u

University of
Stavanger

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:
Spring semester, 2010
Constructions and Materials/ Energy

Open access

Writer:

Mats Leander MathiSEN | s
(Writer’s signature)

Faculty supervisor:
Professor Mohsen Assadi

Title of thesis:

Noise filtering from a nonlinear system by using AANN

Credits (ECTS): 30 points

Key words:

AANN Pages: 44
ANN

Artificial neural networks
Autoassociative neural networks
Gas turbines Stavanger, June 9" 2010
Noise filter

Frontpage for master thesis
Faculty of Science and Technology
Decision made by the Dean October 30" 2009

Noise filtering from a nonlinear system by using AANN

rd
e

Mats Leander Mathisen University of Stavanger

Noise filtering from a nonlinear system by using AANN

. Abstract

In order to run a gas turbine, the operator (be it human or
automatic) needs to monitor the conditions of the various
parts inside it. Pressures, temperatures, mass flows,
vibrations, power output. These properties all need to be
controlled in order to run the gas turbine optimally. And
in order for the operator to make the necessary
adjustments, sensors inside the gas turbine are needed to
monitor said properties.

As the industry drives towards higher efficiencies and
lower emissions, the accuracy of these sensor readings
inside the gas turbine become more and more important.
The objective of this thesis then, was to see how this
accuracy could be improved by the use of autoassociative
neural networks (AANN), which is a kind of noise filter.

Sensor readings will not be completely accurate, since
the technology is not perfect. One problem is something
called random noise, meaning sensor measurements that
are scattered randomly close to the exact value. A noise
filter will take these scattered measurements and move
them all closer to the exact value.

It is already known that an AANN can perform this task,
and in this thesis the main objective was to find some
indication of just how effective it is as a noise filter.

In order to measure how effective a noise filter is, one
would ideally need one set of measurements, which are
noisy, and one set of corresponding measurements, which
are not noisy at all (perfect measurements). Checking the
level of noise reduction then would be to first filter the
noisy measurements, and then comparing both the
filtered and noisy measurements to the perfect
measurements.

Such a solution can not be found with real measurements
from a gas turbine, because they are never perfect. But if
the measurements were calculated using thermodynamic
and physics equations, they would not contain noise.
They would be completely theoretical, but they would not
contain noise.

Synthetic measurements like these were generated by the
use of a software which can model gas turbines and
calculate theoretical properties for various theoretical
scenarios. Noise was then added to these noise free
measurements in order to emulate the real gas turbine.

Mats Leander Mathisen

And with that, two sets of measurements were available:
One set of noisy measurements, and one set of perfect
measurements.

With the use of the MATLAB neural network toolbox,
these sets of measurements were used to test the
effectiveness of an AANN as a noise filter. The noisy
measurements were filtered through an AANN, and the
filtered and noisy measurements were then compared to
the perfect measurements.

Artificial neural networks (ANN), which also have some
noise filtering abilities, were also tested this way. But not
as extensively as the AANN.

Results showed that there was indeed noise reduction, but
not for all the individual parameters in the measurements.
For some parameters, the AANN achieved very good
noise filtering, but for other parameters there was no
effect.

The reason for this is not entirely clear, but earlier two
purely mathematical examples were tested in order for the
author to familiarize himself with the methodology. And
these examples only had two-three parameters; few
enough to visualize in graphs (2- and 3 dimensional).

In these two examples, there was found a trend which
suggested that an AANN does not filter each parameter
individually, but rather all parameters together as if they
were one.

The author can not prove this, but he speculates the same
principle could apply to measurements that have more
than three parameters as well, which means that an
AANN might not be very ideal for noise filtering of
individual sensors inside a gas turbine.

It the future, it could certainly be interesting to test an
AANN on measurements from a real gas turbine. Several
conditions would need to be met for such a test to prove
useful; like extensive correlations between the different
parameters included, and redundant measurements. But it
is not unreasonable to assume there would be some
reduction of noise.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

. Preface

This report represents the final product of the author's
master thesis, which concludes a two year Masters degree
in structural and material science at the University of
Stavanger, Norway. The latter part of this Masters degree
was centered around energy applications, and one of the
classes was an introductory course to gas turbine
technology.

With this background, the need for the author to spend
time studying gas turbine theory was greatly reduced, and
most of the time has been spent on learning to
understand, create and utilize artificial neural networks.
This has also provided the author with an opportunity to
familiarize himself somewhat with the computer program
MATLAB.

It has been a nice learning experience with regards to
independent work, and the subject matter was indeed
quite fascinating.

Technical aspects of this report

The report is divided into four chapters: Theory, Work,
Results and Discussion. Each chapter builds on previous
chapters, but some relevant information may be included
in the appendix at the end of the report. A direct
reference to the appendix will be made in the text where
appropriate.

A list of notations, abbreviations and a small glossary has
been added for easy reference while reading the report.

References to other works are added inside or at the end
of paragraphs, indicating that these particular lines or
paragraphs consist of information interpreted directly
from the references given. In two instances, the
references have been added directly to the headline,
meaning those sources heavily influence those
subchapters.

Whenever MATLAB code is included, it will be in a
different font, setting it apart from the rest of the text.

Vectors and matrices are written in bold script, such as
for the input matrix; p_input.

Mats Leander Mathisen

Acknowledgements

The author would like to thank Phd. students Nikolett
Sipocz and Thomas Palme, as well as Professor Mohsen
Assadi at the University of Stavanger for providing the
opportunity to work on this thesis.

Also a special thanks to Thomas Palme for all guidance
and help. Especially with the theory of artificial neural
networks.

And finally, thanks to fellow student Linn Noomi
Garborg for the dataset generated in IPSEpro with a
model of the Turbec T100 CHP, without which this thesis
would not have been possible.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

. Contents

Preface 1 24 AANN with data from Turbec 25
Contents 2 2.4.1 Preprocessing of data 25
Nomenclature 3 2.4.2 Building the AANN model 25
Introduction 4 2.4.3 Training and producing results 25

2.5 ANN with data from IPSEpro 26
2.5.1 Preprocessing of data 26

1 Theory 2.5.2 Building the ANN model 26
1.1 Gas turbine 5 2.5.3 Training and producing results 26
1.11 Compressor 6 2.6 ANN with data from Turbec 26

1.1.2 Combustion 8
1.1.3 Turbine 9

1.1.4 Auxiliary systems 9 3 Results

1.2 Turbec T100 CHP 10 3.1 Theoretical AANN examples 27
1.2.1 Modified Trubec T100 CHP 10 3.1.1 2D example 27
1.2.2 Sensors monitoring 10 312 3D example 27

1.3 Artificial Neural Networks 11 3.2 AANN with data from IPSEpro 29
1.3.1 The perceptron 12 3.2.1 Optimal network architecture 29
1.3.2 Transfer functions 12 3.2.2 Level of noise reduction 30
1.3.3 Multilayer perceptron 13 3.2.3 Noise reduction on noisy data with outliers 30
1.3.4 Error backpropagation 13 3.3 AANN with data from Turbec 30
1.3.5 Training algorithms 14 34 ANN with data from IPSEpro 31
1.3.6 Regression 15 3.4.1 Results for all parameters 31
1.3.7 Preprocessing 15 3.4.2 Level of noise reduction 32
1.3.8 Principal component analysis 16 3.5 ANN with data from Turbec 32
1.3.9 Autoassociative Neural Networks 16

1.4 Noise reduction 17
1.4.1 Exponential smoothing 17 4 Discussion

142 AANN noise reduction 17 4.1 Shortcomings of methodology used 33
1.4.3 ANN noise reduction 18 42 Evaluation of results 33

L5 IPSEPrO 18 . 43 Ideas for future work 33
1.5.1 Creating a gas turbine model 18

1.5.2 Shortcomings of the IPSEpro model 18

List of tables and illustrations 34
References 35

2 Work

2.1 Theoretical 2D AANN example 19
2.1.1 Acquisition and preprocessing of data 19 Appendix
212 B uilld'ing the AANN 19 I Backpropagation example 36
2.1.3 Training the network 20 1 Various MATLAB code used 38
2.1.4 PrOduC]ng the results 20 1L The MATLAB nntool 39

2.3 AANN with data from IPSEpro 23
2.3.1 Cleandata 23
2.3.2 Data with noise 24
2.3.3 Data with noise and outliers 24

Mats Leander Mathisen 2 University of Stavanger

Noise filtering from a nonlinear system by using AANN

. Nomenclature

Here are included symbols, abbreviations and selected
words/phrases used in this report that might be unfamiliar
to the reader. It will hopefully save extra time spent
looking them up elsewhere.

Notation

T - temperature
S - entropy

Po - stagnation pressure

p - static pressure

C - velocity

¢, - specific heat

p - density

R - universal gas constant

Abbreviations
AANN - autoassociative neural network

ANN - artificial neural network
CHP - combined heat and power

CO - carbon monoxide

GUI - graphical user interface
MLP - multilayer perceptron
MSE - mean square error

NOx - nitric oxides

PMC - power module controller
TIT - turbine inlet temperature
TOT - turbine outlet temperature

UHC - unburned hydrocarbons

Glossary

correlated - dependent on each other to some
extent.

diffusion flame -

dynamic pressure - pressure generated by kinetic
energy.

- constant entropy.

- compact turbine generating
between 100 and 200 kW of
electrical energy.

isentropic
microturbine

Mats Leander Mathisen

normalize - to convert a set of data, making the
values fall between a set of selected
boundaries (for example between
1 and -1).

- heat exchanger which uses hot
exhaust to preheat compressed air
before it enters the combustion
chamber inside a gas turbine.

- an approximately best fit relation
between several parameters.

stagnation pressure - static- plus dynamic pressure.

static pressure - pressure in the form of potential
energy.

- The art of calculating atomic
proportions in chemical reactions.

- random noise following a gaussian
distribution.

recuperator

regression

stoichiometry

white noise

University of Stavanger

Noise filtering from a nonlinear system by using AANN

. Introduction

Gas turbines will usually have several sensors monitoring
their components. These can be temperature sensors,
pressure sensors, mass flow sensors, etc. While a gas
turbine is running, these sensors are vital to ensure the
operator (human or automatic) runs the gas turbine
within its specifications. The drive to higher efficiency is
also raising the pressures and temperatures in gas
turbines, which further increases the challenge to
accurate sensor measurements.

For this thesis, the gas turbine in question is a Turbec
T100 CHP. It is a microturbine; a small gas turbine which
can produce (in this case) 100 kW of electricity and more
than 150 kW of heat through an exhaust to water heat
exchanger.

Microturbines such as the Turbec T100 CHP are designed
to work on autopilot while directly connected to the
commercial power grid. A process that requires accurate
sensor measurements for the controls to run the system
optimally. Such accurate measurements in the hot
components of gas turbines (including combustion
diagnostics) are recognized as a major need for the
assessment of engine component health and performance.
And considering the relatively small scale of a
microturbine, these measurements will also need to be
economical.

There already exist simple linear filters in the form of
mathematical algorithms, which provide excellent noise
reduction for industrial applications, but they do have
certain limitations.""" It would therefore be interesting to
investigate other options.

Using measurements from the Turbec T100 CHP
microturbine, it should be possible to train an artificial
neural network (ANN), or more specifically an
autoassociative neural network (AANN), and apply it to
the measurement data. An AANN is a filter which can be
used to detect sensor failure, trend shifts or degradation
in gas turbines. At the same time it can also provide some
degree of noise reduction in the sensor readings.!'*!"!

Mats Leander Mathisen

But how much noise reduction? The author has received
simulated sensor data of a Turbec T100 CHP gas turbine.
These data are clean, in the sense that they do not contain
any measurement noise. By adding white noise to the
data, one obtains a set of noisy data, which will represent
the real sensor data one could expect from the Turbec
T100 CHP.

These clean and real data provide the author with an
opportunity to estimate how much noise reduction an
AANN can provide to gas turbine sensors. By simply
checking the difference between the clean and filtered
(filtered through the AANN) data in relation to the
difference between the clean and real data, one should be
able to get an indication of how much noise reduction the
AANN can provide.

Since this simulated sensor data of the Turbec T100 CHP
is not a perfect representation of the real engine, it only
serves as an indication of plausible success. Sensor data
from the real Turbec T100 CHP gas turbine will therefore
also be filtered through an AANN to hopefully see if the
process actually works.

Whether the filter works on real measurements can be
checked by simply plotting the original sensor data on top
of the sensor data which has been filtered through the
AANN. However, as is the case with all artificial neural
networks; good measurement data is essential in order to
get good results.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

Theory

In this chapter there will be provided a short introduction
to the basic theory of gas turbines, before exploring in
more detail the design of the Turbec T100 CHP.
Hopefully, this will provide readers who are not familiar
with gas turbines, or perhaps are in need of a short
reminder, with enough insight to follow the rest of the
report. A thorough understanding of the Turbec might
also be important for constructing and analyzing the
AANN model later.

An introduction to artificial neural networks then follows,
presenting the theory on which the computer program
used in this assignment was built. Details of the
mathematics involved will not be covered (except for a
brief example in Appendix I), but instead an attempt is
made to give a general understanding of what an artificial
neural network is and can do.

How neural networks may be used for noise filtering is
then introduced, as well as compared to a more
conventional approach.

And finally, a brief mention of IPSEpro, and how it was
used for the simulated run of the Turbec T100 CHP.

1.1 Gas turbines

A simple gas turbine design consists of three main
components; compressor, combustion chamber and
turbine. Together, these provide a power output in the
form of a rotating shaft, which can be utilized directly as
mechanical energy or connected to an electric generator.

Fuel
24 Combustion v3
1 Chamber 4
/_“‘_
Mechanical
Work
e
Compressor Turbine

Iustration 1: Open simple cycle gas turbine.

