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Abstract 

Perkinsus marinus is a protozoan parasite causing Dermo disease in the Eastern Oyster, Crassostrea 

virginica. The parasite spreads from oyster to oyster through the water column, and can cause 

extensive oyster mortalities, especially after periods with high temperature and salinity. This study 

investigated the distribution and weighted prevalence (prevalence and infection intensity) of P. 

marinus in C. virginica in Apalachicola Bay (Franklin County, Florida, USA), as a part of a larger 

project that investigates the decline of oyster populations and fishery collapse in the bay. The 

relationship between oyster health and P. marinus infections were also investigated.  

No differences were found in weighted prevalence of P. marinus infections in oysters within oyster 

bars, between oyster bars, nor between November 2012 and February 2013 sampling time points. 

Mean weighted prevalence of P. marinus infections in Apalachicola Bay was 1.01 ± 0.11 and 0.90 ± 

0.05 (mean ± SE) for November 2012 and February 2013, respectfully. A negative relationship 

between oyster meat condition and P. marinus infection intensity was found. No other relationships 

were found between different internal and external oyster health condition indices and P. marinus 

infection intensity. 

Results from this study compared with other studies suggest that weighted prevalence of P. marinus in 

Apalachicola Bay oysters has increased since 2005. Drought periods in the Apalachicola River 

watershed are associated with reduced freshwater flow into Apalachicola Bay and elevated salinity, 

fostering conditions favorable for P. marinus infection in oysters. 

 

 

 

 

 

 

 

 

 

 



4 

 

Acknowledgements 

I would like to thank Torleiv Bilstad, who made it possible for me to travel to Florida to work on my 

master’s project. Thanks to Patti Anderson, who kindly took care of me and made sure I got to 

experience different parts of Florida. 

I also express my deepest thanks to my advisor, Andrew Kane, for giving me the opportunity to work 

on this project, and for his guidance and support. Thanks to all members of the Aquatic Pathobiology 

Laboratories, especially Ross Brooks, who let me include some of his work in my thesis. 

Special thanks go to my fiancé, Espen Christensen, for patience and continuous support through these 

busy months. 

 

Stavanger, June 2013 

Ida Renate Øglænd 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

Table of Contents 

 

Abstract ................................................................................................................................................... 3 

Acknowledgements ................................................................................................................................. 4 

Table of Contents .................................................................................................................................... 5 

Abbreviations .......................................................................................................................................... 7 

List of Figures ......................................................................................................................................... 8 

List of Tables ......................................................................................................................................... 11 

1 Introduction ................................................................................................................................... 12 

1.1 The Eastern Oyster, Crassostrea virginica............................................................................ 12 

1.2 Perkinsus marinus ................................................................................................................. 14 

1.2.1 Life Cycle of P. marinus ............................................................................................... 15 

1.2.2 Transmission of P. marinus ........................................................................................... 16 

1.2.3 Infection mechanism ..................................................................................................... 17 

1.2.4 Effect of P. marinus on Oysters .................................................................................... 18 

1.2.5 P. marinus Infection Intensity in Oysters of Different Sizes......................................... 19 

1.2.6 Environmental Factors Affecting P. marinus Prevalence and Intensity in Oysters ...... 19 

1.3 Overview of Historical Data on P. marinus Infections in Apalachicola Bay ........................ 22 

1.4 Methods of Perkinsus marinus Detection and Monitoring ................................................... 24 

1.4.1 RFTM Oyster Tissue Assay .......................................................................................... 25 

2 Aims of Thesis ............................................................................................................................... 28 

3 Methods ......................................................................................................................................... 30 

3.1 Oyster Sampling Locations and Water Quality ..................................................................... 30 

3.2 Ranking of Oyster Health Condition Indices ........................................................................ 31 

3.2.1 External Rankings of Oyster Shells ............................................................................... 32 

3.2.2 Internal Rankings of Oyster Shells and Meat Condition Index ..................................... 32 

3.3 Tissue Collection ................................................................................................................... 34 

3.4 Tissue Analysis ...................................................................................................................... 34 



6 

 

3.5 Calculations ........................................................................................................................... 35 

3.6 Statistical Analyses ................................................................................................................ 35 

4 Results ........................................................................................................................................... 37 

4.1 Temperature and Salinity in Apalachicola Bay ..................................................................... 37 

4.2 Spatial Distribution of P. marinus ......................................................................................... 39 

4.2.1 Weighted Prevalence of P. marinus Infections within Oyster Bars .............................. 39 

4.2.2 Weighted Prevalence of P. marinus Infections between Oyster Bars and Time Points 42 

4.3 Weighted Prevalence of P. marinus Infections in Oysters of Different Sizes ....................... 43 

4.4 Linear Regression between Infection Intensity and Oyster Health Condition Indices .......... 44 

4.5 Comparisons with Historic Data from Apalachicola Bay ..................................................... 45 

5 Discussion ..................................................................................................................................... 46 

5.1 Weighted Prevalence of P. marinus Infections in Apalachicola Bay .................................... 46 

5.1.1 Temperature and Salinity in Apalachicola Bay ............................................................. 46 

5.1.2 Spatial and Temporal Distribution of P. marinus Infections in Apalachicola Bay 

Oysters 46 

5.1.3 P. marinus Infections in Oysters of Different Sizes ...................................................... 47 

5.2 P. marinus Infections Versus Oyster Health Indices ............................................................. 48 

5.3 Comparisons with Historical Data ......................................................................................... 48 

5.4 Evaluation of RFTM Tissue Assay ....................................................................................... 49 

5.4.1 General Problems Encountered ..................................................................................... 49 

5.4.2 Mackin Rank Photo Guide ............................................................................................ 50 

5.4.3 Variability and Sample Size: ......................................................................................... 51 

5.4.4 Appearance of Tissue Samples: ..................................................................................... 51 

6 Conclusion ..................................................................................................................................... 52 

7 Future Prospects ............................................................................................................................ 53 

8 References: .................................................................................................................................... 54 

9 Appendix ....................................................................................................................................... 62 

 



7 

 

Abbreviations 

APL – Aquatic Pathobiology Laboratories 

g – gram 

h – hour 

L – liter  

mL – milliliter 

mm – millimeter 

NERRS – National Estuarine Research Reserve System 

ppt – parts per thousands (‰) 

RFTM – Ray’s fluid thioglycollate medium 

SD – Standard deviation 

SE – Standard error 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

List of Figures 

Figure 1. Eastern Oyster, C. virginica, from Apalachicola Bay. Photo credit: A. Kane. ..................... 12 

Figure 2. Global distribution of natural occurring C. virginica [3]. Yellow asterisk indicates study site 

location of Apalachicola Bay in the Gulf of Mexico............................................................................. 13 

Figure 3. Global capture (left) and aquaculture (right) production for C. virginica [3]. ...................... 14 

Figure 4. P. marinus life cycle. (1) Trophozoites and zoospores in the water column (2) enters the 

oyster during filter-feeding, where they are directed toward the gills and mouth. (3) Some cells may be 

released into the water again with the pseudofeces, feces or from the decaying tissue of an oyster (see 

section 1.2.2). (4) Trophozoites enlarge and form hypnospores, which develop a discharge tube and 

after successive bipartitioning, hundreds of zoospores are released into the water column. Figure taken 

from Fernández Robledo et al. (2011) [41]. .......................................................................................... 16 

Figure 5. 28-day average discharge in Apalachicola River from January 2005 to April 2013, relative 

to historical flow in the past 89 years. Figure was created using the USGS Streamflow Duration 

Hydrograph Builder (http://waterwatch.usgs.gov/index.php) for USGS station 02358000, 1 km below 

Woodruff Dam. Flow line indicates drought periods in 2006-2008, and in 2010-2012. ...................... 21 

Figure 6. Oyster Sentinel and Petes et al. sampling locations in Apalachicola Bay. ........................... 23 

Figure 7. Left: Reported weighted prevalence ± SE of P. marinus infections in oysters at Dry Bar and 

Cat Point by Petes et al. (2012). Infections were ranked using a modified ranking system originally 

described by Ray (1954). Figure taken from Petes et al. (2012) [78]. Right: Petes et al. ranks 

converted to Mackin ranks. ................................................................................................................... 24 

Figure 8. Reported weighted prevalence of P. marinus infections in oysters at Dry Bar and Jetties 

from November 2005 to September 2012, by Oyster Sentinel (SE was not available). Data downloaded 

from www.oystersentinel.org (retrieved 14.01.13). Notice a higher weighted prevalence in 2007 and 

2010. Could be a result of the drought mentioned in section 1.2.6 (Figure 5). Also, X-axis does not 

show time linearly, only the specific months sampled. ......................................................................... 24 

Figure 9. Examples of infected oyster tissue samples analyzed in this project, ranked from 0 to 5 at 4x 

magnification. ........................................................................................................................................ 27 

Figure 10. Map of sampling locations in Apalachicola Bay on November 5
th
 2012. Parenthesis 

indicates individual site number, where two to three non-adjacent sample sets were harvested. ......... 30 

Figure 11. Map of sampling sites in Apalachicola Bay on February 16
th
 2013. Parenthesis indicates 

individual site number, where two to four non-adjacent sample sets were harvested. .......................... 31 

Figure 12. General anatomy of an oyster viewed from the right side with the right valve removed. 

Original figure from Galtsoff (1964) [88], as presented in VanderKooy (2012) [105]......................... 32 



9 

 

Figure 13. Shell parasites found on oyster shells in Apalachicola Bay. Left photo: Whole oyster shell 

with parasitic damage from boring clams (blue arrow) and boring sponges (numerous small holes). 

Right photo panel: (A) Two boring clams seen at the edge of a shell that was fractured to reveal the 

parasites. Note the black spot (yellow arrow) associated with the clam’s activity on the inner nacreous 

layer of the shell. 8B) Close up of exterior shell holes bored by Cliona sponge.  In life, this sponge 

organism is yellow and protrudes from the shell holes as shown in panel C. (D) Polydora worm.  

Photo credit: A. Kane. ........................................................................................................................... 33 

Figure 14. Internal shell observations associated with parasites from Apalachicola Bay Oysters. 

Observations are described by numbers: (1) Yellowing. (2) Black Diplothyra clam spots. (3) 

Burrowing tubes at periphery of shell. These are points of access of boring Polydora worms. (4) 

Enlarged borrows of Polydora worm holes within shell. (5) Mud blisters. (6) Long-standing mud 

blisters with thicker layer of nacre walling off the worm. (7) White chalky deposits. Photo credit: A. 

Kane. ..................................................................................................................................................... 33 

Figure 15. Examples of meat condition indices from Apalachicola Bay Oysters. Meat rank of oyster in 

A) 4.5, B) 3.5, C) 2.0 and D) 1.0. Photo credit: A. Kane. ..................................................................... 34 

Figure 16. Mean monthly temperature ± SD from September 1
st
 2012 to February 28

th
 2013 at Cat 

Point and Dry Bar. ................................................................................................................................. 38 

Figure 17. Mean monthly salinity ± SD from September 1
st
 2012 to February 28

th
 2013 at Cat Point 

and Dry Bar. .......................................................................................................................................... 38 

Figure 18. Weighted prevalence ± SE of P. marinus infections in oysters sampled at Eastpoint 

Channel. Samples 907A-B were collected in November 2012, whereas samples 913A-B were 

collected in February 2013. Non-adjacent replicated samples were collected in an East to West 

direction along the shore line. ............................................................................................................... 40 

Figure 19. Weighted prevalence ± SE of P. marinus infections in oysters sampled at Cat Point. 

