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Abstract

This report deals with structural vibrations of wind exposed structures caused by the vortex
shedding phenomena. The theory of vortex shedding and the field of study called aeroelastisity
are presented.

A case study of a light mast structure has been used as a study of the vortex shedding
phenomena. Numerical simulations of vortex shedding have been performed through the
use of Computational Fluid Dynamics (CFD). The aerodynamic flow around an U-section
suiceptable to vortex-induced vibrations has been evaluated. Three different aerodynamic
supression devices for vortex-induced vibrations have been presented and discussed.

An attempt was also made to perform Fluid-Structure Interaction (FSI) analysis. But as
computational stability problems were encountered, these attempts were not successful.
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Chapter 1

Introduction

Vortex-induced vibrations (VIV) is a wind-structure interaction phenomena often encountered
in slender structures exposed to wind. In this report, vortex-induced vibrations caused be
wind is the main topic of concern, and a case study of vortex shedding using Computational
Fluid Dynamics (CFD) is done.

A light mast at the airport of Reykjavik has been used as a case study in this report.
Violent vortex-induceed vibrations were observed at the light mast after installation. The light
mast was later equipped with aerodynamic devices to prevent the vibrations. Measurements
were taken both before and after the devices were installed. The available measurements has
been used for a comparison to the results found by computer analysis.

The analyses presented in this report consist of a modal analysis of the light mast struc-
ture, a CFD model of the original light mast cross-section, a CFD model of the light mast
cross-section with the installed devices and CFD models of two alternative VIV countermea-
suring devices. Finally, the Fluid-Structure Interaction (FSI) capabilities of Abaqus 6.10
(Pre-release) has been investigated and reported.
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Chapter 2

Vortex Induced Vibrations

2.1 The vortex-shedding phenomena

Vortex induced vibrations (VIV) occur when vortices are shed from alternating sides of a
body. The process can be recognized by the characteristic vortex trail also known as the von
Kármán vortex street, named after the engineer and fluid dynamicist, Theodore von Kármán.
The effect can be obeserved in different scales and mediums, from microscopical to galactical.

Figure 2.1: The vortex street behind a cylinder [Dyrbye and Hansen, 1999].

The vibrations generated by vortex shedding usually occur in slender structures with low
damping. The vibrations occur if the vortex shedding frequency coincide with or come close
to the natural frequency of the structure. The vortex shedding frequency fs of a non-vibrating
body can be derived from figure 2.1. The time between the vortices at each side is equal to
the distance lv divided by the velocity of the vortices, U1. The frequncy is the inverse of the
period, giving that fs = U1/lv. The distance between the vortices, lv, must be proportional
to the structure width d, since this is the only relevant length. The proportionality factor
between U1/lv and U/d is called the Strouhal number St. The vortex shedding frequency can
thereby be written

fs = St
U

d
(2.1)

The Strouhal number is mostly dependendt on the shape of the cross section and the
Reynolds number. The Reynolds number is defined as the ratio between the inertial and the
frictional forces and is written

Re =
Ud

ν
(2.2)
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where ν is the kinematic viscosity.

For circular cross section, the Reynolds number is the most important parameter together
with surface roughness, while for sharp-edged cross sections, the cross section shape is the
most important. The Strouhal number is also dependent on turbulence and aeroelasticity.

(a) Strouhal number for various cross sections (b) Strouhal number versus Reynolds number for circular
cylinders

Figure 2.2: The variation of the Strouhal number for various cross sections and Reynolds
numbers [Holmes, 2001].

In addition to the force variations seen in the cross flow direction at frequency fs, vortex
shedding also induces force variations in the in-line force with a frequency of 2fs. The vari-
ation in the in-line direction is less intense than the cross flow variation, but may also cause
vibrations.

Resonance between structure and the vortex induced force will occure if the frequency of
the loading, fs is equal or close to the natural frequency of the structure, fe. If fe = fs is
inserted in equation (2.1), and the equation is solved for the wind speed U, the critical wind
speed for the mode frequence inserted is found.

Ucrit =
1

St
fed (2.3)

2.2 Aeroelasticity

2.2.1 General

Aeroelasticity is the name of the dicipline concerning the interaction between the aerodynamic
forces and the structural motions. In terms of general fluids the topic is also referred to as
the study of Fluid-Structure Interaction (FSI).

2.2.2 Lock-in

When the wind speed is sufficiently close to Ucrit, the structure will start to oscillate. A
phenomena called lock-in occurs when the wind speed is in the the critical wind speed region.
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Figure 2.3: Evolution of vortex-shedding frequency with wind velocity over an elastic struc-
ture [Simiu and Scanlan, 1996].

The vortex shedding frequency locks on to the structural frequency in a region of wind speeds,
and not only at the exact Ucrit. This is due to the interaction between the structural motion
and the wind. Figure 2.3 shows how the vortex-shedding frequency is constant in the lock-in
region.

2.2.3 Correlation length

The aeroelasticity also causes the loading on the structure to be imperfectly corrolated along
the structure span. Experiments have shown that the correlation length is varying according
to the motion amplitude. As shown in figure 2.4, the loading across the span is correlated for
a longer distance if the amplitude is bigger.

Figure 2.4: Influence of the amplitude of motion upon the correlation length [Dyrbye and
Hansen, 1999].

2.2.4 Frequency bandwidth

Because of turbulence the vortex shedding frequency of a structure exposed to wind is varying
over a band of frequencies, and not just at the exact frequency expected from eq. 2.3. When
having a range of vortex shedding frequencies, the response spectrum is said to be broad
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banded. When having only one or a small range of frequencies the response is said to be
narrow banded.

A broadbanded response can also be induced by e.g. varying section geometry and devices
causing irregular vortex shedding.

The frequency bandwidth is a common avoidance critera for vortex shedding as e.g. “the
Oppen criteria” which is much used by Statoil at the Norwegian shelf. [Oppen, 1995] When
having a broadbanded response, the fluctuating force will vary randomly along the length of
the beam and the probability of violent vibrations will be reduced.

2.2.5 Aeroelasticity equation of motion

The equation of motion of a single-DOF across-flow motion can be written [Simiu and Scanlan,
1996]:

mÿ + cẏ + ky = F (y, ẏ, ÿ, t) (2.4)

where y is the deflection in the across flow direction, and F is the loading on the structure.

This loading can generally be classified in three classes [Dyrbye and Hansen, 1999]:

• Net gust load caused by lateral wind fluctuations, Ft

• Loads caused by vortex shedding, Fv

• Motion-induced forces, Fm. The most important motion induced force is the negative
aerodynamic damping.

The motion induced force, Fm, of the loading, can in it’s most simple form be written [Dyr-
bye and Hansen, 1999]

Fm = −haÿ − caẏ (2.5)

where ha is the added mass of air and ca is the aerodynamic damping. For most structures
the added mass of air is small relative to the structural mass and may be disregarded.

The linear model in equation 2.5 is accurat for small vibration amplitudes of up to 10-
20% of the structural width [Dyrbye and Hansen, 1999]. For large vibration amplitudes the
aerodynamic damping becomes non-linear. A model for nonlinear aerodynamic damping force
can be found in Vickery and Basu [1983], but this will not be further presented.

2.2.6 Aerodynamic damping

The aerodynamic damping may be characterized by a dimensionless parameter Sa [Dyrbye
and Hansen, 1999].

Sa =
2δame

ρd2
(2.6)

where δa is the logarithmic decrement of damping,ρ is the fluid density, d is the rele-
vant dimension and me is the equivalent mass per unit length of the structure for the mode
considered. This is defined as
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me =

∫ L
0

m(x)(ξ(x))2dx
∫ L

0
(ξ(x))2dx

(2.7)

whereξ(x) is the mode shape.

The aerodynamic parameter Sa is negative for negative aerodynamic damping. It is the
negative aerodynamic damping that leads to significant vortex-induced vibrations. The aero-
dynamic damping is strongly related to the turbulence intensity. When the flow is turbulent,
the risk of negative aerodynamic damping is reduced, as seen in figure 2.5.

Figure 2.5: The ratio between the aerodynamic damping in turbulent flow, δT
a , and smooth

flow, δS
a , as a function of the large-scale turbulence intensity for a circular cylinder [Dyrbye

and Hansen, 1999]
.

2.2.7 Scruton number

The Scruton number is a parameter combining the structural damping and the equivalent
mass of the structure me. It is often referred to as a stability parameter. The Scruton
number is defined as [Dyrbye and Hansen, 1999]:

Sc =
2δsme

ρd2
(2.8)

The effective damping is proportional to the sum between the Scruton number Sc and the
aerodynamical damping Sa. The risk of violent vortex-induced vibration depends on these
two parameters in combination [Dyrbye and Hansen, 1999]. The aerodynamic damping is
dependent on the turbulence intensity, so the risk of VIV can therefore be evaluated in a
risk grid based on a combination of turbulence intensity and Scruton number as shown in
figure 2.6.

Experience shows that there is no risk of lock-in if Sc > 20. For Sc < 10 the risk of lock-in
is very high [Dyrbye and Hansen, 1999]. In the lock-in region, the structure oscillates with
an amplitude of some fractions of the across-wind dimensions of the body. The maximum of
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Figure 2.6: The risk of violent vortex-induced vibrations increases with low turbulence inten-
sity and low Scruton numbers [Dyrbye and Hansen, 1999].

the oscilliation is rarely exceeding half the across-wind dimension [Simiu and Scanlan, 1996].
Vortex shedding is therefore not causing immidiate breakdown of structures, but is mainly
a fatigue and servicability problem. The self-limiting behaviour of the amplitude can be
explained by the variation in the negative aerodynamic damping. At small amplitudes the
negative aerodynamic damping is large, while at large amplitudes the aerodynamic damping
is small. The maximum amplitude of the across-flow oscilliation is therefore mostly depen-
dent on the Scruton number, since the negative aerodynamic damping is not significantly
contributing to the force on the structur at large amplitudes.

2.3 Eurocode 1 - Part 1-4 - Wind actions

Eurocode 1 - Part 1-4 annex E provides rules for “Vortex shedding and aeroelastic instabili-
ties”. This is a summary of the rules stated there.

The effect of vortex shedding need not to be investigated if Vcrit,i > 1.25 ·Vm, where Vcrit,i

is the critical wind velocity as defined in equation 2.3, and Vm is the characteristic 10 minutes
mean wind velocity.

The across wind force is given by the expression:

Fw(s) = m(s) · (2 · π · ni,y)2
· Φi,y(s) · yF , max (2.9)

• m(s) is the vibrating mass of the structure per unit length

• ni,y is the natural frequency

• Φi,y(s) is the mode shape of the structure normalised to 1 at the point with the maximum
displacement

• yF,max is the maximum displacement over time of the point with Φi,y(s) equal to 1.
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The maximum displacement, yF,max, can be calculated using two different approches. The
first approch [Eurocode-1, 2005, E.1.5.2] is the most general, and can be used for various kinds
of structures and mode shapes. The second approch [Eurocode-1, 2005, E.1.5.3] may be used
for cantilevered structures in it’s first mode, and is typically for chimneys and masts. As the
second approch is rather complex and non-informative, only the first will be presented. The
first approch gives the following expression for the maximum relative displacement:

yF,max

b
=

1

St2
·

1

Sc
· K · Kw · clat (2.10)

• b is the reference with of the cross section

• St is the Strouhal number

• Sc is the Scruton number

• Kw is the effective correlation length given in [Eurocode-1, 2005, E.1.5.4]

• K is the mode shape factor given in [Eurocode-1, 2005, E.1.5.2.5]

• clat is the lateral force coefficient given in [Eurocode-1, 2005, Table E.2]

2.4 Countermeasures

2.4.1 Aerodynamic countermeasures

The essence of aerodynamic countermeasures is to modify the airflow around the object to
avoid rhytmic formation of vortices.

The most common method used for slender circular structures is helical strakes. The
helical strakes consist typically of three strakes wrapped around a cylinder as shown in fig-
ure 2.7a. For a chimney, the helical strakes are installed on the top third part. This is where
the load is most influential. A typical configuration for helical strakes are one revolution in
three diameters, and a strake width of 10% of the chimney diameter. The strakes increase
drag in the wind direction by a factor of approximately 1.4 [Dyrbye and Hansen, 1999]. The
purpose of the strakes is to make the vortices shed non-rythmic along the chimney and to
disturb the span-wise correlation.

Vortex suppressing devices can also be designed to streamline the body as shown in fig-
ure 2.7d and 2.7g. If seperation from the body can be minimized, vortex shedding will be
minimized and drag will be reduced [Blevins, 1990, p.78]. It is important that the streamlining
devices are free to pivot to account for all wind directions.

Other devices, like the ones at figure 2.7b and 2.7c have the objective to disrupt the
vortex formation by introducing bleeding of air through perforations.

By introucing splitter plates, as shown in figure 2.7e the periodic vortex shedding is halted
or at least significantly reduced.

A thorough evaluation of various aerodynamic VIV supressing devices can be found in
[Zdravkovich, 1981] or [Blevins, 1990].
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Figure 2.7: Add on devives for suppression of vortex-induced vibration of cylinders: (a) helical
strike; (b) shroud; (c) axial slats; (d) streamlined fairing; (e) splitter; (f) ribboned cable; (g)
pivoted guiding vane; (h) spoiler plates [Blevins, 1990]

.

2.4.2 Mechanical countermeasures

Vortex-induced vibrations can also be countered by modifying the mechanics of the structural
system. The object of this is to change the natural freqency of the structure. To modify the
natural frequency, either the mass or the stiffness has to be changed.

For tall and slender structures like chimneys, oil platforms and buildings, tuned mass
dampers are a frequently used way of modifying the mass. The mass is suspended in a
spring-damper system at the top of the structure. The mass should be about 0.01- 0.02 times
the total mass of the structure. The natural frequency of the suspended mass should be close
to the natural frequency of the structure [Dyrbye and Hansen, 1999].

The structural stiffness of the system can be modified by stiffening or weakening the
system. In most cases stiffening of the system is the only option of these two since the
structure stiffness was a consequence of the relevant ultimate load cases. The best way is of
course is to have vortex shedding in mind during design phase, and to make sure that the
natural frequencies of the structure are far enough away from the relevant vortex shedding
freqencies. If unwanted vibrations occur after a structure has been installed, it could be
difficult and expensive to modify the structural stiffness.

