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Abstract: Identification and interpretation of hidden system threats on complex 
oil and gas production platforms has always been a challenge. These threats 
may gradually develop into failures/faults resulting in system shutdowns or 
eventually loss/reduction of production. Oil and gas industry is willing to test 
new technologies in managing uninterrupted, higher production regularity. In 
response to these challenges, a research project was initiated involving a 
leading oil company in Norway. A systematic investigative approach was 
adopted which incorporates domain experts‟ opinion and multiple information 
resources/databases. The paper attempts neural network modelling of a critical 
production loss-related scenario, based on real plant data from an offshore 
production facility. Analytical results captured symptoms of suboptimal 
performance from compressors installed in the gas compression system. This 
methodology could give plant operators an opportunity to early identify 
system‟s anomalies. As a result, unwanted shutdowns can be avoided, 
consequently improving overall plant‟s efficiency and productivity. 
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1 Introduction  

Assurance of oil and gas flow with minimal interruptions has always been a big challenge 

to the oil and gas industry. Despite all efforts, production shutdowns do occur due to 

different reasons. The underlying root causes of these undesirable events are sometimes 

identified through extensive investigations, but in some cases they remain completely 

unknown. Lessons from past experiences significantly contribute to continuously 

improving existing controls and safety barriers. These provide a firm base to lay out 

suitable strategies to hinder or mitigate the occurrence of such incidents. The available 

options may include improving human performance, increasing equipment reliability and 

availability, or optimizing existing work practices (Raza and Liyanage 2007). 

Unplanned downtime of the equipment plays a crucial role in large petrochemical 

plants (Tordinov, 2005). One way to reduce the probability of such unplanned events is 

by improving the reliability and availability of the installed equipment. Equipment 

availability and reliability have a major impact on the overall plant economy (Boyce, 

2003). Particularly in the oil production sector, the unplanned outages pose considerable 

economical challenges and may result in loss of earning opportunities. Asset management 

practices in bigger organizations seem to be quite conventional. Thus, there is huge 

technological need for testing and implementing smarter analytical techniques that can 

improve overall uptime of the equipment by the early identification and interpretation of 

abnormalities.  

Patricio et al., (1997) concluded that the disturbances that produce oil and gas load 

disconnection or other emergency situations have to be localized as quickly as possible. 

In order to restore normal oil and gas production, localizing a disturbance is extremely 

important that starts with the process plant reconfiguration. This also requires precise and 

accurate identification of the developing disturbance. 

In the oil and gas production process, a mass flow of hydrocarbons (comprising of 

water, CO2, H2S, sand, mud etc.) from oil wells is brought to separators where these are 

separated into oil, gas and water streams. Oil and gas are exported through pipelines, 

whereas water is recycled or fed back to the sea. Figure 1 schematically shows the main 

components of the oil and gas production process. In the figure, systems A, B and C 

represent the target areas. The figure shows the separation system for oil/gas/water (A), 
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the export system for crude oil (B), and the produced gas compression system (C) 

respectively. Detailed selection criteria for these systems are discussed in Raza and 

Liyanage (2007 & 2008). In this paper we analyzed systems A and C, whereas system B 

is separately covered in Raza and Liyanage (2009). 

Figure 1 A schematic oil and gas process diagram 

System B

System C

System A

Compressor

Separator

Gas Export

Oil Export

Produced water

Hydrocarbons 

Inlet

Auxilliary 

equipment

Auxilliary 

equipment

Pump

 

Good separation of oil/gas/water is required not only for improved product quality but 

also to minimize any possible disturbances in the equipment or its neighboring systems. 

The occurrence of these peculiar changes can exhibit abnormal data patterns in the 

system. These anomalies can be efficiently used for early fault diagnosis and prognosis. 

The challenge here lies in precisely identifying these random changes and interpreting 

them into useful information.  

Hooimeijer and Azmi (2006) emphasized that the fault identification from real-time 

data alone is not enough to capture system abnormalities. Engineers and analysts should 

utilize methods to analyze online data for the quick and early detection of probable faults. 

Alternatively, Tordinov (2005) concluded that in reliability studies, removing critical 

failure modes at the design stage is considerably cheaper than removing these at the 

manufacturing or operational stage. However, all failures cannot be removed cost-

effectively. In case of an operating unit, failure modes can be identified from different 

patterns exhibited by the data. Several authors have proposed different approaches within 

the domain of fault identification. For instance, Mearns and Flin (1995), Khan et al. 