Samples 906A-C were collected in November 2012, whereas samples 914A-D were collected in 

February 2013. Non-adjacent replicated samples were collected in a North to South direction. .......... 40 

Figure 20. Weighted prevalence ± SE of P. marinus infections in oysters sampled at the Jetties. 

Samples 908A-B (Jetties East) and 909A-B (Jetties West) were collected in November 2012. Non-

adjacent replicated samples were collected in a South to North direction. ........................................... 41 

Figure 21.  Weighted prevalence ± SE of P. marinus infections in oysters sampled at St. Vincent 

Sound. Samples 911A-B were collected in November 2012, whereas samples 923A-B were collected 

in February 2013. Non-adjacent replicated samples were collected in a South to North direction. ...... 41 

Figure 22. Weighted prevalence ± SE of P. marinus infections in oysters at Eastpoint Channel, Cat 

Point, the Jetties and St. Vincent Sound in November and February. ................................................... 42 



10 

 

Figure 23. Weighed prevalence ± SE of P. marinus infections in adult and juvenile oysters at 

Eastpoint Channel (913A) and Cat Point (914A, 914D). ...................................................................... 43 

Figure 24. Mean weighted prevalence of P. marinus infections in Apalachicola Bay, from pooled 

historical data available from 6-month intervals (September to February), based on data from Oyster 

Sentinel, Petes et al. and Oeglaend (error bar = SE).  Error bars are not presented for historical data 

sets since raw data were not available. .................................................................................................. 45 

Figure 25. Conversion of Petes et al.’s ranking system to Mackin ranking system. Conversion factor: 

Mackin rank = (Petes et al’s rank -0.4283)/1.0651 ............................................................................... 64 

Figure 26. Mackin rank from 0 to 2+ viewed at 4x magnification in a light microscope. ................... 67 

Figure 27. Mackin rank from 3- to 5 viewed at 4x magnification in a light microscope. .................... 68 

Figure 28. Example of hypnospores in oyster tissue that did not stain well, at 4x magnification. 

Unstained hypnospores are seen as white see-through spheres (left), which eventually (with enough 

iodine solution present) changes to black spheres (right). ..................................................................... 69 

Figure 29. Thick tissue samples did not stain well in the middle of the tissue. Left photo: Iodine 

solution has penetrated the outer edge of the tissue (red color), while there is not much iodine further 

in on the tissue where it is thicker (4x magnification). Right photo: Hypnospores close to the surface 

stain better (top of photo) than cells deeper down in the tissue (bottom of photo, 10x magnification). 69 

Figure 30. Components that at 4x magnification could look like hypnospores, but at 20x (shown here) 

it is clear that these are not hypnospores. .............................................................................................. 69 

Figure 31. Left photo show a cluster of hypnospores in an oyster tissue sample (4x magnification). 

Right photo show how hypnospore cell size varies within a sample and between samples (10x 

magnification). ...................................................................................................................................... 70 

 

 

 

 

 

 

 



11 

 

List of Tables 

Table 1: Taxonomic Classification of P. marinus (www.ncbi.nlm.nih.gov, retrieved 29.04.13). ........ 15 

Table 2: Semi-quantitative scale of infection intensity of Perkinsus marinus. Adapted from Mackin 

(1962) by Craig et al. (1989) [21], with an additional APL ranking designation included. .................. 26 

Table 3: Mean bottom temperature and salinity measurements at sampling locations in November and 

February at the time of each sampling.  Data are mean ± SE. ............................................................... 38 

Table 5: Results of linear regression between infection intensity of all oyster samples and their 

internal/external condition indices. ....................................................................................................... 44 

Table A1: Site name, number and GPS location of sampling sites on November 5
th
 2012 and February 

16
th
 2013. ............................................................................................................................................... 62 

Table A2: RFTM Tissue Assay - Chemicals ........................................................................................ 63 

Table A3: RFTM Tissue Assay - Equipment ....................................................................................... 63 

Table A4: Overview of data collected at four locations in Apalachicola Bay in November 2012 and 

February 2013........................................................................................................................................ 65 

Table A5: Overview of data used when comparing historical data from Oyster Sentinel and Petes et 

al. with results from this study. ............................................................................................................. 66 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

1 Introduction 

This project describes a survey of Perkinsus marinus, a pathogen of Eastern oyster (Crassostrea 

virginica), in Apalachicola Bay, Florida's Gulf of Mexico coast, United States.  Apalachicola Bay 

produces 90% of Florida's oyster for the domestic US seafood market, and is known for premium, top 

quality oysters. Perkinsus spp. is historically associated with high prevalence and mortalities of 

oysters and other bivalves globally.  The current investigation focuses on P. marinus infections in C. 

virginica in Apalachicola Bay, in association with apparent declines in the bay's oyster fisheries.  This 

introductory section will provide a literature overview of the biology and ecology of the host (C. 

virginica), the parasite (P. marinus), environmental variables relevant to the host-parasite relationship, 

overview of recent historical reports on parasite prevalence and intensity in Apalachicola Bay, and 

information on RFTM tissue assay used for identification and ranking of infection intensity. 

 

1.1 The Eastern Oyster, Crassostrea virginica 

The Eastern oyster, Crassostrea virginica, (Figure 1) is an ecologically important species of bivalve 

mollusk, as well as an important economic and cultural resource to coastal inhabitants [1, 2]. C. 

virginica naturally occurs in estuarine and inshore waters from the Republic of Panama to Florida in 

the Gulf of Mexico, along the Atlantic coast of the U.S.A. and in the Gulf of St. Lawrence (Figure 2) 

[3]. Prior to 1939, C. virginica was imported to Europe, and colonies can still be found from the 

British Islands to Bay of Biscay and in the Adriatic Sea (Mediterranean Sea) [3].  

 

  

 

Figure 1. Eastern Oyster, C. virginica, from Apalachicola Bay. Photo credit: A. Kane. 

 



13 

 

 

Figure 2. Global distribution of natural occurring C. virginica [3]. Yellow asterisk indicates study site 

location of Apalachicola Bay in the Gulf of Mexico. 

Although C. virginica is most sought after in the United States, it is distributed throughout the global 

seafood market where hundreds of tonnes of oysters are harvested each year (Figure 3). In 2011, 

global capture production had a total of 120 795 tonnes and aquaculture production had a total of 

71 355 tonnes [3].   

Apalachicola Bay is known for its abundance of rapid growing, high quality oysters [4]. The 

bay supports an important commercial oyster fishery for the entire Gulf of Mexico, where 

Apalachicola Bay oysters accounts for  up to 90 % of Florida’s annual oyster landings, and 10 

% of the harvest nationwide [5]. In the last decades, however,  natural growing oyster 

populations have decreased due to overharvest, loss of habitat, poor growth and mortality 

from stressful environmental conditions (e.g. sub-optimal water quality, contamination), 

predation and disease [6-9]. Reduced availability of oysters can lead to tremendous losses in 

the oyster industry and cause damage to estuarine ecosystems [6, 10, 11]. Oyster reefs provide 

food, shelter and habitat for numerous species, as well as improving the overall water quality 

by filtering large quantities of water when they are feeding [1, 2, 11-15]. 
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Figure 3. Global capture (left) and aquaculture (right) production for C. virginica [3]. 

 

1.2 Perkinsus marinus  

Perkinsus marinus infection is one of the most common diseases in C. virginica, and has accounted for 

serious, wide-spread, periodic oyster mortalities on the Atlantic and Gulf of Mexico coasts of the U.S. 

(e.g. [16-20]), however it is not known to be harmful to humans. Prevalence of P. marinus infections 

in C. virginica can in some areas be as high as 100%, and can have a marked effect on the commercial 

harvest of C. virginica, both wild and cultured. A survey of 49 oyster-growing areas from Florida to 

Texas found only one site with a prevalence of P. marinus less than 50 % [21]. Intensive P. marinus 

infections have been associated with massive mortalities in oyster populations during summer and fall 

[17, 19]. 

 

P. marinus, is a single-celled protozoan parasite which causes a disease in C. virginica commonly 

called Dermo disease. The disease is called Dermo, as the organism initially was classified as a 

fungus, Dermocystidium marinum [22].  P. marinus was classified for a long time as a member of the 

phylum Apicomplexa [23], however recent phylogenetic studies have shown that P. marinus is more 

closely related to Dinoflagellates than Apicomplexans [24-26], and has recently been classified as a 

member of the phylum Perkinsozoa, branching close to the node shared by Dinoflagellates and 

Apicomplexans [27]. The complete, current, taxonomic classification is listed in Table 1. 
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Table 1: Taxonomic Classification of P. marinus (www.ncbi.nlm.nih.gov, retrieved 29.04.13). 

Taxonomic Classifications 

Domain Eukaryota 

Kingdom Chromalveolata 

Superphylum Alveolata 

Phylum Perkinsozoa 

Class Perkinsea 

Order Perkinsida 

Family Perkinsidae 

Genus Perkinsus 

Species Perkinsus marinus 

 

P. marinus is found in bivalves along the East coast of the US from Maine to Florida and in the Gulf 

of Mexico to the Yucatan Peninsula [28, 29].  Recently it has also been reported as far south as 

Paraíba, Brazil, and on the pacific coast of Mexico [30, 31]. 

P. marinus infection is highly contagious and is transmitted directly from oyster to oyster [17]. A 

study in Chesapeake Bay revealed that P. marinus almost exclusively infects C. virginica in a benthic 

community where this oyster lived in close proximity to six other clam species [32]. However, recent 

studies identified the pathogen by molecular diagnostics in free growing Crassostrea rhizophorae 

(Mangrove cupped oyster), Saccostrea palmula (Mangrove oyster), Crassostrea gigas (Pasific oyster), 

and Crassostrea cortenziensis (Cortez oyster)  [30, 31, 33, 34]. Laboratory experiments have shown 

that P. marinus infection is also possible in Crassostrea ariakensis (Suminoe oyster), Mya arenaria 

(Softshell clam), and Macoma balthica (Baltic macoma clam) [35, 36]. Common for these infected 

species is that P. marinus infection intensity is usually lighter than what it is in C. virginica, in other 

words, C. virginica appears to be the most susceptible species. 

 

1.2.1 Life Cycle of P. marinus 

P. marinus has three main life stages; zoospore, trophozoite and hypnospore [37]. Although not 

observed, it is believed that biflagellated zoospores move around freely in water until they are ingested 

by the host, and then transforms to trophozoites (2-12 µm) [38]. In the infected host tissue and within 

the hosts’ hemocytes, trophozoites grow and develop a large vacuole and a displaced nucleus, giving 

the cell an appearance of a signet ring. Mature trophozoites proliferate by undergoing successive 

bipartitioning (cycle of karyokinesis followed by cytokinesis) and one cell can yield from 8 to 32 

daughter cells (often 8 to 16), which are released by rupture of the mature trophozoite [38]. These 

http://en.wikipedia.org/wiki/Chromalveolata
http://en.wikipedia.org/wiki/Alveolata
http://en.wikipedia.org/w/index.php?title=Perkinsozoa&action=edit&redlink=1
http://en.wikipedia.org/wiki/Perkinsea
http://en.wikipedia.org/w/index.php?title=Perkinsida&action=edit&redlink=1
http://en.wikipedia.org/wiki/Perkinsidae
http://en.wikipedia.org/wiki/Perkinsus
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daughter cells may continue to grow and infect the remaining tissues of the host, or they may be 

released into the water again (see section 1.2.2).  