13



Chapter 3

Case study of a light supporting

mast at Reykjavik Airport

The structure that will be investigated is a frame type mast supporting flight control lamps
for the approch control at Reykjavik Airport. The light mast was installed in the summer
of 2005. Soon after installation, large across-wind oscillations was observed at the mast
cantilever beam at certain wind conditions. The vibrations was considered to be unacceptible
and it was decided to investigate the problem. A report was made from these investigations
[Bessason and Snaæbjörnsson, 2008].

Figure 3.1: The mast supporting flight control lamps. Large oscilliations were observed at
the cantiliever beam shortly after installation [Bessason and Snaæbjörnsson, 2008].

The investigation resulted in installation of an aerodynamic countermeasure to prevent
the vibrations. The wind flaps, ref. figure 3.2 were installed as a test arrangement to observe
the effect, but became permanent since they were so successful.
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Figure 3.2: The light mast was equipped with pipes over and under the section [Bessason and
Snaæbjörnsson, 2008].

Figure 3.3: The light mast after the installation of flaps [Bessason and Snaæbjörnsson, 2008].

Measurements were taken both before and after installation of countermeasures. Before
installation the measurements showed that whenever wind speed reached 6-8 m/s the can-
tilever beam would start vibrating intensivly. The maximum measured amplitude of motion
during the measurements of the original structure was 6.43 cm.

The frequency of the cantilever vertical motion was measured to be 2.31 Hz, and the
damping was estimated to be between 0.5% and 1% of critical.

After installation of countermeasueres, new measurements were done. The new mea-
surments showed that the vortex induced motion was reduced by 70%, and the maximum
measured amplitude of motion after installation was less than 1.5cm. The added weight
affected the response frequency and reduced it slightly to 2.2 Hz.
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Chapter 4

Modal analysis

4.1 General

A modal analysis of the light mast has been performed in Abaqus [2010, v.6.10 Pre-Release].
The purpose of the modal analysis is to find the natural frequencies of the structure which
subsequently will be used in the fluid-structure interation analyses. A similar analysis of the
light mast was previously performed by Bessason and Snaæbjörnsson [2008]. The analyses
in Abaqus is based on a dynamic formulation of the finite element method. Several different
models have been evaluated using different element formulations and modelling techniques.

The light mast is a steel frame structure. The beams and columns of the light mast are
made of welded 10mm plates. The columns of the light mast do not have an uniform cross
section, but are increasing in width at the bottom of the column. The lamp supporting U-
section has uniform cross section. Along the beam at the bottom part of the cross section
the two webs are connected by 25mm diameter round bars, evenly spaced by a distance of
500mm . In addition to the structural elements, the structure is equipped with pipes for
cabling and the flight control lamps it is supporting. The drawings of the structure can be
found in appendix F).

A modal analysis has two important parameters, namely the stiffness and mass of the
structure analysed. To get the correct modes and natural frequncies, these two parameteres
have to be modelled correctly. When considering the light mast structure, the 25mm bars
at the lower part of the U-section is the challenging part of the structure to model. As it
was uncertain how significant these bars were for the structural stiffness, several different
modelling approches have been evaluated.

4.2 Models

4.2.1 Model No.1 - Beam model with standard element formulation

The first model made was a typical beam element model of the structure. The columns of
the structure were modelled as square hollow sections of 0.4m x 0.4m, and the lamp support
beam as an open section (in Abaqus as “arbitrary section”) of 0.38m x 0.4m. The 25mm
diameter bars was not included in this model. The extra mass of the lamps and fittings
was included by increasing the material density by 10%. The mesh contained a total of 46
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(a) First mode shape at 0.97 Hz (b) Second mode shape at 1.47 Hz

Figure 4.1: The first two mode shapes of the standard beam element model. The mode
shapes shows uncontinous deformation.

element, meaning a length of 0.5-1m per element. The modelling and the mesh of this model
were similar to the model by Bessason and Snaæbjörnsson. The beam element formulation
was the standard 6-DOF linear 2-node element in Abaqus (B31) and the structure had fixed
boundary conditions at the two columns.

The output from this model gave unexpected and obviously erroneous results for the
horizontal mode shapes. The deformation of the mode shapes was uncontinous, as shown
in figure 4.1. At first it was belived to be due to an error in the analysis and all boundary
conditions and input was checked. An identical model was also built up in Genie [2007,
v3.5-20], but identical mode shapes were found there.

As all input seemed correct the focus was turned to the theory chapters of the Abaqus
documentation [2010], and some answers were also found there. The problem with the un-
continous mode shapes seems to be due to the standard beam element formulation combined
with an open section. For beams geometrically modelled as an open section using a regular
beam element, the beam is assumed to be free to warp and the axial strain due to warping
is neglected. The section will consequently have very little torsional stiffness [Abaqus doc-
umentation, 2010, B31 formulation]. The uncontinous modes are belived to be related to
the minimal torsional stiffness the beam is given. Because of the issue with the uncontinous
modes, the model based on the standard beam element could not be used and a new model
was made.

4.2.2 Model No.2 - Beam model with open-section element formulation

The second model uses a special open-section element formulation (B31OS) provided by
Abaqus. The open-section element in Abaqus has seven degrees of freedom, compared to
six for the standard beam element. The warping is the additional degree of freedom. The
geometry, boundary conditions and element meshing of this model was just as for model
No.1, meaning that the stiffness provided by the 25mm bars neither is accounted for here.
The section is therefore free to warp, which obviously would at least partially be prevented
by the bars. The results from the analysis are shown in table 4.1.

17



Mode no. Natural frequency Mode description

1 1.23 Horizontal out of plane movement of long cantilever

2 2.42 Vertical in plane movement of cantilever

3 2.45 Horizontal out of plane movement of span between columns

4 3.45 Horizontal out of plane movement of short cantilever includ-
ing one column

5 3.88 Horizontal out of plane movement of lamp support beam.
The beam shape is like a 3rd degree function

6 4.17 In plane movement of whole structure

7 5.55 Horizontal movement out of plane of lamp support beam.
The beam shape is like a 2nd degree function

8 6.65 Horizontal movement out of plane of lamp support beam.
The beam shape is like a 4th degree function

9 8.21 Vertical in plane movement of span between columns

Table 4.1: Mode shapes for the open-section beam model

(a) 1st mode shape (b) 2nd mode shape (c) 3rd mode shape

(d) 4th mode shape (e) 5th mode shape (f) 6th mode shape

(g) 7th mode shape (h) 8th mode shape (i) 9th mode shape

Figure 4.2: Mode shape 1-9 of the open-section beam element model
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The resulting mode shapes showed, in contradiction to model No.1, continous deformation.
All mode shapes were now looking natural, as shown in figure 4.2. But it was discovered that
the results were quite different from the results of Bessason and Snaæbjörnsson. The natural
frequency of the first mode shape, which is the horizontal cantilever movement has a frequency
of 1.23 Hz. Bessason and Snaæbjörnsson found this to be 1.94 Hz. And when this model gave
nine mode shapes when including the vertical movement of the span as the last, Bessason
and Snaæbjörnsson only found six. The 4th, 5th, 7th and 8th mode shape of this model can
not be found in the Bessason and Snaæbjörnsson-model, while the 5th mode shape of the
Bessason and Snaæbjörnsson-model could not be found in this model.

As the frequency of the first horzontal cantilever mode of the Bessason and Snaæbjörnsson-
model is 58% higher than what it is for this model, a significantly different horizontal stiffness
is suspected in the two models. It was therefore natural to belive that the model of Bessason
and Snaæbjörnsson had used a different element formulation. An attempt was therefore made
to replica the results of Bessason and Snaæbjörnsson, and model No.3 was therefore made.

4.2.3 Model No.3 - Beam model with closed section

The third model made was a beam element model with the lamp supporting beam modelled
as a closed hollow section with a bottom flange of 0.1mm. The thin flange is included to make
the section to be reckoned as a closed section, and the flange would also prevent warping of the
section, just as the 25mm bars partially are expected to do. The purpose of this analysis was
also hopingly to replicate the results of Bessason and Snaæbjörnsson. The element formulation
used is the standard linear beam element (B31). The geometry, boundary conditions and
element meshing of this model was just as for model No.1 and 2.

Mode no. Natural frequency Mode description

1 1.92 Horizontal out of plane movement of long cantilever

2 2.39 Vertical in plane movement of cantilever

3 3.09 Horizontal out of plane movement of span between columns

4 4.12 Horizontal in plane movement of whole structure

5 4.48 Horizontal out of plane movement of whole structure. The
columns moves out of phase, and the lamp supporting beam
exhibits torsion.

6 8.07 Vertical in plane movement of span between columns

Table 4.2: Mode shapes of the closed-section beam model

The results from this model as shown in table 4.2, show a good agreement with Bessason
and Snaæbjörnsson. The order of the mode shapes is identical, and the deviation of the results
is at maximum 2.5%. This model was therefore clarifying some of the questions accured during
the study of model No.1 and No.2.

The question which remaines unanswered by model No.2 and No.3 was to what degree
the 25mm bars contribute to the structural stiffness. As quite large deviations were found
between the results for the horizontal mode shapes of the models, it was seen that the effect
of simplifing the beam to being either closed or open was significant. The 25mm bars are
expected to contribute to the stiffness of the structure, but to what degree? As it was seen
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that the beam element modelling approch could not answer this question, a shell element
model was made.

(a) 1st mode shape (b) 2nd mode shape (c) 3rd mode shape

(d) 4th mode shape (e) 5th mode shape (f) 6th mode shape

Figure 4.3: Mode shape 1-6 of the closed-section beam element model

4.2.4 Model No.4 - Shell model

The shell-element model was built up by 8-node quad elements with a thickness of 10mm.
The 25mm bars in the bottom part of the U-section were modelled as beam elements. The
size of the shell elements was 100mm in each direction and the model had 6353 elements in
total. The results are shown in table 4.2.

Mode no. Natural frequency Mode description

1 1.38 Horizontal out of plane movement of long cantilever

2 2.28 Vertical in plane movement of cantilever

3 2.53 Horizontal out of plane movement of whole structure

4 3.54 Horizontal out of plane movement of whole structure. The
columns moves out of phase, and the lamp supporting beam
exhibits torsion

5 3.97 Horizontal in plane movement of whole structure

6 4.65 Beam in torsion

7 6.31 Beam in torsion

8 7.56 Vertical in plane movement of span between columns

Table 4.3: Mode shapes for the shell element model

The shell element model gives eight different modes when including the vertical movement
of the U-section span as the last one. There are six mode shapes which are basically similar
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to the mode shapes found in the two other models, namely mode shape 1,2,3,4,5 and 8. The
torsional modes at the 6th and 7th mode are only found by this model.

When comparing the natural frequencies of the first mode calculated by the different
models, the results for model No.2, No.3 and No.4 are respectively 1.23Hz, 1.92Hz and 1.38Hz.
It is seen that model No.4 places itself in between of the two others, but closest to model
No.2.

(a) 1st mode shape (b) 2nd mode shape (c) 3rd mode shape

(d) 4th mode shape (e) 5th mode shape (f) 6th mode shape

(g) 7th mode shape (h) 8th mode shape

Figure 4.4: Mode shape 1-8 of the shell element model
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4.3 Conclusion

Four different models have been made as a part of the modal analysis. Model No.1 gave
obviosly incorrect results and was disregarded, but the three others have been further eval-
uated. The results from the three models, as shown in table 4.1, 4.2 and 4.3, indicate that
the differences between the different models are small concerning the vertical modes. For the
horizontal modes, where the torsional stiffness of the U-section is important, the results are
very divergent. Model No.2 and No.3 were both simplifing the geometry of the section, by
either neglecting the stiffness provided by the 25mm bars or including the pin as acting as a
closed section. The deviation between these model’s was seen to be as much as 58% for the
first mode. As the difference between these model was so significant, a shell element model
was made. The shell element model provided the possibility of modelling the structure more
accurate. It was seen that the results from this model’s horizontal modes placed themselves
inbetween of the two others. As the stiffness of the 25mm bars has been modelled in model
No.4, this model is belived to be the one closest to reality. The results from the shell element
model will therefore be used in the further analyses and calculations of this report.

Through the modal analysis of the light mast, the torsional stiffness of a semi-closed
section has been analysed. It is found that the use of different beam element formulations
gave very divergent results. For this structure it was found that a shell element model was
necessarily to provide a modelling techique that could give accurate results for the semi-closed
U-section.
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Chapter 5

Computational Fluid Dynamics

5.1 General

Computational fluid dynamics (CFD) is a method of solving systems involving fluid flow and
heat transfer based on computer simulations. The method involves discretizing of the fluid
flow and the use of numerical calculation methods for solving partial differential equations.

5.2 Governing equations

Computational fluid dynamics is based on three governing equations.

1. Mass is conserved (The continuity equation)

2. Newton’s second law, F=ma (The momentum equation)

3. Energy is conserved (The energy equation)

The governing equations can be derived in two forms, the conservation form and the
nonconservation form, ref. figure 5.1.

Volume dv

(a) Conservation form: An infinitesimal
fluid element fixed in space with the fluid
moving through it

Volume dv

(b) Nonconservation form: An infinitesimal
fluid element moving along the fluid

Figure 5.1: The two different forms used for deriving the governing equations

1Section 5.2 is based on Anderson [1995, Ch.2].
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The two different forms uses different differential operator. For the conservation form, the
local derivate ∂/∂t is used, meaning time rate of change at a fixed point. For the nonconser-
vation form, the substantial derivate D/Dt is used,

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(5.1)

with the physical meaning instantaneous time rate of change for a moving fluid element.

5.2.1 The continuity equation

Imagine a infinitesimally small element fixed in space with the fluid moving through it:

(ρu)dydz
[

ρu+ ∂ρu
∂x

dx
]

dydz

dx

d
y

dz

Figure 5.2: An infinitesimally small element fixed in space with mass flux through the faces.

Figure 5.2 shows the mass flux in the x-direction of flow. The net outflow in the x-direction
is:

[
ρu +

∂u

∂x
dx

]
dy dz − (ρu)dy dz =

∂(ρu)

∂x
dx dy dz (5.2)

The terms are similar for y and z-direction. From the basis of the terms in all directions,
the total mass flow out of the element can be summarized as

[
∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z

]
dx dy dz (5.3)

The total mass of the fluid element is m = ρ(dxdydz). The time rate of mass increase can
therefore be written

∂ρ

∂t
(dxdydz) (5.4)

The net mass flow out of the element must be equal to the time rate of decrease of mass
inside the element:

[
∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z

]
dx dy dz = −

∂ρ

∂t
(dx dy dz)

∂ρ

∂t
+

[
∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z

]
= 0

∂ρ

∂t
+ ∇ · (ρV) = 0

(5.5)
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Equation 5.5 is a partial differential equation form of the continuity equation for a com-
pressible fluid. For an incompressible fluid, the density ρ is constant, and the equation reduces
to:

∇ · V = 0 (5.6)

5.2.2 The momentum equation

The momentum equation is derived from the second law of Newton F=ma. The equation is
here derived in the nonconservation form and a model of a infinitesimal small volume element
moving with the flow is used.

