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Abstract: 

Oil & gas production can be largely benefited by minimizing unwanted production losses. 

This can be done by effective identification of system anomalies and faults. In standard 

control systems these abnormalities can be observed as gradually deviating trends from the 

norms. Available tools for monitoring these trends, in some cases, may not be enough to 

reveal hidden faulty features. In order to interpret these changes accurately, measured data 

must be visualized as a combination of multiple sensor signals within a particular domain. 

This paper suggests an approach to effectively utilize integrated data from multiple sources, 

and defines a set of 12 fault features. The approach, in principle, encodes real plant data in the 

form of logical IF-THEN rules in Microsoft Excel. Confidence values are set based on these 

interpretations to differentiate between normal and abnormal conditions exhibited by the 

system. This is to provide an opportunity for the process and maintenance engineers to 

effectively identify the equipment‟s health based on the early identification of developing 

abnormalities. 
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1. Introduction: 

Industrial machinery involves high capital costs and its efficient use largely depends on 

having low operating and maintenance costs. In the offshore oil and gas industry, most 

machines are expected to work continuously 24/7, 365 days a year and are generally subjected 

to abruptly changing operating conditions. Analysis, monitoring and control of offshore 

industrial assets are often complicated and are affected by many factors such as uncertainties 

and/or incomplete understanding of process behavior. With successful implementation of 

Integrated Operations (IO) in the North Sea assets, the need for robust remote monitoring and 

surveillance has become quite evident [10-11]. To achieve these objectives, proactive 

machinery management, including predictive analytical techniques, is gaining huge attention 

that focuses on the ability to identify developing faults and problems at earlier stages. The 

information obtained from existing trend analysis programs can assist in uncovering hidden 

threats to the plant‟s integrity. The process of fault/abnormality detection in an industrial 

process includes detection of catastrophic events as well as the incidents (smaller faults). 

Proper detection of the incidents is of crucial interest as these can prevent the subsequent 

occurrence of more catastrophic events [4]. 

Production shutdown events taking place on the oil and gas platforms may result from a 

number of underlying causes. The root causes of these events are hidden mainly under various 

technical, human and organizational factors. Technical causes for shutdowns generally 

involve equipment failures that are known to play a major role in the overall plant integrity 

[21-22]. Equipment manufacturers generally provide each unit with integrated control systems 

and standard alarm levels. These standards comply with industrial standards and practices 

(e.g. API, ANSI recommended practices) that are applicable to a broad class of equipment of 
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certain type. This also includes safe operating limits set by the manufacturer for variables 

such as ambient temperatures, pressures and working fluid properties (e.g. viscosity, sp. 

gravity etc.). The purpose is to ensure that the process remains under controllable limits at all 

times. However, in reality this might be different due to dynamically changing operating 

conditions. In the control systems, threshold limits are associated with alarms/alerts to warn 

the operator when the process experiences any abnormality. Generally, the threshold limits 

are set too wide and therefore in some cases these may be a poor indicator of the system‟s 

condition (Figure 1). 

 

Fig. 1 Process monitoring with standard statistical limits 

Figure 1 presents how an abnormality can remain undetected under normal operating 

conditions (shown as encircled part in the figure). These variations may represent symptoms 

of an upcoming fault and, if interpreted properly, these can provide vital information about 

the condition of the operating unit. Some examples of commonly known fault symptoms 

include excessive vibrations, elevated noise levels and higher thermal profile etc. In some 

cases, poor quality and the ambiguous nature of these symptoms have a tendency to create 

misconceptions for system operators to overlook or misinterpret these indications. This may 

also present a tedious job for data analysts and experts to keep track of these seemingly 

„make-no-sense or negligible’ changes that are often to be interpreted as „harmless or no-

threat’.  

The approach proposed in this context is based on identifying and interpreting symptoms that 

may develop into potential unwanted consequences. To demonstrate this, a user interface is 

developed in Microsoft Excel that uses multiple sensor signal data (time-series) from oil 

exporting pumps located on an offshore oil and gas production facility. Pre-identified failure 

modes are coded in the form of logical IF-THEN equations.  The results from the analysis can 

be a useful input for efficient decision-making that can consequently reduce the unwanted 

outcomes.  

