 BM2 BM1 BM1 BM1 BM1 

 
mRNA 

CK8 x x x  x x 
CK19       
EpCAM    x   
CEACAM5  x   x  

PC = pancreatic cancer patient, CK8 = cytokeratin 8, CK19 = cytokeratin 19, EpCAM = epithelial cell adhesion 
molecule, CEACAM5 = carcinoembryonic antigen-related cell adhesion molecule 5. 
 

4.9 Comparison of the mRNA marker levels in PB and BM samples drawn 

before and during treatment with gemcitabine 

 

The three patients with repeated PB samples were both CTC and DTC positive for at least 

one mRNA marker in the PB and BM samples collected before chemotherapy (PB1 and 

BM1), respectively (see table 4.4 and 4.5). These patients were also positive for at least one 

mRNA marker in the PB and BM samples taken 4 weeks after treatment start. For PC1, the 

mRNA level of CK8, CK19 and EpCAM had increased 4 weeks after initiation of treatment 

(PB2). However, 8 weeks after treatment start (PB3), the mRNA levels of CK8, CK19 and 

EpCAM had decreased significantly. For PC2, both CK19 and EpCAM showed elevated 

mRNA levels after initiation of treatment (PB2). Furthermore, a highly increased level of 

CEACAM5 mRNA was detected in PB2. A significantly increased EpCAM mRNA level was 

observed in PB3, 8 weeks after treatment start. For PC6, a decrease in both CK8 and CK19 

mRNA levels were observed in PB2. In contrast, the CEACAM5 mRNA level was strongly 
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increased. See figure 4.5 for the monitoring of the gemcitabine treatment by indirect CTC 

detection in repeated PB samples. 

 

Only one of the patients had repeated BM sampling where BM2 was taken 4 weeks after 

treatment start. For this patient, PC1, CK8 and CEACAM5 mRNA levels were increased in 

BM2.  

  
Figure 4.5: Monitoring of the gemcitabine treatment by indirect detection of CTCs in blood samples 
before initiation of treatment (PB1), 4 weeks (PB2) and 8 weeks (PB3) after treatment start for three 
pancreatic cancer patients A) PC1, B) PC2 and C) PC6. The data is normalized against the cut-off value for 
each of the mRNA markers. The figure shows the changes in the mRNA levels of the four biomarkers both 
before and during treatment. 
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4.10 Clinical outcome and mRNA-positive CTCs and DTCs 
 

All the patients included in this study had metastatic disease established by CT scanning and 

by the end of this study five of six patients had died. Although the number of patients was too 

small for such analyses, we performed preliminary Kaplan-Meier analyses to obtain potential 

indications whether an increased CTC level in PB or DTC level in BM could be associated 

with earlier death. No significant association between the CTC/DTC level and overall 

survival was, however, not detected in this patient group so far.  

 

4.11 Peptide Nucleic Acid Clamp PCR assay 
 

4.11.1 Determination of a cut-off value for the PNA clamp PCR assay in PB and BM 

samples from healthy individuals 

 

To determine the cut-off value for KRAS positivity, DNA samples from nine healthy 

individuals were analysed with the PNA clamp PCR assay. Afterwards the ΔCq-values and 

ΔΔCq-values (equation 4 and equation 5 in section 3.8) for both the healthy volunteers and 

the patient samples were calculated. The ΔCqwt, min denoted the lowest ΔCq measured for the 

control population, which was defined as 13.31 in this study. A sample was defined as 

positive for KRAS mutations when ΔΔCq > 0, which means that the ΔCq of the sample was 

lower than the ΔCqwt, min.   