Figure 5.3: Stress components in the x-direction Anderson [1995].

The forces on the element are divided into body forces and surface forces. In figure 5.3
the surface forces are shown. Imagine that the volume element is moving with the flow in the
positive x-direction. The forces on the volume’s sides (abfe, dcgh, abcd and efgh) are due to
the viscosity of the fluid as the volume is moving through it. On back and front sides (adhg
and bcgf) you have normal stresses due to suction and drag in addition to the pressure forces.
The forces in figure 5.3 can be summarized as follows:

[
p −

(
p +

∂p

∂x
dx

)]
dy dz +

[(
τxx +

∂τxx

∂x
dx

)
− τxx

]
dy dz

+

[(
τyx +

∂τyx

∂y
dy

)
− τyx

]
dx dz +

[(
τzx +

∂τzx

∂z
dz

)
− τzx

]
dx dy

(5.7)

In addition there are body forces on the volume element, where fx denotes the x-component
of the body force pr unit mass:

ρfx (dx dy dz) (5.8)

The total forces in the x-direction is the sum of equation 5.7 and 5.8. This can be
summarized, shortened and written as:
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Fx =

[
−

∂p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

]
dx dy dz + ρfxdx dy dz (5.9)

Equation 5.9 represent the left-hand side of Fx = max. Considering the right-hand side,
the mass m of the fluid element is equal to

m = ρ dx dy dz (5.10)

while the acceleration, ax is equal to the time rate of change of the velocity u. Since the
element is moving with the flow, the time rate of change is given by the substantial derivative
D/Dt. Thus ax is given by

ax =
Du

Dt
(5.11)

The total x-component of the momentum equation is then aquired by combining equations
5.9, 5.10 and 5.11:

ρ
Du

Dt
= −

∂p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ ρfx (5.12)

The momentum equation can be derived in a similar manner for the y- and z-direction.
The derived expression is nonconservation form of the momentum equation.

5.2.3 The energy equation

The energy equation can be derived from the physical principle that energy is conserved. This
is the first law of thermodynamics. The energy equation can be written in words as:

Rate of change of
energy inside fluid
element

=
Net flux of heat
into element

+
Rate of work done on
element due to body
and surface forces

(5.13)

The energy equation is here derived in the nonconservation form. The rate of work done
on the element can be divided into work done by body or work by surface forces. The rate of
work done by body forces is equal to the product of the force and the velocity in the direction
of the force, and can therefore be written

ρf · V(dx dy dz) (5.14)

where f is the force vector pr unit mass, ρ (dx dy dz) is mass and V is the velocity vector.
The rate of work done by surface forces can be derived from figure 5.4. For the pressure

and shear forces in the x-direction the work done is equal to the product of the velocity in
the x-direction, u and the force. The terms in figure 5.4 can be added together and written
as

[
up −

(
up +

∂(up)

∂x
dx

)]
dy dz +

[(
uτxx +

∂(uτxx)

∂x
dx

)
− uτxx

]
dy dz

+

[(
uτyx +

∂(uτyx)

∂y
dy

)
− uτyx

]
dx dz +

[(
uτzx +

∂(uτzx)

∂z
dz

)
− uτzx

]
dx dy

(5.15)
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Figure 5.4: Energy fluxes in the x-direction Anderson [1995].

Adding and cancelling terms, this reduces to

[
−

∂(up)

∂x
+

∂(uτxx)

∂x
+

∂(uτyx)

∂y
+

∂(uτzx)

∂z

]
dx dy dz (5.16)

If terms for y- and z-direction are added, the total rate of work done by body and surface
forces can be written

[
−

(
∂(up)

∂x
+

∂(vp)

∂y
+

∂(wp)

∂z

)
+

∂(uτxx)

∂x
+

∂(uτyx)

∂y
+

∂(uτzx)

∂z
+

∂(vτxy)

∂x

+
∂(vτyy)

∂y
+

∂(uτzy)

∂z
+

∂(wτxz)

∂x
+

∂(wτyz)

∂y
+

∂(wτzz)

∂z

]
dx dy dz + ρf · V dx dy dz

(5.17)

The next term in the energy equation is the net flux of heat into the element. The heat
flux is due to volumetric heating such as absorption or emisson of radiation and the heat
transfer across the surface due to thermal conduction.

The volumetric heating of the element is the product of the rate of volumetric heat addition
pr unit mass, q̇ and the mass, ρ (dx dy dz)

ρq̇ dx dy dz (5.18)

The heating caused by thermal conduction is found for each direction by looking at the
heat flux in to and out of the element. Figure 5.4 shows the heat flux in the x-direction. The
sum of the heat flux across the surface in all directions is

−

(
∂q̇x

∂x
+

∂q̇y

∂y
+

∂q̇z

∂z

)
dx dy dz (5.19)

The total net flux into the element is the sum of eq. 5.18 and eq. 5.19

[
ρq̇ −

(
∂q̇x

∂x
+

∂q̇y

∂y
+

∂q̇z

∂z

)]
dx dy dz (5.20)
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Then, Fourier’s law of heat conduction q̇x = −k ∂T/∂x is introduced (with similar ex-
pressions for y- and z-direction), and the total net flux into the element can be written

[
ρq̇ +

∂

∂x

(
k

∂T

∂x

)
+

∂

∂y

(
k

∂T

∂y

)
+

∂

∂z

(
k

∂T

∂z

)]
dx dy dz (5.21)

The last term of the energy equation is the rate of change of the energy inside the fluid
element. The element’s internal energy is the sum of energy of all molecules or atoms in the
element. This energy consists of translational, rotational, vibrational and electronic energies.
The internal energy is denoted as e, and is per unit mass.

In addition to internal energy, the element has kinetic energy since the element is moving.
The kinetic energy of the fluid element is 1

2
mV 2, giving that the kinetic energy per unit mass

is V 2/2

The sum of the internal and the kinetic energy is the total energy of the fluid element.
The time rate of change of the total energy per unit mass is given by the substantial derivate.
The mass of the element is ρ(dxdydz). This leads to the total expression for the rate of change
of the energy inside the fluid element:

ρ
D

Dt

(
e +

V 2

2

)
dx dy dz (5.22)

Now all three terms in the energy equation have been derived, and the terms from equa-
tions 5.22, 5.21 and 5.17 can be inserted into equation 5.13:

ρ
D

Dt

(
e +

V 2

2

)
= ρq̇ +

∂

∂x

(
k

∂T
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∂
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∂T
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)
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∂x
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∂x
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∂(uτyx)

∂y
+

∂(uτzx)

∂z
+

∂(vτxy)

∂x

+
∂(vτyy)

∂y
+

∂(uτzy)

∂z
+

∂(wτxz)

∂x
+

∂(wτyz)

∂y
+

∂(wτzz)

∂z
+ ρf · V

(5.23)

This is the energy equation in the nonconservation form.

5.3 Numerical calculation methods used in CFD

The numerical calculation methods used in CFD are,

• The finite difference method (FDM)

• The finite volume method (FVM)

• The finite element method (FEM)

The numerical methods used in CFD are a comprehensive subject, and the subject is
therefore difficult to summarize in short terms. But a comparison of the methods is here
presented, as published by Shaw [1992]. The three methods have several similarities:
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• The methods produce equations for the values of the variable at a finite number of
points in the domain under consideration.

• For time dependent problems an initial condition has to be set.

• Boundary conditions have to be set.

• Each method can either produce explicit or implicit forms. If an implicit form is pro-
duced, then a set of simultaneous equations must be solved.

Shaw [1992] also summarizes the differences between the methods:

• The finite difference and the finite volume method produce the numerical equations in
one node based on the values in the neighbouring nodes. The finite element method
produces the equations for each element independently. The interaction between the
elements is first taken into account when the element matrices are collected to the global
system matrices.

• The finite element method takes care of derivative boundary conditions when the ele-
ment equations are formed and then the fixed values of variables must be applied to
the global matrices. This contrasts with the other two methods which can easily apply
the fixed-value boundary conditions by inserting the values into the solution, but must
modify the equations to take account of any derivative boundary conditions.

• The finite difference method requires a uniform grid either in cartesian coordinates, in
other coordinate systems or in a transformed coordinate system. The method therefore
has it’s shortcomings when dealing with complex geometries. The finite volume and
finite element method both allow unstructured grids.

Most commercial CFD software use either FVM or FEM, where FVM is the most used
method. More information regarding the mathematical difference between FVM and FEM
can e.g. be found in Idelsohn and Oñate [1994].

5.4 Turbulence

Flow can be laminar, in transition phase or turbulent. As Reynolds number increase, a
transition from laminar to turbulent flow will be induced. CFD software often ignores the
transition phase, and only operates with predefined flow, either laminar or turbulent. The
transition region often constitutes only a very small fraction of the size of the flow domain
and in those cases it is assumed that the errors made by neglecting its detailed structure are
only small [Versteeg and Malalasekera, 2007, p.49].

Turbulent flow is described by a mean component Φ and a turbulent component ϕ́(t):

ϕ(t) = Φ + ϕ́(t) (5.24)

where the time average of the turbulent component is zero by definition.
In CFD code, there are different turbulence models available to capture the effects of

turbulence. The turbulence models can generally be grouped into three categories:

1Section 5.4 is based on Versteeg and Malalasekera [2007].
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• Turbulence models for Reynolds-averaged Navier-Stokes equations(RANS)
The Navier-Stokes equations are time averaged. The flow equations consist extra terms
for modelling turbulence. These terms are modelled with different turbulence models.
The RANS turbulence models require modest computer resources for reasonably accu-
rate flow calculations, and these models have therefore been the most used models for
engineering calculations the last three decades.

• Large eddy simulation
This method tracks the behaviour of the larger eddies and involves space filtering of
the unsteady Navier-Stokes equations prior to the computation. The filtering passes
the larger eddies and rejects the smaller eddies. The effect from the small unresolved
eddies is included by means of a so-called sub-grid model. The method involves solving
of unsteady flow equations, and the computing resources required for this are large.

• Direct numerical simulation
The method computes the mean flow and all turbulent velocity fluctuations. The
method is higly costly in terms of computational resources and is not used for industrial
flow computations.

The RANS equations is as metioned the most used method for engineering purposes. It
is necessary to develop turbulence models to predict the turbulence since the time-averaging
operation on the momentum and transport equation produce additional unknown terms.

The most common turbulence models are:

• The mixing length model

• The Spalart-Allmaras model

• The k-ǫ model

• The k-ω model

• The Algebraic stress model

• The Reynolds stress model (RSM)

The different turbulence models have different advantages, disadvantages and area of use.
A more detailed description of the different turbulence models can be found in Versteeg and
Malalasekera [2007]. As the Spalart-Allmaras model is used in this project a further discussion
of this can be found in section 6.2.4.

5.5 Errors and uncertainty in CFD modelling

The nature of CFD, beeing a numerical method, introduces many sources of error and uncer-
tainty. A summary is here presented.

1Section 5.5 is based on Versteeg and Malalasekera [2007].
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5.5.1 Numerical errors

CFD is a method of solving non-linear partial differential equations using numerical methods.
This introduces three sources of numerical errors:

• Roundoff error
The computers interpretation of a real number is a number with a finite number of
significant digits. This introduces the roundoff error.

• Iterative convergence error
The numerical solution of a CFD problem is based on an iterative process. Convergence
limits are specified by the user in the input of CFD programs. When the solution has
converged within the limit specified, the problem is considered solved. This leaves a
truncation error for every set of iteration with a magnitude dependent on the conver-
gence input limit.

• Discretisation error
A CFD model is a discretistation of a physical problem. The problem is discretized in
time and space mesh. The mesh design is of vital importance to achive hiqh-quality CFD
results. In theory, the discretisation error can be made arbitrarily small by progressive
reduction of the time step and mesh, but this requires increasing amount of computing
time.

5.5.2 Input uncertainty

The modelling itself introduces several user-controlled sources of errors. A computers solution
to a problem is never better than the input. There are several input uncertainties:

• Geometry input
The meshing of complex geometries can be problematic and simplification in the mesh
are therefore necessarily. In addition the fabrication of an item always introduces a
degree of geometry deviation which also introduces geometry errors.

• Boundary conditions
A CFD model requires a certain set of boundary conditions to be specified. These
boundary conditions consist e.g. of inlet, outlet, wall conditions and turbulence model
boundary conditions. The conditions are often set based on assumtions and simplifica-
tions.

• Fluid properties
Fluid properties like density, viscosity and thermal conductivity depend to a greater or
lesser extent on the local value of the flow parameters like velocity and pressure. These
properties are often assumed constant. This is acceptable provided that the variation
in the fluid properties in reality are small.

5.5.3 Validity of sub-models

Another source of errors are the sub-models used in the CFD analysis. Sub-models exist for
turbulence, combustion, heat and mass transfer. For aerodynamic use of CFD, the turbulence
model is the most relevant.Turbulence models are often semi-empirical. They have been
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tuned to fit experimental data to solve one type of flow problems, and therefore have their
validity area. They also have different ways of solving the boundary layer. The k-ǫ model
for instance, uses a ‘wall function’ that uses algebraic relationships to solve the near-wall
region. This method requires near-wall grid points at an y+ distance of 30 to 500. Other
models requires a different near-wall grid spacing. The Spalart Allmaras model requires for
instance a y+ of approximately 3 to achive a good solution of the boundary layer [Abaqus
documentation, 2010]. It is therefore important that the near-wall grid spacing is adjusted to
fit the turbulence model’s wall approch.

5.5.4 Simplifications

For saving computer-time in analysises, simplifications are often used. Common simplifica-
tions are:

• Steady vs. transient flow

• Two-dimensional or axisymmetric vs. three-dimensional

• Incompressible vs. compressible

• Adiabatic vs. heat transfer across the boundaries

• Singlephase vs. multiphase

These simplifications can sometimes safely be used and sometimes not. Flow speeds below a
mach number of 0.3 can for instance safely be treated as incompressible. But dealing with
axisymmetrical models simplifications can not be used unless all parameters are axisymmet-
rical, and not just the geometry. It is tempting to simplify to an axisymmetrical model when
having an almost symmetrical inflow and symmetric geometry, but in some cases small vari-
ations of inflow can be amplified and the simplification to an axisymmetric model will give
major discrepancies between an axisymmetric model and the real flow.