 2. Literature Review: 

Trend analysis is a useful approach to represent numerical data in a qualitative or semi-

qualitative way. The main objective is to convert online data into useful knowledge to support 

decisions made by the operators [6]. The process of fault diagnosis is broadly classified in 

terms of model-based and history-based methods. These include qualitative and quantitative 

methods to describe the interaction between various process variables. Qualitative methods 

mainly comprise of qualitative trend analysis (QTA) techniques, whereas quantitative 
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methods make use of advanced statistical and artificial intelligence techniques such as neural 

networks [7]. In real life situations, equipments/processes are subjected to extreme conditions 

and therefore are more vulnerable to faults. 

Condition monitoring and fault diagnosis has been an exploratory paradigm for many 

researchers. To improve the reliability and availability of the equipment, computer-aided 

maintenance techniques have been established considerably well during the past two decades 

[20, 28]. The purpose is to monitor equipment condition based on dynamically changing 

operating conditions and to plan maintenance tasks in order to avoid critical malfunctions. 

Several researches in the nineties attempted to integrate condition monitoring techniques into 

specialized maintenance systems [12, 26, 3, 23]. These techniques continuously monitor the 

mechanical condition of the equipment and, in some cases, these can predict potential failures 

[25-27]. However, most of the condition monitoring (CM) techniques need human expertise 

to identify and diagnose faulty conditions.  

In today‟s world, increased automation and computing power has resulted in large amount of 

available data. Most process diagnosis and monitoring techniques use trends that are a 

hierarchical representation of signals. Dynamic trend analysis, also known as qualitative trend 

analysis (QTA), is one of the preferred techniques to extract useful information from 

measured signals in monitoring the state of a process. In qualitative terms, similar (different) 

events result in qualitatively similar (different) trends [13-14]. This means that unwanted 

events can be qualitatively represented by carefully analyzing the respective trends.  

Gabbar et al. [9] proposed a technique based on data trend analysis using MATLAB as a tool 

for computations. They conducted an experimental study constructing trend signatures based 

on regression method and comparing trends of normal and abnormal conditions. In large 

maintenance databases, data mining techniques such as neural networks, fuzzy logic and 

statistical methods can be effectively employed to explore the trends [29]. Priorier and Meech 

[19] introduced the concept of intelligent alarms based on fuzzy logic and rules of thumb to 

analyze time-series process data. To govern the state of the process, they coded the alarms as 

IF-THEN rules. In short, various applications of trend analysis have shown that valuable 

information extracted from the plotted trends can be effectively used in improved surveillance 

and optimization tasks [15-16, 8].  

In the cited literature, the authors presented both qualitative and quantitative methods to 

diagnose process faults and abnormalities. For instance, see 13, 19, 9. It will be shown here 

that the use of qualitative trends can provide useful results in complex processes. The work 

describes how faulty patterns can be expressed directly from real plant data that can provide a 

basis for identification of the developing faults. The user-interface developed in Excel 

generates automated early warning levels based on a logical combination of the fault features. 

Collected data from oil export pumps from an offshore oil and gas production facility is used 

to test the proposed strategy that showed promising results.  

3. Proposed technique for identifying abnormal trends: 

The proposed strategy is based on cause-effect reasoning about a system‟s behavior.  Fault 

trees are among the most popular techniques in this regard [7]. The proposed approach used 

failure modes and represented them in a more user-friendly way. Data from the oil and gas 

production platform is collected from multiple sources. The data format can be characterized 

as qualitative and/or quantitative and static and/or dynamic form. Fault detection is usually 

performed by monitoring real time plant data and extracting features from input process 

and/or equipment variables. These variables need to be classified as normal or abnormal 

which identifies the condition of the system. The approach discussed in this section used 

time-series quantitative data from multiple sources imported into a Microsoft Excel 
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spreadsheet as a database of normal and abnormal features. Figure 2 shows schematically how 

the proposed strategy fits in relation to the given operational scenario at the facility. 
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Fig. 2 Existing and proposed QTA strategy 

As aforementioned, a conventional trend analysis program demands more involvement from 

human experts. This relies heavily on human interpretation and perceptions. The proposed 

technique used experts‟ opinion in defining the feature of critical faults. Once these are coded 

in the user interface, they provide a way to detect system anomalies in a more automated way. 