Mats Leander Mathisen

In order for a turbine to produce work, a pressure ratio is
needed in the working fluid (usually air). Consider the
equation below (assume Z to be negligible) together with
illustration 2. The density of air increases when the
pressure increases (temperature will also increase). This
is done in the compressor. After compression the working
fluid is then heated up further in the combustion chamber
at ideally constant pressure (there is however always
some pressure loss due to friction). This added heat
decreases the density in the air towards what it was
before compression. When the air then expands through
the turbine, more pressure is converted into mechanical
energy than if there was no extra heat from combustion.
This way the turbine can generate more mechanical
power than what is needed to run the compressor.

_p
P=ZRT

s
Illustration 2: T-S diagram for open simple cycle gas turbine. 2' and

4' indicate the isentropic states of the working fluid. P, and Py are
constant pressures.

Compressor pressure ratio, turbine inlet temperature and
component efficiencies are the key factors in the simple
cycle gas turbine. As can be seen in illustration 3 on the
next page, increasing the turbine inlet temperature
provides the potential for more work (the area under the
graph is bigger), while the pressure ratio determines the
relationship between the amount of heat added and the
amount of work produced. It can also be seen that a high
efficiency in the compressor causes it to draw less power,
and a high efficiency in the turbine causes it to produce
more work (less entropy generated means less energy
lost)..

University of Stavanger

Noise filtering from a nonlinear system by using AANN

Ta

>
>

S

Illustration 3: T-S diagram for open simple cycle gas turbine. 2' and
4' indicate the isentropic states of the working fluid.

Restrictions to maximum temperature are a result of
material properties, while restrictions to the pressure
ratio depends on the size of the compressor and turbine.

Because the compression, combustion and expansion
occurs in three separate components (as opposed to a
reciprocating engine), each component can be developed
individually, and later linked up in several different ways.
It might be desirable to use more than one compressor in
order to achieve a higher total pressure ratio. Perhaps it
would be practical to have two turbines; one to drive the
compressor, and one on a different shaft used to drive the
generator. Different applications for gas turbines mean
different design solutions may provide an optimal
solution.

Recuperator
5
- NN

| Combustion

NN Lanl Chamber

b 4
2t 39
1
Mechanical
Work
™
Compressor Turbine

Illustration 4: Open simple cycle gas turbine with recuperator.

An overview of all the different designs in use will not be
covered here, but a brief description of the simple cycle
gas turbine with recuperator should be mentioned. In
illustration 4, it can be seen how the exhaust leaving the
turbine is sent through the recuperator, preheating the

Mats Leander Mathisen

compressed air. This way less heat needs to be produced
in the combustion chamber, offering an increased thermal
efficiency.

Ta Combustion
Chamber

Heat

------ 4
i Recuperator
2I;. ¥
1
S

Illustration 5: T-S diagram for an open simple cycle gas turbine
with recuperator. The working fluid is first heated up in the
recuperator, and then the combustion chamber. 2' and 4' indicate
the isentropic states of the working fluid.

The recuperator gas cycle needs a smaller pressure ratio
than the simple cycle. If the pressure ratio is too high, the
temperature difference between compressor outlet and
turbine outlet will be too small for the recuperator to be
useful. This can be seen in illustration 5, by imagining
that the pressure ratio is so high that the temperature at
point 2 is actually higher than the temperature at point 4.

In the T-S diagrams for both simple cycle and cycle with
recuperator, notice how the temperature leaving the
turbine is higher than the temperature going into the
compressor (several hundred degrees in fact). Utilizing
this excess heat will increase the thermal efficiency of
the system considerably. This can be done by for example
using a recuperator, combining the gas turbine with a
steam turbine, or simply heating up water.

1.1.1 Compressor

There are two kinds of compressors being used in gas
turbines; the centrifugal (radial) compressor, and the
axial compressor. Centrifugal compressors are primarily
used for small mass flows, while axial compressors are
used for large mass flows.

Up to a certain mass flow, centrifugal compressors are
more compact. They offer a better resistance to foreign
object damage, less susceptibility to loss of performance
by build-up of deposits on the blade surfaces, and the
ability to operate over a wider range of mass flow at a

University of Stavanger

Noise filtering from a nonlinear system by using AANN

particular rotational speed."’ Axial compressors on the
other hand offer the potential for higher pressure ratios,
and higher mass flows with the same size air inlet area.

Air out Impeller
shroud

Diffusers X
s

-

Impeller

——* Airout

Impeller

Illustration 6: A centrifugal compressor consists of an impeller, the
impeller shroud (part of impeller casing), and diffusers.

The centrifugal compressor consists of a stationary
casing and a rotating impeller. Air is drawn in through
the impeller eye, and accelerated outward to the fixed
diverging passages in the casing. These passages are
known as diffusers, and here the air is decelerated with a
consequent rise in static pressure.

Impeller Diffuser

T
162=-|EJ3
T2
TOl

U)"

Ilustration 7: T-S diagram for working fluid as it passes through a
radial compressor. [1]

Taking p, to mean stagnation pressure, i.e. total pressure,
the T-S diagram in illustration 7 shows how pressure
rises through the centrifugal compressor. Stage 1
indicates the impeller eye, stage 2 the impeller tip, and
stage 3 the diffuser. Over the impeller there is produced a
rise in both static and dynamic pressure, while the
diffuser converts some of the extra dynamic pressure to
static pressure. Notice the losses in both impeller and
diffuser expressed by an increase of entropy.

Mats Leander Mathisen

Rotor

Stator
movement
Alr to

Air combustor
intake Air

Rotor blades Stator blades

Rotor blades

1 Airin

Rotor
/ movement
Rotor
blades
Stator
blades

Alr out
Illustration 8: An axial compressor. Rotor blades are fastened to the
rotating shaft, while stator blades are fastened to the stator. One
stage of an axial compressor consists of one row of rotor blades and
one row of stator blades.

An axial compressor consists of several stages. In every
stage, there is a row of rotor blades followed by a row of
stator blades. Rotor blades accelerate the air with
mechanical energy, while stator blades decelerate the air,
converting dynamic pressure to static pressure. This is
repeated over as many stages as is needed to produce the
desired pressure ratio.

<3

2cp C%
2¢;

s

Ilustration 9: T-S diagram of working fluid as it passes through an
axial compressor. [1]

University of Stavanger

Noise filtering from a nonlinear system by using AANN

To clarify illustration 9; p, is the stagnation pressure
(total pressure) and p is the static pressure. Subtracting
the static pressure from the stagnation pressure leaves the
dynamic pressure. C is the absolute velocity and c, is the
specific heat of the working fluid.

Looking at the T-S diagram for the axial compressor
(illustration 9), position 1 lies before the rotor, position 2
between rotor and stator, and position 3 after the stator.
This represents one stage in the axial compressor, and it
can be seen how the dynamic and static pressure changes
through each stage.

Surge Constant
speed curve

Pressure ratio

Choke

»
>

Mass flow

Illustration 10: Theoretical characteristics of a compressor.
Working fluid moving at constant speed.

All compressors operate in a specified range between
something called surge and choke. If the pressure just
outside the compressor inlet is lower than the pressure
just inside the compressor inlet, it will prevent air from
fully being sucked into the compressor. This
phenomenon, called surge, will cause unstable operation,
and could be very damaging to the system.

If on the other hand the mass flow is too high, the
compressor will not be able to influence the working
fluid properly, as friction is stealing all the mechanical
energy. This phenomenon is called choke.

1.1.2 Combustion

Combustion is achieved by mixing fuel (gas and/or
liquid) with air, and then igniting it. Fuel is first premixed
with some of the high pressure air and injected into the
air stream at certain speeds. Old gas turbines did not

Mats Leander Mathisen

premix the fuel and air, but simply injected the fuel
directly into the air stream. This caused a diffusion flame
which was very stable." But it also produced emissions
due to more incomplete combustion (more CO and UHC
generated). This combined with the high flame
temperatures also generated high NOy emissions.

Stoichiometric mixture

NO

Emissions —»

\ co UHC

»
L

Airffuel ratio

Rich «=—— Lean

Ilustration 11: Dependence of emissions on air/fuel ratio. [1]
CH ,+ Air—H,0+CO,+N,

The stoichiometric chemical reaction for combustion
with CH, and air, requires that the number of atoms on
both sides of the reaction correspond to each other
(assume air only consists of O, and N,). Together with
illustration 11, this gives an idea of what is happening in
the combustion process.

A dry (low H,0 concentration in air), lean (more air than
in the stoichiometric mixture) premix will lower the
flame temperature because of the excess air which needs
to be heated up. The lowered flame temperature lowers
the NOx emissions. At the same time, the extra O, from
the excess air thoroughly mixed with the fuel, increases
the chances for complete combustion, which reduces CO
and UHC emissions.

With regards to combustor design, three options stand
out; the annular, the can-type and the cannular combustor
configurations. For aircraft engines the annular
combustor is used almost exclusively because of its low
frontal area and weight for a given volume.” Can-type
and cannular combustors are heavier and require more
space, but this is not necessarily a big problem for
industrial applications. And since they consist of several
similar cans, design only needs to focus on one can. This
may prove economical both in development and
maintenance.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

air ==

Rotating shaft /'

connected to
turbine and
compressor

Compressed . %ﬂ]
— 5/

Compressed
¥ air

Exhaust gas

Illustration 12: Upper left: Annular combustor. The combustion
chamber wraps all the way around the rotating shaft connected to
turbine and compressor. Lower right: Can-type combustor. Each
can is a combustion chamber. Can-type combustors need not be
positioned around the rotating shaft. Cannular combustors are a
hybrid of the two above.

High combustion efficiency, low pressure loss, flame
stability and low emissions are the main guidelines for
the combustion process. Turbine inlet temperatures also
need to be as high as possible, but they are restricted both
by material properties and emissions increasing with very
high flame temperatures.

1.1.3 Turbine

As with compressors, there are two kinds of turbines;
radial and axial turbines. Most gas turbines use the axial
flow turbine.™

| Airin
o
Stator
(nozzle)
blades
P
Rotor blades
movement
— Rotor
blades
[—
l Air out

Illustration 13: One stage of an axial flow turbine consists of one
row of stator (nozzle) blades, and one row of rotor blades. Axial
turbines have fewer (some times only one) stages than axial
compressors.

Mats Leander Mathisen

A turbine converts high pressure and temperature to
mechanical energy. It is worth mentioning that because of
the high temperatures, turbine blades are cooled by
ventilation air passing over the turbine disc and blade
roots. Small cooling holes inside the individual blades
may also provide protection from the high temperatures,
and they make turbine blades very expensive to
manufacture.

The axial turbine looks much like the opposite of the
axial compressor (compare illustrations 8 and 13). It
consists of one or more stages. One stage has a row of
nozzle blades, and a row of rotor blades. Exhaust from
the combustion chamber is accelerated through the
nozzle blades and the extra kinetic energy is then
converted to mechanical energy in the rotor blades.

Radial turbines look very similar to a reversed
compressor, but with nozzle guide vanes replacing the
diffuser vanes. There might also be a diffuser at the outlet
to reduce the exhaust velocity to a negligible value,
which prevents kinetic energy from being wasted.™

1.1.4 Auxiliary systems

In addition to the three main components of a gas turbine,
there must of course be several auxiliary components to
complement the system.

For utilizing the mechanical energy directly, a gearbox
might be needed. And for conversion of mechanical
energy to electricity a generator is needed.

An air filter is often installed in front of the compressor
in order to prevent foreign objects entering the cycle and
causing damage to various components. It also helps
prevent fouling (particles gathering inside the system,
deteriorating components).

Rotating parts often require lubrication and cooling.
Subsystems would need to be installed in order to provide
this.

A system is needed to regulate the fuel supply, as well as
offering a possibility to control the start up, re-ignition
and shut down of the gas turbine.

Electronics and sensors need to be installed in order to

create a user interface so the engineer can control the
entire machine.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

1.2 Turbec T100 CHP™

The Turbec T100 CHP is a 100 kW microturbine. It
includes back to back radial compressor and turbine,
combustion chamber, recuperator, electric generator, and
exhaust gas to water heat exchanger.

Comparing it to the recuperator cycle mentioned earlier,
the only difference is the exhaust gas to water heat
exchanger, providing a higher thermal efficiency.

Exhaust heat Combustion

R t
exchanger ecuperator Chamber
6 5
"M] et ==
Process water L 4
24 39
1
N
™ /
Mechanicall:
Work
rd e
Compressor Turbine

Illustration 14: The Turbec T100 CHP gas turbine. See illustration
5 for a T-S diagram (exhaust to water heat exchanger not included).

Auxiliary systems include air intake and ventilation
system, electrical and control system, lubrication oil
system, buffer air system, water cooling system for the
electronics and generator, emergency stop and fuel gas
system.

Ambient air is taken from an outdoor intake and as the
airflow enters the CHP unit, it is split into two partial
flows. One for combustion air, and one for ventilation of
excess heat. There are two air filters, one optional coarse
prefilter close to the outdoor intake, and a fine filter close
to the the compressor.

Electric power is generated with a rotating permanent
magnet, but needs to be rectified and transformed to the
preferred frequency. The generator and electrical system
is automatically controlled by the PMC (Power Module
Controller). In reverse they work as the electric starter for
the gas turbine.

Oil is circulated from the bearings to an oil-to-air cooler
by a motor-driven pump, providing lubrication. Buffer air
is pumped to the sealing system to block lubrication oil
from entering the engine. An oil filter separates oil mist
from the air.

Mats Leander Mathisen

10

The Turbec T100 CHP runs on natural gas, and the fuel
gas system includes piping, auto shut off valve, filter, fuel
block, pressure sensor, fuel control valves and pipes to
injectors. If the gas provided has too low a pressure, there
is a fuel gas compressor installed to raise the pressure.

Oil pressure and temperature, heat demand, gas pressure
and vibrations are monitored by the PMC, running the
gas turbine automatically. It starts, stops and supervises
the operation, responding to a critical fault by either a
normal stop or an emergency stop. Faults are then logged
in the system. The author has not been able to learn any
specifics on the algorithms used in the PMC.