5.5.5 Verification and validation of CFD results

The sources of errors and uncertainties in CFD are many and unavoidable. A verification and
validation of the CFD model is necessarily to quantify the errors. The numerical errors can
be quantified by using these methods:

• The roundoff errors can be quantified by a comparison between different levels of com-
puter accuracy.

• The iterative convergence error can be quantified by a systematic study of the effects of
changing the convergence criteria. Different parameters, like pressure and velocity, can
be compared to quantify the convergence error.

• The discretization error can be quantified by a mesh/time-step refinement study. The
mesh is systematically refined until monontic reduction of the discretisation error is met
for two or three levels of mesh refinement. A method of discretisation error estimation
can be found in Versteeg and Malalasekera [2007, p.294].
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However, the best verification of a CFD analysis is a comparasion between the CFD output
and experimental data. An important aspect here is that the quality of this validation will
rely on the quality of the experimental data. If a comparasion to low-quality data is made
the quality of the validation is poor.

Since a comparison is based on subjective judgement, several suggestions have been pro-
posed for a more rigorous basis for validation of CFD results. These methods are using
statistical approches for the comparision, and are therefore able to take the deviation af the
experimental data into account when judging the quality of the CFD results. These methods
are described in more detail by Versteeg and Malalasekera [2007, p.296].
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Chapter 6

CFD Model

6.1 Software

The CFD analyses are performed in Abaqus 6.10 Pre-release v.3-v.5. The implementation
of a CFD solver is brand new in version 6.10 of Abaqus. The numerical implementation of
CFD is based on the finite element method. For time-dependent problems, a second-order
projection method is used. The pressure is calculated through a node centered approch, and
the transport equations have an edge-based implementation [Abaqus documentation, 2010].

6.2 Modelling

6.2.1 Geometry

20H10H

1
0
H

1
0
H

H

y

x

Figure 6.1: The model’s dimensions in x- and y-direction.

The model’s dimensions in x- and y-direction are set up according to the height of the
U-section (H=0.4m). The model has dimensions 10H in front of, 20H in back of and 10H
above and below the U-section. It is important that the boundaries are not too close to the
area of interest. If the boundaries are too close, the results will be affected. Versteeg and
Malalasekera [2007, p.283] recommends outlet boundary conditions to be placed futher than
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10 heights downstream of an obstacle. As our model has 20H downstream, this dimension is
well within the recommended value.

The CFD model is in 3D. This is because only 3D fluid elements are available in Abaqus.
The fluid element used is a 8-node brick element. As it first was planned to use a 2D model,
only one element in the z-direction was modelled initially. This worked fine when analysing
laminar flow, but when the Spalart-Allmaras turbulence model was activated, the analysis
would not run. This was found to be due to the model having only one element in z-direction,
and the number of elements was therefore increased. Because of this, the z-dimesion needed
to be decided. Several different z-lengths and number of elements have been evaluated, as
described in section 6.4. Allthough a 2D model would have been used if possible, the benefit
from using 3D is that vortex shedding also has 3D effects. Hopingly this has increased the
solution’s accuracy. The flow in the z-direction is however not focused on and a coarse mesh
in the z-direction has been used.

6.2.2 Boundary conditions

H

Inlet:

V=8m/s

Constant pressure:

P=0

Wall condition: Vy=0 and Vz=0

Wall condition: Vy=0 and Vz=0

No slip wall:

V=0

Wall condition front

and back side:

Vz=0

y

x

Figure 6.2: The model’s boundary conidtions.

The boundary conditions of the model are set using an inlet condidtion with a speci-
fied velocity, several different wall conditions, and an outlet with a constant pressure. The
boundary conditons are shown in figure 6.2.

The inlet velocity is set to 8 m/s for all analyses. This velocity was initially chosen since
the lightmast measurements showed large oscillations at this velocity. It is therefore belived
that this velocity is within the lock-in range of the critical velocity of the vertical cantilever
movement mode shape.

The outlet is specified with a constant pressure of zero. This boundary condition is
appropriate for external flows having a constant atmospheric pressure. A zero pressure is
specified in stead of the atmospheric pressure sinze the atmospheric pressure is equal in all
directions and therefore doesn’t contribute to the forces acting on the U-section.
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The boundary conditions at the U-section is specified as no-slip walls, meaning that all
velocity components are set to zero.

At the sides, top and bottom of the model, “shear” wall-conditions are specified. The
fluid does not adhere to the wall but cannot penetrate it.

6.2.3 Solver settings

The solver settings specified in the set-up of the analyses consists among others of fluid
parameters, time incrementation settings and convergence settings. The fluid parameters
used for air are shown in table 6.1:

Density 1.225 kg/m3 (15◦C)

Viscosity 1.7894e-5 kg/(m·s) (11◦C)

Table 6.1: Fluid settings

The time step incrementation in Abaqus are at default set to be automatic. Accord-
ing to Abaqus documentation [2010], this guarantees for the solution’s stability. The time
step will adjust itself automatically according to a stability condition called the Courant-
Freidrichs-Levy (CFL) stability condition. The time step can be specified manually at fixed
incrementation, but stability may not be guaranteed. The default setting with automatic
time step has been used in the analyses.

Time step incrementation Automatic (Fixed CFL)

Initial time increment 0.01s

Maximum CFL number 0.45

Increment adjustment frequency 1

Time step growth scale factor 0.025

Divergence tolerance 1e-10

Time Integration Parameters Viscous,Load,BC - Trapezoid(1/2)

Table 6.2: Time incrementation settings

The solver settings for the three governing equations are shown in table 6.3. These settings
are the default values in Abaqus and were not changed.
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Momentum equation

Iteration limit 50

Convergence checking frequency 2 increments

Linear convergence limit 1e-5

Pressure equation

Iteration limit 250

Convergence checking frequency 2 increments

Linear convergence limit 1e-5

Transport equation

Iteration limit 50

Convergence checking frequency 2 increments

Linear convergence limit 1e-5

Table 6.3: Solver settings

6.2.4 Turbulence model

Two different turbulence model are available in Abaqus CFD, namely the Implicit Large-Eddy
Simulation (ILES) model and the Spalart-Allmaras model. The Spalart-Allmaras model is
a RANS model (ref section 5.4). It is a one-equation model, meaning that one additional
partial differential equation has to be solved. This equation is a conservation equation for the
eddy viscosity (also known as the turbulent viscosity). The Spalart-Allmaras model uses less
computer resources than two-equation models like the k − ǫ model. The model has constants
that can be calibrated to different flow problems. The default constants are tuned for external
aerodynamic flow. The eddy viscosity is varying through the domain and is calculated from
the constants, the vorticity and the near-wall distance [Spalart and Allmaras, 1994]. The
model produces reasonable accurate predictions of turbulent flows in the presence of adverse
pressure gradients, and may be used for flow where separation occur [Abaqus documentation,
2010]. The model is originally designed for streamlined shapes like airfoils, and according
to [Bakker, 2010], the model is weak for massivly seperated flow and free shear flows.

The information found on the Spalart-Allmaras model reveals both pros and cons of this
model. This is however the reality of all turbulence models, since no universal turbulence
model exists. In our case, we have an external aerodynamic flow where we expect seperation
and recirculation at the U-section’s corners. The question is how accurately the seperation
around the U-section will be solved in the Spalart-Allmaras model.

In the end, when considering the information found on the two turbulence models avail-
able, the Spalart-Allmaras model was preferred because of the computational efficiency, and
this was therefore used in all analyses.

The boundary conditions and an initial eddy viscosity ν̃ have to be specified for the
turbulence model. The eddy viscosity at all walls are automatically set to zero by Abaqus.
At the inlet and outlet, the eddy viscosity needs to be specified. According to [NASA,
2010], the eddy viscosity boundary conditions should be between 3 and 5 times the kinematic
viscosity ν. [CFDOnline, 2010] recommends a freestream value of 5ν. An eddy viscosity of 5ν

37



was therefore intended to be used, but during the model setup, this was erroneously specified
to 5 times the dynamic viscosity µ instead. This means that an inlet eddy viscosity of 6.1ν
has been used in the analyses.

6.2.5 Computer information

The analyses have been performed on a Windows XP computer running four CPUs at 1.86
GHz clock speed. The amount of RAM was 3.25Gb. The analyses were run using either at
three or four CPUs. There was some incidents of analysis abortion when running at four
CPUs, and therefore three CPUs were sometimes used to be on the safe side.

6.3 Post-processing in Abaqus and Matlab

The postprocessing of the results have been performed by the built in postprocessor of Abaqus
in combination with Matlab.

The results of primarily interest in these analyses are the non-dimensional force coeffe-
cients, defined as:

CD =
Fx

1

2
ρAU2

(6.1)

CL =
Fy

1

2
ρAU2

(6.2)

where F is the force, A is the projected area and U is the wind speed and ρ is the density
of air.

The force coeffecients are not a part of the analysis output, and therefore further post-
processing was done in Matlab. The pressure at the nodes around the section was exported
to text files. The nodes at the edges in the z-direction were generally excluded. A Matlab
program was made to combine the scalar pressure with the section geometri, creating the
force vectors. Then the force vectors could be used to calculate CD and CL. The Matlab
code can be found in appendix E.

Since the force coeffecients are calculated from the pressure, the frictional forces are not
included in the coeffecients. But since the Reynold’s number is high (2.2 · 105), the frictional
forces are small compared to the forces due to pressure. The error of excluding the frictional
forces are therefore very small.

For annotating the pressure’s scale at surface pressure plots, the non-dimesional pressure
coeffecient has been used:

Cp =
p

1

2
ρU2

(6.3)

A frequency analysis was done to find the frequencies present in CD and CL . The power
spectral density plots are calculated with the use of Burg’s method. This command was used:
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%ORDER = ; % order of AR model, 20 or 100 is used

%FREQUENCY= 0:0.01:10; % vector of frequencies of interest

%FS = 100; % Sampling frequency = 100 Hz

pburg(X,ORDER,FREQUENCY,FS)

The autoregressive order of the Burg analysis is supposed to be calculated by a seperate
order analysis (e.g. AIC criteria), but as this command was not available in the Matlab
software used (“System Identification Toolbox” missing), the order has been set by trial and
error instead. When having plots with many frequencies, a higher order was needed to see
the different frequencies. The order used is remarked on all frequency plots.
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6.4 Z-direction meshing

A sensitivity analysis has been performed to evaluate the appropriate meshing in the z-
direction. The z-meshing of the model has influence on the turbulence model. If laminar flow
was used, only one element in the z-direction would have been sufficient. Since the turbulence
model could not be activated using only one element, a certain number of elements and length
in the z-direction was needed. The eddy viscosity is automatically set to zero at walls, meaning
that there is no turbulence there. It was therefore unknown how the eddy viscosity boundary
condition affected the results, and a mesh study of this parameter was needed.

Six different models were made. The mesh in the x-y plane is identical for all models, as
shown in figure 6.4. The boundary layer mesh is quite coarse with a near-wall resolution of
20mm. This was chosen to minimize computer time. The models have 8310 elements in the
x-y plane. The total number of elements is found by multiplying with the z-direction number
of elements. The calculation time for these models was from 2.5 hours to 22 hours.

X

Y

Z

Figure 6.3: 3D model meshing (Model No.5).
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Y

(a) Model meshing (b) Mesh in the boundary layer

Figure 6.4: The x-y mesh in the model used to evaluate the z-length significance

6.4.1 Model No. 1: 0.4m length and 2 elements

The first model testet had a z-length of 0.4 m with 2 elements in the z-direction. As seen in
figure 6.5, the lift and drag are showing unsteady behaviour, and the frequency spectrum of
drag is showing a lot of different frequencies other than the expected fs and 2fs.

0 2 4 6 8 10 12

−2

−1

0

1

2

3

Time

 

 

C
D

C
L

(a) Lift/drag coeffecient

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

Frequency [Hz]

P
ow

er

f
s
 = 3.09

(b) Frequency power spectrum lift
(from t=5s,AR order of 200)

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

Frequency [Hz]

P
ow

er

(c) Frequency power spectrum drag
(from t=5s,AR order of 200)

Figure 6.5: Model with z-length 0.4m made up by 2 elements of 0.2m.

6.4.2 Model No. 2: 1m length and 5 elements

The second model testet had a z-length of 1 m with 5 elements in the z-direction. As seen
in figure 6.6, the lift and drag are showing a more regular pattern than model in no.1. The
frequency spectrums are showing the expected freqencies at fs and 2fs.
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Figure 6.6: Model with depth 1m made up by 5 elements of 0.2m.

6.4.3 Model No. 3: 2m length and 10 elements

The third model testet had a z-length of 2 m with 10 elements in the z-direction. As seen in
figure 6.7, the lift and drag show an even more harmonic pattern than in model no.2. The
mean level of drag is about the same as in model no.2, but the amplitude of the lift oscillation
has reduced. The vortex shedding frequenzy has reduced compared to model no. 2. The drag
frequency spectrums are not showing the expected freqenciy at 2fs.
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Figure 6.7: Model with depth 2m made up by 10 elements of 0.2m.

6.4.4 Model No. 4: 2m length and 5 elements

The fourth model testet had a z-length of 2 m with 5 elements in the z-direction. This was
chosen to evaluate if it was the length of 2m or the number of elements that were most
significant, hoping that less than 10 elements would be suifficient. As seen in figure 6.8, the
drag is at the same level as for model no. 3, but the lift amplitude has increased. The
vortex shedding frequenzy is close to identical compared to model no. 3. The drag frequency
spectrums are not showing the expected freqenciy at 2fs.
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Figure 6.8: Model with depth 2m made up by 5 elements of 0.4m.

6.4.5 Model No. 5: 2m length and 3 elements

The fifth model testet had a z-length of 2 m with 3 elements in the z-direction. As seen in
figure 6.9, the drag is at the same level as model no. 4, but the lift amplitude has increased.
The vortex shedding frequenzy has also increased.
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Figure 6.9: Model with depth 2m made up by 3 elements of 0.67m.

6.4.6 Model No. 6: 3m length and 5 elements

The sixth model testet had a z-length of 3 m with 5 elements in the z-direction. A compar-
ison between model no.6’s results in figure 6.10 and model no.4’s in figure 6.8, leads to the
conclusion that the results from the two models are close to identical.
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Figure 6.10: Model with depth 3m made up by 5 elements of 0.6m.