Trend analysis at the facility under study is based on plotted trends and analyzing these 

individually to assess the condition of the operating unit. In contrast to this, the proposed 

strategy used simultaneous trending of variables where major failure modes are represented as 

fault features. Extensive analysis of vendor data, historical shutdown data and domain 

experts‟ opinion was included in defining the critical failure modes of operating pumps at the 

facility. These failure modes were coded in the form of IF-THEN logical rules in the user 

interface developed in Excel that was specially designed to perform the task. Warnings levels 

were set and the alerts were generated when there were abnormalities seen in the process.  

Archive data from an offshore production platform was collected at a regular interval of 10 

minutes. The interval selection criterion was based on experts‟ opinion as it normalized the 

abrupt changes due to surging operating conditions. However, it was also realized that 

minimizing this interval could greatly improve the quality and reliability of generated warning 

levels.  

Fault features in this context are encoded in the form of condition-action pair, e.g. 

IF this condition occurs 

 AND (contributing variables above or below specified limits) 

THEN possible failure event is “fault A” 

e.g. to identify change in liquid viscosity in a running pump, the logic will be  

IF “increased motor temperature” AND “higher Power demands” AND “reduced capacity” 

AND “reduced fluid temperature” AND “reduced discharge pressures” THEN “High sp. 

gravity” ELSE “OK” 

Similarly, logic for deviation of a pump from its Best Efficiency Point (BEP) can be given as: 
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IF “higher inlet temperature” AND “higher Inlet Pressure” AND “higher flow variations” 

AND “higher motor speed” AND “shaft deflections” THEN “Deviation from BEP” ELSE 

“OK” 

A major limitation in defining these rules was the data availability. In our case study, 

vibration data, which could be used as a critical indicator for some faults, was not available. 

As an example, insufficient discharge pressure, insufficient capacity and excessive power 

demands coupled with high vibration levels can be regarded as an indication of internal wear 

of the pump. The most simple and straightforward qualitative method of detecting deviations 

consists of a threshold test of a feature. The threshold limits are set for each variable to ensure 

that the process remains under control. Breach of these limits initiates alerts/alarms in the 

standard control systems. Generally, these threshold limits have wide ranges to prevent the 

control systems from overloaded warnings/alerts. In the logical equations, threshold limits 

were redefined statistically for normal and faulty conditions. These modified limits were then 

used in developing the user interface to assess the system‟s health. A confidence value (CV) 

is set for each feature that categorizes corresponding trends as normal or abnormal. The CV of 

“1” and “0” represent normal and abnormal conditions respectively. These warnings indicate 

slowly developing problems that may or may not cause serious damage to the equipment but 

also reflect the need for a detailed check of the system by operators and experts.  

4. Example of oil export pumps: 

4.1 System description 

Sensor data from an oil export pump located on an offshore oil and gas production facility is 

collected to test the defined fault logic. Centrifugal pumps are widely used in various 

industrial applications. These are classified as rotodynamic type of pumps in which dynamic 

pressure is developed that enables lifting of liquids from a lower level to a higher level. 

Centrifugal pumps are highly susceptible to process variations and therefore the dominant 

reasons for centrifugal pump failures are usually process related [5, 17]. 