1.2.1 Modified Turbec T100 CHP

For this thesis, a Turbec T100 CHP stationed at Risavika
Gas Centre, Tananger Norway, is being modeled. This
CHP unit is identical to the one described above, except
for some modifications to the combustion system. A
bypass has been installed, making it possible to connect
and use a fuel cell to replace the combustion chamber.

Exhaust heat

Combustion
Recuperator
3 exchanger . P! Chamban
Pracazzil
h
Process water Bypass to _ L 4
fuel cell
2t 39
1
o g ey
[/
Mechanicall:
Work
e ~
Compressor Turbine

Illustration 15: Modified Turbec T100 CHP gas turbine. A bypass
around the combustion chamber has been installed, providing an
opportunity to run the gas turbine together with a fuel cell.

1.2.2 Sensors monitoring

The various parameters in a gas turbine can be monitored
by several different kinds of sensor technologies.
Temperatures, pressures, mass flows, electric power,
rotational speed, mechanical work and more are
measured continuously.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

For temperature measurements, thermocouples are
widely used. An electrical conductor (usually a metal)
subjected to a thermal gradient will generate a voltage.
And different metals subjected to the same thermal
gradient will generate different voltages. If these two
metals are connected, the temperature can be calculated
by measuring the difference in voltages, using a
voltmeter.

Pressure measurements can be done using piezoresistive
sensors. These consist of a small metal surface subjected
to ambient pressure. The variation in pressure causes
mechanical deformation in the metal, which alters the
resistivity in the metal. By subjecting the metal to a
constant electrical current, this change in resistivity can
be measured, and converted into pressure measurements.

Electric power can be measured with a combination of
voltmeter and ammeter, and mass flows can be calculated
from pressure differences. It is important to have an idea
where the measurements are coming from in order to
determine their accuracy.

1.3 Artificial Neural Networks

Before trying to explain what an artificial neural network
is, it might be helpful to introduce some basic elements.
The idea of artificial neural networks comes from
studying biological neural networks.

Axon
(output)

Soma
3
(processor)

Dendrites
(inputs)

A

4 o XY
Illustration 16: A biological neural network consisting of several
interconnected neurons. This image is a theoretical representation
of what a biological neural network might look like.

IR

Mats Leander Mathisen

11

Looking at a neuron (a nerve cell) commonly found in
the human brain, it consists of three main areas;
dendrites, soma and axon (this is not entirely accurate,
seeing as how there are many different kinds of neurons,
but for the sake of simplicity it will be sufficient). Soma
is the main body, which processes information passing
through the neuron. Attached to the soma are several
dendrites, which receive signals (inputs) from other cells.
An axon, which is much longer than the dendrites, is also
attached to the soma. This is where the neuron sends out
signals (outputs) to other cells. A connection between
one neuron and another is called a synapse. Now lets look
at an artificial neuron.

Processing
unit

output

Inputs

Illustration 17: An artificial neural network consisting of several
interconnected neurons. It is not an illustration of an actual neural
network, but means to imply the structure may be very complex.

Here we also find three main areas: Inputs, processing
unit, and output (again, it can be more complicated than
this). Connections between one neuron and others are
called synaptic weights.

In general terms, one might describe artificial neural
networks as groups of these neurons connected to each
other, as well as to input- and output data, for the purpose
of pattern recognition. Pattern recognition in this context
means the automatic discovery of regularities in data
through the use of computer algorithms.'

It might be helpful for that last statement to be explored a
little further. Regularities in data can be used to achieve
several objectives, ranging from simple linear regression
or classification, to neural networks learning to play a
game of chess. The chart on the next page gives a small
introduction to the various possibilities involved.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

Properly trained networks
can perform...

Classification
Inputs with several
parameters are sorted

Supervised learning and put into different
Inputs and desired categories

outputs for training

the network are known Regression

Continuous variable
inputs are converted
to expected outputs
(function approximation)

Clustering
Groups of similar data
are discovered and

Unsupervised learning filtered out from the rest

Inputs for training of the
network are known, but
not the desired outputs

Density estimation
Determining how the

data is distributed

Visualization
Data is projected from
higher to lower dimensions

Seeing as how there are so many different kinds of neural
networks, it would now be appropriate to focus
specifically on the type of neural networks used to solve
the problem explored in this thesis. These are the
feedforward networks of layered neurons (multilayer
perceptrons).

1.3.1 The perceptron

Originally, the artificial neuron was modeled to function
much like it was known for a biological neuron to
function. This amounted to a series of inputs which were
either 1 (excitors) or -1 (inhibitors). Depending on
whether the sum of these inputs exceeded a certain
threshold value, an output of either 1 or -1 was activated.
In 1949 Hebb introduced the idea that connections
between neurons (synapses) could be strengthened or
weakened as neurons were or were not stimulating each
other when they were active. From his theories came the
idea of adjustable synaptic weights, strengthening or
weakening the inputs. These synaptic weights are
adjusted differently by different learning algorithms.™

Mats Leander Mathisen

12

bias (optional)

argument output

Wy 5 y
P f
: 7
X, \
r synaptic transfer
weights function

inputs

Ilustration 18: The perceptron.

Ignore the bias, b, for now (assume b = 0), and notice
how the input vector X, and the weight vector w, together
become the argument, s.

1.3.2 Transfer functions

Looking at the illustration of the perceptron, one can see
that the inputs are summed up into an argument, s, which
is fed into the transfer function. The transfer function
then decides what the value of the output will be.

In the first perceptron, the transfer function was just a
threshold function. Judging by the value of the argument,
s, the output, y, was either 1, or -1 (an alternative
threshold function could give an output of either 1 or 0).

Ya

1 (if s bigger than
threshold value)

y -
s -1 (if s smaller than
-1 threshold value

Illustration 19: Threshold function. The first transfer functions had
only two possible outputs; 1 or -1 (alternatively 1 or 0).

These threshold functions have later been replaced with
other transfer functions which are continuously
differentiable. This is a very important property for a
transfer function to have, because it opens up for gradient
methods to be used in training of the network (more on
this in relation to network training). These new transfer
functions are the sigmoidal and linear transfer functions.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

V. L
o o pm e
5 1 + exp(-as)

Y) 5

> y = tanh(as)

Illustration 20: Continuously differentiable transfer functions.
From top to bottom: The logistic transfer function, the tanh
transfer function and the linear transfer function. a decides how
steep the function is at the origin.[4]

Again, the argument, s, made from the inputs and
synaptic weights, will be transformed into the output, vy,
by the transfer function. But with a continuously
differentiable transfer function, the output is no longer 1
or -1. It is now somewhere between 1 and -1. And in the
case of a linear transfer function, the output is not
constrained by these boundaries.

1.3.3 Multilayer perceptron

A single perceptron in itself does not have any
remarkable computational abilities. If one creates a layer
of neurons in a feed forward artificial neural network

however, the computational abilities are amplified
greatly.™
Target
Inputs Outputs values
X Y. ot ®
X
2
t,—
X3 y2 2
Y “Gar
xn m m
layer of
Hidden layer neurons
of neurons

Illustration 21: A multilayer perceptron with one hidden layer.

Mats Leander Mathisen

13

Inputs are presented to the network on the left side, and
through the synaptic weights they give impulses to the
neurons in the hidden layer. From this layer, outputs are
sent through synaptic weights and onwards to the neurons
in the output layer. This layer sends out the network
outputs.

Now, as can be seen on the right hand side of illustration
21, target values are introduced. During training, these
target values (desired outputs) are compared to the
network outputs, and training continues until they are
approximately the same. This is achieved by altering the
network's synaptic weights.

Since the inputs and target outputs are already provided,
and the neurons themselves are just processing elements,
this means that the synaptic weights are where the
network's memory is stored once it is trained.

A multilayer perceptron like this can in theory
approximate any nonlinear (or linear for that matter)
relationships between n-dimensional input data and m-
dimensional target data given that the hidden layer has
enough neurons (Hornik-Stinchcombe-White-Cybenko
theorem).™

Adding a second hidden layer before the output layer can
prevent the necessity of using an excessive number of
neurons in a single hidden layer. There is also a benefit
from adding an extra hidden layer when there are a large
number of input parameters. With only one hidden layer,
all inputs are connected to all neurons in the hidden layer.
But a second hidden layer is not subject to this, and the
information could therefore be divided into smaller
blocks here and processed more efficiently.!"”

However, more layers decrease processing speed, so this
will be for the designer of the network to optimize.™®

1.3.4 Error backpropagation

Without going too deeply into the mathematics involved,
an attempt will now be made to explain how the network
can be trained.

Consider the multilayer perceptron in the previous
section. There are inputs, synaptic weights, layers of
neurons, outputs, and target values. The difference
between the network outputs, y, and the target values, t, is
called the error, e (e = y —t). The objective of training the
network then becomes to minimize the error (e — 0).

University of Stavanger

Noise filtering from a nonlinear system by using AANN

If one were to take the mean of all the errors squared,
one would have the widely used performance criterion
MSE (mean square error). The goal then is to find the
minimum MSE.

_ 5o
MSE=— D el

i=1

Since the error is a function of the synaptic weights, we
can assume that the MSE is also a function of the
synaptic weights; MSE = MSE(w). Finding the minimum
MSE can then be done by taking the partial derivative of
the MSE with regards to the synaptic weights, and setting
it equal to zero.

OMSE _

ow
Solving this can only be done numerically (read:
approximated through iteration). For every iteration, the
synaptic weights are adjusted slightly in the direction of
the steepest descent of the gradient. The synaptic weights
closest to the outputs are adjusted first, and then the
synaptic weights connected to the inputs are adjusted.
Hence the expression backpropagation. How big an
individual adjustment is, and when to stop the iterations
(finish training) depends on several conditions set by the
network designer.

MSE,

v

number of iterations

Illustration 22: The mean square error as a function of all synaptic
weights, w, calculated by iteration.

Notice that the MSE in the illustration above is a function
of all the synaptic weights in the network. The goal of the
training is to find the optimal values for every synaptic
weight which in combination provide the minimum MSE.

Mats Leander Mathisen

14

In relation to the process of finding the optimal values for
the synaptic weights, there is a certain problem which
might occur. Imagine a general function, f(w), where w
represents one or more synaptic weights. If one were to
take the derivative of f with respect to w, looking for the
function minimum, there is a chance one might find a
local minimum. This is a problem that needs to be
considered when training a network.

f(w) A

- local minimum

the gradient is
pointing down
to the left,
sending the
next iteration
back where it
came from

Py
>

iterations w

Ilustration 23: A function f(w) trying to find the minimum value of
w, risks ending up in a local minimum instead of the desired global
minimum.

1.3.5 Training algorithms

As could be seen in the previous section, each iteration
adjusts the synaptic weights slightly. There are however
several different ways to do just this. How big steps
should each iteration take? Is there another direction than
the steepest descent of the gradient that could be used?
Should the weights be adjusted after running all input
data through the network, or should they be adjusted
continuously for each input?

Training algorithms are designed to minimize calculation
effort and get the best result. It should be emphasized that
different problems may require different training
algorithms for optimal training of the network.

It is a bit difficult to go into detail on the different
training algorithms here, seeing as how they are complex
numerical matrix calculations. A brief look at the simple
backpropagation algorithm could however help give some
better understanding of what a training algorithm is.

0g;(k)

W/uj(k"i'l):Whl](k)_n awh(k)
ij

University of Stavanger

Noise filtering from a nonlinear system by using AANN

In this simple algorithm wy;(k) is a weight connected to
two neurons; the i" neuron in the j" layer, and the h™
neuron in the layer before the j™ layer (see Appendix I for
an example of how this algorithm is implemented). 1 is
called the step size, and in more advanced algorithms this
is often designed to change as necessary. In this simple
algorithm however, it is just a constant. Multiplied with
the step size is the gradient, calculated for each
individual weight. This last factor decides the direction of
the next step.”

Target
values

Neural network
———pp| including connections Compare
Inputs between neurons Outputs

(synaptic weights)

Adjust
weights

Illustration 24: Flow chart describing the principle behind training
algorithms when the target values are known.

A couple of training algorithms have been tested in the
networks created for the problems in this report. The
problems were attempted solved with autoassociative
neural networks, and these networks are used for function
approximation. The author ended up using the Scaled
Conjugate Gradient training algorithm, which is good for
function approximation with large datasets.”

1.3.6 Regression

v

Illustration 25: A linear curve has been drawn to approximate the
dots in the diagram. A nonlinear curve has been drawn to
approximate the crosses.

Mats Leander Mathisen

Given a set of two dimensional data, one can draw an
approximate continuous best fit line through it. As seen
in illustration 25, this best fit can be both linear and
nonlinear.

When training a network, this is sometimes what we are
after. A best fit between the input and output data.
Whether this is a two dimensional or a higher
dimensional dataset does not matter, but a two
dimensional dataset is easier to visualize. Therefore, a
two dimensional example will be used to explain the
phenomenon called overfitting.

A

Tllustration 26: An example of overfitting.

In this case the network has been overtrained. A solution
has been found, but it is not the general solution we were
looking for. The same scenario applies to higher
dimensional datasets, although that would, again, be
difficult to visualize.

Whether overfitting occurs or not is largely dependent on
the training data and training algorithm. Avoiding
overfitting is a result of the training algorithm being able
to separate the relevant information from the noise found
in data. And this generalization is ultimately the goal
when training an artificial neural network.

1.3.7 Preprocessing

Before the inputs and target values can be used to train
the multilayer perceptron, they need to be preprocessed.