(2002), Khan and Amyotte (2002) and Oke et al. (2005) focused on offshore safety and 

risk assessments when dealing with critical events from petrochemical plants.  

Recently, Kovalev et al. (2003) focused on large oil and gas production losses caused 

by surging flow conditions in the flow lines. Moreover, oil and gas processes suffer 

greatly from scaling (depositions due to corrosion) and slugging (mud/solids) in the 

vessels, pipelines and valves etc. Slugging, in particular, causes high-level trips in 

separator vessels that can disturb the fluid/gas equilibrium, thus resulting in instable 

operational conditions. This was among one of the most frequently recurring problems as 

reported in the corporate databases of the existing plant. 

Some authors in the cited literature addressed these problems using artificial 

intelligence (AI) techniques. Recently, Liao et al. (2008) used fuzzy logic based control 
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for the petroleum separation process. Fuzzy logic controller (FLC) is a proven technology 

for dealing with uncertain systems that has been applied in many industrial domains. 

Godhavn et al. (2005), on the other hand, suppressed slug generation by effectively 

controlling topside choke. In the field of artificial intelligence (AI), neural networks have 

widely been developed for several industrial tasks including prediction and forecasting, 

monitoring and diagnosis, classification tasks, signal processing and pattern recognition 

etc. (Cook et Al., 200;, Mohaghegh, 2000; Zangl & Oberwinkler, 2004). As Haykin 

(1999) notes, it has emerged as a powerful tool in various fields of engineering 

endeavors. 

To assure uninterrupted production of oil and gas, field engineers and experts 

continuously improve safeguards to avoid any unnecessary drop in pressure or flow 

levels in the process. Warnings generated by the process control and safety systems play 

a critical role in improving the overall safety and reliability of the systems. These 

controls ensure that the facility is operated within the design window at all times. A 

stable operation results in cost-effective operational benefits such as fewer shutdowns, 

lower breakdown maintenance, less flaring, lower fuel consumptions etc. In reality, 

however, perfectly stable processes are rarely maintained due to dynamically changing 

operating conditions.  

In this paper, realizing the challenges, we emphasized on developing neural network 

models based on critical indicators selected from real plant data to identify symptoms of 

suboptimal performance. The basis framework of such a system is discussed in details by 

Raza and Liyanage (2008). One of the main focuses of our study is an attempt to address 

discrepancies found between the theory and the practice. Qualitative and quantitative 

evidence are included and the study attempts to answer the following questions:  

 What are the early indicators of suboptimal performance in the process understudy? 

 How can these be identified within seemingly normal operating conditions? 

 Which systems/sub-systems are more vulnerable within the domain of interest? 

2 Methods 

The aim of the study was to systematically model the collected data that can provide a 

sound base for detecting general system abnormalities. A case study was conducted 

involving a major Oil and Gas (O&G) operator in Norway in an attempt to answer the 

questions highlighted in this paper. According to Yin (2003), case study methods allow 

investigators to retain holistic and meaningful characteristics of real-life events. He stated 

that major case study strategies can be distinguished by the type of research questions 

raised about the phenomenon under study. In order to strengthen the study, David (2006) 

presented strong arguments on using advanced mixed methods in research designs that 

include analysis of a collection of quantitative and qualitative data. Giere (1997) 

proposed a methodology to collect real world data through observations and develop a 

model that fits the problem scenario. The purpose is that the developed model can make 

predictions based on the specific reasoning and calculations. These predictions must be 

verified against the real data to agree or disagree with the proposed objectives. 

Collected qualitative data included inputs from historical production shutdown 

databases, vendor data, existing process control strategies, and brief interviews with 
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offshore/onshore experts. Quantitative data was collected in the form of time-series 

sensors‟ measurements. Qualitative data was used to develop quantitative analysis. In 

Steckler et al. (1992), this approach is among the four alternative procedures for 

combining qualitative and quantitative research methods.  

Following the essence of the principal methodologies given in this context, the 

collected information from multiple sources was analyzed to look for common themes 

and trends. The process of qualitative analysis was based on thematic analysis, whereas 

advanced statistical and data-handling tools were used to perform quantitative analysis 

(Neuman, 2006; Gill and Johnson, 2002). According to O‟Leary (2004), a good 

methodological design addresses the raised questions, limited within the domain of 

interest, in a practicable and effective manner.  

3 Findings and results 

Findings of the case study are summarized in two separate sections. The first section 

covers the qualitative information and findings based on the databases and domain 

experts‟ opinion. The second part explains the modeling of quantitative data supported by 

qualitative findings from a specific case, in an attempt to answer the core questions. 

