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  Abstract 

I 

 

Abstract 
 

The scope of this Master Thesis was to assess critical factors when running and retrieving 

Framo pump modules through the moonpool of a vessel. 

The thesis has been presented in a twofold manner. The first part thoroughly describes Framo 

Engineering AS equipment. Internal procedures and discussions with Framo employees have 

been used to obtain needed information.  

The second part has been dedicated to moonpool theory. Emphasize has been made on 

describing the behavior of the water inside the moonpool. The Bernoulli equation was used to 

prove that moonpool water motions have similar response characteristics as those of a mass-

spring system. At the moonpool bottom opening the water motions are hard to describe.  

Moonpool responses have been described based on formulas given in DNV-RP-H103. 

Possible natural periods has been presented for a standard moonpool, showing that resonance 

condition may arise during a North Sea operation. Large water oscillations are the main 

concern during a moonpool operation. 

Hydrodynamic parameters have been discussed, including added mass and damping. Values 

for added mass and drag coefficients for Framo pump and running tool have been estimated 

according to DNV-RP-H103. 

From this thesis it can be concluded that installation through the moonpool has both 

advantages and disadvantages compared to the overside crane operations. To be able to 

predict the forces in the moonpool adequate input data such as transfer functions and 

hydrodynamic parameters should be obtained from dedicated software. Due to the complex 

geometry of Framo equipment, estimates of hydrodynamic coefficients should come from 

models test or CFD-analysis.  
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Abbreviations 
 

BR Barrier Return 

BS Barrier Supply 

CFD Computational Fluid Dynamics 

COG Center of Gravity 

FDPSO Floating, Drilling, Production, Storage and Offloading Vessel 

FDS Framo Dual Pump Station 

HPU Hydraulic Power Unit 

HV High Voltage 

IOR Improved Oil Recovery 

LV Low Voltage  

MHS Module Handling System 

MHT Module Handling Tower 

MPP Multiphase Pump 

PCM Power and Control Module 

RAO Response Amplitude Operator 

ROV Remotely Operated Vehicle 

RT Running Tool 

SCM Subsea Control Module 

SHPU Service Hydraulic Power Unit 

SS Signal Stab 

SSBI Subsea Separation Boosting and Injection System 

UTA Umbilical Termination Assembly 

UTH Umbilical Termination Head 
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Nomenclature 
 

Greek Symbols 

 Change in volume of displace water from still water surface to wave crest or wave trough 

 Phase angle component 

 Displacement of water plug [m] 

 Velocity of water plug [m/s] 

 Acceleration of water plug [m/s
2
] 

 Heave motion of vessel [m] 

 Sea surface elevation outside the vessel [m] 

 Wave elevation of an irregular sea [m] 

 Free surface elevation [m] 

 Displacement in one of the six degrees of freedom [m] 

 Relative damping ratio for moonpool 

 Dimensionless parameter, 0,46 for rectangular moonpool 

λ Wave length [m] 

 Wave amplitude [m] 

 Fluid density, 1025 [kg/m
3
] for sea water 

 Velocity potential 

 Velocity vector 

 Fluid kinematic fluid viscosity [m
2
/s] 

 Frequency [rad/sec] 

 Resonance frequency [rad/sec] 

 
 
 
Latin Symbols 

 
 Cross-sectional area of moonpool [m

2
] 

 Solid projected area of launched object [m
2
] 

 Projected area on a horizontal plane that will be subject to slamming [m
2
] 

 Water plane area of moonpool [m
2
] 

 Water plane area at moonpool bottom opening [m
2
] 

 Water plane area as function of local z [m
2
] 

 Added mass of lifted object [kg] 

 Added mass of water plug [kg] 

 Characteristic single amplitude vertical acceleration of crane tip [m/s
2
] 

 Characteristic vertical water acceleration [m/s
2
] 

 Integration constant 
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VIII 

 

 Drag coefficient 

 Drag coefficient for unrestricted flow 

 Drag coefficient for steady flow 

 Damping coefficient for relative motion between water plug and vessel [kg/m] 

 Damping coefficient for relative motion between water plug and lifted object [kg/m] 

 Slamming coefficient 

 Linearized damping [kg/s
2
] 

 Damping 

D Characteristic body dimension [m] 

 Morrison drag force [N] 

 Resulting hydrodynamic force [N] 

 Morrison mass force [N] 

 Slamming impact force [N] 

 Snap load [N] 

 Excitation force from waves [N] 

 Excitation force from vessel motion [N] 

 Buoyancy force [N] 

 Hydrodynamic pressure force acting on the moonpool water plug [N] 

 Heave transfer function for vessel 

 Moonpool transfer function from the wave elevation 

 Gravity acceleration, 9,81 [m/s
2
] 

 Significant wave height [m] 

 Significant wave height [m] 

 Vessel draft [m] 

 Stiffness of hoisting system [N/m] 

 Water plane stiffness =  [N/m] 

 Keulegan-Carpenter number 

 Wave number [rad/m] 

 Stiffness of spring-mass system [N/m] 

 Mass of water plug [kg] 

 Reynolds number 

 Froude-Krylov dynamic pressure [Pa] 

 Pressure [Pa] 

  

 Wave spectrum 

 Vessel motion [m] 

 Wave period [s] 

 Moonpool resonance period as a function of vessel draft [s] 

 Natural period of oscillating system [s] 

 Peak period [s] 



Nomenclature 
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 Time [s] 

 Maximum particle velocity [m/s] 

 Hook lowering velocity [m/s] 

 Characteristic single amplitude vertical velocity of the crane tip [m/s] 

 Slamming impact velocity [m/s] 

 Characteristic vertical water particle velocity [m/s] 

 Fluid velocity [m/s] 

 Horizontal direction [m] 

 Vertical direction [m] 
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1. Introduction 
 

“…It is the Government`s ambition that Norway shall remain a significant supplier of 

oil and gas to the world markets for a long time. One way to achieve this target, and 

perhaps the most important one, is to increase the recovery factor from existing fields. 

1 per cent higher recovery from our shelf could be worth 30 billion USD, according to 

some estimates.” 

The State Secretary, Per Rune Henriksen, at the Underwater Technology Conference in 

Bergen 2010, about the importance of improved recovery factor [23]. 

Subsea technology has grown to play an important part in today`s oil and gas industry. Fields 

are becoming more demanding, and the need to develop new and effective subsea solutions 

constantly increases.  One of the main challenges is to keep the recovery factor as high as 

possible. Framo Engineering AS is one of the world`s leading suppliers of technology for 

subsea processing, multiphase boosting and wet gas compression. Framo product line consists 

of key equipment when it comes to keeping a high and stable production rate from the subsea 

wells. 

It is important for the field operators to keep the operability of the subsea equipment as high 

as possible to reduce costly shut-downs. Therefore it is often a desire that the sea state in 

which the damaged equipment can be repaired or replaced is as high as possible. To date the 

sea state limit has been increased by use of monohull vessels with module handling systems 

that enables launch and recovery trough a moonpool placed near the center of roll and pitch 

axis of the vessel. A moonpool can also be used to avoid exposure of equipment to very cold 

air and ice flows, which may become increasingly important in the future due to the increased 

activity in the Northern regions. 

Installation of small subsea modules and tools trough the moonpool is often the preferred 

method according to DNV [1]; this may reduce the dynamic forces, increase the limiting sea 

state and thus reduce the costs of installation and intervention operations. However, moonpool 

interventions are not straight forward and there are aspects that is important to be aware of 

when planning such operations. Some of these will be discussed in this thesis. 

The Tordis field has become a pioneer in the Norwegian subsea technology history. With 

Tordis came the world`s first subsea separation system. Framo delivered two pumps for the 

system; one water-injection pump and one multiphase boosting pump. Statoil, as today`s 

operator of the field, has expressed a desire to replace the Framo pumps through the 

moonpool to ensure an all-year around operability. This request is the primary motivation for 

this thesis. 
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The given text 

The scope of this thesis can be summarized to the following points: 

 Review Framo Engineering AS present practices based on the Azurite and Tordis IOR 

projects 

 Discuss applied methods and potential alternatives with focus on moonpool operations 

 Review critical issues related to moonpool operations 

 Perform preliminary simplified calculations based on the DNV-RP-H103 guideline 

 Propose further work 

 

Literature 

In general, papers written on marine lifting operations, and particular those related to 

moonpool operations, has been very useful.  Papers on standard lifting operations have been 

applied as the theory is comparable to launching through the moonpool. There also exist some 

reports on model testing of moonpool launching and these results have been used as 

references.  Apart from this, O.M Faltinsens Sea Loads on Ships and Offshore Structure [7] 

and the DNV-RP-H103 guideline [1] has been used extensively throughout the writing. 

 

Outline of thesis 

Chapter 2 gives a thorough description of Framo equipment related to the subsea multiphase 

boosting, as well as the installation of the equipment. 

Chapter 3 is dedicated to the moonpool theory. Included in this chapter is description of the 

hydrodynamic parameters damping, drag and added mass. Emphasize has also been made on 

trying to explain moonpool water motions.  

Conclusion and recommendations for further work are given in chapter 4 and 5. 
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2. Framo Engineering AS Systems 

2.1. Introduction 

The primary objective of this chapter is to give a description of a standard type of pump 

arrangement in the Framo assortment. It will only describe one solution as the intention is to 

give the reader an understanding of how a pump station can be assembled, rather than to point 

out differences between the varieties of solutions. 

The description will take basis in the Azurite subsea multiphase pumping system. The system 

is a dual-pump configuration delivered to the oil and gas company Murphy West Africa Ltd 

for the oil field Azurite, offshore Congo. The Azurite field development consist of a spread 

moored FDPSO tied to a subsea drill centre. The reason why Azurite has been chosen for 

system description is simply the fact that this system comprises many of the essential system 

components desirable to outline in this thesis. Also, it constitutes a fine basis when further 

explanation shall be given for the pump arrangement for the Tordis field. 

The following descriptions are entirely based on Framo Engineering AS internal documents 

[23] and discussions with Framo employees. 

 

2.2. System Description 

The Azurite pumping system is a subsea multiphase pumping system, consisting of the 

following main components: a Framo Dual Pump Station (FDS), an Umbilical Termination 

Assembly (UTA) interconnecting jumpers for electrical power, signals and fluids, an 

umbilical between the UTA and the FDPSO and a topside Power and Control Module (PCM). 

The FDS comprises three main packages, the structural framework, the piping arrangement 

and the retrievable items. The retrievable items include two multiphase pumps (MPP), the 

choke insert, the control modules and the electrical and hydraulic jumpers. Azurite does not 

include a subsea control module. 

The Azurite FDS is located downstream a combined production and water injection manifold. 

It has two individual flow lines connected to it, and each pump is pumping each of these 

independently.  The pump station is a self-standing, single lifted structured, installed onto a 

single pile on the seabed. 

Figure 2.1 shows the installed Azurite FDS, with UTA and jumpers. The station is viewed 

from aft end where multiphase pump number one is located. The umbilical is not shown. The 

following text passages will separately outline the different parts of the pumping system on 

the figure. It will be a logical connection between different parts and for that matter a 

description of one part may take reference in another part. Thus should the descriptions be 

read in context to each other. 
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2.2.1. The Manifold Structure 

The manifold structure is mainly rectangular carbon steel beams which are welded together. 

Beams are perforated to prevent from collapsing due to external pressure in water column.  

Pump stations may be anchored to the seabed in a variety of ways, depending on bottom 

characteristics. The Azurite pump station uses a single suction anchor. On top of the anchor 

sits a single pile which is the connection point to the foundation of the pump station. Both 

anchor and pile are shown in grey colour in figure 2.2. A funnel is welded onto the foundation 

structure, and it interfaces the single pile. Inside the funnel are alignment keys to assure 

structure is landed in right position when installed.  

The structure includes a porch where the UTA will be landed. Beneath the porch is a ROV-

panel. Hydraulic jumpers will be installed to interface UTA and ROV-panel.   

The top hatch is a hinged hatch. It has handles to lift and pull/push over the hatch. These 

handles are equipped with monkey fists for ROV access. The top hatch provides protection 

Flowline Connector 

Manifold Structure 

(yellow of colour) 

UTA 

Hydraulic Jumpers 

(red of colour) 

Signal Jumpers (black 

of colour) 

Power Jumpers (red 

of colour) 

Multi Phase Pump 

(number 1) 

Flowlines (inlet) 

Process Piping (only a 

small part is shown) 

Suction Anchor 

Figure 2.1: Overview of installed Azurite multiphase pump system 
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Figure 2.3: Flowline 

connector 

against dropped objects. The manifold structure has four anchorage points on top for 

installation rigging. 

Figure 2.2 shows the manifold structure at first-time installation. Included in structure are 

process piping, process valves, flow line connectors, guide posts, jumper parking panel and 

anchor.  

 

 

 

 

 

 

 

 

 

 

2.2.2. Flowline Connectors  

The flow lines are connected to main headers, both for inlet and outlet.  The main headers 

have integrated vertical hubs as the connection point, and the hubs are bolted to the FDS 

structure and welded to the piping. Figure 2.3 shows the Azurite flowline connector. 

 Hubs may come from external contractors, mainly due to the high costs related to fabrication. 

It is for that reason not given that hubs automatically can be welded onto piping in FDS-

structure. In those cases a pup piece is used as an extension of piping that can be welded both 

to hub and to piping. 

Flow line connectors are included in manifold structure during fabrication. 

Figure 2.2: The manifold structure at first-time installation 
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2.2.3. UTA (Umbilical Termination Assembly) 

The UTA is an assembly for terminating the subsea end of the umbilical. The umbilical is a 

combined power and control umbilical and it provides the necessary mechanical, electrical 

and hydraulic conduits to the subsea installation. Jumpers interconnect the umbilical`s 

individual conduits with the remainder of the subsea equipment.  

The umbilical itself comprises of high voltage electric cables for power supply to the pump 

(or compressor in other projects), low voltage electric cable for power supply to the subsea 

communication and hydraulic lines for control fluid, chemical injection and barrier oil supply. 

If a subsea control system is included in the system there will also be fiber optic lines for 

communication with the control system (which is not the case on Azurite).   

Inside the UTA sits the Umbilical Termination Head (UTH), which is the subsea end of the 

umbilical. Figure 2.5 shows a picture of UTH only, and one can see that umbilical is brought 

in as a single unit and that conduits in the umbilical are organized and distributed in the UTH. 

The UTH includes termination of high voltage power jumpers and a ROV-panel for hydraulic 

stabs and signal stabs. The ROV-panel is faced outwards on the starboard side of the FDS. 

The hook up of the UTH inside the UTA is done offshore on appropriate installation vessel, 

where the UTH is bolted into the UTA on a hang off flange.  

 During hook up, low voltage pigtails are connected to UTA junction box, and low voltage 

jumpers from junction box to ROV-panel. Further, the high voltage connectors are mounted to 

connector plates and pigtails are secured onto cable trays. The high voltage protection head is 

mated to high voltage receptacles on UTA.  The hydraulic lines are connected to respective 

spots on ROV-panel. The hydraulic and signal receptacles on the ROV-panel are secured with 

protection stabs (dummy connectors). Figure 2.4 shows UTH installed in UTA, with high 

voltage protection heads.  

The UTA is located on the porch on the FDS structure. UTA is equipped with a guide post 

that interfaces with guide funnel on FDS porch. It is installed in a single, individual operation 

after the FDS structure has been installed. The UTA is designed to lift its own weight plus the 

submerged weight of the umbilical, and can thus be lowered into sea hanging from umbilical.  

  

Figure 2.5: UTH 

Figure 2.4: UTH installed in UTA 
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There are certain limits to the inclination of the three degrees of freedom of the UTA during 

landing on the FDS: plus minus maximum 5 degrees in lateral, longitudinal and horizontal 

orientation. Figure 2.6 shows the UTA at first-time installation. At this stage the UTA will be 

fitted with the following items: 

 2 high voltage connector protection heads (to be removed by ROV prior to jumper 

installation) 

 8 hydraulic female dummy connectors (to be removed by ROV prior to jumper 

installation) 

 2 low voltage dummy receptacle connector shorted (to be removed by ROV prior to 

jumper installation) 

The UTH is protected against dropped object through a lattice structure which is shown on 

figure 2.6 

.  

 

  

High voltage connector 

protection heads 

Hydraulic dummy 

connectors  

Low voltage dummy 

receptacle connector 

shorted 

Guide post (to interface 

with funnel on FDS) 

Umbilical entrance 

 

Lattice protection structure 

Figure 2.6: UTA at first time installation 
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2.2.4. MPP (Multiphase Pump) 

A MPP can accommodate the complete production from a well, for example oil, gas, water 

and sand, without having to separate or process the production stream near the wellhead.  

Framo MPP uses helicon-axial technology based on the rotodynamic pumping principle. 

Figure 2.7 is a typical Framo pump design, showing the Azurite multiphase pump. Framo 

pump units are designed with identical interfaces to ensure the ability of replacement 

independent of project. It also enables the possibility of re-using running tools.  

Electrical pumps must be isolated from surrounding fluids to keep the pump from short 

circuit. The Framo MPP uses an oil filled electrical motor. The oil works as a barrier system, 

and it is at all times kept at an overpressure compared to external water pressure to keep water 

from penetrating protected areas. It is of great importance that the pressure is monitored and 

maintained both during installation and operation. The fluid used is hydraulic oil with de-

electric properties.  

