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Preface 
 
This thesis ends a two years long master’s degree in Construction and Materials at the University of 
Stavanger. The thesis consists of dynamic analyses of the Cardington Building, which was built inside 
an old Zeppelin hangar near Bedford, UK. The building was built in 1998, and was a part of the 
European Concrete Building Project (ECBP). Its goal was to provide improved design codes, especially 
for the dynamic properties of the concrete structure. 

In the thesis a finite element model of the Cardington building is made using the FE program 
Ruaumoko. The FE model is calibrated to experimental test results obtained by Jónas Thór 
Snæbjörnsson, Ódinn Thórarinsson and Símon Ólafsson, in 2000 [2]. 

The purpose of this thesis was to test and verify the application of a traditional floor response 
spectra methodology used to estimate seismic design actions for secondary structures and 
investigate the effect of structural parameters such as damping and natural frequency on the 
evaluated response. 

The thesis consists of  

 an introduction to the dynamics of structures 
 a presentation of the Cardington building and the secondary systems 
 an overview of the FE model for the primary system and the secondary systems 
 analyses performed with harmonic and earthquake excitation 
 a comparison of the obtained results to the Eurocode 8 standard 

 

I want to take this opportunity to thank my faculty supervisor, Professor Jónas Thór Snæbjörnsson, 
for his valuable help and support. This thesis would not be the same without his comments and 
suggestions.  

 

 

 

 

 

 

 

 

University of Stavanger, June 14, 2010 

 
Terje Fritzman  
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Summary 
 
Engineers have gained much knowledge on how a primary system behaves under harmonic 
excitation and earthquakes, but they do not know as much about how a secondary system affects 
the behavior. In seismic areas, buildings (primary system) are built to withstand the impact of the 
earthquake, but the effects on secondary systems are often not taken into consideration when the 
structure is designed.  

In the past 40 years a lot of research has been done on developing methods to analyze the non-
structural elements during seismic excitation. However, these methods were mainly focused on the 
safety of critical equipment in, for example, power plants. In the later years it has been shown that 
the non-structural elements in conventional buildings also should be taken into consideration in the 
earthquake design process. 

A floor response spectrum from the primary structure is often used to estimate the dynamic 
response of the secondary system, but one problem by doing so is that it does not take into 
consideration the effect of the interaction between the two systems.  

The so-called Cardington Building, the primary system used in this thesis, was a seven storey in-situ 
concrete building erected inside an old Zeppelin hanger which housed the Cardington Laboratory 
near Bedford, UK, owned and operated by the BRE (Building Research Establishment Ltd). The 
building was built in 1998, and was a part of the European Concrete Building Project (ECBP). It was 
constructed like an office block, and its goal was to provide improved design codes, especially for the 
dynamic properties of the concrete structure. 

The analyses in this thesis are based on a numerical model of the Cardington Building made in a finite 
element program called Ruaumoko. The model is calibrated against experimental results from full 
scale tests performed by Jónas Thór Snæbjörnsson, Ódinn Thórarinsson and Símon Ólafsson in 2000 
[2].  

The FE model in this thesis is exposed to harmonic excitation in the first tests and excited by 
earthquakes in the second tests. Also, the seismic coefficients obtained from the earthquake 
excitations have been compared with the seismic coefficients calculated by equations from the 
Eurocode 8 standard.  

From the harmonic excitation tests it is seen that the secondary systems with their natural 
frequencies inside the resonant frequency range of the primary system get a much higher 
displacement than the ones outside the resonant frequency range, but in exchange the displacement 
of the primary system is reduced. For secondary system 6 the displacement of the primary system 
drops 34 % for the fourth floor and 35 % for the top floor (Figure 5.10 and Figure 5.11). This is true 
for secondary systems with both 0.8 % damping and 5.0 % damping. 

When the earthquake tests are performed it is seen that the floor response spectra method gives 
values that are generally higher than the values computed from the numerical model when the 
secondary system is attached to the primary system, see Table 5.10. It is seen that the natural 
frequency and the damping ratio of the secondary system affects the response generated by the two 
methods of measuring in different ways. 
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For secondary systems with natural frequencies far away from the resonant frequency range of the 
primary system tends to get a much higher response for the floor response spectra method (≈30 %). 
This pattern is seen for all damping ratios (0.08 %, 2.0 % and 5.0 %). 

For secondary systems with natural frequencies just outside the resonant frequency range of the 
primary system the response for the floor response spectra method compares very well to the 
results from the case when the secondary system is attached to the primary system. This is true for 
all damping ratios tested.  

The problems appear when the secondary systems with natural frequencies inside the resonant 
frequency range of the primary system are analyzed by the floor response spectra method. The 
response for a low damping ratio (0.08 %) makes the amplitudes much higher for the floor response 
spectra method (≈40 %), and the shape of the response is different. 

If the secondary system has at least a medium damping ratio (2.0 %) the differences in the 
amplitudes are not big, and the response of the two methods compare well to each other. 

The secondary systems with a high damping ratio (5.0 %) will make the amplitudes of the floor 
response lower than the ones measured from the analysis where the secondary system is mounted 
on the primary system. This means that the real response is higher than the one obtained from the 
floor response method. Standards, like Eurocode 8, normally use a damping ratio of 5.0 %, which 
makes this a notable effect. 

In spite of the various shortcomings of the floor response approach discussed above it is found to 
give a reasonably good description of the overall response of the secondary system. 

Eurocode 8 is the standard for design of structures for earthquake resistance, and includes an 
equation that calculates the seismic coefficients for secondary systems. This calculated seismic 
coefficient has been found to correspond well to the floor response method’s seismic coefficients, 
but the actual seismic coefficients (generated by the analysis where the secondary system is attached 
to the primary system) did not correspond as well, especially for secondary system no. 6 and 7. These 
are the two secondary systems with natural frequencies inside the natural frequency range of the 
primary system. The actual seismic coefficient for secondary system 6 during earthquake 2000kav is 
twice as high as the seismic coefficient calculated by the Eurocode 8 standard (Figure 6.2).  

The Eurocode 8 standard states that the equation should only to be used for secondary systems that 
are not very important and / or dangerous. This makes the error less severe, but the equation should 
be representative none the less. The seismic coefficient at the natural frequency of the primary 
system is too low. 
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1. Introduction 
 
The object of this study is to investigate how a primary system (PS) and a secondary system (SS) work 
together under dynamic excitation. The primary system is normally what keeps the building standing, 
in other words, is the load-bearing structure. The secondary system can be both load-bearing 
(structural) and non load-bearing (non-structural). Typical non load-bearing secondary systems 
would be any type of equipment in the building, e.g., computer systems, heavy machinery and 
storage tanks. Typical load-bearing secondary systems are stairways, piping systems, ducts and other 
minor structures.  

Engineers have gained much knowledge on how a primary system behaves under harmonic 
excitation and earthquakes, but they do not know as much about how a secondary system affects 
the behavior. In seismic areas, buildings (PS) are built to withstand the impact of the earthquake, but 
secondary systems are often not taken into consideration when the structure is designed. The main 
concern for the engineer is to prevent structural failure first and the secondary systems are often 
added after the building is erected. If a machine got broken due to an earthquake in a factory and the 
production had to be stopped, the company could lose millions. If a machine got broken in a power 
plant or a hospital, the outcome could be catastrophic. 

To avoid this from happening, a floor response spectra method is often used to estimate the dynamic 
response of the secondary system. A floor response spectrum means that the primary structure is 
excited alone, and the response of the floor where the secondary system is going to be located, is 
recorded. This floor response is then applied as a ground motion on the secondary system. One 
problem by doing so is that it does not take into consideration the effect of the interaction between 
the two.  

This study will investigate the suitability of this method. In order to do so, a numerical model of the 
primary and secondary system is made using a FEM (finite element method) program called 
Ruaumoko [1]. Then, an analysis of the behavior of the primary and secondary system will be 
performed both jointly and separately. The analysis will include both harmonic and earthquake 
excitation. 

The thesis also includes a testing of a method used by the Eurocode 8 standard to estimate seismic 
design response spectra for secondary structures. 

The building that this thesis will investigate is the Cardington building. It was built in a hangar, the 
BRE Cardington Laboratory, near Bedford, UK. Actual recordings of excitations on a secondary system 
have already been measured for several stiffness values and masses. The thesis will be based on full 
scale tests performed by Jónas Thór Snæbjörnsson, Ódinn Thórarinsson and Símon Ólafsson in 2000 
[2]. 
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2. Theoretical Background 
 
The theoretical background is explained fully in Appendix A. The following chapters are a summary of 
the most important methods and equations. 
 

2.1 Single Degree of Freedom 
 

2.1.1 Equation of motion 
 
Simple structures can be modeled as a single-degree-of-freedom (SDOF) system. A water tank with a 
massless tower is the most common example, along with the idealized one-story frame. The 
structure is defined by a system that consist of a mass, spring, damper and force (Figure 2.2). 

 

  

 
By applying Newton’s Second Law on the system and drawing the free-body diagram, the equation of 
motion is defined (Appendix A: Single Degree of FreedomFeil! Fant ikke referansekilden.). 

 
𝑚 �̈� +  𝑐 �̇� +  𝑘 𝑢 = 𝑝(𝑡)         (2.1) 
 
 
where 𝑚 is the mass, 𝑘 is the stiffness, 𝑐 is the damping, �̈� is the acceleration, �̇� is velocity and 𝑢 is 
displacement. 

 

2.1.2 Stiffness  
 
The stiffness, k, can be determined, if the top beam is rigid, in the following way ([7],page 9): 

𝑘 = 12 𝐸 𝐼
𝐿3

           (2.2) 

where 𝐸 is the Young’s modulus (modulus of elasticity), 𝐼 is the moment of inertia (second moment 
of area) and 𝐿 is the length of the element. 

  

Figure 2.2. Idealized one-story frame. Figure 2.1. Free-body diagram of the one-story 
frame. 
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2.2 Multiple Degree of Freedom (2DOF) 
 

2.2.1 Equation of motion 
 
The SDOF system can be expanded into a two degree of freedom system which is usually expressed 
in a matrix form ([7], page 345-348): 

 

 

 

 

 

 

 

 

� 𝑚1 0
0 𝑚2

 � � �̈�1�̈�2
 � + � 𝑓𝑑1𝑓𝑑2

 � + � 𝑓𝑠1 
𝑓𝑠2

� = � 𝑝1(𝑡)
𝑝2(𝑡) �   or, in matrix notation   𝒎 �̈� +  𝒇𝒅 + 𝒇𝒔 = 𝒑(𝑡)     (2.3) (2.4) 

 
where 𝒎 is the lumped mass matrix. To find the damping matrix, 𝒇𝒅, and the stiffness matrix, 𝒇𝒔, the 
free body diagram is used. It is shown in “Appendix A: MDF” that the damping and stiffness matrix is 
as follows: 

 

𝒇𝒔 =  � 𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2

 � � 
𝑢1
𝑢2 � = 𝒌 𝒖  𝒇𝒅 =  � 

𝑐1 +  𝑐2 −𝑐2
−𝑐2 𝑐2

 � � �̇�1�̇�2
 � = 𝒄 �̇�      (2.5) (2.6) 

 
 
Substituting equation (2.5) and (2.6) into (2.3): 

 

� 𝑚1 0
0 𝑚2

 � � �̈�1�̈�2
 �+ � 

𝑐1 +  𝑐2 −𝑐2
−𝑐2 𝑐2

 � � �̇�1�̇�2
 �+  � 𝑘1 +  𝑘2 −𝑘2

−𝑘2 𝑘2
 � � 

𝑢1
𝑢2 � = � 

𝑝1(𝑡)
𝑝2(𝑡) �  (2.7) 

 
 
or in matrix notation: 

 
𝒎 �̈� +  𝒄 �̇� + 𝒌 𝒖 = 𝒑(𝑡)          (2.8) 
 
 
The equation of motion looks the same as for the SDOF, but it is now in matrix form and the equation 
is coupled with regard to the damping and stiffness. 

To include more DOF, the same methodology can be applied again. 

Figure 2.4. Two-story frame. Figure 2.3. Free-body diagram of the two-story 
frame. 
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2.3 Free vibration 
 
To find the natural frequencies of the system, one must look at the structure when it is undergoing 
free vibration. Free vibration means that if the structure is pulled out of its equilibrium position it can 
vibrate without any external dynamic forcing ( 𝒑(𝑡) = 0 ). A convenient start is to look at undamped 
vibrations, which means that c = 0 for the time being.  

The free vibration of a linear undamped multiple degree of freedom system is then ([7], page 39): 

 
𝒎 �̈�(𝑡) +  𝒌 𝒖(𝑡) = 𝟎          (2.9) 
 
 
in which 𝟎 is a zero vector. A solution to the free vibration can be described as: 

 
𝒖(𝑡) =  𝑞𝑛(𝑡) 𝜙𝑛 ( n ≤ Number of degrees of freedom = N )    (2.10) 
 
 
where 𝜙𝑛 are the natural modes of the system, and 𝑞𝑛(𝑡) is a harmonic function. 

Taking the second time derivative of 𝒖(𝑡) and substituting the solution for both 𝒖(𝑡) and �̈�(𝑡) into 
the free vibration equation (see Appendix A:  Free vibration) gives: 

 
[ −𝜔𝑛2 𝒎  𝜙𝑛 +  𝒌 𝜙𝑛 ] 𝑞𝑛(𝑡) = 𝟎        (2.11) 
 
 
This equation can be satisfied in two ways. One way is saying that 𝑞𝑛(𝑡) = 0, but that implies 
𝒖(𝑡) = 𝟎, which means that there is no motion. This is called a trivial solution, and does not give a 
useful result. Instead, let the equation  −𝜔𝑛2 𝒎  𝜙𝑛 + 𝒌 𝜙𝑛  equal to 0. In other words, the following 
equation must be satisfied: 

 
 𝒌 𝜙𝑛 = 𝜔𝑛2 𝒎  𝜙𝑛  ( 𝒌 = 𝜔𝑛2 𝒎 )       (2.12) 
 
       
This is called the matrix eigenvalue problem.  

The equation can be written as follows: 

 
[ 𝒌  −𝜔𝑛2 𝒎 ] 𝜙𝑛 = 𝟎          (2.13) 
 

Setting 𝜙𝑛 = 0 gives another trivial solution, but the equation has a nontrivial solution if: 

 
𝑑𝑒𝑡 [ 𝒌 −𝜔𝑛2 𝒎 ] = 𝟎          (2.14)
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From this equation, the natural frequencies are calculated, and to get the natural mode shapes, 𝜙𝑛, 
the known natural frequencies are inserted into equation (2.13) and solved for 𝜙𝑛. However, this 
does not give the absolute values for the vectors 𝜙𝑛, but only the amplitude shape of the vector. This 
means that it can be scaled. A popular way of scaling is called normalization of modes, and is 
discussed in Appendix A: Normalization of modes. 

 

2.4 Orthogonality of modes 
 

 

Figure 2.5. Representing deflections as sum of modal components ([3], page 220). 

 
The displacement for any structure can be split up into modal contributions based on the normal 
mode shapes of the structure. For one of the modal components (𝑢𝑛), the displacements are given 
by multiplying the mode shape vector (𝜙𝑛) with a time dependent modal amplitude (Y𝑛) ([3], page 
220-223): 

 
𝑢𝑛 = 𝜙𝑛 Y𝑛              (2.15) 
 
 
The normal modes can then be superimposed to get the total displacement. The sum of all the 
displacements from the modal components gives the total displacement: 

 
𝒖 = 𝜙1 Y1 + 𝜙2 Y2 + ⋯+ 𝜙𝑛 Y𝑛 = ∑ 𝜙𝑛 Y𝑛𝑁

𝑛=1       (2.16) 
 
 
or, in matrix notation: 

 

𝒖 = Փ 𝐘     where Փ = �
𝜙11 ⋯ 𝜙1𝑁
⋮ ⋱ ⋮

𝜙𝑁1 ⋯ 𝜙𝑁𝑁
� = 𝑚𝑜𝑑𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥   (2.17) 

 



Response of Primary and Secondary Systems under Dynamic Excitation 13 
 

By applying this superimposing method on the MDOF equation of motion, the equations get 
uncoupled. The derivation is shown in Appendix A: Orthogonality of Modes. The coupled 2DOF 
equation from chapter 2.2 can be uncoupled and the result is the following equation: 

 

� 𝑀1 0
0 𝑀2

 � � 
Ÿ1(𝑡)
Ÿ2(𝑡)

 � + � 𝐶1 0
0 𝐶2

 � � 
Ẏ1(𝑡)
Ẏ2(𝑡)

 � + � 𝐾1 0
0 𝐾2

 � � 
Y1(𝑡)
Y2(𝑡) � = � 

𝑃1(𝑡)
𝑃2(𝑡) �   (2.18) 

 
 
 

or on a more compact form: 

 
𝑀𝑛 Ÿ𝑛(𝑡) + 𝐶𝑛 Ẏ𝑛(𝑡) + 𝐾𝑛 Y𝑛(𝑡) = 𝑃𝑛(𝑡)        (2.19) 
 
 
where 𝑀𝑛, 𝐶𝑛, 𝐾𝑛 are the diagonal elements: 

 
𝑀𝑛 = 𝜙𝑛𝑇 𝒎 𝜙𝑛   𝐶𝑛 = 𝜙𝑛𝑇 𝒄 𝜙𝑛  𝐾𝑛 = 𝜙𝑛𝑇 𝒌 𝜙𝑛           (2.20) (2.21) (2.22) 
 
 
and the force is defined in the same way: 

 
𝑃𝑛(𝑡) = 𝜙𝑛𝑇 𝒑(𝑡)           (2.23) 
 
 
Normally, the uncoupled equation of motion is divided by the generalized mass since it is more 
convenient and physically reasonable to express the equation with the damping ratio, because it is a 
variable that can be measured experimentally or estimated with good precision.  

 
Ÿ𝑛(𝑡) + 2 ξ𝑛 𝜔𝑛 Ẏ𝑛(𝑡) + 𝜔𝑛2 Y𝑛(𝑡) = 𝑃𝑛(𝑡)

𝑀𝑛
       (2.24) 

 
 
where ξnis the critical damping ratio, defined as: 

 

ξn =
𝐶𝑛 

2 𝑀𝑛 𝜔𝑛
           (2.25) 

 
 
If ξnis equal to 1, it is a state of critical damping, which explains the name. 

The equation of motion is uncoupled, which means that it can be expressed as 𝑛 SDOF systems. To 
obtain the total response of the MDOF system, the 𝑛 SDOF equations are solved and their effects are 
superimposed.  
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2.5 Forced vibration – Harmonic excitation 
 
Since the MDOF system has been uncoupled, the same equations that are valid for the SDOF system 
are also valid for the MDOF system. Therefore the derivation can be done for a SDOF system. 

 

2.5.1 Undamped harmonic excitation 
 
The system is subjected to a harmonically varying load 𝑝(𝑡). The load is of sine-wave form with an 
amplitude 𝑝0 and circular frequency 𝜔 ([3], page 33-35). To simplify the solution process the 
undamped system is investigated first. The derivations for the general solution are shown in 
Appendix A: Harmonic excitation. 

If the system starts at rest, the general solution response becomes: 

 
𝑢(𝑡) = 𝑝0

𝑘
� 1
1−𝛽2

�  (sin𝜔 𝑡 − 𝛽 sin𝜔𝑛 𝑡)        (2.26) 

 
 
where 𝑝0 𝑘⁄ = 𝑢𝑠𝑡 is the displacement the system would get if only affected by the static load 𝑝0. 
[1 1 − 𝛽2⁄ ] is the magnification factor representing an amplification effect based on the applied 

excitation. 𝑝0
𝑘
� 1
1−𝛽2

�  sin𝜔 𝑡  is called the steady-state response, and 𝑝0
𝑘
� 1
1−𝛽2

�  𝛽 sin𝜔𝑛 𝑡  is called the 

transient response. The latter one will disappear when damping is included. This means that very 
often in practical cases with damping the dominating response in the first second(s), if it is big 
enough to matter, is based on the transient response, and later only on the steady-state response.  

Both the transient and steady state response are graphed in the figure below. One thing that is worth 
mentioning is that the two responses in the case below are out of phase with each other. This gives 
the total response a beating effect. 

 

 
Figure 2.6. a) steady state response; b) transient response; c) total response ([3], page 35) 
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2.5.2 Harmonic excitation with viscous damping 
 
It can be shown ([3], page 36-37) that the viscously damped total response is: 

 
𝑢(𝑡) = [ 𝐴 cos𝜔𝐷 𝑡 +  𝐵 sin𝜔𝐷 𝑡 ] 𝑒−ξ𝜔𝑡 +  𝑝0

𝑘
� 1

(1−𝛽2)2+(2 ξ 𝛽)2
 �  [ (1 − 𝛽2) sin𝜔 𝑡 − 2 ξ 𝛽 cos𝜔 𝑡 ] (2.27) 

 
 

where 𝜔𝐷 = 𝜔 �1 − ξ2 and  𝑒−ξ𝜔𝑡 governs the rate of decay in the transient response. If we graph 

the transient response (first term on the right hand side) and the steady state response (last term), 
we can see that the transient response disappears relatively rapidly within the first four periods.  

 

 

Figure 2.7. Left) Transient response; Middle) Steady State response; Right) Total response. 

 

 

  



Response of Primary and Secondary Systems under Dynamic Excitation 16 
 

2.6 Damping 

2.6.1 Evaluation of Viscous Damping 
 
Buildings, as well as most structures are underdamped, i.e., ξ ≪ 1. When a structure is underdamped 
the free vibration decays out with time as the structure slowly losses its energy until the oscillations 
stop. 

 

 

Figure 2.8. Response of an underdamped system ([4],page 91). 

 
There are many ways of determining the damping ratio of a system. Two of the most common ones 
are the Half-power bandwidth method ([7], page 83) and the Free-Vibration Decay method ([5], page 35). 
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2.6.1.1 Half-power bandwidth method  
The Half-power bandwidth method uses the resonant amplitude, or rather 1 √2⁄   times the resonant 
amplitude, to calculate the damping ratio.  

The equation is written as follows: ξ = ωb − ωa 2ωn⁄ , where ωa and ωb are the forcing frequencies 

on either side of the resonant frequency, ωn, at which the amplitude is  1 √2⁄  times the resonant 
amplitude. (Anil K. Chopra [7], Dynamics of Structures, 2007, page 83) 

 
Figure 2.9. Definition of half-power bandwidth ([8], page 34). 

 

2.6.1.2 The Free-Vibration Decay Method 
The Free-Vibration Decay Method is the simplest and most used method for measuring damping. To 
use this method, one has to excite a system and then suddenly stop the excitation. The next step is 
to evaluate the free vibration response. The rate of decay of oscillation is the interesting factor. By 
using two peak amplitude values and the number of oscillations between them, one can determine 
the damping ratio of the system by using the equation below. For derivations see Appendix A: The 
Free-Vibration Decay Method ([5], page 35). 

ξ = 1
2 π

 ln � 𝑥𝑖
𝑥𝑗

 �  1
𝑁

          (2.28) 

 
Figure 2.10. Vibration Decay ([5], page 35) 
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2.6.2 Rayleigh Damping 
 
Rayleigh damping is the traditional damping model used in step-by-step or time-history programs. 
The reason why it is so popular is that the Rayleigh damping only uses two variables and all matrices 
are already computed from the analysis. The matrices used are the mass matrix and the stiffness 
matrix ([6], page 4). 

 
𝑪 = 𝜶 𝑴 + 𝜷 𝑲          (2.29) 

 

 

Figure 2.11. Rayleigh Damping Model. ([6], page 3) 
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2.6.3 Caughey  Damping 
 
The Caughey Damping Model is used when one has to have the same damping ratio on a great 
number of modes. The damping matrix can be expressed as follows ([6], page 6): 

 
𝑪 = 𝑴∑ 𝒂𝒃

𝑵−𝟏+𝒒
𝒃=𝟎  [𝑴−𝟏𝑲]𝒃          (2.30) 

 
where q is any integer and N is the number of nodes at which damping is specified. 

The original equation of the Caughey Damping Model is awkward to use for any computation. Wilson 
and Penzien have developed a more simple way of obtaining the same damping model. It uses the 
properties of orthogonality of the mode shapes, which is done in chapter 2.4: Orthogonality of 
modes. It uses the generalized mass of the ith mode: 

 
𝑚𝑖 = 𝜙𝑖𝑇 𝑴 𝜙𝑖            (2.31) 

 
The same way the generalized damping is computed: 

 
 𝑐𝑖 = 2 λi 𝑚𝑖 𝜔𝑖 = 𝜙𝑖𝑇 𝑪 𝜙𝑖         (2.32) 

 
where λ is the critical damping ratio. 

 

 

Figure 2.12. Caughey Damping Model: Linear or Tri-linear Damping Model. ([6], page 6) 
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2.6.4 Effect of a Secondary System: Dynamic Vibration Absorber 
 
When a single mass, without damping, is excited by a harmonic force with a frequency equal to the 
natural frequency of the main mass, the response is infinite (resonance). Now a second mass is 
introduced to the system, an absorber mass, which is tuned to have the same natural frequency as 
the main mass. By doing so, the response of the main mass at its natural frequency becomes zero. 
This happens because the absorber mass changes the 1DOF into a 2DOF which has two resonance 
frequencies, neither of which equals the original resonance frequency of the main mass. The 
absorber mass absorbs the motion of the main mass [9]. 

The response at the two new natural frequencies is also infinite, which may not be a problem when a 
machine is running at working frequency, but it may cause problems during startup and shutdown. 
When damping is introduced, the response is no longer infinite at the natural frequencies, but the 
response of the main mass is no longer zero at the original resonance frequency [9]. 

This phenomenon occurs in the results of this report, and an example of the occurrence is shown in 
Figure 2.13. The green curve represents the response of the Primary System (Main mass) when it is 
excited with a frequency equal to its natural frequency. The blue curve represents the response of 
the Primary System with a Secondary System attached. 

 

 

Figure 2.13. A response function showing the damping effect when the SS system is attached. 
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2.7 Solutions of the equation of motion 
 
There are various ways of obtaining the solution to the equation of motion, e.g., Duhamel’s Integral, 
Frequency-Response Method and Direct Integration of the equation of motion. 

Duhamel’s Integral is often preferred for arbitrary loading, see Appendix A: Duhamel’s integral. 

Direct integration of the equation of motion is the method used by the FEM program, Ruaumoko; 
hence this is the method that is explained in detail in this chapter. 
 

2.7.1 Direct integration of the equation of motion 
 
In 1959, N. M. Newmark developed several methods for solving differential equations numerically by 
integration. The two most well know methods are the average acceleration and the linear 
acceleration. Newmark’s methods are time-stepping methods ([6], page 46-47). 

The Newmark Constant Average Acceleration method is often used in computer programs. 
Ruaumoko, the FEM program used in this thesis, is no exception. The method is a step-by-step 
integration of the equation of motion. The acceleration is assumed to be constant during the time 
step, i.e., time 𝑡 and time 𝑡 + ∆𝑡. This gives the following relation between the accelerations: 

 

�̈� = �̈�(𝑡)+�̈�(𝑡+∆𝑡)
2

          (2.33) 
 
 
Integrating with respect to time over the time-step ∆𝑡 gives the velocity and displacement. By 
rearranging and letting the increment in the displacement be the variable, the increment in the 
acceleration is: 

 
∆�̈� = �̈�(𝑡 + ∆𝑡) − �̈�(𝑡) = 4 ∆𝑢

(∆𝑡)2  −  4 �̇�(𝑡)
∆𝑡

 − 2 �̈�(𝑡)       (2.34) 
 
 
and the increment in the velocity is: 

 
∆�̇� = �̇�(𝑡 + ∆𝑡) − �̇�(𝑡) = 2 ∆𝑢

∆𝑡
 − 2 �̇�(𝑡)       (2.35) 

 
 
Substituting the acceleration and velocity into the equation of motion at time 𝑡 + ∆𝑡 gives: 

 
𝑚 [ �̈�(𝑡) + ∆�̈� ] +  𝑐 [ �̇�(𝑡) + ∆�̇� ] +  𝑘 [ 𝑢(𝑡) + ∆𝑢 ] = 𝑝(𝑡 + ∆𝑡)     (2.36) 
 

The stiffness term can be rewritten as: 

 
𝑘(𝑡 + ∆𝑡)[ 𝑢(𝑡) + ∆𝑢 ] = 𝑘(𝑡)[ 𝑢(𝑡) ] + 𝑘𝑡[ ∆𝑢 ] = 𝐹𝐸𝑙𝑎𝑠𝑡𝑖𝑐(𝑡) + 𝑘𝑡[ ∆𝑢 ]   (2.37) 
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where 𝑘(𝑡) is the secant stiffness matrix at time t, the elastic forces are the nodal equivalent of the 
member forces at time t and 𝑘𝑡 is the current tangent stiffness matrix. 

The damping term may also be rewritten similarly to the stiffness term: 

 
𝑐(𝑡 + ∆𝑡)[ �̇�(𝑡) + ∆�̇� ] = 𝑐(𝑡)[ �̇�(𝑡) ] + 𝑐𝑡[ ∆�̇� ] = 𝐹𝐷𝑎𝑚𝑝𝑖𝑛𝑔(𝑡) + 𝑐𝑡[ ∆�̇� ]   (2.38) 
 
 
where the damping forces are at time t and the matrix 𝑐𝑡 is the current tangent damping matrix. 