3.1 Database findings 

Investigations were started by looking into the available data and information from 

production loss databases, operational reports, well-test databases and corporate 

management databases etc. Initial risk assessments based on frequency and impact 

analysis highlighted the top most critical systems, as discussed in Raza and Liyanage 

(2007). Figure 2 shows the critical systems with the number of events that led to 

production shutdowns in the past.  

Figure 2 Critical systems ranking (from 2004-2008 corporate database) 
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Root-cause based classification of these events is addressed in Raza and Liyanage (2007) 

which highlighted major failure modes within these systems. Based on this classification, 

Figure 3 reveals the underlying root causes of these events on the existing facility.  

Figure 3 Root cause categories of production loss events (2004-2008) 

 

 

This showed a higher contribution from equipment failures (up to 42%) which severely 

affected oil production in the past. The pie chart presented in Figure 3 is based on the 

percentage of total unplanned losses reported in corporate databases. 

3.2 Domain experts’ point of view 

As the investigations proceeded, several meetings with domain experts were arranged to 

understand the practical issues related to these events. Active participation from onshore 

and offshore experts was ensured to recognize technological challenges in order to select 

a suitable solution strategy. Based on these discussions and arguments, a summary of 

practical issues concerning these losses is presented in Table 1.  

Table 1 Practical issues related to production loss events 

Equipments Practical issues 

Gas compressors 

Pumps 

Separators 

- Handling and prioritizing of alarms/alerts 

- Failures due to neighboring systems in the process 

- Mechanical failure 

- Surveillance and control 

- Human Error 

- Process related failures 

- Maintenance errors 

 
 

Electrical systems (9 %) 
 

 

Human Error (26 %) 

Mechanical systems (9 %) 
 

Work processes (14 %) 

Equipment Failures (42%) 
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The issues summarized in Table 1 represent vast domains and needed further refining to 

prioritize the key issues. This led the attention towards the existing surveillance and 

control strategies of installed systems/equipments which emerged as the main target area. 

In this respect, an offshore visit was carried out to further discuss these issues with field 

engineers and front-line operators. Table 2 briefly summarizes some important issues that 

were surfaced in this respect.  

Table 2 Key target areas and technological issues 

Categories Technological issues 

Export pumps 

- Less frequent - high impact events 

- Heavily relying on conventional condition monitoring 
methods 

- Understanding relationship between process variables and 
equipment wear and tear 

Flash Gas 
Compressors 

- Highly susceptible to process variations, surges 

- Third party shutdowns 

Separators 

- Process-related disturbances 

- Experience-based reasoning for handling process 
variations  

 

Besides these, several other common issues were recognized as an important part of 

dealing with such complex problems. Some of these were: 

 Sensors/data acquisition failures 

 Lack of collaboration/communication among databases 

 Auxiliary system failures (e.g. failures due to cooling, air supply, lubrication systems 

etc.) 

However, in this paper, these issues were not taken into consideration. Experts formally 

involved in investigations have an important role in the decision-making process since 

this brings both experience and available information together to study a particular event. 

These decisions involve certain expectations about the future actions, such as 

recommending a scheduled maintenance etc. In past reported events, the responsive 

decisions included large amount of uncertainty. This was reflected as ambiguities and 

doubts in identifying and locating the causes of the failures. In some cases, the root 

causes remained completely unidentified due to the complex nature of the event. This 

uncertainty also justified the need for a more robust, reliable monitoring that can provide 

valuable information based on the initiating incidents. Uncertainty factors indicated in the 

past shutdown events are given in Table 3. This uncertainty factor is based on the 

percentage of total unplanned failures from the identified systems.  

 

 

Table 3 Uncertainty in past events 
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Systems (2003-2008) Uncertainty factor 

Pumps 70% 

Compressors 55% 

Separation system 45% 

 

Analytical results from expert opinion, databases, field studies and personal inference 

clearly identified the improvement opportunities. Artificial Neural Network (ANN) was 

used as a tool to develop a generalized model of the process using real plant data from 

separation vessels and compressors. The modeling results are discussed in more detail in 

the next sections. 

3.3 Modeling based on process-data 

Case study example 

Data from a recurring event was collected, pre-processed and analyzed prior to start with 

the modeling phase. Raw data was checked for correlations, missing values, outliers and 

noise etc. The correlation matrix showed highly non-linear complex interrelationships. 

The data was then carefully selected in a manner to include all operating conditions that 

could influence the model output. The neural network approach was adopted in contrast 

to the approaches described in Liao et al. (2008) and Godhavn et al. (2005). 