  

Figure 2.7: Framo MPP 

Accumulator gas fill cap 

”BP” Barrier fluid 

pressure gauge 

”BR” Work over barrier 

fluid flushing return 

”BX” ROV 

refill/flushing supply 

”BS” Umbilical barrier 

oil supply 

High voltage power 

connectors 

“SS” Signal 

stab/process suction 

and discharge 

pressure, 

temperature and 

barrier fluid PT + 

TT output  

Back seal test port 

for process hubs 

Male hydraulic 

quick connector, to 

be made up with 

female connector on 

running tool 

Intervention points 

for handling of pump 

using running tool  

Process inlet hub 

Process outlet hub 

”V-1-4-” Barrier 

pressure indicator valve 

”V-1-3” Barrier supply 

valve 

”V-1-2” Work over 

barrier supply valve 

”V-1-1” Work over 

barrier return valve 
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During normal conditions when pump has been installed, the barrier fluid is supplied to pump 

through the umbilical. From ROV-panel on FDS, the barrier oil runs through a hydraulic 

jumper to the pump, through the BS-inlet. Barrier supply valve must then be open. 

During installation or interventions, the pump is supplied with barrier fluid from accumulators 

on the running tool. Barrier fluid is supplied to pump through an inlet on top of pump 

(accumulator gas fill cap). The work over barrier supply valve must be kept open in order for 

this to happen.  

When the pump has been landed on seabed, the barrier supply jumper from the umbilical is 

connected to the BS-inlet on the pump.  A wet connector like this one may cause unwanted 

components to infiltrate system and connection points must be flushed before barrier fluid can 

run from umbilical to pump. A barrier return jumper is installed between BR on pump and the 

running tool. The pink line on the flow diagram on figure 2.8 shows how system is flushed. 

When system has been flushed in approximately five minutes, the valve position of V-2-3 will 

be changed to Sample (green line and accumulator). The sample will be brought to surface 

with disconnected running tool for inspection. In the time from running tool is disconnected 

until sample has been checked and approved, the barrier oil is supplied from accumulators in 

the pump, which can be seen in the flow diagram. If acceptable sample values are obtained, 

barrier supply valve will be opened and pump will receive barrier fluid from umbilical.  

The ROV-operated valves on the MPP ROV-panel, V-1-1, V-1-2-, V-1-3, V-1-4 and V-2-1, 

V-2-2, V-2-3, are 90 degrees actuated valves; they can either be in open modus or in 

shut/closed modus, marked with O and S respectively.  

The pressure gauge on the ROV-panel of the pump shows the pressure of the barrier fluid. 

When not employing submerged ROV there is no need for gauge to display pressure. To 

avoid potential leakages the barrier pressure indicator valve is therefore normally closed.  

However, during installation this valve will remain open. ROVs will record pressure gauge at 

a regular basis during all installation activities. During descent of the Azurite pump, the crane 

operations will stop at four different water depths and ROV will monitor pressure gauge. 

Water depth will influence the number of stops.  

As mentioned, the motor section and seals are during installation and operation filled up with 

barrier oil. During transportation the pump may not be filled up completely due to 

temperature changes and consequent changes in volume of the oil. 
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2.2.5. Process Piping 

The process piping within a FDS can be configured to allow for a variety of pump operations. 

The Azurite development consists of two individual pumping systems in bypass to the main 

headers, but other system may use the pumping systems in parallel or in serial, depending on 

need from client.  The two systems on Azurite are identical and located downstream the 

manifold. There is also full flexibility to route all wells into any header. Figure 2.9 shows the 

process flow diagram.  

The process piping is installed during fabrication. The piping is arranged in a way that allows 

for re-circulation of fluid; discharged flow from MPP may enter the re-circulation line to 

assure stabile suction. The re-circulation line is controlled by one ROV operated gate valve 

(V6) and also a choke to control flow rate (V4). Re-circulation lines can be seen in pink 

colour in figure 2.9.  

A methanol injection line is connected to the re-circulation line. A valve controls the injection 

of methanol. The valve (V5) is normally closed but can be opened by ROV if needed. 

 

Figure 2.8: Flow diagram between MPP running tool and MPP 

MPP-RP 
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2.2.6. Process Valves 

The process valves are devices that direct the process flow through the FDS.  In the Azurite 

pump station there are six process valves. The valves can be seen in figure 2.9. The process 

valves are as follows: 

- V1 – Actuated gate valve 

The V1-valve controls if process fluid can enter the multi phase pump or not. This 

valve needs to be a fail-safe-close valve, and will shut if unwanted events occur and 

pump must be isolated from process flow. The gate valve is operated through 

hydraulic lines and is controlled from topside. The valve can also be closed/opened 

manually by ROV. 

- V2 – Manual gate valve 

The V2-valve is the discharge valve from the multiphase pump. The gate valve is 

normally open, but can be closed if one wants to isolate discharge from the flow line. 

The valve is manually operated by ROV.  

- V3 – Actuated gate valve 

The V3-valve controls if fluid is directed pass or through the multi-phase pump, and is 

a fail-safe-open valve.  The gate valve is operated through hydraulic jumper and is 

controlled from topside. The valve can also be closed/opened manually by ROV. 

- V4 – Manual choke 

Figure 2.9: Flow diagram for process piping 
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The V4-choke is located on the re-circulation line. The choke does not close flow line 

completely, but it chokes the flow to desirable flow rate. The choke is manually 

operated by ROV. 

- V5 – Manual gate valve 

The V5- valve is a methanol injection valve. This valve is normally closed, but can be 

opened if methanol is needed in the system. Methanol is supplied to pump through 

umbilical, and the flow can only go from UTA to pump. The valve is manually 

operated by ROV. 

- V6 – Manual gate valve 

The V6-valve is a gate valve located on the re-circulation line. When closed the valve 

keeps fluid from entering re-circulation line after it has been through the multi-phase 

pump. The valve is manually operated by ROV.  

The valves V1-V4 are manually operated by ROV on top of FDS-structure. Flexible extension 

shafts are included between top of valve and the ROV-buckets. The valves V5 and V6 are 

accessed horizontally via a ROV-panel. See figure 2.10 for location of these interfaces.  

  

ROV-panel for V5 and 

V6 for multi phase 

pump 2 

ROV-panel for V5 

and V6 for multi 

phase pump 1 

 

ROV-buckets for V1-

V4 for multi phase 2 

ROV-buckets for V1-

V4 for multi phase 1 

Figure 2.10: ROV-interfaces on FDS 
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2.2.7. Power Jumpers 

High voltage cables are used for power supply to pumps. A multiphase pump demands for 

three-phase electric power, and it is supplied to the FDS through an umbilical. The HV 

jumper transports high voltage power from UTA to multiphase pump and it is a long cable (45 

meters for the Azurite FDS) with two different heads: one for mounting of the UTA and one 

for mounting on the multiphase pump.  Each HV jumper (one for each pump) includes three 

separate lines with three different phases.  Figure 2.11 shows how HV jumpers are organized 

on Azurite FDS.  

The HV jumpers are installed close up to installation of multiphase pump. The dummy pump 

must be removed before HV jumper head are installed, and the HV jumper head on pump side 

must be installed before pump is installed.  The FDS has dedicated guide posts where HV 

jumper head is locked onto.  

The HV connectors on the UTA side are installed with protection heads, as was shown in 

figure 2.6. These protection heads are installed to protect the connections from the 

environment in the time period from UTA is landed on FDS and until pumps are installed. 

The protection head must be removed before installing the HV jumper head on the UTA side.  

There are certain limits to the bending radius of the HV jumper. Consequently must cable be 

of certain length to have the ability to be routed to ensure bending radius is of satisfactory 

value.  

The power jumpers inside the UTA are shown in red colour in the flow diagram in figure 

2.12.  

 

HV jumper head, UTA 

side, multiphase pump 1 

HV jumper head, pump 

side, multiphase pump 1 

HV jumper, multiphase 

pump 1 

HV jumper head, UTA 

side, multiphase pump 2 

 

HV jumper, multiphase 

pump 2 

 
Figure 2.11: Power jumpers and jumper heads on UTA and MPP 



   Framo Engineering AS Systems 

14 

 

2.2.8. Signal Jumpers 

Low voltage (LV) cables are used for power supply to the communication system between 

subsea installation and topside. LV power is supplied to FDS through the umbilical. The LV 

cables include five quad lines which are distributed through a junction box in the UTA. From 

junction box the LV power goes on in two separate lines, one to each connection point on the 

ROV-panel on the UTA. Signal jumpers are the connection between UTA and pumps. The 

two jumpers are connected to the SS-inlet on each pump.  

During interventions the signal cable can be temporary parked in the jumper parking panel if 

needed.  

The LV jumpers, or signal jumpers, convey information about process temperature and 

pressure and barrier fluid temperature and pressure from seabed to topside.  

The low voltage cables inside the UTH are shown in green colour in the flow diagram in 

figure 2.12.  

  

Figure 2.12: Flow diagram showing HV power jumper, LV power jumper and hydraulic jumpers 
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2.2.9. Hydraulic Jumpers 

Hydraulics is provided to the subsea installation through lines in the umbilical. Hydraulic 

lines deliver chemicals, control fluid and barrier oil to the FDS. The hydraulic lines terminates 

in the UTA and from there hydraulics flow in hydraulic jumpers. Figure 2.13 shows how 

hydraulics is transported in jumpers from UTA to FDS.  

There are seven hydraulic jumpers in the Azurite FDS system. There are two barrier fluid 

supply jumpers, one to each pump. They run from the UTA to corresponding multi phase 

pump. There are four jumpers with control fluid supply. These lines run from the UTA to the 

ROV-panel on the FDS-structure. The distribution channels from ROV-panel to dedicated end 

targets are the hydraulic tubing. There is also one methanol supply line that runs from UTA to 

ROV-panel on the FDS-structure. The methanol line is connected to flow lines and a 

methanol injection valve governs the inlet.  

The umbilical also houses one barrier fluid spare line. It is connected to UTA ROV-panel like 

the other lines, but under normal conditions no jumper runs from its outlet on the UTA. Both 

two other barrier supply jumpers can be connected to the spare line in case of unexpected 

events.  

The hydraulic lines in the UTH are shown in blue colour in the flow diagram on figure 2.12. 

The diagram shows how all eight hydraulic lines terminate on the inner side of the ROV-panel 

of the UTA. Further, seven of the eight are connected to jumpers while one is the spare line, 

marked with a cross.  

  

Hydraulic jumpers 

(red of colour) 

Jumper connections 

UTA (ROV-panel) 

Jumper 

connections FDS 

(ROV-panel) 

Figure 2.13: Hydraulic jumpers running from UTA to FDS ROV-panel 
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2.2.10.   Hydraulic Tubing 

Hydraulic tubing is the distributions channels for the hydraulics in the FDS. The tubing is 

routed in protected areas to avoid damage from dropped objects and other damaging 

occurrences.  

Hydraulic tubing is installed in FDS during fabrication. 

 

2.2.11.   Power and Control Module 

Power and control modules can either be installed as a part of the subsea installation, or it can 

be included in topside facilities. It is an important part of the total system as it monitors and 

controls installed equipment, as well as supplying the necessary power. For Azurite the power 

and control module is located topside.  

 

2.2.12.   Guide Posts 

Guide posts are used as steering units during interconnection of two items. Figure 2.14 shows 

an example of a guidepost and a guidepost receptacle. The interconnection on the figure is 

between the UTA and the FDS.  A guide post is mounted onto the UTA, while a funnel is 

welded onto the FDS.  During installation, the guide post will slide down the funnel walls 

leaving the UTA in the correct position.  Alignment keys are often included in funnel to make 

sure the retrievable item has the right alignment. 

The FDS includes guide posts that interface with guide funnels on running tool during pump 

interventions. The guideposts are extracted to top hatch. Guideposts extensions are used to 

make the entry of the running tool easier. Two different-length extensions are attached to 

posts before intervention. Running tool will land on highest post first as it is difficult to land 

on two posts simultaneously, and will thereafter find its way to the second post, either by 

Figure 2.14: UTA guidepost interfaces FDS funnel 
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ROV-assistance, guide wires or vessel movement. The configuration also ensures correct 

mating of running tool so that pump is landed in the correct direction relative to FDS; long 

guide post shall meet left side of pump and short shall meet right side of pump. If water depth 

is sufficiently small, guide wires can be connected to the guide posts on the FDS and to the 

running tool funnel. Running tool will then slide straight onto guide posts. The water depth on 

Azurite field does not allow for this. 

The guide posts on the transport skid interface with the same guide funnel on running tool as 

FDS-structure does. Figure 2.15 shows the configuration with the transport skid. The FDS-

structure also has three mini guide posts that pump is landed on, two on the front side of the 

pump and one on the back side. The transport skid is equipped with similar mini posts with 

same interface point on pump.    

 

Figure 2.15: Interface points between pump, running 

tool and transport skids, seen from pump rear side 

Foundation guide post 

(same interface as FDS 

guide posts) 

Running tool guide 

funnel, for transport skid 

and FDS guide posts 

Transport skid mini 

guide posts (same 

interface point as 

FDS mini guide 

posts) 

Running tool guide 

post 

Pump interface point, 

to be bolted onto 

guide post on running 

tool 

Pump interface point to 

mini guide post on 

transport skid and FDS 

(the two remaining mini 

posts interfaces cannot 

be seen on figure) 
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2.2.13.   Dummy Pump 

A dummy pump is installed in FDS during first time installation. The dummy pump is 

connected to process pipes and provides with that a protection of the process hubs. The 

process inlet and outlet, which can be seen on figure 2.16, are blind hubs. The process 

fluid will consequently flow straight through the FDS without interference. A back seal 

test port and electrical HV connectors are also included on dummy pump. The HV 

connectors provide protection of the HV jumpers.   

The dummy pump is designed to be maneuvered with same running tool as the MPP. It is 

also to be installed in MPP transport skid during offshore lifting and transportation.  The 

dummy pump does with that not require any special adjusted equipment.  

The dummy pump will replace the MPP if it is retrieved for a longer period without 

redundant MPP being installed.  

 

 

 

 

 

 

 

 

 

 

 

2.2.14.   Pump Transport Skid 

The pump transport skid is meant to work as a physical protection case for the pump during 

different activities. Such activities are road transport in the horizontal condition, horizontal 

yard lift and lifting from horizontal to vertical and vice versa, vertical sea transport and 

vertical offshore lift in air. Figure 2.17 shows the transport skid with and without the pump 

inside. The transport skid has three guide posts that interface with pump. These guide posts 

are similar to the mini guide posts on the FDS-structure and both utilize same interface points 

on pump. 

Figure 2.16: Dummy Pump 
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The transport skid is a two-piece structure in the vertical direction, bolted together with a 

single bolt in each corner. This configuration makes is possible to tilt the top part of the skid 

using the bolted connection as a hinged mechanism. When top part is tilted it allows for 

access to the top part of the pump. 

The four corners on top of transport skid have lifting arrangements welded on. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.15.   Pump Running Tool 

The pump running tool accommodates the pump during transfer from topside to subsea 

installation. It is designed to intervene on both the pump and the dummy pump.  

Figure 2.18 shows the running tool without any pump attached to it. 

The running tool consists of a structural main frame. On each side of the frame there is a 

funnel. The bottom part of funnels is landed on dedicated guide posts on FDS-structure during 

installation of pump. The side wall funnels also interface with guide posts on running tool 

transport skid. A guide wire lock sits on each funnel and provides the ability to interface an 

installation tower cursor system. The running tool can be used with or without guide wire 

assistance.  

Next to the bottom funnels sits two vertical shock absorbers whose task is to damp vertical 

movement when running tool interfaces with other objects. When pump is suspended inside 

the running tool, the tool will thus function as a bumper protection for the pump, due to both 

shock absorbers and structural frame.  

Figure 2.17: Pump transport skid, with and without pump 
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Transverse on running tool is a beam with two guide posts. These mates with funnels on the 

pump rear side, keeping the pump in place inside the running tool during interventions. The 

dummy pump has two holes in the main plate serving the same purpose.  

When the running tool has landed on the FDS guide posts, the final installation is done with a 

hydraulic cylinder. The FDS has got dedicated guide pins to ensure final alignment. When the 

pump has reached its final landing position, the running tool will lift off on the guide posts 

using the hydraulic cylinder.  

The right guide funnel includes a ROV-panel for flushing and verification of barrier fluid 

supply. The three ROV-operated valves, V-2-3, V-2-4 and V-2-5 are found here. These are 

flush/sample valves for the work over system. In addition there is a flush stab and a connector 

with a barrier return jumper. This is the jumper connected to the BR on the MPP when 

flushing and it is shown on figure 2.8. The jumper comes down connected to the flushing 

return accumulator in one end, and parked on a parking panel in the other end.  

The barrier oil supply valve, V-2-6, the barrier oil filling of accumulators valves, V-2-7 and 

V-2-8, and the sampling and draining point valves of the running tool can only be operated in 

air. During installation these valves are left in Open position.  