Substituting the two above equations into the equation of motion gives: 

 
𝑚 [ ∆�̈� ] +  𝑐𝑡[ ∆�̇� ] +  𝑘𝑡[ ∆𝑢 ] = 𝑝(𝑡 + ∆𝑡) −𝑚 [ �̈�(𝑡) ] − 𝐹𝐷𝑎𝑚𝑝𝑖𝑛𝑔(𝑡) − 𝐹𝐸𝑙𝑎𝑠𝑡𝑖𝑐(𝑡)   (2.39) 
 
 
Inserting equation (2.34) and (2.35) into equation (2.39) gives: 

 
� 4

(∆𝑡)2
 𝑚 + 2

∆𝑡
𝑐𝑡 +  𝑘𝑡� [ ∆𝑢 ] = 𝑝(𝑡 + ∆𝑡) + 𝑚 � �̈�(𝑡) + 4

∆𝑡
 �̇�(𝑡)� + 2 𝑐𝑡[ �̇�(𝑡) ]–𝐹𝐷𝑎𝑚𝑝𝑖𝑛𝑔 − 𝐹𝐸𝑙𝑎𝑠𝑡𝑖𝑐  (2.40) 

 
 
If the damping matrix is constant (does not change with time), the above equation can be simplified 
to the following: 

 
� 4

(∆𝑡)2
 𝑚 + 2

∆𝑡
𝑐𝑡 +  𝑘𝑡� [ ∆𝑢 ] = 𝑝(𝑡 + ∆𝑡) + 𝑚 � �̈�(𝑡) + 4

∆𝑡
 �̇�(𝑡)� + 𝐹𝐷𝑎𝑚𝑝𝑖𝑛𝑔 − 𝐹𝐸𝑙𝑎𝑠𝑡𝑖𝑐    (2.41) 

 
 
From this equation the incremental displacement can be calculated, hence the displacement, velocity 
and acceleration vectors, along with the member forces, can be updated. When the damping matrix 
and the stiffness matrix are updated, the whole process can be repeated to find the next incremental 
displacement.  

The Newmark Constant Average Acceleration method is unconditionally stable. However, the time 
step should be small (0.01-0.02 sec) to minimize numerical errors. 

 

Figure 2.14. Newmark Constant Average Acceleration method - Time steps. 
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2.8 Ground excitation 
 

 

Figure 2.15. Ground excitation �̈�𝒈. 

 
The equation of motion for a structure subjected to an earthquake ground motion is ([7], page 203): 

 
𝑚 �̈� +  𝑐 �̇� +  𝑘 𝑢 = − 𝑚 �̈�𝑔(𝑡)         (2.42) 
 
 
or divided by the mass: 

 
 �̈� + 2 ξ 𝜔  �̇� +𝜔2 𝑢 = − �̈�𝑔(𝑡)         (2.43) 
 
 
The solution to the equation of motion can be solved by using Duhamel’s integral (Appendix A: 
Duhamel’s integral): 
 
 
𝑢(𝑡) = −  1

𝜔𝐷
 ∫ �̈�𝑔(τ)𝑡
0  𝑒−ξ𝜔𝑛(𝑡−τ)  sin[𝜔𝐷 (𝑡 − τ)]  𝑑τ      (2.44) 
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2.9 Response spectrum 
 
A response spectrum is basically a plot of the peak response or peak steady-state response of a 
structure with varying natural frequency. In a system where the excitation is harmonic, the steady-
state response is usually the preferred response, i.e., the transient response is not of interest. If a 
system undergoes an earthquake load, the peak (transient) response is the one desired.  

The response spectrum is a very well known concept in earthquake engineering. It was already 
initiated in 1932 by M. A. Biot [9]. It is especially useful when you are in a seismic area. Given the 
earthquake ground motion, the response spectrum is made by exposing systems with different 
natural frequencies to the same ground motion. The damping ratio is fixed, but by running multiple 
response spectra with different damping ratios you cover the relevant damping values. 

The peak amplitudes in the response spectrum indicate that the excitation frequency hits the natural 
frequency of one of the modes. 

The figure below is an example of a response spectrum. This specific spectrum shows the 
displacement plotted against frequency. The spectrum belongs to secondary system no. 3, which has 
been calculated in the analysis part of this thesis (Chapter 5). 

 

 

Figure 2.16. An example of a response spectrum. 
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3. The Cardington Building 

3.1 Primary System 
The so-called Cardington Building, our primary system, was a seven storey in-situ concrete building 
erected inside an old Zeppelin hanger which housed the Cardington Laboratory near Bedford, UK, 
owned and operated by the BRE (Building Research Establishment Ltd). The building was built in 
1998, and was a part of the European Concrete Building Project (ECBP). It was constructed like an 
office block, and its goal was to provide improved design codes, especially for the dynamic properties 
of the concrete structure. 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

The building rests on foundation blocks under every column. The inner foundations dimensions are 
2x2 m and the outer foundations dimension are 1.2x1.2 m. The inner columns are 0.4x0.4 m and the 
outer columns are 0.25x0.4 m. From the ground floor up to the third floor the columns are C70 
concrete. From the third floor to the roof the columns are C30 concrete. The center-to-center 
distance for the columns is 7.5 m. There are five columns in the east-west direction (z direction) and 
four in the north-south direction (x direction). This gives a total of twenty columns and an area of 
30x22.5 m.  

The floors consist of 0.25 m thick concrete slabs which are all C30 concrete. The columns give a clear 
height of 3.5 m on each floor, which give a total height of 26.25 m. 

Figure 3.1. The old Zeppelin hangar near Bedford, 
UK. 

Figure 3.2. The Cardington 
Building 

Figure 3.4. . A 3D model of the Cardington Building. Figure 3.3. Ground level with foundations. 
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Figure 3.5. A 3D Model of the Cardington Building. 

 

There is no external cladding, walls or other partitions in the building, but there are two large brick 
panels mounted on both sides in the north-south direction. To provide lateral stiffness against wind 
and accidental loading there are cross bracings mounted around the staircase and elevator shaft. 

At the staircase and at the elevator shaft a beam of 0.65 m height is constructed. This has been done 
to give some extra stiffness to the building floors to counteract the weakening effects caused by the 
staircase and elevator shaft openings. 

 

 
 

 

 

 

 

 

 

 

Figure 3.7. The brick panels are shown in yellow. Figure 3.6. The beams are shown in yellow 
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To simulate service load, 96 sandbags are placed on each floor. Each bag weighs around 1100 kg. 
They are placed on the six middle bays, in a 4x4 pattern. The six middle bays consist of two bays in 
the longitudinal direction and three bays in the transverse direction. 

 
 

 

 

 

 

 

 

 

 
The building is relatively symmetric, but the staircase and the elevator shaft create some asymmetry 
since they are not exactly the same size. Also the brick partitions on the side of the building are 
located slightly off centre. 

 

  

Figure 3.8. A typical floor Figure 3.9. The location of the sandbags 
are shown in yellow. 
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3.2 Secondary system 
 
The secondary system is located at the 4th floor. It consists of sandbags, aluminum beams, rubber 
pads and UC-203 steel sections. The size of the table is 3x3 m, i.e., the length of the nine aluminum 
beams are 3 m. The rubber pads are 120 mm thick and 180 mm wide, bolted together with the steel 
sections, making the height of the columns equal to 0.85 m. The aluminum beams dimensions are 
150x80 mm. The sandbags weigh approximately 1100 kg each, which is the same as the ones placed 
on the floors of the primary system.  

In this thesis six different secondary systems will be tested, each with a unique natural frequency. 
The variables that change between the systems are the number of columns, the orientation of the 
columns and the number of sandbags. The orientation of the columns matters because the steel 
sections have different stiffness properties in each direction because they have the shape of an I-
beam.  

 

 

Figure 3.10. The secondary system with its dimensions. 
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Figure 3.11. The location of the secondary system is shown in yellow. 

 

   

Figure 3.12. The secondary system used in the experiments performed by J.T. Snæbjörnsson et al. in 2000 [2]. 
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3.3 The vibration generator 
 

The force action on the building is created by four large counter-rotating eccentric weight vibration 
generators. The generator has one mass that rotates clockwise and another mass that rotates 
counterclockwise. Because of this the generator can produce a unidirectional sinusoidal force. They 
are positioned at each corner of the roof (Figure 3.13). Their orientation and rotation frequency 
determines which mode shape of the building is excited. The system works within the frequency 
range from 0.3 to 20 Hz, with a resolution of 0.001 Hz. 

The force applied varies with the rotational frequency of the eccentric weights. The force the two 
masses produce can be calculated with the following equation: 

𝑝(𝑡) = (𝑚𝑒 𝑒 𝜔2) sin𝜔 𝑡 

where 𝑚𝑒 is the combined mass of the eccentric masses, e is the eccentricity, 𝜔 is the rotational 
excitation frequency and t is the time. The mass and the eccentricity do not change, i.e., the force 
varies with the excitation frequency. This means that for a response spectrum based on the force 
generated by the machine has to be normalized with respect to the force, because the force at a low 
excitation frequency is not the same at a high excitation frequency. 

 

       

Figure 3.13. The vibration generator used by J.T. Snæbjörnsson et al. in 2000 [2]. 

 

Figure 3.14. The location of the vibration generators are shown in yellow. 
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4. FEM Model 
 

4.1 Ruaumoko 
 
For the structural modeling a FE program called Ruaumoko [1] is used. The program has been written 
at the University of Canterbury under the supervision of Dr. Athol Carr. The program is specifically 
designed to analyze structures, both elastic and inelastic, that are subjected to earthquake and 
dynamic excitation. 

Ruaumoko uses Newmark Constant Average Acceleration Method to calculate the results, which is 
explained in chapter 2.7.1. All analyses are elastic, performed with a lumped mass matrix, and uses 
“user specified modal damping”. This damping model gives the user the possibility to choose a 
different damping ratio for each mode shape. 

 

 

Figure 4.1. User Specified Modal Damping [11]. 
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4.2 Primary system 

4.2.1 Modeling of the primary system 
 
The elements used in this analysis are the following: 

- Columns: BEAM elements 
- Floors: QUADRILATERAL finite elements 
- Beams: BEAM elements 
- Cross bracing: BEAM elements, with the ends pinned 
- Brick panels: QUADRILATERAL finite elements 

 
 
All beam elements are Giberson one-component elements, which are general quadratic beam 
elements. That means that every member can be expressed by a quadratic equation, e.g.,           
ax2 + bx + c = 0.  

 

 

Figure 4.4. Giberson one-component elements ([11], page 29) 

 
A total of 478 nodes and 577 elements were used. Base blocks were placed between the ground floor 
and the columns. These rotational and translational degrees of freedom at the bottom of the base 
blocks were then fixed. 

A simplification has been made to make the modeling easier. The precast stairs have not been 
modeled with elements, but have instead been added as lumped mass in the respective nodes 
around the stair openings. 

The service loads, i.e., the sandbags, were added as lumped masses at the neighboring nodes. In the 
4x4 array, the mass of four bags was placed in the middle node, two bags at the edges and one bag in 
each corner. 

Figure 4.2. The QUADRILATERAL finite element ([11], page 83). Figure 4.3. The BEAM element ([11], page 23). 
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The FE model of the primary system, with its simplifications, is shown in the figures below.  

 
Figure 4.5. The FE model of the primary system. 

 
Figure 4.6. Side view of the FE model showing the location of the secondary system (east-west plane). 

 
Figure 4.7. Plan view of the FE model showing the location of the floor elements (green), the brick panels 

(blue), the cross bracings (red) and the secondary system’s location (purple dot). 
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4.1.1 Eigenfrequency analysis of the primary system 
 

In order to get the eigenfrequency (natural frequency) of the primary system, an eigenfrequency 
analysis of the system is performed in Ruaumoko. This means no loading is applied, just the systems 
own weight. The eigenfrequency analysis gives the mode shapes and the natural frequencies. Each 
mode shape corresponds to a natural frequency. The 1st mode shape is in the x-direction, the 2nd in 
the z-direction and the 3rd is rotation in the x-z plane (around the y-axis). The 4th mode shape is again 
in the x-direction, the 5th in the z-direction and the 6th is rotation in the x-z plane. This pattern 
repeats itself throughout.  

The normal mode this thesis is going to investigate is mode no. 5, which has a natural frequency of 
1.67 Hz and a translational mode shape parallel to the short side of the building. The reason for this 
is that the secondary system was designed to have natural frequencies between 1 and 2 Hz and this 
frequency range was the focus of the full scale experiment from 2000 [2], from which the measured 
recordings are well documented. 

The first test run by BRE in 1999 is shown in Table 4.1. This is an early test and some changes were 
made in the building after this testing. The main alteration is the addition of the brick panels. The 
adding of these bricks gives the structure some added mass without contributing too much to the 
stiffness. Because of this, the structure gets a longer period, which means a lower natural frequency  

( 𝜔 = �𝑘 𝑚⁄  ).  This can be seen in the later experiment performed by J.T. Snæbjörnsson et al. in 
2000 [2]. This experiment focused on the 4th and 5th mode shape and their measured natural 
frequencies can be found in Table 4.2. The natural frequency of mode 5 in this experiment 
was 1,6733 𝐻𝑧. By comparing this frequency to the earlier experiment by BRE [12] where the natural 
frequency was 1,7760 𝐻𝑧 for the same mode shape, it indicates that the brick panels, in addition to 
some minor adjustments made to the building, lowered the natural frequency by 0,1027 𝐻𝑧. 

Table 4.1. BRE test - Natural Frequencies and CDR of the primary system [12]. 

 

Table 4.2. Snæbjörnsson et al. - Natural Frequencies and CDR of the primary system ([2], page 10). 

 

 

Mode Direction of vibration Natural Frequency (Hz) Critical Damping ratio (%)

1 x - North-South 0.567 0.86
2 z - East-West 0.604 0.74
3 Rotation 0.752 0.86
4 x - North-South 1.652 1.50
5 z - East-West 1.776 1.40
6 Rotation 2.162 1.08

Date System no.

NF (Hz) CDR (%) NF (Hz) CDR (%)
15.09.2003 1 1.6675 0.95
17.09.2003 2 1.6613 0.10
18.09.2003 3 1.6733 0.65
19.09.2003 5 1.5232 1.24
20.09.2003 6 1.6776 0.92
20.09.2003 7 1.6900 0.77
20.09.2003 8 1.6703 0.76
21.09.2003 9 1.5182 0.91 1.6773 0.73

Median 1.5207 0.01075 1.6733 0.0076
Stand. dev. 0.0091 0.0028

East-West vibrationNorth-South vibration
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The natural frequencies generated by the FE model are shown in Table 4.3. The model has been 
calibrated so that the 4th and the 5th natural frequency correspond to the natural frequencies 
experimentally measured by J.T. Snæbjörnsson et al. [2] (see Table 4.2). The natural frequency values 
of other modes also correspond reasonable well to the values measured by the BRE (see Table 4.1), 
considering the physical changes of the building. 

Table 4.3. Natural Frequencies for the primary system generated by the FE model. 

 

 

 

Figure 4.8. The fifth mode shape (east-west direction). 

 

 

Figure 4.9. The fifth mode shape (east-west plane).  

Mode Direction of vibration Natural Frequency (Hz) Period (sec)

1 x - North-South 0.5314 1.882
2 z - East-West 0.5734 1.744
3 Rotation 0.7105 1.407
4 x - North-South 1.5350 6.514
5 z - East-West 1.6750 5.969
6 Rotation 2.0460 4.887



Response of Primary and Secondary Systems under Dynamic Excitation 36 
 

4.2 Secondary system 

4.2.1 Modeling 
 
The secondary system is modeled as a single DOF system. The system consists of a beam element 
with a lumped mass in the upper node. The beam element is modeled as massless (zero density); 
hence it does not contribute to the mass of the system. 

 

   

  

4.3.2 Eigenfrequency analysis 
 
Six different secondary systems are considered (see Table 4.4). Each system has a different natural 
frequency. The systems of interest are the ones that have been excited by an east-west vibration, 
i.e., number 1, 2, 3, 6, 7 and 8/9 using the reference numbers from Table 4.4. The stiffness for each 
system varies with the orientation of the columns, thus the stiffness corresponding to each 

secondary system has been calculated by knowing that 𝑘 = 𝜔2𝑚 (2.12) and 𝑘 = 12 𝐸 𝐼
𝐿3

 (2.2).  

 
Table 4.4. Snæbjörnsson et al. [2] – The secondary systems natural frequencies and CDR. 

 

 

  

Date System no.

NF (Hz) CDR (%) NF (Hz) CDR (%)
14.09.2003 1 2.4536 1.64 1.2024 0.42
16.09.2003 2 1.8092 0.66
18.09.2003 3 1.3513 0.07
19.09.2003 5 1.4315 1.70
20.09.2003 6 1.6684 0.08
20.09.2003 7 1.6999 5.77
21.09.2003 8 / 9 1.5053 2.41 1.9577 2.28

1
1
2

North-South vibration East-West vibration No of sandbags on 
table

5
3
4
5

Figure 4.11. The secondary system. Figure 4.10. Simple model of the SS. 
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4.3 Decay test to check the damping ratio 
 
In order to check that the damping ratios inserted into the FEM model is correct, one has to perform 
a damping ratio test. There exists several different methods of identifying the damping ratio, but the 
most common ones are the Resonant Amplification method ([3], page 53) and the Free-Vibration Decay 
method ([5], page 35), which are explained in chapter 2.6.1. The easiest one to use when you have the 
availability of a FEM model is the Free-Vibration Decay method. A decay test means that the building 
is excited for a while, then the excitation stops and the free vibration response is analyzed.  

To perform the decay test, the harmonic excitation has been stopped after 16 seconds and the free 
vibration response has been analyzed. The Cardington building has been excited by frequencies equal 
to the natural frequency of the primary system and the secondary systems. By doing so, one gets the 
damping ratio of the primary system and the secondary systems, because when a structure is excited 
with its natural frequency, it is mainly that specific structure that moves and everything else stays 
almost at rest. 

The decay test is performed by following the method explained in chapter 2.6.1 (The Free-Vibration 
Decay Method). An example of the use of this method is shown in Figure 4.12. The Cardington 
building is excited, with SS1 in place, at the natural frequency of the secondary system (1.20 Hz), 
which gives (see figure below): 

𝑥𝑖 = 1.073 × 10−2  (Peak amplitude at ≈ 20 sec) 
𝑥𝑗 = 0.801 × 10−2  (Peak amplitude at ≈ 29 sec) 
𝑁 = 11   (Number of peak amplitudes between the two amplitudes) 

To calculate the damping ratio, equation 2.28 is applied: 

ξ =
1

2 π
 ln� 

𝑥𝑖
𝑥𝑗

 �  
1
𝑁

=
1

2 π
 ln� 

1.073 × 10−2

0.801 × 10−2
 �  

1
11

= 4.2299 × 10−3 

The decay test gives a damping ratio of 0.423 % for secondary system 1, which is approximately the 
input damping ratio (0.42 %). 

 
Figure 4.12. Free-vibration decay of SS1 excitated at 1.20 Hz. 
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4.4 Comparison of calculated results with previously measured results 
 
In the dynamic full scale testing of the interaction between secondary and primary systems 
undertaken by J.T. Snæbjörnsson et al. [2] in 2000, nine different secondary systems were tested 
using forced vibration techniques where a vibration generator was used to excite the building. The 
harmonic forcing generated was dependent on the rotational frequency of the rotating masses, i.e. 
the excitation frequency. It is there for not possible to produce a harmonic excitation of constant 
forcing as has been used in the FE-model runs. 

Figure 4.13 and 4.14 show the comparison between the full scale test results and the FE-model 
results for secondary system 3 and secondary system 2 respectively. The frequency response 
function for the floor, which the secondary system is standing on, is also shown. As can be noted the 
displacement frequency response is normalized with the forcing to make the test curves and the 
model curves comparable. 

Although there are clear differences, the overall behaviour is similar. The calculated curves are not as 
spiky as the experimentally measured curves at the natural frequencies. This may be due to several 
reasons.  

Firstly the damping ratios of the experimentally measured results may in reality be smaller than the 
ones used in the FE-modelling. One thing that may contribute to such discrepancy may for instance 
be the notable variations in the damping ratio of primary structure during the period of testing as can 
be seen in Table 4.2. These variations in both damping and natural frequency are likely caused by a 
change in the ambient temperature. Similar variations in the damping of the secondary structure are 
to be expected within the duration of the test and for instance slight variations in the characteristics 
of the rubber elements and their pre-stressing may have notable influence.  

Secondly, it may influence this comparison, especially the peak comparison, that the resolution in 
frequency in the FE-model study is constant. That is, the frequency of the forcing is varied in steps of 
constant frequency difference. In the full-scale testing on the other hand the frequency resolution is 
increased close to resonance and much smaller frequency steps are used in that frequency range 
than for the excitation frequencies outside the resonance peak. 

Thirdly, since there is some time since the full-scale test was undertaken the scaling of the forced 
vibration test curves may be lacking some details. 

However, in spite of the differences noted, the calculated results are overall acceptably close to the 
measured results and it can be concluded that the FE-model is representative for the Cardington 
Building and the secondary systems tested. 
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Figure 4.13. Comparison of experimentally measured results [2] and calculated results from Ruaumoko for 
secondary system 3. The x-axis is excitation frequency and the y-axis is the displacement divided by the 
excitation force. 

 
Figure 4.14. Comparison of experimentally measured results [2] and calculated results from Ruaumoko for 
secondary system 2. The x-axis is excitation frequency and the y-axis is the displacement divided by the 
excitation force.  
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5. Response Analysis 
 

In this analysis there will be performed both harmonic excitation tests and earthquake excitation 
tests.  

For the harmonic excitation the first test is an analysis of the primary structure without the 
secondary structure attached. The dynamic response functions for the various floors are generated. 

The second harmonic test includes the secondary structure. The damping ratios for the secondary 
structures during the harmonic tests are constant. The secondary structures have damping ratios of 
0.8 % and 5.0 %, see Table 5.1. The response of the secondary structure is analyzed as well as the 
response of the floor at the location of the secondary structure. In addition to the analysis of the 
secondary structure and the floor at the SS location, a ratio of response between the secondary 
structures and the primary structure is shown. This ratio is interesting because it illustrates the 
amplification factors for the different secondary structures. 

The seismic coefficients and the expected accelerations of the primary structure are the first things 
that are looked at during the earthquake excitation. The next chapter is a look at the floor response 
at the location of the secondary structure, as was done for the harmonic excitation. 

The third chapter discusses the response of the secondary structure in detail. The amplifications of 
the total accelerations from the ground up to the fourth floor and up to the secondary structure are 
shown. The comparison between the responses from the floor response spectra method and when 
the secondary structure is analyzed jointly with the primary structure is made. The fourth chapter 
investigates the effect of the damping ratio for the secondary systems. In this chapter, two imaginary 
secondary systems (iSS1 and iSS2) have been made in order to have more data to verify the different 
trends. The damping ratios investigated are shown in Table 5.1. 

 

Table 5.1. The damping ratios and natural frequencies for the primary structures and the secondary 
structures used in the harmonic excitation tests and the earthquake excitation tests. 

 

Mode Nat. Freq. (Hz)

5 1.6750

System
Natural 

Frequency (Hz)
CDR1 (%) CDR2 (%)

CDR1 (%)                
[2]

CDR2 (%) CDR3 (%) CDR4 (%)

SS1 1.2024 0.80 5.00 0.42 0.08 2.00 5.00

SS2 1.8092 0.80 5.00 0.66 0.08 2.00 5.00

SS3 1.3513 0.80 5.00 0.07 0.08 2.00 5.00

SS6 1.6684 0.80 5.00 0.08 0.08 2.00 5.00

SS7 1.6999 0.80 5.00 5.77 0.08 2.00 5.00

SS8/9 1.9577 0.80 5.00 2.28 0.08 2.00 5.00

iSS1 1.5630 - - - 0.08 2.00 5.00

iSS2 2.2250 - - - - 2.28 -

0.80

Harmonic Excitation Earthquake Excitation

Harmonic Excitation Earthquake Excitation

Primary Structure - Damping ratio and Natural frequency

Secondary Structure - Damping ratios and Natural frequencies

CDR (%)

0.80

CDR (%)
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5.1 Harmonic Excitation 
 
The harmonic loads on the Cardington building is four external sinusoidal forces acting in the east-
west direction. The forces have a maximum amplitude of 4 kN and are applied at the four corners of 
the roof. The structure is excited for 30 seconds and the excitation frequency range is from 1.1 Hz to 
2.5 Hz. This frequency range includes mode shape 5 of the primary structure and all of the secondary 
structures mode shapes. To create the response functions needed, the maximum displacement in the 
steady-state response (15 to 30 sec) is plotted for every frequency. 

This thesis will be comparing the six secondary systems stated in Table 4.4, but with constant 
damping ratios. The damping ratios of the secondary systems are 0.8 % in the first test and 5 % in the 
second test. The damping ratio for the primary system is 0.8 % in both tests.  

 

 
Figure 5.1. The harmonic excitation frequency, 1.10 Hz, from 0-10 seconds. 
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5.1.1 Primary structure without the secondary structures 
 
The primary structure without the secondary system attached is only excited in the east-west 
direction; hence the fifth mode shape will be dominant. The maximum displacements in all the 
corner-columns have been measured, as well as the floor displacement at the location of the 
secondary system. The average (maximum) displacement in the corner-columns in each floor has 
been calculated and it is confirmed that the structure moves like the fifth mode shape, see Figure 5.2 
and Figure 5.3. 

 
The fifth mode shape was defined by a static analysis in chapter 4.2.2 and is modeled below. 

 

 

Figure 5.5. The 5th mode shape (east-west 
plane). 

 
The primary systems maximum displacement during each excitation frequency is calculated. The 
frequency excitation starts at 1.10 Hz and goes up to 2.50 Hz by a step size of 0.02 Hz. The response 
function of the primary structure at the location of the secondary system is shown in Figure 5.7 and 
the response of each floor is shown in Figure 5.6.  
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Figure 5.2. Average floor displacement of the primary system                                
(Measured at the four corner-columns of each floor). 

Figure 5.3. Average floor displacement 
(Measured at the four corner-columns of 

each floor). 

         Figure 5.4. The 5th mode shape. 
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From Figure 5.6 it is seen that the fifth floor has the lowest displacement at the natural frequency, 
and the seventh and the fourth floor have the largest displacement at the natural frequency. This is 
consistent with the fifth mode shape. The response function shows only mode shape five because 
the neighboring two east-west modes have natural frequencies equal to 0.57 Hz and 2.82 Hz. 
However, there is a rotational mode shape at 2.05 Hz (and one at 0.71 Hz), but it does not seem to 
affect the response of the primary system.  

 

Figure 5.6. Primary System: All floors: Dynamic response functions for displacement. 0.8 % Damping.                                 
(Measured at the four corner-columns of each floor). 

 
 

 

Figure 5.7. SS location: Dynamic response function for displacement. The red curve is the displacement of the 
fourth floor. The dashed blue curve is the displacement of the node at the location of the SS. 

The response function of the node at the location of the secondary system is shown together with 
the average value of the fourth floor is shown in Figure 5.7. It is seen that the difference is minimal, 
i.e. the floor can be considered rigid. 
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5.1.2 Primary structure with the secondary structures 
 
The secondary structure is now put in place, and the harmonic excitation is the same as for the 
primary system. All six secondary systems that have measured results (1, 2, 3, 6, 7 and 8/9), taken 
from Table 4.4, are tested. The tests have been performed with constant damping ratios for the 
secondary systems. In the first test the secondary systems have 0.8 % damping and in the second test 
they have 5.0 % damping. This has been done because when the systems all have the same damping 
ratio; it is easier to compare them to each other. Additional secondary systems have been made 
when needed. 

Table 5.2. Damping ratio and natural frequency of the primary system in both tests. 

 

 
Table 5.3. Damping ratio and natural frequency of the secondary systems in test 1. 

 

 
Table 5.4. Damping ratio and natural frequency of the secondary systems in test 2. 

 

  

Mode Direction of vibration Natural Frequency (Hz) Critical Damping Ratio (%)

5 z - East-West 1.6750 0.80

Primary Structure

System Direction of vibration Natural Frequency (Hz) Critical Damping Ratio (%)

1 z - East-West 1.2024 0.8
2 z - East-West 1.8092 0.8
3 z - East-West 1.3513 0.8
6 z - East-West 1.6684 0.8
7 z - East-West 1.6999 0.8

8 / 9 z - East-West 1.9577 0.8

Secondary Structure - Test 1

System Direction of vibration Natural Frequency (Hz) Critical Damping Ratio (%)

1 z - East-West 1.2024 5.0
2 z - East-West 1.8092 5.0
3 z - East-West 1.3513 5.0
6 z - East-West 1.6684 5.0
7 z - East-West 1.6999 5.0

8 / 9 z - East-West 1.9577 5.0

Secondary Structure - Test 2
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5.1.2.1 Damping ratio equal to 0.8 % 

Response function for the secondary systems 
 
The first analysis is performed with a damping ratio of 0.8 % for the secondary systems. The primary 
system always has a damping ratio of 0.8 %. 