The first thing to do is to randomize the datasets. This is

done to help prevent the training process getting stuck in
a local minimum.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

Sample | Input | Target Sample | Input | Target
1 67 8 3 62 7
2 64 7 5 53 7
3 62 7 1 67 8
4 55 6 6 47 4
5 53 7 7 46 4
6 47 4 2 64 7
7 46 4 9 41 3
8 44 4 4 55 6
9 41 3 8 44 4

Illustration 27: An example of how data is randomized before
training. The table on the left is in order, while the table on the
right has been randomized.

It is also common to normalize the data before training.
This means converting the data to within a specified
range (approximately between -1 and 1 is the standard),
which makes the network easier to train because the
transfer functions are more susceptible to these values.

After the data has been randomized and normalized, it
can be divided into three parts; training set, cross-
validation set and test set. Usually 60% - 70% of the data
is used in the training set, while the rest is equally
divided between the cross-validation and test sets.

The training set is used to train the network. This means
the weights are adjusted with regards to the data in the

training set.

MSE,

cross-validation set

test set

training set

>
>

number of iterations

Illustration 28: If the cross-validation set diverges from the training
set, that can be an indication of overfitting, and training should be
stopped.

If the cross-validation set, using the adjusted weights,
deviates too much from the training set, training should
stop. This is what the cross-validation set is for. And if
the test set corresponds nicely with the training set, that
may be an indicator of good generalization.

Mats Leander Mathisen

16

1.3.8 Principal component analysis

Principal component analysis is a technique for mapping
multidimensional data into lower dimensions with
minimal loss of data.”’ Given a n-dimensional dataset, it
is possible to reduce the number of dimensions to less
than n, loosing redundant information in the process.

Linear principal component analysis is a straight forward
matrix calculation. It sorts out the parameters and lists
them from the most relevant and down to the least
relevant with regards to reconstruction. The idea is then
that the least relevant can be discarded (the data can be
compressed) without significant loss of information.

But if the data is nonlinear, principal component analysis

does not provide very good results. Neural networks

however, can do this by using an AANN architecture.
1.3.9 Autoassociative Neural Networks

Using three hidden layers in a multilayer perceptron, it is

possible to perform a nonlinear principal component
analysis of a dataset.”

Outputs

Bottleneck Output
Demapping Iayer of Rema pplng Iayer
layer of neurons layer of
neurons neurons

Illustration 29: An autoassociative neural network. There must be
more input and output parameters than there are neurons in the
bottleneck layer.

Looking at the illustration above, notice that if the inputs
are used as both inputs and target values, the network will
be trained to perform an is equal to mapping.

Imagine that this dataset has n dimensions. If the second
hidden layer has less than n neurons, it forces the data
through a bottleneck, removing redundant information.
When the data is reconstructed on the other side of the
bottleneck, it cannot be completely recovered, because
some of the information is missing. However, if the

University of Stavanger

Noise filtering from a nonlinear system by using AANN

difference between outputs and target values (inputs) is
small enough, one can read a less than n-dimensional
dataset from the bottleneck layer which is approximately
correct.

1.4 Noise reduction

The sensors used to measure temperatures, pressure,
mass flow, and other properties, in a gas turbine, will not
be 100% accurate. To some extent there will be random
noise, and the idea is that this noise follows a normal
distribution.

Consider the illustration below. Given a large number of
measurements, they will be distributed and focused
around the exact value.

Number of measurements

P

1
Exact Measurement
value value

Tllustration 30: Normal distribution.

Now, for various reasons it might be desirable to reduce
this noise in order to make measurements more accurate.
There are some simple linear filters that provide excellent
noise reduction, but they do have limitations. Exponential
smoothing is one such filter, and it will be used here as
an example.

1.4.1 Exponential smoothing

The algorithm itself is quite simple. Let x represent the
measured (noisy) values, and s the estimated (filtered)

values. « is a smoothing constant which is set between
Oand 1.

So=%Xp

s,=ox,_+(1-«a)s,_,

Mats Leander Mathisen

As shown in illustration 31, the algorithm finds an
average which corresponds to the incoming data.

Filtered
values

>
P

Tllustration 31: Data filtered with exponential smoothing.

But if the data should encounter a sharp increase or
decrease in value, which could for example be a result of
a system malfunction or faulty sensor, the exponential
smoothing will not only smooth out the noise. It will also
smooth out the shift in the data pattern. Whether this is
acceptable or not depends on what tasks the filter is
expected to perform.

Filtered
values

>
>

Ilustration 32: Data with a trendshift, filtered with the exponential
smoothing algorithm.

1.4.2 AANN noise reduction'”

Consider the network described in section 1.3.9; the
autoassociative neural network. If the input parameters
are sensor readings from different parts of the gas
turbine, it is reasonable to assume that they are to some
extent correlated. Meaning if one parameter changes, the
other parameters can be expected to change as well. An
increase in power to the compressor will result in an
increased rotational speed.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

The idea of AANN noise reduction is that the network
should be trained to recognize these correlations between
parameters. Measurement noise is not correlated between
the sensors in a gas turbine, because each sensor has its
own random noise.

Finding which parameters correlate to each other can be
done to some extent (and it should be emphasized that
this method might not be useful at all) by analyzing the
covariance matrix, R, of the training data. Given n input
parameters, regardless the number of datapoints, the
covariance matrix will be a nxn matrix. If an element in
this matrix R; is zero (or statistically indistinguishable
from zero), then the parameters i and j are independent of
each other. Rearranging R into a block diagonal form
reveals the dependency structure between parameters,
and each square block of nonzero elements represents a
set of mutually correlated variables. There is no benefit
derived from introducing two independent groups of
variables into a single autoassociative neural network,
since no correlations will be found between them.

Another important factor in noise filtering is redundancy.
It reduces variance the same way that taking samples
containing multiple items reduces variance in statistical
quality control.

1.4.3 ANN noise reduction

An ANN can also provide some noise reduction.
However, the concept is a bit different from AANN. With
an AANN parameters are put into the network and the
same parameters come out, filtered. With an ANN
certain parameters are used as inputs, and these inputs are
then used to estimate a completely different parameter
(remember the multilayer perceptron in section 1.3.3).

Assuming the ANN is not overtrained (see section 1.3.6),
the estimated output generated should be somewhat noise
free, simply because one of the criterea of finding a
general solution is that the ANN discards irrelevant
information (noise).

1.5 IPSEpro

IPSEpro is a heat and mass balance program developed
by SimTech. It is a software package which uses
thermodynamic tables and equations to create system
models. Several components can be linked together (like

Mats Leander Mathisen

18

for example the components of a gas turbine), and the
program will calculate the different parameter values
inside the system. Just like an engineer could do by hand
using diagrams, tables and thermodynamic equations.
The computer will of course do this much faster.

1.5.1 Creating a gas turbine model

Each component is picked out of a library and put down
on a flow sheet, and certain design characteristics are
specified for all of them individually. The components
are then linked together.

After specifying the initial conditions of the working
fluid (or working fluids), the program calculates the state
of the working fluid in every part of the system. To find
out how a small change in one of the components or
initial conditions then influences the calculations, the
designer only needs to change said conditions.

1.5.2 Shortcomings of the IPSEpro model

A model built with a set of theoretical equations and
thermodynamic tables with their own limitations will not
be a perfect representation of reality.

The model would also become very complex if one were
to include ever single factor that could influence the
calculations. Certain auxiliary systems could probably be
excluded without influencing the calculations too much,
but some accuracy is inevitably lost.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

Work

In this chapter the methodology used during testing is
introduced. It has been divided into six parts, and starts
with a theoretical AANN example to provide a step by
step overview of how MATLAB can be used to test an
AANN. Most of these MATLAB commands are listed
with descriptions in Appendix II for easy reference.

Next is another theoretical AANN example, before
testing methods used on the IPSEpro dataset and the
Turbec dataset are described. The methods used in the
various cases are similar to each other. Therefore, instead
of repeating these several times, the later parts of the
chapter are shorter, mentioning more how one case
differs from the others (for example how the method used
for the first theoretical AANN example differs from the
case with the Turbec AANN).

2.1 Theoretical 2D AANN example

As an introduction to noise filtering using AANN,
example datasets were created and used to make
networks. This was done for the author to become
familiar with AANN in practice, and is written out here
to help introduce the concept to the reader. The two
parameters used in this first example are listed here.

X € [-2, 2]
y = x* + exp(x)

Illustration 33: An example of a system of two interdependent
parameters, to each of which has been added some white noise.

Mats Leander Mathisen

19

2.1.1 Acquisition and preprocessing of data

Generating the datasets for this example is simple in
MATLAB. The following code gives numeric values
corresponding to the equations above.

x =-2:0.01:2;
y = XX + exp(X);

Adding white noise to each individual parameter is then
done using the following commands.

xN = x + 0.05*randn(size(x));

yN =y + 0.05*randn(size(y));

This adds random (gaussian) noise to each parameter.
Here, size(x) is used to tell the randn command how
many sample points the vector x has, while 0.05 affects
the size of the variance in the noise. Measurement noise
in a sensor found inside a gas turbine system will be
simulated this way later, only using different noise
values.

With the dataset ready, preprocessing can be done. In this
case, that will be randomizing and normalizing the data.
These following commands will perform said tasks.

shuffle = randperm(length(x));
p_input = [xN(shuffle); yN(shuffle)];
[p_inputn,ps] = mapminmax(p_input,-0.8,0.8);

p_input is a 2x401 matrix containing the two
randomized parameters with noise. p_inputn is a 2x401
matrix containing the data from p_input normalized to
fall between the values -0.8 and 0.8. This matrix will be
used as input for training of the network.

2.1.2 Building the AANN

Building an AANN in MATLAB requires that one builds
a custom four layer artificial neural network. The
complete code to build such a custom network can be
found in Appendix II. Once this code is called it builds a
network from the input matrix and the desired number of
neurons in the three hidden layers.

net = makebottle(p_inputn',[6,1]);

University of Stavanger

Noise filtering from a nonlinear system by using AANN

Consider this MATLAB expression at the bottom of the
previous page. Calling on the makebottle function from
the file makebottle.m this way will create a 2:6:1:6:2
autoassociative neural network named net. The number 2
in both input and output comes from the p_inputn'
matrix, which contains our dataset. The number of
neurons in the three hidden layers are specified when
calling on the makebottle function.

If this is confusing, a closer look at the makebottle code
found in Appendix II along with illustration 29 might be
helpful.

2.1.3 Training the network

There is a tool in MATLAB called nntool (a more
detailed description of the nnfool has been included in
Appendix III of this report). It is activated by typing
nntool in the command line. Input data, desired target
data (same as input data), and the network created with
the makebottle function should be imported into the
nntool.

When this is done, open the imported network inside
nntool, and reinitialize the weights. This gives each
synaptic weight a random start value before training,
which helps prevent the training from getting stuck in a
local minimum.

Set the maximum number of iterations desired, and the
number of cross-validation errors allowed. In this
example these values were set to 1000 and 20. Training is
then started by clicking train network, and it stops after
1000 iterations or 20 cross-validation errors.

2.1.4 Producing the results

While a network 1is being trained, MATLAB
automatically generates a performance curve, regression
curve, gradient curve, and a cross-validation error
diagram. These can be useful to examine in order to
determine whether the network has been properly trained.

If these plots are acceptable, the network may be
exported to the working directory in MATLAB for
simulation. There the newly trained network will be
exposed to new data, and the outputs produced are the
simulated data. These simulated data have then hopefully
been filtered from white noise.

Mats Leander Mathisen

20

In order to find the best possible network architecture, the
following network architectures were systematically
tested. Notice that three of them have two extra hidden
layers. This was tested because of the possible benefits
mentioned in section 1.3.3 of this report.

2:3:1:3:2 2:3:5:1:5:3:2
2:4:1:4:2 2:3:7:1:7:3:2
2:5:1:5:2 2:5:10:1:10:5:2
2:7:1:7:2

2:10:1:10:2

Of these, the network 2:5:10:1:10:5:2 produced the best
results, and shall be examined further here.

Best Validation Pedformance is 0.00034355 at epoch 274

Train F
Validation |4
Test i

Mean Squared Error (mse)

0 50 100 150 200 250
294 Epochs

Illustration 34: Performance curve produced while training the
2:5:10:1:10:5:2 network.

The performance curve looks good. Training, cross-
validation and test sets are not deviating from each other
to any serious extent. Although more training could
probably continue in order to lower the MSE, training
here stopped after 294 iterations because there were 20
consecutive cross-validation errors. It could be
interesting to set the cross-validation error limit higher
and achieve a lower MSE, but that could also make the
network more susceptible to overfitting. Ultimately it is
up to the designer to make a decision, but for this
example the current training will be deemed sufficient.

Next is the regression plot in illustration 35. It also looks
good, to some extent. All three sets fall almost
completely parallel to the target, but the cross-validation
and test sets seem to have somewhat clustered data in
stead of it being spread out evenly. This graph might be a
little confusing, so perhaps it should be clarified a little.

University of Stavanger

Output~=1*Target+0.00033

Qutput~=1*Target+0,00012

Noise filtering from a nonlinear system by using AANN

Training: R=0.99938 Validation: R=0.99919

@ Data

T Data

Output~=1*Target+0.0019

0 05
Target Target
Test: R=0.99906 All: R=0.99928

© Data < Data

Qutput~=1*Target+0,00022

0.5 0 05
Target

Illustration 35: Regression plot produced while training the
2:5:10:1:10:5:2 network.

Remember section 1.3.6, showing how regression means
finding the best fit. This graph indicates how close to
regression this example is. Notice how it is not an
example with linear regression, and therefore overfitting
becomes a concern. It is however, not possible to decide
one way or the other just from looking at a regression
plot.

Gradient = 0.0037136, at epoch 294
10 T T T T T

gradient

Validation Checks = 20, at epoch 294
20 T T T T T

294 Epochs

Illustration 36: Gradient curve and cross-validation
produced while training the 2:5:10:1:10:5:2 network.

diagram

Mats Leander Mathisen

21

The plot in illustration 36 is pretty straight forward. The
gradient fluctuates repeatedly but overall reduces
throughout the training. There are some cross-validation
errors during parts of the training, which could also be an
indication of overfitting.