 

During unfavorable conditions (e.g. when the host has died), trophozoites transforms into hypnospores 

(sometimes called enlarged trophozoites), which are enlarged and thick walled cells (20-80 µm) [38, 

39].  When conditions improve, hypnospores begin zoosporulation [40]. Hundreds of zoospores can 

form within the original cell wall of the hypnospore. Biflagellated zoospores leave the hypnospore, 

which is also called a zoosporangium at this stage, through a single (occasionally two) discharge tube, 

which appears on each hypnospores before any cell division has occurred (Figure 4 shows a summary 

of P. marinus lifecycle) [38]. The speed at which zoosporulation occurs varies with temperature. It 

takes 2 to 4 days to develop at 28 °C and 2 to 12 days at 20 °C [40].  

 

 

Figure 4. P. marinus life cycle. (1) Trophozoites and zoospores in the water column (2) enters the oyster 

during filter-feeding, where they are directed toward the gills and mouth. (3) Some cells may be released 

into the water again with the pseudofeces, feces or from the decaying tissue of an oyster (see section 1.2.2). 

(4) Trophozoites enlarge and form hypnospores, which develop a discharge tube and after successive 

bipartitioning, hundreds of zoospores are released into the water column. Figure taken from Fernández 

Robledo et al. (2011) [41]. 

 

1.2.2 Transmission of P. marinus 

All three life stages of P. marinus have been shown experimentally to cause infections in oysters [37, 

42-44], where trophozoites are the most effective infection agent in laboratory experiments [45, 46]. 

However, it is not known which stage is the most effective in the natural environment. Motile  

biflagellated zoospores are presumably the primary life-stage involved in water-borne transmission  
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but naturally occurring zoospores, nor trophozoites, have not yet been observed in the water column 

[40].  

The main transmission route of P. marinus is through death of heavily infected oysters and 

disintegration of tissue, which release high cell concentrations into the aquatic environment where 

other oysters are filtering water [16-18, 47]. Maximum transmission rates of P. marinus have been 

observed during periods of maximum P.marinus-associated host mortality, typically in late summer, 

however transmission can also occur when host mortality is low or absent [18]. 

 

A minor route is release of infective cells through diapedesis or from feces and pseudofeces of live 

(moderately to heavily) infected oysters which make infected oysters a continuous source of infective 

cells [47-49]. High density oyster bars can hasten the transmission and development of the disease 

[50].   

 

Laboratory experiments have shown that it is possible to have intermediate vectors in transmission of 

the parasite, e.g. Boonea impressa (ectoparasitic snail) [51, 52]. An intermediate vector, however, it is 

not required for P. marinus transmission [17].  

 

1.2.3 Infection mechanism 

Infection of oysters with P. marinus mostly happens during the feeding process. Invasion through the 

gut epithelium has been considered as the primary portal of entry [53]. However, recent experiments 

have shown that infection more commonly invades gills, mantle and labial palps before reaching the 

mouth and digestive system [43, 48].  

 

Laboratory experiments have shown the importance of infective cell density in transmission [45]. It 

has been found that an infective dose of 10-100 cells are required for infection by shell cavity injection 

[45]. This number may be higher in the natural environment in order to initiate infection in oysters, 

since some cells are released as feces and pseudofeces [45]. Laboratory experiments have also shown 

that the infection intensity is higher in oysters exposed to P. marinus incorporated in aggregates than 

in freely suspended cells [48]. Long distances between infected and healthy oysters and continuous 

flowing fresh water can effectively dilute infective cell density and protect healthy oysters from 

infection. 

 

Currently the molecular and cellular mechanism of the interaction between P. marinus and oysters are 

not fully understood [54, 55]. The severity of P. marinus infections depends on the host’s immune 

system’s ability to overcome the parasite’s evasion mechanisms [37]. P. marinus infect oysters by 

penetrating tissues of the oyster and efficiently evade the humoral and cellular immune defenses of the 
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host [55, 56]. Humoral components include lysosomal enzymes, lectins and antimicrobial peptides that 

aid in the recognition of pathogens and parasites by marking them for destruction via opsonizing or 

direct killing. Cellular components include hemocytes, which play a central role in immune response 

of the oyster. Hemocytes are responsible for the respiratory burst, apoptosis and most importantly 

phagocytosis, where parasitic cells are encapsuled by hemocytes [55-58]. Some P. marinus cells 

appear to be destroyed within the phagocytes [57], but others continue to develop within the host cells 

and eventually destroy them [38, 53, 55, 59]. 

P. marinus secrete extracellular products (e.g.  proteases) which can suppress host immune defense 

and facilitate internalization of the parasite [49, 54, 59-63], making the host more susceptible to 

secondary infections [64].  

 

1.2.4 Effect of P. marinus on Oysters 

The effects of P. marinus infection in oysters depend on the infection intensity, and the general health 

condition of the oyster. Light P. marinus infections have little measurable impact on the host, but with 

a heavy infection they usually exhibit a reduction in feeding rate [17], reduced shell and tissue growth 

rate [65-67], reproduction capacity [68-70], and a reduced condition index [45, 65, 71].  

Heavy infections are characterized by massive hemocytic infiltration of epithelia, connective tissue, 

muscle fascicles and blood spaces, with parasite cells occurring both inside hemocytes and free. The 

parasite load in the haemolymph can exceed several hundred thousand per mL [59]. Oyster death 

occurs only when infection intensity has become extensive, which is usually 1 to 2 years after 

infection [20], however the disease can become lethal within a few weeks of infection [17]. The 

parasite proliferation causes oyster tissue degradation (due to extracellular products excreted by P. 

marinus) and occlusion of major hemolymph vessels [17, 53, 57], which will likely result in organ 

dysfunction [37]. During P. marinus epizootics, 100 % of the adult oysters on a bed are likely to be 

infected and up to 90 % may die from those infections [19, 20]. 

Oysters undergoing spawning, exposed to environmental stress, predation or contaminants are more 

likely to get infected and have an increased risk for mortality due to synergistic effects [43, 72-76]. 

Weakened condition of oysters post-spawning may also facilitate disease progression [37]. A possible 

synergistic effect between Haplosporidium nelsoni infections  and P. marinus infections in oysters 

have also been reported [18, 68].  
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1.2.5 P. marinus Infection Intensity in Oysters of Different Sizes 

Mortality in oysters due to P. marinus infections is in general size dependent. Juvenile oysters (less 

than 6-11 months, depending on growth area) generally show lower prevalence and intensity of 

disease [53, 77]. These factors increase in the second year, and the epizootiological pattern of disease 

development follows temperature and salinity trends (see section 1.2.6) [16, 53, 78, 79]. Higher 

filtration rates and longer exposure to infective cells could explain why P. marinus prevalence is 

higher in adult than in juvenile oysters living in the same area [45].  

Populations of juvenile oysters in enzootic areas can acquire disease prevalence and intensity that 

exceed those of the adult population due to an increased mortality among larger oysters, especially 

during summer months [17].  

Due to the rapid growth rate of oysters from the Gulf of Mexico, compared to oysters from northern 

estuaries, they are to some extent able to “outgrow” the parasite and reach harvestable size (≥ 75 mm) 

before the infection becomes lethal. Oysters from Apalachicola typically reach harvestable size 

between 12 and 18 months [4, 80, 81].  

 

1.2.6 Environmental Factors Affecting P. marinus Prevalence and Intensity in Oysters 

Many factors can dictate disease prevalence and intensity of P. marinus infections in C. virginica and 

other bivalves. These include temperature, salinity, water quality, density of oysters, patterns of water 

movement, oyster age/size, genetic strains, physiological condition, food availability and numbers and 

levels of other parasitic species causing stress on the oysters [72, 79]. 

 

Temperature and salinity are considered the main environmental factors that influence the P. marinus 

disease dynamics in oyster populations. These two environmental factors impact the disease 

progression/regression by modulation the host immune system [82-84], as well as parasite activity [85, 

86]. Studies also suggest that the oyster have a higher immune defense capacity during the winter 

when the water temperature is low [82, 84]. 

 

Several studies have shown that P. marinus is most prevalent in oysters exposed to conditions of high 

temperature and salinity for longer periods of time (e.g. [16, 45, 85-87]). It is unclear which factor is 

most dominant. Authors have indicated that salinity is the most important factor influencing the 

disease susceptibility of the oyster, while temperature affects the distribution and prevalence in a more 

large-scale geographic area [37, 45, 88]. Both temperature and salinity varies with season and water 

depth within estuaries. 
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The prevalence and infection intensity of P. marinus in C. virginica have a seasonal cycle, which is 

mainly governed by temperature. Prevalence and infection intensity are at its minimum during the 

winter and early spring and at its maximum in late summer and early fall [18, 20, 28]. This is most 

noticeable in the northern areas of the USA, since there is a clear difference between summer and 

winter temperatures [16, 20]. In a northern estuary, Chesapeake Bay, Virginia, maximum prevalence 

and infection intensity was recorded one to two months after maximum summer water temperature, 

and minimum prevalence and infection intensity after minimum winter water temperatures [20]. A 

potential lag period for prevalence and infection intensity in the Gulf of Mexico has so far not been 

reported. In the southern part of USA and in the Gulf of Mexico, high infection intensity and mortality 

periods are not as discrete as in the northern areas, most likely because temperature is never low 

enough to suppress activity of either host or parasite [78, 89].  

C. virginica has a wide temperature (1 to 36 °C, with optimum at 25 to 26 °C [88, 90]) and salinity (0 

to 42 ppt, with optimum at 14 to 28 ppt [88]) tolerance. Optimal temperature and salinity for P. 

marinus growth and proliferation are 28 to 32 °C and 24 to 36 ppt [91-93]. Although P. marinus does 

not have an equally wide temperature and salinity tolerance as the oyster, it can tolerate temperatures 

as low as 4 °C and salinities as low as 4 ppt for a short period of time [40]. However zoosporulation 

does not happen at temperatures lower than 18 °C, but can happen at salinity as low as 6 ppt at 28 °C 

[40]. At 0 to 1 ppt infection intensities are lowered in the oyster tissue, but the parasite is not 

completely eliminated [87]. The larges decrease in cell viability occurs during combined low 

temperature and salinity conditions, indicating that there is synergistic effect [94].  

 

P. marinus in oyster tissue does also have an advantage that it is protected from acute environmental 

stress (e.g. sudden salinity decrease during heavy rainfall events), since bivalves close their valves 

tightly to avoid the stress [88]. This may explain the persistence of this parasite for relatively long 

periods in oysters in low salinity areas [19]. 

 

The salinity regime in Apalachicola Bay is governed by the influx of freshwater from the Apalachicola 

River [5, 78]. Salinity in Apalachicola Bay typically varies from 3 ppt to 33 ppt depending on the 

season and rainfall conditions [5]. Not only does the freshwater influx bring nutrients for the 

ecosystem in the bay, but it probably also protect the oysters by diluting planktonic levels of P. 

marinus cells [72, 87]. 

From 2010 to the present (May 2013) there has been a drought going on in the Apalachicola-

Chattahoochee-Flint watershed.  This drought has affected the water flow of Apalachicola River 

draining into Apalachicola Bay (Figure 5).  Although the figure shows that the water flow is 

considered normal in the first few months of 2013, the flow is rapidly declining and the drought could 
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still continue this summer. It should also be mentioned that the figure shows a drought period in 2006 

to the summer of 2008, since some of the data presented in section 1.3 are collected in that period.  

With lower freshwater flow into the bay, the salinity increases.  High salinity makes it easier for the 

parasite to establish higher up in the estuary, and can result in increased oyster mortality [95, 96].  

