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VALIDATION OF A CAPILLARY PRESSURE CORRELATION FOR
DYNAMIC WETTABILITY ALTERATION

SIV GJERTRUD EVJE

Abstract. The purpose of this thesis is to try to evaluate a capillary pressure correlation
Pc(Sw, θ) that previously has been proposed, by using a pore model. The correlation
depends on the water saturation Sw and an averaged contact angle θ representing the
wetting state of the porous media in question. In particular, there are four free parameters
that must be specified.

Necessary details concerning the pore model and how it is used to describe primary
drainage and imbibition are included. Capillary pressure curves are generated by the pore
model by increasing (drainage) or decreasing (imbibition) the capillary pressure respec-
tively, while the corresponding water saturation of the porous media is obtained through a
series of calculations. This is done by consecutively evaluation of the fluid configurations
of the pores in the model, which in turn depend on the corresponding capillary entry
pressures. A presentation of the MS-P method used in the calculations of the capillary
entry pressures is also included.

We restrict the evaluation of the capillary pressure correlation to an imbibition process
where the pore model relies on a distribution of local contact angles θa. In order to compare
the correlation Pc(Sw, θ) with capillary pressure curves generated by the pore model, a
relation between the averaged contact angle θ and the distribution of local contact angles
θa, must be specified. We consider two choices. First, a direct relation where θ = θa,
and then a relation based on Cassie’s law. A rather general framework for construction
of θa and θ such that Cassie’s law is obeyed, is proposed. For the evaluation we use an
optimization algorithm where we identify the four unknown parameters which give a best
fit. These calculations show that it is possible to obtain a good match when Cassie’s law
is taken into account. In particular, it is likely that even better results can be obtained
by refining the construction of the distribution θa, relying on the suggested approach.

Key words. wettability, contact angle, capillary pressure, saturation, drainage, imbibi-
tion, correlation, Cassie’s law
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Figure 1. Contact angle of a liquid on a solid surface.

1. Introduction

In this section we first introduce and describe some concepts and quantities that are
essential for the understanding of the investigations of this thesis. Then a presentation of
the main objectives of this work is given.

1.1. Some definitions.

Wettability. When immiscible fluids are present simultaneously in a porous media they
compete for the occupancy of the pore surface. Wettability can be defined as the tendency
of one of the fluids to spread on or adhere to the solid surface [13]. In an oil-water situation
in a porous media, it is a measure of the preference that the solid surface has for either oil
or water. According to [8] and references therein, a system may be characterized as mixed-
wet. For a reservoir rock originally strongly water-wet, this is a description indicating
that invasion of oil into the reservoir has resulted in a change of wettability (to oil-wet)
in parts of the rock surface while other parts remain water-wet. In this study we consider
mixed wettability at the pore level where invasion of oil into strongly water-wet angular
pores leaves the corners water-wet while a part of the walls of the pores are wettability-
altered. The wettability of a porous media system is important because it is a major factor
controlling the location, flow and distribution of the present fluids. The wettability will
therefore influence different analysis including capillary pressure, relative permeability and
water flood behavior, etc.

Contact angle. Contact angle is a quantitative measure of the wetting of a solid by a
liquid. It is the angle formed by the three phase boundary where a liquid, gas (or a
second immiscible liquid) and solid intersect. The three phases are denoted by l, g and s,
respectively. The force balance at the point on the three-phase line of contact along the
liquid-gas/liquid-solid boundary is expressed by Young’s equation developed in 1805, [1]:

(1) σlg cos θlg = σsg − σsl

where σlg, σsg and σsl are the interfacial tensions between the phases in contact, and θlg

is the liquid-gas/liquid contact angle. It represents the state of the drop which has the
minimal Gibb’s energy. The contact angle of a gas-liquid-solid or a liquid-liquid-solid
system may have any value between 0◦ and 180◦. It is customary to classify the fluids into
two categories: wetting and non-wetting fluid. For wetting fluids, 0◦ ≤ θ < 90◦, and for
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non-wetting fluids, 90◦ < θ ≤ 180◦. We distinguish between the advancing and receding
contact angle, which will be denoted by θa and θr respectively. If the drop volume (of the
liquid in Fig. 1) is increased, the contact line appears to be pinned, while the contact angle
increases. The contact angle eventually reaches a maximum value called the advancing
contact angle which is the largest possible angle reached before the contact line expand.
Similar phenomena occurs when the drop volume is decreased. The smallest possible
contact angle reached before the contact line decreases is called the receding contact angle.
The observed contact angle thus depends on the way the system is prepared. The relevant
contact angle throughout this study is the oil-water contact angle (measured through the
water phase) at the boundary between the two phases oil and water at the wall of a
capillary. In the following we shall study two-phase fluid displacements in a pore-scale
network where the contact angle is determined by the direction of the displacement. The
difference between the advancing and receding contact angle, θa − θr, what we call the
contact angle hysteresis, is mainly due to surface roughness and surface heterogeneity.
Other factors can be liquid absorption and/or retention (swelling) and the formation of a
liquid film left behind a fluid drop during the contact line retracting [10].

Capillary pressure. An important parameter in the study of a porous medium containing
two or more immiscible fluids is the capillary pressure. This is because the capillary
forces (together with viscous and gravitational forces) control the distribution and the
flow of the immiscible phases. In porous media, immiscible fluids are separated from
each others by curved interfaces, across which there exists a pressure difference called the
capillary pressure, Pc. As the capillary pressure is a result of the interfacial tension and the
curvature (and hence the contact angle) of the immiscible fluids present, it is dependent
on the wetting state of the porous media. Pc is generally defined as the pressure difference
between the non-wetting phase and the wetting phase, that is

(2) Pc = Pnonwetting − Pwetting.

In the following study of two-phase fluid flow (oil-water) in porous media, the capillary
pressure is given by

(3) Pc = Poil − Pwater.

Saturation. In two-phase oil-water fluid flow the capillary pressure curves are described in
terms of Sw, where Sw is the water-saturation. We also recall the fundamental relations
Sw + So = 1, where So is the oil-saturation. Swr is the residual or irreducible water
saturation and Sor is the residual or irreducible oil saturation.

Drainage. Drainage, or dewetting, is the process where a non-wetting phase displaces a
wetting phase. Normally, drainage is referred to as the process where oil displaces water in
the pores of a porous media, i.e the water saturation Sw is decreasing. Primary drainage
is thus the first time oil invades originally water-filled, strongly water-wet pores, and starts
from Sw = 1. To initiate the drainage of a pore system a threshold capillary pressure has
to be overcome. This threshold pressure corresponds to the capillary entry pressure for
the pores that have the pore throats with largest radius. If the pressure of the oil-phase
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is increased, smaller pores will be invaded, leading to a decreasing Sw. Continuing this
process, an irreducible water-saturation Swr will be approached. At this point, no further
invasion of oil is possible. After an imbibition process (see below), secondary drainage starts
from an irreducible oil-saturation, So = Sor, and approaches Swr as the capillary pressure
of the oil is increased. Spontaneous (secondary) drainage occurs for negative capillary
pressure, and forced (secondary) drainage for positive capillary pressure. Primary and
secondary drainage curves with the asymptotes at Swr and Sor are illustrated in Fig. 11.

Imbibition. Imbibition, or dewetting, is the process where the wetting phase displaces
the non-wetting phase. Here it is referred to as the process where water displaces oil,
i.e. the water saturation Sw is increasing. Primary imbibition starts from So = 1 and
secondary imbibition from Sw = Swr. Spontaneous imbibition occurs for positive capillary
pressure and forced imbibition for negative capillary pressure. Imbibition curves are shown
in Fig. 11. The difference of the secondary drainage and imbibition curves is due to the
contact angle hysteresis mentioned above. The receding contact angle is relevant in the
drainage process and the advancing contact angle in the imbibition process. In this study
we will concentrate on the secondary imbibition process. After the pores have been invaded
by oil through primary drainage, the porous media is allowed to (first spontaneous and
then forced) imbibe water and Sw is increased starting from Swr until an irreducible oil-
saturation is reached, that is when Sw = 1− Sor. Invasion of water may results in changes
of the configuration of the pores which occurs at certain levels of the capillary pressure
called capillary entry pressures.

1.2. Objectives. After this introduction of basic concepts and ideas, we now state what
will be the main objective of this work.

By using a pore model we shall try to evaluate a capillary pressure correlation Pc(Sw, θ)
that previously has been proposed [12], which depends on the water saturation Sw and an
averaged contact angle θ representing the wetting state of the porous media in question.
In particular, there are four free parameters that must be specified. We restrict the evalua-
tion to an imbibition process where the pore model relies on a distribution of local contact
angles θa. In order to compare the correlation with capillary pressure curves generated by
the pore model, a relation between the averaged contact angle θ and the distribution of
local contact angles θa must be specified. We consider two choices. First, a direct relation
where θ = θa, and then a relation based on Cassie’s law. For the evaluation we use an
optimization algorithm where we identify the four unknown parameters which gives a best
fit.

The investigations are structured as follows:

(1) Firstly, we shall describe some of the details of the pore model, i.e., the pore
geometry, the primary drainage, and imbibition processes (Section 2.1).