That concludes the training part of the 2:5:10:1:10:5:2
network. It was then exported into the MATLAB working
directory for simulation.

Simulation was done with a new set of data, meaning the
same x and y data with fresh noise values generated the
same way as before. The following commands produced
this new set.

X_new = x + 0.05*randn(size(x));

y_new =y + 0.05*randn(size(y));

p_new = [x_new;y_new];

[p_newn,ps] = mapminmax(p_new,-0.8,0.8);

As can be seen, the new data is noisy and normalized, but
not randomized. It is noisy because the objective here is
to filter this noise through simulation. It is normalized
because the network was trained with normalized data,
and will therefore not work with data that has not been
normalized. But it is not randomized. This is because
randomization is only necessary to prevent training from
getting stuck in a local minimum. After the network is
trained, randomization no longer serves a purpose.

Simulation can then be done by feeding p_newn into the
network, which produces the simulated (filtered) data.
The following commands do just this, and then converts
the simulated data so that it is not normalized, and can be
compared to the noisy (unfiltered) data.

a_simn = sim(net,p_newn);
a_sim = mapminmax('reverse',a_simn,ps);

Two sets of data are now ready to be compared;
unfiltered noisy data, and filtered (hopefully noise free)
data. In order to compare them, the difference between
each set and the completely noise free data (plain x and y
in the form of the matrix clean_data) is calculated.

N_diff = p_new - clean_data;
a_diff = a_sim - clean_data;

These differences are then plotted together, giving an
image of how much noise has been reduced through

University of Stavanger

Noise filtering from a nonlinear system by using AANN

simulation in the AANN.

x parameter
015

s
01r (B}

O noisy data
[o) +

simulated data

Size of errar

1] a0 100 150 200 280 300 350 400 480
Data patterns

¥ parameter

O noisy data
+ simulated data

Size of errar

10E L 1 1 I 1 I 1)
0 50 100 150 200 240 300 380 400 450
Data patterns

Illustration 37: The unfiltered noisy data compared to the filtered
(simulated) data, plotted for both parameters. This is from the
2:5:10:1:10:5:2 network.

From the plotted results there is unfortunately no noise
reduction to be seen for the individual parameters. The
filtered data also seems less random than the noisy data,
which could mean that the network has not been able to
find the correlations between the parameters to the extent
desired, and has therefore not been able to discard the
noise factor as irrelevant to training.

On the other hand, a plot of the filtered x and y values
together gives an interesting result. The filtered curve
shown in illustration 38 is far less noisy than the curve
shown in illustration 33.

Regardless, the results will be interpreted later. The
objective here is simply to introduce the methodology
which will be used to examine noise reduction by AANN
in this report.

Mats Leander Mathisen

22

Illustration 38: The x and y parameters plotted together after
running them through the 2:5:10:1:10:5:2 network.

2.2 Theoretical 3D AANN example

The second AANN example is a dataset with three
parameters; a surface plot. Here three parameters will be
interdependent of each other.

X,y € [-2,2]
z =Xx* + xexp(y)

3D surface

z parameter

K 3 £] 0

y parameter ¥ parameter

Illustration 39: An example of a system of three interdependent
parameters. This is the clean dataset with no noise added to it.

The dataset was created in MATLAB by using the
following commands.

[x,y] = meshgrid(-2:0.1:2,-2:0.1:2);

Z = XX + X."exp(y);

University of Stavanger

Noise filtering from a nonlinear system by using AANN

Noise was added with the randn command, and
preprocessing was done in a similar way as to the first
example. This means the data was randomized and
normalized before training.

For this example, the following network architectures
were tested. And again, some of the networks have two
extra hidden layers.

3:5:1:5:3 3:5:7:1:7:5:3
3:7:1:7:3 3:5:10:1:10:5:3
3:9:1:9:3 3:5:7:2:7:5:3
3:5:2:5:3 3:5:10:2:10:5:3
3:7:2:7:3 3:7:15:2:15:7:3
3:9:2:9:3

After training, a dataset with new random noise values
was filtered through the networks, just like in the earlier
example. The results could then be plotted, comparing
noisy data with filtered data.

2.3 AANN with data from IPSEpro

The model of the Turbec T100 CHP gas turbine using
IPSEpro produced a set of data which consisted of three
input parameters, and eight output parameters. There
were 13578 sample points taken for each parameter.

1 Input Ambient Pressure

2 Input | Ambient Temperature

3 Input | Ambient Humidity

4 Output | Mass Flow out Compressor
5 Output | Pressure out Compressor
6 Output | Temperature out Compressor
7 Output | Mass Flow Fuel

8 Output | Temperature out Turbine

9 Output | Pressure out Turbine

10 Output | Generator Power

1 Output | Shaft Power Compressor

Table 1: The eleven parameters included in the IPSEpro
dataset; a model of the Turbec T100 CHP gas turbine.

2.3.1 Clean data

An initial examination of the dataset provided some
insights which could be useful later. First a look at the
range of each individual parameter.

Mats Leander Mathisen

Parameter MIN MAX RANGE
Ambient Pressure [bar] 0.9750 1.0400, 0.0650
Ambient Temperature [°C] -15.0000 25.0000, 40.0000
Ambient Humidity [%] 35.0000 90.0000| 55.0000
Mass Flow out Comp. [kg/s] 1.9980, 1.9989] 0.0009
Pressure out Comp. [bar] 4.3875 4.6800/ 0.2925
Temperature out Comp. [°C] | 118.7315 250.2866| 131.5551
Mass Flow Fuel [kg/s] 0.0173 0.0179 0.0007|
Temperature out Turbine [°C] | 629.1326 641.8474| 12.7148
Pressure out Turbine [bar] 1.0140, 1.0140] 0.0000
Generator Power [kW] 70.9793 151.6751| 80.6958
Shaft Power to Comp. [kW] -578.8826| -496.7885| 82.0941

Table 2: Range of each individual parameter in the dataset created
with IPSEpro.

Some of the parameters vary significantly over the whole
range, while others almost do not change at all.
Temperature out of the compressor varies over a range of
131.56 Kelvin with varying ambient temperature and
humidity. As expected, this has a noticeable effect on
generator power and shaft power to the compressor.

Another aspect of the dataset which was subject to initial
examination, is the covariance matrix, R, from section
1.4.2. Below can be seen a representation of this matrix
where 0 denotes a value indistinguishable from zero, and
X denotes a value which is not zero.

1 2 3 4 5 6 7 8 9 10 N
1| X X X|0 | X |00 X|0|X|X
2 X[X[X | X[X|[X | X | X]0|X|X
3 | X | X | X | X | X | X | X|X|0]X|X
4 /0| X |X|O0]|O|X |0 X]O0|O0|X
5 /X[X|[X|0|[X|[X | X]0]0|X|X
6 0 X | X | X|[X|X | X | X]|]0|X|X
7,0 X|[X|0]|O0|[X |0 X]|]O0|X|X
8 X[X | X | X|[X|X | X | X|]0|X|X
g9 ,0(O0|0O|0|O0O|O0O]O0O]O0O]O0|0]0O
10, X[X[X | 0| X|X | X]| X]0|X|X
"M X[X[X | X[X|X | X]| X]0|X|X

Table 3: Covariance matrix for the eleven parameters included
in the artificial dataset created with IPSEpro. X means a non-
zero value, while 0 means a value statistically indistinguishable
from zero.

Parameter 9, pressure out of the turbine, appears to be
independent of the other parameters (from table 2 it can
also be seen that it is actually constant), and can therefore
be removed from the training set. All the other
parameters however, might be dependent on each other to
some extent, and will therefore be trained together in the
autoassociative neural network.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

2.3.2 Data with noise

As with the dataset in the AANN example at the
beginning of this chapter, white noise was also added to
each individual parameter in the dataset created with
IPSEpro. Thus simulating the measurement noise that
comes with the sensors in a real gas turbine. These
parameters however will not have the same level of noise.
Different parameters are measured with different types of
sensors, which again are subject to different levels of
accuracy. The table below shows the noise values used.

Parameter Noise added
Ambient Pressure + 0.01 bar
Ambient Temperature +0.2°C
Ambient Humidity +3%
Mass Flow out Comp. * 0.1 kg/s
Pressure out Comp. * 0.01 bar
Temperature out Comp. +0.2°C
Mass Flow Fuel * 0.02 kg/s
Temperature out Turbine +2°C
Pressure out Turbine + 0.01 bar
Generator Power + 0.5 kW
Shaft Power to Comp. + 0.5 kW

Table 4: Amount of noise added to IPSEpro
dataset.

The data collected from the real Turbec T100 CHP at
Risavika provided an opportunity to read what
approximate level of noise one can expect from certain
sensors. Some of these approximations are listed in the
table above (more specifically pressure, temperature and
power output). The rest were found by comparing
accuracy levels listed in sensor documentation found on
the Internet and advice from people with experience from
this industry. Certainly not ideal, but the author assumes
it is sufficient for the theoretical scenario investigated in
this thesis.

These noisy data were collected in a 10x13578 matrix
(pressure out of turbine excluded) called p_input_noise,
before they were randomized and normalized for training.

shuffle = randperm(13578);

p_input_noise = [p_input1(shuffle); p_input2(shuffle); ...
p_input10(shuffle)];

[p_inputn,ps] = mapminmax(p_input_noise,-0.8,0.8);

Mats Leander Mathisen

24

p_inputn was then used to both build and train the
autoassociative neural networks, using the makebottle
code and the nntool (see Appendix II and III for a more
detailed description of these).

In total, twelve network architectures were tested on this
dataset. Eleven networks with the ten parameters which
were dependent on each other, and one network with all
eleven parameters. This last one was tested to verify that
the last parameter, pressure out of the turbine, did not
have any effect on the noise reduction of the other
parameters.

10:12:3:12:10 10:20:3:20:10
10:12:5:12:10 10:20:5:20:10
10:12:7:12:10 10:20:7:20:10
10:15:3:15:10 11:20:3:20:11
10:15:5:15:10 10:12:15:5:15:12:10
10:15:7:15:10 10:15:20:5:20:15:10

Two of the networks that were tested had two extra
hidden layers, to see if such an architecture would
produce any different results than the three hidden layer
networks (see section 1.3.3).

Networks were trained for 2000 iterations with cross-
validation error limits set to 200.

Although there is a large compression of data in the
bottleneck layer in some of these networks, the networks
could be trained without any serious deviations between
training set and cross validation set.

2.3.3 Data with noise and outliers

Outliers are not uncommon in measurements taken from
a real gas turbine. Their presence may indicate various
scenarios are taking place, and it might also be
interesting to see how a dataset containing outliers affect
the noise reduction provided by an AANN.

This could be done by simply replacing random
measurements in the dataset used to train the AANN with
outliers, and then run a simulation of the new dataset
through the already trained AANN.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

2.4 AANN with data from Turbec

Measurements from the Turbec T100 CHP at Risavika
gas center were also filtered through an AANN. The
parameters however, were not the same as the ones from
the IPSEpro model.

Generator power [kW]

Water temperature [°C]

Rotational speed [%]

Turbine outlet temperature [°C]
Gas pressure [mbar]

Oil temperature in [°C]

Ambient temperature [°C]

Acc [g]

Electrical energy produced [MWh]
Air filter pressure [Pa]

© 0N O H WN| =

=y
o

Table 5: The ten parameters included in
the measurements taken from the Turbec
T100 CHP gas turbine.

There were 7054 samples taken for each parameter, with
an approximate time interval of 51 seconds between each
measurement.

2.4.1 Preprocessing of data

The dataset was first put into a 10x7054 matrix. It was
then randomized and normalized before training, using
these commands.

shuffle = randperm(7054);

p_input = [p_input1(shuffle); p_input2(shuffle); . ..
p_input10(shuffle)];

[p_inputn,ps] = mapminmax(p_input,-0.8,0.8);

2.4.2 Building the AANN model

Networks were created with the makebottle code and the
input matrix, p_inputn. Same method as used with the
first AANN example. In this case, the following
architectures were tested.

10:12:2:12:10 10:12:15:3:15:12:10
10:12:3:12:10 10:12:15:5:15:12:10
10:12:5:12:10 10:15:20:5:20:15:10
10:15:3:15:10
10:15:5:15:10

Mats Leander Mathisen

25

2.4.3 Training and producing results

Training was done with the nntool, using 1000 iterations
with cross-validation error limits set to 50. Again, this
method is described in detail in Appendix III.

After training, the original dataset was put into a new
matrix, p_new, which was then normalized and filtered
through the networks using these commands.

[p_newn,ps] = mapminmax(p_new,-0.8,0.8);
an = sim(net,p_newn);
a = mapminmax('reverse',an,ps);

Now, plotting the results. This could not be done the
same way as with the earlier datasets. In this case, there
was no clean data to check the level of noise. There was
only noisy and filtered data.

The filtered data was therefore plotted on top of the noisy
data, giving an indication of whether there was any noise
reduction. An example of this technique is shown here in
illustration 40.

P gas [mbar]

© original data
5500 + simulated data

7400

7000

8400 | o

1 I 1 1 1 1 1 1 I 1 L
1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
Sarnple number

Illustration 40: Gas pressure measurements filtered through
10:12:3:12:10 network. Simulated data means filtered data.

It is only part of the results for this parameter (samples
1800 to 3800), but it shows how filtered data is plotted on
top of original measurements. In this case it shows the
principle behind the plotting method nicely, because the
filtered data looks cleaner than the original data.

Whether the original data here varies because of
measurement noise or simply because the gas turbine
continually adjusts itself to keep the power output
constant, is of course important to consider.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

2.5 ANN with data from IPSEpro

As mentioned in section 1.4.3, some noise filtering may
also take place using an ANN. This was tested briefly to
see if there was any chance it could be more effective
than the AANN approach. The methodology used will be
presented here.