6.4.7 Summary - z-direction meshing

Model No. Z-length Elements CD CL CL,max CL,min fs St

1 0.4m 2 1.87 -0.06 1.28 -1.45 3.09 0.155

2 1m 5 1.60 0.00 0.87 -0.89 2.96 0.148

3 2m 10 1.44 0.01 0.51 -0.50 2.69 0.135

4 2m 5 1.56 -0.06 0.62 -0.80 2.67 0.134

5 2m 3 1.64 0.06 0.90 -0.89 2.72 0.136

6 3m 5 1.55 -0.06 0.66 -0.83 2.67 0.134

Table 6.4: Summary of the results from the z-length and z-number of elements study.

Table 6.4 notations:

CD - Mean drag
CL - Mean lift
CL,max - Mean maximum amplitude of lift
CL,min - Mean minimum amplitude of lift

All the results are summarized in table 6.4. The results can not be judged to be fully
conclusive since all parameters have not converged for 2 or more models. The main parameter
used in the study was however fs, and for this parameter it is shown a convergence of the
results between model no. 3, 4, and 6. If the mean drag is evaluated next, it is seen identical
results for model 4 and 6. Convergence is therefore seen in terms of the z-length. Regard-
ing the number of elements, convergence for all parameters is not seen. To achive a more
conclusive convergence, more elements in the z-direction should probably have been tried. A
conclusion was however required to be made, and it was decided to use the parameters from
model no. 4, namely a z-length of 2 meters with 5 elements in the z-direcion.
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6.5 Boundary layer meshing

6.5.1 Recommended near wall mesh density

The next step in the sensitivity analysis was looking at the boundary layer meshing around
the U-section. This is the most important mesh parameter. The criticality of the boundary
layer meshing is illustrated by figure 6.11. The number of grid points in the boundary layer
determines the shape of the velocity profile and the computed thickness of the boundary layer.

(a) No grid points in the boundary layer (b) At least some grid points in the boundary layer

Figure 6.11: The velocity profile for viscous flow over a flat plate [Anderson, 1995].

When evaluating the boundary layer mesh, it is often referred to a non-dimensional wall
distance y+. This is given as

y+ =
u∗y

ν
(6.4)

where y is the distance to the nearest wall, ν is the local kinematic viscosity of the fluid.
And u∗ is the friction velocity at the nearest wall given by

u∗ =

√
τw

ρ
(6.5)

where τw is the wall shear stress and ρ is the fluid density at the wall.

The wall shear stress can be written as [Schlichting and Gersten, 2000, p.154]:

τw = µ

(
∂u

∂y

)

w

(6.6)

The Abaqus documentation [2010] suggests an y+ of approximately 3: “The Spalart-
Allmaras model can provide very accurate boundary layer results if the near-wall region is
resolved (near-wall resolution such that the nondimensional wall distance is approximately
3). However, the implementation of boundary conditions for the Spalart-Allmaras model in
Abaqus/CFD permits the use of coarser meshes as well”.

The expressions from equation 6.5 and 6.6 are inserted into equation 6.4, and the equation
is solved for y, giving:
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y =
y+ν√

ν
(

∂u
∂y

)

w

(6.7)

For an estimation of the velocity gradients, analytic formulas for a flat plate at laminar
flow is used [Schlichting and Gersten, 2000, p.31]. The boundary layer thickness for a flat
plate is given by

δ99(x) = 5

√
νx

U∞

(6.8)

Inserting the kinematic viscosity of air ν and U=8m/s the function is plotted as shown in
figure 6.12.
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Figure 6.12: The boundary layer over a flat plate at laminar flow, U=8m/s.

The corresponding simplified linear velocity gradient ∂u/∂x is plotted in figure 6.13.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Distance along flat plate

V
el

oc
ity

 g
ra

di
en

t

Figure 6.13: The velocity gradients over a flat plate at laminar flow, U=8m/s.

As seen in figure 6.13, the velocity gradients vary between approximately 37000 at x=0m
and 1900 at x=0.4m. The corresponding near wall mesh density according to y+

≈ 3 is
0.06mm at x=0m and 0.27mm at x=0.4m.

It was seen that the recommendations from Abaqus documentation [2010] were very tough
to fulfill. As the models with 20mm near wall mesh took around 5 hours calculating 6 seconds,
the consequence of using a 100 times finer mesh would assumingly be calculation times far
exceeding the available time for this project. Instead a mesh refinement study was done with
a coarser mesh.
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6.5.2 Model no.7 - Near wall resolution of 5mm

The first model made with a refined mesh has a near-wall resolution of 5mm. In addition
the mesh at the outer edges is made coarser than in the z-length study. At the outer edges
the element size is 0.5m in this model. The element size is gradually reduced by using an
unstructured meshing technique until the last 5 cm around the U-section where a structured
mesh is used. A growth factor of 1.2 is used to increase the mesh size from the wall and out.
The model has a total of 70210 elements. The mesh is shown in figure 6.14.

(a) Full mesh (b) Boundary layer mesh

Figure 6.14: The mesh of model no. 7. The boundary layer mesh has a near-wall resolution
of 5mm.

The analysis was set to calculate 7 seconds of time, where the first second was used to
gradually increase the velocity from zero to 8m/s. The calculation time for this model was 4
days and 20 hours, giving a calculation speed of 1.4 seconds per day.
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Figure 6.15: Refined mesh in the boundary layer with a near-wall resolution of 5mm.

The results from the analysis, ref figure 6.15 and table 6.5, showes a change in several
parameters compared to the previous models with a near-wall resolution of 20mm. The mean
drag and the lift amplitude have increased significantly compared to model no.4, while the
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vortex shedding frequency fs has a slight increase. While the drag frequency spectrum of
model no.4 did not show the frequency at 2fs, this frequency is very clear in this model and is
seen to be the dominating frequency of the drag. Alltoghether the difference between 20mm
and 5mm near wall resolution is seen to be significant. In addition it is seen, just from looking
at the drag plot, that the drag looks more “turbulent” than the plot from model no. 4 did.
This is taken as a positive sign beliving that the mesh refinement has led to the turbulence
model having more effect.

6.5.3 Model no.8 - Near wall resolution of 1mm

As the difference between the results from 5mm to 20mm near wall resolution was significant,
a further refinement of the near wall mesh was done. This was done with some concern
regarding the calculation time, as it was expected to increase significantly. The near wall
mesh of the model is shown in figure 6.16, while the meshing in the regions far from the
U-section is just as in figure 6.14(a). The meshing technique is similar as to model no. 7,
with a mesh growth factor of 1.2 in the structured zone from the wall and out. The model
has a total of 133810 elements.

Figure 6.16: The near wall mesh of model no. 8. The boundary layer mesh has a near-wall
resolution of 1mm.

The analysis was set to calculate 7 seconds of time, where the first second was used to
gradually increase the velocity from zero to 8m/s. The analysis was unfortunately disrupted
at around 3.5 seconds by a power failure. At that time the calculation had run for 7 days and
14 hours, meaning a progress of 0.46 seconds per day. If the analysis had not been stopped,
it would have run for over 15 days. Even if a shorter period than intended was solved for the
analysis, there were enough results, and it was considered unnecessarily to run the analysis
again.
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Figure 6.17: Refined mesh in the boundary layer with a near-wall resolution of 1mm.

The results from the analysis, ref figure 6.17 and table 6.5, showes only small differences
compared to model no. 7. The mean drag is only a few digits higher. The amplitude of the lift
is also very close, but a positive mean lift has been introduced. The difference in the mean lift
is however not to be trusted, considering the short period which the mean lift is calculated for.
If the analysis had run for the same period as model no.7, the results could likely be different.
Not all parameters are identical. The vortex shedding frequency has increased slightly, from
2.74 to 2.86 and the 2fs frequency of the drag looks even stronger than in model no.7.

6.5.4 Summary - Boundary layer meshing

Model No. Near wall spacing CD CL CL,max CL,min fs St

4 20mm 1.56 -0.06 0.62 -0.80 2.67 0.134

7 5mm 2.08 0.01 1.88 -1.92 2.74 0.137

8 1mm 2.11 0.10 2.01 -1.85 2.86 0.143

Table 6.5: Summary of the results from boundary layer meshing study

When evaluating the results from model no.7 and no.8, the models are seen to give very
similar results. The drag and lift levels can be considered identical, and only a small deviation
in the vortex shedding frequency is found. Convergence between the models are therefore
seen for most parameters and only the frequency seems to deviate. The deviation between
the models is around 4% for this parameter, which is not a substantial number.

To validate the results further, it is compared to values from Eurocode. The relevant
values found in Eurocode are tabulated in table 6.6. Values for an U-section could not be
found, so instead the comparasion is done to similar sections.
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Section type CD St

Rectangular (d/b=1) 2.0 0.12

I-section (d/b=1) 2.0 0.14

Table 6.6: Drag coeffecient and Strouhal number for relevant cross sections [Eurocode-1,
2005].

The Strouhal numbers calculated are seen to be identical to the Strouhal number of an
I-section, while higher than the Strouhal number of a rectangular section. A result in the
middle of these two would have been expected, but as no documentation is found regarding
what Strouhal number of an U-section it is difficult to say if the Strouhal number found is
correct or not. The expected mean drag is 2.0 for all sections, and the mean drag calculated
is thereby just slightly higher with a deviation of 4-5.5%. It is also seen that model no.4
with a near wall mesh of 20mm did not produce accurate calculation of the drag coefficient
compared to design codes.

Alltogether only small deviations are found to the Eurocode values, and the results are
therefore evaluated to be very good. Because of the good results from these two models,
it was considered unnecessarily to decrease the near-wall mesh size further. The conclusion
made is that a near-wall mesh size of 5mm is sufficient for the parameters being studied.

The mesh chosen is a lot coarser than the recommended value of y+
≈ 3. In terms of

y+ the mesh density of 5mm corresponds to a y+ in the range of 60 to 250 for the flat plate
boundary layer (figure 6.12). The model is therefore not expected to solve all the details of
the flow, but very good results has been achieved for the mean drag and the vortex shedding
frequency. These parameters are also the parameters of primarily interest in these analyses.
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Chapter 7

CFD Results

7.1 CFD model of original U-section

The orignal U-section model will in this section be further evaluated. The model with the
chosen mesh density from the boundary layer meshing study, namely model no.7, will be used
for this purpose. The modelling of this model and main results like drag and lift coeffecients
have already been presented in section 6.5.2. In this section the observations seen in flow
plots and pressure plots will be discussed. Two points of time at minimum and maximum lift
are chosen for futher study. At t=2.87s a minimum is found where CL has a value of -2.11.
At t=3.04 there is a maximum where CL has a value of 2.13.

(a) At t=2.87s, CL=-2.11

(b) At t=3.04s, CL=2.13

Figure 7.1: Velocity contour plots of the wake
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To evaluate the results it is usefull to compare to some expected flow characteristics from
the theory of fluid mechanics [Versteeg and Malalasekera, 2007, p.301]:

• Fluid flows from high to low pressure

• Static pressure decreases when velocity increases (Bernoulli’s theorem for inviscid flows)

• The speed of the fluid near the wall is smaller than the speed further away from the
wall (boundary layer formation)

• Boundary layers rapidly seperate under the influence of an adverse pressure gradient.
(Pressure increases in the direction of flow outside the boundary layer)

• Flows will seperate at corners

• If a flow seperates there is always recirculation

The characteristic vortex trail is clearly spotted at figure 7.1a and figure 7.1b. At t=2.87s,
the velocity is at maximum underneath the U-section, creating a negative pressure at the
inside of the section resulting in a net downforce. At At t=3.04s, the velocity is at maximum
above the U-section, creating a negative pressure at the top of the section resulting in a
net upforce. The decrease in pressure when velocity increases is just as Bernoulli’s theorem
predicted.

The alternating vortex shedding is also clearly spottet when comparing the velocity vector
plots at CL, min and CL, max. At figure 7.2a, a counterclockwise vortex is seen to form, while
at figure 7.3a a clockwise vortex is seen. The fundamental behaviour of vortex shedding is
therefore found, namely vortices forming with alternating directions at the back of the body.

(a) Velocity

Cp=3

Scale:

t = 2.87s

CD = 2

CL = -2.1

(b) Surface pressure

Figure 7.2: Velocity and surface pressure at t=2.87, CL=-2.11
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(a) Velocity

Cp=3

Scale:

t = 3.04s

CD = 2.3

CL = 2.1

(b) Surface pressure

Figure 7.3: Velocity and surface pressure at t=3.04, CL=2.13

Looking at figure 7.2a and figure 7.3a, seperation is cleary seen for both velocity plots at
the upper and lower front corner. The corresponding adverse pressure gradient is also seen
at the pressure plots. Above the top flange, recirculation is very clear at figure 7.3a. At
figure 7.2a, recirculation is also seen, but the velocities are smaller. Corresponding to the
lower front seperation, a recirculation swirl as big as the inside of the U-section is seen in
both figures, but this swirl is strongest at figure 7.2a.

When comparing the flow directions to the pressure behind the section, it is seen that the
air is flowing from high (less negative) to low (more negative) pressure on both figures, just
as the theory stated.

Alltogether the model’s capability of calculating important flow characteristics like seper-
ation and recirculation seems satisfactory. The flow around the U-section seems to be in
good agreement with the theory of fluid mechanics, and many details of the flow have been
captured. The vortex shedding problem of the original light mast is clearly confirmed, as the
characteristics of vortex shedding has been found in this model.
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7.2 CFD model of U-section with installed countermeasure

The light mast was as mentioned in chapter 3 equipped with aerodynamic countermeasures to
prevent the vibrations. The measures installed were two DN100 pipes, with a outer diameter
of 114mm installed above and belov the u-section. The intentional function of these flaps
is to round off the corners of the cross-section and introduce a positive Reynolds number
effect. The 25 mm gap between the pipe and the U-section is designed to allow the wind
to bleed through the section an thereby counteract the formation of vortices [Bessason and
Snaæbjörnsson, 2008]. The measured maximum amplitude of motion was reduced from 6.4
cm prior to installation to 1.5 cm after the wind flaps were installed.

Figure 7.4: The mesh of the wind-flaps model.

A CFD model was built up based on engineering drawings, see attachment F. The near-
wall mesh is shown in figure 7.4. The CFD model consists of 149790 elements. The analysis
was set to calculate a period of 11 seconds, where the first second was used to increase the
wind velocity from zero to 8 m/s. The calculation time for this analysis was 12 days, meaning
a progress of 0.9 analysis-seconds per day.