Figure 5.8 shows the displacement response function for the secondary systems, along with the 
response function for the location of the SS. “PS alone” means that the PS is excited by itself without 
the SS in place and the floor-node at the location of the SS is measured. “SS 1” means that SS 1 is 
mounted on the PS and the response of SS 1 is measured. 

 

 

Figure 5.8. Displacement response function for secondary systems with critical damping ratio equal to 0.8 %. 

 
From the response function it is seen that the displacement of the secondary system is largest when 
the natural frequency of the SS and the PS are the same. The peak response of the secondary 
systems happens at the natural frequency of either the SS or the PS. For SS no. 2, 6, 7 and 8/9 the 
maximum response occurs at the natural frequency of the PS. For SS no. 1 and 3 the maximum 
response occurs at the natural frequency of the SS. The displacement gets larger when the natural 
frequency of the secondary system approaches the natural frequency of the primary system.  

The large magnification of response seen for systems no. 6 and 7 is also partly because the secondary 
system becomes a Dynamic Vibration Absorber, a phenomenon discussed in chapter 2.6.4. The short 
version is that the secondary system with its natural frequency equal to the natural frequency of the 
primary system will absorb the response of the primary system, making the response of the primary 
system less, see Figure 5.9, but the response of the secondary system larger. 

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

1,1 1,3 1,5 1,7 1,9 2,1 2,3 2,5

Di
sp

la
ce

m
en

t [
m

]

Frequency [Hz]

Response function [ SS Ѯ = 0.8 % ]

Floor response

SS 1 [ Ѯ = 0.8 % ]

SS 2 [ Ѯ = 0.8 % ]

SS 3 [ Ѯ = 0.8 % ]

SS 6 [ Ѯ = 0.8 % ]

SS 7 [ Ѯ = 0.8 % ]

SS 8/9 [ Ѯ = 0.8 % ]



Response of Primary and Secondary Systems under Dynamic Excitation 46 
 

Displacement of the floor at the location of the secondary system 
 
The mass of the secondary systems are small compared to the overall weight of the primary system. 
The heaviest system, SS 8/9 with 5 sandbags, has a mass of approximately 5.500E+03 kg. The modal 
mass of mode shape 5 for the primary system is 2.039E+06 kg, which makes the mass of the 
secondary system equal to 0.27 % of the mass of the primary system. The total mass of primary 
system is 3.89E+06 kg, which means that the modal mass of mode 5 is about half the total mass. The 
modal mass gets smaller for every mode, so the modal mass is as expected. Figure 5.9 shows the 
displacement response function of the floor at the location of the secondary systems with 0.8 % 
damping. 

 

Figure 5.9. Displacement response function for the node where the secondary system is located (the floor) 
for 0.8 % damping. 

The displacements at the location of the secondary systems are more or less identical to the 
displacement caused by the primary system alone, except for SS 6 and 7. One would think that the 
mass of secondary system 6 and 7, 0.16 % and 0.22 % of PS modal mass, is too small to have any 
influence on the response of the primary system. Secondary system 8/9 has more mass than system 
6 and 7, but it does not affect the motion of the primary system. The difference between SS 8/9 and 
SS 6 and 7 is that the latter two has their natural frequency close to the natural frequency of the 
primary system. 

Table 5.5. Modal mass ratio for secondary systems. 

 

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

1,1 1,3 1,5 1,7 1,9 2,1 2,3 2,5

Di
sp

la
ce

m
en

t [
m

]

Frequency [Hz]

Response of the floor at SS location [ SS Ѯ = 0.8 % ]

PS + SS1 [ Ѯ = 0.8 % ]

PS + SS2 [ Ѯ = 0.8 % ]

PS + SS3 [ Ѯ = 0.8 % ]

PS + SS6 [ Ѯ = 0.8 % ]

PS + SS7 [ Ѯ = 0.8 % ]

PS + SS8/9 [ Ѯ = 0.8 % ]

PS with no SS in place

System Direction of vibration Natural Frequency (Hz) Modal mass ratio [%]

1 z - East-West 1.2024 0.054
2 z - East-West 1.8092 0.054
3 z - East-West 1.3513 0.108
6 z - East-West 1.6684 0.162
7 z - East-West 1.6999 0.216

8 / 9 z - East-West 1.9577 0.270

Primary systems modal mass for mode shape 5 = 2.039E+06 kg

Modal mass ratio for secondary systems
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From Figure 5.10 it is seen that secondary system 6, which has the largest displacement, acts as a 
vibration absorber (Chapter 2.6.4). Because the natural frequency of the secondary systems is equal 
to the natural frequency of the primary system, it acts as an absorber. This gives two peak values, 
i.e., the system now has two different natural frequencies. The phenomenon has been explained in 
chapter 2.6.4. A vibration absorber is a good thing for the primary system, but for the secondary 
system, in this test, it gives a larger displacement than all the other secondary systems. 

The curves in Figure 5.10 represent the displacement of the node at the location of the secondary 
system, i.e., the fourth floor. The effect from the secondary system can be seen throughout the 
floors. Figure 5.11 shows the response function for the top floor. The displacement of the primary 
system drops by 34 % at the fourth floor and by 35 % at the top floor. 

 
 
 
 

Figure 5.10 Displacement response function. The green curve represents the floor response at the location of 
the SS for the primary system without the SS. The blue curve represents the floor response of the primary 
system with SS6 in place. 

 
 
 
 

Figure 5.11. Displacement response function at top floor location. The green curve represents the top floor 
response of the primary system without the SS. The blue curve represents the top floor response of the 
primary system with SS6 in place. 
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The same thing can be seen on the response function created by secondary system 7. The natural 
frequency for secondary system 7 is slightly higher (1.69 Hz) than the natural frequency of the 
primary system (1.67 Hz), hence the curve has a “V shape” that is slightly off center.  

 

 

Figure 5.12. Displacement response function. The green curve represents the floor response at the location 
of the SS for the primary system without the SS. The red curve represents the top floor response of the 
primary system with SS7 in place. 
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5.1.2.2 Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio 
 

Response function for the secondary systems 
 
The second analysis is performed with a damping ratio of 5.0 % for the secondary system. The 
primary system still has a damping ratio of 0.8 %. The displacement response function is shown 
below. 

 

Figure 5.13. Displacement response function for secondary systems with 5.0 % damping. 

 
The secondary systems all have a damping ratio of 5.0 %. This makes the response at the natural 
frequencies much less visible. For system 2 and 8/9 there are no visible peak response, but there is a 
change in the decent of the curve. How big this change is, is shown later on in chapter 5.1.3. The 
reason why secondary systems 6 and 7 have not got their peak values at their natural frequencies or 
at the natural frequency of the primary system is because of a phenomenon called dynamic vibration 
absorber, which has been mentioned several times earlier (chapter 2.6.4). 

The differences made by the damping ratios are shown in the figures on the next page. 

The differences between the peak responses are considerably big at the natural frequency of the 
secondary system, which is expected. A sharp, thin curve means that the damping ratio is small, and 
a flat, wide curve means that the damping ratio is big. This observation can be used to estimate the 
damping ratio of systems by applying the Half-power bandwidth method explained in chapter 2.6.1.1. 

The peak response at the natural frequency of the primary system is more or less the same for the 
two damping ratios for secondary system 1, 2, 3 and 8/9, but for the secondary systems that have 
natural frequencies close to the natural frequency of the primary structure (SS 6 and 7), the response 
is not the same. 
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Figure 5.14. Displacement response function comparison for secondary systems with 0.8 % and 5.0 % 
damping. The blue curve is the displacement response of the floor at the location of the SS. The red curve is 
the displacement response for SS with 0.8 % damping. The green curve is the displacement response for SS 
with 5.0 % damping. 
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Displacement of the floor at the location of the secondary system 
 
The secondary system with 5.0 % damping acts like a vibration absorber like the system with 0.8 % 
damping, but the primary system shows only one peak amplitude.  

In the test with the damping ratio of the secondary system set to 0.8 %, the response was the same 
on both peaks because it had the same damping ratio as the primary system. For the test with the 
5.0 % damping ratio the mode shape corresponding to the secondary system is damped with 5.0 %, 
but all other mode shapes have 0.8 %. When the damping ratio is as high as 5.0 %, the response for 
the secondary system at its natural frequency is too small to make a difference. This can be seen in 
Figure 5.15 and Figure 5.16.  

The natural frequency for secondary system 6 is lower than the natural frequency for the primary 
system, i.e., the first peak value that was seen in the 0.8 % damping test is gone. For secondary 
system 7 the natural frequency is bigger than the natural frequency of the primary system, i.e., the 
second peak value seen from the 0.8 % damping test is gone. The same thing happens to the 
displacement response spectra in Figure 5.13.  

The change in the natural frequency for secondary system 6 and the primary system is from both 
having natural frequencies equal to 1.67 Hz, to having 1.645 Hz and 1.696 Hz, respectively. 

 

 

Figure 5.15. Displacement response function comparison at SS location for 5.0 and 0.8 % damping. The blue 
curve is the floor response of the PS at the location of the SS. The red curve is the displacement response for 
the floor with SS6 in place with 0.8 % damping. The green curve is the displacement response for the floor 
with SS6 in place with 5.0 % damping. 
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Figure 5.16. Displacement response function comparison at SS location for 5.0 and 0.8 % damping. The blue 
curve is the floor response of the PS at the location of the SS. The red curve is the displacement response for 
the floor with SS7 in place with 0.8 % damping. The green curve is the displacement response for the floor 
with SS7 in place with 5.0 % damping. 
 

5.1.2.3 Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio 

Displacement of the node at the location of the secondary system 
 
A third run is performed with the damping ratio of secondary system 6 equal to 0.08 %. As expected, 
the peak that was damped out by the 5.0 % damping, is now much higher than for the two other 
damping ratios, but the second peak is about the same for all ratios. This is because the model uses 
modal damping, which dampens each mode with a specified damping ratio. The mode for the 
secondary system, first peak, has a damping ratio of 0.08 % in this third run and the second peak 
belongs to the primary system which always has 0.8 % damping. 

 

Figure 5.17. Displacement response function comparison at SS no. 6 location for 5.0, 0.8 and 0.08 % damping. 
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5.1.3 Ratio of response between secondary and primary system 
 
The ratio of the response is interesting because it illustrates the amplification factors for the 
secondary systems and it can be used to make a design response spectra for secondary systems 
mounted on the Cardington Building. 

In this chapter the ratio of response between the secondary systems and the primary system is 
investigated. This ratio is calculated by dividing the response of the secondary systems with the floor 
response of the primary system at the location of the secondary system.  

From Figure 5.15 and 5.16 it is seen that the floor response of the primary system is different when 
secondary system 6 and secondary system 7 are attached. This means that the ratio generated by the 
primary systems floor response with the secondary systems in place, referred to as “SS / PS with SS in 
place”, is different from the ratio generated by the primary systems floor response without the 
secondary systems in place, referred to as “SS / PS without SS in place”. The two ways of generating 
the ratio of response are both shown in these chapters. 
 

5.1.3.1 Damping ratio equal to 0.8 % 
 

Ratio of response: SS / PS without SS in place 
 
The secondary systems with the maximum displacement in the response function, SS 6 and 7 in 
Figure 5.8, have the lowest ratio of response for the graph with no SS present, with the exception of 
secondary system 8/9. It can be seen that the ratio of response gets larger when the natural 
frequency of the secondary system goes towards the natural frequency of the primary system, but 
when the natural frequency gets too close, the ratio drops. This happens because the primary system 
has its peak value at 1.67 Hz. 

The ratio of response curve can be used to make the beginning of a design response spectra for 
secondary systems mounted on the Cardington Building. In order to make a functional design 
response function, more secondary systems are needed, as well as a larger frequency range.  
 

Ratio of response: SS / PS with SS in place 
 
Figure 5.19 shows the ratio when the displacement of the secondary systems is divided by the 
primary systems displacement when the different secondary systems are attached. The secondary 
systems with natural frequencies away from the natural frequency of the primary system have the 
same peak as in Figure 5.18, but secondary systems 6 and 7 now has the highest amplitude. This 
difference occurs because the displacement of these two systems is different at the natural 
frequency of the primary system. They act as dynamic vibration absorbers. The displacement of the 
primary system has been shown in Figure 5.10. 

The difference in the peak values for the two ways of portraying the ratio is about 50 % higher for the 
secondary systems that are divided by their own floor response. This last way of portraying the ratio 
is the “real” graph, but when engineers test the secondary systems, they only have the floor 
response of the primary system when it is alone, therefore making the “SS / PS without SS in place” 
graph the one used in designing. 
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Figure 5.18. Ratio, 0.8 % damping: The displacement of the secondary systems divided by the displacement 
floor response of the primary system when there are no secondary systems attached. 

 

 

Figure 5.19. Ratio, 0.8 % damping: The displacement of the secondary systems divided by the displacement 
floor response of the primary system with the secondary systems attached. 
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5.1.3.2 Damping ratio equal to 5.0 % 
 

Ratio of response: SS / PS without SS in place 
 
Secondary system 6 and 7 has the highest ratio for 5.0 % damping, unlike the “SS / PS without SS in 
place” figure for 0.8 % damping. Secondary system 6 and 7 has a spiked curve, but the other 
secondary systems have a curve that is much more flat. This can be explained by the fact that 
secondary systems 6 and 7 have got their natural frequency shifted. Because of the vibration 
absorber effect, the peak for the secondary system is shifted away from the primary system’s peak 
value frequency. 

 

Ratio of response: SS / PS without SS in place 
 
By dividing the secondary system response with the response of the floor with the secondary system 
in place, gives us the same results as for the ratio with 0.8 % damping. The only difference is in the 
curve for secondary systems 6 and 7. The peak values for the two systems are about 2.25 times 
larger than the other systems, but for 0.8 % damping, secondary systems 6 and 7 are only 1.5 times 
larger. 

The difference can be explained by thinking that the primary system, with 0.8 % damping, gives the 
secondary systems with 5.0 % damping a push. The primary system thereby reduces the effect of the 
damping on the secondary system. This can also be seen in the earthquake tests performed in 
chapter 5.2.3 (The effect of the damping ratio for secondary systems with natural frequencies inside 
the resonant frequency range of the primary system). 
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Figure 5.20. Ratio of response, 5 % damping: The displacement of the SS divided by the displacement floor 
response of the PS without the SS present. 

 

 

Figure 5.21. Ratio of response, 5 % damping: The displacement of the SS divided by the displacement floor 
response of the PS with the SS present. 
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5.1.3.3 Comparison between 0.8 % and 5.0 % damping for the ratio of response where the 
floor response of the primary system is generated without the secondary systems in 
place 

 
The ratio of response for the secondary systems, with natural frequencies far away from the natural 
frequency of the primary system, is not affected at the primary systems natural frequency. The 
amplification for secondary system 1, 2 and 3 is about 40 times bigger than the primary structure for 
0.8 % damping, while it is about 8 times bigger for 5.0 % damping for these secondary systems.  

Secondary system 8/9 looks the same as the above secondary systems, but the amplification is not as 
great. The secondary system with 0.8 % damping has a peak amplitude that is 28 times higher than 
the primary system’s peak amplitude and the 5.0 % damping system is about 7 times higher. 

Secondary systems 6 and 7 have two peak values each, but the amplitude for the secondary systems 
with 5.0 % damping is very low because of the high damping ratio. 

 

  

  

  

Figure 5.22. Ratio of response. The displacement of the secondary system divided by the displacement floor 
response of the primary system without the secondary systems in place. 
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5.2 Earthquake Excitation 
 
The earthquakes used in this analysis come from earthquakes that have been recorded on the 
County Building in Selfoss, Iceland. The records consist of two earthquakes, one from June 2000 with 
a magnitude of 6.5 and one in May 2008 with a magnitude of 6.3. The epicenter occurred 14.1 km 
and 8 km from the County Building. There exist no data recordings from earthquakes on the 
Cardington Building, but due to the comparison made with the harmonic excitation, the structure is 
assumed to behave correctly. The earthquakes from 2000 and 2008 both have recordings in the east-
west direction and in the north-south direction. The earthquakes are therefore split into 4 
earthquakes, which are all applied separately and in the east-west direction.  

 

  

Figure 5.23. Total acceleration time series for the Selfoss 2000 earthquakes. These are the total accelerations 
used as input accelerations for the tests. 

 

  

Figure 5.24. Total acceleration time series for the Selfoss 2008 earthquakes. These are the total accelerations 
used as input accelerations for the tests. 

 
The damping ratios for the secondary systems are the same as the ones in Table 4.4, because in the 
earthquake tests the systems are only compared to their selves. A decay test has been performed in 
chapter 4.3 to check the damping ratios of the secondary systems and the primary system. 

Standards, like Eurocode 8, states that for very important and / or dangerous non-structural 
elements the floor response spectra method has to be used. These earthquake tests plan to confirm 
that the floor response of a node in the building can be extracted and act as a ground motion on an 
isolated secondary system. The motion of the secondary system when it is isolated and when it is 
mounted on the primary system should be the same for the Eurocode 8 statement to be true. 
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5.2.1 Acceleration response spectra for the primary system 
 

The acceleration response spectra for all four earthquakes are found below. These spectrums give an 
indicator on how big the accelerations are expected to be at the different periods. The period of the 
primary structure, the Cardington Building, is 1 1.167⁄ 𝐻𝑧 = 0.6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. This period is shown in the 
two following figures, thus marking the maximum response acceleration values expected for the 
primary system. 

 
Figure 5.25. Acceleration response spectra for earthquake 2000kav and 2000kns. 

 
Figure 5.26. Acceleration response spectra for earthquake 2008kav and 2008kns. 
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The response spectral acceleration for the four earthquakes, at the natural frequency of the primary 
system, can be found from Figure 5.25 and Figure 5.26, and they are as follows: 

Table 5.6. Seismic Coefficient and Relative Acceleration expected. 

 
 

These values are the maximum accelerations expected for the primary system. The calculated 
accelerations from the FE model are shown in Figure 5.27. The natural period of the primary system 
is a favorable period when exposed to the earthquakes used in these tests. The low periods, below 
0.5 seconds, have a much higher seismic coefficient. For earthquake 2008kns it is as high as 300 % g 
at 0.45 seconds.  

According to the mode shape from the FE model, Figure 4.9, the maximum accelerations are 
expected to occur at the 3rd and 7th floor. This is true for all earthquakes except for 2008kav, where 
the 4th floor has the highest accelerations. The calculated accelerations are 1.38, 1.35, 1.09 and 1.06 
times higher than the expected values for 2000kav, 2000kns, 2008kav and 2008kns, respectively. For 
the earthquakes that occurred in 2008 the expected values compare very well to the expected 
accelerations. These are the earthquakes with the highest seismic coefficients. The earthquakes that 
occurred in 2000, the ones with the lowest seismic coefficients, do not compare as well as the 2008 
earthquakes to the expected accelerations. 

 

  
Figure 5.27. Maximum relative acceleration of the Cardington Building. 
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2008kav 55.00 5.4
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Primary Structure

-4,00E+00

-3,00E+00

-2,00E+00

-1,00E+00

0,00E+00

1,00E+00

2,00E+00

3,00E+00

4,00E+00

0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 25 27,5

Re
la

tiv
e 

Ac
ce

le
ra

tio
n 

[m
/s

2 ]

Time [sec]

2000kav: Relative Acceleration at 3rd floor

Max Amplitude
3.07 m/s2

-9,00E+00

-7,00E+00

-5,00E+00

-3,00E+00

-1,00E+00

1,00E+00

3,00E+00

5,00E+00

7,00E+00

9,00E+00

0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 25 27,5

Re
la

tiv
e 

Ac
ce

le
ra

tio
n 

[m
/s

2 ]

Time [sec]

2008kav: Relative Acceleration at 4th floor

Max Amplitude
5.87 m/s2

-4,00E+00

-3,00E+00

-2,00E+00

-1,00E+00

0,00E+00

1,00E+00

2,00E+00

3,00E+00

4,00E+00

0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 25 27,5

Re
la

tiv
e 

Ac
ce

le
ra

tio
n 

[m
/s

2 ]

Time [sec]

2000kns: Relative Acceleration at 7th floor

Max Amplitude
3.92 m/s2

-9,00E+00

-7,00E+00

-5,00E+00

-3,00E+00

-1,00E+00

1,00E+00

3,00E+00

5,00E+00

7,00E+00

9,00E+00

0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 25 27,5

Re
la

tiv
e 

Ac
ce

le
ra

tio
n 

[m
/s

2 ]

Time [sec]

2008kns: Relative acceleration at 7th floor

Max Amplitude
8.51 m/s2



Response of Primary and Secondary Systems under Dynamic Excitation 61 
 

5.2.2 Floor response at the location of the secondary structure 
 
From Figure 5.9 it is seen that secondary systems 6 and 7 affects the response of the floor-node at 
the secondary system location during harmonic excitation. This should also be visible when the 
earthquakes are applied. The four figures below show the acceleration time series for secondary 
system 1, 2, 3 and 8/9 during earthquake “2008kns”.  

The differences in acceleration between the two responses are minimal. Earthquake 2008kns is 
representative for all four earthquakes; see Appendix B: “Earthquake floor response at the location 
of the secondary structure”. “PS with SS1” refers to the response of the node at the secondary 
system location is measured with secondary system 1 present. “PS alone” refers to the response of 
the floor node is measured without the influence of a secondary system. 

 

  
 
 

  

Figure 5.28. 2008kns: Relative acceleration time series comparison between the floor responses at the 
location of the secondary system with the secondary system in place (red curve) and without the secondary 
system in place (blue curve). 

 
In the graphs above, the blue curves are the only visible ones. This is because the motion of the floor 
with and without the secondary system in place is exactly the same. The same thing was seen for the 
harmonic excitation; see Figure 5.9. 
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The two figures below show the relative acceleration time series for secondary system 6 and 7 during 
earthquake 2008kns. These were the two systems that had an effect on the response of the primary 
system during the harmonic excitation. During the earthquake excitation, the secondary systems do 
not have a big effect on the motion, but there is a small change in the acceleration of secondary 
system 6 after twelve seconds. The harmonic excitation showed that the response of the primary 
system only got affected around the natural frequency (Figure 5.15). This means that when the 
earthquake goes through the natural frequency area, the acceleration is affected in a different way 
than for the primary system by itself. 

 

Figure 5.29. 2008kns: Relative acceleration time series comparison between the floor responses at the 
location of the SS with SS6 in place and without SS6 in place. 

 

Figure 5.30. 2008kns: Relative acceleration time series comparison between the floor responses at the 
location of the SS with SS7 in place and without SS7 in place. 

-8,00E+00

-6,00E+00

-4,00E+00

-2,00E+00

0,00E+00

2,00E+00

4,00E+00

6,00E+00

8,00E+00

0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 25 27,5

Re
la

tiv
e 

Ac
ce

le
ra

tio
n 

[m
/s

2 ]

Time [sec]

Floor response with SS6

Floor response without SS6

-8,00E+00

-6,00E+00

-4,00E+00

-2,00E+00

0,00E+00

2,00E+00

4,00E+00

6,00E+00

8,00E+00

0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 25 27,5

Re
la

tiv
e 

Ac
ce

le
ra

tio
n 

[m
/s

2 ]

Time [sec]

Floor response with SS7

Floor response without SS7



Response of Primary and Secondary Systems under Dynamic Excitation 63 
 

5.2.3 Response of the secondary structure 
 
In order to get the results needed for the floor response spectra method, a couple of tests have to be 
performed. Firstly, the primary system alone has to be excited by the four earthquakes separately. 
The total acceleration time series at the node of where the secondary system is located has to be 
extracted. The secondary systems are the same systems used by Snæbjörnsson et al. [2] in 2000. 

Table 5.7. The secondary systems natural frequencies and CDR. 

 
 

 

Figure 5.31. Total acceleration time series of the floor at SS location during earthquake 2000kav. 

This acceleration acts as a ground motion on isolated versions of the secondary systems. Figure 5.32 
illustrates the basic idea. The acceleration time series that are created from the isolated tests are to 
be compared to the time series made when the secondary system is attached to the primary system.  

 

Figure 5.32. Ground motion on a SDF system. 

System Direction of vibration Natural Frequency (Hz) Critical Damping Ratio (%)

1 z - East-West 1.2024 0.42
2 z - East-West 1.8092 0.66
3 z - East-West 1.3513 0.07
6 z - East-West 1.6684 0.08
7 z - East-West 1.6999 5.77

8 / 9 z - East-West 1.9577 2.28
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5.2.3.1 Amplification of the total acceleration from the ground to the secondary system 
 

The total accelerations measured at the fourth floor in the building are expected to be higher than 
the total accelerations from the input earthquakes. The accelerations are amplified for each floor. 

The amplification for the Cardington Building is shown below. Earthquake 2008kns has a peak 
amplitude of 5.28 m/s2, see Figure 5.33, but this spike is not representative for the rest of the 
response. One spike does not make much difference on the response of the building because the 
spike does not exist long enough for the building to react and move accordingly.  

By excluding this peak amplitude, the accelerations from the earthquake gets amplified by a factor of 
1.80 and 1.62 between the ground and the fourth floor for earthquake 2000kns and 2008kns, 
respectively. The amplification factor between the fourth floor and the secondary system is 2.92 for 
both earthquakes. 

 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 

 

 
 

 
 

 
 

 
 

Figure 5.33. Comparison of total acceleration between the ground, the fourth floor and secondary system 3 
for the north-south component of the main earthquakes of June 2000 and May 2008. 
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5.2.3.2 Floor response spectra method compared to SS analyzed jointly with PS 
The relative acceleration time series for the separated secondary systems are compared with the 
time series when the secondary system is mounted on the primary system. For the floor response 
spectra method to be true, the calculated accelerations have to be more or less equal to each other.  

The ratio between the natural frequency of the secondary system and natural frequency of the 
primary system is written in the caption of each figure (fss/fps). For secondary systems 2 and 8/9 
(nat. freq. higher than nat. freq. of PS) the two methods are equal to each other for all earthquakes.  

  

  
Figure 5.34. Comparison of relative acceleration between SS2 analyzed separately (red curve) and SS2 

analyzed jointly (blue curve), fss/fps = 1.080. 

  

  
Figure 5.35. Comparison of relative acceleration between SS8/9 analyzed separately (red curve) and SS8/9 

analyzed jointly (blue curve), fss/fps = 1.169. 
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The secondary systems, shown in Figure 5.34 & 5.35, experience a beating effect. This happens 
because the transient response and steady-state response are out of phase with each other; see 
Figure 2.6 in chapter 2.5.1. 

Secondary systems 1 and 3 (nat. freq. lower than nat. freq. of PS) have a more random curve. The 
maximum amplitudes for the SS that are separated have on average higher amplitudes. 

  

  
Figure 5.36. Comparison of relative acceleration between SS1 analyzed separately (red curve) and SS1 

analyzed jointly (blue curve), fss/fps = 0.718. 

  

  
Figure 5.37. Comparison of relative acceleration between SS3 analyzed separately (red curve) and SS3 

analyzed jointly (blue curve), fss/fps = 0.807. 
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The two last secondary systems, no. 6 and 7 (nat. freq. inside the nat. freq. range of the PS), have 
relative acceleration responses that have big differences in the amplitudes. 

 

  

  
Figure 5.38. Comparison of relative acceleration between SS6 analyzed separately (red curve) and SS6 

analyzed jointly (blue curve), fss/fps = 0.996. 

  

  
Figure 5.39. Comparison of relative acceleration between SS7 analyzed separately (red curve) and SS7 

analyzed jointly (blue curve), fss/fps = 1.015. 
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There seems to be a pattern for the type of response for the secondary systems. The system with the 
natural frequency near the natural frequency of the primary system (1.675 Hz), SS 2 (1.809 Hz), 
seems to get a distinct beating curve and the difference in the amplitude is minimal.  

The secondary systems with their natural frequency far away from the natural frequency of the 
primary system, SS 1 (1.2024 Hz), SS 3 (1.351 Hz) and SS 8/9 (1.958 Hz), get a more random curve and 
the amplitude of when the SS is separated tends to be larger. 

The secondary systems with natural frequencies at the natural frequency of the primary system, SS 6 
(1.668 Hz) and SS 7 (1.699 Hz), get some beating motion, but the amplitudes between the two 
methods for calculating the response are different. 

The six secondary systems presented in these tests are not enough to verify the trend. In order to do 
so, two imaginary secondary systems are made with natural frequencies equal to 1.563 Hz and 2.225 
Hz. Imaginary system 1 (iSS1) is close to the natural frequency of the primary system (1.675 Hz) and 
imaginary system 2 (iSS2) is far away. The relative acceleration time series for the imaginary systems 
are shown below. The extra secondary systems confirm that the beating effect is a phenomenon that 
can be seen close to the natural frequency of the primary system. 

 

 

Figure 5.40. Comparison of relative acceleration between iSS1 analyzed separately (red curve) and iSS1 
analyzed jointly (blue curve), fss/fps = 0.933. 

 

Figure 5.41. Comparison of relative acceleration between iSS2 analyzed separately (red curve) and iSS2 
analyzed jointly (blue curve), fss/fps = 1.328. 
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The differences in the response for the secondary systems with natural frequencies close to the 
natural frequency of the primary system (1,675 Hz), SS2, SS8/9 and iSS1, are minimal. The differences 
are shown in Table 5.8. The average differences are 1.02, 1.00 and 0.98 for SS2, SS8/9 and iSS1, 
respectively. 