2.5.1 Preprocessing of data

There were two different approaches to this. The first one
taking into account that eight of the parameters in the
IPSEpro dataset were calculated, while three of them
were inputs (see table 1). For this reason, one could
expect each of the eight calculated parameters to be
dependent on the three input parameters. For the purpose
of constructing the ANN models, the three inputs were
put in an input matrix, p_input, while the outputs were
used each in their own network.

One network would then consist of inputs, one hidden
layer, and one output layer (see illustration 21 for an
image of the architecture). The inputs were represented
by the same input matrix in all networks trained, while
there were eight different networks for the eight different
outputs. For example, in order to filter the mass flow out
compressor parameter, a network was trained with
p_input as inputs, and mass flow out compressor as the
target value. The architecture would then be 3:5:1, or
3:8:1 (the hidden layer can be anything bigger than 3).
After the network was trained, feeding p_input into the
network would then give an estimate (which in this case
means filtered) of mass flow out compressor.

Another configuration which was tested was to use ten
parameters as inputs and one parameter as output. This
was done for eleven networks, one for each parameter.
With this configuration, filtering mass flow out
compressor meant that the other ten parameters were
used as inputs, while mass flow out compressor was the
target value. The architecture would then be 10:15:1 (the
hidden layer needs to be bigger than 10). This
configuration could be easier to train simply because it
has more parameters to find correlations with the target
value.

All parameters were first randomized, had noise added to

them (same noise values as in table 4), and then
normalized for training.

Mats Leander Mathisen

26

2.5.2 Building the ANN model

This was done in much the same way as when building
the AANN network. The difference was the architecture.
Instead of the AANN architecture, with two hidden
layers, one bottleneck layer and one output layer, there
was only one hidden layer and one output layer. The
author made this by configuring the makebottle code
seen in Appendix II, but there are easier ways this simple
network architecture can be created. Three network
architectures were tested.

3:5:1

3:8:1 10:15:1

2.5.3 Training and producing results

Using the nntool, each network (one for each output
parameter and network architecture) was trained
separately. Networks were trained for 200 iterations with
cross-validation error limits of 20.

After training, new datasets similar to the ones used for
training were generated and run through the ANN. The
filtered data was plotted against the noisy data, same as
how it was done with the AANN used on IPSEpro data.

2.6 ANN with data from Turbec

The Turbec measurements were also filtered through an
ANN to check whether this could give better results.

Networks were trained with 9 inputs and one output. One
network for each parameter (meaning each parameter was
the single output in its own network). All parameters
were first randomized and normalized for training the
same way as was done with the AANN used on Turbec
data.

This was done the same way as with the IPSEpro ANN
model. But only one architecture was tested here.

Again, the nntool was used. Networks were trained for
1000 iterations with cross-validation error limits of 20.

After training, the same dataset used for training was
filtered through the ANN. Filtered data was then plotted
on top of the original noisy data, same way as was done
with the AANN used on Turbec data.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

Results

In this chapter the results from the AANN and ANN tests
are described. Results (plots and tables) have not been
included if they did not provide any interesting
information, but some extra plots have been included in
Appendix IV.

The chapter starts with a brief look at the results from the
two theoretical AANN examples, before continuing with
the results from the tests done on the IPSEpro and Turbec
datasets.

3.1 Theoretical AANN examples

Here are the results from the two theoretical AANN
examples introduced in chapter 2. Part of the reason they
have been included is because they are easily visualized,
as shall be seen.

3.1.1 2D example

Eight networks were tested, with the following number of
iterations and MSE. All performance plots were deemed
acceptable, and as can be seen in table 6, training was
stopped by cross-validation error limits for every network
trained (none of the networks made it to 1000 iterations).

Network MSE Iterations
2:3:1:3:2 0.027900 140
2:4:1:4:2 0.000390 224
2:5:1:5:2 0.000384 336
2:7:1:7:2 0.000396 245
2:10:1:10:2 0.000374 274
2:3:5:1:5:3:2 0.000304 349
2:3:7:1:7:3:1 0.001400 164
2:5:10:1:10:5:2 0.000312 294

Table 6: Mean square error and number of
iterations for each network architecture
trained with the 2D dataset.

From the plots of filtered and noisy data, the
2:5:10:1:10:5:2 network was deemed the best network. It
gave the plots already shown in illustration 37. As was
seen there, the individual parameters did not achieve
noise reduction.

Mats Leander Mathisen

27

Plotting the two filtered parameters together on the other
hand (here in illustration 41), shows that on a system level
there is indeed noise reduction. If it is difficult to
distinguish the two plots from each other in this
illustration, it is basically illustration 38 laid on top of
illustration 33.

Illustration 41: Filtered x and y values plotted on top of the noisy
x and y values. The data was filtered through the 2:5:10:1:10:5:2
network.

For this dataset, two extra hidden layers in the network
architecture did provide better results than a
corresponding network without the extra layers.

3.1.2 3D example

Eleven networks were tested in this example. Some of the
networks did train up to 1000 iterations, but not all of
them.

Network MSE lterations
3:5:1:5:3 0.027900 441
3:7:1:7:3 0.039100 245
3:9:1:9:3 0.024500 771
3:5:2:5:3 0.001050 1000
3:7:2.7:3 0.000474 1000
3:9:2:9:3 0.000180 1000
3:5:7:1:7:5:3 0.025100 854
3:5:10:1:10:5:3 0.078600 186
3:5:7:2:7:5:3 0.002240 1000
3:5:10:2:10:5:3 0.000523 533
3:7:15:2:15:7:3 0.000088 1000

Table 7: Mean square error and number of
iterations for each network architecture
trained with the 3D dataset.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

Judging by the plots made from data filtered through
each network, the 3:7:15:2:15:7:3 network produced the
best results.

¥ parameter

noisy data
simulated data

Size of errar

1 I I 1 L 1 1 L i
1] 200 400 500 800 1000 1200 1400 1600 1800
Data patterns
¥ parameter

O noisy data
+ simulated data

Size of errar

++

| I I | I | 1 I)
0 200 400 600 600 1000 1200 1400 1600 1800
Data patterns

Z parameter
08

O noisy data
s

Size of errar
=]
]

B LR
04 RS
T ++_-t ++ * ™ g:—
'DE'+ijrr + "5y o L+ + ++
4 + +
08k + 5
+
BEs
g
Azl s

. . . . 1 . L .)
0 200 400 600 800 1000 1200 1400 1600 1800
Data patterns

Illustration 42: The unfiltered noisy data compared to the filtered

(simulated) data plotted for all three parameters. This is from the

3:7:15:2:15:7:3 network.

Mats Leander Mathisen

There is no indication of noise reduction in any of these
three parameters in illustration 42. But if the filtered
values are plotted together in a surface plot, also in this
example there is some noise reduction on a system level.
It is not so easy to see here in illustration 43, but the
surface has been smoothed out with the filtered data.

with noise

7 parameter

¥ parameter ¥ parameter

filtered

Z parameter

K 1] 1 2

¥ pararneter % parameter
Tllustration 43: Surface plots of the original noisy data and the
filtered data. The 3:7:15:2:15:7:3 network was used for this plot.

Networks with only one neuron in the bottleneck layer
produced noticeably worse results than networks with
two neurons in the bottleneck layer.

Also for this dataset, two extra hidden layers in the

network architecture did provide better results than a
corresponding network without the extra layers.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

3.2 AANN with data from IPSEpro

Results from training of AANN networks on the IPSEpro
dataset are listed here. Mean square error decreases as the
size of the bottleneck layer increases. This is expected, as
less information is lost in compression.

Network MSE Iterations
10:12:3:12:10 0.01700 2000
10:12:5:12:10 0.01090 2000
10:12:7:12:10 0.00061 2000
10:15:3:15:10 0.01090 2000
10:15:5:15:10 0.00301 2000
10:15:7:15:10 0.00057 2000
10:20:3:20:10 0.01090 2000
10:20:5:20:10 0.00692 2000
10:20:7:20:10 0.00059 2000
11:20:3:20:11 0.01570 2000

10:12:15:5:15:12:10 0.00367 2000
10:15:20:5:20:15:10 0.00692 2000

Table 8: Mean square error and number of iterations
for each network architecture trained with the
IPSEpro dataset.

3.2.1 Optimal network architecture

Noise reduction was achieved on six of eleven
parameters. That includes the parameter excluded from
most of the networks trained; pressure out of turbine. The
three parameters where there was no noise reduction
were ambient humidity, temperature out of compressor
and temperature out of turbine.

Five hidden layers in the AANN did not produce any
better results than three hidden layers did with regards to
noise reduction.

The 10:12:5:12:10 network produced the best noise
reduction for those parameters where noise reduction was
achieved.

The 11:20:3:20:11 network produced good noise
reduction for the previously excluded pressure out of
turbine parameter. Other than that it did not produce
results much different from the 10:12:5:12:10 network.

Mats Leander Mathisen

Networks with a bottleneck layer of size 3 generally
produced better results. This can be illustrated by a good
example of overfitting in illustrations 44 and 45. The
second plot, where the bottleneck layer has 5 neurons
instead of 3, is overtrained.

mass flow out compressar

noisy data
+ simulated data

Size of error

. . . g .)
o 2000 4000 5000 8000 10000 12000 14000
Data patterns

Illustration 44: Mass flow out compressor measurements filtered
through 10:20:3:20:10 AANN. Simulated data means filtered data.
An example of the general solution.

mass flow out compressor
0.12

2 noisy data
01 + simulated data

Size of error

L)
00o 14000

L L T .1 L L
o 2000 4000 BO00 5000 10000 1
Data patterns

]

Illustration 45: Mass flow out compressor measurements filtered
through 10:20:5:20:10 AANN. Simulated data means filtered data.
An example of overfitting.

In order to rule out that the best network architecture
(10:12:5:12:10) was not also subject to some overfitting,
this network was trained again twice. Once with 1000,
and once with 500 iterations. This did not improve upon
the results.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

3.2.2 Level of noise reduction The seven parameters on which noise reduction was
achieved in the 10:12:5:12:10 network, had different

levels of noise reduction. This can be shown in

mase flow out compressar

2 noisy data
+ simulated data

illustration 46, which displays examples of high, medium
and minimal noise reduction.

Parameter Level of noise reduction
Ambient Pressure medium
5 Ambient Temperature minimal
E Mass Flow out Compressor high
§ Pressure out Compressor minimal
Mass Flow Fuel high

Table 9: Level of noise reduction for listed parameters filtered
through the 10:12:5:12:10 network.

Comparing table 9 with table 2 in section 2.3.1, which
lists the range of each parameter, it can be seen that
parameters with a range less than 0.01 achieve a high
level of noise reduction. Ambient pressure however has a
range higher than 0.01, and only achieves a medium level
noise reduction. Parameters which achieve minimal or no
noise reduction have a range >> 1.

L I L I |
6000 ao00 10000 12000 14000

Data patterns

L I
0 2000 4000

ambient pressure

3.2.3 Noise reduction on noisy data with outliers

Size of errar

Because the results from the AANN noise filter was so
unsuccessful, there was little point in adding outliers to
the dataset. Checking for the effect of outliers on noise
reduction when there is little to no noise reduction in the
first place will not yield any results worth analyzing.

5 GDc)
¥8%

o

L L L L :
BO0O 8000 10000 12000 14000

Data patterns

L L
0 2000 4000

3.3 AANN with data from Turbec

pressure out compressor

noisy data
imulated data

Filtering the Turbec dataset with an AANN filter did not
work. One exception was the gas pressure measurements
filtered with the 10:12:3:12:10 network shown in
illustration 40, but it was also the only exception. And it
was just a part of the data plotted for that parameter. The
whole plot can be seen in illustration 47 on the next page.

Size of errar

None of the other parameters in the Turbec dataset came
close to anything resembling noise reduction when
filtered through an AANN.

01

L I L I L I |
1] 2000 4000 6000 G000 10000 12000 14000

Data patterns

Illustration 46: Parameters filtered through 10:12:5:12:10 network.
Simulated data means filtered data.

Mats Leander Mathisen 30 University of Stavanger

Noise filtering from a nonlinear system by using AANN

F gas [mbar]

O original data
7000 + simulated data
L e o
6000 -
o]

5000
4000 -
3000
2000 -
1000

o

-1000

1] 1000 2000 3000 4000 5000 G000 OO0 8000
Sample number

Illustration 47: Gas pressure measurements filtered through the
10:12:3:12:10 network. Simulated data is filtered data.

In table 10 here, it can be seen that each network was
trained to 1000 iterations. It might be possible to train the
network even further in order to lower the MSE, but the
MSE is quite high here for a network that has already
been trained to 1000 iterations. Most likely the MSE
values will not become much lower than this.

Network MSE Iterations
10:12:2:12:10 0.00314 1000
10:12:3:12:10 0.00256 1000
10:12:5:12:10 0.00150 1000
10:15:3:15:10 0.00195 1000
10:15:5:15:10 0.00140 1000

10:12:15:3:15:12:10 0.00449 1000
10:12:15:5:15:12:10 0.00240 1000
10:15:20:3:20:15:10 0.00242 1000

Table 10: Mean square error and number of
iterations for each network architecture tested
on the Turbec dataset.

Having two extra hidden layers in the AANN architecture
for this test did not make any noticeable difference for the
gas pressure parameter.

3.4 ANN with data from IPSEpro

Here are presented some results from using ANN for
noise filtering. They are not as extensive as with the
AANN, but show that ANN also does work on some
parameters.

Mats Leander Mathisen

31

3.4.1 Results for all parameters

Only three of the output parameters achieved noise
reduction by use of ANN. Mass flow out compressor,
mass flow fuel and pressure out of turbine. The same
ones that achieved high level of noise reduction in the
AANN noise filter. None of the other parameters
achieved noise reduction by use of the ANN, and this is
true for all three network architectures.