NeuroSolutions 5.0 software was used for neural computations.  

The modeled system included two oil/gas/water separation vessels, a suction scrubber 

unit (to remove any solids from the gas stream) and two compressors, namely, A and B. 

The two compressors are connected in parallel for gas export to onshore (see Figure 4). 

Separator 1 is smaller in size to pre-separate the hydrocarbon streams, whereas separator 

2 is a bigger vessel with Low Pressure (LP) separation. Several variables were selected 

throughout the system, which included levels of liquids in the two separators, vessel 

pressures, outlet pressure and levels in the suction scrubber, inlet/outlet pressure and flow 

of the two compressors. Flow and outlet pressure of both compressors were taken here as 

representative for overall compressor performance as any suboptimal behavior of the 

compressors can be easily detected by flow and/or pressure fluctuations. 

Figure 4 Schematic diagram of separation process 
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As aforementioned, liquid slugs and surging operational/flow conditions can cause high-

level trips in separators that may result in the instability of the units in operation. This 

problem was modeled using the neural network approach to extract the useful 

information.  

Data from a healthy system and faulty events is collected to perform the analysis. 

According to Principe et al. (2000), faulty data patterns in most cases can be easily 

identified as those with higher standard deviations. Table 4 represents 6 data patterns to 

capture traces of any abnormality. These included three fault-free (incident-free) 

operational months and three months‟ data where signs of suboptimal performance were 

seen. Data from separator 2, suction scrubber and compressor A is given in the table 

below.  

Table 4 Faulty and healthy data patterns 

 Separator 2 
pressure 

Separator 2 oil 
level 

Scrubber 
pressure 

Scrubber 
level 

Comp. A outlet 
Pressure 

Event Mean 
St. 
Dev. 

Mean 
St. 
Dev. 

Mean 
St. 
Dev. 

Mea
n 

St. 
Dev. 

Mean 
St. 
Dev. 

Healthy Data Pattern 

1 17 4 50 1.7 10 0.3 26 0.4 9.8 0.27 

2 18 3.6 50 1.8 9.7 0.18 23 8.1 9.8 0.19 

3 15 3.8 49 2 9.8 0.44 25 0.62 10 0.4 

Faulty Data Pattern 

1 17 4 49 2.6 9.4 0.92 25.1 1.64 9.8 0.9 

2 17 4.3 51 2.8 9.86 1.2 26 2.3 8.5 3.8 

3 19 5.5 47 6 9.7 2.1 25.5 3.6 10 4.85 
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Table 4 indicated that the mean and standard deviations did not suffice for classifying 

different data patterns. Therefore, in normal practices, these data sets might not be 

regarded as a good indicator of a fault. The reason was that most variables in this process 

were quite stable during daily operating conditions. In Table 4, only faulty pattern no. 3 

showed somewhat significant deviations from norms.  

As this behavior continued, significant changes were observed in the suction scrubber 

unit. The source of these disturbances was a scheduled maintenance operation that 

created fluid levels and a pressure rise in the separator vessel. Consequently, the gas 

compressors suffered severe pressure fluctuations that later resulted in the tripping of the 

gas compressors.  

Data from this example was selected to show how neural networks can predict these 

seemingly undetected changes that might affect the integrity of the whole system. Neural 

networks are quite famous due to their well-established learning and adaptive 

capabilities. One of the capabilities of neural networks is the property of modeling an 

unknown function of a process. This learning property of the neural networks discovers 

the unknown function f(.) given a finite number of input-output pairs. This unifies 

applications of regression and classification in a more general problem, commonly 

known as function approximation (Principe et al., 2000). Function approximation seeks 

to describe the behavior of highly complicated functions by ensembles of simpler 

functions. A Multilayer Perceptron (MLP) with one hidden layer network was trained to 

describe the behavior of hidden complicated functions.  

To develop the base-line model of the process, the network was preliminarily trained 

for 5 months‟ operational data, including 14 inputs and 4 outputs. Data was divided into 

training, cross validation and testing sets. A model was developed and analyzed using 

NeuroSolutions 5.0 software. Mean Square Error (MSE) computed in each dataset was 

analyzed. It is the average of the square of the difference between the desired response 

and actual system outputs. This is a widely utilized performance criterion. Cross-

validation was used as a criterion for stopping network learning (Principe et al., 2000). 