(2) Secondly, the Mayer, Stowe and Princen (MS-P) method for calculating the cap-
illary entry pressures is presented. This method is a central ingredient and is
repeatedly used in the simulations done by the pore model (Section 2.2).
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(3) Thirdly, we introduce the capillary pressure correlation (Section 3).
(4) Equipped with the pore model, we try to validate the capillary pressure correlation.

As a first approach, a straight forward way of relating an averaged contact angle
θ to wetting states in the pore model is suggested (Case I) (Section 4.1). Then
Cassie’s law is described and applied in the correlation to connect θ and θa (Case
II) (Section 4.3).

(5) Finally, some concluding remarks are made (Section 5).

2. A pore scale model

2.1. Derivation of the pore scale model. In this section we describe the pore model
used in this study as presented in [4] and [6]. We will start by describing the geometry
of the pores and then give a presentation of the processes involved. The model assumes
a bundle of tubes representing the pore network. The cross-sections of the tubes have
the shape of regular stars with three corners which include an equilateral triangle. The
developed Matlab code for the model generates 2-phase capillary pressure- and relative
permeability curves for primary drainage with wettability alteration, imbibition and sec-
ondary drainage with hysteresis loops. We will concentrate on the processes of primary
drainage and imbibition and the corresponding capillary pressure curves.

The geometry of the pores in the model. The geometry of a regular star-shaped
pore is described by the radii R of the inscribed circle, the number of corners n in each
pore and the half angle α of the corners in the pore [6]. In the pore model, the pore sizes,
quantified by the radii R, are supposed to be determined from a distribution function.
In the work of Helland the pore-size frequency is described by a truncated two-parameter
Weibull distribution [8]. This is a flexible distribution that often has been employed for this
purpose [7]. The pore sizes R are then selected from the cumulative distribution function
in the following manner: Pick random numbers x ∈ [0, 1] and calculate the inscribed radius
from

(4) R = Rch

(
−ln[(1− x)exp(−

[Rmax −Rmin

Rch

]η

) + x]
) 1

η
+ Rmin.

where Rmax, Rmin and Rch are the inscribed radii of the largest, smallest and the character-
istic pore sizes, respectively, and η is a dimensionless parameter. Other distributions, like
the log-normal- and beta-distributions, could also be used in the pore model to determine
a realistic distribution of the pore-sizes. For simplicity, however, we let R take a uniform
distribution with the density function

f(R) =
1

Rmax −Rmin

, Rmin < R ≤ Rmax

= 0, elsewhere.
(5)

The half angles of the corners of a star-shaped pore, α, must satisfy

(6) 0 < α ≤ αmax, where αmax =
π

2
− π

n
,
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Figure 2. The cross-section of a corner of a n-cornered star-shaped tube.
The shaded area corresponds to 1/2n of the total cross-section. The dashed
lines shows the geometry for the limiting case α = αmax, [4].

where n is the number of corners in the pore. The limiting case, α = αmax, for stars with
three corners corresponds to the case of an equilateral triangle, i.e. αmax = π

6
. In the pore

model we have assumed a linear relationship between the half angle of the corners of the
pores and the inscribed radius R. This is given by

(7) α(R) = aR + b, where a =
αmin − αmax

Rmax −Rmin

, b = αmax −
( αmin − αmax

Rmax −Rmin

)
Rmin,

for R ∈ [Rmin, Rmax].
Other relationships could also be chosen, and the parameters may be varied indepen-

dently.
The cross-sectional area of a star-shaped tube is related to the inscribed radius R and the

half angle of the corners α as shown below in Eq. (8) [6]. Since the corners of a regular star
is symmetric, we can make our calculations concerning the cross-sections by considering
just one half of a corner of the pore, see Fig. 2. The shaded area A in the figure is given
by

(8) A =
R2

2

sin(α + π
n
) sin π

n

sin α
,

and represents 1
2n

of the entire pore cross-section. The distance d is given by

(9) d =
R sin π

n

sin α
.

The total area and perimeter of the entire pore cross-section are therefore

(10) Ap = 2nA and dp = 2nd,

respectively. In the model used throughout this work, however, we just consider pores with
three corners i.e. n = 3.
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Figure 3. The possible fluid configurations of the pores during primary
drainage and imbibition [4].

Primary drainage. Initially all the tubes are filled with water and are strongly water-
wet as illustrated in configuration A of Fig. 3 for a tube with the form of an equilateral
triangle.

The primary drainage process is simulated by stepwise increasing the capillary pressure
Pc = po − pw until a maximum value Pcmax is reached. Oil invades a tube when the
capillary pressure is increased to the capillary entry pressure for the tube. The capillary
entry pressure depends on the geometry and wettability of the tube and is calculated by
the Mayer-Stowe-Princen (MS-P) method described in Section 2.2.

During primary drainage, the (receding) contact angle denoted by θpd is small. Oil
invasion may result in two different situations depending on the size of θpd.

If θpd < π/2 − α, the tubes are supposed to reach the fluid configuration shown in
Fig. 4 for an equilateral triangle where oil has occupied the bulk area of the tube while the
corners are still waterfilled. It is assumed that the invading oil immediately contacts the
pore walls, i.e. a possible waterfilm between the oil and the pore walls is neglected. The
wettability of the sides of the pores are then altered while the corners are still water-wet.
The wettability altered part of the pore walls is demonstrated in Fig. 4 by the bold lines
along the sides.

To construct the capillary pressure curve Pc(Sw, θpd) we need to find the total water-
saturation Sw of the porous medium for each pressure step. At every step 4P during
primary drainage all the tubes are therefore tested for invasion by comparing the present
level of the capillary pressure with the entry pressures for the tubes. The fluid configura-
tions are updated and the water content of each tube is calculated. The existing capillary
pressure may be expressed by the Young-Laplace equation [3]

(11) Pc = σ
( 1

R1

+
1

R2

)

where σ is the interfacial tension between the two phases and R1 and R2 are the princi-
pal radii of curvature for the interface separating the phases. The tubes considered are
supposed to have a constant cross-section along the length of the tubes and the capillary
pressure with R1 = ∞ and R2 = row is therefore given by

(12) Pcow =
σow

row

.
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Figure 4. The fluid configuration of the tubes that has been invaded by oil
during primary drainage (water in blue color and oil in red color). The bold
lines along the sides indicate altered wettability.

In Eq. (12), row is the radius of the cross-sectional circular arc of interface, denoted by
the arc meniscus (AM), separating the bulk fluid (here oil) and the fluid in a corner (here
water), see Fig. 9. If oil has invaded a tube, the total area of the corners occupied by water
is

(13) Aw(θ) = 3r2
ow

(
θpd + α− π

2
+ cos θpd

(cos θpd

tan α
− sin θpd

))
.

At every higher level of pressure the value of row changes (decreases), and so also the area
Aw(θ) as the oil is squeezed into the corners of the tubes. At the same time the oil will
constantly enter smaller tubes. For the tubes not yet invaded by oil the relevant area is of
course

(14) Aw(θ) = Ap,

where Ap is the total area of cross-section of the tube given by Eq.(10).
The values of Aw(θ) and Ap are then used in the calculations of the corresponding water

saturation for the whole bundle of tubes needed to generate the capillary pressure curve
for primary drainage. This is done for every step in Pc as long as the capillary pressure
does not exceed the maximum value Pcmax. The process will also terminate if the water-
saturation is less than a given value. For each pressure step, the total water-saturation
is

(15) Spd
w =

ΣN
i=1Aw,i

ΣN
i=1Api

,

where N denotes the number of tubes. This also gives the corresponding oil-saturation So

as

(16) Spd
o = 1− Spd

w .

The minimum radius of row for a pore during primary drainage is given by (12) as

(17) rmin
ow =

σow

Pcmax
,
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Figure 5. Illustration of configuration C for a star-shaped pore, [2].

and represents the curvature of the AM’s at the end of primary drainage. The distance bpd

in the corners, see Fig. 4, that remains water-wet is at this point given by

(18) bpd =
σow cos (θpd + α)

Pcmax sin α
.

If we have the situation with a larger contact angle i.e. θpd ≥ π/2− α, the invading oil
will fill the cross-section of the pores completely.

Imbibition. In the imbibition process the pores are filled during water-flooding mainly
by the mechanism of piston-like displacement [8]. Imbibition is simulated by decreasing
the capillary pressure stepwise starting from the final point of primary drainage. For the
pores which have reached the configuration in Fig. 4 during primary drainage, a change
of configuration now depends on the change of wettability in the pore represented by
the contact angle, which influence the capillary entry pressure, [2, 4]. From being strongly
water-wet with the small receding contact angle θr = θpd, the pores are now mixed-wet with
the advancing contact angle θa ≥ θpd defined on the area of the pore walls with altered
wettability. As the capillary pressure is decreased and water is allowed to invade, any
movement on the wettability altered surface occurs at the (increased) advancing contact
angle θa. The position where an AM contacts the pore wall is now temporarily fixed at
the distance bpd from the corner due to the difference between θr and θa, but the curvature
changes. The AM’s are now hinging with the hinging contact angle θh, increasing from θpd

to θa, see configuration C in Fig. 3 and Fig. 5. From Eq. (18) we may express the contact
angle θpd as

(19) θpd = cos−1
[Pcmax bpd sin α

σow

]
− α.

and the hinging contact angle is thus given by

(20) θh = cos−1
[Pc bpd sin α

σow

]
− α.
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Figure 6. Primary drainage and imbibition curves generated by the pore
model when the contact angle, θa(R), varies linearly with the size of the
pores.