The lift and drag coeffecients as presented in figure 7.5 are showing promising results in
terms of countermeasuring VIV, just as the live case predicted. A first sight the lift shows an
initial vortex-shedding response starting at t=1s which dies out in a couple of seconds. From
t=4s and on no regular vortex shedding activity is spotted. The drag stabilizes at around
1.5 which is a lower level than for the u-section without flaps. This is at first sight maybe
somewhat suprising since the total projected area has increased by 57%, but this is judged as
a sign on reduced seperation.

The successful prevention of vortex shedding is also seen by studying the wake after the
initial vortex shedding has died out. At t=7s a long stable wake is seen, ref figure 7.6. It is
also observed that the U-section with the pipes seem to act as only one body considering the
wake. According to Blevins [1990, p.48], cylinders positioned over a flat plate is not affected
by the plate if the spacing between the cylinder and the plate is bigger than 0.5 diameters of
the cylinder. The spacing in this case is 0.2 diameters. If the spacing between the U-section
and the pipe had been too big the pipe would have developed it’s own vortex shedding activity.
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Figure 7.5: Drag and lift coeffecients for the model with wind flaps.

The frequencies of the pipe would then had been introduced. The structure would probably
still be exposed to VIV but the amplitude would possibly have been reduced because of the
broader response spectrum.

Figure 7.6: Velocity plot of the wake at t=7s

A point in time at t=7s is chosen for a detailed study of the flow, and plots are presented
for velocity and surface pressure at figure 7.7. Since no distinguished regularity is seen in the
lift coeffecient at figure 7.5 this point is picked quite arbitrary. More plots are presented in
appendix B.
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(a) Velocity

Cp=5

Scale:

t = 7s
CD = 1.3
CL = 0.17

(b) Surface pressure

Figure 7.7: Velocity and surface pressure at t=7s

The flow at the front corners looks quite similar to what was observed in the model of the
U-section alone. At the top front corner, a recirculation swirl can be spotted. This is due to
the separation at the top front corner. At the bottom front corner, strong separation is also
seen. When looking closely a low velocity swirl filling the inside of the section is observed.
These recirculation swirls are just as observed at figure 7.2 and figure 7.3.

When studying the flow arond the pipes it is seen that the purpose of the 25mm gap
between the U-section and the pipe is fulfilled. The flow is bleeding through the gap, and the
flow is seen to curve nicely around the pipe before the flow from each side is merging together
again behind the pipe. The effect of this is that no vortices are generated in the wake of the
pipes. The wake is therefore very stable, as figure 7.6 also shows.

Mild seperation of the flow from each direction is seen at the back of the pipes. Adverse
pressure gradients in the flow directions are confirming this. A tiny recirculation swirl is
probably present between the two seperation points, but this is not indicated by the velocity
plot. The seperation from the pipe is however not seen to introduce any vortex shedding.

The main reason for the positive effects introduced by the installed countermeasure is that
the flow is seperating at the pipes instead of at the back of the U-section. Since the flow is
bleeding through the gab, flow from both sides meets at the back of the pipe countermeasuring
vortex generation. An additional benefit of the installed flaps is that drag on the cross section
has decreased due to the more streamlined shape and the reduced seperation.
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Alltogether, the CFD analysis of the wind flaps is seen to locate the VIV countermeasuring
effect predicted from the live case. The desired flow effects planned for in the design of the
wind flaps has been found, and through the CFD analysis more understanding is achieved
about why this is a successful VIV countermeasure.
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7.3 Alternative No.1 - Flat plate flap

Two alternative suggestions to VIV countermeasures have been evaluated. The first one is a
flat plate 180x10 mm placed 75mm above the U-section flange. The flat plate is tested to see
how this will disturb the flow on top of the U-section, and hopefully it will disturb some of
the vortex shedding.

The model consisted of 96010 elements. The analysis was set to calculate a period of 11
seconds, where the first second was used to increase the wind velocity from zero to 8 m/s.
The calculation time for this analysis was 6 days and 10 hours, meaning a progress of 1.7
seconds per day. As seen in figure 7.8 the mesh inside the section is coarser than on the
outsite. This was done to save elements, since the previous models had shown that the flow
velocities inside the section were very low. If the velocity is lower, the boundary layer will
be thicker (ref eq. 6.8), and the velocity gradients will be lower. A coarser mesh were low
velocities are expected is therefore justified.

Figure 7.8: The near-wall mesh of the flat plate model.

Model CD CL CL,max CL,min fs St

U-section 2.08 0.01 1.88 -1.92 2.74 0.137

U-section with plate flap 2.00 -0.38 0.47 -1.43 2.81 0.141

Table 7.1: Summary of the results from the plate flap model

The main results of this model are shown in table 7.1. The drag is similar to what was
observed for the original U-section, and the vortex shedding frequency is also very similar.
The mean lift is however deviating, and it seems like a mean negative lift has been introduced.
The mean amplitude of the lift force, found by subtraction between the mean lift maximum
CL,max and the mean lift minimum CL,min is found to be reduced from 3.8 for the U-section
to 1.9 for the U-section with plate flap, meaning a 50% mean reduction in the mean lift
amplitude.
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Figure 7.9: Lift and drag coeffecient of the plate flap model

The lift coeffecient plot of this model, as seen in figure 7.9 is showing a characteristic
pattern from around t=4.5s to t=11s. The lift amplitude seems to almost have died down at
t=4.5s, but then gradually builds up again to a maximum at around 7-8s and then dies down
againg at around t=11s.

Figure 7.10: The beating phenomena [Rao Singiresu, 2004].

This phenomena is called beating, and happens when two harmonic frequencies close to
one another are added [Rao Singiresu, 2004, p.52]. The beat period is seen to be around 6.5
seconds from studying figure 7.9. The beat period τb can be expressed as

τb =
2π

δ
(7.1)
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where δ is the difference between the two harmonic motions in angular velocity. The
corresponding frequency difference is found by

∆fs =
δ

2π
(7.2)

When having a beating period of 6.5s, ∆fs is found to be 0.15Hz. According to this there
should be two harmonic frequencies in this model seperated by 0.15 Hz.

The frequency power spectrum of CL is shown in figure 7.11. When performing the
frequency analysis, a second frequency in the lift was expected. At first the Burg method
was used, as shown in figure 7.11a. This did not show any distinct second frequency at
the expected distance at either an AR order of 20 or using higher order. The Fast Fourier
Transform (FFT) method was therefore tried instead, as shown in figure 7.11b. The FFT
method gave approximately the same main peak frequency as the Burg method, but did in
addition show a second peak at fs=2.44Hz. The difference between the two peaks is 0.34Hz.
This is twice the difference calculated, but as the beating period is based on studying the plot
visually and there are round offs in the freqency analysis, the difference is probably within
the uncertainty range. The suspicion of two close frequncies interacting, creating the beating
phenomena, therefore seems to be confirmed.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frequency [Hz]

P
ow

er

fs = 2.81

(a) Using Burg’s method (from t=2s, AR
order of 20)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Frequency

P
ow

er

fs = 2.78

(b) Using FFT method (from t=2s). The
second peak is at 2.44Hz.

Figure 7.11: Frequency power spectrum lift.

The drag frequency spectra was also evaluated both using both Burg’s method and the
FFT method, as shown in figure 7.12. As for the drag frequencies there is a lot of different
frequencies present, but two peaks are seen at around 5-6 Hz indicating the corresponding
drag frequencies at 2fs.

When summarizing the observations made and evaluating the VIV prevention capabili-
ties of the flat plate, it is seen some quite promesing results. Allthough vortex shedding is
clearly observed in this model the irregularity introduced is positive. The beating phenomena
was found, meaning that more frequencies were present in the lift force. In other words, a
more broadbanded frequency response spectrum has been induced. The benefit of a more
broadbanded response, is that the fluctuating force will vary randomly along the length of
the beam. Thereby the probability of getting violent vibrations will be reduced. A broad
banded spectrum is a commonly used avoidance criteria of VIV as e.g. published by Oppen
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Figure 7.12: Frequency power spectrum drag.

[1995].

The flat plate flap is seen to have favorable effects that can prevent vortex shedding. It
is seen that the magnitudes of the lift has reduced and a more broadbanded spectrum of
the vortex shedding frequency has been induced. It is therefore likely to belive that vortex-
induced vibrations would have been significantly reduced by installing this flap. Exactly how
much the vibrations would have been reduced is however impossible to predict from a pure
CFD model. To explore this further, a FSI model or a live experiment would have been
necessarily.

Velocity contour and pressure plots of this model is not presented here, but can be found
in appendix C.
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7.4 Alternative No.2 - Square flap

The second alternative spoiling device testet is a square 40x40mm piece attached to the top
flange of the U-section. The square flap will be tested to see if this device can give any positive
VIV countermeasuring effects.

The model consists of 110630 elements. The analysis was set to calculate a period of 11
seconds, where the first second was used to increase the wind velocity from zero to 8 m/s.
The calculation time for this analysis was 8 days, meaning a progress of 1.4 analysis-seconds
per day.

Figure 7.13: The mesh of the square flap model.

The resulting force coeffecient plot, as presented figure 7.14, is showing disappointing
results when it comes to countering VIV. The results, ref table 7.2, is almost identical to the
results from the U-section alone.

Model CD CL CL,max CL,min fs St

U-section 2.08 0.01 1.88 -1.92 2.74 0.137

U-section with square flap 2.04 0.02 1.95 -1.84 2.84 0.142

Table 7.2: Summary of the results from boundary layer meshing study.

When looking at the velocity plots at figure 7.15a and figure 7.16a the impression is that
the 40x40mm square flap is just not big enough to alter the flow in a significant way. When
comparing the velocity vector plots at figure 7.15 and 7.16 to the plots for the U-section at
fig. 7.2 and 7.3 they are almost identical. The only difference made be the square is to split
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(a) Lift/drag coeffecient
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Figure 7.14: Results from the model with the square flap.

the recirculation swirl above the flange in two, but this is not seen to have any influence on
the flow.

(a) Velocity

Cp=3

Scale:

t = 4.22s

CD = 1.9

CL = -1.9

(b) Surface pressure

Figure 7.15: Velocity and surface pressure at t=4.22, CL=-1.9.

The conclusion seen is that the 40x40mm square flap is not a successful VIV counter-
measuring device. The square is too small compared to the section to change the flow. To
change the flow, the size of the square should be increased to more than the height of the
recirculation swirl above the flange. From the velocity plot (fig. 7.16a) approximately twice
the size looks appropriate. The question is how succesful this would have been. As there
was not enough time to modify the model and run a new analyis, this question will have to
remain unanswered.
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(a) Velocity

Cp=3

Scale:

t = 4.38s

CD = 2.1

CL = 1.9

(b) Surface pressure

Figure 7.16: Velocity and surface pressure at t=4.38, CL=1.9.

64



Chapter 8

Fluid Structure Interaction

8.1 General

A fluid structure interaction model was made in Abaqus. Abaqus 6.10 has built in support for
these types of analysis. A FSI model consists of two individual models. There is one model
for the flow part and one model for the structural part. These two models are then coupled
during the run of a FSI-analysis. For each time step the calculated load from the CFD model
is applied to the structure, and the structural response calculated by the structural analyis is
in the subsequent time step applied back to the flow analysis.

8.2 FSI modelling

8.2.1 Structure modelling

The principle of the FSI-model made is illustrated in figure 8.1. A spring and a damper is
specified to model the structural behaviour.

Figure 8.1: Principle sketch of the FSI model.

The modelling of the structural part consisted of a 2m long part of the U-section as shown
in figure 8.2. The elements used for meshing was an eight node 3D element(C3D8R). The
mesh of the structural model was quite coarse as this was not significant.

The boundary conditions of the model were set so that all degrees of freedom except
displacement in y-direction were set to zero. For the y-direction, a spring stiffness k and a
structural damping c was specified. As to the spring stiffness, the results from the modal
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Figure 8.2: Structural model meshing

analysis was used to tune the spring. The natural frequency of the vertical cantilever mode
was there found to be 2.28Hz. Several modal analysis were then performed on this model until
a natural frequency of 2.28Hz was achived. The resulting spring stiffness was k=2.35 kN/m.
The dashpot damper was also tuned in a similar way. From Bessason and Snaæbjörnsson
[2008] a damping ratio ξ of between 0.5% and 1% was estimated. The dashpot damper was
tuned to be ξ=0.75, giving c=2.5Ns/m.

8.2.2 CFD modelling

The geometry of the CFD model was just as for the other models (ref. chapter 6), but the
boundary layer mesh used was coarsened a bit to a near wall mesh density of 10mm. It had
previously been experienced that the near wall mesh density did not influence the vortex
shedding frequency dramatically and a quite coarse mesh was therefore used. The boundary
conditions needed to be modified for use in a co-simulation. The wall boundary conditions
around the U-section cutout needed to be removed, as this was the co-simulation interaction
boundary.

8.2.3 Co-simulation setup

The procedure of a FSI analysis in Abaqus is first setting up the two individual models,
and then copling these two together specifing the co-simulation boundary. The co-simulation
boundary was in the structural model set to be all outer faces of the U-section except the
faces at the U-section’s ends. In the CFD model the co-simulation boundary was set to be
the faces of the U-section cutout. The meshing of the two models at the interaction boundary
did not have to be identical [Abaqus documentation, 2010]. The wall boundary conditions
at the interaction boundary was taken care of by Abaqus and needed not to be specified. In
addition, a co-simulation analysis job needed to be created.

The procedure of setting up a FSI analysis in Abaqus was alltogether fairly simple and
user friendly.
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Figure 8.3: CFD model meshing.

8.3 FSI analysis failure

The analysis run of the model was then started. The iterations seemingly went on nicely
for some time, but the analysis came to a failure after doing about 800 iterations. From
the analysis log-file it was seen a violent increase in energy of the model. This is a sign on
calculation instability.

Several attemptx were made to re-run the analysis. It was aslo tried to reduce the number
of co-simulation boundaries, specifying just the outer parts of the U-section as interaction
boundaries. This was not successful. As the available time was running out, the work on this
model needed to be stopped, leaving the model unsolved. If more time had been available
several different modifications of this model could have been tried to find the issue causing
the analysis breakdown:

• Running the model without turbulence model in a model with only one element in
z-direction

• Try a simpler structural geometry, e.g. a square beam to minimize the co-simulation
boundaries

• Running the model using a fully rigid structural part as a test

8.4 Conclusion

The experience gained from working with this FSI analysis is that the complexity of these
analysis seems to make them more fragile to instability compared to pure CFD or pure
structural analyisis.

The software used was a pre-release of Abaqus 6.10. The FSI cababilities is brand new in
this version of Abaqus, and the possibility of instable code and bugs are present.