 

 

 

Figure 5. 28-day average discharge in Apalachicola River from January 2005 to April 2013, relative to 

historical flow in the past 89 years. Figure was created using the USGS Streamflow Duration Hydrograph 

Builder (http://waterwatch.usgs.gov/index.php) for USGS station 02358000, 1 km below Woodruff Dam. 

Flow line indicates drought periods in 2006-2008, and in 2010-2012. 

 

 



22 

 

1.3 Overview of Historical Data on P. marinus Infections in Apalachicola Bay 

Before reading this section it is important to know that P. marinus infections usually are ranked based 

on Mackin ranks (Table 2, section 1.4.1), and are mainly described with three terms; prevalence 

(percent infected oysters), mean infection intensity and weighted prevalence (relative severity of 

infection in a population). Calculations of these terms are presented in Methods (section 3.5). 

However, some prefer to use median infection intensity, instead of mean infection intensity, this is 

likely due to high variability of infection intensity between oyster samples. 

A few studies on P. marinus prevalence and infection intensity have been done in Apalachicola Bay. 

Craig et al. (1989) reported 63 and 92 % prevalence and a median infection intensity of 0.33 (based on 

Mackin rank) at Dry Bar and Cat Point, respectively, in January 1986 (n = 20 per site) [21]. Oliver et 

al. (1998) reported 100 % prevalence each month between October 1993 and July 1994 at Cat Point, 

where minimum average intensity was observed in March and maximum in July. Infection intensity 

were presented as whole body burden and ranged from Log10 2.15 to 5.52 cells, and a mean of 4.19 

cells (n = 20)[28]. It is possible to calculate the Mackin rank of a body burden, using the equation 

found in Choi et al. (1989; Equation 1) [97]. However, it was not possible for me to calculate it for 

Oliver et al.’s (1998) results, due to the lack of information of tissue weight of the oyster samples. 

Compared to the other places investigated in that article (New York and Virginia), the mean result 

from Apalachicola Bay were highest. 

 

Equation 1.                                                                               

 

Only two sources are available when it comes to relatively extensive surveys on weighted prevalence 

of P. marinus infections in Apalachicola Bay; Oyster Sentinel, a web-based community created by 

Ray and Soniat [89], and an article by Petes et al. (2012) [78]. Both sources sampled several locations 

in the bay; some of these locations overlap in the two studies, and the present study (this project). 

Sampling locations reported by Oyster Sentinel and Petes et al. are shown in Figure 6; sampling 

locations for this project are shown in figures 10 and 11 in Methods (section 3.1).  

In this project, samples were collected during the winter (November 2012 and February 2013). In 

order to make temporal comparisons between this present study and historical studies, annual 

comparisons were made using 6-month Fall-Winter data sets (September through February). Although 

September and October are not winter months, and P. marinus infection intensities can vary seasonally 

[20], such a comparison is still useful to look for possible gross increasing/decreasing trend in P. 

marinus infections in Apalachicola Bay. 
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Some comments on the historical data sets: 

 Petes et al. collected data once a month from November 2007 to December 2008, except from 

January 2008 at Cat Point and Dry Bar (n = 28-30, with exception of n = 18 at Dry Bar and n 

= 20 at Cat Point in November 2007; Figure 7), and Oyster Sentinel collected data one to three 

times a year from November 2005 to September 2012 at St. Vincent Bar, the Jetties and 

Porters Bar (n =10; Figure 8). Notice that Figure 7 and 8 show all data available from these 

sources. Only data collected from September to February will be used later on in this report. 

 

 Petes et al. used a modified infection intensity ranking system based on Ray (1954) [77], and 

it is worth noticing that her ranks are a little higher compared to Mackin ranks. Her data had to 

be converted to the Mackin ranking system before comparisons could be made. A linear trend 

line between Petes et al. rank and Mackin rank was created and a conversion factor was 

established (Appendix A.4, Figure 25). Also, since her data is presented with a graph, one 

should be aware of that my readings of her data might not be a 100% accurate. 

 

 Oyster Sentinel has three stations, St. Vincent Bar, the Jetties and Porters Bar. In this report, 

St. Vincent has been renamed Dry Bar, as this area is known by locals to be Dry Bar, and 

Petes et al. also use this name for that area. Porters Bar have not been included in this report, 

since it is located too far East from our sampling locations, and oysters sampled there could be 

different from those sampled at our locations. 

 

 

Figure 6. Oyster Sentinel and Petes et al. sampling locations in Apalachicola Bay. 
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Figure 7. Left: Reported weighted prevalence ± SE of P. marinus infections in oysters at Dry Bar and Cat 

Point by Petes et al. (2012). Infections were ranked using a modified ranking system originally described 

by Ray (1954). Figure taken from Petes et al. (2012) [78]. Right: Petes et al. ranks converted to Mackin 

ranks. 

 

 

Figure 8. Reported weighted prevalence of P. marinus infections in oysters at Dry Bar and Jetties from 

November 2005 to September 2012, by Oyster Sentinel (SE was not available). Data downloaded from 

www.oystersentinel.org (retrieved 14.01.13). Notice a higher weighted prevalence in 2007 and 2010. Could 

be a result of the drought mentioned in section 1.2.6 (Figure 5). Also, X-axis does not show time linearly, 

only the specific months sampled. 

 

1.4 Methods of Perkinsus marinus Detection and Monitoring 

The standard method used for identification and enumeration of P. marinus in the Eastern oyster is the 

Ray’s fluid thioglycollate medium (RFTM) tissue assay developed Ray (1966) [98]. Modifications of 

this assay exist for the examination of oyster hemolymph and total body burden of oysters [99]. The 

tissue assay is more accurate and sensitive than the hemolymph method and less time consuming and 

expensive than the total body burden method [28, 100]. The RFTM assay is not species specific and 

will diagnose most Perkinsus spp.  and Perkinsus-like protozoans (e.g. it does not detect Perkinsus 
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qugwadi) [17, 100, 101]. Care should be taken in areas where more than one species of Perkinsus is 

known to cause infections. Species specific PCR assays have been developed, however until recently it 

was not practical for quantitative routine diagnosis, but was an important aid  in quality control and 

detection of false negative samples [32, 102-104]. In this study the RFTM tissue assay was used to 

detect P. marinus, and is described below. 

 

1.4.1 RFTM Oyster Tissue Assay  

The RFTM tissue assay involves incubation of oyster tissue samples (typically gills, mantle, and/or 

intestine tissue) in RFTM for 4-7 days in dark, anaerobic conditions at 20-25 °C. This allows the 

parasite cells (trophozoites) to enlarge and form thick-walled hypnospores with minimal proliferation 

[17, 98]. Samples are then stained with Lugol’s iodine solution and examined microscopically.  

The infection intensity is ranked on a semi-quantitative scale from negative (N) to heavy (H), 

commonly called the Mackin scale (Table 2, examples of infected tissue in Figure 9), which was 

modified by Craig et al. (1989) [21]. The Mackin scale provides a semi-quantitative measure of 

intensity based on parasite density; parasites are counted in light infections only. Ranks are assigned to 

heavier infections based on the percentage of tissue occupied by P. marinus cells. The number 

designation in the 1
st
 column (Aquatic Pathobiology Laboratories (APL) Rank) in Table 2 was 

invented for this project, in order to make it easier to rank and discuss the results. By calculating a 

mean rank across all oysters tested, a weighted prevalence, indicative of the overall level of parasitism 

in the population, is obtained. A quantitative parasite estimate can be derived from the Mackin rank 

using Equation 1. 

Diagnosis based on RFTM method makes several assumptions. It is assumed that all life stages of P. 

marinus found in the oyster sample are retrieved and that the number of parasites remains constant 

during incubation. Furthermore, it is assumed that the distribution of P. marinus in the assayed tissues 

is representative of the distribution of the parasite throughout the oyster. In an evaluation report by 

Bushek et al. (1994) they found that the tissue assay can produce false negatives at low infection 

levels (at <1000 cells/g wet tissue), and that the parasite cells could be unevenly distributed in the 

tissue [100]. However, they concluded that the tissue assay provides a reasonable estimate of average 

infection level in a population. The tissue assay was recommended for monitoring epizootics because 

of its simplicity and accuracy at the population level. 
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Table 2: Semi-quantitative scale of infection intensity of Perkinsus marinus. Adapted from Mackin 

(1962) by Craig et al. (1989) [21], with an additional APL ranking designation included. 

APL 

Rank 

Mackin 

Rank 

Mackin 

Letter 

Designation 

Mackin Severity 

Description 
Observation Description 

0 0.00 N Negative No hypnospore present 

0+ 0.33 VL Very light 1-10 hypnospores 

1- 0.67 L-  11-74 hypnospores 

1 1.00 L Light 75-125 hypnospores 

1+ 1.33 L+  
>125 hypnospores but much less than 25% 

of tissue is hypnospores 

2- 1.67 LM-  <25% of tissue is hypnospores 

2 2.00 LM Light/moderate 25% of tissue is hypnospores 

2+ 2.33 LM+  
>25% but much less than 50% of tissue is 

hypnospores 

3- 2.67 M-  >25% but <50% of tissue is hypnospores 

3 3.00 M Moderate 50% of tissue is hypnospores 

3+ 3.33 M+  
>50% but much less than 75% of tissue is 

hypnospores 

4- 3.67 MH-  >50% but <75% of tissue is hypnospores 

4 4.00 MH 
Moderately 

heavy 
75% of tissue is hypnospores 

4+ 4.33 MH+  
>75% but much less than 100% of tissue is 

hypnospores 

5- 4.67 H-  
>75% of tissue is hypnospores but some 

oyster tissue is still visible 

5 5.00 H Heavy Nearly 100% of tissue is hypnospores 
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Figure 9. Examples of infected oyster tissue samples analyzed in this project, ranked from 0 to 5 at 4x 

magnification.  
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2 Aims of Thesis 

The overall objective of this thesis is to investigate the prevalence and infection intensity of P. 

marinus infections in C. virginica harvested from Apalachicola Bay in November 2012 and February 

2013. Analysis of P. marinus weighted prevalence is important in the determining the health of the 

Apalachicola Bay oyster population, its potential contribution to the ongoing oyster fishery collapse, 

and potential variability of infection prevalence based on spatial distribution throughout the bay, 

within and between oyster bars, and differences in water quality. 

As such, the following specific aims and hypotheses have been developed: 

Specific Aim 1: Determine the weighted prevalence of P. marinus infections in oysters from 

multiple oyster bars in Apalachicola Bay 

Ho1: Variability of P. marinus infection in oysters is similar between replicate samples within 

the same oyster bar during the same season (i.e., within-oyster bar variability is negligible). 

Ho2: Variability of P. marinus infection in oysters is similar between oyster bars in different 

locations in Apalachicola Bay during the same season (i.e., between-oyster bar variability is 

negligible). 

Ho3: Variability of P. marinus infection in oysters is similar between oyster specimens 

sampled in November 2012 and those sampled in February 2013 (i.e., short temporal and 

potential water quality differences have negligible effect on P. marinus infection). 

Specific Aim 2: Determine the weighted prevalence of P. marinus infections in oyster of different 

sizes in order to discern if age is a determining factor in P. marinus infection (as described in the 

literature). 

Ho1: P. marinus infection in juvenile oysters is similar to infection in adult oysters.  We will 

test this hypothesis by examining weighted prevalence of infection in oysters <70 mm and ≥70 

mm height.  

Ho2: P. marinus infection in oyster is not associated with oyster height (all samples pooled 

together). 