On the transverse interconnection on the top of the running tool there is a secondary ROV-

panel. On this panel sits two hydraulic supply valves. These valves, V-2-1 and V-2-2, control 

operation of running tool hydraulic cylinder. On ROV-panel there is also a running tool stab 

where control fluid is supplied from ROV through a jumper.  

An interface connector mechanism is also located on the transverse interconnection on top of 

running tool. It connects and locks MPP to running tool. The mechanism has an ROV-handle. 

Figure 2.18: Pump Running Tool 
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2.2.16.   Transport Skid for Pump Running Tool 

The transport skid for the pump running tool provides protection and support for the running 

tool during lifting operations and transportation. It is designed to handle horizontal 

transportation of the running tool, and horizontal lifting of the skid with the running tool 

installed in it.  

The transport skid for the running tool is designed so that it interfaces with the pump running 

tool, which can be seen in figure 2.19.  This enables running tool to connect to pump without 

either of them having to be removed from respective transport skids.  

The guide posts on the running tool are hinged posts, allowing for running tool to be tilted 

while still parked in skid. Consequently can running tool be lifted directly from the skid in 

lying position.  

 

 

 

 

 

 

 

 

 

2.2.17.   Jumper Parking Panel 

In the case where a unit needs to be retrieved, a dedicated paring panel provides temporary 

parking of jumpers. The parking panel is installed onto the FDS in such cases, and does not 

form a part of the permanent subsea system. The panel is an expensive piece of equipment, 

and thus is parking panel often not stationed at one particular vessel, but moved around to 

where it is needed.  Figure 2.20 shows a jumper parking panel used on Azurite, where one can 

park the barrier fluid jumper and the signal jumper.  

 

 

 

 

Figure 2.19: MPP, MPP RT, MPP transport skid and MPP RT transport skid mounted together 

Figure 2.20: Jumper Parking Panel 
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2.3. Installation Sequence 

This chapter will give an overview of the activities related to installation of the different parts 

of the Azurite subsea multi phase pumping system. FDS, process risers and jumpers, UTA 

and umbilical are installed prior to FDPSO arrival on site. It requires temporary wet park of 

topside ends.  

It is assumed that suction anchor has been installed on seabed prior to installation of all 

components of the MPP. 

 

2.3.1. Installation of FDS 

The FDS is the first component to be installed. During initial installation the FDS will consist 

of the following main items: 

 1 off manifold structure including process piping, process valves, flow line connectors 

(hubs), guidepost, ROV-panel and UTA landing platform 

 2 off dummy pumps (individual retrievable with dedicated running tool 

 4 off retrievable pressure caps for the process hubs 

 Installation rigging (see figure 2.21) 

A survey of the installation area on seabed shall be accomplished prior to installation of FDS.  

 

  

Figure 2.21: Installation rigging during first time 

installation of FDS 
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The FDS will be stored and transported on sea on a typical supply vessel.  The structure will 

be launched by a crane from a lifting vessel.  The crane`s lifting equipment is attached to the 

FDS through four anchorage points in each corner of FDS. The interfaces are equipped with 

ROV-shackles, allowing for ROV to open and close the shackle using a manipulator arm.  

Before the lifting operation starts the vessel is offset from installation position. This assures 

no potential dropped objects hit any installations on seabed during launching. 

Tugger winches are attached to FDS for stabilization during the topside lift. The winches are 

removed after FDS has been lowered through splash zone.  Lowering the FDS through the 

splash zone shall be done in a continuous movement to prevent FDS from residing in the 

zone. 

A mid-water transfer of FDS is performed during the lift. The load is transferred from the 

crane to a pennant winch on the lifting vessel. The hang-off frame allows for finer control 

during the last part of the lift. The crane hook is brought back to the surface in order to bring 

the FDS load through pennant winch onto the crane hook again.  

When the FDS has been lowered to about 10 meters above the seabed, the vessel is shifted to 

bring FDS above the suction anchor with the landing pile. Tugger winches or clump weights 

are attached at this point if applicable. The FDS is slowly lowered to engage its guide funnel 

onto the pile. The structure is adjusted with alignment keys to assure correct orientation 

between pile and FDS. The FDS is then landed carefully onto the pile and it is verified that 

the structure is rotated correctly into position.  The ROV shackles will be disconnected and 

the lifting equipment retrieved to surface. A FDS valve check and reconfiguration is 

performed with ROV.  

 

2.3.2. Installation of UTA 

Some deck preparations must be done prior to the installation of the UTA. The umbilical shall 

be leak tested and be kept at an overpressure to ensure no ingress of water throughout the wet 

park period until topside pull in and establishing supply from the barrier system. The UTH is 

assembled into UTA.  

The UTA is lifted through the splash zone and water column in the same manner as for the 

FDS. It is landed into the guide funnel on the FDS shown in figure 2.14, aligned and locked to 

the structure. After landing ROV shackles are opened and lifting sling is removed. 

 

2.3.3. Retrieval of Dummy Pump 

Prior to retrieval of dummy pump it is important that FDS valves are configured in correct 

positions. V1 and V2, which are the in and out gate valves of the pump must both be closed. 

Consequently must the gate valve V3 be open to allow process fluid to flow through FDS 

without interfering with pump. V4 choke valve must be more or equal to 5. The methanol 
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injection valve V5 must be closed, while re-circulation line gate valve can remain open. The 

dummy stab in the ROV stab manifold on running tool is removed to allow supply of 

hydraulics from ROV and the manifold is checked for damages. Accumulators on running 

tool are flushed and sampled to assure clean barrier fluid.    

The area on the landing deck on the installation vessel must be prepared for the retrieval of 

the dummy pump. The MPP transport skid for the dummy pump must be empty, and it is 

mated into the running tool transport skid. The two are locked together with bolts which 

allows for the running tool and the dummy pump to be landed and installed into respective 

transport skid on the same location on deck. The transports skids and the running tool shall be 

visually inspected for damages prior to the retrieval operation.  

Before running tool is put to use one must verify that the lifting cylinder is in retracted 

position, ready to handle the dummy pump. It is also important that the dampers are in 

extended position. The connector on the running tool that interfaces with pump top end must 

be unlocked before retrieval, and handle pulled out. 

The running tool is connected to crane hook through its top anchorage point. Running tool can 

be raised to vertical without disconnecting from transport skid due to the flexibility of the 

transport skid guide posts. When preparing for operation, running tool is raised to vertical and 

guide posts are locked to keep their vertical position. The bolts locking running tool funnels to 

guide posts are released and running tool is lowered until crane gets slack. Running tool is 

now resting on guide posts, and it is free to be lifted off transport skid at any time.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22: Testing of FDS hatches in dry dock 
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Before the lifting operation starts, a ROV opens both hatches on the FDS above pump to be 

retrieved. Figure 2.22 shows a picture of a ROV opening one of the hatches above MPP 1. 

The picture is taken during onshore testing. After hatches have been opened, the guide posts 

extensions are installed. A ROV also opens inlet and outlet clamps on dummy pump before 

lifting starts, so that pump is free to be retrieved.  

The installation vessel is moved offset from any subsea installations before lifting of running 

tool starts. The running tool is lifted off transport skid and launched overboard. To ensure safe 

handling one rope runs through each funnel to control running tool manually from deck. 

Running tool is lowered until 20 meters above seabed. At this location the installation vessel 

repositions so that running tool sits straight above MPP. The running tool is lowered onto the 

longest guide funnel first, and then lowered further down to meet the smallest guide post. A 

ROV verifies that running tool guide funnel match the correct guide post; the running tool 

ROV-panel shall face out of FDS.  The running tool is lowered until the lifting line goes 

slack.  A ROV is used to observe. ROV also observes and verifies that the running tool is in 

correct landing position. When accomplished, lifting line may be disconnected and 

installation vessel moved off location, if requested by Contractor.   

While installation vessel possibly is off location, the running tool is prepared for lifting the 

pump. The handle on the locking mechanism is pulled out and jumper from HPU is connected 

to ROV STAB on the running tool. The valves V-2-1 and V-2-2 which control operation of 

running tool hydraulic cylinder must be verified open. The running tool is now ready for 

mating with pump. The hydraulic cylinders are extended until the running tool starts to lift off 

from structure. The interface connector between pump and running tool will be locked by 

pushing in handle and folding over a locking mechanism. The cylinder is thereafter fully 

retracted.  The valves, V-2-1- and V-2-2 are shut.  

If lifting line has been disconnected the vessel will now be moved onto location again and 

lifting line reconnected. Same procedure will follow as when lowering running tool: lift 

running tool with dummy pump to a height of 20 meters above seabed and stop. Thereafter 

move installation vessel offset from any subsea installations and continue the operation.  

A ROV will carry out an inspection of FDS piping, process hubs, HV connector head, the 

guide post system and the pump landing area after dummy pump has been retrieved. It will 

move any debris and wash if needed to remove any fouling. A ROV will in addition visually 

inspect the dummy pump and the running tool. 

The running tool is retrieved with dummy pump to surface. It is landed in its prepared 

arrangement and secured before any work on equipment is started. The dummy pump is then 

released from the running tool by extending hydraulic cylinders. Hydraulic is supplied from 

SHPU. When the running tool starts to lift off, the handling head locking bolt is released. 

Lifting cylinder is subsequently fully retracted.  Running tool is lifted completely off dummy 

pump and gently landed in running tool transport skid, which is not longer mated with pump 

transport skid. Running tool is secured with locking bolts and locking pins. The dummy ROV 

hot stab is mounted back on. 
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The jumpers and MPP are to be installed immediately after retrieval of dummy pump in order 

to protect interfaces on FDS. Installation shall proceed within hours, not days.  

 

2.3.4. Installation of HV Power Jumper 

Prior to any HV related operation, the installation vessel must receive information from the 

FDSPO that the MPP power system is isolated and ready for subsea work. Before lifting 

operations begin the vessel is offset to avoid potential dropped objects from damaging subsea 

installations.  

The HV jumper is mounted on a deployment frame when launched.  The frame is designed 

with cylindrical bars to coil up the HV jumper during installation. The jumper heads interface 

with frame through funnels and the connection can be locked by use of the ROV D-handles, 

see figure 2.23. The deployment frame provides lifting points during installation and shall 

also serve as a protector for jumper and jumper heads when launched and lowered to seabed. 

The frame has two or more anchorage points for steady lifting and weight distribution. Tugger 

lines are attached to the deployment frame for stabilization during topside lift. The tugger 

lines are released when frame has been shifted over the vessel side. Lowering the deployment 

frame through the splash zone shall be in a continuous movement to keep the assembly from 

residing in the zone.  

When deployment frame is lowered to about 20 meters above seabed, the vessel is 

repositioned to bring frame straight above landing position. The frame is then lowered and 

landed as a single item on seabed. After deployment frame is landed ROVs will release 

jumper heads from frame and land them on the dedicated guide posts on FDS. There must be 

at least one ROV to do the transfer and one to monitor the jumper departure from the frame. 

The jumper head on pump side is the first to be installed. Second operation is to remove the 

HV protection head from UTA and thereafter connect the HV jumper head to its dedicated 

position on the UTA. Figure 2.24 shows a simplified illustration of the HV power jumper 

extracted from UTA to MPP.  

The deployment frame will be retrieved to surface after accomplished installation, following 

same procedure as when immersing: retrieve to about 20 meters above seabed and stop. 

Installation vessel will be moved offset any subsea installation and thereafter retrieval to 

surface will continue.  

  

Figure 2.23: HV Power Jumper extracted from UTA to MPP 
Figure 2.24: ROV D-handle 
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2.3.5. Installation of Signal and Barrier Oil Jumper 

Before the jumpers are launched, the jumper parking panel must be installed.  

Signal and barrier jumpers can be launched in different ways. It is desirable to coil jumpers up 

on a frame to protect them as best as possible when lower through the water column. 

However, jumpers may be installed using other tools, as for example a bucket. For the Azurite 

project the signal and barrier jumpers were coiled up on the same deployment frame as the 

HV jumper. The frame was a two-layer frame allowing for HV jumper to be coiled up on one 

side, and signal and barrier jumpers on the other side.  

Before jumpers can be installed a ROV must remove the dummy connectors from the signal 

and barrier receptacles on the UTA ROV-panel. When they have been removed and retrieved, 

the ROV connects the jumpers, first end to the UTA and second end to the jumper parking 

panel. Jumpers are forced to intersect with flow line path, and must thus be routed in a 

sensible manner.   

All jumper ends have ROV D-handle connectors. Figure 2.25 shows the signal jumper 

connectors for parking panel side and UTA side, respectively.  

 

 

 

 

 

 

 

 

2.3.6. Installation of MPP 

There are certain activities that must be carried out prior to the installation of the MPP. 

Protection stabs from hydraulic couplers in the MPP ROV-panel are replaces with dummy 

connectors. Couplers shall be inspected and checked for fluid leakages during the 

replacement. The MPP ROV-panel is thereafter flushed and an oil sample is taken to assure 

no unwelcome ingredients have intruded. The MPP is then filled with correct barrier fluid and 

pressure tested.  

Running tool and transport skids shall be inspected and prepared as described in 2.3.3.   

Figure 2.25: Signal jumper connectors with ROV D-handles  
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The running tool is mated with MPP while both still mounted in transport skids. Running tool 

with pump is raised to vertical by the crane. Transport skid locking bolts are removed. 

Running tool is lowered until the crane gets slack and running tool funnels rest on MPP guide 

posts. The hydraulic cylinders on running tool are thereafter extended until the running tool 

starts to lift off and running tool is locked to MPP. Dummy stab from ROV STAB on running 

tool is disconnected and a barrier supply line is connected between MPP and running tool. 

The protection stab on the MPP ROV-panel with D-handle must be removed before 

installation; otherwise the handle will interfere with beam in FDS when the pump is lowered 

into it.  

Before the lifting operation start the vessel must be moved offset any subsea installation. One 

rope will be mounted in each funnel prior to lifting to be able to manually control running tool 

from deck. Running tool with pump is lifted free from transport skid and launched overboard.  

Pressure should be monitored four times during descent of Azurite MPP by help of ROV.  

Running tool with pump is lowered until 20 m above seabed where vessel is repositioned 

above correct location of MPP. Running tool is lowered down on guide post as during 

retrieval of dummy pump. BR, BS and SS jumpers are connected to dedicated locations on 

MPP ROV-panel. Running tool flush and sample accumulators are filled before running tool 

is disconnected and retrieved to surface, following the same procedure as during retrieval of 

dummy pump. The oil sample is retrieved to the surface and immediately evaluates. If sample 

is not accepted the running tool must be prepared for new oil sample. If the sample is 

accepted the barrier supply valve can be opened, allowing umbilical to supply barrier oil to 

MPP.  

The running tool should be hosed down with fresh water on deck. The extended guide posts 

on FDS on the seabed may be moved to second pump position if only the first pump is 

installed. If not they shall be retrieved to the surface. A ROV will close respective hatches 

above installed pumps.  
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2.4. Tordis IOR 

The Tordis field is an oil field located in the Tampen area in the North Sea where production 

was started in 1994. Tordis is developed with subsea installations only, and the well stream is 

tied back to the Gullfaks C platform. The water depth is approximately 200 meters. 

After some years of production the Tordis field experienced a marked decline in the 

production rate, and also a rise in the water cut. This resulted in Tordis Improved Oil 

Recovery (Tordis IOR) project, and in 2007 the world’s first full-scale commercial subsea 

separation boosting and injection system (SSBI) was installed.  Included in the system was a 

separator that removes water from the well stream, a multiphase pump for boosting the 

production rate, and a water injection pump to discharge separated water into a disposal well. 

Framo delivered both pumps for the project, in addition to a power umbilical, an umbilical 

termination assembly, jumpers, a topside hydraulic power unit and a topside pump control 

system. Figure 2.26 shows the two Framo pumps as a part of the complete SSBI. 

 

 

 

 

 

 

 

 

 

 

 

In operation from late 2007, the separator removed water and sand from the well stream for 

injection into a sand stone deposit 1000 meters beneath the seabed [6]. In 2008 an oil leak was 

discovered, and the water injection well was proven to be the source of it. The subsea 

separation system was closed down immediately and it is still out of function. The MPP now 

boosts the complete well stream back to the platform.  

As shown in figure 2.26, both the MPP and the water injection pump are installed as an 

integral part of the total SSBI system. Both pumps are individually retrievable.  

Figure 2.26: Tordis SSBI [20] 
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2.4.1. Specifications and Requirements 

Statoil is the operator of Tordis from January 2003. The MPP is an important contributor to 

the production rate of the field, and it is thus desirable to Statoil to have as little downtime as 

possible on the pump. Consequently should the ability to replace the MPP immediately if it 

fails be present. This may result in interventions during winter time and in harsh weather 

conditions. For that reason Statoil has requested the ability to launch and retrieve MPP 

through moonpool, where it is protected from external loads such as strong waves and winds.  

The main characteristics of the pumps are given in table 2.1 (MPP and water injection pump 

are identical in size). 

Size (L x W x H) 1841 x 2335 x 5207 mm 

Dry Weight 21 000 kg 

Table 2.1: Main characteristics of Tordis pumps 

 

The main characteristics of the pump running tool are given in table 2.2. 

Size (L x W x H) 1000 x 3600 x 5400 mm 

Dry Weight 4500 kg 

Table 2.2: Main characteristic of Tordis pump running tool 

The MPP and its dedicated running tool are shown in figure 2.27. 