The analysis breakdown could have several possible explanations e.g. modelling and mesh
problems, erroneous analysis settings or the use of pre-release software.
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Chapter 9

Conclusions

A light supporting mast at Reykjavik Airport has been used as a case study for studying
vortex-induced vibrations. Computational fluid dynamics has been used as a tool to study
the vortex shedding phenomena. A theory summary has been written on vortex induced
vibrations and computational fluid dynamics. Subjects like aeroelasticity, VIV countermea-
sures, turbulence models and numerical calculation methods has been topics of interest.

Several different computer analyses has been done. A modal analysis of the lightmast
has been performed. CFD analysis has been done on the original light mast, the light mast
with flaps and in addition two alternative suggestive VIV reducing devices. An analysis using
Fluid-Structure Interaction was also attemptet, but no results were produced.

The modal analysis gave unexpected problems since the light mast partially was built up
by a semi-open U-section. The issue was whether this beam should be modelled as a closed
or an open section. As the different models gave very divergent results, a shell element model
was made, and comparasment was done to the beam element models. It was found that the
semi-open U-section was closer to beeing an open section than a closed one. The shell element
model was however reaconed as the most accurate, since the geometry of the light mast could
be modelled in detail.

The first CFD model evaluated, was of the original light mast U-section. Just as the
measurments and observation at site had predicted, a narrow banded vortex shedding lift
force was found. The flow around the U-section clearly indicated the alternating pattern of
vortex generation behind the U-section. The analysis also gave very accurate results for mean
drag coeffecient and Strouhal number.

The second CFD model was a model of the U-section equipped with the installed pipe
flaps. Also here the CFD analysis could confirm the observations made during field study.
The pipe flaps was seen to be very effective VIV countermeasuring devices, and the fluctuating
lift force was seen to almost completely vanish. The main effect introduced by the pipes was
flowing of air both over and under the pipes. The effect of this was that the formation of
vortices were almost fully reduced. The installed pipes were also seen to reduce seperation
and thereby reducing the mean drag force.

The first alternative VIV countermeasuring device tested, was a flat plate fixed above
the U-section flange. The flat plate was seen to disrupt the narrow banded vortex shedding
frequency, and a more broad banded spectrum was seen. The effect of a broad banded
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spectrum is that the lift force is randomly varying along the section, thereby reducing the
violent vibrations. It is therefore belived that this countermeasure would reduce the vibrations
significantly.

The second alternative device tested was a square flap attached to the U-section’s flange.
This device gave no changes at all compared to the original U-section. It is belived that the
square flap was too small, and that a bigger flap possibly could give an effect. It is however
not known to what extent the flow would be altered using a bigger square.

A Fluid-Structure Interaction analysis was also attempted. This analysis was aborted due
to analysis instabilities and no results were produced. FSI analysis seems more exposed to
analysis instability than pure CFD analyis. The mathematics and computer coding involved
is complex, and consequently more instability and fragile behaviour should be expected when
running these analysis.

One experience gained from working with CFD is that computer time is a major factor.
For practical engineering use, where project time is limited, CFD is seemingly not always an
appropriate solution to vortex shedding problems. The time consumption of a CFD analysis
is extensive. When incuding all steps of an CFD analysis, from modelling, mesh analysis and
to the final analysis time, time in the extent of several weeks/months is often needed. Because
of this, analytic and empirical formulas will probably still be the most used vortex shedding
design guide for many years to come.

The main benefit experienced from using CFD is the level of ’hands on experience’ achived.
This experience is invaluable, and no analytic or empirical fomulas can provide the same level
of understanding of the flow characteristics. For designing aerodynamical countermeasures
to existing structures VIV problems, the use of CFD provides an opportunity of making well
documented devices and suggestions for VIV reduction.

The benefits of CFD will likely be discovered by many more engineers from different
disciplines in the time to come. As time consumption decreases, CFD will probably be
introduced to an increasing range of problems and fields of study.
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Appendix A

Plots - U-section model

This appendix includes velocity contour plots, velocity vector plots and surface pressure plots
for one full vortex shedding period.
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Appendix B

Plots - Installed countermeasure

model
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Appendix C

Plots - Flat plate model
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Appendix D

Plots - Square flap model

This appendix includes velocity contour plots, velocity vector plots and surface pressure plots
for one full vortex shedding period.
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Appendix E

Matlab program

The code attached is the code for extracting results from the flat plate model. As the code
was customized to the geometry, the code is slightly different for the other models.

Creating force vectors

%Reading data files

path=’C:\abaqus_work\CFD turbulent flow flaps\node pressure flaps\’;

model=’flaps_plate_’;

%4 column file: node number,x,y,z

nodes = dlmread([path ’flaps_plate_nodes.txt’],’,’, 0, 0);

%Node pressure at U-section nodes. 1st column is time, 1st row is node numbers

p_usection = dlmread([path model ’usection.rpt’],’’, 2, 0);

%Node pressure at flat plate. 1st column is time, 1st row is node numbers

p_plate = dlmread([path model ’plate.rpt’],’’, 2, 0);

while p_usection(1,end)==0 %deleting zero data

p_usection(:,end)=[];

end

while p_plate(1,end)==0 %deleting zero data

p_plate(:,end)=[];

end

%Creating matrices with the node coordinates around the section

usection_coord = zeros(length(p_usection(1,2:end)), 4);

for j=1:length(p_usection(1,2:end))

usection_coord(j,:)=nodes((p_usection(1,j+1)),:);

end
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plate_coord = zeros(length(p_plate(1,2:end)), 4);

for j=1:length(p_plate(1,2:end))

plate_coord(j,:)=nodes((p_plate(1,j+1)),:);

end

%The node coordinates are sorted by node number. Sorting the node

%coordinates by the geometry instead.

%U-section- Splitting the coordinates into 8 parts where part1 is the front

%and the rest is following a clockwise order

part1=zeros(400,4); %Creating zero matrices with approximate size

part2=zeros(400,4);

part3=zeros(400,4);

part4=zeros(20,4);

part5=zeros(400,4);

part6=zeros(400,4);

part7=zeros(400,4);

part8=zeros(20,4);

count1=1;

count2=1;

count3=1;

count4=1;

count5=1;

count6=1;

count7=1;

count8=1;

for i=1:length(usection_coord(:,1));

if (round(usection_coord(i,2)*1000)==-190)

part1(count1,:)=usection_coord(i,:);

count1=count1+1;

elseif (round(usection_coord(i,3)*1000)==200)

part2(count2,:)=usection_coord(i,:);

count2=count2+1;

elseif (round(usection_coord(i,2)*1000)==190)

part3(count3,:)=usection_coord(i,:);

count3=count3+1;

elseif (round(usection_coord(i,3)*1000)==-200) && (usection_coord(i,2)>0)

part4(count4,:)=usection_coord(i,:);

count4=count4+1;

elseif (round(usection_coord(i,2)*1000)==180)

part5(count5,:)=usection_coord(i,:);

count5=count5+1;

elseif (round(usection_coord(i,3)*1000)==190)
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part6(count6,:)=usection_coord(i,:);

count6=count6+1;

elseif (round(usection_coord(i,2)*1000)==-180)

part7(count7,:)=usection_coord(i,:);

count7=count7+1;

elseif (round(usection_coord(i,3)*1000)==-200) && (usection_coord(i,2)<0)

part8(count8,:)=usection_coord(i,:);

count8=count8+1;

end;

end

clear count1 count2 count3 count4 count5 count6 count7 count8;

%Deleting zero rows

while part1(end,1)==0;

part1(end,:)=[];

end

while part2(end,1)==0;

part2(end,:)=[];

end

while part3(end,1)==0;

part3(end,:)=[];

end

while part4(end,1)==0;

part4(end,:)=[];

end

while part5(end,1)==0;

part5(end,:)=[];

end

while part6(end,1)==0;

part6(end,:)=[];

end

while part7(end,1)==0;

part7(end,:)=[];

end

while part8(end,1)==0;

part8(end,:)=[];

end
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%Sorting the part matrices by coordinate

part1=sortrows(part1,3); %sorting by increasing y

part2=sortrows(part2,2); %sorting bt increasing x

part3=flipud(sortrows(part3,3)); %sorting by decreasing y

part4=flipud(sortrows(part4,2)); %sorting by decrasing x

part5=sortrows(part5,3); %sorting by increasing y

part6=flipud(sortrows(part6,2)); %sorting by decrasing x

part7=flipud(sortrows(part7,3)); %sorting by decrasing y

part8=flipud(sortrows(part8,2)); %sorting by decrasing x

usection_coord=[part1;part2;part3;part4;part5;part6;part7;part8];

%sorting the p_usection matrix p_usection in the same way as usection_coord

temp_mat=zeros(length(p_usection(:,1)),length(p_usection(1,:)));

temp_mat(:,1)=p_usection(:,1);

for j=1:length(usection_coord);

temp=find(p_usection(1,:)==usection_coord(j));

temp_mat(:,j+1)=p_usection(:,temp(1,1));

end

while temp_mat(1,end)==0;

temp_mat(:,end)=[];

end

p_usection=temp_mat;

clear temp_mat;

%Flaps plate- Splitting the coordinates into 4 parts where part1 is the front

%and the rest is following a clockwise order

part9=zeros(10,4); %approximate matrix sices

part10=zeros(50,4);

part11=zeros(10,4);

part12=zeros(50,4);

count9=1;

count10=1;

count11=1;

count12=1;

for i=1:length(plate_coord(:,1));
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if (round(plate_coord(i,2)*1000)==-90)

part9(count9,:)=plate_coord(i,:);

count9=count9+1;

elseif (round(plate_coord(i,3)*1000)==285)

part10(count10,:)=plate_coord(i,:);

count10=count10+1;

elseif (round(plate_coord(i,2)*1000)==90)

part11(count11,:)=plate_coord(i,:);

count11=count11+1;

elseif (round(plate_coord(i,3)*1000)==275)

part12(count12,:)=plate_coord(i,:);

count12=count12+1;

end;

end

clear count9 count10 count11 count12;

%Deleting zero rows

while part9(end,1)==0;

part9(end,:)=[];

end

while part10(end,1)==0;

part10(end,:)=[];

end

while part11(end,1)==0;

part11(end,:)=[];

end

while part12(end,1)==0;

part12(end,:)=[];

end

%Sorting the part matrices by coordinate

part9=sortrows(part9,3); %sorting by increasing y

part10=sortrows(part10,2); %sorting bt increasing x

part11=flipud(sortrows(part11,3)); %sorting by decreasing y

part12=flipud(sortrows(part12,2)); %sorting by decrasing x

plate_coord=[part9;part10;part11;part12];

%sorting the p_plate matrix in the same way as plate_coord

temp_mat=zeros(length(p_plate(:,1)),length(p_plate(1,:)));

temp_mat(:,1)=p_plate(:,1);
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for j=1:length(plate_coord);

temp=find(p_plate(1,:)==plate_coord(j));

temp_mat(:,j+1)=p_plate(:,temp(1,1));

end

while temp_mat(1,end)==0;

temp_mat(:,end)=[];

end

p_plate=temp_mat;

clear temp_mat;

%Creating directional vectors for the u-section

u_vector=zeros(length(usection_coord),2);

start=1;

stop=length(part1(:,1));

for i=start:stop;

u_vector(i,:)=[1 0];

end

start=stop+1;

stop=start+length(part2(:,1));

for i=start:stop;

u_vector(i,:)=[0 -1];

end

start=stop;

stop=start+length(part3(:,1));

for i=start:stop;

u_vector(i,:)=[-1 0];

end

start=stop;

stop=start+length(part4(:,1));

for i=start:stop;

u_vector(i,:)=[0 1];

end

start=stop;

stop=start+length(part5(:,1));

for i=start:stop;

u_vector(i,:)=[1 0];

end

start=stop;

stop=start+length(part6(:,1));

for i=start:stop;

u_vector(i,:)=[0 1];

end

start=stop;

stop=start+length(part7(:,1));
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for i=start:stop;

u_vector(i,:)=[-1 0];

end

start=stop;

stop=start+length(part8(:,1));

for i=start:stop;

u_vector(i,:)=[0 1];

end

clear start stop;

%Creating directional vectors for the flaps_plate

plate_vector=zeros(length(plate_coord),2);

start=1;

stop=length(part9(:,1));

for i=start:stop;

plate_vector(i,:)=[1 0];

end

start=stop+1;

stop=start+length(part10(:,1));

for i=start:stop;

plate_vector(i,:)=[0 -1];

end

start=stop;

stop=start+length(part11(:,1));

for i=start:stop;

plate_vector(i,:)=[-1 0];

end

start=stop;

stop=start+length(part12(:,1));

for i=start:stop;

plate_vector(i,:)=[0 1];

end

clear start stop;

%The model with the flaps plate has different mesh size along the section.

%Creating an element length matrix for the section

u_length=zeros(length(usection_coord),1);

start=1;

stop=length(part1(:,1));

for i=start:stop;

u_length(i)=0.005;

end

start=stop+1;

stop=start+length(part2(:,1));
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for i=start:stop;

u_length(i)=0.005;

end

start=stop;

stop=start+length(part3(:,1));

for i=start:stop;

u_length(i)=0.005;

end

start=stop;

stop=start+length(part4(:,1));

for i=start:stop;

u_length(i)=0.0033;

end

start=stop;

stop=start+length(part5(:,1));

for i=start:stop;

%Mesh size is increasing gradually from 5mm to 10mm

u_length(i)=0.005+0.005*(i-start)/(stop-start);

end

start=stop;

stop=start+length(part6(:,1));

for i=start:stop;

u_length(i)=0.01;

end

start=stop;

stop=start+length(part7(:,1));

for i=start:stop;

%Mesh size is decreasing gradually from 5mm to 10mm

u_length(i)=0.01-0.005*(i-start)/(stop-start);

end

start=stop;

stop=start+length(part8(:,1));

for i=start:stop;

u_length(i)=0.0033;

end

clear start stop;

%Creating an element length matrix for the plate

plate_length=zeros(length(plate_coord),1);

start=1;

stop=length(part9(:,1));

for i=start:stop;

plate_length(i)=0.0033;

end

start=stop+1;
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stop=start+length(part10(:,1));

for i=start:stop;

plate_length(i)=0.005;

end

start=stop;

stop=start+length(part11(:,1));

for i=start:stop;

plate_length(i)=0.0033;

end

start=stop;

stop=start+length(part12(:,1));

for i=start:stop;

plate_length(i)=0.005;

end

clear start stop;

%The pressure matrixes, the vector matrixes and the area matrixes can now

%be combined to find force component in x or y

fx_usection = zeros(length(p_usection(2:end,1)), length(p_usection(1,:)));

fy_usection = zeros(length(p_usection(2:end,1)), length(p_usection(1,:)));

for j=2:length(p_usection(1,:))

fx_usection(:,j-1)=u_vector(j-1,1)*u_length(j-1)*p_usection(2:end,j);

fy_usection(:,j-1)=u_vector(j-1,2)*u_length(j-1)*p_usection(2:end,j);

end

fx_plate = zeros(length(p_plate(2:end,1)), length(p_plate(1,:)));

fy_plate = zeros(length(p_plate(2:end,1)), length(p_plate(1,:)));

for j=2:length(p_plate(1,:))

fx_plate(:,j-1)=plate_vector(j-1,1)*plate_length(j-1)*p_usection(2:end,j);

fy_plate(:,j-1)=plate_vector(j-1,2)*plate_length(j-1)*p_usection(2:end,j);

end

U=8; %Wind inlet velocity

rho=1.225; %Air density

H=0.4; %Section height

zelements=4; %The number of z-direction elements included in the results

t= p_usection(2:end,1); %time matrix

%Creating the force coeffecients matrices

C_D = zeros(length(t), 1);

C_L = zeros(length(t), 1);

for i=(1:length(t))

%devides the sum by number of z-elements to find average force

C_D(i)=(sum(fx_usection(i,1:end))+sum(fx_plate(i,1:end)))...