Specific Aim 3: Examine the association between oyster health condition and P. marinus 

infection intensity.  Stressed oysters may be more susceptible to P. marinus infections. It is 

expected to find a relationship between infection intensity of P. marinus and oyster health 

conditions, such as shell parasite indices and meat condition index. 

Ho1: P. marinus infection in oysters is associated with oyster meat condition index. 
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Ho2: P. marinus infection in oysters is associated with shell condition indices and/or shell 

parasite loading. 

This thesis also compares my results with historic data from Oyster Sentinel Project and Petes et al. 

(2012), and provides my evaluation of the RFTM tissue assay. 
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3 Methods 

This section provides information on oyster sampling in Apalachicola Bay, and processing in the 

laboratory afterwards (oyster health rankings and RFTM tissue assay). 

 

3.1 Oyster Sampling Locations and Water Quality 

 

Oysters were collected at four oyster bars in Apalachicola Bay. These locations include Eastpoint 

Channel, Cat Point, the Jetties and St. Vincent Sound. Oysters were harvested from these locations on 

November 5
th
 2012 (Figure 10) and February 16

th
 2013 (Figure 11, GPS locations for each site are 

provided Table A1 in Appendix A.1).  

Oysters were harvested by using hand tongs (long scissor-like tool with metal rakes on the ends) from 

small motor boats. A minimum of 10 oysters were collected from each non-adjacent replicate 

sampling site on each oyster bar. Two to four replicates were sampled for each oyster bar at each 

sampling time point. 

At each replicate sampling site water temperature and salinity were measured just above the bottom 

using a Hydrolab sonde Model Quanta G (Hach Hydromet, Austin (TX)). Oysters were transported 

live, and kept cool until processing at the Aquatic Pathobiology Laboratory at the University of 

Florida within 48 hours.  

 

 

Figure 10. Map of sampling locations in Apalachicola Bay on November 5
th

 2012. Parenthesis indicates 

individual site number, where two to three non-adjacent sample sets were harvested. 
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Figure 11. Map of sampling sites in Apalachicola Bay on February 16
th

 2013. Parenthesis indicates 

individual site number, where two to four non-adjacent sample sets were harvested. 

 

3.2 Ranking of Oyster Health Condition Indices 

The height (dorsal to ventral maximal length, see Figure 12) of each oyster was measured using 

manual calipers before they were shucked open, and the adductor muscle was carefully cut at its 

connection with the upper shell. External and internal condition ranks were assessed and recorded for 

each oyster, in order to evaluate the overall health of the oysters and to examine possible relationship 

with P. marinus infections. External ranking were done for boring sponge (Cliona spp.) and boring 

clam (Diplothyra smithii) holes on the outside of the shell. Internal rankings were done for yellowing, 

white chalky deposits, dark clam (Diplothyra smithii) spots, Polydora worm tubes, mud blisters, and 

boring sponge (Cliona spp.) spots on the inside of the shell. The overall appearance of the oyster soft 

tissue (meat condition index) was also recorded. These rankings were done by Ross Brooks and Dr. 

Kane at the Aquatic Pathobiology Laboratory. 
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Figure 12. General anatomy of an oyster viewed from the right side with the right valve removed. Original 

figure from Galtsoff (1964) [88], as presented in VanderKooy (2012) [105]. 

 

3.2.1 External Rankings of Oyster Shells 

Boring sponges (Clinoa spp.), which creates small holes on the oyster shell, were ranked from 0 (no 

holes) to 5 (heavily attacked). Boring clams (Diplothyra smithii), which creates larger holes on the 

oyster shell, were counted (Figure 13). 

3.2.2 Internal Rankings of Oyster Shells and Meat Condition Index 

Yellowing, white chalky deposits, sponge spots was rank from 0 (no imperfections) to 5 (heavily 

affected). Mud blisters was ranked from 0 (no mud blisters) to 3(several mud blisters). Number and 

size of imperfections were included together in determining the rank for each of these factors. Dark 

clam spots and Polydora worm tubes were counted (Figure 13A and 14). Yellowing of the nacreous 

layer in the shell and white chalky deposits are deposited by the mantle under stressful conditions. 

Mud blisters are formed when Polydora worms penetrate the nacreous layer of the shell and forms 

tubes within the shell. The oyster expends energy to secrete more nacre to wall-off the invader [9]. 

Meat condition index was ranked from 5 (perfect) to 1 (bad looking, Figure 15), based on observation 

of the oyster meat. Perfect meat is considered plump, not watery or translucent, with a uniform tan-

creamy appearance and fills out the shell completely. 
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Figure 13. Shell parasites found on oyster shells in Apalachicola Bay. Left photo: Whole oyster shell with 

parasitic damage from boring clams (blue arrow) and boring sponges (numerous small holes). Right photo 

panel: (A) Two boring clams seen at the edge of a shell that was fractured to reveal the parasites. Note the 

black spot (yellow arrow) associated with the clam’s activity on the inner nacreous layer of the shell. 8B) 

Close up of exterior shell holes bored by Cliona sponge.  In life, this sponge organism is yellow and 

protrudes from the shell holes as shown in panel C. (D) Polydora worm.  Photo credit: A. Kane. 

 

 

Figure 14. Internal shell observations associated with parasites from Apalachicola Bay Oysters. 

Observations are described by numbers: (1) Yellowing. (2) Black Diplothyra clam spots. (3) Burrowing 

tubes at periphery of shell. These are points of access of boring Polydora worms. (4) Enlarged borrows of 

Polydora worm holes within shell. (5) Mud blisters. (6) Long-standing mud blisters with thicker layer of 

nacre walling off the worm. (7) White chalky deposits. Photo credit: A. Kane. 
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Figure 15. Examples of meat condition indices from Apalachicola Bay Oysters. Meat rank of oyster in A) 

4.5, B) 3.5, C) 2.0 and D) 1.0. Photo credit: A. Kane. 

 

3.3 Tissue Collection 

Table A2 and A3 in appendix A.2 lists chemicals and equipment needed to perform the tissue 

collection and analysis. Recipes for the different solutions are provided in appendix A.3. 

Sterile dissecting scissors and forceps were used to cut a 5 x 5 mm piece of mantle-edge tissue from 

just above the labial palps (Figure 12). If the sample size was slightly larger, e. g. 7 x 7 mm, it was 

normalized down to 5 x 5 mm during tissue analysis (section below).  

The tissue was placed in a culture tube containing 5 mL of sterile RFTM to which 0.5 mL Penicillin-

Streptomycin solution had been added. Culture tubes were placed in the dark at room temperature and 

incubated for four to seven days. If the tissue had not been analyzed by the end of day seven, the tubes 

were placed in the refrigerator in the dark where they could be kept for up to three months without 

deterioration.  

 

3.4 Tissue Analysis 

After incubation, oyster mantle tissue was removed from the RFTM, using a sterile probe and placed 

on a microscope slide. The tissue sample was teased apart using sterile needle tips to assure even 

staining with Lugol’s iodine solution. One to two drops of Lugol’s iodine solution was added to the 

tissue with a syringe fitted with a 45 µm filter. The tissue was covered with a cover slip, and the 

sample was examined using light microscopy on an Olympus BX51microscope (Olympus America 

Inc., Center Valley, PA). 
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P. marinus hypnospores appeared as blue/black spheres 5-300 µm in diameter when viewed at 40-

100x magnification. Infection intensity was assigned to each sample based on the number and 

coverage of P. marinus cells observed in the tissue using the modified Mackin scale (Table 2, photos 

of all ranks in Appendix A.6.1). Blind assays were conducted among two slide readers in order to 

maintain quality control.  

I was involved in the oyster harvesting and tissue collection with Dr. Kane in February, while 

harvesting and tissue collection done in November was done by Dr. Kane and others in his team in the 

Aquatic Pathobiology Laboratories at the University of Florida. All microscopic tissue analysis of P. 

marinus prevalence and intensity was done by me, where Dr. Kane conducted the blind assays to 

provide verification of results. Microscopic analyses were done within three months after sampling in 

November (after samples were incubated at ambient temperature for five days, and then refrigerated) 

and seven days after sampling in February. 

 

3.5 Calculations 

Two observations were used to describe P. marinus distribution in oyster bar replicates: (1) infection 

intensity (mean rank of each data set), and (2) infection prevalence (presence/absence).Combined, 

these data permit calculation of the weighted prevalence (Equation 2-4). The weighted prevalence, or 

mean abundance as it is also called, gives a measure of the relative severity of P. marinus in a 

population. 

 

Equation 2.                          
                                                

                          
 

Equation 3.            
                          

                                
 

Equation 4.                                                         

 

3.6 Statistical Analyses 

To test for differences in infection intensity within sampling sites (oyster bar), and between sampling 

sites (different oyster bars) and sampling time points (November 2012 and February 2013), data were 

examined using  one-way ANOVA and two-way ANOVA (p-level 0.05). One-way ANOVA when 

three or more data sets were compared (comparison within one oyster bar with three or more replicate 

samples and between different oyster bars at one time point), and two-way ANOVA when site and 

time points were included in the data analysis (comparison between different oyster bars at two time 
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points). In the event of a significant difference observed in an ANOVA, Student’s t-test was used to 

discern differences between different groups, or when only two data sets were compared (comparison 

within one oyster bar with two replicate samples, comparison of adult and juvenile oysters). 

Relationships between Mackin rank and internal and external oyster health ranks, and Mackin rank 

and oyster height were examined using linear regression analysis. 

At the University of Florida statistical analyses were done using StatPlus:mac 5.8.0.0 (AnalystSoft 

Inc., Alexandria, VA) software, and at the University of Stavanger SPSS Statistics 20.0.0.1 (IBM 

Corp., Armonk, NY) software was used. 
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4 Results 

The first section below shows temperature and salinity data collected on sampling days in 

Apalachicola Bay, and downloaded data starting two months before sampling. Following sections 

present P. marinus data collected in this project, and show comparisons of spatial distribution, adult 

versus juvenile and linear regression analysis of sample Mackin ranks and oyster health condition 

indices. The total number of oysters sampled for P. marinus infections was 240, with height ranging 

from 44 – 156 mm, and a mean of 86 mm. An overview of data collected in this project is provided in 

Table A4 in Appendix A.5. Finally, a comparison of P. marinus data collected in this project with 

historical data sets is presented.  

 

4.1 Temperature and Salinity in Apalachicola Bay 

Due to a possible lag period, it is important to analyze temperature and salinity data that are measured 

before the oyster are harvested. Measurements taken on the sampling day do not functionally account 

the relationship between P. marinus infection levels and temperature and salinity, but they can be used 

to quality check temperature and salinity data downloaded from National Estuarine Research Reserve 

System (NERRS, http://cdmo.baruch.sc.edu/).  

Table 3 shows the mean measured water temperature and salinity of each site on the day that the 

oysters were harvested. There was unusually rough, windy weather on February 16
th
 and salinity 

measurements at the top and bottom of the water column revealed that the water was well mixed that 

day. The data presented in Table 3 was used to verify the data presented in Figure 16 and 17. 

Figure 16 and 17 illustrates the mean monthly temperature and salinity in the Eastern (Cat Point) and 

Western (Dry Bar) part of the bay from September 1
st
 2012 to February 28

th
 2013.  Data were 

downloaded from NERRS (retrieved 21.03.13), where water quality was measured every 15 minutes at 

each station, and a mean was calculated for each month. Our measurements were similar to the 

NERRS data. 
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Table 3: Mean bottom temperature and salinity measurements at sampling locations in November and 

February at the time of each sampling.  Data are mean ± SE. 