A change of the fluid configuration for a tube now occurs when the capillary pressure is
lowered to the corresponding capillary entry pressure. The following displacements from
configuration C are possible during imbibition, and the most favorable, depending on Pc,
occurs [4]:

(1) For θa < π
2
− α: C → B → D or C → D.

(2) For π
2
− α ≤ θa ≤ π

2
+ α: C → D.

(3) For θa > π
2

+ α: C → D or C → E → D.

We note that configuration C is the same as the configuration in Fig. 4, but now illustrated
with a negative capillary pressure. The possible fluid configurations the pores can obtain
during imbibition are shown in Fig. 3. The capillary entry pressures required for the
different displacements are described in the next section. As for primary drainage all
the tubes are continuously tested for their present conditions at every step in Pc. The
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water contents are thus calculated to decide the actual water-saturation of the sample
corresponding to the present capillary pressure.

The relation between θa and the inscribed radius R for the different pores in the model
should be determined by a distribution function θa(R) that gives a realistic relation between
the contact angle and the pore-sizes.

To sum up: For a given θa(R), representing a certain wetting state, we can use the pore
model to obtain a corresponding capillary pressure curve PcPore(Sw). We may use the
following notation:

(21) θa(R)
Pore model−→ PcPore(Sw).

First, we assume a wetting state where θa(R) depends linearly on R as follows

(22) θ1
a(R) = aR + b, where a =

θamax − θamin

Rmax −Rmin

, b = θamin
−

( θamax − θamin

Rmax −Rmin

)
Rmin,

for R ∈ [Rmin, Rmax]. As a second example we assume that

(23) θ2
a(R) = θ∗a (constant),

for R ∈ [Rmin, Rmax] and θ∗a ∈ [θamin
, θamax ]. Below, the two different ways of assigning a

distribution for the advancing contact angle are explored.

Examples of curves generated by the pore model. We have generated primary
drainage and imbibition curves by using the pore model with N = 300 tubes.

The pore-sizes are determined from the uniform distribution

{Ri}N
i=1 where R1 = Rmin, Ri = Rmin + (i− 1)4R, i = 2, ..., N − 1

and RN = Rmax.
(24)

Here Rmin = 10µm represents the smallest pore size and Rmax = 100µm represents the
largest. Moreover 4R = (Rmax −Rmin)/(N − 1).

With the linear relationship we have chosen for α(R) as given by (7), α takes the following
values

{αi}N
i=1 where α1 = αmax, αi = αmax + (i− 1)4α, i = 2, ..., N − 1

and αN = αmin.
(25)

The smallest angle is αmin = π/180 = 1◦, the largest αmax = π/6 = 30◦ and we have
4α = (αmin − αmax)/(N − 1).

All the simulations are made with θpd = 0◦, the oil-water interfacial tension σow =
0.020N/m, the pressure step 4Pc = 15Pa and the value of Pc at the end of primary
drainage Pcmax = 10000Pa.

In the first example, we use the linear function for θa(R) as given by Eq.(22). With this
choice, θa(R), which must satisfy θa ≥ θpd, is in the range

{θa}N
i=1 where θa1 = θamin

, θai
= θamin

+ (i− 1)4θa, i = 2, ..., N − 1

and θaN
= θamax ,

(26)
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Figure 7. Examples of imbibition curves generated by the pore model with
constant contact angles, θ∗a, for all the pores. Left: θ∗a = 40◦. Middle:
θ∗a = 110◦. Right: θ∗a = 180◦. For comparison, the primary drainage curve
has also been included.

where we let θamin
= 40◦, θamax = 180◦ and 4θa = (θamax − θamin

)/(N − 1). Fig. 6 illustrates
the generated curves obtained for this example.

In the next example a constant contact angle is assumed for all the tubes during im-
bibition as described by Eq. (23). Fig. 7 shows three different imbibition curves which
are generated with a constant contact angle for all the tubes. The curves are made for
θa = 40◦, θa = 110◦ and θa = 180◦.

We observe that the main difference between using a linear relation (22) and the constant
relation (23) is the behavior in the neighborhood of the endpoints.

2.2. The MS-P method. The fluid displacements during primary drainage (oil displaces
water) and imbibition (water displaces oil) occur in general by the mechanism of piston-like
invasion [8]. The invading fluid enters the pore from one of the ends. For a given pore,
a fluid is able to invade when the capillary pressure reaches the capillary entry pressure
required for the displacement. The capillary entry pressure is determined by the pore size,
pore shape and the local contact angle representing the wettability of the given pore. In
the case where pores are modeled as straight tubes of circular cross-sections, a given cross-
section can be filled by only one phase. The capillary entry pressure for displacements in
these pores are described by the Young-Laplace equation given by Eq (12). However, when
noncircular cross-sections are assumed, a given cross-section may be filled by more than
one phase. In angular pores oil may be present in the centre of the cross-section, while
water wetting layers occupy the corners. The calculation of the capillary entry pressures for
fluid-displacements in this case are more complicated. In this section we shall use the (MS-
P) method developed by Mayer, Stowe and Princen to derive the capillary entry pressure
for piston-like invasion into uniformly wetted, regular, n-sided pores. The presentation of



14 EVJE

Figure 8. Piston-like invasion of oil into a waterfilled tube. In the deriva-
tion of the capillary entry pressure we consider a small displacement of the
MTM along the tube length.

this method follows the approach of Helland [8] and [4], and gives the expressions for the
capillary entry pressure relevant for two-phase flow in regular star-shaped pores.

In the following we first consider the invasion of oil into a water-wet tube completely
filled with water i.e. for primary drainage. As mentioned in Section 2.1 this may result in
two different configurations, depending on the value of the contact angle. At the end of
the section we briefly present the expressions for capillary entry pressure for the possible
fluid displacements during imbibition.

Case (1): If θow < π
2
− α, the invasion of oil results in the configuration shown in Fig. 4

for an equilateral triangle. In this case the cross-section of the tube obtain a configuration
where the oil occupies the bulk area and the corners are still filled with water. The invading
interface separating the bulk fluids along the tube is called the main terminal meniscus
(MTM). The arc meniscus (AM) is the interface separating the oil in the bulk and the water
in the corners of the tube, see Fig. 8. The MS-P method assumes that capillary pressure
is uniform, and thus the effect of gravity on the shape of the interface is neglected, as is
also the contact angle hysteresis.

Since the cross-sectional shape is assumed to be constant along the tube, the MTM
is supposed to pass through the entire tube length at the capillary entry pressure. The
curvature of the AM’s are therefore constant along the tube and equal to the entry curvature
of the MTM during the displacement. The capillary entry pressure is therefore given by
Eq. (12) where row is the entry radius of curvature of the AM’s sufficiently far behind
the MTM measured through the oil phase. The MS-P method is founded on an energy
balance equation which equates the virtual work with the associated change of surface
free energy for a small displacement dx of the interface MTM in the direction along the
tube length. The energy balance equation then relates the entry radius of curvature row

given by Eq. (12) to the cross-sectional area exposed to change of fluid occupancy, Aow, the
bounding cross-sectional fluid-solid and fluid-fluid lengths, Lsow and Lfow, respectively, and
the contact angle θow indicated in Fig. 9. Because of symmetry of the regular star-shaped
pore, we just consider one half of a corner of a pore.
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Figure 9. Corner of a tube showing parameters needed for calculating the
capillary entry pressure, [4].

To displace the MTM a distance dx along the tube length, the virtual work required is
given by

(27) Wext = PcowAowdx.

The increase of surface free energy accompanying this displacement is given by

(28) dF = {(σos − σws)Lsow + σowLfow}dx

By using the energy balance equation given by Wext = dF , we obtain

(29) PcowAow = σow(Lfow + cos θowLsow),

where we have eliminated the fluid-solid interfacial tensions, σos and σws, by using Eq. (1).
Eq. (29) expresses the balance between the work done by the pressure difference on both
phases and the energy difference associated with the creation and the removal of a portion
of the area along the interfaces. By substituting Eq. (12) into Eq. (29) we obtain an
expression for the radius of curvature row, at which a displacement can take place, relating
it to the geometry of the pore:

(30) row =
Aow

Lsow cos θow + Lfow

.

With the radius found from Eq. (30), for a given contact angle θow and the corresponding
capillary cross-sectional geometry, the capillary entry pressure can then be expressed in
terms of the parameters involved and the interfacial tension by using the Young-Laplace
equation again. To calculate the radius of curvature in Eq. (30) we need to study Fig. 9
to find expressions for the parameters involved.