/(0.5*rho*H*U^2*zelements);
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C_L(i)=(sum(fy_usection(i,1:end))+sum(fy_plate(i,1:end)))...

/(0.5*rho*H*U^2*zelements);

end

%Creating pressure matrices devided in x and y to use for surface pressure plots

px_usection = zeros(length(p_usection(2:end,1)), length(p_usection(1,:)));

py_usection = zeros(length(p_usection(2:end,1)), length(p_usection(1,:)));

for j=2:length(p_usection(1,:))

px_usection(:,j-1)=u_vector(j-1,1)*p_usection(2:end,j);

py_usection(:,j-1)=u_vector(j-1,2)*p_usection(2:end,j);

end

px_plate = zeros(length(p_plate(2:end,1)), length(p_plate(1,:)));

py_plate = zeros(length(p_plate(2:end,1)), length(p_plate(1,:)));

for j=2:length(p_plate(1,:))

px_plate(:,j-1)=plate_vector(j-1,1)*p_usection(2:end,j);

py_plate(:,j-1)=plate_vector(j-1,2)*p_usection(2:end,j);

end

Plotting of lift, drag and frequency spectrum

%Plotting C_D and C_L

temp=[C_D C_L];

plot(t,temp);

xlabel(’Time’);

box off

legend(’C_D’,’C_L’,’Interpreter’,’latex’,’Location’,’SouthWest’);

legend(’boxoff’);

axis([0 t(end)+0.2 min(C_L)-1 max(C_D)+0.5]); %% zoom in

%print(’-depsc’,[model ’drag_lift’]); %saving to file

%Frequency analysis

% Parameters used for burg algorithm

ORDER = 100; % order of AR model

FREQUENCY= 0:0.01:10; % vector of frequencies of interest

FS = 100; % Sampling frequency = 100 Hz

del_time=2; %Not interested in data prior to this number of seconds

row=FS*del_time;

%LIFT

[power_lift,freq_lift] = pburg(C_L(row:end),ORDER,FREQUENCY,FS);

freq_max_lift=freq_lift(power_lift(:)==max(power_lift(200:end)));

plot(freq_lift,power_lift)

axis([0 5 0 max(power_lift)*1.2])
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box off

xlabel(’Frequency [Hz]’)

ylabel(’Power’)

text(freq_max_lift*1.01,max(power_lift(200:end))*1.05,...

[’$f_s$ = ’ num2str(freq_max_lift)],’Interpreter’,’latex’,’FontSize’,16)

%print(’-deps’,[model ’freq_lift_pburg_order_20’]);

%DRAG

ORDER = 200;

C_D_diff=mean(C_D(row:end));

C_D=C_D-C_D_diff; %Adjusting data so that cd mean is at zero

[power_drag,freq_drag] = pburg(C_D(row:end),ORDER,FREQUENCY,FS);

plot(freq_drag,power_drag)

%axis([0 10 0 1.2])

box off

xlabel(’Frequency [Hz]’)

ylabel(’Power’)

%print(’-deps’,[model ’freq_drag_pburg_order200’]);

C_D=C_D+C_D_diff; %Fixing C_D to original state

Fast Fourier Transform code In some cases the FFT frequency analysis was used instead
of Burg’s method.

FS = 100; % Sampling frequency = 100 Hz

del_time=2; %Not interested in data prior to this number of seconds

row=FS*del_time;

N=length(C_L(row:end)); %Number of data points

T=t(end)-del_time; %%total time in seconds

p = abs(fft(C_L(row:end)’))/(N/2); %% absolute value of the fft

p = p(1:N/2).^2; %% take the power of positive freq. half

freq = [0:N/2-1]/T; %% find the corresponding frequency in Hz

%Find frequency with max power

a=[freq;p];

col=find(p==max(p(10:end)));

freq_max=freq(col);

plot(freq,p); %% plot

axis([0 5 0 1.2]); %% zoom in

xlabel(’Frequency’);

ylabel(’Power’);

box off

text(freq_max+0.1,p(col)+0.01,[’$f_s$ = ’ num2str(freq_max,3)],...

’Interpreter’,’latex’,’FontSize’,16)
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print(’-deps’,[model ’freq_lift_fourier’]);

Surface pressure plotting The surface pressure plots were generated using the following
code.

t=5; %requested point of time for plot

f=round(t*100+1);

norm=1/(0.5*1.225*8^2); %normalizing pressure according to this factor

factor=0.01; %in addition scaling according to this factor

scale=norm*factor;

hold on;

plot(usection_coord(:,2),usection_coord(:,3)); %plot section

plot([usection_coord(end,2) usection_coord(1,2)],...

[usection_coord(end,3) usection_coord(1,3)]); %plot section

fh = figure(1); % returns the handle to the figure object

set(fh, ’color’, ’white’); % sets the color to white

axis off;

axis equal;

xy=zeros(length(usection_coord(:,1)),2);

a=1;

for i=1:length(usection_coord(:,1));

plot([usection_coord(i,2) usection_coord(i,2)+px_usection(f,i)*scale],...

[usection_coord(i,3) usection_coord(i,3)+py_usection(f,i)*scale])

xy(a,:)=[usection_coord(i,2)+px_usection(f,i)*scale ...

usection_coord(i,3)+py_usection(f,i)*scale];

a=a+1;

%This part is to make pressure at corners to be plotted at both sides

if i==(length(part1))

plot([usection_coord(i,2) usection_coord(i,2)+py_usection(f,i)*scale],...

[usection_coord(i,3) usection_coord(i,3)-px_usection(f,i)*scale])

xy(a,:)=[usection_coord(i,2)+py_usection(f,i)*scale ...

usection_coord(i,3)-px_usection(f,i)*scale];

a=a+1;

elseif i==157

plot([usection_coord(i,2) usection_coord(i,2)+py_usection(f,i)*scale],...

[usection_coord(i,3) usection_coord(i,3)-px_usection(f,i)*scale])

xy(a,:)=[usection_coord(i,2)+py_usection(f,i)*scale ...

usection_coord(i,3)-px_usection(f,i)*scale];

a=a+1;

elseif i==237

plot([usection_coord(i,2) usection_coord(i,2)+py_usection(f,i)*scale],...

[usection_coord(i,3) usection_coord(i,3)-px_usection(f,i)*scale])

xy(a,:)=[usection_coord(i,2)+py_usection(f,i)*scale ...

usection_coord(i,3)-px_usection(f,i)*scale];

a=a+1;

elseif i==240
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plot([usection_coord(i,2) usection_coord(i,2)+py_usection(f,i)*scale],...

[usection_coord(i,3) usection_coord(i,3)-px_usection(f,i)*scale])

xy(a,:)=[usection_coord(i,2)+py_usection(f,i)*scale ...

usection_coord(i,3)-px_usection(f,i)*scale];

a=a+1;

elseif i==292

plot([usection_coord(i,2) usection_coord(i,2)+py_usection(f,i)*scale],...

[usection_coord(i,3) usection_coord(i,3)+px_usection(f,i)*scale])

xy(a,:)=[usection_coord(i,2)+py_usection(f,i)*scale ...

usection_coord(i,3)+px_usection(f,i)*scale];

a=a+1;

elseif i==292

plot([usection_coord(i,2) usection_coord(i,2)+py_usection(f,i)*scale],...

[usection_coord(i,3) usection_coord(i,3)-px_usection(f,i)*scale])

xy(a,:)=[usection_coord(i,2)+py_usection(f,i)*scale ...

usection_coord(i,3)-px_usection(f,i)*scale];

a=a+1;

elseif i==338

plot([usection_coord(i,2) usection_coord(i,2)-py_usection(f,i)*scale],...

[usection_coord(i,3) usection_coord(i,3)-px_usection(f,i)*scale])

xy(a,:)=[usection_coord(i,2)-py_usection(f,i)*scale ...

usection_coord(i,3)-px_usection(f,i)*scale];

a=a+1;

elseif i==390

plot([usection_coord(i,2) usection_coord(i,2)+py_usection(f,1)*scale],...

[usection_coord(i,3) usection_coord(i,3)+px_usection(f,1)*scale])

xy(a,:)=[usection_coord(i,2)+py_usection(f,1)*scale ...

usection_coord(i,3)+px_usection(f,1)*scale];

a=a+1;

elseif i==392

plot([usection_coord(1,2) usection_coord(1,2)+py_usection(f,1)*scale],...

[usection_coord(1,3) usection_coord(1,3)+px_usection(f,1)*scale])

xy(a,:)=[usection_coord(1,2)+py_usection(f,1)*scale ...

usection_coord(1,3)+px_usection(f,1)*scale];

a=a+1;

end

end

%Plotting the lines to mark the pressure contour

start=1;

stop=length(part1);

plot(xy(start:stop,1),xy(start:stop,2));

start=stop+1;

stop=start+length(part2);

plot(xy(start:stop,1),xy(start:stop,2));

start=stop+1;

stop=start+length(part3);
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plot(xy(start:stop,1),xy(start:stop,2));

start=stop+1;

stop=start+length(part4(:,1));

plot(xy(start:stop,1),xy(start:stop,2));

start=stop+1;

stop=start+length(part5);

plot(xy(start:stop,1),xy(start:stop,2));

start=stop+1;

stop=start+length(part6);

plot(xy(start:stop,1),xy(start:stop,2));

start=stop+1;

stop=start+length(part7);

plot(xy(start:stop,1),xy(start:stop,2));

start=stop+1;

plot(xy(start:end,1),xy(start:end,2));

clear start stop xy;

xy=zeros(length(plate_coord(:,1)),2);

plot(plate_coord(:,2),plate_coord(:,3)); %plot section

plot([plate_coord(end,2) plate_coord(1,2)],[plate_coord(end,3) plate_coord(1,3)]);

a=1;

for i=1:length(plate_coord(:,1));

plot([plate_coord(i,2) plate_coord(i,2)+px_plate(f,i)*scale],...

[plate_coord(i,3) plate_coord(i,3)+py_plate(f,i)*scale])

xy(a,:)=[plate_coord(i,2)+px_plate(f,i)*scale ...

plate_coord(i,3)+py_plate(f,i)*scale];

a=a+1;

%This part is to make pressure at corners to be plotted at both sides

if i==4

plot([plate_coord(i,2) plate_coord(i,2)+py_plate(f,i)*scale],...

[plate_coord(i,3) plate_coord(i,3)-px_plate(f,i)*scale])

xy(a,:)=[plate_coord(i,2)+py_plate(f,i)*scale ...

plate_coord(i,3)-px_plate(f,i)*scale];

a=a+1;

elseif i==40

plot([plate_coord(i,2) plate_coord(i,2)+py_plate(f,i)*scale],...

[plate_coord(i,3) plate_coord(i,3)-px_plate(f,i)*scale])

xy(a,:)=[plate_coord(i,2)+py_plate(f,i)*scale ...

plate_coord(i,3)-px_plate(f,i)*scale];

a=a+1;

elseif i==43

plot([plate_coord(i,2) plate_coord(i,2)+py_plate(f,i)*scale],...

[plate_coord(i,3) plate_coord(i,3)-px_plate(f,i)*scale])

xy(a,:)=[plate_coord(i,2)+py_plate(f,i)*scale ...

plate_coord(i,3)-px_plate(f,i)*scale];

a=a+1;
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elseif i==78

plot([plate_coord(1,2) plate_coord(1,2)+py_plate(f,1)*scale],...

[plate_coord(1,3) plate_coord(1,3)+px_plate(f,1)*scale])

xy(a,:)=[plate_coord(1,2)+py_plate(f,1)*scale ...

plate_coord(1,3)+px_plate(f,1)*scale];

a=a+1;

end

end

%Plotting the lines to mark the pressure contour

start=1;

stop=length(part9);

plot(xy(start:stop,1),xy(start:stop,2));

start=stop+1;

stop=start+length(part10);

plot(xy(start:stop,1),xy(start:stop,2));

start=stop+1;

stop=start+length(part11(:,1));

plot(xy(start:stop,1),xy(start:stop,2));

start=stop+1;

plot(xy(start:end,1),xy(start:end,2));

clear start stop;

%Plotting a scale for Cp

x=-0.03;

y=-0.13;

plot([x x+3*factor],[y y],’Color’,’black’);

plot([x x],[y-0.3*factor y+0.3*factor],’Color’,’black’);

plot([x+3*factor x+3*factor],[y-0.3*factor y+0.3*factor],’Color’,’black’);

text(x,y-0.8*factor,’$C_p$=3’,’Interpreter’,’latex’,’FontSize’,8);

text(x,y+1*factor,’Scale:’,’Interpreter’,’latex’,’FontSize’,8);

%Annotating time, Cd and Cl

text(-0.03,-0.03,[’t = ’ num2str(t) ’s’],...

’Interpreter’,’latex’,’FontSize’,12);

text(-0.03,-0.06,[’$C_D$ = ’ num2str(C_D(f),2)],...

’Interpreter’,’latex’,’FontSize’,12);

text(-0.03,-0.09,[’$C_L$ = ’ num2str(C_L(f),2)],...

’Interpreter’,’latex’,’FontSize’,12);

print(’-deps’,[model ’t’ num2str(f-1) ’.eps’]);
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Appendix F

Drawings
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