  Water Temperature (°C) Salinity (ppt) 

Oyster Bar sites  November 2012 February 2013  November 2012 February 2013 

Cat Point 20.3 ± 0.3 15.7 ± 0.04 25.0 ± 0.4 16.5 ± 0.9 

Eastpoint Channel 21.9 ± 0.3 15.1 ± 0.0 24.2 ± 0.2 28.0 ± 0.0 

The Jetties 21.4 ± 0.1 - 22.8 ± 2.9 - 

St. Vincent Sound 20.8 ± 0.3 14.7 ± 0.05 34.9 ± 0.1 24.8 ± 0.2 

 

 

Figure 16. Mean monthly temperature ± SD from September 1
st
 2012 to February 28

th
 2013 at Cat Point 

and Dry Bar.  

 

 

Figure 17. Mean monthly salinity ± SD from September 1
st
 2012 to February 28

th
 2013 at Cat Point and 

Dry Bar.  
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4.2 Spatial Distribution of P. marinus  

 

4.2.1 Weighted Prevalence of P. marinus Infections within Oyster Bars 

Figure 18-21 show the weighted prevalence of P. marinus infections of each site sampled at Eastpoint 

Channel, Cat Point, the Jetties and St. Vincent Sound, respectively, where light gray columns 

represent sampling in November and dark grey columns February. The Jetties were not sampled in 

February due to bad weather conditions on sampling day. 

Empirical data suggest that there could be a difference in weighted prevalence e.g. within Cat Point 

oyster bar in February (site 914A-D) and the Jetties in November (site 908A-B). However, statistical 

analysis (Students t-test and One-way ANOVA) revealed no significant differences between sites 

sampled within oyster bars at any time point (Table 4).  

 

Table 4: Statistical analysis of differences within oyster bars. 

Oyster Bar Statistical Results 

Eastpoint Channel 

Students t-test indicated no differences between sample replicates in 

November (t(18) = 0.043, p = 0.925), nor in February (t(21) = 0.157, p = 

0.689). 

Cat Point 
One-way ANOVA indicated no differences between sample replicates in 

November (F2,27 = 0.173, p = 0.842), nor in February (F3,49 = 0.792, p = 0.504). 

The Jetties 
One-way ANOVA indicated no differences between sample replicates in 

November (F3,36 = 2.001, p = 0.131). 

St. Vincent Sound 

Students t-test indicated no differences between sample replicates in 

November (t(18) = 0.118, p = 0.823), nor in February (t(18) = 0.567, p = 

0.800). 
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Figure 18. Weighted prevalence ± SE of P. marinus infections in oysters sampled at Eastpoint Channel. 

Samples 907A-B were collected in November 2012, whereas samples 913A-B were collected in February 

2013. Non-adjacent replicated samples were collected in an East to West direction along the shore line.  

 

 

Figure 19. Weighted prevalence ± SE of P. marinus infections in oysters sampled at Cat Point. Samples 

906A-C were collected in November 2012, whereas samples 914A-D were collected in February 2013. Non-

adjacent replicated samples were collected in a North to South direction.  
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Figure 20. Weighted prevalence ± SE of P. marinus infections in oysters sampled at the Jetties. Samples 

908A-B (Jetties East) and 909A-B (Jetties West) were collected in November 2012. Non-adjacent 

replicated samples were collected in a South to North direction.  

 

 

Figure 21.  Weighted prevalence ± SE of P. marinus infections in oysters sampled at St. Vincent Sound. 

Samples 911A-B were collected in November 2012, whereas samples 923A-B were collected in February 

2013. Non-adjacent replicated samples were collected in a South to North direction.  
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4.2.2 Weighted Prevalence of P. marinus Infections between Oyster Bars and Time Points 

Figure 22 shows the weighted prevalence of all four locations, Eastpoint Channel, Cat Point, the 

Jetties and St. Vincent Sound, in November and February. The Jetties was not samples in February 

due to bad weather conditions. Two-way ANOVA revealed no significant difference between the four 

locations nor between February and November (F6,206 = 1.013,  p = 0.418). 

 

 

Figure 22. Weighted prevalence ± SE of P. marinus infections in oysters at Eastpoint Channel, Cat Point, 

the Jetties and St. Vincent Sound in November and February.  
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4.3 Weighted Prevalence of P. marinus Infections in Oysters of Different Sizes 

Figure 23 shows the comparison of weighted prevalence in adult (≥ 70 mm) and juvenile oysters (< 70 

mm) at Eastpoint Channel (913B) and Cat Point (914A, 914D). At each site there was not statistical 

difference in P. marinus weighted prevalence between adult and juvenile oysters; 913B (t(7) = 15.586, 

p = 0.200), 914A (t(28) = 1.853, p = 0.446) and 914D (t(19) = 15.240, p = 0.082). Comparison of 

pooled adult and juvenile samples also indicated no difference in weighted prevalence between the 

two size groups(t(78) = 0.579, p = 0.781). 

Since no differences were statistically discerned between sample locations and time points in this 

study, all samples were pooled for linear regression analysis of oyster height versus infection intensity 

(Mackin rank) of oysters. The analysis revealed no relationship between these two factors (result 

presented in Table 5 in next section). 

 

Figure 23. Weighed prevalence ± SE of P. marinus infections in adult and juvenile oysters at Eastpoint 

Channel (913A) and Cat Point (914A, 914D).  
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4.4 Linear Regression between Infection Intensity and Oyster Health Condition 

Indices 

All samples from November 2012 and February 2013 were pooled together for linear regression 

analysis. The analysis revealed no relationship between infection intensity and height, or between 

Mackin rank and internal/external ranks, except for between infection intensity and meat condition 

index (summary of results presented in Table 5). Although the R
2
-value (0.03) for the relationship 

between infection intensity and meat condition index is not optimal, this result indicates that the 

weighted prevalence of P. marinus is negatively associated with the meat condition index.  

 

Table 5: Results of linear regression between infection intensity of all oyster samples and their 

internal/external condition indices.  

Condition Indices Tested Against Mackin Rank 
Linear Regression Results 

R
2
 SE df F p-value 

Height (mm) 0.00027 0.89 1 238 0.063 0.802 

External Sponge Hole Rank (0-5) 0.00449 0.88 1 238 1.073 0.301 

Number of External Clam Holes 0.00451 0.76 1 108 0.489 0.486 

Meat Condition Index (5-0) 0.03804 0.88 1 232 9.175 0.003 

Internal Yellow Rank (0-5) 0.01018 0.88 1 238 2.448 0.119 

Internal White Rank (0-5) 0.00001 0.89 1 238 0.003 0.956 

Number of Internal Clam Spots 0.00186 0.89 1 237 0.003 0.507 

Number of Internal Polydora tubes 0.00296 0.88 1 238 0.706 0.402 

Internal Sponge Rank (0-5) 0.00578 0.88 1 238 1.384 0.241 

Mud Blister Rank (0-3) 0.01391 0.88 1 238 3.356 0.068 
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4.5 Comparisons with Historic Data from Apalachicola Bay  

In order to look for a possible increasing/decreasing trend in weighted prevalence of P. marinus 

infections in Apalachicola Bay, results from this study were compared to data reported by Oyster 

Sentinel and Petes et al. For simplicity and to include the limited historical data available, the mean of 

a six months period from September to February was calculated for each year, where possible (Figure 

24).  

These data, together, suggest that the weighted prevalence of P. marinus infection in AP Bay oysters 

may be increasing.  These increases, although not dramatic, may be associated with climatological and 

hydrological conditions (see Figure 5, drought conditions in the bay). From 2008-2009 to 2012-2013 

there is a high variability in the columns representing Oyster Sentinel. This is because there was only 

one sample month available in those years. Table A5 in Appendix A.5 provides the actual numbers 

used to create Figure 24. 

Data are pooled means from one or more sample sets from each source, for each year presented. 

 

 

Figure 24. Mean weighted prevalence of P. marinus infections in Apalachicola Bay, from pooled historical 

data available from 6-month intervals (September to February), based on data from Oyster Sentinel, 

Petes et al. and Oeglaend (error bar = SE).  Error bars are not presented for historical data sets since raw 

data were not available.    
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5 Discussion 

 

5.1 Weighted Prevalence of P. marinus Infections in Apalachicola Bay 

5.1.1 Temperature and Salinity in Apalachicola Bay 

Based on NERRS long-term monitoring data, the mean monthly temperatures from September to 

November dropped from 26.2 °C and 28.0 °C, to 17.7 °C and 17.8 °C, at Dry Bar and Cat Point, 

respectively (Figure 16). Between November and February the temperature drop was not that 

noticeable, decreasing down to 16.0 °C at both locations.  

Mean monthly salinity was relatively stable at Cat Point from September to December, ranging from 

28.1 to 30.9 ppt, before it rapidly decreased in February to 18.9 ppt (and it continued to drop even 

further in March due to heavy rainfall events; Figure 17). The mean monthly salinity was generally 

lower at Dry Bar than at Cat Point, and a bit more variable. From September to December salinity 

ranged from 24.2 to 28.1 ppt, and dropped down to 18.9 ppt in February. 

 

5.1.2 Spatial and Temporal Distribution of P. marinus Infections in Apalachicola Bay Oysters 

The first specific aim was to determine the weighted prevalence of P. marinus infections in oysters 

from multiple oyster bars in Apalachicola Bay, with the following hypotheses: 

Ho1: Variability of P. marinus infection in oysters is similar between replicate samples within 

the same oyster bar during the same season (i.e., within-oyster bar variability is negligible). 

Ho2: Variability of P. marinus infection in oysters is similar between oyster bars in different 

locations in Apalachicola Bay during the same season (i.e., between-oyster bar variability is 

negligible). 

Ho3: Variability of P. marinus infection in oysters is similar between oyster specimens 

sampled in November 2012 and those sampled in February 2013 (i.e., short temporal and 

potential water quality differences have negligible effect on P. marinus infection). 

Hypotheses 1 to 3 failed to be rejected in favor of alternate hypotheses. Data from this project revealed 

no difference in weighted prevalence of P. marinus infections in C. virginica within oyster bars (Ho1), 

between oyster bars (Ho2), nor between November and February (Ho3).  

Based on the temperature pattern one could expect to find a higher P. marinus weighted prevalence in 

November, compared to February. Salinity, however, did not change much and probably had little 

impact on differences in weighted prevalence.  
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As mentioned in section 1.2.6, optimal conditions for P. marinus growth and proliferation are 28 to 32 

°C and 24 to 36 ppt, where minimum for proliferation is 18 °C and 6 ppt. Both temperature and 

salinity requirements are met in the months before sampling in November. In the months before 

February the temperature is below 18 °C, but salinity requirements are still met. Overall, the 

temperature and salinity differences between the two sampling times might not be big enough to see a 

clear difference in P. marinus weighted prevalence. There is also a chance that the heavily infected 

oysters that we expected to find in November had already died before samples were collected, since 

data from Oyster Sentinel and Petes et al. indicates that the weighted prevalence is highest in October 

(Figure 7 and 8). 

A difference in weighted prevalence may become evident based on planned sampling and analyses in 

summer 2013 (follow up efforts with Dr. Kane after this thesis has been evaluated). 

 

5.1.3 P. marinus Infections in Oysters of Different Sizes 

The second specific aim was to determine weighted prevalence of P. marinus in oyster of different 

sizes in order to discern if age is a determining factor in P. marinus infections. The following 

hypotheses were developed: 

Ho1: P. marinus infection in juvenile oysters is similar to infection in adult oysters.  We will 

test this hypothesis by examining weighted prevalence of infection in oysters <70 mm and ≥70 

mm height.  