 

 

 

 

  

 

Figure 2.27: Tordis MPP and dedicated running tool 
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3. Moonpool Theory 

3.1. Introduction 

A moonpool is a vertical wall-sided passing through the ship hull as illustrated in figure 3.1. 

The moonpool allows for subsea modules and tools to be launched from vessel deck or 

recovered from seabed through the protective shelter provided by moonpool walls. Some 

subsea construction vessels also have a dedicated moonpool used for launch and recovery of 

ROVs. This chapter will focus on moonpool operations related to subsea modules; however 

the theory presented in the following sections will be directly transferrable to the ROV 

moonpools. The moonpool is in most cases located close to vessel roll and pitch axis to 

minimize the effect from vessel angular motions.  

 

 

 

 

 

 

 

 

 

The basic idea of launching an object through a moonpool is simple, move object from deck 

through a protective area and down to the seabed. However, theory related to moonpool 

operations can get very complex. This chapter will outline different aspects related to 

moonpool theory. It is assumed a constant cross-sectional area of moonpool, if not mentioned 

otherwise. 

 

 

 

 

Figure 3.1: Illustration of a vessel with lifting arrangement through the moonpool 
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3.1.1. Challenges to Moonpool Operations 

There are both advantages and disadvantages with launch and recovery trough the vessel 

moonpool compared with conventional overside crane operations. Some of these are listed in 

table 3.1 

Advantages Disadvantages 

Subsea unit is protected from horizontal 

components of environmental forces, such as 

waves, winds, currents and ice flows 

Large amplitude oscillations of the water 

column inside the moonpool may occur which 

can result in flooding of equipment handling 

areas or unacceptable loadings on equipment in 

moonpool 

By positioning moonpool close to centre of roll 

and pitch axis, the adverse effects of vessel 

angular motions can be minimized 

Lack of reliable data related to moonpool 

operations 

Avoid lifting on deck by use of skidding system Internal sloshing may occur, resulting in 

transverse breaking waves 

Damping features can be installed to reduce 

dynamic amplification of water oscillations 

Difficult to predict the moonpool dynamics  

Milder water entry during normal conditions Limitations with regards to size when installing 

through moonpool  
Table 3.1: Advantages and disadvantages with installations through moonpool 

The advantages with moonpools are well known: it provides a protective shelter under normal 

circumstances. However, the water motions that takes place in the moonpool under wave-

induces pressures and vessel motion may cause unpredicted high loadings. This water motion 

is most likely to occur at the natural modes of the moonpool [18]. There are two particular 

motions; one is the sloshing mode where the water moves back and forth in between the 

vertical moonpool walls. The second one is the piston mode where the water heaves up and 

down more or less like a rigid body. In moonpool operations piston mode is dominating, and 

therefore this thesis is devoted to the vertical water oscillation problem alone. The sloshing 

mode is outside scope of this study. Nevertheless, when planning a moonpool operation 

sloshing may be included in analysis work. Attention must also be drawn to the fact that 

vertical forces may be enlarged when coupled with horizontal forces.  

If exited at resonance, oscillations inside the moonpool may give larger water elevation than 

outside the vessel. Therefore it is important to know the resonance period of the moonpool. 

Often the resonance period lies within expected wave periods in the wave spectrums, hence 

the water in the moonpool may get large motions and should be reduced. Knowing that 

damping will significantly reduce the fluid motions when close to resonance, it is therefore 

desired to increase the damping in the moonpool. This is commonly done by introducing 

perforated walls or fittings.  
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3.1.2. Module Handling System 

A typical Module Handling System (MHS) consists of a lifting structure or tower, a lifting 

arrangement, a guiding arrangement and a skidding system on the vessel deck. The MHS is 

located above the moonpool opening. This section will emphasize only on the type of 

moonpool configurations likely to be used during installation of the Tordis pump unit. Such a 

moonpool is a standard 7,2 x 7,2 m with corresponding MHS.  

There exist different types of lifting arrangements. Figure 3.2 shows a Grenland Group tower, 

which is a cube shaped frame work steel construction. The structure is commonly called a 

module handling tower (MHT). The tower dimensions depend on the objects to be handled. It 

is vital that lifting height of the tower is sufficiently large to handle the height of lifted object. 

Integrated in tower structure is a lifting frame which deploys the lifting arrangement. The 

lifting arrangement typically includes one main winch, 2-4 guide wire winches and a cursor 

system. Moonpool guide wires are used when lifted object leaves cursor system and shall 

prevent it from rotating during deployment. The cursor system comprises of rails which are 

mounted along the internal structure of tower, and down into the moonpool. A cursor 

framework runs on the rail guides. Lifted object is fixed to the cursor. According to [15] rail 

guides provide the most effective horizontal control due to the strength that can be achieved.  

Thus are rails ideal to use within areas that require tightly constrained horizontal motion, 

which exceedingly is the case for moonpool operations. 

It is also possible to design the MHT such that the vessel crane can be used as the lifting 

device. If the crane is to be used it is important to ensure that hatches and guide structures are 

designed and dimensioned for it. 

During transit conditions the moonpool is enclosed from environment using hatches. The 

bottom opening hatch must be strong enough to withstand external forces from waves and 

currents. The top hatch has integrated skidding rails. The skidding rail enables movement of 

equipment from moonpool and to its dedicated storage locations on deck. The common 

procedure is to sea fasten the object to pallets that can move on the skidding rails. With this 

arrangement crane lifts on deck is avoided, reducing risk of asset damage and personnel 

accidents. 

The module handling winches are preferably heave compensated to better control the lifted 

structure through the water column. The system allows for retrieval or launching at a constant 

velocity or to keep the load at a fixed position relative to the seabed. It is desirable that both 

main winch and guide wire winches are heave compensated.  
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3.1.3. Framo Pump Units through Moonpool 

Normally, Framo pump units are deployed with the vessel crane. However, there have been 

some projects where the vessel moonpool has been used, latest at the Troll field year 2000.  

The main challenge during moonpool installation of the Framo pump unit is the height. MHTs 

are normally too small to handle this height and the tower therefore requires modifications to 

be able to launch the pump unit through moonpool. Such modifications may be to disassemble 

some parts in top of MHT. However, removing part of the lifting tower will influence the 

function of the tower. Remaining parts will experience higher loadings. This may reduce the 

capability of the crane and consequently maximum sea state for lifting will be decreased. 

Fatigue issues may also arise sooner.  

When a pump unit is individually installed it is often combined with installation of other 

equipments to reduce costs. The removed parts of MHT may thus be parts which are essential 

during launching of other equipment. We may lose the ability to combine installations, or, if 

MHT is remounted, the lifting operation will be of a longer duration.  

The transport skids which are skidded to moonpool hatches may also be reconfigured to 

decrease height of pump unit. It is possible to move pump unit from its dedicated transport 

skid into a skid designed for moonpool installations. Such a skid is of smaller dimensions to 

reduce the overall height.  

 

 

 

Figure 3.2: Illustration of a module handling tower and skidding system [10] 
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3.2. Fluid Motion  

3.2.1. Fluid Motion in Moonpool Column 

The Bernoulli equation can be used to explain motions of the water plug in the moonpool. The 

following assumptions are made to justify the use of Bernoulli: 

 The fluid is incompressible 

 The fluid motion is unsteady 

 Viscous forces are neglected  

For simplification matters it is also assumed that the fluid motion does not vary across the 

moonpool. In addition one will assume a still water line outside the vessel, hence h is constant 

from figure 3.3. 

The derivation of the formulas takes reference in Faltinsen [7].  

The Bernoulli equation yields: 

 

where  is the pressure,  is the velocity potential, and where  is the velocity vector: 

 

It is common procedure to exclude horizontal motions and focus on vertical motions and 

forces only in the moonpool [16]. It can also be mentioned that when an object is lifted 

through the moonpool it will be fixed to a cursor that prevents horizontal motions relative to 

the vessel. Based on this assumption we may simplify the moonpool problem to 2D pure 

heave motion, see figure 3.3. 

From this the velocity vector will be reduced to: 

 

Hence, the Bernoulli equation will reduce to: 

 

Differentiation of 3.4 with respect to z gives: 
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z Two-dimensionalised model with pure heave 

motion 

Vessel with only pure heave motion 

Figure 3.3: Simplification of vessel geometry for water motions in moonpool 
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When assuming water is incompressible, the velocity potential must satisfy the Laplace 

equation: 

 

Assuming heave motion only, 3.7 reduces to: 
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Substituting 3.8 into the Bernoulli equation gives us: 

 

 

 

Idealistically, the fluid motion will be constant across the moonpool area, and thus can the 

velocity be expressed as  at every point. Consequently, we have . Equation 3.9 can 

thus be written as: 

 

 

 

or 

 

 

Equation 3.12 relates the pressure gradient in the moonpool to the vertical fluid acceleration.  

Integration of 3.12 over the moonpool area gives: 

 

  

 

 

 

 

Using the Bernoulli equation on the form (p( ) – p(-h)) gives us:  
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which, due to the Laplace equation, reduces to:  

 

 

 

By substitution of equation 3.18 into 3.16 we obtain the following expression: 

 

 

 

 

The equation for the moonpool wave elevation can then be written as: 

 

 

To give a better picture of the water motion inside the moonpool, equation 3.21 can be 

linearized. The linear dynamic free surface condition is assumed, and this condition is simply 

that the water pressure is equal to the constant atmospheric pressure p0 on the free surface [7]. 

The free surface in the moonpool will be at z =  from figure 3.3. The dynamic free surface 

condition yields:  

 

Inserted in 3.21 gives: 
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Assuming wave amplitude is small relative to a characteristic wavelength and body 

dimension, we can use that <<h, which again simplifies 3.24 to: 

 

 

 

 

Equation 3.26 is like the equation for a mass-spring system without damping, where the right 

hand side of the equation is the exciting force. In terms, this means that the fluid motion 

inside the moonpool can be treated as a mass-spring system with one degree of freedom. The 

equation is valid for small amplitudes.  

. Figure 3.4 shows a linearly damped forced spring-mass system. 

 

 

 

 

 

 

 

 

 

The equation of motion for the mass-spring system is given as [3]: 

 

Figure 3.4: A mass-spring system 

with linear damping 
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where  is the mass of the system, which in hydrodynamics also will include added mass,   

is the damping and  is the stiffness of the system.  

Faltinsen [7] regards the moonpools water motions as a mass-spring system without damping, 

and presents the natural period of the system: 

 

DNV [1] introduces a modification of the same formula where added mass and increased 

draught has been accounted for: 

 

assuming a constant cross-sectional area, A, of moonpool.   is a dimensionless parameter 

found to be 0,46 for all realistic rectangular moonpools. (3.29) has been derived by energy 

conservation. If the moonpool has a varying cross-sectional area, then the natural frequency is 

defined as [1]: 

 

As for all mechanical oscillating systems, dynamic amplification occurs at a certain 

frequency. Day [4] states that the RAO of the oscillations exhibits a large response at the 

natural frequency, falling toward zero at high frequencies, and unity at low frequencies. If the 

peak of the RAO occurs at a frequency at which there is a significant amount of wave energy, 

then the response in that sea state will be large, and the moonpool may not be operable.  

 

 

3.2.2. Water Entering Moonpool 

Water will flow into the moonpool as soon as the bottom hatch is opened. The water aims to 

find its equilibrium position, and thus will water level inside moonpool rise until it reaches the 

still water level. 

When a vessel is situated in a sea state with the moonpool hatch open, water will enter and 

exit the moonpool in every wave period. Considering this vertical fluid motion only, initiated 

by the vessel heave motion, an idealization of the flow at the bottom opening of the moonpool 

can be seen in figure 3.5. 
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The pressure at the bottom opening for the ideal moonpool flow in figure 3.5 is equal to the 

dynamic pressure excited by the wave force, following the Froude-Krylov hypotheses. The 

excitation force from the waves then becomes [17]: 

 

where  is the Froude-Krylov dynamic pressure and  is the cross-sectional area of the 

moonpool bottom opening. The Froude-Krylov pressure is mathematically introduced in 3.4. 

In reality, however, the excitation force is also affected by the vessel motion. Wave 

diffraction may also influence the exciting force.  

According to Madsen [17] a damping force will also arise at due to energy loss at the bottom 

opening.  From figure 3.5 we see that the flow forms a contraction just above the bottom 

opening when it flows into the moonpool. After which, the stream widens again and fills the 

moonpool. A damping force is thus created due to loss in turbulent eddies between the 

contraction and the wall of the moonpool. When the flow runs out of the moonpool the 

velocity is approximately uniform over the cross-section of the moonpool. At the abrupt 

enlargement, the flow forms turbulent eddies in the corner which result in an energy loss. 

Sufficiently far away downstream from the enlargement, the velocity will again be uniform. 

The damping values depend upon the geometry of the bottom opening.  

 

 

Figure 3.5: Idealization of the flow at the bottom opening of the 

moonpool (Madsen, 1980) 
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3.2.3. Fluid Motion below Moonpool 

The real flow field below the moonpool will be of higher complexity than figure 3.5 indicates. 

Waves and currents will form transverse force components. The vessel itself will disturb the 

dynamic pressure field arising from these components, and thus will surrounding fluid 

accelerations and velocities be affected. In addition, tons of water will enter and exit the 

moonpool every wave period as already explained.  Due to the many factors influencing the 

flow field below the moonpool, it is very difficult to predict the water motions in this area.  

DNV [1] states that a conservative approach to this problem is to analyze the dynamics, using 

hydrodynamic forces based on the wave kinematics of undisturbed waves and hydrodynamic 

coefficients for unrestricted flow condition. Linear wave theory may be applied to estimate 

transverse forces.  

Konopka [13] tried to calculate forces acting on a diving bell in the area below the moonpool 

and compared it to test results. The calculations deviated greatly from the test results, and thus 

he concluded with an unsuccessful attempt of modeling the diving bell below the moonpool 

entrance. He considered the forces from the undisturbed linear wave theory to be the strongest 

contribution to the error.  

 

3.2.4. CFD-Analysis for Moonpool Water Motion 

Computational Fluid Dynamics (CFD) is a numerical approach for predicting physical fluid 

flows and heat transfer. For subsea lifts it may be used to analyze wave loads.  

DNV [1] recommends not using CFD-analysis for moonpool dynamics. It states that even 

though CFD can analyze the fluid dynamic interaction between the lifted object and the water 

plug inside the moonpool, it is difficult to couple with the dynamic characteristics of vessel in 

waves and the response of the lifting system. Force predictions may hence be uncertain.  

However, Alsgaard [2] has numerical investigated the piston mode resonance in a moonpool 

using CFD. He found that added mass and resonance period was fairly well predicted. He 

obtained conservative results, and recommended it as a supplement to experiments. He met 

greater trouble when trying to capture the damping phenomenon, with a 10 – 20 % error.  He 

concludes that there exists little full-automatic tools for prediction of loadings where damping 

is important, but potential is seen if further development of the CFD-tool takes place.  
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3.3. Hydrodynamic Parameters 

Estimating hydrodynamic coefficients is an important part to any lifting analysis. The 

estimation needs to be as accurate as possible to predict realistic hydrodynamic loads. This 

can however be challenging due to the complex geometrical shape of most subsea structures.  

DNV [1] presents two different types of hydrodynamic coefficients; one for when the 

structure is lifted through the splash zone and the other for a fully submerged structure. This 

thesis assumes a fully submerged pump unit if not stated otherwise.  

 

3.3.1. Damping 

3.3.1.1. Damping in General 

As already mentioned, moonpool oscillations are a typical resonance phenomenon. The 

moonpool is a system with large dynamic effects, and the amplification of the water motion 

therefore depends upon the level of damping.  

Damping is normally expressed by the relative damping coefficient, which represents the 

relationship between the actual damping and the critical damping [11]. The damping 

coefficient determines how quickly the oscillations are damped. In an underdamped system 

the oscillations decrease exponentially. The water moonpool is a typically underdamped 

system, with a relative damping coefficient below 1. 

In addition to inviscid damping due to wave generation, damping is provided by viscous drag 

damping caused by various structures in the moonpool. Every obstacle on the smooth 

moonpool wall will hence contribute to an increased damping factor. DNV [1] presents an 

empirical relative damping ratio as the damping coefficient of the water plug. The ratio is 

presented for different types of fittings inside the moonpool: 

Naked moonpool:  =  8 - 9 % 

Minor fittings:  =  13 – 14 % 

Guidance structure:  =  18 – 19 % 

Guidance structure + 50% bottom plate:  =  40 – 45 % 

Cofferdam:  ≈ 45 % 
 

Testing has been done to measure the relative motion between the moonpool water plug and 

the ship at the moonpool centre axis. An amplitude RAO for this relative motion has been 

defined as [1]: 

 

where 
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ζ = motion of the water plug [m]                   

ζs = heave motion of the ship [m]                 

ζw  = sea surface elevation outside the ship [m] 

 

3.3.1.2. Damping Approaches in Moonpool 

Horizontal Cofferdam 

A horizontal cofferdam illustrated in figure 3.6, increases the surface area in the moonpool. A 

greater surface area will reduce surface pressure and hence the surface elevation, following 

the basic pressure equation p = F/A. Here, F is the exciting force, A is the area of the 

moonpool and p is the pressure. If A increases with constant F, it is easy to see that the 

pressure will decrease. Thus will the cofferdam increase the difference between the surface 

pressure in the moonpool and the exciting fluid pressure from below [13], resulting in a 

reduced water elevation.  
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Figure 3.6: An illustration of the moonpool, including damping devices 
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Vertical Cofferdam 

Another effective damping is a vertical cofferdam which is a baffling structure with damping 

chambers, shown in figure 3.6. [8] refers to an investigation done by Spangenberg and 

Jacobsen about the effect of damping champers. Results showed that vertical wave motions 

are converted into horizontal wave motions and the wave energy, to a large extent, dissipated 

as heat energy by reflecting and conflicting currents from the holes of the perforated 

bulkheads. Figure 3.7 gives an example of the mentioned damping device: when water level 

rises, the water will run through perforated longitudinal bulkheads into damping chambers. 