Cross validation computes the error in a test set at the same time that the network is 

being trained with the training set. It is known that the MSE will keep decreasing in the 

training set, but may start to increase in the test set. This happens when the network starts 

"memorizing" the training patterns. The error criterion component provides the values 

which can be used to measure the performance of the network for a particular data set. A 

sensitivity analysis was performed to measure how much a small change in one of the 

independent variables affects the functional value. Variables with the least effect on the 

outputs were removed during the modeling phase to improve the performance and 

simplicity of the network. As a result of sensitivity analysis, the number of input 

variables was reduced from 14 to 11. This process was repeated until we established the 

parameters of the base-line model. 

Figure 5 shows training and cross validation sets in the training dataset of the base-

line model given with standard deviation boundaries. Computed MSEs were reasonably 

low with increasing numbers of processing elements in the hidden layer.  

Figure 5 MSE in training the base-line model 
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In this case, a total of 4 Processing Elements (PEs) were selected in the training model. 

The total number of PEs in the model is a characteristic of the software that is used to 

build the neural networks. Results from sensitivity analysis to estimate the influence of 

each input to the network outputs are shown in Figure 6. It showed that compressors‟ 

flow is significantly affected by separator 2 (LP) pressure and suction scrubber pressure 

whereas compressors‟ outlet pressures were not influenced by any input variables. 

Therefore we nominated compressor flow as the critical indicator of suboptimal 

performance. This can be clearly seen as a larger influence (bars in Figure 6) on the 

network outputs. This was also validated by the historical data and domain experts. 

Figure 6 Sensitivity analysis using Neural Networks 
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The base-line model was then tested for unseen data (dataset not used during training 

phase) which showed satisfactory network performance. The neural network‟s adaptive 

capabilities can detect signs of degradations by deviations from the network-predicted 

and the real values. Again MSE was the judging criterion in analyzing the network‟s 
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performance. This base-line model was tested for data from compressors from January-

March 2008. 

Figure 7 Symptoms of abnormality in compressor A 

There were no significant deviations seen in compressor B data, whereas gradual reduced 

flow from compressor A was seen in the network predicted values (see figure 7). When 

checked with historical data, this behavior was recognized as indications of a hidden fault 

that led to shutdown in the corresponding month of May 2008. At this stage however, 

there were no indications of any abnormalities in the system as seen in the existing 

monitoring and control systems.  

The neural network model clearly showed that, by carefully selecting the input 

parameters of the system, these networks can efficiently identify symptoms of 

abnormality in the system. If this had been a part of normal monitoring and surveillance 

system, these symptoms could have initiated a system reconfiguration in order to restore 

normal operation. The indicators from sensitivity analysis in Figure 6 provide an estimate 

of which variables could be controlled in order to avoid any unwanted consequences.   

This is an excellent example of a trained neural network detecting abnormality in the 

real plant process data. This could give an excellent opportunity to the system experts and 

operators to identify abnormal behavior of the equipment early and take the necessary 

actions to restore to the original operating conditions. The restoring process may include 

inspection requests, changing operating conditions and/or recommendations for 

predictive maintenance plans etc. 

4 Discussion 

The case study raised several critical issues as a part of the main focus area. The first part 

of the study discussed issues on domain experts‟ level. It summarized technological gaps, 

possible areas of improvements and emphasized selecting a suitable strategy 
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incorporating experts and streamlined information from production databases. The 

analytical part of this context used real plant data to model a particular scenario that took 

place in the past. It showed that carefully selected model inputs can predict the 

suboptimal performance of equipment to a reasonable level. The model successfully 

captured early signs of faults in one of the compressors. It further showed that 

compressor A was more vulnerable to process changes with respect to the changes in the 

process. Moreover, the network also highlighted contributing critical indicators that 

showed which variables may potentially be responsible for this abnormality. Experience 

with the neural network further showed that properly trained models can capture valuable 

information and can predict system performance that is apparently undetected by 

standard monitoring and control systems. 

5 Conclusion 

This paper reflected the use for an Artificial Neural Network (ANN) approach to model 

highly complex non-linear data from an offshore O&G production plant. The case study 

demonstrated how neural networks can learn and extract useful information from input 

data, ultimately transforming it into useful information about the system‟s condition. Past 

experience showed that, in most cases, early indications were often either misunderstood 

or undetected by existing monitoring systems. These indicators can play a vital role in 

reducing uncertainties associated with the events. The case study also concluded that 

appropriate use of qualitative and quantitative data to explore opportunities plays a vital 

role in defining a suitable strategy. Digital infrastructure for data acquisition has already 

been established in bigger oil and gas operators and the greater need is to use available 

resources efficiently for enhanced surveillance and monitoring of the assets. 
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