 

4.11.2 Detection of KRAS mutations in PB and BM samples from pancreatic cancer 

patients with the PNA clamp assay 

 

Due to a high frequency of KRAS mutations in pancreatic primary tumours we wanted to 

investigate whether the KRAS mutation status could be used as a surrogate marker for CTC 

and DTC detection. Of the six included patients, only one patient was demonstrated to be 

positive for a KRAS mutation in PB and BM samples by the PNA clamp assay. This patient 

had KRAS mutations detected in 3/3 PB and 1/1 BM samples. In addition, one tumour tissue 

sample (liver metastasis) from a pancreatic cancer patient was analysed and demonstrated to 

be positive for a KRAS mutation. Figure 4.6 summarizes the results from the PNA clamp 



Results 

 55 

assay for both the PB and BM samples. The cut-off value for the PNA clamp assay was used 

to define KRAS positive patients. Patient samples above the horizontal line, i.e. the cut-off 

value, were characterized as samples positive for KRAS mutations. KRAS mutations were 

detected in all the PB and BM samples from PC2 as well as in the tumour tissue sample from 

PC6.  

 
Figure 4.6: A dot plot for the KRAS ΔΔCq for pancreatic cancer patient samples (n = 18) and PB and BM 
samples from healthy volunteers (n = 18). PC = PB samples, BM samples and one tumour tissue sample from 
pancreatic cancer patients. Vol. = PB and BM samples from healthy volunteers. The horizontal line denotes the 
cut-off value used to decide whether the samples were positive or negative for KRAS mutations, i.e. the samples 
above the horizontal line are defined as positive, while the samples below are defined as negative.  

 

 

 

 

 

 

 

!
   PC           Vol. 

PC2B3 

PC2B1 
PC2B2 

PC2BM1 

PC6 
tumour 



Discussion 

 56 

5 Discussion 
 

5.1 Enrichment of CTCs and DTCs 

 

Due to the low number of CTCs in PB and BM (approximately 1 per 1x106 leukocytes), 

optimal enrichment conditions are required to achieve efficient and reliable CTC/DTC 

recovery. Before the inclusion of patient samples could start we wanted to investigate whether 

RBC lysis buffer could replace LymphoprepTM as a cheaper and more efficient method for 

enrichment of CTCs/DTCs. One hypothesis was also that the loss of CTCs would be smaller 

with RBC lysis buffer compared to density gradient centrifugations, with regard to the 

presence of tumour cell clusters. 

 

Parallel experiments with a manually prepared RBC lysis buffer and the commercially 

available EL buffer (included in the QIAamp® RNA Blood Mini Kit) followed by nucleic 

acid isolation with AllPrep® DNA/RNA/Protein Mini Kit, gave lower RNA concentrations 

and lower A260/A280 ratios compared to the Lymphoprep/AllPrep strategy (see table 4.1). This 

was despite the fact that the number of enriched cells was high with all three enrichment 

strategies (e.g. RBC lysis buffer: 2.2x107 cells, EL buffer: 4.2x106 cells, Lymphoprep: 

6.5x106 cells). The low A260/A280 ratios indicated, however, the presence of protein or other 

contaminants that absorb strongly at or near 280 nm in the eluted RNA samples. 93 In contrast, 

enrichment with RBC lysis buffer and EL buffer followed by RNA isolation with QIAamp® 

RNA Blood Mini Kit gave high RNA concentrations and A260/A280 ratios close to 2.0. 

Accordingly we concluded that neither RBC lysis buffer nor the EL buffer was compatible 

with the AllPrep® DNA/RNA/Protein Mini Kit. Since we preferred to purify genomic DNA, 

total RNA and total protein from the same patient sample, we chose to enrich CTCs/DTCs 

from patient samples by density gradient centrifugation using LymphoprepTM followed by the 

AllPrep® DNA/RNA/Protein Mini Kit in the further analyses.  