Network 10:15:1 might arguably be the best network
architecture. This because the 3:5:1 and 3:8:1 networks
had more problems finding correlations between
parameters. An example of this can be demonstrated here
with illustrations 48 and 49.

generator power

noisy data
simulated data

-

4+ o
+ + + o

Size of errar

il

g e
& ¥ +§+ H ++¢ ++39§+ et
TR gk o
E . . , .) .)
0 2000 4000 6000 8OO0 10000 12000 14000

Data patterns

Illustration 48: Generator power measurements filtered through
the 10:15:1 network. Simulated data means filtered data.

generatar power

a0

O noisy data
+ simulated data

Size of errar

-a0

1 | 1 1 | 1)
1] 2000 4000 B000 8000 10000 12000 14000
Data patterns

Illustration 49: Generator power measurements filtered through
the 3:5:1 network. Simulated data means filtered data.

University of Stavanger

Noise filtering from a nonlinear system by using AANN
The 3:5:1 network trained for generator power (result
plotted in illustration 49) has completely failed to pick up

on any correlations between the three input parameters
and the output parameter.

3.4.2 Level of noise reduction

mass flow out compressar

Q noisy data
0.8 o + simulated data

Size of errar

-0.8

| 1 L 1 | d)
u] 2000 4000 6000 8000 10000 12000 14000
Data patterns

Ilustration 50: Mass flow out compressor filtered through 3:5:1
ANN. Simulated data means filtered data.

The three parameters where noise reduction was achieved
had a high level of noise reduction. Example of mass
flow out compressor is plotted here in illustration 50.

3.5 ANN with data from Turbec

Much like the results of the AANN filter tested on the
Turbec dataset, the results of the ANN filter did not work.
Not even on the gas pressure parameter which had some
positive results with the AANN filter would it work using
the ANN filter.

Mats Leander Mathisen 32

University of Stavanger

Noise filtering from a nonlinear system by using AANN

n Discussion

4.1 Shortcomings in methodology used

Several limitations have affected the results of the work
in this thesis. Looking first at the data which was used to
represent the Turbec T100 CHP, it is not going to be a
completely accurate model. Thermodynamic tables,
theoretical equations and a simplified model will deviate
from reality.

Further, the author should emphasize that he does not
know exactly how the mathematics behind the training of
neural networks by use of the scaled conjugate gradient
algorithm works. This does leave results open to
misunderstanding. It is also difficult to say anything with
certainty regarding overfitting and correlations between
parameters.

It is not clear to what extent the continuously fluctuating
sensor measurements from the Turbec could be
considered noise, as opposed to the gas turbine merely
correcting itself continuously in order to maintain a
constant power output.

The sensor readings from the Turbec had an interval of 51
seconds between measurements. This seems to the author
like it undermines the idea of sensor noise, as the state of
a gas turbine can change a great deal over the course of
51 seconds.

Another problem that should be mentioned is how the
sensors inside a gas turbine will inevitably degrade over
time. This in itself could also have an effect on any
AANN noise filtering, something which was not explored
in this thesis.

4.2 Evaluation of results

Although there was noise reduction (and in some cases
quite a lot of noise reduction) achieved through the use of
an AANN filter, the results are too inconclusive. In
theory the methodology could work, but there are several
conditions that must be met first.

The author believes that measurements used for training

and monitoring of the gas turbine need to be of
parameters which are known to correlate to each other.

Mats Leander Mathisen

33

This is essential in order for a network to focus on these
correlations during training, and discard random noise.
Such correlations could be ensured by for example
theoretical thermodynamic equations.

Redundancy also seems to play a role. Looking at the
parameters which did achieve a high level of noise
reduction in chapter 3, they all had a very low range over
which they changed. This may have made it easier for the
network to discard random noise from these parameters.

Regarding the results gotten from the tests run on the
Turbec measurement data, the author feels they should all
be discarded. This simply because the data used in the
tests is not good enough, for reasons which are
mentioned in section 4.1.

The two theoretical AANN examples did reveal a trend
which speaks against using AANN for noise reduction on
individual sensors in a gas turbine (at least against the
methodology used in this thesis). While the individual
parameters achieved no noise reduction, the system itself
(consisting of all parameters put together) did achieve
noise reduction. So the filter does not work directly
towards filtering individual parameters. It filters them in
combination, as if they were one.

The author speculates that the same principle should also
apply to a system which consists of more than three
parameters, but it is (as far as the author can see) not
possible to check this, because there is no way to
visualize it.

Using an ANN as a noise filter was less successful than
using an AANN. But the use of ANN as a noise filter in
this thesis was devoted limited attention, and the mere
fact that it did indeed work on some parameters means
that it could be worth looking into more deeply.

4.3 Ideas for future work

It might be interesting to test an AANN noise filter on
more relevant measurements taken from a Turbec. With a
set of measurements taken at short time intervals, from
parameters that are known to correlate with each other, it
is not unreasonable to assume some level of noise
reduction could be achieved. Although there is a good
chance it will only work on some of the parameters.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

. List of tables and illustrations

Table 1 -page 23-Parameters included in IPSEpro data.
Table 2 -page 23-Range for each individual parameter in
the IPSEpro data.
Table 3 -page 23- Covariance matrix for IPSEpro data.
Table 4 -page 24-Noise added to IPSEpro data.
Table 5 -page 25-The ten parameters included in the
measurements taken from the Turbec.
Table 6 -page 27- Results from AANN on 2D example.
Table 7 -page 27-Results from AANN on 3D example.
Table 8 -page 29-Results from AANN on IPSEpro data.
Table 9 -page 30-Level of noise reduction on selected
parameters filtered through AANN.
Table 10-page31- Results from AANN on Turbec data.

Iustration 1 -page 5- Open simple cycle gas turbine.

Ilustration 2 -page 5- T-S diagram for open simple
cycle gas turbine.

Mlustration 3 -page 6- T-S diagram for different open
simple cycle gas turbines.

Tlustration 4 -page 6- Open simple cycle gas turbine
with recuperator.

Mlustration 5 -page 6- T-S diagram for open simple
cycle gas turbine with
recuperator.

Ilustration 6 -page 7- Centrifugal compressor.

Ilustration 7 -page 7- T-S diagram for centrifugal
COMPpIessor.

Iustration 8 -page 7- Axial compressor.

Illustration 9 -page 7- T-S diagram for an axial

COMpressor.
Surge/choke diagram.
Dependence of emissions on
air/fuel ratio.

Annular and can-type

Mlustration 10 -page 8-
Mlustration 11 -page 8-

[lustration 12 -page 9-

combustors.
Ilustration 13 -page 9- One stage of an axial turbine.
[lustration 14 -page 10- The Turbec T100 CHP.

Modified Turbec T100 CHP.
Biological neural network.
Artificial neural network.
The perceptron.

Threshold function.
Differentiable transfer
functions.

Multilayer perceptron.

Plot of mean square error.
How gradient method can end
up finding a local minimum.

[lustration 15 -page 10-
INlustration 16 -page 11-
[lustration 17 -page 11-
Mlustration 18 -page 12-
[lustration 19 -page 12-
Mlustration 20 -page 13-

Mlustration 21 -page 13-

Ilustration 22 -page 14-
Tllustration 23 -page 14-

Mats Leander Mathisen

34

Illustration 24 -page 15-
Mlustration 25 -page 15-
Mlustration 26 -page 15-

Ilustration 27 -page 16-
Ilustration 28 -page 16-

Ilustration 29 -page 16-
Mlustration 30 -page 17-
Tllustration 31 -page 17-
Mlustration 32 -page 17-

Illustration 33 -page 19-
Illustration 34 -page 20-

Mlustration 35 -page 21-

Ilustration 36 -page 21-

Mlustration 37 -page 22-
Illustration 38 -page 22-
Illustration 39 -page 22-
Mlustration 40 -page 25-

Ilustration 41 -page 27-
Ilustration 42 -page 28-

[lustration 43 -page 28-

Ilustration 44 -page 29-

Ilustration 45 -page 29-

Illustration 46 -page 30-
Mlustration 47 -page 31-

Ilustration 48 -page 31-

Ilustration 49 -page 31-

Illustration 50 -page 32-

The principle behind training
algorithms with known target.
Example of regression.
Example of overfitting.
Example of randomization.
Performance curve with
training set, cross-validation
set and test set.

AANN architecture.

Normal distribution.

Data filtered by exponential
smoothing.

Data with trend shift filtered
by exponential smoothing.

2D AANN example.
Performance curve for 2D
AANN example.

Regression plot for 2D AANN
example.

Gradient curve and
cross-validation diagram for
2D AANN example.

Results plotted for parameters
in 2D AANN example.
Filtered 2D AANN example.
3D AANN example.

Gas pressure measurements
filtered through AANN.
Filtered 2D AANN example.
Results plotted for parameters
in 3D AANN example.
Surface plots for unfiltered and
filtered 3D AANN example.
Mass flow out compressor
measurements filtered through
10:20:3:20:10 network.

Mass flow out compressor
measurements filtered through
10:20:5:20:10 network.

High, medium and minimal
level of noise reduction.

Gas pressure measurements
filtered through AANN.
Generator power
measurements filtered through
10:15:1 network.

Generator power
measurements filtered through
3:5:1 network.

Mass flow out compressor
measurements filtered through
3:5:1 network.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

. References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

H.LLH. Saravanamuttoo, G.F.C. Rogers,

H. Cohen, P.V. Straznicky, Gas turbine theory,
6" edition, Pearson Education Limited, 2009
PP. Walsh, P. Fletcher, Gas Turbine
Performance, 2™ edition, Blackwell Publishing,
2004

T100 microturbine CHP system, Technical
description, version 4.0, Turbec AB

J. C. Principe, N. R. Euliano, W. C. Lefebvre,
Neural and Adaptive Systems Fundamentals
Through Simulations, John Wiley and Sons,
Inc. 2000

H. Demuth, M. Beale, M. Hagan, MATLAB
Neural Network Toolbox™ 6 User's Guide,
The MathWorks, Inc. September 2009,
http://www.mathworks.com/access/helpdesk/
help/pdf_doc/nnet/nnet.pdf

C. M. Bishop, Pattern Recognition and
Machine learning, Springer-Verlag, 2007

G. Dreyfus, Neural Networks Methodology
and Applications, English edition, Springer-
Verlag, 2005

C. G. Looney, Pattern Recognition Using
Neural Networks, Oxford University Press, Inc.
1997

M. A. Kramer, Nonlinear Principal
Component Analysis Using Autoassociative
Neural Networks, AIChE Journal, Vol. 73,

No. 2, pages 233 — 243, February 1991

M. A. Kramer, Autoassociative Neural
Networks, Computers Chemical Engineering,
Vol 16, No. 4, pages 313-328, 1992

R. Ganguli, Data Rectification and Detection
of Trend Shifts in Jet Engine Gas Path
Measurements Using Median Filters and
Fuzzy Logic, ASME TURBO EXPO, June 4-7,
New Orleans, Louisiana, 2001

D. L. Chester, Why two hidden layers are
better than one, International joint conference

on neural networks, Washington DC, January
15-19, 1990

Mats Leander Mathisen 35

University of Stavanger

Noise filtering from a nonlinear system by using AANN

. Appendix

I Backpropagation example

An example of backpropagation calculation was here
constructed to provide a more in depth understanding of
how the process works. The mathematics are pretty
straight forward, but extensive.

In this example there are two input vectors (there is also a
bias, b), and one target vector. These will be used to train
the network using the backpropagation algorithm.

b=[1111111111]
Yo= 11246710 11 14 14 15]

Yo = [3 3.2 29 33 3.8 41 42 4.8 4.7 4.9]
t, = [12.2 121 11.2 10.0 9.8 7.3 6.9 5.8 59 5.7]
Yo=lb Y Yl
3 Vo
wl wOll
% 11Wle |1 w
W A1 W,z Vo ty
W, -w /] 2
Wyay ll W312 l]_
yZO m
2 @ Output
Inputs |1°31 Layer
Hidden
Layer

The feed forward ANN of the backpropagation example. A 2:3:1
network with tansig transfer functions in the hidden layer, and a
purelin transfer function in the output layer.

The goal is to update the network weights, using the
backpropagation algorithm from section 1.3.5.

0g,(k)

LD
awhij(k)

whij(k+1)=whij(k)—n

wyi(k) is a weight connected to two neurons: the it
neuron in the j™ layer, and the h™ neuron in the layer
before the j" layer (see the illustration above). In this case

Mats Leander Mathisen

36

the hidden layer (which has 3 neurons) is the 1* layer, and
the output layer is the 2™ layer. n is the step size (a
constant which we will set to 0.1), and g;(k) is the cost
function (also known as criterion).

The first part of the process is to initialize the weights
with random numbers. This is done to prevent the
training getting stuck in a local minimum.

Won = 0.27 Worz = 0.12
Wit =-0.41 W112=0.54
Wo = -0.13 Wopp = -0.91
Wp = 0.09 W32 = 0.23
Wi = 0.74
Wy = -0.21
Wpz = 0.03
Wiz = -0.88
Wo31 = -0.79
Woiz
Woir Woar Woai
W= w.=|"Vin2
1= [Wi Wi Wiz 2
W W W Worz
211 221 231
W3ia

Calculating the network output for the first iteration (k
denotes the current iteration), is then next. The argument
to, and output of, each individual neuron will need to be
found.

a,=y,w,=|a

a a

11 21 31

—0.530 0.200 —3.220
—0.966 0.898 —4.258
—1.747 2441 —5.781
—2.619 3.837 —7.857
g=| 73094 4472 9132
Y1-4363 6.629 —12.009
—4.786 7.348 —12.968
—6.094 9.442 —16.082
—6.081 9.463 —16.003
—-6.517 10.161 —17.041

University of Stavanger

Noise filtering from a nonlinear system by using AANN

tanh(a1)=[yn Y y31}

y1=[b Yu Inu y31}

1.000 —0.485 0.197 —0.996
1.000 —-0.746 0.715 —-0.999
1.000 —0.941 0.984 —0.999
1.000 —0.989 0.999 —1.000
y;=/1.000 —0.995 0.999 -—-1.000
1.000 —0.999 1.000 —1.000
1.000 —0.999 1.000 —1.000
1.000 —0.999 1.000 —1.000
1.000 —0.999 1.000 —1.000

a2=a12=y1w2

y,=y,=purelin(a,)=a,,

—0.550
—1.164
—1.514
—1.553
—1.557
—1.559
—1.559
—1.559
—1.559
—1.560

Y=

Having calculated these arguments and outputs, the
gradient for each weight can then be calculated. This is
done through partial differentiation, and in order to find
this differential equation, some expressions will have to
be defined.