When the water level decreases, the water will run from the damping chambers back into the 

moonpool.  

Øritsland [22] have carried out measurements of surface elevation in moonpool, aiming to 

find the damping effect of the damping chambers arrangement. For perforated bulkheads with 

horizontal decks, as shown in figure 3.7 he states that moonpool RAOmax is reduced with 

approximately 70 % compared to a test without structure in the moonpool. It shall thus be 

noted that this was a model test with moonpool dimensions of 0.157 x 0.157 m, and that result 

may differ somewhat in a bigger moonpool.  

 

 

 

 

 

 

 

 

 

 

 

The vertical cofferdam effect is also introduced in DNV [1] and can be read from figure 3.8; 

Marintek has measured the relative water elevation in a moonpool per unit incoming wave 

amplitude for different fittings in the moonpool. One can see that the cofferdam highly 

reduces the RAO for the relative motion, and in resonance the RAO is only about 0.5 in the 

cofferdam, compared to 3 for a naked moonpool.  

Figure 3.7: Illustration of damping chambers [8] 
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Bottom plates 

Installing bottom plates in the moonpool will work as a flow constriction and thus avoid some 

of the excitation force to be transmitted to the water inside the moonpool. Øritsland [22] has 

tested a circular bottom plate, which reduced the opening by 48.8 %. He found this to be a 

very favorable damping feature of the relative motion; RAOmax had an 80 % reduction and 

significant values had a reduction of 65 % in 2,3 m waves. Figure 3.9 also shows the same 

indicating results, guidance structure and a 50 % bottom plate significantly reduces maximum 

RAO values.  

Attention must however be drawn with regards to the decrease of the cross-sectional area of 

the opening. Reduced moonpool opening means only smaller structures can be launched 

through it. However, the Framo pump unit constitutes a small part of the moonpool cross-

sectional area and thus could a bottom plate have been implemented.  

Air injection 

A number of moonpool construction vessels have applied an air bubble system that aerates the 

water in the moonpool.  It is done by adding air to the water and this will decrease the impact 

load on the equipment passing through the moonpool but not reduce the oscillations [8]. 

Figure 3.8: Measured relative water elevation in a moonpool per unit incoming wave 

amplitude (DNV [1] Courtesy of Marintek)   
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Øritsland [22] states that combined with the damping chambers, the injection of air has little 

effect upon the relative motion.  

Other damping devices 

We can read from figure 3.8 that any fittings inside the moonpool will be subject to increased 

damping. Cursor system rests in the moonpool opening and will thus act as a damping device 

even though it is not the main purpose of the system. 

An airtight casing above the moonpool will also reduce oscillations by increasing the 

damping. Assuming air is incompressible the air above the water surface will create damping 

of the water inside the moonpool. Kuo [14] speaks about design considerations related to this 

solution: One can build a housing over the top opening of the moonpool at the weather deck 

level. This would enclose all the lifting mechanism as well as the entry to decompression 

chambers, which may be installed within the housing or outside the housing with the mating 

flange inside. The solution requires airtight housing and that double doors are introduced for 

entry and exit of personnel and equipment.  
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3.3.2. Drag 

3.3.2.1. Drag in General 

When an object moves in fluid, or fluid flows past an object, the object will experience forces 

exerted by the fluid. Theoretically, there are two main contributions to the drag force; friction 

force between the object and the fluid, and the pressure difference between the upstream and 

downstream side of the object.  

The friction force between the object and the fluid, the skin friction, is caused by the viscous 

behavior of the fluid and the roughness of the objects surface. Skin friction is a velocity 

dependent force and will always work in opposite direction of the movement.  

When a water flow separates and flows past an object, vortices a created around the corners of 

the object. The fluid is accelerated, resulting in a higher velocity of the water particles of the 

vortices compared to the water particles of the upstream flow. Thus, according to Bernoulli, a 

pressure difference arises between upstream and downstream side of the object, creating a 

force opposite of the direction of the movement. 

Faltinsen [7] states that for steady incident flow past a circular cylinder the major contribution 

to the drag force comes from the pressure different between downstream and upstream. 

Normally this also yields for lifting operations. 

 

3.3.2.2. Drag Coefficients 

Drag coefficients for lifting analysis may be fairly difficult to estimate and the most accurate 

method is to carry out model tests. The coefficient will depend upon several different 

parameters like the Reynolds number, Keulegan-Carpenter number, geometrical shape of the 

lifted object as well as the roughness of it, and also the nature of the flow. These parameters 

will be described in brief in this section, except from the Keulegan-Carpenter number which 

is described in 3.3.4. Some difficulties around the drag coefficient will also be shown 

attention in this section. 

The Reynolds number is defined as: 

 

where  is the velocity of the fluid,  is the characteristic body dimension, and  is the 

kinematic viscosity of the fluid. The Reynolds number is a dimensionless number and can be 

thought of as a comparative measure of inertial effects to viscous effects in the flow.  

Understood from equation 3.34 is that the Reynolds number will vary with depth as the water 

velocity profile is depth dependent, hence different drag coefficient should be used for 

different depths. Figure 3.9 shows different drag coefficients as a function of the Reynolds 

number. 
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Figure 3.9: Log-log plot of drag coefficient CD as a function of Reynolds number Re for spheres, transverse 

cylinders, and face-on disc [11] 

The drag coefficients dependence on the Reynolds number can be divided into different flow 

regimes. Faltinsen [7] refers to the four different flow regimes: subcritical flow, critical flow, 

supercritical flow and transcritical flow. For a flow around a smooth cylinder this refers to Re 

< ≈ 2 · 10
5
 for subcritical flow, ≈ 2 · 10

5 
< Re > ≈ 5 · 10

5
 for critical flow, 

 
≈ 5 · 10

5 
< Re > ≈ 3 

· 10
6
 for  supercritical flow, and Re > 3 · 10

6
 for transcritical flow.  

Based on values in the range of 10
0
 for both the moonpool particle velocities and the 

characteristic dimensions, and the kinematic viscosity in the range of 10
-6

 for water, 

approximate values of the Reynolds number for the pump unit will be in the range of 10
6
.  

The geometrical shape of the launched object plays an important role when estimating the 

drag coefficient. Different shaped objects may have very different drag coefficients, even 

though the same Reynolds number and identical frontal areas, ref. figure 3.10. The drag 

coefficient`s dependence on geometrical shape also appears from figure 3.9.  

 

 

 

 

 

 

 

In subsea lifting operations roughness is often referred to as marine growth and it may have 

great influence on the drag coefficient. However, the Framo pump unit is preferably stored 

CD= 1,28 

Bullet Flat plate 

CD= 0,295 CD= 0,6 

 

Sphere 

Flow Flow Flow 

          Figure 3.10: Drag coefficients of standard shapes [9] 
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dry, and associated with all other uncertainties with the drag coefficient, the roughness may 

be disregarded. The pump unit is installed at 200 meters water depth, and marine growth is 

not a major problem at these depths. Consequently the pump can be assumed smooth also 

during retrieval.    

DNV [1] states that test results of typical subsea modules show that the drag coefficient 

increases significantly when lifted object undergoes oscillatory motion.  Using a steady-flow 

drag coefficient instead of an increased drag coefficient for oscillatory flow may 

underestimate the damping force and overestimate resonant motions of the object. However, 

Sarkar & Gudmestad [21] points out that for large structures whose hydrodynamic is inertia 

dominated, higher drag coefficients should be used with caution since it may induce 

unrealistic damping in the simulation of the motion. Numerically, this may reduce resulting 

maximum wire tension when analyzing. Thus, a conservative approach may be to assume 

non-oscillatory flow. Konopka [13] states that long periods and relatively large amplitudes of 

the moonpool oscillations also leads to the assumption of treating the flow as non-oscillatory. 

A commonly adopted procedure for finding drag coefficients is to consider the 2D surface of 

the lifted object perpendicular to the flow direction, and to modify it due to the body 

extension in flow direction. DNV [1] provides a simplified calculation method for this. Table 

3.2 shows this method for some well-known geometrical shapes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2: Drag coefficients for some well-know geometrical shapes, recommended by DNV [1] 
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3.3.2.3. Drag Forces in Moonpool 

Even though non-oscillatory flow is assumed, the drag coefficient will increase when adapted 

to moonpool operations, due to the restricted flow conditions provided by moonpool walls. 

DNV [1] suggests the following way of calculating the increased drag coefficient: 

 

where 

CD = drag coefficient for moonpool [-] 

CD0  = drag coefficient for unrestricted flow [-]  

Ab = solid projected area of the object [m
2
] 

A = cross-sectional area of the moonpool (at the vertical level of the object) [m
2
] 

 

 in 3.35 is identical to the  presented in table 3.2. From 3.35 we read that the drag 

coefficient for moonpool will increase as the blockage ratio defined as    increases. Figure 

3.11 graphically shows the relation between the drag coefficient and the blockage ratio. The 

blockage ratio influences the drag coefficient significantly more than the added mass 

coefficient, see section 3.3.3.3. When the object to be launched has a cross-section half of 

moonpool cross-section, the drag coefficient will increase by a factor of 3. The Framo pump 

unit though, is small compared to a standardized moonpool area and its blockage ratio will be 

in the range of 0,1 – 0,2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Drag coefficient as a function of moonpool blockage ratio 
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From table 3.2 one can see that DNV-RP-H103 defines the drag force as: 

 

 

For moonpool calculations,  is replaced by  which is the moonpool drag coefficient.  

To estimate the drag coefficient for a structure as complex as the Framo pump unit with 

running tool is more complicated than to estimate the added mass coefficient. Konopka [13] 

states that for a diving bell with protection structure and gas-bottles outside, it is almost 

impossible to estimate correct drag coefficient without model testing. A very simplified 

approach is to treat the pump as either a cylindrical or a square structure. Appendix A 

compares the drag coefficient and corresponding drag forces for cylindrical and square 

structure, based on the DNV [1] approach. Results show that the square structure will have a 

somewhat higher drag coefficient than the cylindrical structure.  

The approach in Appendix A does not account for any sharp edges of the pump surface which 

may underestimate drag forces, and the approach seems far to simplified to be used in 

practice. The Framo pump unit has a varying cross-section and some surfaces may be in the 

wake of others. Using all elements that are moving normal to the wave force may be an 

overestimation due to this. On the other side, using only the projected area may be an 

underestimation due to the distance between the elements. Hence, it may be reasonable to 

divide the pump unit into a number of separate parts and calculate the drag coefficient for 

each of them and then find a middle value. The different coefficients must in that case be 

weighted by the projected area of that particular part.  

Appendix B shows how the pump unit with the running tool and cursor is divided into 

separate parts and their individually calculated drag coefficients. Some elements are 

neglected, and in some cases where the parts consist of different elements, a middle value of 

the projected area is found. Table 3.3 presents the estimated coefficients for the fully 

submerged pump unit, and modified coefficient applicable for moonpool operations.  

 

CDS  [-] Estimated CDS  [-] Applied CD  [-] Applied in MP Projected Area [m
2
] 

1,451 1,5 2,0 8,73 

Table 3.3: Calculated drag coefficients for fully submerged pump unit 
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Added mass 

Added mass 

Lifted object 

3.3.3. Added Mass 

3.3.3.1. Added Mass in General 

A forced motion of an object in water generates waves because it must move some of the 

surrounding fluid as it moves through it. The fluid adjacent to the object will thus be 

accelerated with the body to varying degrees, depending on what position they have relative 

to the object. The added mass is a weighted integration of this entire mass.  

Added mass values for lifted objects are important when evaluating dynamic forces during a 

lifting operation. Ideally added mass should be accurately found from free decay or forced 

oscillation model tests.  From decay tests we find the natural frequency of the system in both 

air and water. By neglecting added mass in air, the added mass in water can be determined by 

the following relation: 

 

where  is the natural frequency in air and  is the natural frequency in water.  

A well adapted conservative approximation for calculating the added mass of simple objects 

is by adding the volume of two water-hemispheres on top and bottom of the object, as shown 

in figure 3.12. The extra volume will be the object`s added mass.   

 

 

 

 

 

 

 

 

  

3.3.3.2. Mass Coefficients 

It is far from a trivial operation to determine added mass coefficients. The proximity of the 

lifted object to the free surface or fixed boundaries, shape of object, frequency, perforation 

and motion mode all have influence on the mass coefficient. The following will in brief 

outline these parameters and their affect on the mass coefficient.  

 

Figure 3.12: A simplified approach when estimating added mass 
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Added mass values tend to show strong frequency dependence. Faltinsen [7] reads that the 

added mass in heave for a surface-piercing two-dimensional body in deep water goes 

logarithmically to infinity when ω0. If choosing to estimate added mass values as functions 

of frequency, we may define 6x6 added mass matrices for different frequencies. However, 

this is not a straight forward operation and dedicated software tool is needed. DNV [1] does 

not account for this frequency dependence in their added mass formulas.   

Perforation of objects will also reduce the added mass. The added mass of a perforated object 

is normally calculated from the added mass of the same but non-perforated object by 

multiplying with a reduction factor [21]. 

The proximity of an object to another one, to the free surface or a wall, will influence the 

added mass. Figure 3.13 is taken from DNV [1] and it shows how the added mass for a 

cylinder varies when lifted object is in the vicinity of the free surface. The frequency of the 

motion goes to infinity in this specific case. Fully developed added mass should be applied 

when the top surface of the structure is at a depth greater than the radius of the cylinder, i.e., 

h/r ≥ 2 [21]. 

 

 

 

 

 

 

 

 

 

 

As mentioned in section 3.3.3.1 added mass values may be estimated as equivalent to two 

hemispheres of water of top and bottom surface. The approach may also be an approximation 

for objects close to the free surface; the added mass is taken as the available volume of the 

water-hemisphere depending on the depth of submergence [21]. Figure 3.14 shows an 

illustration of such a procedure.  

 

 

Figure 3.13: High frequency limit of vertical added mass coefficient and its derivative close to a 

free surface as a function of water depth. Solid line: a33/ r2. Dotted line: (da33/dh)/ r (DNV [1] 
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Added mass coefficients depend on the motion mode [7]. This means that added mass in 

heave for a body is not necessarily the same as added mass in sway, as opposed to Newton`s 

equation  F = ma where the mass m is independent of the direction of the acceleration a. 

However, it is convenient to ignore coupled motions and consider heave motion only for 

moonpool operations. 

The shape of the object has a significant influence on the added mass coefficient. Considering 

a rectangular shaped object, the added mass will differ drastically with direction. DNV [1] has 

introduced an analytic approach for calculating the added mass coefficient for simple 

geometrical structures, see table 3.4. 

Most subsea structures are complex geometries and hence it is difficult to determine 

hydrodynamic coefficients. Added mass values can be obtained by dividing the structure into 

different well-known geometries, and add resulting values together. Appendix C shows how 

total added mass is calculated for pump with running tool by simply combining different 

geometries introduced in DNV [1], assuming a fully submerged structure. Interactions 

between the different geometries which may increase the added mass is disregarded in the 

calculations, neither has perforation been accounted for; it is very difficult to determine which 

reduction factor to use due to structure complexity. Added mass values calculated should be 

considered to be rough estimates, and more realistic values should be obtained from model 

tests or CFD-analysis. 

Figure 3.14: Approximation of added mass values of a rectangular plate close to the free surface. 
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Table 3.4: Added mass coefficients for some well-know geometrical shapes, recommended by DNV [1] 

 

3.3.3.3. Mass Forces in Moonpool 

As for the drag coefficient, the added mass coefficient is also increased when exposed to 

restricted flow conditions in moonpool. DNV [1] suggests the following way of calculating 

the increased added mass coefficient: 

 

where 

CA = added mass coefficient for moonpool [-] 

CA0  = added mass coefficient for unrestricted flow [-] 

Ab = solid projected area of the object [m
2
] 

A = cross-sectional area of the moonpool (at the vertical level of the object) [m
2
] 

 

From 3.38 we read that the added mass coefficient for moonpool will increase as the blockage 

ratio defined as   increases.  Figure 3.16 graphically shows this relation. We see that the 

added mass coefficient is not significantly affected by the moonpool flow conditions; when 

the lifted object has a cross-section half of moonpool cross-section, the moonpool added mass 

coefficient is approximately 1,4 times greater than the coefficient for unrestricted flow. For a 
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Framo pump the cross-section is much smaller than the moonpool and the added mass 

coefficient will only increase slightly. 