The secondary systems with natural frequencies far away from the natural frequency of the primary 
system, SS1, SS3 and iSS2, have noticeable differences between the two methods, and the peak 
amplitude of the SS when it is separated tends to be bigger. The difference during earthquake 
2000kns is minimal, but during earthquake 2000kav the difference is ≈1.50. The average differences 
are 1.35, 1.29 and 1.15 for SS1, SS3 and iSS2, respectively. 

Secondary systems 6 and 7, which have their natural frequencies inside the resonant frequency 
range of the PS, show a big difference between the two methods, but these are also the systems with 
the lowest damping ratio. The effect of the damping ratio is discussed in the next chapters. The 
average differences in the amplitudes are 1.77 and 0.74 for SS6 and SS7, respectively. 

 
Table 5.8. Maximum Amplitude Difference between SS analyzed separately and SS analyzed jointly. 

 

 

 

 

 

 

 

 

 

2000kav 2000kns 2008kav 2008kns

Difference* Difference* Difference* Difference*

SS1 1.2024 0.42 1.53 0.97** 1.47 1.43 1.35

SS2 1.8092 0.66 1.02 1.00 1.04 1.04 1.02

SS3 1.3513 0.07 1.56 1.01 1.38 1.19 1.29

SS6 1.6684 0.08 1.82 1.58 1.77 1.91 1.77

SS7 1.6999 5.77 0.72 0.81 0.72 0.71 0.74

SS8/9 1.9577 2.28 1.03 1.03 0.97 0.95 1.00

iSS1 1.5630 0.80 0.98 - - - 0.98

iSS2 2.2250 2.28 1.15 - - - 1.15

** A difference of less than 1 means the amplitude of "SS on PS" is bigger than "SS separated"
* = Amplitude of SS analyzed separated / Amplitude of SS analyzed when attached to the PS

Damping 
ratio (%)

Natural 
frequency 

(Hz)

Maximum Amplitude Difference: SS analyzed separated divided by SS analyzed on the PS

System No. Average Difference
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The effect of the damping ratio for secondary systems 
 
One would expect that a change in the damping ratio only would affect the acceleration amplitudes 
and the same reduction/amplification of the accelerations should be seen for both the floor response 
method and the method where the SS is attached to the PS. It is seen for the secondary systems with 
natural frequencies inside the resonant frequency range of the primary system that the damping 
ratio seems to govern which method of measuring the response that has the largest amplitudes. This 
is an interesting occurrence that is explored further in this chapter. 

Secondary system 6 has the largest average difference in amplitude, but it also has the lowest 
damping ratio (0.08 %). Secondary system 7 has the highest damping ratio (5.77 %), and the 
amplitude of the “SS on PS” tends to be larger than for the “SS separated. These two “coincidences” 
indicates that the damping ratio acts differently for the two methods. 

In order to find out what effect the damping ratio has on the response, new damping ratios has been 
applied to the secondary systems. The new damping ratios are shown in Table 5.9. 

 
Table 5.9. New damping ratios for the secondary systems. 

  

Secondary 
System

Natural 
frequency 

(Hz)

Damping 
ratio 1         

(%)

Damping 
ratio 2                

(%)

Damping 
ratio 3                 

(%)
1 1.2024 (0.42)* 2.00 5.00

2 1.8092 0.08 2.00 5.00

3 1.3513 (0.07)* 2.00 5.00

6 1.6684 (0.08)* 2.00 5.00

7 1.6999 0.08 2.00 (5.77)*

8/9 1.9577 0.08 (2.28)* 5.00

Secondary Structure

* () means that the damping ratio has been tested before
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The effect of the damping ratio for secondary systems with natural frequencies inside the resonant 
frequency range of the primary system 
 
The responses to the new damping ratios for secondary systems 6 and 7 are shown in the figures that 
follow. 

Damping ratio equal to 0.08 % - low damping ratio 
 
The response of SS6 with 0.08 % has already been shown, see Figure 5.38. The response of SS7 with 
the same damping ratio is shown below, and the same thing that happened to SS6, happens to SS7. 
The response of when the secondary system is separated is larger and the shape is not the same. 

 

 

  
 

Figure 5.42. Comparison of relative acceleration between SS7 analyzed separately (red curve) and SS7 
analyzed jointly (blue curve) - [0.08 % damping], fss/fps = 1.015. 
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Damping ratio equal to 2.0 % - medium damping ratio 
 
Both secondary systems 6 and 7 are now excited with a damping ratio of 2.0 %. The maximum 
amplitudes are very similar to each other. The shaped are varying, but in general they are similar. 

 

 

  

Figure 5.43. Comparison of relative acceleration between SS6 analyzed separately (red curve) and SS6 
analyzed jointly (blue curve) - [2.0 % damping], fss/fps = 0.996. 

 

  

Figure 5.44. Comparison of relative acceleration between SS7 analyzed separately (red curve) and SS7 
analyzed jointly (blue curve) - [2.0 % damping], fss/fps = 1.015. 
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Damping ratio equal to 5.0 % - high damping ratio 
 

Secondary system 7 has been tested for a damping ratio of 5.77 %, which is shown in Figure 5.39. A 
damping ratio of 5.0 % is applied to secondary system 6 and the results are shown below. The 
amplitudes of the secondary system when analyzed jointly (SS on PS) are larger for this damping 
ratio. This was also seen in the test for secondary system 7. 
 

 

  
Figure 5.45. Comparison of relative acceleration between SS6 analyzed separately (red curve) and SS6 

analyzed jointly (blue curve) - [5.0 % damping], fss/fps = 0.996. 

Summary for the different damping ratios 
 
The following statements are only valid for secondary systems with nat. freq. inside the resonant frequency range of the PS. 

After these four new tests it is safe to say that the damping ratio affects the accuracy of the analyses 
using a decoupled SS and floor response excitation. If the damping ratio is low (0.08 %), the two 
methods responses of the secondary system do not have the same shape. The response made from 
the floor excitation has much higher amplitude (≈40 %) and does not have the same damped curve. 

The amplitudes for the medium damping ratio (2.0 %) are more or less the same, but the average 
amplitudes made from the floor excitation are higher. 

For the secondary systems with high damping (5.0 %), the amplitudes of the secondary system when 
analyzed jointly are higher than the amplitudes for the floor excitation. This makes the floor response 
method the less safe method for this damping ratio. 

From the above observations it is clear that the primary system affects the secondary system with its 
damping ratio (0.8 %). When the damping ratio of the SS is much lower than the PS damping ratio, 
the PS in effect heightens the damping ratio of the SS when it is attached to the PS. When the 
damping ratio is much higher than the PS damping ratio, the PS in effect reduces the damping for the 
SS when it is attached to the PS. When the damping ratio is similar, the primary system has a small 
effect. 
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The effect of the damping ratio for secondary systems with natural frequencies outside the 
resonant frequency range of the primary system 
 
The damping ratio for secondary systems with natural frequencies outside the resonant frequency 
range of the primary system does not have the same effect on the response as the ones with natural 
frequencies inside the resonant frequency range. The only effect seen from changing the damping 
ratio is that the amplitudes are higher for the systems with lower damping. The maximum 
amplitudes are similar and the amplitude of the secondary system when it is separated is larger. 
More tests with different earthquakes and secondary systems can be seen in Appendix B: “The effect 
of the damping ratio for SS during earthquakes”. 

 
 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 

 

 
 

 
 

 
 

 
 

 
Figure 5.46. Comparison of relative acceleration between SS (8/9 and 3) analyzed separately (red curve) and 

SS (8/9 and 3) analyzed jointly (blue curve], fss3/fps = 0.807, fss8/9/fps = 1.169. 
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Summary of the difference in amplitudes for the two methods 
 
Table 5.10 shows the average difference between the maximum amplitudes for the two methods of 
measuring. The differences in amplitudes for the secondary systems tested by J.T. Snæbjörnsson et 
al. [2] in 2000 with the original damping ratio and with the additional damping ratios are shown, as 
well as the two imaginary secondary systems. 

 
Table 5.10. Maximum amplitude difference between the secondary system analyzed separately (floor 
response method) and secondary system analyzed jointly (SS on PS). 

 

 

2000kav 2000kns 2008kav 2008kns

Difference* Difference* Difference* Difference*

0.42 1.53 0.97** 1.47 1.43 1.35

2.00 1.54 - - - 1.54

5.00 1.55 - - - 1.55

0.08 0.98 - - - 0.98

0.66 1.02 1.00 1.04 1.04 1.02

2.00 1.06 - - - 1.06

5.00 1.08 - - - 1.08

0.07 1.56 1.01 1.38 1.19 1.29

2.00 - - 1.45 - 1.45

5.00 - - 1.54 - 1.54

0.08 1.82 1.58 1.77 1.91 1.77

2.00 1.06 1.09 1.08 1.06 1.07

5.00 0.65 0.69 0.60 0.67 0.65

0.08 1.20 1.18 1.69 1.70 1.44

2.00 0.97 0.94 1.18 1.05 1.04

5.77 0.72 0.81 0.72 0.71 0.74

0.08 1.01 - - - 1.01

2.28 1.03 1.03 0.97 0.95 1.00

5.00 1.08 - - - 1.08

0.80 0.98 - - - 0.98

2.00 1.06 - - - 1.06

5.00 1.03 - - - 1.03

Damping 
ratio (%)

Maximum Amplitude Difference: SS analyzed separated divided by SS analyzed on the PS

System No. Average Difference

SS2        
(1.8092 Hz)

SS3        
(1.3513 Hz)

SS6       
(1.6684 Hz)

SS7        
(1.6999 Hz)

SS8/9       
(1.9577 Hz)

** A difference of less than 1 means the amplitude of "SS on PS" is bigger than "SS separated"
* = Amplitude of SS analyzed separated / Amplitude of SS analyzed when attached to the PS

SS1             
(1.2024 Hz)

2.28
iSS2          

(2.2250 Hz)
1.15---1.15

iSS1            
(1.5630 Hz)
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Summary of the damping ratios effect 
 
The figure below shows the different effect the damping ratio has on the floor response method and 
the method when the secondary system is attached to the primary system. The data plotted is the 
data found in Table 5.10. The x-axis is the natural frequency of the secondary system divided by the 
natural frequency of the primary system, i.e., the value where the natural frequencies are the same 
is 1. The y-axis is the ratio of difference between the two methods, i.e., the maximum (average) 
acceleration of the floor response spectrum divided by the maximum (average) acceleration of the 
analysis when the secondary system is attached to the primary system. When the values are negative 
it means that the floor response method gives lower amplitudes than the actual amplitudes. 

The figure illustrates what has been said in the subchapters earlier in this chapter. When the natural 
frequency of the secondary system is far below the resonant frequency range of the primary system 
the amplitudes generated by the floor response are about 1.5 times higher. When the natural 
frequencies are just outside the resonant frequency range the differences are very small, and when 
the natural frequencies are inside the resonant frequency range the differences are big for 0.08 % 
and 5 % damping ratios and the floor response method gives lower amplitudes than the actual 
amplitudes for the 5 % damping ratio. 

 

 

Figure 5.47. The effect the damping ratios have on the difference in the acceleration for the floor response 
method and the method where the secondary system is attached to the primary system. Average difference 
is “Amplitude of the floor response method / Amplitude of the secondary system analyzed jointly with PS”. 
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6. Codal provisions for design of non-structural elements 
 
Over the past 40 years there have been performed a lot of research on developing methods to 
analyze the non-structural elements during seismic excitation. However, these methods were mainly 
focused on the safety of critical equipment in, for example, power plants. In the later years it has 
been shown that the non-structural elements in conventional buildings also should be taken into 
consideration in the earthquake design process.  

The non-structural elements are often neglected since they are usually added after the building is 
erected and not always predefined. Also, the focus of the engineers has traditionally been to prevent 
structural failure. 

One example demonstrating the importance of considering the performance of non-structural 
elements comes from the Northridge earthquake [13] that occurred on January 21, 1994. It had a 
moment magnitude of 6.7 and caused more than $40 billion in damage. Amongst the damaged 
buildings were several hospitals (for example, Olive View, Holy Cross Hospital, etc.). All of these 
hospitals had to be shut down because of damage to non-structural elements. As a result, a law was 
made that stated that all acute care units and emergency rooms had to be in earthquake-proof 
structures by January 1, 2005. 

 

6.1 Eurocode 8 
 
Eurocode 8 is the European building code for design of structures for earthquake resistance and is 
developed by the European Committee for Standardization (CEN) [14]. It has been made mandatory 
for European public works since March 2010, although it will co-exist with the old standards in many 
countries for a period. 

Eurocode 8 [15] states that for very important and / or dangerous non-structural elements the floor 
response spectra method is to be used. 

“For non-structural elements of great importance or of a particularly dangerous nature, the 
seismic analysis shall be based on a realistic model of the relevant structures and on the use 
of appropriate response spectra derived from the response of the supporting structural 
elements of the main seismic resisting system.” 

For all other cases the elements have to resist a design seismic load, 𝐹𝑎, as follows: 

 
𝐹𝑎 = 𝑆𝑎 𝑊𝑎  𝛾𝑎  𝑞𝑎⁄           (6.1) 

 
where 𝐹𝑎 is the horizontal (or vertical) seismic force, 𝑊𝑎 is the mass of the element, 𝑆𝑎 is the spectral 
acceleration, 𝛾𝑎 is the importance factor of the element and 𝑞𝑎 is the behavior factor of the element. 
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The spectral acceleration is given by the following equation: 

 
𝑆𝑎 = 𝛼 𝑆 [ 3 (1 + 𝑧 𝐻⁄ )  � 1 + (1 − 𝑇𝑎 𝑇1)⁄ 2 �⁄ − 0.5 ]       (6.2) 

 
where 𝛼 is the ratio of the design ground acceleration on type A ground, 𝑎𝑔, to the acceleration of 
gravity, 𝑆 is the soil factor, 𝑇𝑎 is the fundamental natural period of the non-structural element, 𝑇1 is 
the fundamental natural period of the primary structure, 𝑧 is the height of the non-structural 
element above rigid foundation and 𝐻 is the height of the primary structure above rigid foundation. 
Eurocode 8 uses a standard damping ratio of 5.0 % for all the equations. 

To get the seismic coefficient, the 𝛼 variable is taken out of the equation. The soil factor is assumed 
to be 1 (stiff soil), the height of the non-structural element above rigid foundation is 16.025 m and 
the height of the primary structure above rigid foundation is 25.26 m, thus the seismic coefficient is: 

𝐶𝑎 = 𝑆 � 3 (1 + 𝑧 𝐻⁄ )  � 1 + (1 − 𝑇𝑎 𝑇1)⁄ 2 �⁄ − 0.5 � = 4.86 / � 1 + (1 − 𝑇𝑎 𝑇1)⁄ 2 � − 0.5   (6.3) 

 

6.1.1 Seismic Coefficient comparison between Eurocode 8 and FE model 
 
The curve made by the seismic coefficient equation is shown below. The seismic coefficient 
generated by equation 6.3 for each secondary system is marked with a colored box. From the curve it 
is seen that a secondary system with a high natural period, (low natural frequency), gets a lower 
coefficient than a secondary system with a low natural period (high natural frequency). 

 

 

Figure 6.1. Seismic Coefficients generated by Eurocode 8 (Equation 6.3). Colored boxes mark the secondary 
systems seismic coefficient. 
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The actual seismic coefficients for 2000kav, i.e., the ratio between the max total acceleration of the 
secondary system analyzed jointly with the primary system divided by the max total acceleration of 
the ground, are shown together with the seismic coefficient calculated from the Eurocode 8 
(Equation 6.3.) in Table 6.1. The seismic coefficients generated by the analysis where the secondary 
systems are analyzed separately (floor response) are shown in the same table. The same results are 
also shown in Figure 6.2.  

Earthquake 2000kav is representative for all four earthquakes. The same tables and figures for the 
three other earthquakes are found in Appendix B: Seismic Coefficient comparison. 

The differences between the Eurocode 8 equation and the actual seismic coefficients are relatively 
large; especially for secondary system no. 6 and 7. The seismic coefficients from the Eurocode 8 
equation are larger for SS1 and SS3 and lower for SS6 and SS7. This can be seen for all four 
earthquakes. The differences between the floor response (SS analyzed separately) and Eurocode 8 
are much lower than for the actual seismic coefficient (SS analyzed jointly). 

The damping ratios for all the secondary systems are 5 %, because Eurocode 8 uses a 5 % damping 
ratio as standard. From Figure 5.47 it is seen that this damping ratio makes the relative acceleration 
of the analysis where the secondary system is attached to the primary system bigger for secondary 
system no. 6 and 7 than for the analysis where the secondary system is analyzed separately. From 
Table 6.1 it is seen that the total acceleration response of the “SS analyzed jointly” is larger than the 
“SS analyzed separately” for all secondary systems. 

Eurocode 8 states that for very important and / or dangerous non-structural elements the floor 
response spectra method is to be used. This method corresponds well to equation 6.3, but the 
response is lower than the actual response for all the secondary systems. The biggest differences 
between the responses occur when the secondary systems have natural frequencies inside the 
resonant frequency range of the primary systems (SS6 and SS7). The other secondary systems show a 
relatively good comparison between the responses. 

 
Table 6.1. Comparison of seismic coefficients for earthquake 2000kav between the actual seismic 
coefficients, the seismic coefficients generated when the floor response method is used and the seismic 
coefficients calculated from the Eurocode 8 standard (Equation 6.3). 

 

 

SS analyzed jointly SS analyzed seprately
SS1 - 5 % damping 1.393 1.38 1.35 3.68

SS2 - 5 % damping 0.926 5.81 5.29 4.30

SS3 - 5 % damping 1.240 2.03 1.98 4.07

SS6 - 5 % damping 1.004 8.54 4.96 4.33

SS7 - 5 % damping 0.985 7.31 4.86 4.33

SS8/9 - 5 % damping 0.856 4.62 4.23 4.23

Earthquake 2000kav

Secondary System Ta/T1
Max SS total accel. / Max ground total accel. Eurocode 8                                            

Ca - Equation 6.3
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Figure 6.2. Comparison of seismic coefficients for earthquake 2000kav between the actual seismic 
coefficients and the seismic coefficients calculated from the Eurocode 8 standard (Equation 6.3). Blue curve 
is the seismic coefficient calculated by the Eurocode 8 standard (Equation 6.3). Green curve means that the 
secondary system is analyzed jointly with the primary system. 

 

 
Figure 6.3. Comparison of seismic coefficients for earthquake 2000kav between the seismic coefficients 
generated when the floor response method is used and the seismic coefficients calculated from the Eurocode 
8 standard (Equation 6.3). Blue curve is the seismic coefficient calculated by the Eurocode 8 standard 
(Equation 6.3). Red curve means that the secondary system is analyzed separately (floor response method). 
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7. Conclusion 
 
In this thesis a numerical FE model of the Cardington Building has been made, along with FE models 
for the various secondary systems. Analyses of the FE models have been performed, both separately 
and jointly, during harmonic excitations and earthquake excitations. Also, the seismic coefficients 
obtained from the earthquake excitations have been compared with the seismic coefficients 
calculated by equations from the Eurocode 8 standard.  

From the harmonic excitation tests it is seen that the secondary systems with their natural 
frequencies inside the resonant frequency range of the primary system get a much higher 
displacement than the ones outside the resonant frequency range, but in exchange the displacement 
of the primary system is reduced. For secondary system 6 the displacement of the primary system 
drops by 34 % at the fourth floor and by 35 % at the top floor (Figure 5.10 and Figure 5.11). This is 
true for secondary systems with both 0.8 % damping and 5.0 % damping. 

In the earthquake excitation tests a floor response spectra method, represented in this thesis by 
analyzing the secondary systems separately, has been compared to the responses generated when 
the secondary system is analyzed jointly with the primary system. There are big differences in 
amplitudes between the two methods of analyzing the response, but the floor response gives, for the 
most part, a larger response. This makes the floor response a more safe method to use, but in some 
cases it gives amplitudes that are approximately 30 % higher, Table 5.10 (not counting SS6 and SS7). 

The natural frequency of the secondary system does make a difference in the response between the 
two ways of measuring. A natural frequency far away from the resonant frequency range of the 
primary system tends to give the secondary systems (SS1, SS3 and iSS2) a large difference in 
amplitude between the two methods, but always on the safe side, which in this case means that the 
floor response analysis gives higher amplitudes. This same pattern seems to be true for all damping 
ratios. 

The secondary systems with natural frequencies just outside the resonant frequency range of the 
primary system (SS2, SS8/9 and iSS1) show a very good comparison between the two methods in 
both the amplitudes and the shape of the response. The differences do not vary much with a change 
in the damping ratio. 

The big differences in the response, both in amplitude and in shape, happens when the secondary 
system has a natural frequency that is inside the resonant frequency range of the primary system 
(SS6 and SS7). For a low damping ratio (0.08 %) the response of the secondary system when analyzed 
separately has much higher amplitudes (≈40 %) than given by the analysis where the secondary 
system is mounted on the primary system.  

If the secondary system has at least a medium damping ratio (2.0 %) the differences in the 
amplitudes are not great, and the response of the two methods compare well to each other. 

The secondary systems with a high damping ratio (5.0 %) will make the amplitudes of the floor 
response lower than the ones measured from the analysis where the secondary system is mounted 
on the primary system. This means that the real response is higher than the one obtained from the 
floor response method. Standards, like Eurocode 8, normally use a damping ratio of 5.0 %, which 
makes this a notable effect.  
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It is clear that the primary system affects the secondary system with its damping ratio (0.8 %) when 
the secondary system has a natural frequency that is inside the resonant frequency range of the 
primary system. When the damping ratio of the secondary system is much lower than the damping 
ratio of the primary system, the primary system in effect heightens the damping ratio of the 
secondary system when it is attached to the primary system. When the damping ratio is much higher 
than the damping ratio of the primary system, the primary system in effect reduces the damping for 
the secondary system when it is attached to the primary system. For the secondary systems with 
natural frequencies that are outside the resonant frequency range of the primary system, the 
damping ratio of the primary system does not seem to have any effect on the secondary system’s 
response. 

In spite of the various shortcomings of the floor response approach discussed above it is found to 
give a reasonably good description of the overall response of the secondary system. 

The seismic coefficients calculated by the Eurocode 8 equation correspond well to the floor response 
method’s seismic coefficients, but the actual seismic coefficients (secondary system analyzed jointly 
with the primary system) did not correspond as well, especially for secondary system no. 6 and 7. 
These are the two secondary systems with natural frequencies inside the natural frequency range of 
the primary system. The actual seismic coefficient for secondary system 6 during earthquake 
2000kav is twice as high as the seismic coefficient calculated by the equation from the Eurocode 8 
standard (Figure 6.2).  

The Eurocode 8 standard states that the equation should only to be used for secondary systems that 
are not very important and / or dangerous. This makes the error less severe, but the equation should 
be representative none the less. The seismic coefficient at the natural frequency of the primary 
system is too low. 
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A. Appendix A: 
 

Theoretical Background 
 

Single Degree of Freedom 
 
Simple structures can be modeled as a single-degree-of-freedom (SDOF) system. A water tank with a 
massless tower is the most common example, along with the idealized one-story frame. The 
structure is defined by a system that consist of a mass, spring, damper and force (Figure A.1).  

 

Figure A.1. Idealized one-story frame. 

Normally, the first goal is to find the response of the system through the equation of motion. One 
way of establishing the equation of motion is by Newton’s Second Law, which states that force is 
equal to the mass ( 𝑚 ) times acceleration ( �̈� ). 

 
𝐹 = 𝑚 �̈�            (A.1) 

 
By drawing a free-body diagram of the system (Figure A.2) and applying Newton’s Second Law, the 
equation of motion can be found. 

 

Figure A.2. Free-body diagram of the one-story frame. 
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The forces acting on the system are: 

 

𝐹 = 𝑝(𝑡) − 𝑓𝑠 − 𝑓𝑑           (A.2) 

 

where 𝑓𝑠 is the spring force and 𝑓𝑑 is the damping force. The spring force and damping force can be 
rewritten: 

 

𝑓𝑠 = 𝑘 𝑢           (A.3) 

𝑓𝑑 = 𝑐 �̇�           (A.4) 

 

where k is the stiffness, c is the damping, u is displacement and �̇� is velocity. Substituting equation 
(A.1) into (A.2) and using the definitions from equation (A.3) and (A.4): 

 

𝑚 �̈� +  𝑐 �̇� +  𝑘 𝑢 = 𝑝(𝑡)         (A.5) 

 

This is called the equation of motion. 

 

Stiffness  
 

 

Figure A.3. Equivalent Spring Constants ([4],page 38). 

 
The stiffness, k, can be determined, if the top beam is rigid, in the following way: 

𝑘 = 12 𝐸 𝐼
𝐿3

           (A.6) 

where 𝐸 is the Young’s modulus (modulus of elasticity), 𝐼 is the moment of inertia (second moment 
of area) and 𝐿 is the length of the element. 

 
Figure A.4. Flexural rigidity ([7], page 9). 
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Multiple degree of freedom 
 
The SDOF system can be expanded into a two degree of freedom system which is usually expressed 
in a matrix form ([7], page 345-348): 

 

 

 

 

 

 

 

 

� 𝑚1 0
0 𝑚2

 � � �̈�1�̈�2
 �+ � 

𝑓𝑑1
𝑓𝑑2

 �+ � 
𝑓𝑠1 
𝑓𝑠2

� = � 
𝑝1(𝑡)
𝑝2(𝑡) �       (A.7) 

 
or, in matrix notation: 

 
𝒎 �̈� + 𝒇𝒅 + 𝒇𝒔 = 𝒑(𝑡)          (A.8) 

 
where 𝒎 is the lumped mass matrix. The next step is to find the damping matrix, 𝒇𝒅, and the 
stiffness matrix, 𝒇𝒔. The force 𝑓𝑠1 is made up of contributions from both the first and second floor: 

 
𝑓𝑠1 = 𝑓𝑠1𝑎 + 𝑓𝑠1𝑏 = 𝑘1 𝑢1 + 𝑘2 (𝑢1 − 𝑢2)       (A.9) 

 
The force 𝑓𝑠2 is made up of contributions only from the second floor: 

 
𝑓𝑠2 = 𝑘2 (𝑢2 − 𝑢1)           (A.10) 

 
This gives the following force-displacement relation: 

 

𝒇𝒔 =  � 𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2

 � � 
𝑢1
𝑢2 � = 𝒌 𝒖        (A.11) 

 
 
 
 

Figure A.5. Two-story frame. 

 

Figure A.6. Free-body diagram of the two-story 
frame. 
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The damping force, 𝒇𝒅, can be treated in the same way, which gives: 

 

𝒇𝒅 =  � 
𝑐1 +  𝑐2 −𝑐2
−𝑐2 𝑐2

 � � �̇�1�̇�2
 � = 𝒄 �̇�        (A.12) 

 
Substituting equation (A.11) and (A.12) into (A.7): 

 

� 𝑚1 0
0 𝑚2

 � � �̈�1�̈�2
 �+ � 

𝑐1 +  𝑐2 −𝑐2
−𝑐2 𝑐2

 � � �̇�1�̇�2
 �+  � 𝑘1 +  𝑘2 −𝑘2

−𝑘2 𝑘2
 � � 

𝑢1
𝑢2 � = � 

𝑝1(𝑡)
𝑝2(𝑡) �  (A.13) 

 
or in matrix notation: 

 
𝒎 �̈� +  𝒄 �̇� + 𝒌 𝒖 = 𝒑(𝑡)         (A.14) 

 
The equation of motion looks the same as for the SDOF, but it is now in matrix form and the equation 
is coupled with regard to the damping and stiffness. 

To include more DOF’s, the same methodology can be applied again. 
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Free vibration 
 
To find the natural frequencies of the system, one must look at the structure when it is undergoing 
free vibration. Free vibration means that if the structure is pulled out of its equilibrium position it can 
vibrate without any external dynamic forcing ( 𝒑(𝑡) = 0 ). A convenient start is to look at undamped 
vibrations, which means that c = 0 for the time being.  

The free vibration of a linear undamped multiple degree of freedom system is then ([7], page 39): 

 
𝒎 �̈�(𝑡) +  𝒌 𝒖(𝑡) = 𝟎          (A.15) 

 
in which 𝟎 is a zero vector. A solution to the free vibration can be described as: 

 
𝒖(𝑡) =  𝑞𝑛(𝑡) 𝜙𝑛 ( n ≤ Number of degrees of freedom = N )    (A.16) 

 
where 𝜙𝑛 are the natural modes of the system, and 𝑞𝑛(𝑡) is a harmonic function: 

 
𝑞𝑛(𝑡) =  𝑎𝑛  cos𝜔𝑛 𝑡 + 𝑏𝑛  sin𝜔𝑛 𝑡        (A.17) 

 
where 𝑎𝑛 and 𝑏𝑛 are constants that can be determined from the initial conditions and 𝜔𝑛 are the 
natural frequencies of the system. 

This can also be written as: 

 
𝑞𝑛(𝑡) =  𝑐𝑛 𝑒𝑖𝜔𝑛𝑡          (A.18) 

 
Combining equation (3) and (4) gives: 

 
𝒖(𝑡) = 𝜙𝑛 (𝑎𝑛  cos𝜔𝑛 𝑡 +  𝑏𝑛  sin𝜔𝑛 𝑡)       (A.19) 

 
To substitute this equation back into the free vibration equation (2), the second time derivative of 
𝒖(𝑡) is also needed. 