Ho2: P. marinus infection in oyster is not associated with oyster height (all samples pooled 

together). 

Hypotheses 1 and 2 failed to be rejected in favor of alternate hypotheses. There were found no 

differences between adult and juvenile oysters at the three sites analyzed (Eastpoint Channel and two 

Cat Point sites, Ho1). These results were consistent when analyzed by location, as well as baywide. 

Due to a mix-up of the chosen cut-off limit between adult and juvenile oysters, Eastpoint Channel 

913B ended up with 7 juvenile and 13 adult samples, not 10/10 as planned (15/15 and 13/18 were 

sampled Cat Point 914 A and D). The juvenile samples from 913B had three samples with unusually 

high infection intensity, which had a large impact on the weighted prevalence and SE. This is probably 

why the empirical results revealed a higher weighted prevalence in juvenile oysters, the opposite of 

what was hypothesized (Figure 24). Potentially, an increase in sample size may have revealed a 

stronger size-weighted prevalence relationship. 

No relationship between oyster size (height) and infection intensity were found when all samples were 

pooled together (Ho2). By graphing infection intensity and height data (not shown in this report), one 
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could see a potential increase in infection intensity with height. The problem was that there were too 

few samples (n < 10) in the lowest (< 50 mm) and highest height size range (> 130 mm), that the 

observed results were too uncertain. Also at the highest sizes (> 130 mm), the mean infection intensity 

was 1 to 1.5 times lower than the mean of samples between 60 and 130 mm. It is speculated that most 

oysters with high infection intensity die before they reach a size of ≥ 130 mm, and that this might 

happen in October (highest weighted prevalence was reported in October, both by Oyster Sentinel and 

Petes et al.). 

 

5.2 P. marinus Infections Versus Oyster Health Indices 

The third, and last, specific aim was to examine the association between oyster health/condition and P. 

marinus infection intensity.  Stressed oysters may be more susceptible to P. marinus infections. It was 

expected to find a relationship between infection intensity of P. marinus and oyster health conditions, 

such as shell parasite indices and meat condition index. The following hypotheses were investigated: 

Ho1: P. marinus infection in oysters is associated with oyster meat condition index. 

Ho2: P. marinus infection in oysters is associated with shell condition indices and/or shell 

parasite loading. 

Hypothesis 1 failed to be rejected in favor of alternate hypotheses. Hypothesis 2, however, can be 

rejected.  

No relationship between Mackin rank and external oyster health indices (sponge and clam holes), and 

Mackin rank and most of the internal health indices (yellow and white color, clam spots, Polydora 

tubes, sponge and mud blisters), based on the linear regression analysis. A linear relationship was 

found, however, between Mackin rank and meat condition index. As the meat condition decreased, the 

Mackin rank of samples increased, as mentioned in the literature (section 1.2.4). If it is the P. marinus 

infection that is affecting the meat condition, or if oysters with poor meat condition are more 

susceptible for infection, was not investigated in this project. 

 

5.3 Comparisons with Historical Data  

The comparison of my data with historical data from Oyster Sentinel and Petes et al. proved more 

difficult than initially thought. One of the main problems was that we sampled in different parts of the 

bay, and that the sampling was not done consistently at specific time points. That made it difficult to 

find the best way to present the data and draw conclusions from it. Also, since the ranking systems 
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used (Mackin rank and Petes et al. Rank) are open to personal interpretation, one has to consider that 

when compared to each other, over-/under- estimations might have happened. 

By comparing my weighted prevalence of P. marinus infections with Oyster Sentinel and Petes et al., 

there is an indication that the mean weighted prevalence of Apalachicola Bay has increased since 

September 2005 – February 2006  to September 2012 – February 2013, from 0.24 to 0.96. As 

mentioned in section 1.2.6, there have been two periods of drought in the Apalachicola River 

watershed (2006-2008 and 2010-present), and it was expected that the weighted prevalence would 

increase in these periods due to the increased salinity in the bay. Unfortunately, there is only one 

measurement from 2009 (in September by Oyster Sentinel), the year between the two droughts, and 

we do not know if the weighted prevalence stayed high or was reduced in that year. 

As mentioned previously, there has not been reported lag-period for P. marinus infection in 

Apalachicola Bay, while Chesapeake Bay has the most severe infections one to two months after the 

highest summer temperature and salinity [20]. Interestingly, by looking at Petes et al.’s graphs of 

temperature, salinity (not shown in this report) and P. marinus weighted prevalence, one can see that 

the highest weighted prevalence appears between one to two months after the highest summer 

temperature and salinity (in October 2008) [78]. This could be interesting to investigate later on, by 

doing more extensive sampling to include fall months. 

 

5.4 Evaluation of RFTM Tissue Assay  

5.4.1 General Problems Encountered 

Most scientific methodology has strengths and challenges. As mentioned in section 1.4.1, the RFTM 

tissue assay method has inherent strengths and weaknesses. As a recently trained user of this method, 

it was sometimes difficult to tell the difference between an actual hypnospore and other similar black, 

spherical particles (iodine precipitate, debris) (Figure 30, Appendix A.6.2). The size of hypnospores 

also appears to vary within a sample and between samples, and the hypnospores sometimes appeared 

as clusters in the oyster tissue (Figure 31, Appendix A.6.2). These observations may confound the 

ranking process. Should large hypnospores count the same as small ones, and did the cell cluster 

appear before sampling, or did it appear during incubation? It is assumed that these clusters are 

trophozoites which have just proliferated. Nevertheless, all samples in this study were treated 

similarly, and any bias introduced, based on the above observations, should be relatively uniform 

across all samples. 

Most literature discussing P. marinus detection using the RFTM method, describes the hypnospores as 

dark blue-black spheres.  However, it was discovered that the hypnospores did not always stain well. 
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Unstained and poorly stained cells appeared as white see-through or light-grey spheres in the tissue, 

and did not resemble the typical description. This was especially apparent in thick tissue samples 

(Figure 28 and 29, Appendix A.6.2).  Unfortunately, this fact was not known when the microscopic 

tissue analysis started, and not all of these cells were counted. Therefore, the ranks of samples from 

four sites at four different locations in Apalachicola Bay sampled in October 2012 were likely under-

estimated and the results were not included in these analyses or this report.  

Also, the RFTM tissue assay is not sensitive to low infections (<1000 cells/g tissue). Some of our 

samples were a bit larger than 5x5 mm (approximately 7x7 mm), and several times these slightly 

larger samples were ranked of 0.33 (1-10 hypnospores), but they could have been ranked as 0 if the 

sample had been only 5x5 mm.  

A total of 300 samples were analyzed in this project, where 240 of the samples are presented in this 

report, and only two samples were P. marinus free. Samples that were given a rank of 0.33, were 

examined extra carefully to make sure hypnospore-like particles were not counted.  

 

5.4.2 Mackin Rank Photo Guide 

One of the components in being confidently trained to consistently rank hypnospores was the 

determination of the percent of hypnospores covering heavily infected tissue samples (in other words 

determining ranks above 1 or >125 hypnospores). Taking photos of our ranked samples and 

conducting blind assays between two sample readers was helpful to give fair ranking of samples. To 

our knowledge, a good or complete photo guide of the ranking system has not been published. 

Therefore, a photo guide was created based on our samples, such that it will be easier for others 

interested in our results, to get an idea of how we did the ranking (Figure 26 and 27, Appendix A.6.1). 

Hopefully it will be helpful for other researchers that are using the same method. 

In the process of creating a photo guide of the different infection intensities on oyster tissue, we tried 

to preserve some samples by using Cytoseal
TM

 XYL, a xylene –based  mounting medium. This method 

was not effective since stained hypnospores lost much of their color. For example, a sample which was 

ranked 4.33 got a new rank of 1.67 after mounting the sample using Cytoseal. The effect of the 

mounting medium was not as severe in stained samples that had dried out over night. However, some 

weakly colored hypnospores disappeared, but the rank in heavily infected samples did not change 

more than one rank. We do not recommend using this mounting medium for preserving tissue samples 

in the RFTM tissue assay.   

 



51 

 

5.4.3 Variability and Sample Size: 

The relatively small sample size (n = 10, with exception of two Cat Point sites in February where n = 

15 and 18) used in this project made the results vulnerable to high variance.   

Both median and modus of the samples collected at all sites in this project mainly had a rank of 0.33 

or 0.67), while mean infection intensity was ranked between 0.67 and 1.33 (Table A4, Appendix A.5). 

As the slightly higher mean infection intensity portrays that each site had some sample outliers that 

were at least two ranks higher than the median and modus of the site, and therefore greatly affected the 

mean infection intensity at each site. 

Based on an idea, the weighted prevalence of P. marinus infection and standard error (SE) of 

individual sites were added together, and the number of samples that had a higher ranking than this 

were counted. For each site in both sample months, the percentage varied from 10 to 40 % above 

weighted prevalence +SE. The averages of each location at each time point were between 20 and 30 % 

(Table A4, Appendix A.5). This show that the few samples that have an unusual high rank may greatly 

affect the mean of the result, especially when the sample size is as small as 10, which is recommended 

in the methodology description [99]. A higher sample size (e.g. n = 15-20) could reduce the 

variability, and might give results of differences between sites that can be statistically supported.  

 

5.4.4 Appearance of Tissue Samples: 

Tissue samples from October and November were analyzed after 2.5 to 3 months, and February 

samples after seven days.  

The appearances of the tissue samples of these three time points were quite different. Samples from 

October and November had a thin, peach-colored, necrotic appearance, while the February samples 

were thick and had creamy beige color. It is not known if the incubation time in the RFTM media 

affected this. It could potentially also be associated with post-spawning conditions in the oyster 

samples from October and November, and the pre-spawning condition in the oysters from February.  
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6 Conclusion  

Mean weighted prevalence of P. marinus infections for November 2012 and February 2013, was 1.01 

± 0.11 and 0.90 ± 0.05 (mean ± SE), respectfully. No differences were found for weighted prevalence 

within oyster bars, between oyster bars, nor between the November and February samples. It is 

assumed that the temperature and salinity did not vary enough between these winter months to have a 

notable effect. Sampling is planned for this summer to look for trends and possible differences. 

No relationship was found between oyster height and infection intensity. However we did not have 

enough samples in the highest and lowest size range, and since two other sources have reported the 

highest intensity in October, there is a chance that the large oysters with high infection died before 

sampling in November, and hence were not represented in the present data set. 

A negative relationship was found between oyster meat condition index and infection intensity. This 

suggests that either are oysters in relatively poor condition are more susceptible to P. marinus 

infection, and/or that P. marinus infection is associated with reduced meat condition index.  No other 

relationship between oyster health and infection intensity was found. 

Comparison of data amassed in the present study with historical data indicate that the weighted 

prevalence in Apalachicola Bay may have increased since 2005. This may be associated with two 

severe droughts (2006-2008, 2010-present) in the Apalachicola River watershed. However, the data 

available is not sufficient to say for sure. 
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7 Future Prospects 

The next step in this project is to collect summer samples to further investigate whether there is a 

difference in P. marinus weighted prevalence between winter (February, November) and summer.  

It could be interesting to increase the sample size from each site to determine if the high variability in 

P. marinus weighted prevalence can be reduced sufficiently such that any differences between oyster 

bars, seasons, water quality, etc, may be realized. 