 

 

Figure 3.15: Added mass coefficient as a function of moonpool blockage ratio 

 

From table 3.4 we see that added mass can be calculated as: 

 

For moonpool operations  is here taken to be the modified added mass coefficient as given 

in 3.38. Table 3.5 shows results for added mass values in moonpool for a fully submerged 

pump with running tool, cursor system is disregarded. The modified added mass coefficient 

accounts for restricted flow conditions in the moonpool. However, as we see from table 3.5, 

added mass values do not increase when shifted to moonpool. This is a consequence of 

dividing the structure into smaller elements. Added mass values are calculated for each 

individual element and projected area therefore becomes a very small part of the total 

moonpool area. From equation 3.38 we then get the same values for  and for . This must 

be considered an error to the simplified approach and a somewhat higher added mass should 

be expected. 

It should also be noted that 3.38 accounts for the size of launched object, but not for where in 

moonpool the object will be launched. Some cursor systems only sit on one of the moonpool 

walls and in that case the object should be considered to be in the vicinity of a fixed wall. 

Hence, added mass coefficient will increase further as figure 3.13 indicates.  
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The added mass has been calculated using two different approaches, the first one entirely 

based on known geometries presented in DNV [1]. The second approach is based on both the 

DNV [1] and the approximation of adding the volume of two water-hemispheres on top and 

bottom of the object. Further explanations and illustrations can be found in Appendix C. 

Table 3.5: Calculated added mass for fully submerged pump unit 

 

 

 

 
A33 [kg ] 

Estimated 

A33  [kg]         in 

MP 

A33 [kg]   Applied 

in MP 

Projected Area 

[m
2
] 

Total Added 

Mass, Approach 

1 

5093,3 5093,3 5110 7,19 

Total Added 

Mass, Approach 

2 

4339,8 4339,8 4355 6,71 
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3.3.4. Mass and Drag Dominating System 

When added mass and drag coefficients has been presented, we should discuss their use and 

importance. One way of studying mass and drag dominance is by use of the Morrison 

equation. Konopka [13] has investigated Morrison forces when launching a diving bell and 

cursor through a moonpool. He found that the diving bell was clearly added mass dominated, 

while the cursor was drag dominated. Based on the geometry of the Framo pump unit with 

running tool it is not obvious from the above results if the structure is mass or drag 

dominated.   

Many engineers avoid using the Morrison equation as it includes a quadratic drag term. 

Instead the Keulegan-Carpenter number is used to prove drag or mass dominance. The 

Keulegan-Carpenter number is defined as: 

 

where  is the maximum particle velocity of the flow and T is the wave period. The 

Keulegan-Carpenter number is a dimensionless parameter describing the relative importance 

of drag forces over inertia forces. Gudmestad [11] presents a rule of thumb on deciding if a 

system is mass or drag dominated. H is here the wave height, i.e. double amplitude and D is 

the characteristic dimension of object: 

 The drag term will dominate for     

 

 The mass term will dominate for  

 

 In between, both drag and added mass terms must be taken into account        

 

Figure 3.16 graphically shows the approach from above ([3], in DNV [1]). Here H is the wave 

height, λ is the wave length and D is the characteristic dimension. To be able to give an 

approximately prediction of what forces we may expect, we can use some reasonable values 

for the wave height and the wave length. As an upper limit, Statoil has set Hs= 5m for 

installation activities of pump through moonpool. To estimate an appropriate wave length we 

investigate two realistic cases; Hs = 5m, Tp= 10 seconds and Hs=3m, Tp=7 seconds. Pump 

with running tool have the approximate dimension of 3,6 meter. However, this is not solid 

area and perforation should to some extent be accounted for. Characteristic dimension is 

therefore set to 3 meters. Table 3.6 shows expected values for H/D and πD/λ and respective 

force regime. We see that according to the force regime presented in figure 3.17 the pump 

unit is expected to be mass dominated. Note that these results are based on statistical 

information and should not be used without further analysis. 

 

 



    Moonpool Theory 

60 

 

Hs [m] Tp [s] λ [m] D [m] H/D πD/λ Force Regime 

5 19 156 3 1.67 0,06 V 

3 7 77 3 1 0,12 III 
Table 3.6: Estimated values for H/D and πD/λ 

 

     Figure 3.16: Different wave force regimes [3], figure taken from DNV [1] 
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3.4. Wave Kinematics 

Information about water particle motions is on the main input requirements when studying 

marine lifting operations. The velocity of the fluid particles around lifted object must be 

expected to give a significant contribution to the forces acting on the object, especially when 

it is hoisted or lowered close to surface. This chapter will in brief outline some of the derived 

formulas related to linear wave theory.  

Faltinsen [7] presents results from derivation of linear wave theory for propagating waves in 

finite water depth, some of who shown in table 3.7. Linear wave theory can, to a large extent, 

describe the wave induced motions and loads on large-volume structures, like a construction 

vessel. The theory put to use the assumptions of incompressible, inviscid and irrotational 

fluid.  

Velocity potential  

Dynamic pressure  

x-component of velocity  

y-component of velocity  

x-component of acceleration  

z-component of acceleration  

Table 3.7: Velocity potential, pressure, velocity and acceleration for regular sinusoidal propagating waves on finite 

water depth according to linear theory [7] 

 

A real sea state (irregular waves) can be considered a combination of regular waves with 

different amplitudes and frequencies. To be able to apply formulas in table 3.7 to an irregular 

sea state we must allow the linear theory to superposition plane wave solutions. Superposition 

simply summarizes the regular waves in an irregular sea state accounting for the phase lags. 

We assume that waves have the same propagating direction, which also is a simplification of 

a real sea state where waves may propagate in different directions. For a realistic record of 

uni-directional waves, a superposition of at least 15-20 components is required in practice if 

one is only interested in the mean value of an output [12]. Superposition of two sinusoidal 

waves is shown in figure 3.17. A real sea state will consist of a number of surface profiles.  
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Figure 3.17: Superposition of two sinusoidal waves 

 

It is only logical to study the frequency dependency of an irregular wave train. Thus, the wave 

elevation (in the time domain) of a long-crested irregular sea, propagating along the positive 

x-axis, can be written as the sum of a large number of regular wave components (in the 

frequency domain) [12]: 

 

where  is the phase angle component. Phase angle is included to obtain a random irregular 

sea state. 

The applicability of linear wave theory is an important issue to address. According to DNV 

[5] three wave parameters determine which wave theory to apply in a specific problem. These 

are the wave height, the wave period and the water depth. Konopka [13] has computed 

different wave series for moonpool operations and found that his conditions are well outside 

the limits recommended for linear wave theory, and that 2
nd 

or 3
rd

 order Stokes theory may be 

better choices. Further, he states that since the conditions are within (or on the limit of) the 

definition of deep water, the wave potential derived by 2
nd

 order Stokes theory would be equal 

to the first order velocity potential derived by linear theory for regular waves. Stokes theory is 

also not applicable due to the irregular waves, and it is therefore reasonable to use linear 

theory. However, using this model may give some predictive errors. 
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3.5. Transfer Functions  

To be able to predict water motions in the moonpool, we must know how the moonpool 

response to wave excitation pressure combined with the vessel motion, as well as the sea 

keeping capabilities of the vessel. Such responses are commonly described by transfer 

functions. 

DNV [1] introduce the following assumptions in their simplified prediction of moonpool 

water motions: 

- The moonpool dimensions are small compared to the breadth of the ship. 

- Only motion of water and object in vertical direction is considered. 

- The blocking effect of the lifted object on the water in the moonpool is moderate. 

- Cursors prevent impact into the moonpool walls. Only vertical forces parallel to the 

moonpool axis are considered.  

A discussion of these assumptions is appropriate in this context. The proposed moonpool for 

our use is a standard moonpool of 7,2 x 7,2 m. The breadth of typically construction vessel is 

in the range of approximately 20 m. Assuming small moonpool dimensions compared to the 

breadth of the ship is hence questionable and should be subject to further discussions before 

applying the simplified approach recommended by DNV [1]. 

To only consider vertical water motions seems reasonable, especially when the object to be 

lifted is fixed to cursor. The moonpool is also preferably located close to centre of roll and 

pitch axis where translatory motions are minimized.  

The blocking effect of a Framo pump unit lifted through the moonpool will be rather small, as 

already mentioned. The cross-sectional area of a pump unit will be about 4 m
2
, compared to 

about 52 m
2
 for the moonpool cross-sectional area, which justifies the assumption of a 

moderate blocking effect.  

To assume that cursor prevents impact into the moonpool walls is a reasonable assumption.  

The DNV simplified approach [1] is based on the model in figure 3.18. 
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Figure 3.18: Moonpool definitions for DNV-RP-H103 simplified approach [1] 

 

The starting point for the simplified approach is the equation of motion of the water plug. The 

equation is similar to the mass-spring equation; which has been proven earlier in this thesis to 

be applicable for moonpool water motions. The equation of the water plug can be written as 

[1]: 

 

where 

 =  mass of water plug [kg] 

 =  added mass of water plug [kg] 

  =  motion of water plug [m] 

 s 
=  heave motion of ship [m] 

 b 
=  motion of body in moonpool [m] 

 w 
=  sea surface elevation outside moonpool [m] 

 =  damping coefficient for relative motion between water plug and vessel [kg/m] 

 =  damping coefficient for relative motion between water plug and object [kg/m] 

  =  gA water plane stiffness [kg/s
2
] 

 =  wave excitation force on water plug [N] 

 

The added mass of the water plug can according to DNV [1] be taken as: 
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Konopka [13] has found that 3.49 is valid also for the reduced mass of the water plug and 

increased damping, which justifies using the equation also when the pump unit is present. 

However, the reduced area of the moonpool opening due to the pump unit is neglected. It is 

also believed that different fittings inside the moonpool will affect the added mass.   

Assuming a moonpool with constant cross-sectional area (7,2 x 7,2 m) the added mass of 

water plug will be 175,3 tons, using equation 3.49. This assumes no bottom plates, which will 

have a reducing effect on water plug added mass. Øritsland [22] tested a circular bottom plate 

with opening for the diving bell; the plate reduced the opening by 48,8 %. Such a reduction of 

moonpool opening would have decreased the added mass in our moonpool by a factor of 3.  
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3.5.1. Vessel  

The ship heave motion is related to the sea surface elevation by a transfer function  [1]: 

 

The vessel transfer function, commonly referred to as RAO`s (Response Amplitude 

Operators), defines the vessel reaction to the action of waves. The vessel motion transfer 

function is normally derived using dedicated software, and is often verified by model tests. 

RAOs are exclusive to its respective vessel and load case.  

The vessel RAO is a complex function which returns a complex number for each wave 

frequency. The real part of the function gives the response amplitude to the wave amplitude, 

while the argument gives the phase angle or motion delay.  

To utilize a vessel RAO we need information about the sea state in which the vessel shall 

operate.  Generation of an irregular sea state (as described in 3.4) is often based on a wave 

spectral density function. For North Sea waves, we may use the JONSWAP wave spectrum. 

Figure 3.23 shows a standard JONSWAP spectrum.  

When solving non-linear problems, we may transform the wave spectrum into time series. 

This is often referred to as the inverse problem as the wave spectrum itself is derived by use 

of time series; the first transformation basically divides an arbitrary signal (though limited in 

time and assumed periodic) into its frequency dependent components (spectrum). Given 

sufficient sampling frequency, the inverse transform of a signals spectrum rebuilds the 

original signal [13].  

When we obtain a wave spectrum from time series, we lose the phase angle. When doing the 

inverse transformation we need the phase angle to generate the time record, and therefore we 

must choose a new set of random angles, i.e. 0 - 2π. Our newly obtained time series will thus 

be different from the original one. However, the energy density is equal and statistically they 

are also identical. Figure 3.19 shows the time series from the wave record analysis and the 

results from the inverse transformation.  

 

 

 

 

 

 

 

 

Figure 3.19: Wave record analysis and regeneration [12] 
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3.5.2. The Water Plug  

This section briefly outlines the simplified method for calculating the water plug response 

presented in DNV [1].  

The hydrodynamic pressure force on the water plug can be related to the sea surface elevation 

by a transfer function : 

 

If we disregard the lifted object in equation 3.48, the motion of the water plug can be written 

as: 

 

where   is the total mass of the water plug, included the added mass and  is the linearized 

damping coefficient between the water and the vessel, and is defined as .   is 

the damping ratio relative to critical damping. Substituting 3.52 into 3.51 and thus rewrite it 

on a frequency dependent form gives: 

 

From 3.53 DNV [1] defines a transfer function between the surface elevation and the motion 

of the water plug: 

 

 

 

To be able to find a relationship between transfer functions  and , DNV [1] suggests 

some simplifying assumptions: 

 Moonpool dimensions are small compared to ship breadth  

 Excitation force due to incoming waves and due to ship motions can be assessed as for 

a ship without moonpool 

 Fluid pressure expressions valid for long waves can be used 

 Deep water is assumed  

Based on these assumptions, the following approximate expressions for the forces on the 

water plug can be used: 
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where  is taken as the Froude-Krylov dynamic fluid pressure, and is the added mass of 

the water plug.  

Equation 3.51 can thereby be extended to give a complete expression for the transfer function 

between the surface elevation and the exciting force: 

 

where  is the wave number and can be expressed as , based on the deep water 

assumption.  

The damping amount in the moonpool has a fairly large impact on the response calculations. 

For the illustrated moonpool in figure 3.6 it is recommended by DNV [1] to use a 45 % 

damping coefficient. 
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3.6. Water Entry 

Water entry is an essential phase of any marine lifting operation. It is commonly assumed that 

the dynamic forces are largest in this phase of the lift; hence the highest loads may occur here. 

Slack lifting wire and resulting snap loads are critical features during water entry and should 

as far as possible be avoided.   

Analysis and estimation of hydrodynamic loads during water entry is a complex matter. 

Different stages of submergence for lifted object causes large non-linearities; water impact 

effects will vary constantly along with drag and added mass values. As a result the lifting 

operation should be analyzed using a number of different load cases. Establishing load cases 

should identify main items on lifted object contributing to hydrodynamic forces [1]. 

Slamming 

As mentioned under the description of installation steps of the Framo products, it is crucial to 

keep launched object from residing in the splash zone. Impulse loads with high pressure peaks 

occur during impact between an object and water [7]. This is referred to as slamming. The 

characteristic slamming impact force on the parts of the object that penetrate the water surface 

may be taken as [1]: 

 

where   is the slamming coefficient, taken to be not less than 5,0 for a structure such as the 

Framo pump unit [1].  is the projected area on a horizontal plane that will be subject to 

slamming loads during crossing of water surface, and  is the slamming impact velocity. The 

slamming velocity is given as: 

 

where  is the hook lowering velocity,  is the characteristic single amplitude vertical 

velocity of the crane tip and  is the characteristic vertical water particle velocity.  

Varying Buoyancy 

Wave surface elevation causes constant change in buoyancy force in the splash zone. Figure 

3.20 illustrates the phenomenon. The left triangular object is suspended in a wave crest and 

will be subject to a substantial uplift due to buoyancy. The second triangular object is 

suspended in wave trough and will not be subject to any uplift due to buoyancy.    

 

 

 

 

 

 

 

 

Figure 3.20: Illustration of varying buoyancy in the splash zone 
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The change in buoyancy force is given as [1]: 

 

  

where  is the change in volume of displaced water from still water surface to wave crest or 

wave trough.  

Mass force 

The mass force term is here considered as a combination of the inertia force and the 

hydrodynamic force contributions from Froude-Krylov forces and diffraction forces. The 

characteristic mass forces on an object due to combined acceleration of object and water 

particles may be taken as [1]: 

 

 

Added mass has been discussed earlier and will not be given any further attention in this 

section.  

 

Drag force 

The characteristic drag force on an object may be taken as [1]: 

 

Drag has been discussed earlier and will not be given any further attention in this section.   

Resulting force 

From the previous it is clear that the resulting hydrodynamic force acting on lifted object is a 

time dependent function of slamming impact forces, varying buoyancy hydrodynamic mass 

forces and drag forces, and can be estimated as [1]: 

 

Note that slamming forces only act upwards. Total load on lifted object (maximum and 

minimum) is found by adding or subtracting the resulting hydrodynamic force to the static 

weight of the object.  

Snap force 

Snap loads occur if the upward hydrodynamic forces exceed the static weight of the lifted 

object. The characteristic snap load may be taken as [1]: 

 

where   is the snap velocity, and is dependent on free fall velocity of lifted object, 

lowering velocity, characteristic single amplitude vertical velocity of the crane tip and the  
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characteristic vertical water particle velocity. K is the stiffness of the hoisting system.  If snap 

loads occur then total force on lifted object should be taken as the static weight of the object 

plus snap force.  