The offshore production facility under study uses 3 parallel connected centrifugal type pumps 

to export the oil to onshore. Two of these pumps (named here as A and B) are driven by 

variable speed drive (VSD) motors, whereas the third pump (named as C) has a fixed speed 

drive (FSD) motor. Figure 3 shows the selected system boundary and the distribution of 

sensors‟ signals within the domain. Collected time-series data from sensors is displayed in the 

form of trends that are made available to onshore experts.  
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- Bearing temperature

- Seal temperature

- Speed
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- Bearing temperature
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VSD Unit
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- Temperature (suction & discharge)

- Pressure (suction & discharge)
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- Differential pressure across 
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Fig. 3 Experimental measurement points for trend analysis 
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The export oil pump system consists of electric driving motor, pump skid and lube oil 

console. Figure 3 shows measurement locations (also referred to as tags in this context) within 

the selected pump system. Due to an extensive number of tags associated with this system, 

only those were selected that had a larger effect on pump performance. The data sources 

included critical performance indicators from: 

 Data for condition monitoring (e.g. bearing and seal temperature, etc.) 

 Process variables (e.g. inlet flow, capacity, inlet temperature etc.) 

 Auxiliary systems variables (e.g. lube oil temperature, lube oil pressure etc.) 

 Other data sources (environmental data, e.g. noise etc.) 

The offshore facility had an annual maintenance shutdown in 2007 and therefore the data used 

to develop the interface was considered as healthy and fault-free. Based on the fault tree 

analysis, Figure 4 shows how the 12 defined faults are associated with multiple data sources 

that included process, equipment condition monitoring and auxiliary data etc.  

Process data Other data sources

Auxiliary systems’ 

data

Equipment 

condition data

1 765432 12111098Faults

 

Fig. 4 Data-Event relationships 

The variables in these data sources used modified threshold limits to recognize the 

abnormality in measured value. The control value (CV) is used as an indicator of state of the 

operation. According to Al-Najjar and Alsyouf [1], faults may develop due to many causes 

represented by large standard deviation.  

Based on the above defined approach, a total of 12 critical faults was formulated. Table 1 

gives an overview of the defined fault features along with the displayed indications from the 

Excel-interface. This generated an alert in the form of CV of either 1 or 0 indicating when it 

detected the particular faulty pattern.  

Table 1: Defined critical faults and their indications 

Fault No. Description Displayed Indications CV 

1 Cavitation “Onset of Cavitation” “1” or “0” 

2 Leakage “Check for leakage” “1” or “0” 

3 Air/gas in intake “Air or gas in suction” “1” or “0” 

4 Defective bearing “Check bearing” “1” or “0” 

5 Seal  failures “Check seals” “1” or “0” 

6 System Head > Design head “System head increasing” “1” or “0” 

7 System Head < Design head “System head decreasing” “1” or “0” 

8 Deviation from BEP “Deviating from BEP” “1” or “0” 
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6 Sp. Gravity too high “High sp. Gravity” “1” or “0” 

10 Viscosity too high “High liquid viscosity” “1” or “0” 

11 Internal Wear “Check for internal wear” “1” or “0” 

12 Misalignment “Check alignment” “1” or “0” 

A brief summary of the results from testing these logics for real plant data from operating 

pumps is described in the next section. 

5. Results and Discussions:  

The approach presented here has a huge potential for revealing early indications of faults that 

can provide a knowledge base for early decision-making in order to avoid potential shutdown. 

A screenshot of the Excel-based interface developed to identify and monitor multiple trends is 

shown in Figure 5. The coded fault logics are based on the information from sensor data 

embedded in the same spreadsheet. 

 

 

 

Fig. 5 Screenshot of Excel-based inference engine 

5.1 Identification of “normal” and “abnormal” operational parameters 

Key parameters of the pumping operation included several variables such as flow, inlet/outlet 

pressures, seal and bearing temperatures, current and motor temperature etc. The threshold 

limits of these variables were compared with existing limits in the control systems. Fault-free 

data was selected to recognize features of a normal operation. These settings were taken as a 

baseline to represent normal operating conditions. The selected baseline limits for the 

installed pumps are shown in Table 2.  