The fluid-solid length, Lsow, is found by subtracting the distance of the pore wall still
occupied by water from the total length d of the corner of the star-shaped pore given by (9).
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This gives

(31) Lsow = d− row sin βow

sin α
,

where the angle βow is given by

(32) βow =
π

2
− α− θow.

The length of the arc of the fluid-fluid interface, Lfow, is

(33) Lfow = rowβow.

The area occupied by oil, Aow, is found by subtracting the area of the triangle with the two
corners α and βow from the total area A of the half corner of the tube, given by (8), and
then adding back the β-fraction of the circle with radius row. In the calculation of the area
of the triangle with the corners α and βow we have used the relation sin x cos y+cos x sin y =
sin (x + y). The area occupied by oil is therefore

(34) Aow = A− r2
ow sin βow sin (α + βow)

2 sin α
+

r2
owβow

2
.

Having defined the necessary parameters (31) - (34) for calculating row, inserted into (30)
it gives

(35) row =
A− r2

ow sin βow sin (α+βow)
2 sin α

+ r2
owβow

2

(d− row sin βow

sin α
) cos θow + rowβow

,

From (35) we obtain the following second order polynomial to be solved for row:
(1

2
βow − sin βow cos θow

sin α
+

sin βow sin(α + βow)

2 sin α

)
r2
ow + d cos θowrow − A = 0,

or in a simpler form

(36)
(1

2
βow − 1

2

sin βow cos θow

sin α

)
r2
ow + d cos θowrow − A = 0,

since sin(α + βow) = cos(θow). The solution for row is given by

row =

−d cos θow ±
√

(d cos θow)2 − 4
(

1
2
βow − 1

2
sin βow cos θow

sin α

)
(−A)

2(1
2
βow − 1

2
sin βow cos θow

sin α
)

,

or

(37) row =

−d cos θow ±
√

d2 cos2 θow + 2A
(
βow − sin βow cos θow

sin α

)

βow − sin βow cos θow

sin α

.

By using the relation (a + b) = (a2−b2)
(a−b)

with a = −d cos θow and

b =

√
d2 cos2 θow + 2A

(
βow − sin βow cos θow

sin α

)
, and choosing the physical relevant solution,
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the radius row of curvature is now given by

(38) row =
2A

d cos θow +

√
d2 cos2 θow + 2A

(
βow − sin βow cos θow

sin α

) ,

or since sin βow = cos(α + θow)

(39) row =
2A

d cos θow +

√
d2 cos2 θow − 2A

(
θow − π

2
+ α− 1

2
sin 2θow + cos2 θow

tan α

) ,

where we have used the relations cos(x + y) = cos x cos y − sin x sin y and sin 2x =
2 sin x cos x.

Finally, by applying Young-Laplace equation (12) again, with row from (39) and θow =
θpd, we obtain the following expression for the capillary entry pressure for primary drainage
for a regular n-cornered star-shaped pore

(40) Pcpd
entry =

σow

2A

[
d cos θpd +

√
d2 cos2 θpd − 2A

(
θpd − π

2
+ α− 1

2
sin 2θpd +

cos2 θpd

tan α

)]
,

where A and d are given by (8) and (9) respectively. With n = 3 in (8) and (9), (40)
applies for regular star-shaped pores with three-corners.

Case (2): In the case where θow ≥ π
2
−α, the entire cross-section of a pore is filled with oil

after invasion, and an AM is not formed. If θow = π
2
−α, the AM will touch the apex of the

corner exactly. When there is no wetting fluid in the corners, the length of the fluid-solid
interface Lsow equals the total length of the side d of the pore given by (9) that is

(41) Lsow = d =
R sin π

n

sin α
.

As no AM’s forms, the length

(42) Lfow = 0,

and the area occupied by oil equals the total area of the half corner given by (8), i.e.

(43) Aow = A =
R2

2

sin(α + π
n
) sin π

n

sin α
.

By inserting (41) and (43) into the energy balance equation (29) the capillary pressure
required for this event is given by

(44) Pcow =
σow cos θowd

A
,

or with n = 3 for a three-cornered star shaped pore

(45) Pcow =
2σow cos θow

R sin (α + π
3
)
.
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Capillary entry pressures relevant for imbibition. We will now describe the pro-
cedure for determining the necessary capillary entry pressures relevant for the fluid dis-
placements during imbibition indicated in Section 2.1, [2, 4], see Fig.3. If more than one
displacement from configuration C is possible, the change of configuration connected with
the highest capillary entry pressure is obtained.

In the following considerations, we use the notation shown in Fig. 10. The Aow in (34)
is here denoted by Aow1, and represents the cross-sectional bulk area bounded by the only
AM, now called AM1, in configurations B and C, and the outermost AM in configuration
E. The contact angle θow in (32) is here denoted by θ1, and may be equal to θh given by (20)
in configuration C and E, or θa in configuration B. The displacement from C to E results
in the formation of an additional AM which will be denoted by AM2. The cross-sectional
bulk areas bounded by AM1 and AM2, Aow1 and Aow2, see Fig. 10, may now be expressed
by

(46) Aow1 = A− rb1 sin (β1 + α)

2
+

r2β1

2
,

where

(47) β1 =
π

2
− α− θ1,

and

(48) Aow2 = A− rb2 sin (β2 − α)

2
− r2β2

2
,

where

(49) β2 =
π

2
+ α− θ2.

The cross-sectional oil-water and solid-fluid lengths shown in Fig. 10 are

(50) Lfi = rβi and Lsi = d− bi, i = 1, 2,

where

(51) bi =
r sin βi

sin α
, i = 1, 2.

Calculations of the capillary entry pressures for the fluid displacements during imbibition
are done as follows:

C → B. The displacement from C to B happens if the hinging contact angle given by (20)
reaches θa before the capillary entry pressure for a displacement from C to D is reached.
The AM’s will move along the surface of altered wettability with the constant contact angle
θa. The capillary pressure connected with this displacement is

(52) PcC→B =
cos(θa + α)

cos(θpd + α)
Pcmax.
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Figure 10. Illustration of the parameters used in describing the configura-
tions B, C and E, [4].

B → D. For a following change in configuration from B to D, the capillary entry pressure
is given by

(53) PcB→D
entry =

σow

2A

[
d cos θa +

√
d2 cos2 θa − 2A

(
θa − π

2
+ α− 1

2
sin 2θa +

cos2 θa

tan α

)]
.

This is found from solving the second order polynomial of r obtained from

(54) r =
Aow1

Ls1 cos θa + Lf1

,

where θ1 = θa. We note that this is the equivalent of solving (30), but with θow = θa in
(30) and (32).

C → D. For a displacement from C to D, we must solve Eq. (54) to find the entry radius
of curvature, but in this case numerically because θ1 6= θa in (47). Taking r = R as the
initial guess, β1 is calculated from (51) with b1 = bpd. The next step is to calculate the
quantities of Eq. (54) from (46) and (50), and thus by (54) a new estimate of r is obtained.
By iteratively repeating the indicated procedure, the entry pressure is at last given by

(55) PcC→D
entry =

σow

r
.

C → E. For a displacement from C to E, r is given by

(56) r =
Aow2

Ls2 cos θa − Lf2

.

By using (48) – (51), this yields a second order polynomial that has to be solved for r.
The capillary entry pressure corresponding to the physically correct root is given by

(57) PcC→E
entry =

σow

2A

[
d cos θa −

√
d2 cos2 θa + 2A

(
θa − π

2
− α− 1

2
sin 2θa − cos2 θa

tan α

)]
.
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E → D. For a following change of configuration from E to D, the relevant expression for
r is

(58) r =
Aow1 − Aow2

(Ls1 − Ls2) cos θa + Lf1 + Lf2

.

With b1 = bpd and θ2 = θa, and using (46) – (51), we arrive at

(59) π − θa − θ1 + cos θa
cos(θa − α)

sin α
+ (cos θ1 − 2 cos θa)

cos(θ1 + α)

sin α
= 0.

Solving Eq. (59) numerically for θ1 taking θ1 = θa as the initial value, we finally use the
converged value of θ1 together with (47), (51) and (12) to calculate the capillary entry
pressure PcE→D

entry .

3. A capillary pressure correlation for mixed oil-water wet conditions

The former correlation. Skjaeveland et al. [11] have published a general capillary pres-
sure correlation for mixed-wet reservoir rock. The suggested expression correlates the
capillary pressure with the water saturation and covers primary drainage, imbibition, sec-
ondary drainage and hysteresis scanning loops.

The correlation is the sum of two terms

(60) Pc =
cw[

Sw−Swr

1−Swr

]aw
+

co[
So−Sor

1−Sor

]ao
,

which correspond to a water-wet branch and an oil-wet branch, respectively. The aw, ao

and cw are positive constants and co is a negative constant. There is one set of constants
for imbibition and one set for drainage. Swr denotes the residual water saturation and
Sor the residual oil saturation. The graph of Eq. (60), both for imbibition and drainage,
thus consists of a positive water branch with an asymptote at Sw = Swr and a negative oil
branch with an asymptote at Sw = Sor, see Fig. 11 taken from [11]. For primary drainage
of a completely water-wet reservoir (i.e. the process of reducing the water saturation from
Sw = 1) the capillary pressure is expressed by the first term of Eq. (60).

