Universitetet i Stavanger DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE			
Studieprogram/spesialisering: Konstruksjoner og materialer/Offshore konstruksjoner	Vår semesteret, 2011		
	Åpen		
Forfatter: Thomas Gjerde			
Fagansvarlig: Rolf A. Jakobsen Veileder(e): Rolf A. Jakobsen			
Tittel på masteroppgaven: Struktur analyse av offshore modul Engelsk tittel: Structural analysis of offshore module			
Studiepoeng: 30p			
Emneord: Offshore module Bridge landing Structural analysis StaadPro analysis	Sidetall: 95 + vedlegg/annet: 23/CD Stavanger, 15/6/2011		

1 SUMMARY

This thesis is the final part of the Master's program in offshore constructions at the University of Stavanger, spring 2011.

The thesis will contain analyses of an existing platform consisting of five decks, including a cellar deck. The platform has already been completed, and the objective of the thesis is to look into if there are alternative actions in order to suggest a better suited placement of the platforms bridge landing. The platform will be exposed to a set of defined loads: Environmental loads, dead loads and live loads. With the new placement of the bridge landing, the utilization of the girders will be checked. In order to prove the improvements, selected elements of the structure will be controlled.

StaadPro 2007 is used for modeling and conducting analyses of the structure. The structure is checked for ultimate- and serviceability limit states according to the requirements of the NORSOK standards.

The conclusion shows that another location for the bridge landing can be considered, depending on the assumptions made.

I would like to thank a few people that made it possible to complete this thesis:

- Rolf Jakobsen, supervisor at UiS for all the help along the way.
- Pål Berg, divisional manager at Aibel for borrowing the drawings for the platform.

CONTENT

1	SUN	/IMARY	2
2	INTR	RODUCTION	5
	2.1.	The Draupner E platform	6
	2.2.	Abbreviations	6
	2.3.	Tables	7
	2.4.	Figures	9
3	STAA	ADPRO 2007	11
	3.1.	Coordinate system	11
	3.1.	Units	12
4	STRU	UCTURAL INFORMATION	13
	4.1.	Geometry	13
	4.2.	Nodes and beam elements	13
	4.3.	Supports	15
	4.4.	Plates	16
	4.5.	Cross sections	19
	4.6.	Materials	19
5	LOA	DS	20
	5.1.	Live loads	20
	5.1.1	1. Weather deck	
	5.1.2	2. Mezzane deck	23
	5.1.3	3. Upper main deck	24
	5.1.4	4. Lower main deck	26
	5.1.5	5. Cellar deck	27
	5.1.6	6. Summary	29
	5.1.6	6.1. Weather deck	29
	5.1.6	6.2. Mezzane deck	29
	5.1.6	6.3. Upper main deck	
	5.1.6	6.4. Lower main deck	
	5.1.6	6.5. Cellar deck	
	5.2.	Wind loads	
	5.2.1	1. Wind statistics near the Draupner field	
	5.2.2	2. Wind rose	
	5.2	3. Summary of wind load calculations	
			Page 3 of 95

Thomas Gjerde

5	.3.	Brid	ge landing	35
	5.3.	1.	Location 1	38
	5.3.2	2.	Location 2a	39
5	.4.	Load	d from crane and tower	40
5	.5.	Load	d combinations	41
6	RES	ULTS.		47
6	.1.	Resu	ults for ULS	47
	6.1.	1.	Location 1	47
	6.1.	2.	Location 2a	49
	6.1.	3.	Reinforcement and adding of a new beam	51
	6.1.4	4.	Location 2b	53
	6.1.	5.	Utilization factor variation	56
6	.2.	SLS	Results	57
	6.2.	1.	Nodal displacement, Location 1	57
	6.2.	2.	Nodal displacement, Location 2b	60
7.	CON	ICLUS	SION	64
8.	REFI	EREN	CES	65
A.	WIN	ID LO	ADS	67
А	.1.	СНА	RACTERISTIC WIND VELOCITY:	67
A	.2.	MEA	AN WIND ACTION	69
	A.2.	1.	WEATHER DECK:	69
	A.2.	2.	MEZZANE DECK:	70
	A.2.	3.	UPPER MAIN DECK:	70
	A.2.	4.	LOWER MAIN DECK:	71
	A.2.	5.	CELLAR DECK:	72
В.	LIVE	LOA	DS	74
В	.1.	WEA	ATHER DECK	74
В	.2.	MEZ	ZZANE DECK	75
В	.3.	UPP	PER MAIN DECK	76
В	.4.	LOW	VER MAIN DECK	77
В	.5.	CELI	LAR DECK	78
C.	PICT	URE	OF THE LOADS	79
D.	DRA	WIN	GS OF THE PLATFORM	95

2 INTRODUCTION

The platform is an existing platform with five decks. It's located on the Draupner field together with another platform, connected with a bridge. For the purpose of this thesis, it is assumed that the other platform on the Draupner field has not been built. Therefore, the location of the other platform has not been taken account for, in search of finding a new placement for the bridge landing. The load on the bridge landing is an example of a bridge originally used in between the platforms Ekofisk K and Ekofisk B on the Ekofisk field.