 

3.6.1. Moonpool vs. Overside Water Entry 

If properly designed, relative motions in moonpool should be smaller compared to wave 

motions on the ship side. As earlier mentioned a moonpool is preferably located close to 

centre of roll and pitch axis to reduce adverse effects of vessel angular motions. To 

mathematically prove this, we use a vessel with six degrees of freedom of a vessel. The 

motion of any point on the vessel is then given as [7]: 

 

where  denotes displacement in respective direction, 1, 2 and 3 are translatory motion in 

surge, sway and heave, and 4, 5 and 6 are  the angular motions  roll, pitch and yaw. x, y and z 

is the coordinates at the centre of gravity. Knowing that the moonpool is located close to this 

point the angular motions may be disregarded, meaning . Consequently will 

vessel motion be reduced to: 

 

However, 3.58 is not applicable for overside water entry, as the crane tip is positioned further 

away from vessel centre of gravity. Therefore we may expect greater crane tip velocities and 

accelerations when launching overside compared to moonpool. Assuming the same wave 

conditions this implies that the water entry forces will be larger during overside launching, as 

they are a function of the relative velocities and accelerations between crane tip and waves.  

Water oscillations in moonpool excited by waves and heave motion of vessel may reach great 

magnitudes in resonance condition. If so happens, the characteristic vertical water particle 

velocity will increase causing the slamming impact velocity to increase.  

A vital difference between lifting through moonpool and over the vessel side is the moonpool 

cursor system. Lifted object is fixed to cursor when launched through moonpool, which 

prevents horizontal and also rotary motion of object. Consequently will an object launched 

through the moonpool always meet the water with bottom first, while an over side launching 

operation may not have the ability of keeping a constant alignment of object at all times.   

Pendulum motion of lifted object is also avoided by using a cursor system. During an overside 

lift pendulum motion may arise when horizontal forces act on the object, both from waves and 

from wind.  

The moonpool cofferdam will induce a milder water entry; a reduction of the surface 

elevation due to the cofferdam increases the difference between the surface pressure in the 

moonpool and the exciting fluid pressure below [13]. Equation 3.12 relates the pressure 
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Environmental 

forces 

gradient in the moonpool to the vertical fluid acceleration, and from that it follows that fluid 

accelerations will be smaller in the cofferdam.   

Air injection in moonpool may also induce a milder water entry. When aerating the water we 

can decrease the impact load on the object passing through the moonpool.  

The location of the moonpool may, however, not be at the exact centre of roll and pitch 

motions, and also, centers of roll and pitch motions do not always correspond to the same 

location. We must therefore take into account that roll and pitch motions of the vessel will, to 

some degree, affect the crane tip motion in the moonpool.  

During an overside lift we expect the highest loadings to occur when going through the splash 

zone. Through the moonpool it is not necessarily given that the splash zone will induce the 

highest loadings. A critical area, mentioned in 3.2.3, is the phase where lifted object leaves 

the moonpool. It is very hard to obtain detailed information about forces acting below the 

moonpool entrance and consequently it becomes very difficult to predict forces acting on the 

object. A possible high momentum can arise when object is exposed to horizontal wave forces 

and still connected to cursor system. As a result we may experience high forces on the object-

cursor interface. Combined with vessel rotational motions the forces may be enhanced. The 

scenario is illustrated in figure 3.21. High momentum is an issue during the total lift through 

the moonpool and it is important that object-cursor interface can withstand these loads.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: Lifted object below moonpool 
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3.7. Moonpool Resonance Period 

The resonance period has been calculated using equation 3.29 where constant cross-sectional 

area of moonpool is assumed. The horizontal cofferdam will increase the surface area some 

distance above mean water level but this is disregarded as no information about cofferdam 

exists. Varying cross-sectional area due to the vertical cofferdam is also disregarded in 3.29 

and a somewhat higher resonance period than what indicated in figure 5.1 could be expected. 

Figure 3.22 shows the resonance period as a function of the vessel draft. Vessel draft is 

chosen based on typical drafts of installation vessels.  

 

 

 

We see that the moonpool resonance period has a value lying between 5,4 and 7,8 seconds. 

The graph shows a clear, almost linear, correlation between resonance period and draft of 

vessel.   

Øritsland [22] presents results for relative motion in a 3,9 x 3,9 m moonpool. He used a hull 

model in irregular seas, simulating a diving operation condition on station keeping at 60° 

heading to the waves and scaled his result using Froude scaling law. The draught of used 

vessel was 5,44 m. His results are reproduced in table 3.8.  

We see that the agreement between test results from table 3.8 and calculated resonance period 

in figure 3.22 is satisfactory. Test results also shows that damping chambers installed in 

moonpool will increase the resonance period slightly. 

 

 

 

  

Figure 3.22: Resonance period as a function of vessel draft 
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Wave Relative motion in moonpool Reduction Remarks 

Test 

no. 
H1/3 (m) HR 1/3 (m) 

T1 

(s) 

RAO 

max. 

Peak 

Period 

TP (s) 

HR 1/3 

(%) 

RAO 

(%) 
 

13 

 
2.3 1.840 5.60 1.25 5.26 -17,5 -31.3 

“Comex” Cursor 

Rails 14 

 
4.2 2.578 6.01 1.08 5.26 -12,1 -27.5 

19 

 
2.3 0.889 6.15 0.50 6.76 -60.1 -72.5 “Comex” + damping 

chambers, 17 % light 

area 
20 

 
4.2 1.769 6.62 0.63 6.33 -39.7 -57.7 

21 

 
2.3 0.822 6.11 0.45 ~6,7 -63.1 -75.3 “Comex” + damping 

chambers, 35 % light 

area 
22 

 
4.2 1.462 6.64 0.49 6,33 -50.2 -67.1 

Table 3.8: Test results for moonpool relative motion [22] 

Resonance has the largest influence on the amplitude of the water oscillations, and one way of 

avoiding large oscillations is thus to avoid the resonance condition. However, figure 3.23 

shows dominant wave frequencies for the North Sea, which to a great extent coincide with the 

moonpool resonance period (wave period = 2  / wave frequency). In other words, it will be 

very hard to completely avoid resonance conditions when operating in the North Sea.  

 

Figure 3.23: JONSWAP spectrum for Hs = 4,0 m, Tp = 8,0 s for γ =1, γ =2 and γ = 5 
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4. Conclusion 
 

Framo Engineering AS delivers key equipment to the oil and gas industry. Enhanced recovery 

system technologies have become their speciality with innovative subsea solutions. Field 

operators want to keep a high operability of Framo equipment as it directly influences the 

production rate. The demand for replacing damaged equipment effectively has therefore 

become an important issue, and it is a desire that the sea state in which interventions can be 

done is as high as possible. Despite the development of intervention technology, the hazard of 

the air/sea interface still remains a troublesome hurdle. An alternative to the conventional 

overside crane operation is the use of a moonpool system. The main advantages of this system 

include avoidance of horizontal force components from waves and winds and smaller crane 

tip motions.  

However, the moonpool has a major drawback in its water oscillations. The wave amplitude 

inside the moonpool may become larger than the outside wave amplitude if excited at 

resonance, which can create unpredictable loadings on lifted objects. To avoid that moonpool 

natural frequency has the same value as the wave frequency would seem like a good solution. 

But in practice, when operating in the North Sea, this approach will be difficult as the 

moonpool resonance periods are normally within the period range of the typical North Sea 

wave spectrums. Thus, it becomes important to reduce response amplitude in resonance 

conditions by implementing damping features in the moonpool. Test results show that a 

vertical cofferdam reduces amplitude with more than 60 percent compared to a naked 

moonpool. Other effective damping features are horizontal cofferdams and bottom plates.  

It has been proven that moonpool water oscillations resemble a mass-spring system and its 

behavior can be approximated as such. In order to compute responses from such a system it is 

necessary to obtain information about hydrodynamic parameters. DNV-RP-H103 introduces a 

simplified method for computation of added mass and drag coefficient with the use of well-

known geometries. Framo pump with running tool is a very complex structure and 

computation of hydrodynamic coefficients is hence difficult. It is possible to obtain 

approximated values by dividing the structure into smaller elements and apply formulas 

presented in DNV-RP-H103. Results should still be used with caution as they are subject to 

large uncertainties. When doing lifting analysis the hydrodynamic coefficients should be 

accurately found from free decay test, forced oscillation model tests or CFD-analysis.   

Theory related to the moonpool water motions is without doubt a complex matter. Apart from 

the already mentioned difficulties, there is the vessel-moonpool interaction to consider. 

Investigating the coupled moonpool problem is a formidable task as it stands, and dedicated 

software is preferred to obtain realistic results. Adequate input data such as information about 

sea state and vessel RAO is required.  
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When planning a lifting operation through moonpool it is very important to have knowledge 

about the main characteristics of the system. Its limitations and difficulties should be carefully 

investigated early in the planning phase. If failing to do so, one may be taken by surprise by 

the moonpool features. On the other side, if able to overcome the drawbacks of a moonpool 

installation system, the approach would offer some distinct advantages compared to an 

overside crane operation. It would also offer an opportunity to increase the installation 

weather window and consequently we obtain a longer installation season.  
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5. Recommendation for Further Work 
 

From my point of view it is very difficult to assess the calculated hydrodynamic parameters; 

they may indicate reasonable values but should not be directly applied in any lifting analysis. 

In such analysis it is important to obtain accurate values, especially if acceptance criteria are 

somewhat marginal. It is strongly recommended that models tests are carried out and that a 

further theoretical study is performed.  

Although heave motions are commonly assumed to influence the moonpool water oscillations 

the most, it should be investigated that it is in fact so. If moonpool is mistakenly placed in 

proportion to centre of roll and pitch axis, these rotational motions may give a large effect on 

vertical water oscillations in the moonpool.  

The effect of employed damping devices should be investigated to obtain accurate damping 

values for the specific moonpool. If bottom hatches are used, it is important (and obvious) that 

launched or retrieved objects can pass through with satisfying clearance.  

In a realistic moonpool problem it is conceivable that the water oscillations will affect the 

motion of the vessel by altering the flow pattern near the bottom opening of the moonpool. In 

the same way vessel motion will affect the water motions inside the moonpool. DNV-RP-

H103 suggests a conservative approach to this coupled problem by describing the wave flow 

using linear wave theory. However, this approach may be subject to a large error as the flow 

physically is strongly influenced by the moonpool water flow. The phase where lifted object 

passes the bottom opening needs to be analysed to predict the forces acting on the cursor-

moonpool interface.   

The vessel to be used during the lifting operation must be pre-defined to obtain necessary sea 

keeping capabilities. This is required input data to the moonpool problem. Corresponding sea 

states at the actual location must also be known.  
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D1 
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APPENDIX A - Comparison of Drag Coefficient and Forces for Square and 

Cylindrical Structure 
 

The dimensions of the two geometries are given as follows: 
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The estimation of the drag coefficients for the two geometries is based on DNV-RP-H103, 

ref. table 3.3 from chapter 3.3.2.2.  

The comparison of the drag forces on the two geometries will have a small error due to the 

difference in cross-sectional area, ref. the formula for the drag force: 

 

 

where S is the projected area normal to flow direction. To minimize this error the diameter of 

the cylinder has been taken as the middle value of the distance between the outer corners and 

diameter of the square, as shown above, where the weighted line represents the cross-section 

of the square geometry.  

Table A.1 and A.4 show how the drag coefficient for steady flow varies with varying cross-

sectional area of the square and the cylinder, respectively. Table A.2 and A.5 show the 

corresponding moonpool drag coefficient, while table A.3 and A.6 show how the drag force 

per square velocity vary with the varying blocking coefficient. CDS represents the calculated 

drag coefficient for steady flow, while CD is the consequent moonpool drag coefficient.  

Note! The blue column represents length of structure equal to 4 meters, pink 4,5 meters, green 

5 meters, and blue 5,2 meters.  
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CALCULATIONS FOR SQUARE GEOMETRY 

L 

[m] 

D 

[m] 

CDS 

[-] 

L 

[m] 

D 

[m] 

CDS 

[-] 

L 

[m] 

D 

[m] 

CDS 

[-] 

L 

[m] 

D 

[m] 

CDS 

[-] 

4 
4 
4 
4 
4 
4 
4 
4 

4 
4 
4 
4 
4 

4 
4 
4 

 

1 
1,2 
1,4 
1,6 
1,8 
2 
2,2 
2,4 

2,6 
2,8 
3 
3,2 
3,4 

3,6 
3,8 
4 

 

0,95 
0,94 
0,92 
0,9 
0,9 
0,87 
0,9 
0,94 

0,96 
1 
1,03 
1,06 
1,08 

1,11 
1,13 
1,15 

 

4,5 
4,5 
4,5 
4,5 
4,5 
4,5 
4,5 
4,5 

4,5 
4,5 
4,5 
4,5 
4,5 

4,5 
4,5 
4,5 
4,5 
4,5 

 

1 
1,2 
1,4 
1,6 
1,8 
2 
2,2 
2,4 

2,6 
2,8 
3 
3,2 
3,4 

3,6 
3,8 
4 
4,2 
4,4 

 

0,95 
0,95 
0,93 
0,92 
0,9 
0,89 
0,87 
0,9 

0,92 
0,95 
0,97 
1 
1,03 

1,06 
1,08 
1,1 
1,12 
1,14 

 

5 
5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 

5 
 

1 
1,2 
1,4 
1,6 
1,8 
2 
2,2 
2,4 

2,6 
2,8 
3 
3,2 
3,4 

3,6 
3,8 
4 
4,2 
4,4 
4,6 
4,8 

5 
 

0,95 
0,95 
0,94 
0,93 
0,92 
0,9 
0,89 
0,87 

0,89 
0,91 
0,94 
0,96 
0,98 

1 
1,03 
1,06 
1,08 
1,1 
1,12 
1,13 

1,15 
 

5,2 
5,2 
5,2 
5,2 
5,2 
5,2 
5,2 
5,2 

5,2 
5,2 
5,2 
5,2 
5,2 

5,2 
5,2 
5,2 
5,2 
5,2 
5,2 
5,2 

5,2 
5,2 

 

1 
1,2 
1,4 
1,6 
1,8 
2 
2,2 
2,4 

2,6 
2,8 
3 
3,2 
3,4 

3,6 
3,8 
4 
4,2 
4,4 
4,6 
4,8 

5 
5,2 

 

0,95 

0,95 

0,94 

0,94 

0,92 

0,9 

0,89 

0,88 

0,87 

0,9 

0,92 

0,96 

0,98 

0,99 

1,02 

1,04 

1,06 

1,08 

1,1 

1,12 

1,14 

1,15 
 

Appendix Table A.1:Drag coefficient for steady flow, square geometry 

 

 

Aprojected 

[m
2
] 

CD [-] Aprojected 

[m
2
] 

CD [-] Aprojected 

[m
2
] 

CD [-] Aprojected 

[m
2
] 

CD [-] 

1 
1,44 
1,96 

2,56 
3,24 
4 
4,84 
5,76 
6,76 
7,84 
9 
10,24 
11,56 

0,98 
0,98 
0,97 

0,97 
0,99 
0,98 
1,04 
1,12 
1,19 
1,28 
1,38 
1,48 
1,59 

1 
1,44 
1,96 

2,56 
3,24 
4 
4,84 
5,76 
6,76 
7,84 
9 
10,24 
11,56 

0,98 
0,99 
0,99 

0,99 
0,99 
1,00 
1,01 
1,08 
1,14 
1,22 
1,30 
1,40 
1,52 

1 
1,44 
1,96 

2,56 
3,24 
4 
4,84 
5,76 
6,76 
7,84 
9 
10,24 
11,56 

0,98 
0,99 
1,00 

1,00 
1,01 
1,02 
1,03 
1,04 
1,10 
1,17 
1,26 
1,34 
1,44 

1 
1,44 
1,96 

2,56 
3,24 
4 
4,84 
5,76 
6,76 
7,84 
9 
10,24 
11,56 

0,98 
0,99 
1,00 

1,01 
1,01 
1,02 
1,03 
1,05 
1,08 
1,15 
1,23 
1,34 
1,44 
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12,96 
14,44 
16 

 

1,73 
1,87 
2,03 

 

12,96 
14,44 
16 
17,64 
19,36 

 

1,65 
1,79 
1,95 
2,14 
2,36 

 

12,96 
14,44 
16 
17,64 
19,36 
21,16 
23,04 
25 

 

1,56 
1,70 
1,88 
2,06 
2,28 
2,55 
2,85 
3,26 

 

12,96 
14,44 
16 
17,64 
19,36 
21,16 
23,04 
25 
27,04 

 

1,54 
1,69 
1,84 
2,02 
2,24 
2,50 
2,82 
3,23 
3,71 

 

Appendix Table A.2: Moonpool drag coefficient, square geometry 

 

 

F/u
2
 

[kg/m] 

A0/A [-] F/u
2 

[kg/m] 

A0/A [-] F/u
2
 

[kg/m] 

A0/A [-] F/u
2
 

[kg/m] 

A0/A [-] 

501,3 
723,7 
979,3 
1274,4 
1647,2 
2013,4 
2589,1 
3316,8 

4111,4 
5155,7 
6352,8 
7785,4 
9416,4 
11468,5 
13829,0 
16684,4 

 

0,02 
0,03 
0,04 
0,05 
0,06 
0,08 
0,09 
0,11 

0,13 
0,15 
0,17 
0,20 
0,22 
0,25 
0,28 
0,31 

 

501,3 
731,4 
990,0 
1302,7 
1647,2 
2059,7 
2502,8 
3175,7 

3940,1 
4897,9 
5982,8 
7344,7 
8980,5 
10951,9 
13217,1 
15959,0 
19306,1 
23433,5 

 