The figure shows the primary drainage curve, denoted as (a), obtained by starting at
Sw = 1 where co = 0 and cw equals to the entry pressure. For primary imbibition of a
completely oil-wet rock (i.e. the process of reducing the oil saturation from So = 1), the
capillary pressure is expressed by the second term. The primary imbibition curve (d) is
thus modeled with cw = 0, and co is now equal to the entry pressure of water into a 100%
oil saturated core. For the intermediate cases, the capillary pressure is the sum of the
two terms. The figure also shows the bounding (secondary) imbibition (b) and secondary
drainage curves (c) forming the largest possible hysteresis loop.

The modified correlation. Now, the authors of [11] have extended the correlation to
model fluid flow processes where the wettability may change with time. The suggested
correlation given in [12] takes the following form:

Pc(Sw, θ) =
cw cos (θ/2)[

Sw−Swr

1−Swr

]aw
+

co cos ((π + θ)/2)[
So−Sor

1−Sor

]ao
.(61)
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Figure 11. The capillary pressure Pc, given by Eq. (60), as a function of
the wetting phase saturation, Sw, for: (a) primary drainage; (b) (secondary)
imbibition; (c) secondary drainage and (d) primary imbibition.

In particular, the new parameter θ ∈ [0, π] is an averaged contact angle expressing the
wettability of the porous media in question. The parameters cw, aw, co and ao are now
positive constants. This expression also consists of a water-wet branch and an oil-wet
branch. Transition between water-wet and oil-wet conditions is obtained by varying the
contact angle θ. In general, the residual saturations Swr and Sor depend on θ. For the
cases where changes of interfacial tension plays an important role, the formulas for capillary
pressure are modified by multiplying the numerators in Eq. (61) by the interfacial tension
σ [12].

Fig. 12 shows four sets of curves of Pc(Sw, θ) generated from the suggested correla-
tion (61) for different choices of the unknown parameters cw, co, aw and ao. An individual
curve in each of the three examples corresponds to a contact angle θ in the range [40◦, 180◦]
which is the interval we have chosen for θa in the pore model. The residual saturations
Swr and Sor have been set to 0.01.

If we compare the left and right plots of Fig. 12 it is clear that the size of the parameters
aw and ao influence the behavior of the curves near the end points Sw = 0, 1. Comparing
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the top and bottom plots it is clear that the values of cw and co determine the spreading
of the curves for different contact angles.

4. Validation of the correlation by using the pore scale model

The purpose of this section is to discuss how the correlation (61) possibly can be eval-
uated by making use of the pore scale model described in Section 2. In other words, we
want to employ the pore scale model as a tool for visualizing the pore structure of a porous
media that can be represented well by the capillary pressure correlation given by Eq. (61).
In the following we focus exclusively on the imbibition process. As a first approach the
following simplifying assumptions are made:

• We consider the case Swr = Sor = 0.01. This correspond to the values obtained at
the end of primary drainage in the pore model. Generally, the residual saturations
are positive and depend on both averaged contact angle θ and interfacial tension;

• cw and co are assumed to be constants. In a more general setting dependence on
interfacial tension could be included.

Since a specific wetting state is represented by a distribution θa(R) of advancing contact
angles in the pore scale model, whereas the same wetting state is represented by an averaged
contact angle θ in the correlation (61), it is crucial to define a precise rule that relates θa(R)
and θ. One way to express this is to define a family of θa(R), one for each θ ∈ [θmin, θmax].
This gives rise to a two-variable function θa(R, θ). Consistent with Eq. (21), we have

(62) θa(R, θ)
Pore model−→ PcPore(Sw, θ).

An important task is to describe the function θa(R, θ). In the remaining part of this
section we consider two different choices of θa(R, θ). Firstly, we use a straightforward
relation between θa and θ where θa is directly associated with θ. No specific information
from the pore model is taken into account in this relation (e.g. no detailed information
at the pore level is accounted for). Secondly, we define θa(R, θ) such that the distribution
θa(R, θ) and the corresponding θ satisfies a Cassie’s law type of relation. Consequently,
we use a relation where information about the area of the pores with altered wettability is
considered.

For a given choice of θa(R, θ) we compare the produced corresponding capillary pressure
function PcPore(Sw, θ) with the correlation PcCorr(Sw, θ) given by (61). In particular, we
use an optimization algorithm to find the unknown parameters cw, aw, co and ao that
minimize the difference between PcPore(Sw, θ) and PcCorr(Sw, θ). Through this procedure
we seek to identify a pore scale description whose capillary pressure function PcPore gives
a good match with the correlation PcCorr.
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Figure 12. Pc(Sw) generated by the correlation for different θ ∈ [40◦, 180◦]
and with different values of the parameters cw, co, aw and ao..
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Figure 13. Example 1a): Left: PcCorr(Sw) generated from the correla-
tion (61) with the estimated parameters given by (68). Right: PcPore(Sw)
generated from the pore model by using θa(R, θ) given by (63). In both cases
Pc is plotted for the different θ ∈ [θmin, θmax].

4.1. Case I: A simple expression for relating the averaged contact angle θ to a
corresponding wetting state θa(R, θ) in the pore model. As described in section 2.1,
the wetting state in the pore model during imbibition is described by the assigned distri-
bution of different local contact angles θa to the different tubes, in proportion to their
size.

We will now consider the special case where the averaged contact angle θ, representing
the wetting state in the porous media, is related to the pore distribution θa(R, θ) by the
simple linear relation

(63) θa(R, θ) = θ, (R, θ) ∈ [Rmin, Rmax]× [θmin, θmax].

In other words, the pore contact angles θa(R) are the same for all different pores, and
coincide with the averaged contact angle θ. Having defined this relation between θa(R, θ)
and θ, we are now in the position where we can compare PcPore(Sw, θ), generated by the
pore model, with PcCorr(Sw, θ) generated by the correlation (61). In particular, we want
to explore to what extent PcCorr can be used to represent PcPore. That is, to find good
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Figure 14. Example 1a: Left: PcCorr(Sw, θ) generated from the correla-
tion (61) with the estimated parameters given by (68). Right: PcPore(Sw, θ)
generated from the pore model by using θa(R, θ) given by (63).

choices of the parameters cw, aw, co and ao in (61) such that the difference between the
two curves is minimized.

To estimate the four parameters in the correlation, cw, aw, co and ao, we have used the
MATLAB function lsqcurvefit from the ’Optimization Toolbox’. This function solves non-
linear curve-fitting (data-fitting) problems in the least-squares sense. That is, given input
data xdata and ydata, and the observed output zdata, we can find coefficients (parameters)
k that ”best fit” the equation

min
k∈K

∥∥∥F (k, xdata, ydata)− zdata
∥∥∥

2

2
:=

min
k∈K

∫ xmax

xmin

∫ ymax

ymin

(
F (k, xdata, ydata)− zdata

)2

dydx.
(64)
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Figure 15. Example 1a): The curves shown in Fig. 14 seen from above.
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for the curves in Fig. 14.
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Figure 17. Example 1b): Plots of the same curves as in Fig. 13 with a
reduced saturation interval.

Here K represents the parameter space, that is, the region in which the parameter vector
can lie. The xdata and ydata are matrices or vectors, and F (x, xdata, ydata) is a matrix-
valued function. The F function in our case is of course the correlation PcCorr(Sw, θ) given
in Eq. (61). The saturation interval amounts to the xdata, and is divided in the following
way

{Sw,i}m
i=1 where Sw,1 = Sw,min, Sw,i = Sw,min + (i− 1)4Sw, i = 2, ..., m

and Sw,m = Sw,max.
(65)

The different θ values amount to the ydata and have the uniform distribution:

{θj}M
j=1 where θ1 = θa,min, θj = θa,min + (j − 1)4θ, j = 2, ...,M − 1

and θM = θa,max,
(66)

where 4θa = (θamax − θamin
)/(M − 1). For every pair of (θj, Sw,i) we have calculated the

corresponding value of Pc from the pore model by means of an interpolation routine. These
Pc-values now amount to the observed output zdata in Eq. (64). The least squares problem
in our case is therefore
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Figure 18. Example 1b): Plots of the same curves as in Fig. 14 with a
reduced saturation interval.

min
k∈K

∥∥∥F (k, Sw, θ)− PcPore
∥∥∥

2

2

= min
k∈K

∫ 1

0

∫ θa,max

θa,min

(
PcCorr(Sw, θ; cw, aw, co, ao)− PcPore(Sw, θ)

)2

dθdS,
(67)

where k = [cw aw co ao].
We have used the algorithm [k,resnorm] = lsqcurvefit(fun,k0,xdata,ydata,zdata) which
returns the value of the squared 2-norm of the residual at k.
In Example 1a) and 1b) below, the curve-fitting is done in three steps. First, only the
first term of the correlation in Eq. (61) is fitted for small Sw to estimate cw and aw. Next,
the second term of the correlation is fitted for small So to estimate co and ao. Then, all
the four parameters are optimized simultaneously for both terms of Eq. (61) for the entire
saturation range. This gives a better match with the pore model for this case. For Example
2a) and 2b) in section 4.3, the curve-fitting shows little or no difference when we do the
curve-fitting in steps compared to doing it in one step only.
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4.2. Assessment of the correlation for Case I.