The purpose of this thesis is to compare the original placement of the bridge landing with a new location, and come with a conclusion of which solution is the best.

When modeling the platform in StaadPro, there is created two models of the platform for each location. One model that contain, and one model that don't contain the bridge landing. A separate analysis is done for each models, and for the model with the bridge landing attached, the bridge landing is checked for with, and without the bridge attached.

A section of the platform is defined and the bridge landings surrounding beam elements will be checked in this section. Nodal displacement of the nodes surrounding the bridge landing will be checked to see if they are within the requirements set by the standard. A change of nodal displacement from the installation of the bridge landing will also be presented for each of the locations.

2.1.The Draupner E platform

The Draupner E platform is located in the North Sea at block 16/11. The operator of the field is Gassco AS. The Draupner E is the newest platform of the two, and it's installed as a part of the Europipe I pipeline that is a natural gas pipeline from Norway to continental Europe.

Figure 2.1 - Draupner E platform to the right.

2.2.Abbreviations

CD	Cellar deck
LAY	Laydown area
LC	Load case
LMD	Lower main deck
MD	Mezzane deck
NW	Wind from North West
SE	Wind from South East
SLS	Serviceability limit state

Thomas Gjerde	
STOR	Storage area
SW	Wind from South West
ULS	Ultimate limit state
UMD	Upper main deck
VIV	Vortex induced vibrations
WALK	Walkway area
WD	Weather deck

2.3.Tables

- Table 4.4.1 E-module of the plates.
- Table 4.4.2 Number of plates.
- Table 4.6 The materials used in StaadPro.
- Table 5.1.1 Weather deck live loads.
- Table 5.1.2 Mezzane deck live loads.
- Table 5.1.3 Upper main deck live loads.
- Table 5.1.4 Lower main deck live loads.
- Table 5.1.5 Cellar deck live loads
- Table 5.1.6.1 Weather deck summary of live loads.
- Table 5.1.6.2 Mezzane deck summary of live loads.
- Table 5.1.6.3 Upper main deck summary of live loads.
- Table 5.1.6.4 Lower main deck summary of live loads.
- Table 5.1.6.5 Cellar deck summary of live loads.
- Table 5.2.1 Wind speed statistics.

Thomas Gjerde

Table 5.2.3.1 - Summary of wind velocities at the different decks.

- Table 5.2.3.2 Wind loads per length meter.
- Table 5.5 Load combinations.
- Table 6.1.1.1 Five most utilized elements.
- Table 6.1.1.2 Five most utilized elements.
- Table 6.1.1.3 Five most utilized elements.
- Table 6.1.1.4 Comparison of five most utilized beams.
- Table 6.1.2.1 The five most utilized elements.
- Table 6.1.2.2 The five most utilized elements.
- Table 6.1.2.3 The five most utilized elements.
- Table 6.1.2.4 Comparison of five most utilized elements.
- Table 6.1.3.1 Beam reinforcement.
- Table 6.1.3.2 Profile of the old beam.
- Table 6.1.4.1 The five most utilized elements.
- Table 6.1.4.2 The five most utilized elements.
- Table 6.1.4.3 The five most utilized elements.
- Table 6.1.4.4 Comparison of the five most utilized elements.
- Table 6.1.4.5 Comparison between beam 1012, 1056 and 1032.
- Table 6.2.1.1 Nodal displacement.
- Table 6.2.1.2 Nodal displacement.
- Table 6.2.1.3 Summary of nodal displacement.
- Table 6.2.2.1 Nodal displacement.

Thomas Gjerde

Table 6.2.2.2 - Nodal displacement.

Table 6.2.2.3 – Summary of nodal displacements.