 

CTC clusters have been found in patients with advanced cancer 37, 58, an observation that is in 

contrast to the hypothesis that EMT results in migratory single tumour cells. Yu and 

colleagues found CTC clusters ranging from 4-100 tumour cells in PB from breast cancer 

patients with disease progression. 37 The tumour cells within these clusters expressed high 
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levels of mesenchymal markers and by staining these clusters, an abundance of CD61 positive 

platelets were observed. 37 This supported the hypothesis that platelets bound to tumour cells 

release transforming growth factor-β (TGF-β), thereby inducing mesenchymal transformation 

of epithelial cells in the PB. 111 It is thinkable, that these clusters, with enrichment methods as 

e.g. LymphoprepTM, can be lost during the procedure. A previous master student performed 

an experiment for evaluation of the loss of cell clusters with the Lymphoprep strategy. 112 

Colorectal carcinoma cell line LS174T cells, which are rather sticky, were added to PB from a 

healthy volunteer to investigate whether the isosmotic medium used in Lymphoprep was 

capable of retaining the cell clusters. The observed cell clusters ranged from 2 to > 20 

LS174T cells. Even though microclusters of different sizes were observed in this experiment, 

cell counting confirmed that the total loss of LS174T cells was small. 112 However, we cannot 

exclude the possibility that large CTC clusters in the PB from pancreatic cancer patients will 

be lost during the Lymphoprep procedure.  

 

5.2 Determination of the sensitivity for CK8, CK19, EpCAM and CEACAM5 

mRNA assays 
 

The sensitivity analyses were performed to determine the detection limit of each mRNA 

marker with regard to the lowest amount of tumour cells detectable by RT-qPCR. Due to the 

expression of some mRNAs in normal blood cells a sample without any addition of AsPC-1 

cells, sample zero, was included for each of the biomarkers. Thus, mRNA concentrations 

above the background level would reflect the presence of AsPC-1 tumour cells, which were 

mixed with 2x106 MCs from a healthy volunteer. Due to the small number of parallel samples 

in this study it was not possible to perform any statistical analyses. The assessment of the 

sensitivity analysis was therefore only based on visual evaluation of the bar plots for each of 

the biomarkers. The detection limit for both the CK8 and EpCAM assay was between 20-200 

tumour cells due to high background expression of these markers in normal blood. For 

CEACAM5, the lowest number of AsPC-1 cells detectable was ≤ 200 per 2x106 MCs. In 

contrast to CK8 and EpCAM, there was no background expression of CEACAM5 in this 

experiment and a further optimization of this RT-qPCR assay could perhaps have increased 

the sensitivity. Mataki et al. 78 investigated the sensitivity of the CEA-specific RT-PCR assay 

and demonstrated that the assay could detect as low as 1 tumour cell per 107 MCs (10-fold 

dilutions of MKN-45 and MCF-7 gastric cancer and breast cancer cell lines in 107 MCs, 
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respectively). 78 The CK19 mRNA assay had the highest sensitivity among our assays of ≤ 2 

AsPC-1 cells detectable per 2x106 MC (figure 4.3). Hoffmann et al. 76 investigated the 

sensitivity of their CK19 assay and found that they could detect one tumour cell  per 106 MCs 

(detected in experiments with CK19 expressing tumour cell lines CaPan2 and PANC1). The 

sensitivity for the CK19 assay in our study correlated with Hoffmann and colleagues. Thus, 

further optimization of the CK8, EpCAM and CEACAM5 assays in our study could 

preferably be investigated to increase the sensitivity of these assays for CTC and DTC 

detection.  

 

5.3 Detection of CTCs and DTCs in pancreatic cancer patients before initiation 

of gemcitabine treatment 

 

Technical difficulties in detecting CTCs and DTCs are both caused by the low numbers of 

these cells in PB and BM and the difficulty to distinguish them from normal epithelial cells 

and leukocytes. 113 In our study, analyses of nine healthy individuals revealed a relatively high 

level of EpCAM in the BM samples questioning the use of this marker for DTC detection. 

Furthermore, cellular heterogeneity resulting in expression of different mRNAs within a 

CTC/DTC population, make the detection even more challenging and the use of multimarker 

assays are preferable. 31, 52, 61 Only epithelial specific markers are used for detection of CTCs 

and DTCs in our study. The expression levels of epithelial antigens, (e.g. CKs and EpCAM) 

are, however, downregulated during EMT 113-115 and detection of CTCs/DTCs might 

preferably also include mesenchymal markers stimulated during EMT, as well as stem-cell 

markers, to increase the sensitivity for CTC/DTC detection. 28, 37, 114, 115 In several cancer 

forms, patients with a negative CTC status have been reported to develop metastasis and one 

possible explanation for this is that the cancer-initiating cells remain undetected by the 

existing detection methods. 115 The choice of broader range of mRNA markers for CTC/DTC 

detection is therefore necessary.  