Species specific PCR should also be run on samples from Apalachicola Bay, to confirm the presence 

of P. marinus, and to exclude the presence of other Perkinsus spp. or Perkinsus-like organisms that 

may also be detected with the RFTM method. 

In the future, it could be interesting to get a more continuous investigation of P. marinus infections in 

the Bay, e.g. once or twice a month, in order to look for a temperature and salinity effect on a lag 

period.  Sampling only a few times a year makes it difficult to discover a potential lag period. Further, 

such monitoring would support discerning relationships between environmental factors (i.e., 

temperature, water flow, salinity) and the health of oysters in important fisheries, such as Apalachicola 

Bay. 
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9 Appendix 

A.1 GPS Location of Sampled Sites in Apalachicola Bay 

Table A1: Site name, number and GPS location of sampling sites on November 5
th
 2012 and February 

16
th
 2013.  

Date Site Site Number Lat, Long 

05.11.2012 

Cat Point 

906A 29.71865, -84.87786 

906B 29.71571, -84.87559 

906C 29.71012, -84.87643 

Eastpoint Channel 
907A 29.74007, -84.87056 

907B 29.73900, -84.87229 

Jetties East 
908A 29.69047, -84.97121 

908B 29.69190, -84.97190 

Jetties West 
909A 29.69046, -84,97571 

909B 29.69154, -84.97605 

St. Vincent Sound 
911A 29.69894, -85.12941 

911B 29.69892, -85.12930 

16.02.2013 

Eastpoint Channel 
913A 29.74032,-84.87012 

913B 29.73992,-84.87074 

Cat Point 

914A 29.72094,-84.88206 

914B 29.71733,-84.87998 

914C 29.70236,-84.87942 

914D 29.71161,-84.87728 

St. Vincent Sound 
912A 29.69592,-85.12632 

912B 29.69521,-85.12632 
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A.2 Chemicals and Equipment 

Table A2-A3 lists chemicals and equipment needed to perform RFTM mantle tissue assay on oysters. 

Table A2: RFTM Tissue Assay - Chemicals  

Materials Product  number [CAS] Supplier 

Ethanol, 190 proof (95 %) 

(C2H6O) 

2805 [64-17-5, 99.90-

100.00%], [7732-18-5 

(purified water)] 

Decon Labs Inc., King of Prussia 

(PA) 

Iodine (I2) I3380 [7553-56-2] Sigma-Aldrich, St. Louis (MO) 

Penicillin G sodium salt 

(C16H17N2NaO4S) 

P3032-10MU [69-57-8] Sigma-Aldrich, St. Louis (MO) 

Potassium iodide (KI) 60399 [7681-11-0] Sigma-Aldrich, St. Louis (MO)  

Sodium chloride (NaCl) S-9888 [7647-14-5] Sigma-Aldrich, St. Louis (MO) 

Streptomycin sulfate 

(C42H84N14O36S3) 

BP910-50 [3810-74-0] Fisher BioReagents, New Jersey 

Thioglycollate medium (FTM)  T9032 Sigma-Aldrich, St. Louis (MO) 

 

Table A3: RFTM Tissue Assay - Equipment  

Equipment  

Alcohol lamp 

Autoclave  

Bacti-cinerator IV (McCormick Scientific) 

Cover slips 

Culture tubes with screw cap 

Dissecting tools (scissors, probes, forceps) 

Heater with stirring mechanism 

Inoculation loop 

Microscope slides 

Microscope, BX51 (Olympus America) 

Oyster knives 

Volumetric pipette, 10 mL 

Syringe filter, 45 µm 

Syringe, 1 mL 
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A. 3 Solution Recipes 

Ray’s (1952) Thioglycollate medium preparation (RFTM) 

22.0 g NaCl and 29.3 g dehydrated fluid thioglycollate medium (FTM) were added to 1.0 L of distilled 

water and heated while stirring until the medium dissolved and the solution became transparent 

golden-yellow color. After cooling 5.0 mL portions of the solution was dispensed into 15.0 mL culture 

tubes, which were subsequently autoclaved and sealed. They were stored in the dark until they were 

used. Unused, autoclaved tubes could be stored for many months in the dark without deterioration.  

RFTM maintains anaerobic conditions in the culture tubes as well as providing needed nutrients and 

appropriate osmotic environment. Therefore, tubes should be sealed tightly and opened only briefly 

when necessary, and returned immediately to the dark afterwards.   

Antibiotic solution 

0.330 g streptomycin sulfate and 0.159 g penicillin G were added to 500 mL of sterilized, deionized 

water and shaken lightly until the powder was dissolved. The solution was kept refrigerated until used, 

and could be stored safely for several months. 

Lugol’s iodine solution 

4.0 g KI and 2.0 g I2 were dissolved in 100 mL distilled water, and allowed to stand for 24 h before it 

was filtered. The solution was stored in room temperature in a dark bottle, and could remain stable for 

weeks but should be filtered occasionally to remove particles that may precipitate. These particles may 

be confused with P. marinus hypnospores by less experienced slide reads [100]. 

 

A.4 Conversion of Petes et al.’s Ranking System to Mackin Ranking System 

Figure 26 show how Petes et al.’s  ranking system was converted to the Mackin ranking system used 

in this project. Based on the description of their ranking system, the best matches in the Mackin 

ranking system were found. A trend line was created on the graphed results.  

 

Figure 25. Conversion of Petes et al.’s ranking system to Mackin ranking system. Conversion factor: 

Mackin rank = (Petes et al’s rank -0.4283)/1.0651 

y = 1.0651x + 0.4283 

R² = 0.9443 
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A.5 Overview of Collected Data Used in This Report  

Table A4: Overview of data collected at four locations in Apalachicola Bay in November 2012 and February 2013. 

Location Date Site 
Count 

Total 

Count 

Infected 

Infection 

intensity 
Prevalence 

Mean 

Weighted 

Prevalence 

SE Variance Median Min Max Modus 

Oysters with High Mackin Rank 

WP+SE Count from # Higher Rank % of total 

Cat 

Point 

05.11.2012 906A 10 10 1.04 1 1.04 0.34 1.15 0.67 0.33 4.00 0.67 1.37 1.67 1 0.10 

05.11.2012 906B 10 10 0.84 1 0.84 0.10 0.10 0.67 0.67 1.67 0.67 0.94 1 3 0.30 

05.11.2012 906C 10 10 0.97 1 0.97 0.23 0.53 0.67 0.67 3.00 0.67 1.20 1.33 1 0.10 

16.02.2013 914A 15 14 0.67 0.93 0.62 0.22 0.75 0.33 0.00 3.67 0.33 0.85 1 2 0.14 

16.02.2013 914B 10 10 1.03 1 1.03 0.37 1.35 0.67 0.33 4.00 0.33 1.40 1.33 2 0.20 

16.02.2013 914C 10 10 1.04 1 1.04 0.33 1.07 0.67 0.33 3.67 0.67 1.36 1.67 2 0.20 

16.02.2013 914D 18 18 1.22 1 1.22 0.26 1.24 0.67 0.33 4.00 0.67 1.49 1.67 5 0.28 

                 

East-

point 

Channel 

05.11.2012 907A 10 10 1.27 1 1.27 0.25 0.64 0.84 0.67 3.00 0.67 1.52 1.67 4 0.40 

05.11.2012 907B 10 10 1.24 1 1.24 0.25 0.64 0.84 0.67 2.67 0.67 1.49 1.67 2 0.20 

05.11.2012 913A 10 10 0.83 1 0.83 0.33 1.10 0.33 0.33 3.67 0.33 1.16 1.33 2 0.20 

16.02.2013 913B 13 13 1.00 1 1.00 0.26 0.85 0.67 0.33 3.00 0.33 1.26 1.33 4 0.31 

                 

The 

Jetties 

05.11.2012 908A 10 10 1.13 1 1.13 0.32 1.04 0.67 0.33 3.33 0.67 1.46 1.67 2 0.20 

05.11.2012 908B 10 10 0.67 1 0.67 0.12 0.15 0.67 0.33 1.33 0.67 0.79 1 2 0.20 

05.11.2012 909A 10 10 0.60 1 0.60 0.08 0.07 0.67 0.33 1.00 0.33 0.68 1 2 0.20 

05.11.2012 909B 10 10 0.60 1 0.60 0.08 0.07 0.67 0.33 1.00 0.33 0.68 1 2 0.20 

                 

St. 

Vincent 

Sound 

06.11.2012 911A 10 10 1.03 1 1.03 0.35 1.22 0.67 0.33 3.67 0.33 1.38 1.67 2 0.20 

06.11.2012 911B 10 10 1.13 1 1.13 0.27 0.75 0.67 0.33 3.00 0.67 1.41 1.67 3 0.30 

16.02.2013 912A 10 10 0.84 1 0.84 0.15 0.23 0.67 0.33 1.67 0.67 0.99 1 3 0.30 

16.02.2013 912B 10 9 0.85 0.90 0.77 0.22 0.47 0.67 0.00 2.00 0.67 0.98 1 2 0.22 
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Table A5: Overview of data used when comparing historical data from Oyster Sentinel and Petes et al. with results from this study. 

  

  

Sentinel Petes et al. Oeglaend 

Dry Bar Jetties Mean Cat Point Dry Bar Mean Eastpoint St. Vincent Sound Cat Point Jetties  Mean SE 

Nov. 2005 0.23 0.43 
0.24 

                  

Feb. 2006 0.17 0.13                   

                          

Sep. 2007 0.70 0.74 

0.58 

                  

Nov. 2007     1.38 0.35 

0.69 

            

Dec. 2007     0.72 0.63             

Feb. 2008 0.47 0.40 0.58 0.44             

                          

Sep. 2008 0.33 0.60 

0.47 

0.58 0.16 

0.72 

            

Oct. 2008     1.24 0.82             

Nov. 2008     0.58 0.72             

Des. 2008     1.01 0.63             

                          

Sep. 2009 0.47 0.40 0.44                   

                          

Oct. 2010 0.90 1.07 0.99                   

                          

Sep. 2011 0.30 0.30 0.30                   

                          

Sep. 2012 0.60 0.80 

0.70 

                  

Nov. 2012           1.25 1.08 0.95 0.75 
0.96 0.06 

Feb. 2013           0.93 0.80 0.98 - 
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A.6 Photos Taken During Tissue Analysis 

A.6.1 Photos of Mackin Ranks 

 

Figure 26. Mackin rank from 0 to 2+ viewed at 4x magnification in a light microscope. 
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Figure 27. Mackin rank from 3- to 5 viewed at 4x magnification in a light microscope. 
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A.6.2 Examples of Observations and pProblems Encountered During Ranking of Infection 

Intensity in Samples 

 

Figure 28. Example of hypnospores in oyster tissue that did not stain well, at 4x magnification. Unstained 

hypnospores are seen as white see-through spheres (left), which eventually (with enough iodine solution 

present) changes to black spheres (right).  

 

 

Figure 29. Thick tissue samples did not stain well in the middle of the tissue. Left photo: Iodine solution 

has penetrated the outer edge of the tissue (red color), while there is not much iodine further in on the 

tissue where it is thicker (4x magnification). Right photo: Hypnospores close to the surface stain better 

(top of photo) than cells deeper down in the tissue (bottom of photo, 10x magnification). 

 

 

Figure 30. Components that at 4x magnification could look like hypnospores, but at 20x (shown here) it is 

clear that these are not hypnospores. 
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Figure 31. Left photo show a cluster of hypnospores in an oyster tissue sample (4x magnification). Right 

photo show how hypnospore cell size varies within a sample and between samples (10x magnification).  

 

 

 

 

 