First derivative: 

 
�̇�(𝑡) = 𝜙𝑛 (−𝜔𝑛 𝑎𝑛  sin𝜔𝑛 𝑡 +  𝜔𝑛 𝑏𝑛  cos𝜔𝑛 𝑡)      (A.20) 
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Second derivative: 

 
�̈�(𝑡) = 𝜙𝑛 (−𝜔𝑛2 𝑎𝑛  cos𝜔𝑛 𝑡 −  𝜔𝑛2 𝑏𝑛  sin𝜔𝑛 𝑡)      (A.21) 

 
Isolating the expression “ −𝜔𝑛2 ”: 

 
�̈�(𝑡) = 𝜙𝑛 (−𝜔𝑛2) ( 𝑎𝑛  cos𝜔𝑛 𝑡 +  𝑏𝑛  sin𝜔𝑛 𝑡)      (A.22) 

 
This equation can now be written as: 

 
�̈�(𝑡) = 𝜙𝑛 (−𝜔𝑛2) 𝑞𝑛(𝑡)         (A.23) 

 
Substituting equation (A.16) and (A.23) into equation (A.15) gives: 

 
[ −𝜔𝑛2 𝒎  𝜙𝑛 +  𝒌 𝜙𝑛 ] 𝑞𝑛(𝑡) = 𝟎        (A.24) 

 
This equation can be satisfied in two ways. One way is saying that 𝑞𝑛(𝑡) = 0, but that implies 
𝒖(𝑡) = 𝟎, which means that there is no motion. This is called a trivial solution, and does not give a 
useful result. Instead, let the equation  −𝜔𝑛2 𝒎  𝜙𝑛 + 𝒌 𝜙𝑛  equal to 0. In other words, the following 
equation must be satisfied: 

 
 𝒌 𝜙𝑛 = 𝜔𝑛2 𝒎  𝜙𝑛  ( 𝒌 = 𝜔𝑛2 𝒎 )       (A.25) 

 
This is called the matrix eigenvalue problem. The equation can be written as follows: 

 
[ 𝒌  −𝜔𝑛2 𝒎 ] 𝜙𝑛 = 𝟎          (A.26) 

 
Again there exists two different ways to satisfy the equation, but setting  𝜙𝑛 = 0 gives a trivial 
solution, i.e., no motion. The equation has a nontrivial solution if: 

 
𝑑𝑒𝑡 [ 𝒌 −𝜔𝑛2 𝒎 ] = 𝟎          (A.27) 

 
From this equation, the natural frequencies are calculated, and to get the natural mode shapes, 𝜙𝑛, 
the known natural frequencies are inserted into equation (A.26) and solved for 𝜙𝑛. However, this 
does not give the absolute values for the vectors 𝜙𝑛, but only the shape of the vector. This means 
that it can be scaled. A popular way of scaling is called normalization of modes, which is discussed 
later. 
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Orthogonality of Modes 
 

 

Figure A.7. Representing deflections as sum of modal components ([3], page 220) 

 
The displacement for any structure can be split up into modal contributions based on the normal 
mode shapes of the structure. The amplitudes of the normal modes can then be superimposed to get 
the total displacement. For one of the modal components (𝑢𝑛), the displacements are given by 
multiplying the mode shape vector (𝜙𝑛) with a time dependent modal amplitude (Y𝑛) ([3], page 
220-223): 

 
𝑢𝑛 = 𝜙𝑛 Y𝑛              (A.28) 
 
 
The sum of all the displacements from the modal components gives the total displacement: 

 
𝒖 = 𝜙1 Y1 + 𝜙2 Y2 + ⋯+ 𝜙𝑛 Y𝑛 = ∑ 𝜙𝑛 Y𝑛𝑁

𝑛=1       (A.29) 
 
 
or, in matrix notation: 

 

𝒖 = Փ 𝐘     where Փ = �
𝜙11 ⋯ 𝜙1𝑁
⋮ ⋱ ⋮

𝜙𝑁1 ⋯ 𝜙𝑁𝑁
� = 𝑚𝑜𝑑𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥   (A.30) 

 
 
To include this into the equation of motion, the velocity, �̇� and acceleration vector �̈� is needed. This 
is done by taking the second time derivative of 𝒖 with respect to time, which has been shown before. 
The 𝑚𝑜𝑑𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 (Փ) is not a function of time and thus does not change: 

 
�̇� = Փ �̇�  and   �̈� = Փ �̈�      (A.31) 
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Inserting equation (A.30) and (A.31) into the equation of motion gives: 

 
𝒎 Փ �̈�(𝑡) + 𝒌 Փ 𝐘(𝑡) = 𝒑(𝑡)         (A.32) 

 
The next step is to premultiply the above equation with the transpose of 𝜙𝑛 (𝜙𝑛𝑇). Premultiplying 
means that all elements are multiplied with the same number/variable (when 𝐴 + 𝐵 = 𝐶 then 2𝐴 +
2𝐵 = 2𝐶). Premultiplying the above equation: 

 
𝜙𝑛𝑇 𝒎 Փ �̈�(𝑡) + 𝜙𝑛𝑇 𝒌 Փ 𝐘(𝑡) = 𝜙𝑛𝑇 𝒑(𝑡)       (A.33) 

 
The natural modes can be shown to satisfy the following orthogonality conditions, when 𝜔𝑛 ≠ 𝜔𝑟: 

 
𝜙𝑛𝑇 𝒌 𝜙𝑟 = 0  and  𝜙𝑛𝑇 𝒎 𝜙𝑟 = 0        (A.34) 

 
This orthogonality implies that the square matrices for the stiffness and mass are diagonal, i.e.:  

 
𝜙𝑛𝑇 𝒌 𝜙𝑛 ≠ 0  and  𝜙𝑛𝑇 𝒎 𝜙𝑛 ≠ 0          (A.35) 

 
By expanding equation (A.33), and using equation (A.34) and (A.35), all terms except the nth term 
will vanish: 

 
𝜙𝑛𝑇 𝒎 𝜙𝑛 Ÿn(𝑡) + 𝜙𝑛𝑇 𝒌 𝜙𝑛 Yn(𝑡) = 𝜙𝑛𝑇 𝒑(𝑡)       (A.36) 

 
The diagonal elements are: 

 
𝐾𝑛 = 𝜙𝑛𝑇 𝒌 𝜙𝑛  and  𝑀𝑛 = 𝜙𝑛𝑇 𝒎 𝜙𝑛          (A.37) 

 
The relationship between these two equations is shown by using equation (A.25): 

 
𝐾𝑛  = 𝜙𝑛𝑇 𝒌 𝜙𝑛 = 𝜔𝑛2 𝑀𝑛         (A.38) 

 
The force is defined in the same way: 

 
𝑃𝑛(𝑡) = 𝜙𝑛𝑇 𝒑(𝑡)          (A.39) 
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To include damping at this point, it is assumed that 𝐶𝑛 can be expressed with the same orthogonality 
condition as 𝐾𝑛 and 𝑀𝑛 (see equation (15)): 

 
𝜙𝑛𝑇 𝒄 𝜙𝑟 = 0 ( 𝜔𝑛 ≠ 𝜔𝑟 )  and  𝐶𝑛 = 𝜙𝑛𝑇 𝒄 𝜙𝑛      (A.40) 

 
This is the most common approach to define damping, called classical damping, which gives the same 
natural modes as without the damping. The classical damping matrix is usually applied when a 
building has its damping mechanisms spread evenly in the building, i.e., a relatively symmetric 
building without too many abnormalities. An example of a classical damping is Rayleigh damping. 
This consists of a mass- and stiffness-proportional damping: 

 
𝒄 =  𝛼 𝒎 +  𝛽 𝒌             (A.41) 

 
where 𝛼 and 𝛽 are constants. 

The equation of motion, including damping, is now uncoupled. The equation for the 2DOF system 
mentioned earlier would be: 

 

� 𝑀1 0
0 𝑀2

 � � 
Ÿ1(𝑡)
Ÿ2(𝑡)

 � + � 𝐶1 0
0 𝐶2

 � � 
Ẏ1(𝑡)
Ẏ2(𝑡)

 � + � 𝐾1 0
0 𝐾2

 � � 
Y1(𝑡)
Y2(𝑡) � = � 

𝑃1(𝑡)
𝑃2(𝑡) �   (A.42) 

 
or on a more compact form: 

 
𝑀𝑛 Ÿn(𝑡) + 𝐶𝑛 Ẏn(𝑡) + 𝐾𝑛 Yn(𝑡) = 𝑃𝑛(𝑡)       (A.43) 

 
Normally, this equation is divided by the generalized mass since it is more convenient and physically 
reasonable to express the equation with the damping ratio, because it is a variable that can be 
measured experimentally or estimated with good precision.  

 
Ÿn(𝑡) + 2 ξn 𝜔𝑛 Ẏn(𝑡) + 𝜔𝑛2 Yn(𝑡) = 𝑃𝑛(𝑡)

𝑀𝑛
       (A.44) 

 
where ξnis the critical damping ratio, defined as: 

 

ξn =
𝐶𝑛 

2 𝑀𝑛 𝜔𝑛
           (A.45) 

 
If ξnis equal to 1, we have a state of critical damping, which explains the name. 
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The equation of motion is uncoupled, which means that it can be expressed as 𝑛 SDOF systems. To 
obtain the total response of the MDOF system, the 𝑛 SDOF equations are solved and their effects are 
superimposed. 

 

Normalization of modes 
 
As mentioned earlier, the matrix eigenvalue problem only determines the natural modes within a 
multiplication factor. This means that the modes can be scaled to our liking, which is called 
normalization. Sometimes it is most convenient to scale it so the largest element is equal to one or 
the top floor of a building is equal to one. In theoretical usage and in computer programs it is most 
beneficial to scale it so that the mass (𝑀𝑛) have unit values ([7], page 409): 

 

𝑀𝑛 = 𝜙𝑛𝑇 𝒎 𝜙𝑛 = 1     𝑴 = ՓT 𝒎 Փ = 𝐈 = �
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

�  (A.46) 

 
where 𝐈 is an identity matrix, i.e., a diagonal matrix with only ones. With the mass normalized, the 
stiffness becomes: 

 

𝐾𝑛  = 𝜙𝑛𝑇 𝒌 𝜙𝑛 = 𝜔𝑛2 𝑀𝑛 = 𝜔𝑛2   𝐊 = ՓT 𝒌 Փ = Ω2 = �
𝜔12 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜔𝑁

2
�  (A.47) 

 
where Ω is the spectral matrix. 
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Forced vib 
 
Since the MDOF system has been uncoupled, the same equations that are valid for the SDOF system 
are also valid for the MDOF system. Therefore the derivation can be done for a SDOF system. 

 

Harmonic excitation 
 
The system is subjected to a harmonically varying load p(t). The load is of sine-wave form with an 
amplitude 𝑝0 and circular frequency 𝜔 ([3], page 33-35). 

 
𝑚 �̈�(𝑡) + 𝑐 �̇�(𝑡) + 𝑘 𝑢(𝑡) = 𝑝0 sin𝜔 𝑡        (A.48) 

 
To simplify the solution process, the undamped system is investigated first. 

 
𝑚 �̈�(𝑡) + 𝑘 𝑢(𝑡) = 𝑝0 sin𝜔 𝑡         (A.49) 

 
The general solution consists of both a complementary and a particular solution. It can be shown that 
the complementary solution is [3]: 

 
𝑢𝑐(𝑡) =  𝐴 cos𝜔𝑛 𝑡 +  𝐵 sin𝜔𝑛 𝑡        (A.50) 

 
The complementary solution is the solution of the homogenous equation, i.e., the solution to the free 
vibration. A and B are constants that define the amplitude of the cos and sine functions. The values 
of them depend on the initial conditions. 

The general solution consists of both a complementary and a particular solution. The particular 
solution is the solution that depends of the form of excitation, in this case, the harmonic excitation. 
The particular solution is: 

 
𝑢𝑝(𝑡) =  𝐶 sin𝜔 𝑡 and  �̈�𝑝(𝑡) = − 𝜔2 𝐶 sin𝜔 𝑡     (A.51) 

 
where C is the amplitude.  

The above equations are substituted into equation (A.49): 

 
− 𝜔2 𝑚 𝐶 sin𝜔 𝑡 + 𝑘 𝐶 sin𝜔 𝑡 = 𝑝0 sin𝜔 𝑡       (A.52) 
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To find out what C is, the equation is first divided by sin𝜔 𝑡: 

 
− 𝜔2 𝑚 𝐶 + 𝑘 𝐶 = 𝑝0          (A.53) 

 
To isolate C, the equation is divided by k and the relationship 𝑘 𝑚⁄ = 𝜔𝑛2 is used: 

 

−  𝜔
2

𝜔𝑛2
 𝐶 + 𝐶 = 𝑝0

𝑘
          (A.54) 

 

Rearranging the equation and noting that 𝜔
2

𝜔𝑛2
= 𝛽2: 

 
𝐶 = 𝑝0

𝑘
� 1
1−𝛽2

�           (A.55) 

 

Now both the complimentary solution and the particular solution have been found, and the general 
solution becomes: 

 
𝑢(𝑡) = 𝑢𝑐(𝑡) + 𝑢𝑝(𝑡) = 𝐴 cos𝜔𝑛 𝑡 +  𝐵 sin𝜔𝑛 𝑡 + 𝑝0

𝑘
� 1
1−𝛽2

�  sin𝜔 𝑡    (A.56) 

 
As said earlier, both A and B depend on the initial conditions. If the system starts at rest, i.e., 
𝑢(0) = 0 and �̇�(0) = 0, the constant A is calculated by setting 𝑡 = 0, and B is found by taking the 
first derivative and then setting 𝑡 = 0: 

 
𝐴 = 0  and       𝐵 = −𝑝0

𝑘
� 𝛽
1−𝛽2

�       (A.57) 

 
By doing so the general solution response becomes: 

 
𝑢(𝑡) = 𝑝0

𝑘
� 1
1−𝛽2

�  (sin𝜔 𝑡 − 𝛽 sin𝜔𝑛 𝑡)        (A.58) 

 
where 𝑝0 𝑘⁄ = 𝑢𝑠𝑡 is the displacement the system would get if only affected by the static load 𝑝0. 
[1 1 − 𝛽2⁄ ] is the magnification factor representing an amplification effect based on the applied 

excitation. 𝑝0
𝑘
� 1
1−𝛽2

�  sin𝜔 𝑡  is called the steady-state response, and 𝑝0
𝑘
� 1
1−𝛽2

�  𝛽 sin𝜔𝑛 𝑡  is called the 

transient response. The latter one will disappear when damping is included. This means that very 
often in practical cases with damping the dominating response in the first second(s), if it is big 
enough to matter, is based on the transient response, and later only on the steady-state response.  
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If the initial conditions are not equal to zero, the general solution becomes: 

 
𝑢(𝑡) = 𝑢(0) cos𝜔𝑛 𝑡 + ��̇�(0)

𝜔𝑛
−  𝑝0

𝑘
� 𝛽
1−𝛽2

�� sin𝜔𝑛 𝑡 + 𝑝0
𝑘
� 1
1−𝛽2

�  sin𝜔 𝑡   (A.59) 

 
where: 

 
𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑢(0) cos𝜔𝑛 𝑡 +  ��̇�(0)

𝜔𝑛
−  𝑝0

𝑘
� 𝛽
1−𝛽2

�� sin𝜔𝑛 𝑡    (A.60) 

𝑆𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑝0
𝑘
� 1
1−𝛽2

�  sin𝜔 𝑡       (A.61) 

 
A normal way of portraying the influence of dynamic excitation is by defining the response ratio at 
rest: 

 
𝑅(𝑡) = 𝑢(𝑡)

𝑢𝑠𝑡
= 𝑢(𝑡)

𝑝0 𝑘⁄
= � 1

1−𝛽2
�  (sin𝜔 𝑡 − 𝛽 sin𝜔𝑛 𝑡)      (A.62) 

 
Both the transient and steady state response is graphed in the figure below. One thing that is worth 
mentioning is that the two responses in the case below are out of phase with each other. This gives 
the total response a beating effect. 

 

 

Figure A.8. a) steady state response; b) transient response; c) total response ([3], page 35) 
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With viscous damping 
 
It can be shown ([3], page 36-37) that the viscously damped total response is: 

 
𝑢(𝑡) = [ 𝐴 cos𝜔𝐷 𝑡 +  𝐵 sin𝜔𝐷 𝑡 ] 𝑒−ξ𝜔𝑡 +  𝑝0

𝑘
� 1

(1−𝛽2)2+(2 ξ 𝛽)2
 �  [ (1 − 𝛽2) sin𝜔 𝑡 − 2 ξ 𝛽 cos𝜔 𝑡 ] (A.63) 

 

where 𝜔𝐷 = 𝜔 �1 − ξ2 and  𝑒−ξ𝜔𝑡 governs the rate of decay in the transient response. If the 

transient response (first term on the right hand side) and the steady state response (last term) is 
graphed, it is clear that the transient response disappears relatively rapidly within the first four 
periods.  

 

 

Figure A.9. Left) Transient response; Middle) Steady State response; Right) Total response. 
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Damping 

Evaluation of viscous-damping ratio 
 
Buildings, as well as most structures are underdamped, i.e., ξ ≪ 1. When a structure is underdamped 
the free vibration decays out with time as the structure slowly losses its energy until the oscillations 
stop. 

 

Figure A.10. Response of an underdamped system ([4],page 91). 

There are many ways of determining the damping ratio of a system. Two of the most common ones 
are the Half-power bandwidth method ([7], page 83) and the Free-Vibration Decay method ([5], page 35). 
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Half-power bandwidth method  
 
The Half-power bandwidth method uses the resonant amplitude, or rather 1 √2⁄   times the resonant 
amplitude, to calculate the damping ratio.  

The equation is written as follows: ξ = ωb − ωa 2ωn⁄ , where ωa and ωb are the forcing frequencies 

on either side of the resonant frequency, ωn, at which the amplitude is  1 √2⁄  times the resonant 
amplitude. (Anil K. Chopra [7], Dynamics of Structures, 2007, page 83) 

 
Figure A.11. Definition of half-power bandwidth ([8], page 34). 

 

The Free-Vibration Decay Method 
 
The Free-Vibration Decay Method is the simplest and most used method for measuring damping. To 
use this method, one has to excite a system and then suddenly stop the excitation. The next step is 
to evaluate the free vibration response. The rate of decay of oscillation is the interesting factor. By 
using two peak amplitude values and the number of oscillations between them, one can determine 
the damping ratio of the system by using the equations below ([5], page 35): 

The logarithmic decrement, 𝛬, is: 

 

𝛬 = ln xl
xll

           (A.64) 

 
where xl and xll are the peak amplitudes shown in Figure A.12. 

The rate of decay is exponential, which makes: 

 
xl = 𝑋 𝑒−ξ𝜔𝑡  and  xll = 𝑋 𝑒−ξ𝜔(𝑡+𝜏𝑑)     (A.65) 

 
where 𝜏𝑑 is the period of the damped oscillation. 
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Substituting the equations for  xl and xll into the original equation gives: 

 

𝛬 = ln 𝑋 𝑒−ξ𝜔𝑡

𝑋 𝑒−ξ𝜔(𝑡+𝜏𝑑) = ξ𝜔𝜏𝑑         (A.66) 

 
and since: 

 

𝜏𝑑 = 2 𝜋
𝜔𝑑

= 2 𝜋

𝜔 �1−ξ2
           then:  𝛬 = 2 𝜋 ξ

�1−ξ2
= ln xl

xll
   (A.67) 

 
For the underdamped scenario it is preferred to evaluate two peak amplitudes that are many cycles 
apart. By expanding the equation with number of cycles, 𝑁, and knowing that 𝛬 ≅ 2 𝜋 ξ for small 

values of ξ, the damping ratio becomes: 

 

ξ = 1
2 π

 ln � 𝑥𝑖
𝑥𝑗

 �  1
𝑁

          (A.68) 

 

 

Figure A.12. Vibration Decay ([5], page 35) 
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Rayleigh Damping 
 
Rayleigh damping is the traditional damping model used in step-by-step or time-history programs. 
The reason why it is so popular is that the Rayleigh damping only uses two variables and all matrices 
are already computed from the analysis. The matrices used are the mass matrix and the stiffness 
matrix ([6], page 4). 

 
𝑪 = 𝜶 𝑴 + 𝜷 𝑲          (A.69) 

 

 

Figure A.13. Rayleigh Damping Model. ([6], page 3) 
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Caughey  Damping 
 
The Caughey Damping Model is used when one has to have the same damping ratio on a great 
number of modes. The damping matrix can be expressed as follows ([6], page 6): 

 
𝑪 = 𝑴∑ 𝒂𝒃

𝑵−𝟏+𝒒
𝒃=𝟎  [𝑴−𝟏𝑲]𝒃          (A.70) 

 
where q is any integer and N is the number of nodes at which damping is specified. 

The original equation of the Caughey Damping Model is awkward to use for any computation. Wilson 
and Penzien have developed a more simple way of obtaining the same damping model. It uses the 
properties of orthogonality of the mode shapes, which is done in the chapter: Orthogonality of 
modes. It uses the generalized mass of the ith mode: 

 
𝑚𝑖 = 𝜙𝑖𝑇 𝑴 𝜙𝑖            (A.71) 

 
The same way the generalized damping is computed: 

 
 𝑐𝑖 = 2 λi 𝑚𝑖 𝜔𝑖 = 𝜙𝑖𝑇 𝑪 𝜙𝑖         (A.72) 

 
where λ is the critical damping ratio. 

 

 

Figure A.14. Caughey Damping Model: Linear or Tri-linear Damping Model. ([6], page 6) 
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Effect of a Secondary System: Dynamic Vibration Absorber 
 
When a single mass, without damping, is excited by a harmonic force with a frequency equal to the 
natural frequency of the main mass, the response is infinite (resonance). Now a second mass is 
introduced to the system, an absorber mass, which is tuned to have the same natural frequency as 
the main mass. By doing so, the response of the main mass at its natural frequency becomes zero. 
This happens because the absorber mass changes the 1DOF into a 2DOF which has two resonance 
frequencies, neither of which equals the original resonance frequency of the main mass. The 
absorber mass absorbs the motion of the main mass [9]. 

The response at the two new natural frequencies is also infinite, which may not be a problem when a 
machine is running at working frequency, but it may cause problems during startup and shutdown. 
When damping is introduced, the response is no longer infinite at the natural frequencies, but the 
response of the main mass is no longer zero at the original resonance frequency [9]. 

This phenomenon occurs in the results of this report, and an example of the occurrence is shown in 
Figure 2.13. The green curve represents the response of the Primary System (Main mass) when it is 
excited with a frequency equal to its natural frequency. The blue curve represents the response of 
the Primary System with a Secondary System attached. 

 

 

Figure A.15. A response spectrum showing the damping effect when the SS system is attached. 
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Solutions of the equation of motion 
 
There are various ways of obtaining the solution to the equation of motion, e.g., Duhamel’s Integral, 
Frequency-Response Method, Central Difference Method and Direct Integration (Newmark’s 
Method). 

Duhamel’s Integral is often preferred for arbitrary loading, see Appendix A: Duhamel’s integral. 

Direct integration of the equation of motion is the method used by the FEM program, Ruaumoko. 
 

Duhamel’s integral 
 
The above equations are only valid for harmonic excitation. If we wish to expose the structure to any 
other excitation scenarios, we have to develop new equations. One way is by using Duhamel’s 
integral. This integral is valid for any arbitrary excitation and is therefore very useful when dealing 
with for example ground motion. Duhamel’s integral is basically the sum of infinitesimal responses. 

One way to express Duhamel’s integral is by looking at a unit-impulse ( 𝑓 = 1 ) at time equal zero, 
i.e., a Dirac delta function 𝛿(𝑡). 
 

           

                              Figure A.16. Unit impulse.                               Figure A.17. Duhamel’s Integral. 

 

The equation of motion for a damped SDF system: 

 
𝑚 �̈�(𝑡) + 𝑐 �̇�(𝑡) + 𝑘 𝑢(𝑡) = 0         (A.73) 

 
By assuming that the system is under damped and that ∆t ≪ 𝜔𝑛, the solution becomes: 

 
𝑢(𝑡) = 𝑒−ξ𝜔𝑛𝑡 ( 𝑢𝑜 cos𝜔𝐷 𝑡 + �̇�𝑜+ξ𝜔𝑛𝑢𝑜

𝜔𝐷
 sin𝜔𝐷 𝑡 )      (A.74) 

 
The mass is in its equilibrium position at start, i.e., at rest initial conditions: 

 
𝑢 =  �̇� = 0  for 𝑡 < 0 𝑎𝑛𝑑 𝑡 = 0   ̅       (A.75) 
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The impulse load is defined as: 

 
𝑓 = 1 = 𝑝 ∆t = 𝑚 �̇�2 − 𝑚 �̇�1 = 𝑚 �̇�(𝑡 = 0) −𝑚 �̇�(𝑡 = 0   ̅) = �̇�𝑜     (A.76) 

 
From this the boundary conditions are: 

 
𝑢(𝑡 = 0) = 𝑢𝑜 = 0 and �̇�(𝑡 = 0) = �̇�𝑜 = 1

𝑚
       (A.77) (A.78) 

 
Substituting the boundary conditions back into equation (A.74) gives: 

 
𝑢(𝑡) = 𝑔(𝑡) = 1

𝑚 𝜔𝐷
 𝑒−ξ𝜔𝑛𝑡 sin𝜔𝐷 𝑡        (A.79) 

 
where g(t) is the unit-impulse function response. 

To make the function valid for arbitrary excitation, we must expand the above equation. If the 
impulse happened at 𝑡 = τ instead of 𝑡 = 0, i.e., 𝑝(𝑡) = 𝛿(𝑡 − τ), the impulse response would be: 

 
𝑢(𝑡 − τ) = 1

𝑚 𝜔𝐷
 𝑒−ξ𝜔𝑛(𝑡−τ) sin𝜔𝐷 (𝑡 − τ)   when 𝑡 ≥ τ     (A.80) 

 
It is shown that the response can be calculated at a certain point by the above equation. By making a 
series of impulse responses and superposing them, we get the solution to an arbitrary load. It can be 
shown that an arbitrary load can be broken down into a series of impulses: 

 
𝑝(𝑡) ≈ ∑𝑝(τ) ∆τ 𝛿(𝑡 − τ)         (A.81) 

 

Because we have a linear system the same can be said about the response: 

 
𝑢(𝑡) ≈ ∑𝑝(τ) ∆τ 𝑢(𝑡 − τ)         (A.82) 

 
By letting ∆τ → 0 and taking the integral instead of the sum, we get the exact solution: 

 
𝑢(𝑡) = ∫ 𝑝(τ) 𝑢(𝑡 − τ)𝑡

0 𝑑τ         (A.83) 

 
Substituting equation (A.80) into the above equation gives the general expression of Duhamel’s 
integral: 

 

𝑢(𝑡) =  1
𝑚 𝜔𝐷

∫ 𝑝(τ) 𝑒−ξ𝜔𝑛(𝑡−τ) sin[𝜔𝐷 (𝑡 − τ)] 𝑡
0 𝑑τ      (A.84) 
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Direct integration of the equation of motion 
 
In 1959, N. M. Newmark developed several methods for solving differential equations numerically by 
integration. The two most well know methods are the average acceleration and the linear 
acceleration. Newmark’s methods are time-stepping methods. ([6], page 46-47) 

The Newmark Constant Average Acceleration method is often used in computer programs and 
Ruaumoko, the FEM program used in this thesis, is no exception. The method is a step-by-step 
integration of the equation of motion. The acceleration is assumed to be constant during the time 
step, i.e., time 𝑡 and time 𝑡 + ∆𝑡. This gives the following relation between the accelerations: 

 
�̈� = �̈�(𝑡)+�̈�(𝑡+∆𝑡)

2
          (A.85) 

 
 
Integrating with respect to time over the time-step ∆𝑡 gives the velocity and displacement. By 
rearranging and letting the increment in the displacement be the variable, the increment in the 
acceleration is: 

 
∆�̈� = �̈�(𝑡 + ∆𝑡) − �̈�(𝑡) = 4 ∆𝑢

(∆𝑡)2  −  4 �̇�(𝑡)
∆𝑡

 − 2 �̈�(𝑡)       (A.86) 
 
 
and the increment in the velocity is: 

 
∆�̇� = �̇�(𝑡 + ∆𝑡) − �̇�(𝑡) = 2 ∆𝑢

∆𝑡
 − 2 �̇�(𝑡)       (A.87) 

 
 
Substituting the acceleration and velocity into the equation of motion at time 𝑡 + ∆𝑡 gives: 

 
𝑚 [ �̈�(𝑡) + ∆�̈� ] +  𝑐 [ �̇�(𝑡) + ∆�̇� ] +  𝑘 [ 𝑢(𝑡) + ∆𝑢 ] = 𝑝(𝑡 + ∆𝑡)     (A.88) 
 
 

The stiffness term can be rewritten as: 

 
𝑘(𝑡 + ∆𝑡)[ 𝑢(𝑡) + ∆𝑢 ] = 𝑘(𝑡)[ 𝑢(𝑡) ] + 𝑘𝑡[ ∆𝑢 ] = 𝐹𝐸𝑙𝑎𝑠𝑡𝑖𝑐(𝑡) + 𝑘𝑡[ ∆𝑢 ]   (A.89) 
 
 
where 𝑘(𝑡) is the secant stiffness matrix at time t, the elastic forces are the nodal equivalent of the 
member forces at time t and 𝑘𝑡 is the current tangent stiffness matrix. 