 

In this study, CTCs/DTCs were detected indirectly, using the epithelial-specific mRNAs CK8, 

CK19, EpCAM and CEACAM5 by RT-qPCR. Analysis of pancreatic cancer tumours 

confirmed that the mRNA markers are present at high levels in tumours compared to 

extremely low levels both in PB and in BM samples from healthy individuals, making them 

suitable as markers for CTC and DTC detection. Moreover, our preliminary results show that 
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we detect CTCs in PB samples obtained before gemcitabine treatment in 5/6 (83.3%) patients 

in our study. De Albuquerque et al. 73 demonstrated that 16/34 (47.1%) patients had CTCs in 

PB samples obtained before systemic treatment, with immunomagnetic enrichment followed 

by a multimarker RT-qPCR assay. In comparison to our results, de Albuquerque and 

colleagues also detected a high number of patients with a positive CTC status. They had 

higher cut-off values compared to our assays. 73 We have established cut-off values based on 

analyses of a low number of healthy volunteers and found lower cut-off values compared to 

de Albuquerque and colleagues. This may explain why we detected a higher number of CTC 

positive patients in our study. It is likely that some of our patients may be false-positive 

patients due to a too low cut-off value and high levels of the mRNA markers in normal blood. 

Sergeant et al. 62 used EpCAM as a surrogate marker for CTC detection by RT-qPCR and 

found that 10/40 (25%) patients were EpCAM positive before surgery. The use of only one 

biomarker for detection of CTCs may explain the low number of pancreatic cancer patients 

with a positive CTC status in this study. Furthermore, EMT and accordingly downregulation 

of EpCAM might also result in CTCs that remain undetected. 62 Khoja et al. 74 detected 93% 

CTC positive patients by ISET and 40% CTC positive patients by the CellSearch® system in 

PB samples obtained from patients with progressive metastatic or unresectable pancreatic 

cancer. The low number of CTCs detected with the CellSearch® system may be explained by 

EMT and a low number of cells expressing epithelial antigens. Furthermore, tumour cell 

clusters were detected with the ISET, but not with the CellSearch® system. 74 Kurihara et al. 
75 detected a positive CTC status in 42% of patients with metastatic pancreatic cancer with the 

CellSearch® system, in correlation with Khoja and colleagues. 75 Soeth et al. 77 detected CK20 

positive cells in preoperative PB samples by RT-PCR. CTCs were detected in 52/154 (33.8%) 

PB samples. 77 Z’graggen et al. 79 used an imunocytochemical assay based on epithelial-

specific antigens for detection of CTCs in 105 patients. In PB samples, 24/73 (33%) patients 

with unresectable cancer were detected and defined as CTC positive. 79 Hoffmann et al. 76 

investigated the CK19 mRNA level in resectable pancreatic cancer patients and CTCs were 

detected in 24/37 (64%) PB samples. 76 Although the results from our study reveal a lower 

number of samples with a positive CK19 mRNA level in PB (33.3%) compared to Hoffmann 

and colleagues, the CTC detection and the high specificity index would account for further 

investigation of the potential of CK19 mRNA detection in PB in pancreatic cancer patients. 

When comparing the numbers of CTC positive metastatic pancreatic cancer patients in the 

aforementioned studies, one would expect a range between 40-50% CTC positive patients as 

opposed to our study in correlation with de Albuquerque et al. 73, Khoja et al. 74 and Kurihara 
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et al. 75. Sergeant et al. 62, Soeth et al. 77 and Z’graggen et al. 79 indicate a slightly lower 

percentage of CTC positive patients, however, most of these patients were diagnosed with 

resectable cancer, thus, one may expect a lower number of CTCs in PB in resectable patients 

compared to patients with metastatic pancreatic cancer.  