2.4.Figures

- Figure 2.1 Draupner E platform to the right.
- Figure 3.1 The axis system.
- Figure 4.1 Heights between the decks.
- Figure 4.2.1 Section of the platform.
- Figure 4.2.2 Renumbered beam elements.
- Figure 4.3 The supports of the platform.
- Figure 4.4.1 All of the plates.
- Figure 4.4.2 8mm plates.
- Figure 4.4.3 10mm plates.
- Figure 4.4.4 12mm plate.
- Figure 5.1.1.1 3D model of the weather deck.
- Figure 5.1.1.2 Location of the live loads on the weather deck.
- Figure 5.1.2.1 3D model of the mezzane deck.
- Figure 5.1.2.2 Location of the live loads on the mezzane deck.
- Figure 2.1.3.1 3D model of the upper main deck.
- Figure 5.1.3.2 Location of the live loads on the upper main deck.
- Figure 5.1.4.1 3D model of the lower main deck.

Thomas Gjerde

Figure 5.1.4.2 - Location of live loads on the lower main deck.

- Figure 5.3.5.1 3D model of the cellar deck.
- Figure 5.1.5.2 Location of the live loads on the cellar deck.
- Figure 5.2.2.1 Wind rose.
- Figure 5.2.2.2 Total wind direction.
- Figure 5.3.1 The location of the bridge landing on the platform.
- Figure 5.3.2 The loads on the bridge landing.
- Figure 5.3.1.1 The placement of the bridge landing at location 1.
- Figure 5.3.2.1 The location of the bridge landing at location 2a.

Figure 6.1.1 - The highest utilized beams in the ULS analysis for location 1.

- Figure 6.1.2 The highest utilized beams in the ULS analysis for location 2a.
- Figure 6.1.3.1 The new added beam.

Figure 6.1.3.2 – It's the highlighted beams that needs to be reinforced.

Figure 6.1.4 - The highest utilized beams in the ULS analysis for location 2b.

Figure 6.2.1.1 - Displacement in all directions in node 5, 6, 7, 205 and 207 without the bridge landing and the bridge attached.

Figure 6.2.1.2- Displacements in all directions in node 5, 6, 7, 205 and 207 with the bridge landing and the bridge attached.

Figure 6.2.2.1 – Displacements in all directions in node 7, 207, 331 and 335 without the bridge landing and the bridge attached.

Figure 6.2.2.2 - Displacement in all directions in node 7, 207, 331 and 331 with the bridge landing and the bridge attached.

Figure 7.1.5 – Variation of the utilization factors.

3 STAADPRO 2007

The analysis software used for this master thesis is STAAD Pro 2007. STAAD Pro is one of the leading software for structural analysis and it includes a big number of international standards. STAAD Pro has a very flexible working environment and its easy user interface makes it a perfect tool for the problem presented in this thesis.

3.1.Coordinate system

The following axis system is used for the thesis:

- X-direction is pointing to the east
- Y-direction is pointing upwards

Z-direction is pointing to the north

Figure 3.4 - The axis system.

3.1.Units

The following units are used StaadPro:

Length: Millimeter, mm

Force: Kilo Newton, kN

Force per length: Kilo Newton per millimeter, kN/mm

In the calculation for the different loads, the unit used for force per length is kN/m. This is done to make the results more presentable. Before implementing the results in StaadPro, the results are divided with 1000, so the unit matches with the units used in StaadPro.

4 STRUCTURAL INFORMATION

4.1.Geometry

The platform consists of five decks: Cellar deck, lower main deck, upper main deck, mezzane deck and weather deck. The total height of the structure is 21m and the heights between each deck are represented in figure 4.1.

Figure 4.1 - Heights between the decks.

4.2.Nodes and beam elements

The platform consists of 579 beam elements and 303 nodes. A section of the platform is defined (See figure 4.3.1), and the beams that are interesting for the analysis are renumbered. A total of 72 beams are numbered where the first of the 72 starts with 1001 (See figure 4.3.2).

Thomas Gjerde

Figure 4.2.1 - Section of the platform.

Thomas Gjerde

Figure 4.2.2 - Renumbered beam elements.

4.3.Supports

The platform consists of four supports and they are all fixed (See figure 4.3). This means that the support takes up all force and moment in all directions. There will be no displacement in the supports.

Thomas Gjerde

Figure 4.3 - The supports of the platform.

4.4.Plates

The plates are modeled after the drawings and the platform has plates with thickness of 8mm, 10mm and 12mm. The plates are modeled in the center of each beam, so the plates don't contribute to the EI in the beams strong axis.

To only include the shear stiffness of the plates in the global analysis, the E-module of the plates is reduced to 1% of their original value:

Table 4.4.1 - E-module of the plates. **E-module:** $205000 \text{ N/mm}^2 * 1\% = 2050 \text{ N/mm}^2$

Thomas Gjerde

Table 4.4.2 - Number of plates.

Number of plates:		
8mm	34	
10mm	56	
12mm	1	
Total	91	

Figure 4.4.1 - All of the plates.