The damping term may also be rewritten similarly to the stiffness term: 

 
𝑐(𝑡 + ∆𝑡)[ �̇�(𝑡) + ∆�̇� ] = 𝑐(𝑡)[ �̇�(𝑡) ] + 𝑐𝑡[ ∆�̇� ] = 𝐹𝐷𝑎𝑚𝑝𝑖𝑛𝑔(𝑡) + 𝑐𝑡[ ∆�̇� ]   (A.90) 
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where the damping forces are at time t and the matrix 𝑐𝑡 is the current tangent damping matrix. 

Substituting the two above equations into the equation of motion gives: 

 
𝑚 [ ∆�̈� ] +  𝑐𝑡[ ∆�̇� ] +  𝑘𝑡[ ∆𝑢 ] = 𝑝(𝑡 + ∆𝑡) −𝑚 [ �̈�(𝑡) ] − 𝐹𝐷𝑎𝑚𝑝𝑖𝑛𝑔(𝑡) − 𝐹𝐸𝑙𝑎𝑠𝑡𝑖𝑐(𝑡)   (A.91) 
 
 
Inserting equation (A.86) and (A.87) into equation (A.91) gives: 

 
� 4

(∆𝑡)2
 𝑚 + 2

∆𝑡
𝑐𝑡 +  𝑘𝑡� [ ∆𝑢 ] = 𝑝(𝑡 + ∆𝑡) + 𝑚 � �̈�(𝑡) + 4

∆𝑡
 �̇�(𝑡)� + 2 𝑐𝑡[ �̇�(𝑡) ]–𝐹𝐷𝑎𝑚𝑝𝑖𝑛𝑔 − 𝐹𝐸𝑙𝑎𝑠𝑡𝑖𝑐  (A.92) 

 
 
If the damping matrix is constant (does not change with time), the above equation can be simplified 
to the following: 

 
� 4

(∆𝑡)2
 𝑚 + 2

∆𝑡
𝑐𝑡 +  𝑘𝑡� [ ∆𝑢 ] = 𝑝(𝑡 + ∆𝑡) + 𝑚 � �̈�(𝑡) + 4

∆𝑡
 �̇�(𝑡)� + 𝐹𝐷𝑎𝑚𝑝𝑖𝑛𝑔 − 𝐹𝐸𝑙𝑎𝑠𝑡𝑖𝑐    (A.93) 

 
 
From this equation the incremental displacement can be calculated, hence the displacement, velocity 
and acceleration vectors, along with the member forces, can be updated. When the damping matrix 
and the stiffness matrix are updated, the whole process can be repeated to find the next incremental 
displacement.  

The Newmark Constant Average Acceleration method is unconditionally stable. However, the time 
step should be very small (0.01-0.02 sec) to avoid getting any errors in the accuracy. 

 

Figure A.18. Newmark Constant Average Acceleration method - Time steps. 
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Ground vibration 
 

 

Figure A.19. Ground vibration �̈�𝒈. 

 
The equation of motion for a structure subjected to an earthquake ground motion is ([7], page 203): 

 
𝑚 �̈� +  𝑐 �̇� +  𝑘 𝑢 = − 𝑚 �̈�𝑔(𝑡)         (A.94) 
 
 
or divided by the mass: 

 
 �̈� + 2 ξ 𝜔  �̇� +𝜔2 𝑢 = − �̈�𝑔(𝑡)         (A.95) 
 
 
The solution to the equation above can be solved by using Duhamel’s integral (A.84): 

 
𝑢(𝑡) = −  1

𝜔𝐷
 ∫ �̈�𝑔(τ)𝑡
0  𝑒−ξ𝜔𝑛(𝑡−τ)  sin[𝜔𝐷 (𝑡 − τ)]  𝑑τ      (A.96) 
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Response spectrum 
 
A response spectrum is basically a plot of the peak response or peak steady-state response of a 
structure with varying natural frequency. In a system where the excitation is harmonic, the steady-
state response is usually the preferred response, i.e., the transient response is not of interest. If a 
system undergoes an earthquake load, the peak (transient) response is the one desired.  

The response spectrum is a very well known concept in earthquake engineering. It was already 
initiated in 1932 by M. A. Biot [10]. It is especially useful when you are in a seismic area. Given the 
earthquake ground motion, the response spectrum is made by exposing systems with different 
natural frequencies to the same ground motion. The damping ratio is fixed, but by running multiple 
response spectra with different damping ratios you cover the relevant damping values. 

A response spectrum has peak amplitudes, which indicates that the excitation frequency hits the 
natural frequency of one of the modes. 

The figure below is an example of a response spectrum. This specific spectrum shows the 
displacement plotted against frequency. The spectrum belongs to secondary system 3, which has 
been calculated in the analysis part of this thesis (Chapter 5). 

 

 

Figure A.20. Response spectrum. 
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B. Appendix B: 
 

Results 
 

Earthquake floor response at the location of the secondary structure 
 
 “PS with SS1” means that the response of the node at the secondary system location is measured 
with secondary system 1 present. “PS alone” means that the response of the floor node is measured 
without the influence of a secondary system. 

Earthquake 2000kav (floor response): 
 

 
 

 

 

Figure B.1. 2000kav: Relative acceleration time series comparison between PS with SS in place and PS alone. 

 
In the graphs above, where only the blue curve is visible, the motion of the floor with and without 
the secondary system in place is exactly the same. 
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Earthquake 2000kns (floor response): 
 

  
 

  

  

Figure B.2. 2000kns: Relative acceleration time series comparison between PS with SS in place and PS alone. 
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Earthquake 2008kav (floor response): 
 

 
 

 

 

Figure B.3. 2000kav: Relative acceleration time series comparison between PS with SS in place and PS alone. 
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The effect of the damping ratio for SS during earthquakes 
 

Secondary system 2 during earthquake 2000kav and secondary system 1 during earthquake 2000kav 
are shown below. 

  
 

 

Figure B.4. Comparison of relative acceleration between SS analyzed separately (red curve) and SS analyzed 
jointly (blue curve). 

  
 

 

Figure B.5.Comparison of relative acceleration between SS analyzed separately (red curve) and SS analyzed 
jointly (blue curve). 
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Seismic Coefficient comparison 
 

The  seismic  coefficient  comparisons  for  earthquake  2000kns,  2008kav  and  2008kns  are  shown 
below. Blue  curve  is  the  seismic  coefficient  calculated by  the Eurocode 8  standard  (Equation 6.3). 
Green curve means that the secondary system is analyzed jointly with the primary system. Red curve 
means that the secondary system is analyzed separately (floor response method). 

 
Figure B.6. Seismic coefficient comparison for earthquake 2000kns. Blue curve is the seismic coefficient 
calculated by the Eurocode 8 standard (Equation 6.3). Green curve means that the secondary system is 
analyzed jointly with the primary system. 

 
Figure B.7. Seismic coefficient comparison for earthquake 2000kns. Blue curve is the seismic coefficient 
calculated by the Eurocode 8 standard (Equation 6.3). Red curve means that the secondary system is 
analyzed separately (floor response method). 
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The seismic coefficient comparison for earthquake 2008kav is shown below. 

 
Figure B.8. Seismic coefficient comparison for earthquake 2008kav. Blue curve is the seismic coefficient 
calculated by the Eurocode 8 standard (Equation 6.3). Green curve means that the secondary system is 
analyzed jointly with the primary system. 

 
Figure B.9. Seismic coefficient comparison for earthquake 2008kav. Blue curve is the seismic coefficient 
calculated by the Eurocode 8 standard (Equation 6.3). Red curve means that the secondary system is 
analyzed separately (floor response method). 
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The seismic coefficient comparison for earthquake 2008kns is shown below. 

 
Figure B.10. Seismic coefficient comparison for earthquake 2008kns. Blue curve is the seismic coefficient 
calculated by the Eurocode 8 standard (Equation 6.3). Green curve means that the secondary system is 
analyzed jointly with the primary system. 

 
Figure B.11. Seismic coefficient comparison for earthquake 2008kns. Blue curve is the seismic coefficient 
calculated by the Eurocode 8 standard (Equation 6.3). Red curve means that the secondary system is 
analyzed separately (floor response method). 
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Ruaumoko Model 
 

Example of a FE model for the primary system 
 
Cardington Building, Primary system, Earthquake 2000kav 
2 0 0 4 3 0 0 0                                   ! Control Parameters 
DEFAULT                                            ! Earthquake Directions 
478 577 16 12 10 0 9.81 0.0081 0.0069 0.005 30.0   ! Structural control Parameters 
0  1  0 20 0.1 0.1 0.1 0                           ! Output Parameters 
0 0 0.001 0.0 0.0 0.0 0.0 0.0 0.0                 ! Iteration Parameters 
1 0.8 2 0.8 3 0.8 4 0.8 5 0.8 6 0.8 7 0.8 8 0.8 9 0.8 10 0.8  ! User Specified Modal Damping Parameters 
 
 
NODES 0 
1 0 -0.55 0 1 1 1 1 1 1 0 3 ! Base 
under Columns at Ground Floor 
2 7.5 -0.55 0 1 1 1 1 1 1 0 3  
3 15 -0.55 0 1 1 1 1 1 1 0 3  
4 22.5 -0.55 0 1 1 1 1 1 1 0 3  
5 0 -0.55 7.5 1 1 1 1 1 1 0 3  
6 7.5 -0.55 7.5 1 1 1 1 1 1 0 3  
7 15 -0.55 7.5 1 1 1 1 1 1 0 3  
8 22.5 -0.55 7.5 1 1 1 1 1 1 0 3  
9 0 -0.55 15 1 1 1 1 1 1 0 3  
10 7.5 -0.55 15 1 1 1 1 1 1 0 3  
11 15 -0.55 15 1 1 1 1 1 1 0 3  
12 22.5 -0.55 15 1 1 1 1 1 1 0 3  
13 0 -0.55 22.5 1 1 1 1 1 1 0 3  
14 7.5 -0.55 22.5 1 1 1 1 1 1 0 3  
15 15 -0.55 22.5 1 1 1 1 1 1 0 3  
16 22.5 -0.55 22.5 1 1 1 1 1 1 0 3  
17 0 -0.55 30 1 1 1 1 1 1 0 3  
18 7.5 -0.55 30 1 1 1 1 1 1 0 3  
19 15 -0.55 30 1 1 1 1 1 1 0 3  
20 22.5 -0.55 30 1 1 1 1 1 1 0 3  
21 0 0 0 0 0 0 0 0 0 0 3 ! 
Columns at Ground Floor 
22 7.5 0 0 0 0 0 0 0 0 0 3  
23 15 0 0 0 0 0 0 0 0 0 3  
24 22.5 0 0 0 0 0 0 0 0 0 3  
25 0 0 7.5 0 0 0 0 0 0 0 3  
26 7.5 0 7.5 0 0 0 0 0 0 0 3  
27 15 0 7.5 0 0 0 0 0 0 0 3  
28 22.5 0 7.5 0 0 0 0 0 0 0 3  
29 0 0 15 0 0 0 0 0 0 0 3  
30 7.5 0 15 0 0 0 0 0 0 0 3  
31 15 0 15 0 0 0 0 0 0 0 3  
32 22.5 0 15 0 0 0 0 0 0 0 3  
33 0 0 22.5 0 0 0 0 0 0 0 3  
34 7.5 0 22.5 0 0 0 0 0 0 0 3  
35 15 0 22.5 0 0 0 0 0 0 0 3  
36 22.5 0 22.5 0 0 0 0 0 0 0 3  
37 0 0 30 0 0 0 0 0 0 0 3  
38 7.5 0 30 0 0 0 0 0 0 0 3  
39 15 0 30 0 0 0 0 0 0 0 3  
40 22.5 0 30 0 0 0 0 0 0 0 3  
41 0 3.625 0 0 0 0 0 0 0 0 0 ! 
Columns  at Floor 1 
42 7.5 3.625 0 0 0 0 0 0 0 0 3  
43 15 3.625 0 0 0 0 0 0 0 0 3  
44 22.5 3.625 0 0 0 0 0 0 0 0 0  
45 0 3.625 7.5 0 0 0 0 0 0 0 3  
46 7.5 3.625 7.5 0 0 0 0 0 0 0 3  
47 15 3.625 7.5 0 0 0 0 0 0 0 3  
48 22.5 3.625 7.5 0 0 0 0 0 0 0 3  
49 0 3.625 15 0 0 0 0 0 0 0 3  
50 7.5 3.625 15 0 0 0 0 0 0 0 3  
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51 15 3.625 15 0 0 0 0 0 0 0 3  
52 22.5 3.625 15 0 0 0 0 0 0 0 3  
53 0 3.625 22.5 0 0 0 0 0 0 0 3  
54 7.5 3.625 22.5 0 0 0 0 0 0 0 3  
55 15 3.625 22.5 0 0 0 0 0 0 0 3  
56 22.5 3.625 22.5 0 0 0 0 0 0 0 3  
57 0 3.625 30 0 0 0 0 0 0 0 0  
58 7.5 3.625 30 0 0 0 0 0 0 0 3  
59 15 3.625 30 0 0 0 0 0 0 0 3  
60 22.5 3.625 30 0 0 0 0 0 0 0 0  
61 0 7.375 0 0 0 0 0 0 0 0 0 ! 
Columns  at Floor 2 
62 7.5 7.375 0 0 0 0 0 0 0 0 3  
63 15 7.375 0 0 0 0 0 0 0 0 3  
64 22.5 7.375 0 0 0 0 0 0 0 0 0  
65 0 7.375 7.5 0 0 0 0 0 0 0 3  
66 7.5 7.375 7.5 0 0 0 0 0 0 0 3  
67 15 7.375 7.5 0 0 0 0 0 0 0 3  
68 22.5 7.375 7.5 0 0 0 0 0 0 0 3  
69 0 7.375 15 0 0 0 0 0 0 0 3  
70 7.5 7.375 15 0 0 0 0 0 0 0 3  
71 15 7.375 15 0 0 0 0 0 0 0 3  
72 22.5 7.375 15 0 0 0 0 0 0 0 3  
73 0 7.375 22.5 0 0 0 0 0 0 0 3  
74 7.5 7.375 22.5 0 0 0 0 0 0 0 3  
75 15 7.375 22.5 0 0 0 0 0 0 0 3  
76 22.5 7.375 22.5 0 0 0 0 0 0 0 3  
77 0 7.375 30 0 0 0 0 0 0 0 0  
78 7.5 7.375 30 0 0 0 0 0 0 0 3  
79 15 7.375 30 0 0 0 0 0 0 0 3  
80 22.5 7.375 30 0 0 0 0 0 0 0 0  
81 0 11.125 0 0 0 0 0 0 0 0 0 ! 
Columns  at Floor 3 
82 7.5 11.125 0 0 0 0 0 0 0 0 3  
83 15 11.125 0 0 0 0 0 0 0 0 3  
84 22.5 11.125 0 0 0 0 0 0 0 0 0  
85 0 11.125 7.5 0 0 0 0 0 0 0 3  
86 7.5 11.125 7.5 0 0 0 0 0 0 0 3  
87 15 11.125 7.5 0 0 0 0 0 0 0 3  
88 22.5 11.125 7.5 0 0 0 0 0 0 0 3  
89 0 11.125 15 0 0 0 0 0 0 0 3  
90 7.5 11.125 15 0 0 0 0 0 0 0 3  
91 15 11.125 15 0 0 0 0 0 0 0 3  
92 22.5 11.125 15 0 0 0 0 0 0 0 3  
93 0 11.125 22.5 0 0 0 0 0 0 0 3  
94 7.5 11.125 22.5 0 0 0 0 0 0 0 3  
95 15 11.125 22.5 0 0 0 0 0 0 0 3  
96 22.5 11.125 22.5 0 0 0 0 0 0 0 3  
97 0 11.125 30 0 0 0 0 0 0 0 0  
98 7.5 11.125 30 0 0 0 0 0 0 0 3  
99 15 11.125 30 0 0 0 0 0 0 0 3  
100 22.5 11.125 30 0 0 0 0 0 0 0 0  
101 0 14.875 0 0 0 0 0 0 0 0 0 ! 
Columns  at Floor 4 
102 7.5 14.875 0 0 0 0 0 0 0 0 3  
103 15 14.875 0 0 0 0 0 0 0 0 3  
104 22.5 14.875 0 0 0 0 0 0 0 0 0  
105 0 14.875 7.5 0 0 0 0 0 0 0 3  
106 7.5 14.875 7.5 0 0 0 0 0 0 0 3  
107 15 14.875 7.5 0 0 0 0 0 0 0 3  
108 22.5 14.875 7.5 0 0 0 0 0 0 0 3  
109 0 14.875 15 0 0 0 0 0 0 0 3  
110 7.5 14.875 15 0 0 0 0 0 0 0 3  
111 15 14.875 15 0 0 0 0 0 0 0 3  
112 22.5 14.875 15 0 0 0 0 0 0 0 3  
113 0 14.875 22.5 0 0 0 0 0 0 0 3  
114 7.5 14.875 22.5 0 0 0 0 0 0 0 3  
115 15 14.875 22.5 0 0 0 0 0 0 0 3  
116 22.5 14.875 22.5 0 0 0 0 0 0 0 3  
117 0 14.875 30 0 0 0 0 0 0 0 0  
118 7.5 14.875 30 0 0 0 0 0 0 0 3  
119 15 14.875 30 0 0 0 0 0 0 0 3  
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120 22.5 14.875 30 0 0 0 0 0 0 0 0  
121 0 18.625 0 0 0 0 0 0 0 0 0 ! 
Columns  at Floor 5 
122 7.5 18.625 0 0 0 0 0 0 0 0 3  
123 15 18.625 0 0 0 0 0 0 0 0 3  
124 22.5 18.625 0 0 0 0 0 0 0 0 0  
125 0 18.625 7.5 0 0 0 0 0 0 0 3  
126 7.5 18.625 7.5 0 0 0 0 0 0 0 3  
127 15 18.625 7.5 0 0 0 0 0 0 0 3  
128 22.5 18.625 7.5 0 0 0 0 0 0 0 3  
129 0 18.625 15 0 0 0 0 0 0 0 3  
130 7.5 18.625 15 0 0 0 0 0 0 0 3  
131 15 18.625 15 0 0 0 0 0 0 0 3  
132 22.5 18.625 15 0 0 0 0 0 0 0 3  
133 0 18.625 22.5 0 0 0 0 0 0 0 3  
134 7.5 18.625 22.5 0 0 0 0 0 0 0 3  
135 15 18.625 22.5 0 0 0 0 0 0 0 3  
136 22.5 18.625 22.5 0 0 0 0 0 0 0 3  
137 0 18.625 30 0 0 0 0 0 0 0 0  
138 7.5 18.625 30 0 0 0 0 0 0 0 3  
139 15 18.625 30 0 0 0 0 0 0 0 3  
140 22.5 18.625 30 0 0 0 0 0 0 0 0  
141 0 22.375 0 0 0 0 0 0 0 0 0 ! 
Columns  at Floor 6 
142 7.5 22.375 0 0 0 0 0 0 0 0 3  
143 15 22.375 0 0 0 0 0 0 0 0 3  
144 22.5 22.375 0 0 0 0 0 0 0 0 0  
145 0 22.375 7.5 0 0 0 0 0 0 0 3  
146 7.5 22.375 7.5 0 0 0 0 0 0 0 3  
147 15 22.375 7.5 0 0 0 0 0 0 0 3  
148 22.5 22.375 7.5 0 0 0 0 0 0 0 3  
149 0 22.375 15 0 0 0 0 0 0 0 3  
150 7.5 22.375 15 0 0 0 0 0 0 0 3  
151 15 22.375 15 0 0 0 0 0 0 0 3  
152 22.5 22.375 15 0 0 0 0 0 0 0 3  
153 0 22.375 22.5 0 0 0 0 0 0 0 3  
154 7.5 22.375 22.5 0 0 0 0 0 0 0 3  
155 15 22.375 22.5 0 0 0 0 0 0 0 3  
156 22.5 22.375 22.5 0 0 0 0 0 0 0 3  
157 0 22.375 30 0 0 0 0 0 0 0 0  
158 7.5 22.375 30 0 0 0 0 0 0 0 3  
159 15 22.375 30 0 0 0 0 0 0 0 3  
160 22.5 22.375 30 0 0 0 0 0 0 0 0  
161 0 26.125 0 0 0 0 0 0 0 0 0 ! 
Columns  at Floor 7 
162 7.5 26.125 0 0 0 0 0 0 0 0 3  
163 15 26.125 0 0 0 0 0 0 0 0 3  
164 22.5 26.125 0 0 0 0 0 0 0 0 0  
165 0 26.125 7.5 0 0 0 0 0 0 0 3  
166 7.5 26.125 7.5 0 0 0 0 0 0 0 3  
167 15 26.125 7.5 0 0 0 0 0 0 0 3  
168 22.5 26.125 7.5 0 0 0 0 0 0 0 3  
169 0 26.125 15 0 0 0 0 0 0 0 3  
170 7.5 26.125 15 0 0 0 0 0 0 0 3  
171 15 26.125 15 0 0 0 0 0 0 0 3  
172 22.5 26.125 15 0 0 0 0 0 0 0 3  
173 0 26.125 22.5 0 0 0 0 0 0 0 3  
174 7.5 26.125 22.5 0 0 0 0 0 0 0 3  
175 15 26.125 22.5 0 0 0 0 0 0 0 3  
176 22.5 26.125 22.5 0 0 0 0 0 0 0 3  
177 0 26.125 30 0 0 0 0 0 0 0 0  
178 7.5 26.125 30 0 0 0 0 0 0 0 3  
179 15 26.125 30 0 0 0 0 0 0 0 3  
180 22.5 26.125 30 0 0 0 0 0 0 0 0  
181 3.75 3.625 0 0 0 0 0 0 0 0 3 ! Floor 1 
182 11.25 3.625 0 0 0 0 0 0 0 0 3  
183 18.75 3.625 0 0 0 0 0 0 0 0 3  
184 0 3.625 3.75 0 0 0 0 0 0 0 3  
185 3.75 3.625 3.75 0 0 0 0 0 0 0 3  
186 7.5 3.625 3.75 0 0 0 0 0 0 0 3  
187 11.25 3.625 3.75 0 0 0 0 0 0 0 3  
188 15 3.625 3.75 0 0 0 0 0 0 0 3  
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189 18.75 3.625 3.75 0 0 0 0 0 0 0 3  
190 22.5 3.625 3.75 0 0 0 0 0 0 0 3  
191 3.75 3.625 7.5 0 0 0 0 0 0 0 3  
192 11.25 3.625 7.5 0 0 0 0 0 0 0 3  
193 18.75 3.625 7.5 0 0 0 0 0 0 0 3  
194 0 3.625 11.25 0 0 0 0 0 0 0 3  
195 3.75 3.625 11.25 0 0 0 0 0 0 0 3  
196 7.5 3.625 11.25 0 0 0 0 0 0 0 3  
197 11.25 3.625 11.25 0 0 0 0 0 0 0 3  
198 15 3.625 11.25 0 0 0 0 0 0 0 3  
199 18.75 3.625 11.25 0 0 0 0 0 0 0 3  
200 22.5 3.625 11.25 0 0 0 0 0 0 0 3  
201 3.75 3.625 15 0 0 0 0 0 0 0 3  
202 11.25 3.625 15 0 0 0 0 0 0 0 3  
203 18.75 3.625 15 0 0 0 0 0 0 0 3  
204 0 3.625 18.75 0 0 0 0 0 0 0 3  
205 3.75 3.625 18.75 0 0 0 0 0 0 0 3  
206 7.5 3.625 18.75 0 0 0 0 0 0 0 3  
207 11.25 3.625 18.75 0 0 0 0 0 0 0 3  
208 15 3.625 18.75 0 0 0 0 0 0 0 3  
209 18.75 3.625 18.75 0 0 0 0 0 0 0 3  
210 22.5 3.625 18.75 0 0 0 0 0 0 0 3  
211 3.75 3.625 22.5 0 0 0 0 0 0 0 3  
212 11.25 3.625 22.5 0 0 0 0 0 0 0 3  
213 18.75 3.625 22.5 0 0 0 0 0 0 0 3  
214 0 3.625 25.675 0 0 0 0 0 0 0 3  
215 3.75 3.625 25.675 0 0 0 0 0 0 0 3  
216 7.5 3.625 25.675 0 0 0 0 0 0 0 3  
217 11.25 3.625 25.675 0 0 0 0 0 0 0 3  
218 15 3.625 25.675 0 0 0 0 0 0 0 3  
219 18.75 3.625 25.675 0 0 0 0 0 0 0 3  
220 22.5 3.625 25.675 0 0 0 0 0 0 0 3  
221 3.75 3.625 30 0 0 0 0 0 0 0 3  
222 18.75 3.625 30 0 0 0 0 0 0 0 3  
223 3.75 7.375 0 0 0 0 0 0 0 0 3 ! Floor 2 
224 11.25 7.375 0 0 0 0 0 0 0 0 3  
225 18.75 7.375 0 0 0 0 0 0 0 0 3  
226 0 7.375 3.75 0 0 0 0 0 0 0 3  
227 3.75 7.375 3.75 0 0 0 0 0 0 0 3  
228 7.5 7.375 3.75 0 0 0 0 0 0 0 3  
229 11.25 7.375 3.75 0 0 0 0 0 0 0 3  
230 15 7.375 3.75 0 0 0 0 0 0 0 3  
231 18.75 7.375 3.75 0 0 0 0 0 0 0 3  
232 22.5 7.375 3.75 0 0 0 0 0 0 0 3  
233 3.75 7.375 7.5 0 0 0 0 0 0 0 3  
234 11.25 7.375 7.5 0 0 0 0 0 0 0 3  
235 18.75 7.375 7.5 0 0 0 0 0 0 0 3  
236 0 7.375 11.25 0 0 0 0 0 0 0 3  
237 3.75 7.375 11.25 0 0 0 0 0 0 0 3  
238 7.5 7.375 11.25 0 0 0 0 0 0 0 3  
239 11.25 7.375 11.25 0 0 0 0 0 0 0 3  
240 15 7.375 11.25 0 0 0 0 0 0 0 3  
241 18.75 7.375 11.25 0 0 0 0 0 0 0 3  
242 22.5 7.375 11.25 0 0 0 0 0 0 0 3  
243 3.75 7.375 15 0 0 0 0 0 0 0 3  
244 11.25 7.375 15 0 0 0 0 0 0 0 3  
245 18.75 7.375 15 0 0 0 0 0 0 0 3  
246 0 7.375 18.75 0 0 0 0 0 0 0 3  
247 3.75 7.375 18.75 0 0 0 0 0 0 0 3  
248 7.5 7.375 18.75 0 0 0 0 0 0 0 3  
249 11.25 7.375 18.75 0 0 0 0 0 0 0 3  
250 15 7.375 18.75 0 0 0 0 0 0 0 3  
251 18.75 7.375 18.75 0 0 0 0 0 0 0 3  
252 22.5 7.375 18.75 0 0 0 0 0 0 0 3  
253 3.75 7.375 22.5 0 0 0 0 0 0 0 3  
254 11.25 7.375 22.5 0 0 0 0 0 0 0 3  
255 18.75 7.375 22.5 0 0 0 0 0 0 0 3  
256 0 7.375 25.675 0 0 0 0 0 0 0 3  
257 3.75 7.375 25.675 0 0 0 0 0 0 0 3  
258 7.5 7.375 25.675 0 0 0 0 0 0 0 3  
259 11.25 7.375 25.675 0 0 0 0 0 0 0 3  
260 15 7.375 25.675 0 0 0 0 0 0 0 3  
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261 18.75 7.375 25.675 0 0 0 0 0 0 0 3  
262 22.5 7.375 25.675 0 0 0 0 0 0 0 3  
263 3.75 7.375 30 0 0 0 0 0 0 0 3  
264 18.75 7.375 30 0 0 0 0 0 0 0 3  
265 3.75 11.125 0 0 0 0 0 0 0 0 3 ! Floor 3 
266 11.25 11.125 0 0 0 0 0 0 0 0 3  
267 18.75 11.125 0 0 0 0 0 0 0 0 3  
268 0 11.125 3.75 0 0 0 0 0 0 0 3  
269 3.75 11.125 3.75 0 0 0 0 0 0 0 3  
270 7.5 11.125 3.75 0 0 0 0 0 0 0 3  
271 11.25 11.125 3.75 0 0 0 0 0 0 0 3  
272 15 11.125 3.75 0 0 0 0 0 0 0 3  
273 18.75 11.125 3.75 0 0 0 0 0 0 0 3  
274 22.5 11.125 3.75 0 0 0 0 0 0 0 3  
275 3.75 11.125 7.5 0 0 0 0 0 0 0 3  
276 11.25 11.125 7.5 0 0 0 0 0 0 0 3  
277 18.75 11.125 7.5 0 0 0 0 0 0 0 3  
278 0 11.125 11.25 0 0 0 0 0 0 0 3  
279 3.75 11.125 11.25 0 0 0 0 0 0 0 3  
280 7.5 11.125 11.25 0 0 0 0 0 0 0 3  
281 11.25 11.125 11.25 0 0 0 0 0 0 0 3  
282 15 11.125 11.25 0 0 0 0 0 0 0 3  
283 18.75 11.125 11.25 0 0 0 0 0 0 0 3  
284 22.5 11.125 11.25 0 0 0 0 0 0 0 3  
285 3.75 11.125 15 0 0 0 0 0 0 0 3  
286 11.25 11.125 15 0 0 0 0 0 0 0 3  
287 18.75 11.125 15 0 0 0 0 0 0 0 3  
288 0 11.125 18.75 0 0 0 0 0 0 0 3  
289 3.75 11.125 18.75 0 0 0 0 0 0 0 3  
290 7.5 11.125 18.75 0 0 0 0 0 0 0 3  
291 11.25 11.125 18.75 0 0 0 0 0 0 0 3  
292 15 11.125 18.75 0 0 0 0 0 0 0 3  
293 18.75 11.125 18.75 0 0 0 0 0 0 0 3  
294 22.5 11.125 18.75 0 0 0 0 0 0 0 3  
295 3.75 11.125 22.5 0 0 0 0 0 0 0 3  
296 11.25 11.125 22.5 0 0 0 0 0 0 0 3  
297 18.75 11.125 22.5 0 0 0 0 0 0 0 3  
298 0 11.125 25.675 0 0 0 0 0 0 0 3  
299 3.75 11.125 25.675 0 0 0 0 0 0 0 3  
300 7.5 11.125 25.675 0 0 0 0 0 0 0 3  
301 11.25 11.125 25.675 0 0 0 0 0 0 0 3  
302 15 11.125 25.675 0 0 0 0 0 0 0 3  
303 18.75 11.125 25.675 0 0 0 0 0 0 0 3  
304 22.5 11.125 25.675 0 0 0 0 0 0 0 3  
305 3.75 11.125 30 0 0 0 0 0 0 0 3  
306 18.75 11.125 30 0 0 0 0 0 0 0 3  
307 3.75 14.875 0 0 0 0 0 0 0 0 3 ! Floor 4 
308 11.25 14.875 0 0 0 0 0 0 0 0 3  
309 18.75 14.875 0 0 0 0 0 0 0 0 3  
310 0 14.875 3.75 0 0 0 0 0 0 0 3  
311 3.75 14.875 3.75 0 0 0 0 0 0 0 3  
312 7.5 14.875 3.75 0 0 0 0 0 0 0 3  
313 11.25 14.875 3.75 0 0 0 0 0 0 0 3  
314 15 14.875 3.75 0 0 0 0 0 0 0 3  
315 18.75 14.875 3.75 0 0 0 0 0 0 0 3  
316 22.5 14.875 3.75 0 0 0 0 0 0 0 3  
317 3.75 14.875 7.5 0 0 0 0 0 0 0 3  
318 11.25 14.875 7.5 0 0 0 0 0 0 0 3  
319 18.75 14.875 7.5 0 0 0 0 0 0 0 3  
320 0 14.875 11.25 0 0 0 0 0 0 0 3  
321 3.75 14.875 11.25 0 0 0 0 0 0 0 3  
322 7.5 14.875 11.25 0 0 0 0 0 0 0 3  
323 11.25 14.875 11.25 0 0 0 0 0 0 0 3  
324 15 14.875 11.25 0 0 0 0 0 0 0 3  
325 18.75 14.875 11.25 0 0 0 0 0 0 0 3  
326 22.5 14.875 11.25 0 0 0 0 0 0 0 3  
327 3.75 14.875 15 0 0 0 0 0 0 0 3  
328 11.25 14.875 15 0 0 0 0 0 0 0 3  
329 18.75 14.875 15 0 0 0 0 0 0 0 3  
330 0 14.875 18.75 0 0 0 0 0 0 0 3  
331 3.75 14.875 18.75 0 0 0 0 0 0 0 3  
332 7.5 14.875 18.75 0 0 0 0 0 0 0 3  
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333 11.25 14.875 18.75 0 0 0 0 0 0 0 3  
334 15 14.875 18.75 0 0 0 0 0 0 0 3  
335 18.75 14.875 18.75 0 0 0 0 0 0 0 3  
336 22.5 14.875 18.75 0 0 0 0 0 0 0 3  
337 3.75 14.875 22.5 0 0 0 0 0 0 0 3  
338 11.25 14.875 22.5 0 0 0 0 0 0 0 3  
339 18.75 14.875 22.5 0 0 0 0 0 0 0 3  
340 0 14.875 25.675 0 0 0 0 0 0 0 3  
341 3.75 14.875 25.675 0 0 0 0 0 0 0 3  
342 7.5 14.875 25.675 0 0 0 0 0 0 0 3  
343 11.25 14.875 25.675 0 0 0 0 0 0 0 3  
344 15 14.875 25.675 0 0 0 0 0 0 0 3  
345 18.75 14.875 25.675 0 0 0 0 0 0 0 0  
346 22.5 14.875 25.675 0 0 0 0 0 0 0 3  
347 3.75 14.875 30 0 0 0 0 0 0 0 3  
348 18.75 14.875 30 0 0 0 0 0 0 0 3  
349 3.75 18.625 0 0 0 0 0 0 0 0 3 ! Floor 5 
350 11.25 18.625 0 0 0 0 0 0 0 0 3  
351 18.75 18.625 0 0 0 0 0 0 0 0 3  
352 0 18.625 3.75 0 0 0 0 0 0 0 3  
353 3.75 18.625 3.75 0 0 0 0 0 0 0 3  
354 7.5 18.625 3.75 0 0 0 0 0 0 0 3  
355 11.25 18.625 3.75 0 0 0 0 0 0 0 3  
356 15 18.625 3.75 0 0 0 0 0 0 0 3  
357 18.75 18.625 3.75 0 0 0 0 0 0 0 3  
358 22.5 18.625 3.75 0 0 0 0 0 0 0 3  
359 3.75 18.625 7.5 0 0 0 0 0 0 0 3  
360 11.25 18.625 7.5 0 0 0 0 0 0 0 3  
361 18.75 18.625 7.5 0 0 0 0 0 0 0 3  
362 0 18.625 11.25 0 0 0 0 0 0 0 3  
363 3.75 18.625 11.25 0 0 0 0 0 0 0 3  
364 7.5 18.625 11.25 0 0 0 0 0 0 0 3  
365 11.25 18.625 11.25 0 0 0 0 0 0 0 3  
366 15 18.625 11.25 0 0 0 0 0 0 0 3  
367 18.75 18.625 11.25 0 0 0 0 0 0 0 3  
368 22.5 18.625 11.25 0 0 0 0 0 0 0 3  
369 3.75 18.625 15 0 0 0 0 0 0 0 3  
370 11.25 18.625 15 0 0 0 0 0 0 0 3  
371 18.75 18.625 15 0 0 0 0 0 0 0 3  
372 0 18.625 18.75 0 0 0 0 0 0 0 3  
373 3.75 18.625 18.75 0 0 0 0 0 0 0 3  
374 7.5 18.625 18.75 0 0 0 0 0 0 0 3  
375 11.25 18.625 18.75 0 0 0 0 0 0 0 3  
376 15 18.625 18.75 0 0 0 0 0 0 0 3  
377 18.75 18.625 18.75 0 0 0 0 0 0 0 3  
378 22.5 18.625 18.75 0 0 0 0 0 0 0 3  
379 3.75 18.625 22.5 0 0 0 0 0 0 0 3  
380 11.25 18.625 22.5 0 0 0 0 0 0 0 3  
381 18.75 18.625 22.5 0 0 0 0 0 0 0 3  
382 0 18.625 25.675 0 0 0 0 0 0 0 3  
383 3.75 18.625 25.675 0 0 0 0 0 0 0 3  
384 7.5 18.625 25.675 0 0 0 0 0 0 0 3  
385 11.25 18.625 25.675 0 0 0 0 0 0 0 3  
386 15 18.625 25.675 0 0 0 0 0 0 0 3  
387 18.75 18.625 25.675 0 0 0 0 0 0 0 3  
388 22.5 18.625 25.675 0 0 0 0 0 0 0 3  
389 3.75 18.625 30 0 0 0 0 0 0 0 3  
390 18.75 18.625 30 0 0 0 0 0 0 0 3  
391 3.75 22.375 0 0 0 0 0 0 0 0 3 ! Floor 6 
392 11.25 22.375 0 0 0 0 0 0 0 0 3  
393 18.75 22.375 0 0 0 0 0 0 0 0 3  
394 0 22.375 3.75 0 0 0 0 0 0 0 3  
395 3.75 22.375 3.75 0 0 0 0 0 0 0 3  
396 7.5 22.375 3.75 0 0 0 0 0 0 0 3  
397 11.25 22.375 3.75 0 0 0 0 0 0 0 3  
398 15 22.375 3.75 0 0 0 0 0 0 0 3  
399 18.75 22.375 3.75 0 0 0 0 0 0 0 3  
400 22.5 22.375 3.75 0 0 0 0 0 0 0 3  
401 3.75 22.375 7.5 0 0 0 0 0 0 0 3  
402 11.25 22.375 7.5 0 0 0 0 0 0 0 3  
403 18.75 22.375 7.5 0 0 0 0 0 0 0 3  
404 0 22.375 11.25 0 0 0 0 0 0 0 3  
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405 3.75 22.375 11.25 0 0 0 0 0 0 0 3  
406 7.5 22.375 11.25 0 0 0 0 0 0 0 3  
407 11.25 22.375 11.25 0 0 0 0 0 0 0 3  
408 15 22.375 11.25 0 0 0 0 0 0 0 3  
409 18.75 22.375 11.25 0 0 0 0 0 0 0 3  
410 22.5 22.375 11.25 0 0 0 0 0 0 0 3  
411 3.75 22.375 15 0 0 0 0 0 0 0 3  
412 11.25 22.375 15 0 0 0 0 0 0 0 3  
413 18.75 22.375 15 0 0 0 0 0 0 0 3  
414 0 22.375 18.75 0 0 0 0 0 0 0 3  
415 3.75 22.375 18.75 0 0 0 0 0 0 0 3  
416 7.5 22.375 18.75 0 0 0 0 0 0 0 3  
417 11.25 22.375 18.75 0 0 0 0 0 0 0 3  
418 15 22.375 18.75 0 0 0 0 0 0 0 3  
419 18.75 22.375 18.75 0 0 0 0 0 0 0 3  
420 22.5 22.375 18.75 0 0 0 0 0 0 0 3  
421 3.75 22.375 22.5 0 0 0 0 0 0 0 3  
422 11.25 22.375 22.5 0 0 0 0 0 0 0 3  
423 18.75 22.375 22.5 0 0 0 0 0 0 0 3  
424 0 22.375 25.675 0 0 0 0 0 0 0 3  
425 3.75 22.375 25.675 0 0 0 0 0 0 0 3  
426 7.5 22.375 25.675 0 0 0 0 0 0 0 3  
427 11.25 22.375 25.675 0 0 0 0 0 0 0 3  
428 15 22.375 25.675 0 0 0 0 0 0 0 3  
429 18.75 22.375 25.675 0 0 0 0 0 0 0 3  
430 22.5 22.375 25.675 0 0 0 0 0 0 0 3  
431 3.75 22.375 30 0 0 0 0 0 0 0 3  
432 18.75 22.375 30 0 0 0 0 0 0 0 3  
433 3.75 26.125 0 0 0 0 0 0 0 0 3 ! Floor 7 
434 11.25 26.125 0 0 0 0 0 0 0 0 3  
435 18.75 26.125 0 0 0 0 0 0 0 0 3  
436 0 26.125 3.75 0 0 0 0 0 0 0 3  
437 3.75 26.125 3.75 0 0 0 0 0 0 0 3  
438 7.5 26.125 3.75 0 0 0 0 0 0 0 3  
439 11.25 26.125 3.75 0 0 0 0 0 0 0 3  
440 15 26.125 3.75 0 0 0 0 0 0 0 3  
441 18.75 26.125 3.75 0 0 0 0 0 0 0 3  
442 22.5 26.125 3.75 0 0 0 0 0 0 0 3  
443 3.75 26.125 7.5 0 0 0 0 0 0 0 3  
444 11.25 26.125 7.5 0 0 0 0 0 0 0 3  
445 18.75 26.125 7.5 0 0 0 0 0 0 0 3  
446 0 26.125 11.25 0 0 0 0 0 0 0 3  
447 3.75 26.125 11.25 0 0 0 0 0 0 0 3  
448 7.5 26.125 11.25 0 0 0 0 0 0 0 3  
449 11.25 26.125 11.25 0 0 0 0 0 0 0 3  
450 15 26.125 11.25 0 0 0 0 0 0 0 3  
451 18.75 26.125 11.25 0 0 0 0 0 0 0 3  
452 22.5 26.125 11.25 0 0 0 0 0 0 0 3  
453 3.75 26.125 15 0 0 0 0 0 0 0 3  
454 11.25 26.125 15 0 0 0 0 0 0 0 3  
455 18.75 26.125 15 0 0 0 0 0 0 0 3  
456 0 26.125 18.75 0 0 0 0 0 0 0 3  
457 3.75 26.125 18.75 0 0 0 0 0 0 0 3  
458 7.5 26.125 18.75 0 0 0 0 0 0 0 3  
459 11.25 26.125 18.75 0 0 0 0 0 0 0 3  
460 15 26.125 18.75 0 0 0 0 0 0 0 3  
461 18.75 26.125 18.75 0 0 0 0 0 0 0 3  
462 22.5 26.125 18.75 0 0 0 0 0 0 0 3  
463 3.75 26.125 22.5 0 0 0 0 0 0 0 3  
464 11.25 26.125 22.5 0 0 0 0 0 0 0 3  
465 18.75 26.125 22.5 0 0 0 0 0 0 0 3  
466 0 26.125 25.675 0 0 0 0 0 0 0 3  
467 3.75 26.125 25.675 0 0 0 0 0 0 0 3  
468 7.5 26.125 25.675 0 0 0 0 0 0 0 3  
469 11.25 26.125 25.675 0 0 0 0 0 0 0 3  
470 15 26.125 25.675 0 0 0 0 0 0 0 3  
471 18.75 26.125 25.675 0 0 0 0 0 0 0 3  
472 22.5 26.125 25.675 0 0 0 0 0 0 0 3  
473 3.75 26.125 30 0 0 0 0 0 0 0 3  
474 18.75 26.125 30 0 0 0 0 0 0 0 3  
475 0 0 18.75 1 1 1 1 1 1 0 3  
476 0 0 11.25 1 1 1 1 1 1 0 3  
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477 22.5 0 18.75 1 1 1 1 1 1 0 3  
478 22.5 0 11.25 1 1 1 1 1 1 0 3  
 