Example 1a). The saturation interval is defined from Sw,min = 0.011 to Sw,max = 1−0.011,
where 4Sw = 0.0025 and m = 393. The contact angles are uniformly distributed with
θa,min = 40◦, θa,max = 180◦, 4θ = 2◦ and M = 71.

The estimated parameters are as follows:

(68) cw = 447Pa, aw = 0.20, co = 449Pa and ao = 0.15.

A plot of Pc as a function of Sw for θ ∈ [θmin, θmax] generated by the correlation with
the estimated parameters (68) is shown to the left in Fig. 13. To the right is shown a plot
of the corresponding curves generated by the pore model based on θa(R, θ) given by (63).
3D plots of the PcCorr(Sw, θ) and PcPore(Sw, θ) curves are shown in Fig. 14. The 3D curves
seen from above and a plot of the error E = |PcCorr(Sw, θ) − PcPore(Sw, θ)| are shown in
Fig. 15 and Fig. 16 respectively.

Observations: In view of Fig. 13–16 we may remark:

• Fig.13 and 14 illustrate that the correlation does not capture so well the large and
small Pc-values at the endpoints.

• Fig.13 also shows that for the highest values of θ, the curves generated by the
correlation does not fit so well with the corresponding curves generated by the pore
model.

• The error is relatively large for high values of θ together with small water satura-
tions, see Fig.16.

Example 1b). To check how the correlation matches in a smaller saturation interval (i.e.
we want to avoid the strong impact for small and large saturations), we reduce the interval
by starting at Sw,min = 0.05 and going to Sw,max = 1 − 0.05. We then get the following
estimated parameters:

(69) cw = 500Pa, aw = 0.07, co = 421Pa and ao = 0.21.

Fig. 17 shows the Pc(Sw) curves (where Pc is plotted as a function of Sw for θ ∈
[θmin, θmax]) generated by the correlation with the estimated parameters (69) to the left,
and by the pore model to the right. 3D plots of the PcCorr(Sw, θ) and PcPore(Sw, θ) curves
are shown in Fig. 18. In Fig. 19 the 3D plots are seen from above and he error E =
|PcCorr(Sw, θ)− PcPore(Sw, θ)| is illustrated in Fig. 20.

Observations: In view of Fig. 17–20 we remark:

• The estimated parameters have changed as follows: cw is higher while aw and co

are smaller. ao is unchanged.
• The correlation still doesn’t bring forth the large and small Pc-values at the end-

points.
• We also here observe a relatively poor fit for the curves generated by the correlation

for the highest values of θ.
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• In contrast to the situation in Ex.1a) the error is now larger for the small values
of θ combined with the lowest water saturations. The maximum error has been
reduced from the order of 103 to the order of 102.

4.3. Case II: An averaged contact angle motivated by Cassie’s law.

Cassie’s law for modeling the contact angle on chemically heterogeneous sur-
faces. As mentioned is Section 1.1, Eq. (1), the oil-water contact angle on an ideal surface
is expressed by Young’s relation which is reproduced here as:

(70) cos θlg =
σsg − σsl

σlg

.

This relation was developed for the case of an ideal solid surface, which is smooth and
chemically homogeneous. In reality, of course, the solid surfaces in porous media are
typically both heterogeneous and rough to some extent. To allow for non-ideal surfaces,
the averaged effective contact angle applied in the correlation presented in Eq. (61) has
to take the different conditions into account. In the following we will study the effect
of heterogeneity of the solid surface on the averaged contact angle. That is, all other
conditions that would influence the averaged contact angle (i.e. the roughness of the surface
etc.) are neglected. On a chemically heterogeneous solid surface, the surface tensions vary
from one local area to the other. Accordingly, the Young’s contact angle has a different,
local value at each area. In general, the surface can be characterized by a properly averaged
apparent contact angle.

The most stable apparent contact angle on a heterogeneous surface θ is given by the
well known Cassie’s law [9] which was published in 1948. This equation suggests a way of
modeling the contact angle of a macroscopic droplet on a heterogeneous surface with two
different chemistries.

Cassie has shown that by averaging the surface energy, the contact angle of a heteroge-
nous surface, which consists of two types of surfaces each characterized by its own contact
angle φ1 with areal fraction f1 and φ2 with areal fraction f2, respectively, (f1 + f2 = 1), is
given by

(71) cos θC = f1 cos φ1 + f2 cos φ2,

where θC denotes the contact angle calculated by Cassie’s law. This equation can be
generalized such that the cosine of the Cassie contact angle is the weighted average of the
cosines of all the Young contact angles that characterizes the surface. That is, the apparent
angle (which is restricted to the interval ([φ1, φ2])) is given by an average involving the
angles characteristic of each constituent, but the average is applied to the cosines of these
angles. The weighted averaging is done according to the area fraction of each chemistry.
For a chemically heterogeneous surface, the extended averaged Cassie’s contact angle is
then given by

(72) cos θC =
∑

i

fi cos θi,
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Figure 21. Edge of a drop placed on a chemically composite surface. We
consider a small displacement dx (to the left) of the line of contact [5].

where θi is the angle taken on a simple planar surface component or chemical species i, fi

the fraction of area of the surface made up of i. Cassie equation is an approximation that
becomes better when the drop size becomes larger with respect to the scale of chemical
heterogeneity.

Cassie’s law is obtained by considering the energy variation associated with a small
displacement dx of a drop placed on a chemically composite surface, see Fig. 21 taken from
[5]. We assume that the individual areas of the different types of surfaces are very small
compared to the size of the drop. If we let θ∗ denote the apparent contact angle, the energy
variation combined with the displacement dx is

(73) dE = f1(σsl − σsg)1 dx + f2(σsl − σsg)2 dx + σlg dx cos θ∗,

where the indices 1 and 2 refer to one or the other species swept during the displacement
- species 1 with a probability f1, and species 2 with a probability f2.

The minimum of the energy E, i.e. dE = 0, together with the following form of Young’s
relation σsl − σsg = −σlg cos θlg applied to each solid, now gives

(74) σlg dx cos θ∗ = f1(−σlg cos θlg)1dx + f2(−σlg cos θlg)2dx.

Since the interfacial tension σlg is constant, we arrive at

(75) cos θ∗ = f1 cos θlg1 + f2 cos θlg2

which is Cassie’s law, i.e θ∗ = θC . Since the Eqs. (71) and (72) are derived from the ther-
modynamic definition of contact angle, the Cassie’s angle θC , is therefore not an observable
apparent contact angle but a conceptual effective contact angle. This means that Cassie’s
law cannot be applied to calculate the apparent contact angle but is instead a definition of
the effective contact angle. In other words, the contact angle θC calculated from Cassie’s
law cannot be used to interpret the observed real contact angle on a heterogeneous surface.
The Cassie’s contact angle can only be compared to the ensemble average of the cosines of
many contact angles at different positions on a heterogeneous surface.
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Cassie’s contact angle applied in combination with the correlation. In the fol-
lowing we want to investigate the use of Cassies contact angle in the correlation. More
precisely, the purpose is to apply this contact angle as the effective contact angle θ ex-
pressing the wettability of the porous media. That is, we must define θa(R, θC) such that
for θ∗C ∈ [θmin, θmax], θ∗C and θa(R, θ∗C) obey Cassie’s law.

In a discrete description where we have {Ri}N
i=1 and {θC,j}M

j=1, this means that the
following relation should hold:

(76) cos θC,j =
N∑

i=1

fi cos θa(Ri, θC,j), j = 1, . . . ,M.

The other parameters fi will be explained below. In addition, it is also instructive to
consider a simplified form of Cassie’s law where we leave out the cosine of the contact
angles. This is motivated by the approximation

(77) cos(x) ≈ − 2

π
x + 1, x ∈ [0, π].
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See Fig. 22 for an illustration. Inserting this approximation for cos θ into Cassie’s law gives

(− 2

π
θ + 1) =

N∑
i=1

fi(− 2

π
θa(Ri, θ) + 1)

− 2

π
θ + 1 =

N∑
i=1

fi(− 2

π
θa(Ri, θ)) +

N∑
i=1

fi

− 2

π
θ + 1 = − 2

π

N∑
i=1

fiθa(Ri, θ) + 1

θ =
N∑

i=1

fiθa(Ri, θ),

(78)

since by definition
∑N

i=1 fi = 1. That is, the relation in Eq. (78) suggests that the apparent
contact angle θ is the weighted average of all the local contact angles θa(Ri, θ) that char-
acterize the heterogeneous surface. With this we mean that the relation between θa(R, θ)
and θ satisfies

(79) θAC,j =
N∑

i=1

fiθa(Ri, θAC,j), j = 1, . . . , M.

Here θAC represents the averaged contact angle found by what we will call the approximated
Cassie’s law (79).