Table 2:  Modified Operating limits for Export Pumps  

 Pump A and B Pump C 

Variables Existing limits Baseline limits Existing limits Baseline limits 

Flow (m
3
/h) 0-3200 850-1685 0-3000 736-2171 
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Inlet Press (BarG) 8-28 17-19 7-30 16-19 

Motor temp. (°C) 2-72 24-48 3-170 68-102 

Similar operating ranges for other available variables were defined including bearing 

temperatures, speed, power demands etc. Relatively higher limits were set for pump C as this 

is a fixed speed pump operating at higher loads than the other pumps. 

5.2 Statistical correlation  

Sensor signal data from multiple sources was also checked for statistical relationships. Linear 

and non-linear relationships were found among different variables using simple and multiple 

regression models. In descriptive statistical analysis, the correlation coefficient indicates the 

strength and direction of the linear relationship between two random variables [2]. A 

correlation coefficient between +1 measures the degree to which two variables are linearly 

related. A perfect linear relationship between positive slopes of two variables has a correlation 

coefficient of 1. For a non-linear relationship other techniques are suggested that may include 

Neural Networks, Fuzzy logic or hybrid systems (referred to as extension of the current 

work). Results from the linear statistical correlation are summarized in Figure 6. It shows the 

strength of the linear statistical relationship between different sensors‟ signal data.  
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Fig. 6 Linear correlation based on correlation coefficient 

A strong linear correlation was found within some variables (e.g. current-flow and current-

motor power), whereas a correlation coefficient of 0 or near zero represented either the 

variables were not related or there exists a non-linear relationship between them. Such 

correlation was important to understand the mutual dependencies of these sensors. This 

dependency helped reveal hidden associations among different sensors within the selected 

domain.  

5.3 Symptoms of developing abnormalities  

Logical equations formulated in Excel spreadsheets displayed faulty features in the form of 

control values (CVs). The Equations were formulated for all 12 faulty features, and 

operational data from 3 months (July-September 2008) was used to test the logic. These 

datasets showed significant indications of faulty features 3, 4 and 8. When checked against 

the existing control systems, no alerts/alarms were initiated as none of the variables exceeded 

its threshold limit. Figure 7 shows indications of captured probable faults in form of a CV 

during normal operation of pumps in this 3 month time period. This was acknowledged by the 

domain experts as providing a strong base for the early identification of developing probable 
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faults in the pumps from collective trend monitoring. In Figure 7, a CV dropping to 0 

symbolically represents detected faults as interpreted in the user interface. 
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Fig. 7 Symptoms of faults in real-plant data 

Conclusions: 

Knowledge discovery and data mining is a very dynamic research and development area that 

is reaching maturity. An excellent survey of knowledge discovery and data mining process 

models is given in [30]. The approach presented in this paper can serve as a common set of 

criteria where different techniques can be evaluated and compared. Through this paper, we 

proposed an approach that aims to track fault symptoms and anomalies in a process that may 

lead to fault. Based on QTA, a brief discussion on the development of multiple-trend based 

analysis program has been presented. A user interface was developed in Excel that contained 

coded fault symptoms in the form of logical IF-THEN and IF-AND-THEN conditional 

statements. Three months‟ data from centrifugal type oil export pumps on an offshore oil and 

gas production facility was utilized to check the validity of these equations. The user interface 

can identify faulty patterns on earlier stages than the standard control systems and can 

generate warnings when any abnormality is observed in the data. The model successfully 

captured indications of some defined faults that generated multiple warnings during 3 months‟ 

continuous operation of one of the pumps. In existing control systems, these changes did not 

trigger any alert. These new warning levels are acknowledged by domain experts. 

Future work and directions: 

This work has been tested for archived data and has a great potential to be tested for real-time 

online data. The work presented here provides a strong base for advanced technologies based 

on AI tools such as Fuzzy logics, Neural Networks, Genetic Algorithms etc. that can be 

successfully applied as an extension to this work. In this regard, Zhang and Morris [31] 

presented an excellent extension of the work using fuzzy neural network. A more recent work 

towards such knowledge based systems in process control and fault identification can be 

found in [32-34].  
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