 

Bone metastases in pancreatic cancers are rare, thus the relevance of DTC detection can be 

questioned. 80 However, BM is suggested to be a reservoir for DTCs and thus opens for the 

possibility of recirculation of tumour cells into other organs. 80 These results, obtained in 

mouse models, make it attractive to process further investigation of the role of DTCs in BM 

in pancreatic cancer. 4, 80 BM sampling is a much more invasive procedure compared to blood 

sampling, and PB samples are therefore much easier to obtain and cause less discomfort for 

the patients. The available studies on DTC detection in pancreatic cancer patients mostly 

include studies using an immunocytochemical approach for DTC detection and the analyses 

are often performed on BM samples taken prior to surgery.  

 

In our study, we detected DTCs in BM in 5/5 (100%) patients. Effenberger et al. 80 detected 

DTCs in 24/175 (13.7%) in patients during surgery before tumour mobilization, which is a 

much lower number of DTC positive patients compared to our findings. Of the 24 patients 

with a positive DTC status, 13 (54.2%) experienced disease relapse. Moreover, they 

demonstrated that the DTC status was an independent prognostic factor for disease 

progression and overall survival. 80 Van Heek et al. 81 found DTCs in BM samples from 10/31 

(32%) patients and a significant association with reduced overall survival. Roder et al. 82 

detected CK positive DTCs in BM samples from 25/48 (52.1%) patients, while Vogel et al. 83 

detected DTCs in BM samples from 27/71 (38%) patients and these data correlated with 

shorter survival. Soeth et al. 77 also detected CK20 positive cells in BM samples by RT-

qPCR. They detected DTCs in 45/135 (33.3%) BM samples. Although there was a weak 

correlation between CTC/DTC detection and clinicopathological parameters, the detection 

rates of CTCs/DTCs increased with the tumour stage.77 Hoffmann et al. 76 also analysed the 

CK19 mRNA levels in BM samples from resectable pancreatic cancer patients. However, 

none of the BM samples were detected with CK19 mRNA levels above the cut-off value. 76 In 

our study, the CK19 assay for both PB and BM was calculated with the highest specificity 

index compared to the median tumour level (table 4.2.) In correlation to Hoffmann and 

colleagues, none of our patients were detected with a CK19 mRNA level above the cut-off 

value. This may perhaps suggest that CK19 mRNA detection in BM samples from pancreatic 
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cancer patients may not be beneficial. Z’graggen et al. 79 detected DTCs in BM samples from 

13/54 (24%) patients. They also found a concordance between PB and BM in 5/54 (9%) of 

the patients. They calculated the random chance of detecting tumour cells in both PB and BM 

to 7%, nearly identical to the 9% detected in the paired samples. 79 Our results revealed that 

all the patients (100%) were positive for both CTCs and DTCs, based on the criteria that at 

least one mRNA marker should have an increased mRNA level before it is defined as CTC or 

DTC positivity. However, we are aware of our shortcomings with a limiting patient and 

control population, thus, larger studies are therefore required to conclude the clinical 

relevance of DTC detection.  

 

5.4 Monitoring of the CTCs and DTCs before and during treatment  
 

Although the data are preliminary, we do detect persistent CTCs and DTCs in locally 

advanced and/or metastatic pancreatic cancer patients after initiation of gemcitabine 

chemotherapy. This is as expected because the gemcitabine treatment has been shown to be 

less effective.15 However, the number of patients included in this evaluation is few as five of 

the included patients died during the recruitment period, and repeated blood samples was only 

obtained from three of the patients (median survival time for the pancreatic cancer patients 

was 37 days). Two of these patients, however, showed an increase in the mRNA marker 

levels in PB samples taken 4 weeks after treatment start followed by a decrease 8 weeks after 

treatment start. These results may be explained by an increased number of tumour cells 

shedding into the blood circulation from the primary tumour due the effect of the 

chemotherapy. As most of these tumour cells will be apoptotic and die, only the cancer-

initiating cells will be able to survive and give rise to overt metastases 41, 46, this may be a 

possible explanation to the decrease in the marker level seen 8 weeks after treatment start.  