 
 
 
 
ELEMENTS 3 
1 8 1 21 0 0 x ! Base elements 
2 8 2 22 0 0 x  
3 8 3 23 0 0 x  
4 8 4 24 0 0 x  
5 8 5 25 0 0 x  
6 7 6 26 0 0 x  
7 7 7 27 0 0 x  
8 8 8 28 0 0 x  
9 8 9 29 0 0 x  
10 7 10 30 0 0 x  
11 7 11 31 0 0 x  
12 8 12 32 0 0 x  
13 8 13 33 0 0 x  
14 7 14 34 0 0 x  
15 7 15 35 0 0 x  
16 8 16 36 0 0 x  
17 8 17 37 0 0 x  
18 8 18 38 0 0 x  
19 8 19 39 0 0 x  
20 8 20 40 0 0 x  
21 2 21 41 0 0 x ! Column elements at Ground Floor 
22 5 22 42 0 0 x  
23 5 23 43 0 0 x  
24 2 24 44 0 0 x  
25 2 25 45 0 0 x  
26 1 26 46 0 0 x  
27 1 27 47 0 0 x  
28 2 28 48 0 0 x  
29 2 29 49 0 0 x  
30 1 30 50 0 0 x  
31 1 31 51 0 0 x  
32 2 32 52 0 0 x  
33 2 33 53 0 0 x  
34 1 34 54 0 0 x  
35 1 35 55 0 0 x  
36 2 36 56 0 0 x  
37 2 37 57 0 0 x  
38 5 38 58 0 0 x  
39 5 39 59 0 0 x  
40 2 40 60 0 0 x  
41 2 41 61 0 0 x ! Columns elements at Floor 1 
42 5 42 62 0 0 x  
43 5 43 63 0 0 x  
44 2 44 64 0 0 x  
45 2 45 65 0 0 x  
46 1 46 66 0 0 x  
47 1 47 67 0 0 x  
48 2 48 68 0 0 x  
49 2 49 69 0 0 x  
50 1 50 70 0 0 x  
51 1 51 71 0 0 x  
52 2 52 72 0 0 x  
53 2 53 73 0 0 x  
54 1 54 74 0 0 x  
55 1 55 75 0 0 x  
56 2 56 76 0 0 x  
57 2 57 77 0 0 x  
58 5 58 78 0 0 x  
59 5 59 79 0 0 x  
60 2 60 80 0 0 x  
61 2 61 81 0 0 x ! Columns elements at Floor 2 
62 5 62 82 0 0 x  
63 5 63 83 0 0 x  
64 2 64 84 0 0 x  
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65 2 65 85 0 0 x  
66 1 66 86 0 0 x  
67 1 67 87 0 0 x  
68 2 68 88 0 0 x  
69 2 69 89 0 0 x  
70 1 70 90 0 0 x  
71 1 71 91 0 0 x  
72 2 72 92 0 0 x  
73 2 73 93 0 0 x  
74 1 74 94 0 0 x  
75 1 75 95 0 0 x  
76 2 76 96 0 0 x  
77 2 77 97 0 0 x  
78 5 78 98 0 0 x  
79 5 79 99 0 0 x  
80 2 80 100 0 0 x  
81 4 81 101 0 0 x ! Columns elements at Floor 3 
82 6 82 102 0 0 x  
83 6 83 103 0 0 x  
84 4 84 104 0 0 x  
85 4 85 105 0 0 x  
86 3 86 106 0 0 x  
87 3 87 107 0 0 x  
88 4 88 108 0 0 x  
89 4 89 109 0 0 x  
90 3 90 110 0 0 x  
91 3 91 111 0 0 x  
92 4 92 112 0 0 x  
93 4 93 113 0 0 x  
94 3 94 114 0 0 x  
95 3 95 115 0 0 x  
96 4 96 116 0 0 x  
97 4 97 117 0 0 x  
98 6 98 118 0 0 x  
99 6 99 119 0 0 x  
100 4 100 120 0 0 x  
101 4 101 121 0 0 x ! Columns elements at Floor 4 
102 6 102 122 0 0 x  
103 6 103 123 0 0 x  
104 4 104 124 0 0 x  
105 4 105 125 0 0 x  
106 3 106 126 0 0 x  
107 3 107 127 0 0 x  
108 4 108 128 0 0 x  
109 4 109 129 0 0 x  
110 3 110 130 0 0 x  
111 3 111 131 0 0 x  
112 4 112 132 0 0 x  
113 4 113 133 0 0 x  
114 3 114 134 0 0 x  
115 3 115 135 0 0 x  
116 4 116 136 0 0 x  
117 4 117 137 0 0 x  
118 6 118 138 0 0 x  
119 6 119 139 0 0 x  
120 4 120 140 0 0 x  
121 4 121 141 0 0 x ! Columns elements at Floor 5 
122 6 122 142 0 0 x  
123 6 123 143 0 0 x  
124 4 124 144 0 0 x  
125 4 125 145 0 0 x  
126 3 126 146 0 0 x  
127 3 127 147 0 0 x  
128 4 128 148 0 0 x  
129 4 129 149 0 0 x  
130 3 130 150 0 0 x  
131 3 131 151 0 0 x  
132 4 132 152 0 0 x  
133 4 133 153 0 0 x  
134 3 134 154 0 0 x  
135 3 135 155 0 0 x  
136 4 136 156 0 0 x  
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137 4 137 157 0 0 x  
138 6 138 158 0 0 x  
139 6 139 159 0 0 x  
140 4 140 160 0 0 x  
141 4 141 161 0 0 x ! Columns elements at Floor 6 
142 6 142 162 0 0 x  
143 6 143 163 0 0 x  
144 4 144 164 0 0 x  
145 4 145 165 0 0 x  
146 3 146 166 0 0 x  
147 3 147 167 0 0 x  
148 4 148 168 0 0 x  
149 4 149 169 0 0 x  
150 3 150 170 0 0 x  
151 3 151 171 0 0 x  
152 4 152 172 0 0 x  
153 4 153 173 0 0 x  
154 3 154 174 0 0 x  
155 3 155 175 0 0 x  
156 4 156 176 0 0 x  
157 4 157 177 0 0 x  
158 6 158 178 0 0 x  
159 6 159 179 0 0 x  
160 4 160 180 0 0 x  
161 9 41 184 185 181 0 ! 1 Floor 
162 9 181 185 186 42 0  
163 9 182 187 188 43 0  
164 9 43 188 189 183 0  
165 9 183 189 190 44 0  
166 9 184 45 191 185 0  
167 9 185 191 46 186 0  
168 9 186 46 192 187 0  
169 9 187 192 47 188 0  
170 9 188 47 193 189 0  
171 9 189 193 48 190 0  
172 9 45 194 195 191 0  
173 9 191 195 196 46 0  
174 9 46 196 197 192 0  
175 9 192 197 198 47 0  
176 9 47 198 199 193 0  
177 9 193 199 200 48 0  
178 9 194 49 201 195 0  
179 9 195 201 50 196 0  
180 9 196 50 202 197 0  
181 9 197 202 51 198 0  
182 9 198 51 203 199 0  
183 9 199 203 52 200 0  
184 9 49 204 205 201 0  
185 9 201 205 206 50 0  
186 9 50 206 207 202 0  
187 9 202 207 208 51 0  
188 9 51 208 209 203 0  
189 9 203 209 210 52 0  
190 9 204 53 211 205 0  
191 9 205 211 54 206 0  
192 9 206 54 212 207 0  
193 9 207 212 55 208 0  
194 9 208 55 213 209 0  
195 9 209 213 56 210 0  
196 9 53 214 215 211 0  
197 9 211 215 216 54 0  
198 9 54 216 217 212 0  
199 9 212 217 218 55 0  
200 9 55 218 219 213 0  
201 9 213 219 220 56 0  
202 9 214 57 221 215 0  
203 9 215 221 58 216 0  
204 9 218 59 222 219 0  
205 9 219 222 60 220 0  
206 9 61 226 227 223 0 ! 2 Floor 
207 9 223 227 228 62 0  
208 9 224 229 230 63 0  
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209 9 63 230 231 225 0  
210 9 225 231 232 64 0  
211 9 226 65 233 227 0  
212 9 227 233 66 228 0  
213 9 228 66 234 229 0  
214 9 229 234 67 230 0  
215 9 230 67 235 231 0  
216 9 231 235 68 232 0  
217 9 65 236 237 233 0  
218 9 233 237 238 66 0  
219 9 66 238 239 234 0  
220 9 234 239 240 67 0  
221 9 67 240 241 235 0  
222 9 235 241 242 68 0  
223 9 236 69 243 237 0  
224 9 237 243 70 238 0  
225 9 238 70 244 239 0  
226 9 239 244 71 240 0  
227 9 240 71 245 241 0  
228 9 241 245 72 242 0  
229 9 69 246 247 243 0  
230 9 243 247 248 70 0  
231 9 70 248 249 244 0  
232 9 244 249 250 71 0  
233 9 71 250 251 245 0  
234 9 245 251 252 72 0  
235 9 246 73 253 247 0  
236 9 247 253 74 248 0  
237 9 248 74 254 249 0  
238 9 249 254 75 250 0  
239 9 250 75 255 251 0  
240 9 251 255 76 252 0  
241 9 73 256 257 253 0  
242 9 253 257 258 74 0  
243 9 74 258 259 254 0  
244 9 254 259 260 75 0  
245 9 75 260 261 255 0  
246 9 255 261 262 76 0  
247 9 256 77 263 257 0  
248 9 257 263 78 258 0  
249 9 260 79 264 261 0  
250 9 261 264 80 262 0  
251 9 81 268 269 265 0 ! 3 Floor 
252 9 265 269 270 82 0  
253 9 266 271 272 83 0  
254 9 83 272 273 267 0  
255 9 267 273 274 84 0  
256 9 268 85 275 269 0  
257 9 269 275 86 270 0  
258 9 270 86 276 271 0  
259 9 271 276 87 272 0  
260 9 272 87 277 273 0  
261 9 273 277 88 274 0  
262 9 85 278 279 275 0  
263 9 275 279 280 86 0  
264 9 86 280 281 276 0  
265 9 276 281 282 87 0  
266 9 87 282 283 277 0  
267 9 277 283 284 88 0  
268 9 278 89 285 279 0  
269 9 279 285 90 280 0  
270 9 280 90 286 281 0  
271 9 281 286 91 282 0  
272 9 282 91 287 283 0  
273 9 283 287 92 284 0  
274 9 89 288 289 285 0  
275 9 285 289 290 90 0  
276 9 90 290 291 286 0  
277 9 286 291 292 91 0  
278 9 91 292 293 287 0  
279 9 287 293 294 92 0  
280 9 288 93 295 289 0  
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281 9 289 295 94 290 0  
282 9 290 94 296 291 0  
283 9 291 296 95 292 0  
284 9 292 95 297 293 0  
285 9 293 297 96 294 0  
286 9 93 298 299 295 0  
287 9 295 299 300 94 0  
288 9 94 300 301 296 0  
289 9 296 301 302 95 0  
290 9 95 302 303 297 0  
291 9 297 303 304 96 0  
292 9 298 97 305 299 0  
293 9 299 305 98 300 0  
294 9 302 99 306 303 0  
295 9 303 306 100 304 0  
296 9 101 310 311 307 0 ! 4 Floor 
297 9 307 311 312 102 0  
298 9 308 313 314 103 0  
299 9 103 314 315 309 0  
300 9 309 315 316 104 0  
301 9 310 105 317 311 0  
302 9 311 317 106 312 0  
303 9 312 106 318 313 0  
304 9 313 318 107 314 0  
305 9 314 107 319 315 0  
306 9 315 319 108 316 0  
307 9 105 320 321 317 0  
308 9 317 321 322 106 0  
309 9 106 322 323 318 0  
310 9 318 323 324 107 0  
311 9 107 324 325 319 0  
312 9 319 325 326 108 0  
313 9 320 109 327 321 0  
314 9 321 327 110 322 0  
315 9 322 110 328 323 0  
316 9 323 328 111 324 0  
317 9 324 111 329 325 0  
318 9 325 329 112 326 0  
319 9 109 330 331 327 0  
320 9 327 331 332 110 0  
321 9 110 332 333 328 0  
322 9 328 333 334 111 0  
323 9 111 334 335 329 0  
324 9 329 335 336 112 0  
325 9 330 113 337 331 0  
326 9 331 337 114 332 0  
327 9 332 114 338 333 0  
328 9 333 338 115 334 0  
329 9 334 115 339 335 0  
330 9 335 339 116 336 0  
331 9 113 340 341 337 0  
332 9 337 341 342 114 0  
333 9 114 342 343 338 0  
334 9 338 343 344 115 0  
335 9 115 344 345 339 0  
336 9 339 345 346 116 0  
337 9 340 117 347 341 0  
338 9 341 347 118 342 0  
339 9 344 119 348 345 0  
340 9 345 348 120 346 0  
341 9 121 352 353 349 0 ! 5 Floor 
342 9 349 353 354 122 0  
343 9 350 355 356 123 0  
344 9 123 356 357 351 0  
345 9 351 357 358 124 0  
346 9 352 125 359 353 0  
347 9 353 359 126 354 0  
348 9 354 126 360 355 0  
349 9 355 360 127 356 0  
350 9 356 127 361 357 0  
351 9 357 361 128 358 0  
352 9 125 362 363 359 0  
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353 9 359 363 364 126 0  
354 9 126 364 365 360 0  
355 9 360 365 366 127 0  
356 9 127 366 367 361 0  
357 9 361 367 368 128 0  
358 9 362 129 369 363 0  
359 9 363 369 130 364 0  
360 9 364 130 370 365 0  
361 9 365 370 131 366 0  
362 9 366 131 371 367 0  
363 9 367 371 132 368 0  
364 9 129 372 373 369 0  
365 9 369 373 374 130 0  
366 9 130 374 375 370 0  
367 9 370 375 376 131 0  
368 9 131 376 377 371 0  
369 9 371 377 378 132 0  
370 9 372 133 379 373 0  
371 9 373 379 134 374 0  
372 9 374 134 380 375 0  
373 9 375 380 135 376 0  
374 9 376 135 381 377 0  
375 9 377 381 136 378 0  
376 9 133 382 383 379 0  
377 9 379 383 384 134 0  
378 9 134 384 385 380 0  
379 9 380 385 386 135 0  
380 9 135 386 387 381 0  
381 9 381 387 388 136 0  
382 9 382 137 389 383 0  
383 9 383 389 138 384 0  
384 9 386 139 390 387 0  
385 9 387 390 140 388 0  
386 9 141 394 395 391 0 ! 6 Floor 
387 9 391 395 396 142 0  
388 9 392 397 398 143 0  
389 9 143 398 399 393 0  
390 9 393 399 400 144 0  
391 9 394 145 401 395 0  
392 9 395 401 146 396 0  
393 9 396 146 402 397 0  
394 9 397 402 147 398 0  
395 9 398 147 403 399 0  
396 9 399 403 148 400 0  
397 9 145 404 405 401 0  
398 9 401 405 406 146 0  
399 9 146 406 407 402 0  
400 9 402 407 408 147 0  
401 9 147 408 409 403 0  
402 9 403 409 410 148 0  
403 9 404 149 411 405 0  
404 9 405 411 150 406 0  
405 9 406 150 412 407 0  
406 9 407 412 151 408 0  
407 9 408 151 413 409 0  
408 9 409 413 152 410 0  
409 9 149 414 415 411 0  
410 9 411 415 416 150 0  
411 9 150 416 417 412 0  
412 9 412 417 418 151 0  
413 9 151 418 419 413 0  
414 9 413 419 420 152 0  
415 9 414 153 421 415 0  
416 9 415 421 154 416 0  
417 9 416 154 422 417 0  
418 9 417 422 155 418 0  
419 9 418 155 423 419 0  
420 9 419 423 156 420 0  
421 9 153 424 425 421 0  
422 9 421 425 426 154 0  
423 9 154 426 427 422 0  
424 9 422 427 428 155 0  
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425 9 155 428 429 423 0  
426 9 423 429 430 156 0  
427 9 424 157 431 425 0  
428 9 425 431 158 426 0  
429 9 428 159 432 429 0  
430 9 429 432 160 430 0  
431 9 161 436 437 433 0 ! 7 Floor 
432 9 433 437 438 162 0  
433 9 434 439 440 163 0  
434 9 163 440 441 435 0  
435 9 435 441 442 164 0  
436 9 436 165 443 437 0  
437 9 437 443 166 438 0  
438 9 438 166 444 439 0  
439 9 439 444 167 440 0  
440 9 440 167 445 441 0  
441 9 441 445 168 442 0  
442 9 165 446 447 443 0  
443 9 443 447 448 166 0  
444 9 166 448 449 444 0  
445 9 444 449 450 167 0  
446 9 167 450 451 445 0  
447 9 445 451 452 168 0  
448 9 446 169 453 447 0  
449 9 447 453 170 448 0  
450 9 448 170 454 449 0  
451 9 449 454 171 450 0  
452 9 450 171 455 451 0  
453 9 451 455 172 452 0  
454 9 169 456 457 453 0  
455 9 453 457 458 170 0  
456 9 170 458 459 454 0  
457 9 454 459 460 171 0  
458 9 171 460 461 455 0  
459 9 455 461 462 172 0  
460 9 456 173 463 457 0  
461 9 457 463 174 458 0  
462 9 458 174 464 459 0  
463 9 459 464 175 460 0  
464 9 460 175 465 461 0  
465 9 461 465 176 462 0  
466 9 173 466 467 463 0  
467 9 463 467 468 174 0  
468 9 174 468 469 464 0  
469 9 464 469 470 175 0  
470 9 175 470 471 465 0  
471 9 465 471 472 176 0  
472 9 466 177 473 467 0  
473 9 467 473 178 468 0  
474 9 470 179 474 471 0  
475 9 471 474 180 472 0  
476 12 34 58 0 0 -x ! Inside cross bracing at Stairs 
477 12 38 54 0 0 x  
478 13 54 78 0 0 -x  
479 13 58 74 0 0 x  
480 13 74 98 0 0 -x  
481 13 78 94 0 0 x  
482 14 94 118 0 0 -x  
483 14 98 114 0 0 x  
484 14 114 138 0 0 -x  
485 14 118 134 0 0 x  
486 15 134 158 0 0 -x  
487 15 138 154 0 0 x  
488 15 154 178 0 0 -x  
489 15 158 174 0 0 x  
490 12 23 47 0 0 -x ! Inside cross bracing opposite Stairs 
491 12 27 43 0 0 x  
492 13 43 67 0 0 -x  
493 13 47 63 0 0 x  
494 13 63 87 0 0 -x  
495 13 67 83 0 0 x  
496 14 83 107 0 0 -x  
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497 14 87 103 0 0 x  
498 14 103 127 0 0 -x  
499 14 107 123 0 0 x  
500 15 123 147 0 0 -x  
501 15 127 143 0 0 x  
502 15 143 167 0 0 -x  
503 15 147 163 0 0 x  
504 12 38 59 0 0 z ! Outside cross bracing at Stairs 
505 12 39 58 0 0 -z  
506 13 58 79 0 0 z  
507 13 59 78 0 0 -z  
508 13 78 99 0 0 z  
509 13 79 98 0 0 -z  
510 14 98 119 0 0 z  
511 14 99 118 0 0 -z  
512 14 118 139 0 0 z  
513 14 119 138 0 0 -z  
514 15 138 159 0 0 z  
515 15 139 158 0 0 -z  
516 15 158 179 0 0 z  
517 15 159 178 0 0 -z  
518 12 22 43 0 0 z ! Outside cross bracing opposite Stairs 
519 12 23 42 0 0 -z  
520 13 42 63 0 0 z  
521 13 43 62 0 0 -z  
522 13 62 83 0 0 z  
523 13 63 82 0 0 -z  
524 14 82 103 0 0 z  
525 14 83 102 0 0 -z  
526 14 102 123 0 0 z  
527 14 103 122 0 0 -z  
528 15 122 143 0 0 z  
529 15 123 142 0 0 -z  
530 15 142 163 0 0 z  
531 15 143 162 0 0 -z  
532 10 34 38 0 0 -x ! Beams at Stairs 
533 10 38 39 0 0 z  
534 11 58 59 0 0 z  
535 11 78 79 0 0 z  
536 11 98 99 0 0 z  
537 11 118 119 0 0 z  
538 11 138 139 0 0 z  
539 11 158 159 0 0 z  
540 11 178 179 0 0 z  
541 10 23 27 0 0 -x ! Beams opposite Stairs 
542 10 22 23 0 0 z  
543 11 42 43 0 0 z  
544 11 62 63 0 0 z  
545 11 82 83 0 0 z  
546 11 102 103 0 0 z  
547 11 122 123 0 0 z  
548 11 142 143 0 0 z  
549 11 162 163 0 0 z  
550 16 165 145 404 446 0  
551 16 145 125 362 404 0  
552 16 125 105 320 362 0  
553 16 105 85 278 320 0  
554 16 85 65 236 278 0  
555 16 65 45 194 236 0  
556 16 45 25 476 194 0  
557 16 169 149 414 456 0  
558 16 149 129 372 414 0  
559 16 129 109 330 372 0  
560 16 109 89 288 330 0  
561 16 89 69 246 288 0  
562 16 69 49 204 246 0  
563 16 49 29 475 204 0  
564 16 462 420 152 172 0  
565 16 420 378 132 152 0  
566 16 378 336 112 132 0  
567 16 336 294 92 112 0  
568 16 294 252 72 92 0  
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569 16 252 210 52 72 0  
570 16 210 477 32 52 0  
571 16 452 410 148 168 0  
572 16 410 368 128 148 0  
573 16 368 326 108 128 0  
574 16 326 284 88 108 0  
575 16 284 242 68 88 0  
576 16 242 200 48 68 0  
577 16 200 478 28 48 0  
 