0,02 
0,03 
0,04 
0,05 
0,06 
0,08 
0,09 
0,11 

0,13 
0,15 
0,17 
0,20 
0,22 
0,25 
0,28 
0,31 
0,34 
0,37 

 

501,3 
731,4 
1000,6 
1316,9 
1683,8 
2082,8 
2560,4 
3069,8 

3811,6 
4691,7 
5797,7 
7050,9 
8544,5 
10332,0 
12605,2 
15378,7 
18616,6 
22611,3 
27600,1 
33624,5 

41712,5 
 

 

0,02 
0,03 
0,04 
0,05 
0,06 
0,08 
0,09 
0,11 

0,13 
0,15 
0,17 
0,20 
0,22 
0,25 
0,28 
0,31 
0,34 
0,37 
0,41 
0,44 

0,48 
 

501,3 
731,4 
1000,6 
1331,0 
1683,8 
2082,8 
2560,4 
3105,1 

3726,0 
4640,1 
5674,4 
7050,9 
8544,5 
10228,7 
12482,8 
15088,5 
18271,8 
22200,2 
27107,3 
33326,9 

41349,8 
51473,7 

 

0,02 
0,03 
0,04 
0,05 
0,06 
0,08 
0,09 
0,11 

0,13 
0,15 
0,17 
0,20 
0,22 
0,25 
0,28 
0,31 
0,34 
0,37 
0,41 
0,44 

0,48 
0,52 

 

Appendix Table A.3: Drag force per square velocity, square geometry 
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CALCULATIONS FOR CYLINDRICAL GEOMETRY  

L 

[m] 

D 

[m] 

CDS 

[-] 

L 

[m] 

D 

[m] 

CDS 

[-] 

L 

[m] 

D 

[m] 

CDS 

[-] 

L 

[m] 

D 

[m] 

CDS 

[-] 

4 
4 
4 
4 
4 
4 
4 
4 

4 
4 
4 
4 
4 

4 
4 
4 

 

1,21 
1,45 
1,69 
1,93 
2,17 
2,41 
2,66 
2,90 

3,14 
3,38 
3,62 
3,86 
4,10 

4,35 
4,59 
4,83 

 

0,86 
0,86 
0,86 
0,85 
0,86 
0,87 
0,88 
0,89 

0,89 
0,9 
0,9 
0,91 
0,92 

0,93 
0,94 
0,95 

 

4,5 
4,5 
4,5 
4,5 
4,5 
4,5 
4,5 
4,5 

4,5 
4,5 
4,5 
4,5 
4,5 

4,5 
4,5 
4,5 
4,5 
4,5 

 

1,21 
1,45 
1,69 
1,93 
2,17 
2,41 
2,66 
2,90 

3,14 
3,38 
3,62 
3,86 
4,10 

4,35 
4,59 
4,83 
5,07 
5,31 

 

0,86 
0,86 
0,86 
0,85 
0,85 
0,86 
0,87 
0,88 

0,88 
0,89 
0,9 
0,9 
0,9 

0,91 
0,92 
0,92 
0,93 
0,94 

 

5 
5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 

5 
 

1,21 
1,45 
1,69 
1,93 
2,17 
2,41 
2,66 
2,9 

3,14 
3,38 
3,62 
3,86 
4,1 

4,35 
4,59 
4,83 
5,07 
5,31 
5,55 
5,79 

6,04 
 

0,88 
0,86 
0,86 
0,86 
0,85 
0,85 
0,86 
0,87 

0,87 
0,88 
0,89 
0,89 
0,9 

0,9 
0,9 
0,91 
0,91 
0,92 
0,93 
0,94 

0,95 
 

5,2 
5,2 
5,2 
5,2 
5,2 
5,2 
5,2 
5,2 

5,2 
5,2 
5,2 
5,2 
5,2 

5,2 
5,2 
5,2 
5,2 
5,2 
5,2 
5,2 

5,2 
5,2 

 

1,21 
1,45 
1,69 
1,93 
2,17 
2,41 
2,66 
2,9 

3,14 
3,38 
3,62 
3,86 
4,1 

4,35 
4,59 
4,83 
5,07 
5,31 
5,55 
5,79 

6,04 
6,28 

 

0,88 
0,87 
0,86 
0,86 
0,85 
0,85 
0,85 
0,86 

0,87 
0,88 
0,89 
0,89 
0,89 

0,9 
0,9 
0,91 
0,91 
0,91 
0,92 
0,93 

0,94 
0,95 

 

Appendix Table A.4: Drag coefficient for steady flow, cylindrical geometry 

 

 

Aprojected 

[m
2
] 

CD Aprojected 

[m
2
] 

CD Aprojected 

[m
2
] 

CD Aprojected 

[m
2
] 

CD 

1,14 
1,65 

2,24 
2,93 
3,71 
4,58 
5,54 
6,59 
7,74 
8,97 

10,30 
11,72 

0,89 
0,90 

0,92 
0,93 
0,96 
1,00 
1,04 
1,09 
1,14 
1,20 
1,26 
1,35 

1,14 
1,65 

2,24 
2,93 
3,71 
4,58 
5,54 
6,59 
7,74 
8,97 

10,30 
11,72 

0,89 
0,90 

0,92 
0,93 
0,95 
0,99 
1,03 
1,08 
1,13 
1,19 
1,26 
1,33 

1,14 
1,65 

2,24 
2,93 
3,71 
4,58 
5,54 
6,59 
7,74 
8,97 

10,30 
11,72 

0,91 
0,90 

0,92 
0,94 
0,95 
0,98 
1,02 
1,07 
1,11 
1,18 
1,25 
1,32 

1,14 
1,65 

2,24 
2,93 
3,71 
4,58 
5,54 
6,59 
7,74 
8,97 

10,30 
11,72 

0,91 
0,91 

0,92 
0,94 
0,95 
0,98 
1,01 
1,06 
1,11 
1,18 
1,25 
1,32 
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13,23 
14,83 
16,53 
18,31 

 

1,45 
1,56 
1,70 
1,87 

 

13,23 
14,83 
16,53 
18,31 
20,19 
22,16 

 

1,42 
1,53 
1,67 
1,81 
2,01 
2,25 

 

13,23 
14,83 
16,53 
18,31 
20,19 
22,16 
24,22 
26,37 
28,61 

 

1,42 
1,51 
1,63 
1,79 
1,97 
2,21 
2,51 
2,90 
3,43 

 

13,23 
14,83 
16,53 
18,31 
20,19 
22,16 
24,22 
26,37 
28,61 
30,94 

 

1,40 
1,51 
1,63 
1,79 
1,97 
2,18 
2,48 
2,87 
3,39 
4,10 

 

Appendix Table A.5: Moonpool drag coefficient, cylindrical geometry 

 

 

F/u
2
 

[kg/m] 

A0/A [-] F/u
2 

[kg/m] 

A0/A [-] F/u
2
 

[kg/m] 

A0/A [-] F/u
2
 

[kg/m] 

A0/A [-] 

521,6 
762,5 

1056,7 
1393,2 
1827,9 
2347,2 
2964,2 

3695,6 
4511,4 
5528,3 
6663,6 
8093,0 
9809,7 

11886,3 
14420,6 
17547,0 

 

0,02 
0,03 
0,04 
0,06 
0,07 
0,09 
0,11 

0,13 
0,15 
0,17 
0,20 
0,23 
0,26 
0,29 
0,32 
0,35 

 

521,6 
762,5 

1056,7 
1393,2 
1806,7 
2320,2 
2930,5 

3654,1 
4460,7 
5466,9 
6663,6 
8004,0 
9596,4 

11630,7 
14113,8 
16992,9 
20783,6 
25596,4 

 

0,02 
0,03 
0,04 
0,06 
0,07 
0,09 
0,11 

0,13 
0,15 
0,17 
0,20 
0,23 
0,26 
0,29 
0,32 
0,35 
0,39 
0,43 

 

533,7 
762,5 

1056,7 
1409,6 
1806,7 
2293,2 
2896,8 

3612,6 
4410,0 
5405,4 
6589,6 
7915,1 
9596,4 

11502,9 
13807,0 
16808,2 
20336,6 
25051,8 
31152,9 

39230,0 
50228,3 

 

0,02 
0,03 
0,04 
0,06 
0,07 
0,09 
0,11 

0,13 
0,15 
0,17 
0,20 
0,23 
0,26 
0,29 
0,32 
0,35 
0,39 
0,43 
0,47 

0,51 
0,55 

 

 

533,7 
771,4 

1056,7 
1409,6 
1806,7 
2293,2 
2863,1 

3571,0 
4410,0 
5405,4 
6589,6 
7915,1 
9489,8 

11502,9 
13807,0 
16808,2 
20336,6 
24779,5 
30817,9 

38812,6 
49699,6 
65056,8 

 

0,02 
0,03 
0,04 
0,06 
0,07 
0,09 
0,11 

0,13 
0,15 
0,17 
0,20 
0,23 
0,26 
0,29 
0,32 
0,35 
0,39 
0,43 
0,47 

0,51 
0,55 
0,60 

 

Appendix Table A.6: Appendix Table A.3: Drag force per square velocity, cylindrical geometry 
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APPENDIX B - Estimation of Drag Coefficient for Tordis Pump Unit 

 

The estimation of the drag coefficient for the Tordis pump with running tool has been done by 

dividing them into separate elements and to calculate consequent drag coefficient according to 

DNV [1]. The coefficients for the different elements have been weighted by its respective 

projected area to find the total drag coefficient. Results are shown in table B1-B5. 

The lifting operation has been divided into four different phases. Table B2-B5 shows which 

elements of pump and running tool is analysed in the different phases.  

Due to the complex geometry of launched structure certain simplifications are made. Note the 

following: 

 The back beam on running tool has been divided into three different elements 

to be able to predict drag coefficient, their geometry has been assumed as a C-

beam and  I-beam  

 The top transverse beam on running tool has been divided into three different 

elements. The middle part, where pump is located right underneath, is 

disregarded. 

 The ROV-panel on the pump has been simplified to square geometry. 

Projected area has been estimated due to actual geometry to account for sharp 

edges.  

 Cursor will be a part of the total system when the pump is launched, and its 

drag coefficient and projected area must thus be accounted for. However, we 

hold no information about the cursor system, and for that reason we assume its 

geometry to be as illustrated. We use four thin beams in the calculations, two 

rectangular ones and two cylindrical ones. The top beam of those on the wall 

will to some extent be hidden in the wake of the lower beam, thus only half its 

projected area will be taken into account.  

 Running tool guide funnels are assumed massive. 

 

Also regarding the cursor system the following items will be launched during installation of 

the pump unit: 
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C 

 

 

4,65 m 

0,24 m 

3,39 m 

A 

B 

2,53 m 

1,50 m 

0,33 m 

0,21 m 
0,67 m 

0,57 m 

 + 

0,28 m 

0,22 m 
 

D & E F & G 
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N L & M 

6,0 m 

0,60 m 

 

 

 

 

 
6,0 m 

0,60 m 

 

 

 

 

 

0,60 m 

1,0 m 

0,40 m 
 

0,60 m 

1,0 m 

0,40 m 
 

0,31 m 

0,3 m 

0,31 m 

0,15 m 

0,31 m 

0,3 m 

One I-beam is hidden on the figure 

H & I 

J & K 
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0,3 m 

2 m 

 

0,3 m 

2 m 

 

0,4 m 

3,2 m 

 

0,4 m 

3,2 m 

 

O & P 

 Q & R 
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Module CDS  [-] Estimated Projected Area [m
2
] % of Total Area 

A 0,90 0,70
 

8,25 

B 0,87 1,10 12,97 

C 1,20 0,05 0,59 

D 1,00 0,38 4,48 

E 1,00 0,38 4,48 

F 2,00 0,06 0,71 

G 2,00 0,06 0,71 

H 1,20 0,30 3,54 

I 1,20 0,30 3,54 

J 1,90 0,60 7,08 

K 1,90 0,60 7,08 

L 1,60 0,29 3,42 

M 1,60 0,29 3,42 

N 2,10 0,25 2,95 

O 1,00 0,60 7,08 

P 1,00 0,60 7,08 

Q 1,90 1,28 15,09 

R 1,90 0,64 7,55 

Sum - 8,48 100 
Appendix – Table B. 1: Drag coefficients and projected area for all elements 

Phase 1 

Parts 

submerged 

CDS  [-] 

Estimated 

CDS  [-] 

Applied 

CD  [-] 

Applied in MP 

Projected Area 

[m
2
]  

B 0,87 0,90 0,93 1,10 
Appendix - Table B. 2: Drag coefficient for phase 1 

Phase 2 

Parts 

submerged 

CDS  [-] 

Estimated 

CDS  [-] 

Applied 

CD  [-] 

Applied in MP 

Projected Area 

[m
2
]  

B + D-I 1,04 1,05 1,13 2,58 
Appendix - Table B. 3: Drag coefficient for phase 2 

Phase 3 

Parts 

submerged 

CDS  [-] 

Estimated 

CDS  [-] 

Applied 

CD  [-] 

Applied in MP 

Projected Area 

[m
2
]  

A-I 1,01 1,10 1,22 3,33 
Appendix – Table B. 4: Drag coefficient for phase 3 

Phase 4 

Lifted object fully submerged 

Parts 

submerged 

CDS  [-] 

Estimated 

CDS  [-] 

Applied 

CD  [-] 

Applied in MP 

Projected Area 

[m
2
]  

A - S 1,41 1,5 2,0 8,48 
Appendix - Table B. 5: Drag coefficient for phase 4
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APPENDIX C - Estimation of Added Mass for Tordis Pump Unit and Running 

Tool 
 

The estimation of the added mass for the Tordis pump and running tool has been done by 

dividing them into separate elements. Two different approaches have been used in terms of 

finding added mass. The first one is entirely based on known geometries given in DNV-RP-

H103 [1]. The second approach is based on the approximation of taking added mass of the 

hemisphere at top and bottom in addition to geometries given in DNV-RP-H103 [1] 

The calculations assume a fully submerged pump unit. Cursors system has been disregarded.  

Due to the complex geometry of launched structure certain simplifications are made. Note the 

following: 

 Running tool guide funnels are taken as 1. Square prisms and 2. Circular 

cylinders.  They are assumed massive. The dimensions of the square prisms 

have been set to a value in order to obtain a cross-sectional area equal to cross-

sectional area of circular cylinders. 

 The top transverse beam on running tool has been simplified to a cylinder to be 

able to use known geometries from the DNV [1]. Diameter of cylinder is 

assumed equal to the largest length in the cross-sectional area of beam.  

 The lower transverse beam on running tool has been simplified to a cylinder to 

be able to use known geometries from DNV [1]. Diameter of cylinder is 

assumed equal to the largest length in the cross-sectional area of beam. 

 Projected area of the transverse beam has been calculated by use of rectangular 

beams. This would have been an overestimation if beams were cylindrical, but 

the fact that they are actually rectangular makes it realistic.  

 The pump body has been taken as a 1. Square prism and 2. Circular cylinder.  

The diameter of the pump body has been set to a value somewhat higher than 

what was used in Appendix B. This is due to the different fittings around the 

pump body that has not been accounted for here.  

 The process inlet and outlet has been simplified to two square prisms. Added 

mass have been estimated by assuming 2D-strucutre and to modify it into 3D. 

 The pump ROV-panel has been taken as a square prism, as in Appendix B. 

Added mass have been estimated by assuming 2D-strucutre and to modify it 

into 3D. 

 When estimating added mass as hemispheres at top and bottom, we do not 

apply any added mass coefficients and therefore is formula 3.38 for the 

increased added mass coefficient not applicable. Increased added mass in 

moonpool in this method will for that reason be increased equally in 

percentages as for the DNV-method.  
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1. By use of only DNV [1] formulas 

Elements A33 [kg ] 

Estimated 

A33  [kg] in MP A33 [kg] Applied 

in MP 

Projected Area 

[m
2
] 

2 x RT Guide 

Funnel 

276,4 276,4 280 0,57 

RT Transverse 

Upper Beam 

923,1 923,1 925 2,1 

RT Transverse 

Lower Beam 

253,6 253,6 255 1,05 

Pump Body 2520,2 2520,2 2525 2,25 

Pump ROV-

panel 

998,2 998,2 1000 0,50 

Process Inlet 

and Outlet 

121,8 121,8 125 0,72 

Total 5093,3 5093,3 5110 7,19 
Appendix - Table A. 1: Estimated added mass by use of DNV [1] formulas 

2. By use of hemispherical + DNV formulas 

Elements A33 [kg ] 

Estimated 

A33  [kg] in MP A33 [kg] Applied 

in MP 

Projected Area 

[m
2
] 

2 x RT Guide 

Funnel 

231,8 231,8 235 0,57 

RT Transverse 

Upper Beam 

923,1 923,1 925 2,1 

RT Transverse 

Lower Beam 

253,6 253,6 255 1,05 

Pump Body 1811,3 1811,3 1815 1,77 

Pump ROV-

Panel 

998,2 998,2 1000 0,50 

Process Inlet 

and Outlet 

121,8 121,8 125 0,72 

Total 4339,8 4339,8 4355 6,71 
Appendix - Table A. 2: Estimated added mass by use of hemispherical + DNV [1] formulas 

 

 

 