Mats Leander Mathisen

37

Cost function, or criterion if you will, is calculated for
each layer. N is here the number of samples in the
training set (t, b, y; and y,), which in this example is 10.

|
gj:ﬁz z eisz

p=li=1

1.2)

The error for the i™ neuron in the j"™ layer, if that layer is
the output layer is:

€=t Yy (I.3A)
Otherwise, the error for the i neuron in the j™ layer is
(with this particular function, use the average of yy,; for all
N samples):
el:,'=yhj(k)[whij(k+1)_Wh,:/(k)] (L3B)
Outputs for the j™ layer are calculated by putting the
arguments for the j™ layer into the transfer function, f. In

our example, f is tanh for the 1% (hidden) layer, and
purelin for the 2™ (output) layer.

y,;=f(a;) (L4)

Arguments for the j" layer are (remember by = 1):
aij=bijwoij+z Wi Yu(j-1) (L5)
h

And so, finally an expression for the gradient of weight

whij(k) can be found, using the delta rule of
differentiation.
ﬁgj _ng 8eij 6yhj ﬁaij w6

ow,, Oe; 0y, da, Ow,

Each of these partial derivatives have to be calculated for
each individual weight. Starting with wy),, these become:

da,, _)
—=1 (see equation 1.5)
0w,
0

iz =1 (see equation 1.4)
oa,,

University of Stavanger

Noise filtering from a nonlinear system by using AANN

Oe
2= (see equation I.3A)
Oy,
agz 1 10
= e see equation 1.2
de,, o n (eccquionl)

The gradient for weight wy,, is then:

10

agz __L
10

t— =-101.04
dwy, ()’12)

Wor2 can then be updated using equation I.1 (remember 1
is set to 0.1):

agz(l)

6Wou(l)

W012(2)=sz(1)—n =10.21

Every weight in layer 2 needs to be updated before any of
the weights in layer 1 can be updated. This is because all
errors in layer 2 need to be combined in order to calculate
the gradients in that layer (see equations 1.3B and 1.2).

Whenever a partial derivative is calculated equal to an
output, such as this example with wj,, use the average
value of y;; (yy; contains 10 samples for each iteration) to
calculate the value of the gradient.

oa,,

=Vn
oW,

The differential for the purelin transfer function is simple
(it is 1), but the differential for the tanh transfer function
is more difficult. Consider this example with wy;;.
Oy, - 1 _ 4
- 2 - 2
0ay cosh™(a;) [exp(ay)+exp(—a,)]

Again, use the average value of aj; to calculate the value
of the gradient.

After all weights have been updated, arguments and

outputs for the 2" jteration should be calculated, and the
weights can be updated again.

Mats Leander Mathisen 38

II Various MATLAB code used

makebottle - Calling this function will create an
autoassociative neural network. Thanks to Doug Hundley
who posted the original version of this code (meant to
perform nonlinear principle component analysis) on the
Mathworks forums in 2001. Some small alterations have
been made here in order to make it usable for AANN
noise reduction. This was used on the R2008a version of
MATLAB.

function net=makebottle(X,v)

%FUNCTION NET=MAKEBOTTLE(X,V)

%Returns a bottleneck network ready for initialization
%and training. This constructs it in the standard approach,
%where the network has 5 layers,

%

%input-mapping-bottleneck-demapping-output

%

%The input:

%X=data set. Input as number of points x dimension
%v=vector of 2 numbers for the sizes of the encoding and
Y%bottleneck layers.

%

%EXAMPLE: Data set X is three dimensions, use 2 nodes in
%the bottleneck layer, and 5 nodes in the other two hidden
%layers so the ending network is 3-5-2-5-3

%

Y%enet=makebottle(X,[5,2]);

net=network;

net.numinputs= 1;
net.numLayers= 4;
net.biasConnect= [1;1;1;1];
net.inputConnect(1)=1;
net.layerConnect(2,1)=

)

1
net.layerConnect(3,2)= 1;
q:

net.layerConnect(4,3)=

i

net.outputConnect(4)= 1;

[numpts,dim]= size(X);
M= minmax(X');

net.inputs{1}.size= dim;
net.inputs{1}.range= M;

University of Stavanger

Noise filtering from a nonlinear system by using AANN

net.layers{1}.size= v(1);
net.layers{3}.size= v(1);
net.layers{1}.transferFcn= "tansig’;
net.layers{3}.transferFcn= 'tansig’;
net.layers{2}.size= v(2);
net.layers{2}.transferFcn= "tansig';
net.layers{4}.size= dim;
net.layers{4}.transferFcn= "purelin’;
net.layers{1}.initFcn= "initnw';
net.layers{2}.initFcn= "initnw";
net.layers{3}.initFcn= "initnw";
net.layers{4}.initFcn= "initnw";

Y%lInitialize the functions for the network

net.initFcn= "initlay’;

net.performFcn="'mse’;

net.trainFcn= 'trainscg’;

net.gradientFcn = 'calcgrad’;

net.plotFcns = {'plotperform’,'plotregression’,'plottrainstate'};
net.divideFcn = 'divideblock';

randomize - Using the randperm command will
generate a random sequence. A vector x, with 25 samples
can be randomized with the following code:

shuffle = randperm(length(x));
x_randomized = x(shuffle);

The vector x_randomized will then contain the samples
from vector x in a random sequence.

normalize — The mapminmax command can be used to
normalize vectors and matrices. A matrix X, containing
numbers between # oo, can be converted so that the
numbers range between =+ 1.

[Xn, ps] = mapminmax(X, -1, 1);

The matrix Xn then contains the numbers converted to
range between -1 and 1. The mapminmax command can
also be used to reverse the effect.

X = mapminmax('reverse', Xn, ps);

Here ps must be the same as it was for the initial
normalization

Mats Leander Mathisen

39

white noise — Random gaussian numbers can be
generated with the randn command. White noise can be
added to the vector x with a chosen size of the noise.

x_noise = x + 0.5"randn(size(x));

This will make x_noise a vector almost identical to x,
only with noise added to it.

covariance matrix — The command cov will generate a
covariance matrix. Matrix X contains nxm samples (m
samples of n parameters). The following code will
generate a nxn covariance matrix.

covariance_matrix = cov(X);

IITI The MATLAB nntool

This small tutorial was added to show how the nntool was
used for training the artificial neural networks in this
thesis. It is meant to help people who have not used
neural networks before, and also serve as a reference
should the author ever need to use neural networks in his
future work.

To open the nntool, type nntool in the MATLAB
command line. The following GUI should appear.

) Network/Data Manager [o [4|
Input Dat B Networks 4 Outpu: Dt

@ Targerata Ervor Data:

) Input Delay States:) Layer Delay States:

[i);«wewm @ open... | & Export... | 88 Delete |

() Help @ Close

Press the import button, and import the network (the
author created this with the makebottle function before
calling the nntool), as well as the input and output
matrices. A custom network could also be made by
pressing the new button and building a network that way,
but it is too limited to create an AANN.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

) Network/Data Manager !

Input Data; W Networks

lp_inputn et

i

+f Output Data:

@ Target pata:
Ip_targetn

& Error Data,

) Input Delay States: %) Layer Delay States:

Gomport. | Denew .ﬁen Yo | agoae | Drep | Qciose

After both inputs, outputs and network have been
imported, select the network and press the Open... button.

Ly o

This will open a new GUI for the network. The first thing
to do here is to open the Reinitialize Weights tab, and
there pressing the initialize weights button. This resets
the weights to random values before training, which is
important in order to avoid the training algorithm getting
stuck in a local minimum. Notice also that one can look
at each individual weight by pressing the View/Edit
Weights tab. After initializing the weights, press the train
tab.

Wy Tran Netnrk

Select the imported inputs and outputs, and then press the
Training Parameters tab.

Mats Leander Mathisen

40

—[olx|
Seuste | Adspt | Rentsize Weights | vienfedk weihts |
TroningfoTranng Parameters |

show s sgma
showWindow rue lambda
shonCommand.ine [z
epochs [oooo
time fioF
odl
max_fal [oo0

min_rad fieoos

feom
Z—

[E)

Here one can alter some of the conditions for training.
Setting a specific number of epochs decides how many
iterations the training algorithm should do before
stopping. The number of max_fail decides how many
cross-validation deviations the training algorithm will
accept before stopping training. After setting the desired
training parameters, press the Train Network button.

) Neural Network Training (nntraintool)

Neural Network

=101
T gl el il I

Algorithms

Training:
Performance:
Data Division:

Scaled Conjugate Gradient (trainsca)
Mean Sguared Error (mse)
Block (divideblocl)

Progress

Epach: o [0 364 iterations 2000
Time: 0:01:02

Performance: 24z [e 0.00

Gradient: 1.00e-06
Validation Checks: 0 [200

Plots

Performance
Regression

Training State (plotbrainstate)

1 epochs

Plat Interval: b

@ Training neural network...

{"{Z) Stop Training | @ cancel |

A new window will show up (unless you altered
showWindow = false in the training parameters). Here the
training process can be monitored. One progress bar
counts down the number of iterations, another shows the
size of the MSE (called Performance here, but
Performance could mean something else if a performance
criterion different from MSE has been selected). There is
also a bar that shows the number of cross-validation
deviations. After training is finished (or during for that
matter), plots can be made of the performance curve,
regression curve and training state, by pressing the
respective buttons. If the network designer is satisfied
with the training, this window and the network window
can now be closed.

University of Stavanger

Noise filtering from a nonlinear system by using AANN

_[oix
I Networks

net

+J| Output Data:
net_outputs

& Export from Network/Data Manager
Select Variables

p_inputn
p_targetn
net_outputs ‘\

=101%]

net_errors

Select one ar more variables. Then [Export] the variables

to the MATLAB workspace o [Save] them
Select Al | Select None Export k) save | @ Close |

| ! & Export... >xDelate (i) Help | @ Close

What remains then is to export the newly trained network
to the MATLAB workspace where it can be subjected to
simulation with new datasets. This is done by first
selecting the network and pressing the Export... button,
and then selecting the network again and pressing another
Export button.

IV Additional illustrations
Here are included plots of noise reduction for all ten
parameters in the 10:12:5:12:10 network which was used

to filter the noisy IPSEpro dataset.

ambient pressure

noisy data
simulated data

Size of errar

008 | . | . ‘ .)
0 2000 4000 G000 8000 10000 12000 14000
Diata patterns
Ambient pressure filtered through 10:12:5:12:10 network.

Simulated data means filtered data.

Mats Leander Mathisen

41

ambient ternperature

2 noisy data
+ simulated data
[=]

o
O

Size of errar

[5]
b @, o b o%@b‘? o
15
200
2 L y : y L y ’
0 2000 4000 B0O0 BOOD 10000 12000 14000

Data patterns

Ambient temperature filtered through 10:12:5:12:10 network.
Simulated data means filtered data.

arnbient moistiure

@ noisy data

&
a.F ﬁ’@cb@ % + simulated data

&

Size of arrar

& g
3 ? &
25
1] 2000 4000 6000 5000 10000
Data patterns

Ambient humidity filtered through 10:12:5:12:10 network.
Simulated data means filtered data.

12000 14000

mass flow out compressar

noisy data
simulated data

Size of errar

L L L L L L |
0 2000 4000 G000 G000 10000 12000 14000

Data patterns

Mass flow out compressor filtered through 10:12:5:12:10 network.
Simulated data means filtered data.

University of Stavanger

pressure aut compressor

Size of errar

Noise filtering from a nonlinear system by using AANN

e}
&

noisy data
simulated data

| 1 I |
0 2000 4000 6000 8000
Data patterns

Pressure out compressor filtered through 10:12:5:12:10 network.

Simulated data means filtered data.

!
10000

temperature out corpressar

T noisy data
2

simulated data
e

Size of error

L
12000

R

|
14000

2 | 1 I |
0 2000 4000 6000 8000
Data patterns

Temperature out compressor filtered through 10:12:5:12:10

L
10000

network. Simulated data means filtered data.

mass flow fuel

Size of errar

L
12000

|
14000

] 2000 4000 6000 8000
Diata patterns

Mass flow fuel filtered through 10:12:5:12:10 network. Simulated

data means filtered data.

Mats Leander Mathisen

10000

12000

14000

Generator
Simulated data means filtered data.

ternperature out turbine

2 noisy data
simulated data

Size of error

s 1 ! L+ ! 1 1 |
0 2000 4000 5000 8000 10000 12000 14000
Data patterns

Temperature out turbine filtered through 10:12:5:12:10 network.
Simulated data means filtered data.

generator power

noisy data
simulated data

Size of errar

4
1] 2000 4000 6000 8000 10000 12000 14000
Data patterns

power filtered through 10:12:5:12:10 network.

shaft power compressar

O noisy data
+ simulated data

Size of errar

%% < o

-4 1 1 1 1 1)
i 2000 4000 G000 8000 10000 12000 14000
Data patterns

Shaft power compressor filtered through 10:12:5:12:10 network.
Simulated data means filtered data.

University of Stavanger