 

Pancreatic CSCs represent phenotypically different cells and this is of great importance with 

regard to the treatment strategy. 42, 62 Intrapatient heterogeneity, i.e. genetic heterogeneity 

within an individual, has also been found, as different CSCs can be present at different times 

during disease development. 42 Yu et al. 37 compared the CTC features in pre- and 

posttreatment PB samples from ten breast cancer patients, five patients who responded to 

therapy and five that did not. In the patients with a treatment response, a decrease in the CTC 

numbers as well as a decrease in mesenchymal positive CTCs compared to epithelial positive 
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CTCs was detected in the posttreatment samples. Furthermore, the patients with progressive 

disease during treatment showed increased numbers of mesenchymal positive CTCs. 37 

 

Our preliminary results suggest that all the three pancreatic cancer patients investigated may 

have distinct CTC populations, explained by different mRNAs being expressed during 

treatment monitoring. Furthermore, when comparing PC1 and PC2 (figure 4.5) it might look 

like PC1 responded better to the gemcitabine treatment compared to PC2, but this is only a 

speculation based on the expectations that the number of CTCs will decrease if the 

chemotherapy is effective and that an increase in the number of CTCs reflects chemotherapy 

resistance. A larger number of patients would have to be included to conclude on the potential 

of using CTC and DTC detection in monitoring of the treatment response. Hoffmann et al. 76 

detected CK19 mRNA levels in PB in 5/37 (13%) samples obtained the first postoperative 

day, and in 4/37 (10%) samples day ten after surgery. The CK19 mRNA levels in the PB 

samples obtained at 1 and 10 days after surgery tended to be lower than the levels in the 

preoperative samples. 76 Ren et al. 84 investigated PB samples from 41 pancreatic cancer 

patients obtained both before and one week after start of chemotherapy. CTCs were detected 

in 33/41 (80.5%) patients before therapy by immunocytochemistry. Only 12/41 (29.3%) 

patients were detected with CTCs after treatment start. A noteworthy decrease in the CTCs 

was demonstrated by apoptotic changes in the CTCs after treatment start. 84 

 

In our study, all the three patients who we obtained PB samples from after initiation of 

treatment were defined as CTC positive based on the expression of at least one mRNA 

marker. However, the number of patients is too small to conclude on the clinical relevance of 

our findings. Sergeant et al. 62, on the other hand, investigated the EpCAM mRNA level in 40 

postoperative samples (day 1, day 7 and 6 weeks after surgery) and in addition, eight 

unresectable pancreatic cancer patients. An increase in the mRNA level was seen immediately 

after surgery and was detected in 27/40 (67.5%) patients. Six weeks after surgery, 8/34 

(23.5%) patients were EpCAM positive. Two of the eight (25%) of unresectable patients were 

EpCAM positive. The postoperative samples did not reveal any significant associations 

between EpCAM positivity in PB and cancer-specific and disease-free survival. 62 Mataki et 

al. 78 also investigated the clinical significance of CTC detection in 53 pancreatic cancer 

patients by RT-PCR, as an indicator of relapse during follow-up, although after surgery. The 

CEA mRNA level was detected in 16 (75%) patients with relapse and was significantly higher 

than the CEA mRNA level in 37 (5.4%) patients without relapse. 78 Mataki and colleagues 
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therefore suggested the use of CEA mRNA level in PB by RT-PCR as a useful indicator of 

relapse. 78  

 

Only one patient had repeated BM sampling obtained 4 weeks after treatment start in our 

study. DTCs were detected in both of the BM samples and the mRNA marker expression 

seemed to differ between the samples. However, further analyses are needed to conclude on 

the value of monitoring CTCs and DTCs both before and during treatment in pancreatic 

cancer patients. 