 
 
 
  
 
PROPS          
1 BEAM        ! Inner Columns Ground Floor --> 3rd 
floor  
1 4 0 0 0 0 0     
40.00E+9 1.74E+10 0.16 0.004266666 0.002133333 0.002133333 0 0 0 0
 3924 
0           
     
           
2 BEAM        ! Outer Columns z axis Ground Floor --> 
3rd floor  
1 4 0 0 0 0 0     
40.00E+9 1.74E+10 0.1 0.001854166 0.001333333 0.000520833 0 0 0 0
 2452.5 
0           
     
           
3 BEAM        ! Inner Columns 3rd floor --> 7th floor
  
1 4 0 0 0 0 0     
30.00E+9 1.30E+10 0.16 0.004266666 0.002133333 0.002133333 0 0 0 0
 3924 
0           
     
           
4 BEAM        ! Outer Columns z axis 3rd floor --> 7th 
floor  
1 4 0 0 0 0 0     
30.00E+9 1.30E+10 0.1 0.001854166 0.001333333 0.000520833 0 0 0 0
 2452.5 
0           
     
           
5 BEAM        ! Outer Columns x axis Ground Floor --> 
3rd floor  
1 4 0 0 0 0 0     
40.00E+9 1.74E+10 0.1 0.001854166 0.000520833 0.001333333 0 0 0 0
 2452.5 
0           
     
           
6 BEAM        ! Outer Columns x axis 3rd floor --> 7th 
floor  
1 4 0 0 0 0 0     
30.00E+9 1.30E+10 0.1 0.001854166 0.000520833 0.001333333 0 0 0 0
 2452.5 
0           
     
           
7 BEAM        ! Inner Base  
1 4 0 0 0 0 0     
40.00E+9 1.74E+10 4 2.666666666 1.333333333 1.333333333 0 0 0 0
 98100 
0           
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8 BEAM        ! Outer Base  
1 4 0 0 0 0 0     
40.00E+9 1.74E+10 1.44 0.3456 0.1728 0.1728 0 0 0 0 35316 
0           
     
           
9 QUADRILATERAL        ! Floor 1st floor --> 7th floor  
0 0 30.00E+9 0.15 0.25 24525      
      
           
10 BEAM        ! Beams Ground Floor  
1 4 0 0 0 0 0     
40.00E+9 1.74E+10 0.1625 0.023731771 0.022885417 0.000846354 0 0 0 0
 3985.3125 
0           
     
           
11 BEAM        ! Beams 1st floor --> 7th floor  
1 4 0 0 0 0 0     
30.00E+9 1.30E+10 0.1625 0.013067708 0.012221354 0.000846354 0 0 0 0
 3985.3125 
0           
     
           
12 BEAM        ! Cross Bracing bottom (steel) 
1 4 3 3 0 0 0     
56.0E+9 24E+9 0.0020 6.683E-06 6.670E-06 16.70E-09 0 0 0 0 153.036 
0           
     
           
13 BEAM        ! Cross Bracing nearly bottom  (steel) 
1 4 3 3 0 0 0     
56.0E+9 24E+9 0.0015 2.825E-06 2.810E-06 12.50E-09 0 0 0 0 114.777 
0           
     
           
14 BEAM        ! Cross Bracing middle (steel) 
1 4 3 3 0 0 0     
56.0E+9 24E+9 0.0010 0.842E-06 0.833E-06 8.33E-09 0 0 0 0 76.518 
0           
     
           
15 BEAM        ! Cross Bracing top  (steel)  
1 4 3 3 0 0 0     
56.0E+9 24E+9 0.0005 0.418E-06 0.417E-06 1.04E-09 0 0 0 0 38.259 
0           
     
           
16 QUADRILATERAL      ! Panels that do not contribute significantly to the stiffness of 
the structure  
1 0 16.00E+07 0.15 0.10 19620      
    
 
 
WEIGHTS        
1 0 0 0 0 0 0 ! Base under Columns at Ground Floor 
45 10791 10791 10791 0 0 0 ! Sandbags Floor 1 
46 21582 21582 21582 0 0 0  
47 21582 21582 21582 0 0 0  
48 10791 10791 10791 0 0 0  
49 21582 21582 21582 0 0 0  
50 43164 43164 43164 0 0 0  
51 43164 43164 43164 0 0 0  
52 21582 21582 21582 0 0 0  
53 10791 10791 10791 0 0 0  
54 21582 21582 21582 0 0 0  
55 21582 21582 21582 0 0 0  
56 10791 10791 10791 0 0 0  
65 10791 10791 10791 0 0 0 ! Sandbags Floor 2 
66 21582 21582 21582 0 0 0  
67 21582 21582 21582 0 0 0  
68 10791 10791 10791 0 0 0  
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69 21582 21582 21582 0 0 0  
70 43164 43164 43164 0 0 0  
71 43164 43164 43164 0 0 0  
72 21582 21582 21582 0 0 0  
73 10791 10791 10791 0 0 0  
74 21582 21582 21582 0 0 0  
75 21582 21582 21582 0 0 0  
76 10791 10791 10791 0 0 0  
85 10791 10791 10791 0 0 0 ! Sandbags Floor 3 
86 21582 21582 21582 0 0 0  
87 21582 21582 21582 0 0 0  
88 10791 10791 10791 0 0 0  
89 21582 21582 21582 0 0 0  
90 43164 43164 43164 0 0 0  
91 43164 43164 43164 0 0 0  
92 21582 21582 21582 0 0 0  
93 10791 10791 10791 0 0 0  
94 21582 21582 21582 0 0 0  
95 21582 21582 21582 0 0 0  
96 10791 10791 10791 0 0 0  
105 10791 10791 10791 0 0 0 ! Sandbags Floor 4 
106 21582 21582 21582 0 0 0  
107 21582 21582 21582 0 0 0  
108 10791 10791 10791 0 0 0  
109 21582 21582 21582 0 0 0  
110 43164 43164 43164 0 0 0  
111 43164 43164 43164 0 0 0  
112 21582 21582 21582 0 0 0  
113 10791 10791 10791 0 0 0  
114 21582 21582 21582 0 0 0  
115 21582 21582 21582 0 0 0  
116 10791 10791 10791 0 0 0  
125 10791 10791 10791 0 0 0 ! Sandbags Floor 5 
126 21582 21582 21582 0 0 0  
127 21582 21582 21582 0 0 0  
128 10791 10791 10791 0 0 0  
129 21582 21582 21582 0 0 0  
130 43164 43164 43164 0 0 0  
131 43164 43164 43164 0 0 0  
132 21582 21582 21582 0 0 0  
133 10791 10791 10791 0 0 0  
134 21582 21582 21582 0 0 0  
135 21582 21582 21582 0 0 0  
136 10791 10791 10791 0 0 0  
145 10791 10791 10791 0 0 0 ! Sandbags Floor 6 
146 21582 21582 21582 0 0 0  
147 21582 21582 21582 0 0 0  
148 10791 10791 10791 0 0 0  
149 21582 21582 21582 0 0 0  
150 43164 43164 43164 0 0 0  
151 43164 43164 43164 0 0 0  
152 21582 21582 21582 0 0 0  
153 10791 10791 10791 0 0 0  
154 21582 21582 21582 0 0 0  
155 21582 21582 21582 0 0 0  
156 10791 10791 10791 0 0 0  
165 10791 10791 10791 0 0 0 ! Sandbags Floor 7 
166 21582 21582 21582 0 0 0  
167 21582 21582 21582 0 0 0  
168 10791 10791 10791 0 0 0  
169 21582 21582 21582 0 0 0  
170 43164 43164 43164 0 0 0  
171 43164 43164 43164 0 0 0  
172 21582 21582 21582 0 0 0  
173 10791 10791 10791 0 0 0  
174 21582 21582 21582 0 0 0  
175 21582 21582 21582 0 0 0  
176 10791 10791 10791 0 0 0  
191 21582 21582 21582 0 0 0 ! Sandbags Floor 1 
192 21582 21582 21582 0 0 0  
193 21582 21582 21582 0 0 0  
194 21582 21582 21582 0 0 0  
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195 43164 43164 43164 0 0 0  
196 43164 43164 43164 0 0 0  
197 43164 43164 43164 0 0 0  
198 43164 43164 43164 0 0 0  
199 43164 43164 43164 0 0 0  
200 21582 21582 21582 0 0 0  
201 43164 43164 43164 0 0 0  
202 43164 43164 43164 0 0 0  
203 43164 43164 43164 0 0 0  
204 21582 21582 21582 0 0 0  
205 43164 43164 43164 0 0 0  
206 43164 43164 43164 0 0 0  
207 43164 43164 43164 0 0 0  
208 43164 43164 43164 0 0 0  
209 43164 43164 43164 0 0 0  
210 21582 21582 21582 0 0 0  
211 21582 21582 21582 0 0 0  
212 21582 21582 21582 0 0 0  
213 21582 21582 21582 0 0 0  
216 57143 57143 57143 0 0 0 ! Stair floor 1 
217 57143 57143 57143 0 0 0 ! Stair floor 1 
233 21582 21582 21582 0 0 0 ! Sandbags Floor 2 
234 21582 21582 21582 0 0 0  
235 21582 21582 21582 0 0 0  
236 21582 21582 21582 0 0 0  
237 43164 43164 43164 0 0 0  
238 43164 43164 43164 0 0 0  
239 43164 43164 43164 0 0 0  
240 43164 43164 43164 0 0 0  
241 43164 43164 43164 0 0 0  
242 21582 21582 21582 0 0 0  
243 43164 43164 43164 0 0 0  
244 43164 43164 43164 0 0 0  
245 43164 43164 43164 0 0 0  
246 21582 21582 21582 0 0 0  
247 43164 43164 43164 0 0 0  
248 43164 43164 43164 0 0 0  
249 43164 43164 43164 0 0 0  
250 43164 43164 43164 0 0 0  
251 43164 43164 43164 0 0 0  
252 21582 21582 21582 0 0 0  
253 21582 21582 21582 0 0 0  
254 21582 21582 21582 0 0 0  
255 21582 21582 21582 0 0 0  
258 57143 57143 57143 0 0 0 ! Stair floor 2 
259 57143 57143 57143 0 0 0 ! Stair floor 2 
275 21582 21582 21582 0 0 0 ! Sandbags Floor 3 
276 21582 21582 21582 0 0 0  
277 21582 21582 21582 0 0 0  
278 21582 21582 21582 0 0 0  
279 43164 43164 43164 0 0 0  
280 43164 43164 43164 0 0 0  
281 43164 43164 43164 0 0 0  
282 43164 43164 43164 0 0 0  
283 43164 43164 43164 0 0 0  
284 21582 21582 21582 0 0 0  
285 43164 43164 43164 0 0 0  
286 43164 43164 43164 0 0 0  
287 43164 43164 43164 0 0 0  
288 21582 21582 21582 0 0 0  
289 43164 43164 43164 0 0 0  
290 43164 43164 43164 0 0 0  
291 43164 43164 43164 0 0 0  
292 43164 43164 43164 0 0 0  
293 43164 43164 43164 0 0 0  
294 21582 21582 21582 0 0 0  
295 21582 21582 21582 0 0 0  
296 21582 21582 21582 0 0 0  
297 21582 21582 21582 0 0 0  
300 57143 57143 57143 0 0 0 ! Stair floor 3 
301 57143 57143 57143 0 0 0 ! Stair floor 3 
317 21582 21582 21582 0 0 0 ! Sandbags Floor 4 
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318 21582 21582 21582 0 0 0  
319 21582 21582 21582 0 0 0  
320 21582 21582 21582 0 0 0  
321 43164 43164 43164 0 0 0  
322 43164 43164 43164 0 0 0  
323 43164 43164 43164 0 0 0  
324 43164 43164 43164 0 0 0  
325 43164 43164 43164 0 0 0  
326 21582 21582 21582 0 0 0  
327 43164 43164 43164 0 0 0  
328 43164 43164 43164 0 0 0  
329 43164 43164 43164 0 0 0  
330 21582 21582 21582 0 0 0  
331 43164 43164 43164 0 0 0  
332 43164 43164 43164 0 0 0  
333 43164 43164 43164 0 0 0  
334 43164 43164 43164 0 0 0  
335 43164 43164 43164 0 0 0  
336 21582 21582 21582 0 0 0  
337 21582 21582 21582 0 0 0  
338 21582 21582 21582 0 0 0  
339 21582 21582 21582 0 0 0  
342 57143 57143 57143 0 0 0 ! Stair floor 4 
343 57143 57143 57143 0 0 0 ! Stair floor 4 
359 21582 21582 21582 0 0 0 ! Sandbags Floor 5 
360 21582 21582 21582 0 0 0  
361 21582 21582 21582 0 0 0  
362 21582 21582 21582 0 0 0  
363 43164 43164 43164 0 0 0  
364 43164 43164 43164 0 0 0  
365 43164 43164 43164 0 0 0  
366 43164 43164 43164 0 0 0  
367 43164 43164 43164 0 0 0  
368 21582 21582 21582 0 0 0  
369 43164 43164 43164 0 0 0  
370 43164 43164 43164 0 0 0  
371 43164 43164 43164 0 0 0  
372 21582 21582 21582 0 0 0  
373 43164 43164 43164 0 0 0  
374 43164 43164 43164 0 0 0  
375 43164 43164 43164 0 0 0  
376 43164 43164 43164 0 0 0  
377 43164 43164 43164 0 0 0  
378 21582 21582 21582 0 0 0  
379 21582 21582 21582 0 0 0  
380 21582 21582 21582 0 0 0  
381 21582 21582 21582 0 0 0  
384 57143 57143 57143 0 0 0 ! Stair floor 5 
385 57143 57143 57143 0 0 0 ! Stair floor 5 
401 21582 21582 21582 0 0 0 ! Sandbags Floor 6 
402 21582 21582 21582 0 0 0  
403 21582 21582 21582 0 0 0  
404 21582 21582 21582 0 0 0  
405 43164 43164 43164 0 0 0  
406 43164 43164 43164 0 0 0  
407 43164 43164 43164 0 0 0  
408 43164 43164 43164 0 0 0  
409 43164 43164 43164 0 0 0  
410 21582 21582 21582 0 0 0  
411 43164 43164 43164 0 0 0  
412 43164 43164 43164 0 0 0  
413 43164 43164 43164 0 0 0  
414 21582 21582 21582 0 0 0  
415 43164 43164 43164 0 0 0  
416 43164 43164 43164 0 0 0  
417 43164 43164 43164 0 0 0  
418 43164 43164 43164 0 0 0  
419 43164 43164 43164 0 0 0  
420 21582 21582 21582 0 0 0  
421 21582 21582 21582 0 0 0  
422 21582 21582 21582 0 0 0  
423 21582 21582 21582 0 0 0  
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426 57143 57143 57143 0 0 0 ! Stair floor 6 
427 57143 57143 57143 0 0 0 ! Stair floor 6 
443 21582 21582 21582 0 0 0 ! Sandbags Floor 7 
444 21582 21582 21582 0 0 0  
445 21582 21582 21582 0 0 0  
446 21582 21582 21582 0 0 0  
447 43164 43164 43164 0 0 0  
448 43164 43164 43164 0 0 0  
449 43164 43164 43164 0 0 0  
450 43164 43164 43164 0 0 0  
451 43164 43164 43164 0 0 0  
452 21582 21582 21582 0 0 0  
453 43164 43164 43164 0 0 0  
454 43164 43164 43164 0 0 0  
455 43164 43164 43164 0 0 0  
456 21582 21582 21582 0 0 0  
457 43164 43164 43164 0 0 0  
458 43164 43164 43164 0 0 0  
459 43164 43164 43164 0 0 0  
460 43164 43164 43164 0 0 0  
461 43164 43164 43164 0 0 0  
462 21582 21582 21582 0 0 0  
463 21582 21582 21582 0 0 0  
464 21582 21582 21582 0 0 0  
465 21582 21582 21582 0 0 0  
468 57143 57143 57143 0 0 0 ! Stair floor 7 
469 57143 57143 57143 0 0 0 ! Stair floor 7 
478 0 0 0 0 0 0 ! Last Node 
 
 
        
LOADS        
1 0 0 0 0 0 0 ! First Node 
478 0 0 0 0 0 0 ! Last Node 
 
 
 
EQUAKE null.eqs                  ! x direction earthquake 
4 1 0.005 981.0 -1 
 
EQUAKE null.eqs                  ! y direction earthquake 
4 1 0.005 981.0 -1 
 
EQUAKE SR2000KAV.eqs        ! z direction earthquake 
4 1 0.005 981.0 -1 
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Example of a FE model for the secondary system 
 
 
Secondary system 1, decoupled, Floor response 
2 0 0 4 3 0 0 0                                 ! Control Parameters 
DEFAULT      ! Earthquake Parameters 
2 1 1 12 10 0 9.81 0.0081 0.0069 0.005 30.0           ! Structural Parameters 
0  1  0 20.0 0.1 0.1 0.1 0             ! Output Parameters 
0 0 0.001 0.0 0.0 0.0 0.0 0.0 0.0             ! Iteration Parameters 
1 0.42 2 0.8 3 0.8 4 0.8 5 0.8 6 0.8 7 0.8 8 0.8 9 0.8 10 0.8  ! User Specified Modal Damping Parameters 
 
 
NODES 0 
1 0 0 0 1 1 1 1 1 1 0 ! Node 4th floor 
2 0 1.15 0 1 1 0 1 1 1 0 ! Node SS 
 
 
 
ELEMENTS 
1 1 1 2 0 0 x ! SS 
        
 
PROPS  
1 BEAM        
1 4 0 0 0 0 0   
3.00E+09 1.30E+09 1 7.95724E-06 2.65E-06 5.30E-06 0 0 0 0 0 
0            
        
 
WEIGHTS        
1 0 0 0 0 0 0  
2 10791 10791 10791 0 0 0 ! SS 
    
    
LOADS        
1 0 0 0 0 0 0 ! 4th floor 
2 0 0 0 0 0 0 ! SS 
 
 
EQUAKE null.eqs                                  ! x direction earthquake 
4 1 0.005 981.0 -1 
 
EQUAKE null.eqs                                  ! y direction earthquake 
4 1 0.005 981.0 -1 
 
EQUAKE ACC2000KAVTOT.eqc  ! z direction earthquake 
1 1 0.005 98100 -1 0 0 1 
 
 
 
 
 
 


	Binder1
	Bindertest
	Binder1111
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system





	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Binder1111
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system






	Master Thesisjk
	Bindertest
	Binder1111
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system





	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Binder1111
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system







	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Binder1
	Bindertest
	Binder1111
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system





	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Binder1111
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system






	Master Thesisjk
	Bindertest
	Binder1111
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system





	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Binder1111
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system




	Blank
	Master Thesis
	Preface
	Summary
	Introduction
	Theoretical Background
	Single Degree of Freedom
	Equation of motion
	Stiffness

	Multiple Degree of Freedom (2DOF)
	Equation of motion

	Free vibration
	Orthogonality of modes
	Forced vibration – Harmonic excitation
	Undamped harmonic excitation
	Harmonic excitation with viscous damping

	Damping
	Evaluation of Viscous Damping
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Direct integration of the equation of motion

	Ground excitation
	Response spectrum

	The Cardington Building
	Primary System
	Secondary system
	The vibration generator

	FEM Model
	Ruaumoko
	Primary system
	Modeling of the primary system
	Eigenfrequency analysis of the primary system

	Secondary system
	Modeling
	Eigenfrequency analysis

	Decay test to check the damping ratio
	Comparison of calculated results with previously measured results

	Response Analysis
	Harmonic Excitation
	Primary structure without the secondary structures
	Primary structure with the secondary structures
	Damping ratio equal to 0.8 %
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 5.0 %, with comparison to 0.8 % damping ratio
	Response function for the secondary systems
	Displacement of the floor at the location of the secondary system

	Damping ratio equal to 0.08 %, with comparison to 0.8 % and 5.0 % damping ratio
	Displacement of the node at the location of the secondary system


	Ratio of response between secondary and primary system
	Damping ratio equal to 0.8 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS with SS in place

	Damping ratio equal to 5.0 %
	Ratio of response: SS / PS without SS in place
	Ratio of response: SS / PS without SS in place

	Comparison between 0.8 % and 5.0 % damping for the ratio of response where the floor response of the primary system is generated without the secondary systems in place


	Earthquake Excitation
	Acceleration response spectra for the primary system
	Floor response at the location of the secondary structure
	Response of the secondary structure
	Amplification of the total acceleration from the ground to the secondary system
	Floor response spectra method compared to SS analyzed jointly with PS
	The effect of the damping ratio for secondary systems
	The effect of the damping ratio for secondary systems with natural frequencies inside the resonant frequency range of the primary system
	Damping ratio equal to 0.08 % - low damping ratio
	Damping ratio equal to 2.0 % - medium damping ratio
	Damping ratio equal to 5.0 % - high damping ratio
	Summary for the different damping ratios

	The effect of the damping ratio for secondary systems with natural frequencies outside the resonant frequency range of the primary system
	Summary of the difference in amplitudes for the two methods
	Summary of the damping ratios effect





	Codal provisions for design of non-structural elements
	Eurocode 8
	Seismic Coefficient comparison between Eurocode 8 and FE model


	Conclusion
	References
	Appendix A:
	Theoretical Background
	Single Degree of Freedom
	Stiffness

	Multiple degree of freedom
	Free vibration
	Orthogonality of Modes
	Normalization of modes
	Forced vib
	Harmonic excitation
	With viscous damping

	Damping
	Evaluation of viscous-damping ratio
	Half-power bandwidth method
	The FreeVibration Decay Method

	Rayleigh Damping
	Caughey  Damping
	Effect of a Secondary System: Dynamic Vibration Absorber

	Solutions of the equation of motion
	Duhamel’s integral
	Direct integration of the equation of motion

	Ground vibration
	Response spectrum


	Appendix B:
	Results
	Earthquake floor response at the location of the secondary structure
	Earthquake 2000kav (floor response):
	Earthquake 2000kns (floor response):
	Earthquake 2008kav (floor response):

	The effect of the damping ratio for SS during earthquakes
	Seismic Coefficient comparison
	Ruaumoko Model
	Example of a FE model for the primary system
	Example of a FE model for the secondary system