The following assumptions are made regarding the use of (76) and (79):

(i) The heterogeneous surface in question is associated with the bundle of tubes in the
pore model representing the porous media. Each tube is regarded as a chemically
different type of surface, and the effective contact angle we are searching is therefore
an area average over the local contact angles of all the pores in the model.

(ii) The contributing area fi for a single tube is the part of the pore walls with altered
wettability at the end of primary drainage. In particular, we assume that the fi’s
are constant for all wetting states, i.e. they are not affected by changes in the
wetting state represented by θa.

The area fi in question for a tube amounts to the area marked with bold lines in Fig. 4.
We will still consider just one half of a corner of the regular star-shaped pores in the model,
and the length of the pore walls of interest will be denoted by Lp. This length can be found
by the length of the apex d of a corner in a pore from Eq. (9) and the water-wet distance
bpd in the corner of a tube defined in Eq. (18). Lp for a pore is then given by

(80) Lp = d− bpd =
R sin π

n

sin α
− σow cos (θpd + α)

Pcmax sin α
.
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Figure 23. θ̃a(R,WI)

For k tubes, the Cassie relation is therefore

(81) cos θC =

∑k
i=1(Lpi

cos θa,i)

L
,

where L is the total area of the surfaces Lp, i.e.
Pk

i=1 Lpi

L
= 1. Small tubes that have not

yet been invaded by oil, are still strongly water-wet with no area with altered wettability
and will therefore not contribute to the averaged contact angle in question. The equivalent
of Eq. (81) for the simplified example is

(82) θAC =

∑k
i=1(Lpi

θa,i)

L
.

Construction of θa(R, θ). What remains is to describe how to define the distribution
θa(R, θ) such that Cassie’s law is taken into account in the following sense:

(83) cos(θC,j) =
N∑

i=1

fi cos θa(Ri, θC,j),

for j = 1, . . . M . We propose the following stepwise procedure.
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Figure 24. To the left θa(R, θ) with θ = θAC calculated by the simplified
Cassie’s law (79). To the right θa(R, θ) with θ = θC calculated by Cassie’s
law (76).

Step 1: First, we define θ̃a(R,WI) where WI is a wettability index ranging from 0 (mixed-
wet) to 1 (water-wet). Motivated by (22), we suggest to consider the following family of

distributions θ̃a(R, WI), one for each wetting state represented by WI .

(84) θ̃a(R,WI) = a(WI)R + b(WI),

where

(85) a(WI) =
θamax(WI)− θamin

Rmax −Rmin

, b(WI) = θamin
−

(θamax(WI)− θamin

Rmax −Rmin

)
Rmin,

for (R,WI) ∈ [Rmin, Rmax]× [0, 1]. The following linear relation is used for θamax(WI):

(86) θamax(WI) = cWI + d, where c =
θamin

− θamax

WImax −WImin

, d = θamax ,

for WI ∈ [0, 1]. This ensures that θmax decreases as the wetting state WI goes from a

mixed-wet state towards a water-wet state. In Fig. 23 we have shown a plot of θ̃a(R, WI).

In particular, θ̃a(R, WI) has been constructed such that

(87) θ̃a(R, W 1
I ) > θ̃a(R, W 2

I ) ∀R ∈ [Rmin, Rmax], when W 1
I < W 2

I .

Note that many different choices for the construction of θ̃a(R, WI) could have been made.
Other distributions could possibly be introduced that describe wettability in a more real-
istic manner. This remains a topic for further research.
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As a first step, however, we have considered a simplest possible choice which is a natural
generalization of (22) to a family of different wetting states. The next step is to convert

θ̃a(R,WI) into a corresponding distribution θa(R, θC) such that θC and θa(R, θC) are related
by Cassie’s law in the sense of (83).

Step 2: For simplicity reasons we first consider the approximated Cassie’s law represented
by (79). Then in Remark 4.1 we explain why the same construction works for Cassie’s law.

Assume that we have distributions {WI,j}M
j=1 and {Ri}N

i=1. Then we define the operator
P such that

(88) P : WI,j → {θ̃a(Ri,WI,j)}N
i=1 → θAC,j,

where the first mapping is obvious in light of Step 1, whereas the last is defined by the
following area average similar to (79):

(89) θAC,j =
N∑

i=1

fiθ̃a(Ri,WI,j).

If we can show that P is one-to-one, i.e.,

(90) θAC,j1 = θAC,j2 ⇒ WI,j1 = WI,j2 ,

then P is invertible. Let us check this for P defined by (88) and (89).

Proof. We assume

(91) θAC,j1 = θAC,j2

Then
N∑

i=1

fiθ̃a(Ri,WI,j1) =
N∑

i=1

fiθ̃a(Ri,WI,j2)

or
N∑

i=1

fi

(
θ̃a(Ri, WI,j1)− θ̃a(Ri,WI,j2)

)
= 0.

Using the fact that fi > 0 for i = 1, . . . N , and the fact that either

θ̃a(Ri,WI,j1) > θ̃a(Ri, WI,j2), for all i = 1, . . . , N

or
θ̃a(Ri,WI,j1) < θ̃a(Ri,WI,j2), for all i = 1, . . . , N,

which follows from the construction of θ̃a(R, WI) as described in Step 1 (see also Fig. 23),
we can conclude that

θ̃a(Ri,WI,j1) = θ̃a(Ri,WI,j2), for all i = 1, . . . , N.

Finally, in view of the monotonicity property described in (87), we can conclude that

WI,j1 = WI,j2 .
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Consequently, the one-to-one property of the operator P as described by (90) has been
verified. ¤

Remark 4.1. The one-to-one property of P given by (88) and (89) has been shown. If we
replace the approximate Cassie’s relation (89) by a Cassie’s law type of relation

(92) cos(θC,j) =
N∑

i=1

fi cos θ̃a(Ri,WI,j),

the same arguments as above can be repeated since cos(x) is strictly monotone in the interval
[0, π]. In other words, P is invertible when (89) is replaced by (92).

Consequently, equipped with the family of distributions θ̃a(R,WI) from Step 2, we can
define the new family θa(R, θC) as follows:

Definition 4.1.

(93) θa(Ri, θC,j)
def
:= θ̃a(Ri, P

−1(θC,j)),

for i = 1, . . . N and j = 1, . . .M .

Lemma 4.1. The distribution θa(R, θ) given by (93) has been constructed in such a way
that for θ∗ ∈ [θmin, θmax], the corresponding distribution θa(R, θ∗) satisfies Cassie’s law in
the sense of (83).

Proof. Clearly, using that WI,j = P−1(θC,j) it follows from (92) that

(94) cos(θC,j) =
N∑

i=1

fi cos θ̃a(Ri,WI,j) =
N∑

i=1

fi cos θa(Ri, θC,j),

where we have used (93). ¤

Finally, we now want to visualize the constructed θa(R, θAC) and θa(R, θC) obtained
from the procedure described in Step 1 and Step 2. Fig. 24 gives an illustration of the
two different functions θa(R, θ), i.e. first, by letting θ = θAC and then by letting θ = θC ,
respectively. The figure shows little difference and we therefore choose just to concentrate
the further investigation on the last approach, namely by using the Cassie’s contact angle
as the averaged contact angle θ. We remark that this may not be very surprising in view
of the approximation (77) shown in Fig. 22.

4.4. Assessment of the correlation for Case II. The purpose now is to make use of the
distribution θa(R, θC), which relates the distribution of local contact angles θa to Cassie’s
contact angle θC employed in the correlation, to estimate the unknown parameters cw, aw,
co and ao. This has been done by using the same curve-fitting method as in Section 4.2.
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Figure 25. Example 2a): Left: PcCorr(Sw) generated by the correlation
(61) with the estimated parameters given by (95). Right: The correspond-
ing PcPore(Sw) curves generated by the pore model using (83). In both cases
Pc is plotted as a function of Sw for different θC ∈ [θCmin

, θCmax ].

Example 2a). The xdata amounts to the same saturation interval as in Example 1a),
with Sw,min = 0.011, Sw,max = 1− 0.011, 4Sw = 0.0025 and m = 393. The ydata are now
the M = 71 different values of {θj}M

j=1 found by Eq. (83) for different sets of local contact

angle distributions {θa(·, θj)}M
j=1 defined in (84)–(86) with θamax = 180◦ and θamin

= 40◦. For
these sets of contact angles we have then generated the corresponding values of Pc(Sw, θC)
by the pore model giving the zdata. The estimated parameters in this case are given by

(95) cw = 444Pa, aw = 0.26, co = 516Pa and ao = 0.12.

Fig. 25 (left) shows a plot of Pc as a function of Sw for the different θC ∈ [θCmin
, θCmax ]

generated by the correlation with the estimated parameters (95). To the right are shown
the corresponding curves generated by the pore model based on (83). 3D plots of the
PcCorr(Sw, θC) and PcPore(Sw, θC) curves are shown in Fig. 26. The 3D plots seen from
above and a plot of the error E = |PcCorr(Sw, θC)−PcPore(Sw, θC)| for this case are shown
in Fig. 27 and Fig. 28, respectively.

Observations: In view of Fig. 25 – 28 we may remark:
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Figure 26. Example 2a): Left: PcCorr(Sw, θC) generated by the cor-
relation (61) with the estimated parameters given by (95). Right: The
corresponding PcPore(Sw, θC) curves generated by the pore model by us-
ing (83).