 

5.5 KRAS gene mutations as a surrogate marker for CTC and DTC detection 
 

Around 85% of pancreatic cancers harbour point mutations in the KRAS gene, thus these 

mutations represent highly tumour-specific traits that possibly can be applied as surrogate 

CTC/DTC markers in pancreatic cancer patients. To our knowledge, no studies investigating 

KRAS mutations in CTCs/DTCs in pancreatic cancer patients have been published. However, 

a study performed on both non-metastatic and metastatic colorectal cancer investigated KRAS 

mutations in single CTCs by sequencing codons 12/13 from five patients. 116 A KRAS 

mutation was demonstrated in 5/15 (33%) CTCs from one patient. The KRAS mutation was 

also verified in DNA from the primary tumour. KRAS mutations in the primary tumours of the 

remaining four patients were detected, however, none KRAS positive CTCs were detected. 116 

Another study performed on colorectal cancer patients detected KRAS mutations in tumours 

and in PB in 33 (43.4%) and 30 (39.5%) patients by gene expression array in 76 patients 

treated with chemotherapy, respectively. The results revealed that detection of KRAS 

mutations in CTCs had potential to detect metastatic colorectal cancer patients that would not 

benefit EGFR-targeted chemotherapy. 117 Both of these studies show that KRAS mutations can 

be detected in CTCs, which is in accordance with our results where 1/6 (16.67%) patients was 

detected with KRAS positive CTCs. This patient also had persistent KRAS positive CTCs 

detected after initiation of gemcitabine chemotherapy. This same patient was also detected 

with KRAS positive DTCs in the BM sample obtained before treatment start. For another 

patient, the PB sample analysed was not detected with KRAS mutations, however, KRAS 

mutations were detected in DNA from this patients’ (PC6) liver metastasis. Gilje et al. 64 

demonstrated the sensitivity of the PNA clamp PCR assay to be 1:104. In comparison with 

Gilje et al. 64, the sensitivity of our assay was reduced and this may therefore explain the low 
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number of patients detected with KRAS mutations, although the high frequency of these 

mutations in pancreatic cancer patients. More samples are therefore needed to conclude the 

potential of using KRAS as a surrogate marker for disease progression and treatment 

monitoring in pancreatic cancer patients.  

 

5.6 Conclusion and future perspectives  

 

Our preliminary data show that we detect CTCs and DTCs in PB and BM samples obtained 

both before and during gemcitabine treatment of five metastatic pancreatic cancer patients. 

We use an indirect approach, which includes enrichment of MCs followed by tumour cell 

detection using mRNA quantification and KRAS mutation detection by RT-qPCR. However, 

inclusion of more patients is highly needed for assessment of the clinical impact of CTC and 

DTC detection. Moreover, analyses of a larger cohort of healthy volunteers could possibly 

have resulted in an increased cut-off value and a following decrease in the number of positive 

patients. It is therefore also desirable to analyse a higher number of healthy individuals to 

determine a definite cut-off value for CTC and DTC positivity and verify the positive patient 

samples. The use of immunomagnetic enrichment methods, in addition to gradient 

centrifugation, could also reduce the background level of the mRNA markers in future 

analyses. 

 

Comparison of the CTC and DTC levels in numerous PB and BM samples from the same 

patients revealed that the pancreatic cancer patients investigated seem to have distinct CTC 

and DTC populations, explained by different mRNAs being expressed during treatment 

monitoring. Monitoring of the CTC and DTC level during treatment and molecularly 

characterization of single CTCs and DTCs, using single-cell PCR, to identify resistant cancer-

initiating cells, would perhaps in the future help the clinicians to offer pancreatic cancer 

patients a more individualized treatment.  

 

In some of the aforementioned studies, analyses of PB samples included both resectable and 

unresectable pancreatic cancer patients, while most of the studies on DTC detection involved 

resectable patients. In contrast, all the patients recruited to our study were patients with 

metastatic pancreatic cancer. It may have been interesting to investigate whether the high 
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number of CTC and/or DTC positive patients is equally represented in pancreatic cancer 

patients with non-metastatic disease.  
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