• Fig. 25 reflects that the correlation gives a fairly good match at the endpoint with
low water-saturation. It doesn’t capture so well the lowest Pc-values for the highest
water-saturations.

• The spreading of the curves generated by the correlation for different θC ’s is similar
to that of the pore model, in contrast to Case I, see Fig. 13.

• The error is larger for the high values of θ combined with the smaller water sat-
uration, see Fig. 28. This behavior is also observed in Example 1a), however the
absolute value of the error is considerably higher in Example 1a), see Fig. 16.

Example 2b). In this example we have again restricted the saturation area to Sw ∈
[0.05, 1− 0.05] similar to Example 1a). Otherwise, the situation is the same as in Example
2a). The optimization gives the following parameters:

(96) cw = 491Pa, aw = 0.18, co = 526Pa and ao = 0.12.

Fig. 29 (left) shows a plot of Pc as a function of Sw for the different θC ∈ [θCmin
, θCmax ]

generated by the correlation with the estimated parameters (96). To the right are shown
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Figure 27. Example 2a): The curves shown in Fig. 26 seen from above.
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Figure 28. Example 2a): The error
E = |PcCorr(Sw, θC)− PcPore(Sw, θC)| for the curves in Fig. 26.
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Figure 29. Example 2b): Plots of the same curves as in Fig. 25 with a
reduced saturation interval.

the corresponding curves generated by the pore model based on (83). 3D plots of the
PcCorr(Sw, θC) and PcPore(Sw, θC) curves are shown in Fig. 30. The 3D plots seen from
above and a plot of the error E = |PcCorr(Sw, θC)−PcPore(Sw, θC)| are illustrated in Fig. 31
and Fig. 32, respectively.

Observations: In view of Fig. 29 – 32 we may remark:

• The estimated values are changed as follows: cw and co are higher, aw lowered and
ao remains unchanged.

• Fig. 31 reflects that the correlation captures the main contours much better com-
pared to Case I, see Fig. 19.

• Fig. 32 reflects that the error is highest for the smaller and larger saturation values.
However, by comparing with Case I, Example 1b), we see that the absolute error
is reduced by a factor of 2, both at the outermost and central parts of the region
(Sw, θC) ∈ [0.05, 1− 0.05]× [θCmin

, θCmax ].
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Figure 30. Example 2b): Plots of the same curves as in Fig. 26 with a
reduced saturation interval.
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Figure 31. Example 2b): The curves shown in Fig. 30 seen from above.
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Figure 32. Example 2b): The error
E = |PcCorr(Sw, θC)− PcPore(Sw, θC)| for the curves in Fig. 30.

5. Concluding remarks

Emphasis has been on the development of a framework that allows for systematic in-
vestigations of how to design a pore structure whose averaged behavior is captured well
by the correlation. As a conclusion, it seems clear that the use of an averaged contact
angle based on Cassie’s law gives a favorable result in the attempt of representing the pore
model by the correlation. In Fig. 33 we have plotted PcCorr(Sw, θC) and PcPore(Sw, θC) for
different choices of θC in the interval θC ∈ [θCmin

, θCmax ]. The fit is best for θC contained
in the central part of the interval. For small θC there is a discrepancy for small water
saturations Sw. For large θC there is a discrepancy for large water saturations Sw. Most

likely, this discrepancy could have been reduced by modifying the distribution θ̃a(R, WI)
given by (84) and (85). More precisely, replace the linear variation with respect to wetting
state WI by a suitable nonlinear variation.

In light of the above comments, some natural further investigations could be as follows:

• One could envision to use a distribution θ̃a(R, WI) which to a larger extent discern
between the two cases θ < π/2 (water-wet) and θ > π/2 (mixed-wet).

• Furthermore, one could envision to use other distributions for θ̃a(R, WI) than the
linear distribution in R direction and WI direction that have been used, see Fig. 23.
Still the framework given by Step 1 and Step 2 in Section 4.3 could serve as a helpful
guideline for construction of the corresponding distribution θa(R, θC) which takes
into account Cassie’s law.



EVJE 45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

S
w

 (Water Saturation)

P
c
 (

C
a

p
il
la

ry
 P

re
s
s
u

re
)

 

 
θ

C
=2.52

θ
C

=2.12

θ
C

=1.57

θ
C

=0.99

θ
C

=0.79

Figure 33. Comparison of PcCorr(Sw, θC) and PcPore(Sw, θC) for different
choices of θC .

• The use of Cassie’s law is motivated by the desire of taking the heterogeneity of the
surface into account. The influence of other factors influencing the local contact
angles and hence the wettability of the porous media, as f.ex the roughness of the
surface, could also have been considered [10].

• The uniform distribution of the pore sizes is chosen for simplicity. To get a more
realistic distribution we could use other distributions as f.ex. Weibull, log-normal
or beta-distribution. For the half-angle of the corners α we have chosen a linearly
dependency on R. Other choices could have been made.
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NOTATION
A Total area of the cross-section of a tube.
Aw Area of a tube occupied by water.
Aow Cross-sectional bulk area bounded by an AM.
AM Arc meniscus.
α Half angles of the corners in a pore [rad].
bpd Length of the pore wall that remains water-wet after primary drainage.
d Length of the side of a corner in a pore.
Lsow Cross-sectional fluid-solid length.
Lfow Cross-sectional fluid-fluid length.
MTM Main terminal meniscus.
N = 300 Number of pores (tubes) in the model (used here).
n = 3 Number of corners in a pore.
o Oil.
Pc Capillary pressure (Pa).
Pcmax = 10000 Capillary pressure at the end of primary drainage.
pd Primary drainage.
r = σ

Pc
Radius of curvature.

R Radii of the inscribed circle for the tubes[m].
Rmin = 10−6 R of the smallest pore[m].
Rmax = 100−6 R of the largest pore[m].
Sw Water saturation.
Swr Residual/irreducable water saturation.
So Oil saturation.
Sor Residual/irreducable oil saturation.
σ = 0.020 The oil-water interfacial tension [N/m].
θ Effective/averaged contact angle.
θa Advancing contact angle.
θAC An approximation of Cassie’s contact angle.
θC Cassie’s contact angle.
w Water.
WI Wettability index.

Acknowledgement. The author is thankful to the supervisors, prof. Svein M. Skjaeve-
land at UiS and dr. Johan Olav Helland at IRIS, for introducing me to the theory discussed
in this thesis and giving helpful advices. In particular, the matlab code that has been used
for the pore model simulations is based on appropriate modifications of the code developed
by dr. Helland. A special thank is also given to my husband, Steinar, for counseling and
encouragement throughout the work.



EVJE 47

References

[1] Clayton T. Crowe. Multiphase flow handbook, CRC Press (2006).
[2] M.I.J. van Dijke, K.S.Sorbie Existence of fluid layers in the corners of a capillary with non-uniform
wettability. Journal of Colloid and Interface Science, 293 (2006) 455 - 463.

[3] S.G.Evje. Some aspects of the Young-Laplace equation for porous media modelling. Bachelor thesis,
University of Stavanger, June 2008.

[4] S.Evje and J.O.Helland Internal note.
[5] Pierre-Gilles de Gennes, Francoise Brochard-Wyart and David Qur. Capillarity and Wetting Phenom-
ena, Springer (2004).

[6] J.O.Helland, M.I.J.van Dijke, K.S.Sorbie, S.M.Skjaeveland Three-phase relative permeability from
mixed-wet triangular and star-shaped pores.

[7] J.O.Helland and S.M.Skjaeveland. Physically Based Capillary Pressure Correlation for Mixed-Wet
Reservoirs From a Bundle-of-Tubes Model. SPE Journal, (June 2006).

[8] Johan Olav Helland Modelling of Three-Phase Capillary Pressure for Mixed-Wet Reservoirs. Doctor
thesis, University of Stavanger, July 2005.

[9] Masao Iwamatsu The validity of Cassies’s law: A simple exercise using a simplified model. Journal of
Colloid and Interface Science, 294 : 176-181 (2006).

[10] J.Long, M.N.Hyder, R.Y.M.Huang, P.Chen Thermodynamic modeling of contact angles on rough,
heterogenous surfaces. Advances in Colloid and Interface Science, 118 (2005) 173 - 190.

[11] S.M.Skjaeveland, L.M. Siqveland, A. Kjosavik, Stavanger College, W.L. Hammervold Thomas, Statoil,
G.A. Virnovsky, RF-Rogaland Research. Capillary Pressure Correlation for Mixed-Wet Reservoirs. SPE
Reservoir Eval. & Eng. 3(1), (February 2000).

[12] Hans Kleppe. Simulation of spontaneous imbibition of seawater into an oil-wet rock. Internal
note/Shell PDO report.

[13] P.O.Sukka. Improving the Nuclear Tracer Imaging Centrifuge Method for Measuring In-Situ Capillary
Pressures and Comparisons with Other Methods. Doctor thesis, University of Bergen, December 2004.


	ForsideSivGEvje
	DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

	MasterSivGEvje