Figure 4.4.2 - 8mm plates.

Thomas Gjerde

Figure 4.4.4 - 12mm plate.

4.5.Cross sections

The platform consists of custom cross sections and standard HEA, HEB, IPE, UPN and RHS sections. The bearing beams of the structure, primarily consists of custom cross sections. The custom cross sections are defined in the drawings of the structure, Appendix D.

4.6.Materials

The materials used in StaadPro are presented in table 4.6:

Material	Yield strength [N/mm ²]	E-module [N/mm ²]	Poisson's ratio	Density [kg/m ³]	Thermal expansion coefficient
STEEL	355	205000	0.3	7.83E3	12E-6
PLATESTEEL	355	2050	0.3	7.83E3	12E-6

Table 4.6 - The materials used in StaadPro.

The material STEEL is used for all steel beams in the structure.

The material PLATESTEEL with reduced E-module, is used for every plate in the structure.

The requirements of NORSOK N-001 (2010) chapter 7.2.3 and 7.2.4 gives following material factor used respectively in ULS and SLS analyses:

ULS: $\gamma_{\rm m} = 1,15$

SLS: $\gamma_m = 1,0$

5 LOADS

The loads affecting the structure consist of self weight, live loads and wind loads. Equipment loads have not been provided, so they have not been considered. The load from the self weight has been given a load factor of 1,0 in StaadPro.

5.1.Live loads

All of the live loads used in this report, is calculated from the NORSOK N-003 standard. Since the information for the live loads are not given, the live loads are assumed to be on places on the decks where they make a realistic picture of the real world. The live loads include the laydown area, storage area, walkway area, area between equipment and load from a bridge on the bridge landing. The calculations itself are presented in Appendix B.

The following chapters contain a 3D model of every deck and a figure that shows the location of where the live loads are assumed to be. A summary of the forces affecting each beam element is presented in the last chapter. The decks are presented from the top deck to the bottom deck to make the presentation more clearly.

Thomas Gjerde

5.1.1. Weather deck

Figure 5.1.1.1 - 3D model of the weather deck.

Thomas Gjerde

°]	2	2		
1	2	2		
8	1	1	1	1

Figure 5.1.1.2 - Location of the live loads on the weather deck.

The following live loads are affecting the weather deck:

Table 5.1.1 - Weather deck live loads.

Live load:	Force:	Affected girders:
Storage area	15 kN/m^2	Area 2
Walkways, staircases and platforms	4 kN/m^2	Area 1

5.1.2. Mezzane deck

Figure 5.1.2.1 - 3D model of the mezzane deck.

Figure 5.1.2.2 - Location of the live loads on the mezzane deck.

Thomas Gjerde

The following live loads are affecting the mezzane deck:

Table 5.1.2 - Mezzale deck live loads.				
Live load:	Force:	Affected girders:		
Storage area	15 kN/m^2	Area 3		
Laydown area	15 kN/m^2	Area 1		
Walkway area	4 kN/m^2	Area 2		

Table 5.1.2 - Mezzane deck live loads.

5.1.3. Upper main deck

Figure 5.1.3.1 - 3D model of the upper main deck.

Thomas Gjerde

		4	4		
1	1	2	2	2	2
		3	3	2	2
		4	4	4	4

Figure 5.1.3.2 - Location of the live loads on the upper main deck.

The following live loads are affecting the upper main deck:

Live load:	Force:	Area:
Laydown area	15 kN/m^2	1
Storage area	15 kN/m^2	2
Walkway area	4 kN/m^2	4
Area between equipment	5 kN/m^2	3

Table 5.1.3 -Upper main deck live loads.

Thomas Gjerde

5.1.4. Lower main deck

Figure 5.1.4.1 - 3D model of the lower main deck.

Figure 5.1.4.2 - Location of live loads on the lower main deck.

Thomas Gjerde

The following live loads are affecting the lower main deck:

Tuble 5.1.4 Lower main deek nye lodds.				
Live load:	Force:	Area:		
Storage area	15 kN/m^2	1		
Walkway area	4 kN/m^2	3		
Area between equipment	5 kN/m^2	2		

5.1.5. Cellar deck

Figure 5.6.5.1 - 3D model of the cellar deck.

Thomas Gjerde

Figure 5.1.5.2 - Location of the live loads on the cellar deck.

The following live loads are affecting the cellar deck:

Live load:	Force:	Affected girders:			
Storage area	15 kN/m^2	Area 3			
Laydown area	15 kN/m^2	Area 1			
Walkway area	4 kN/m^2	Area 2			
Bridge landing	5.379 kN/m^2	Area 4			

Table 5.1.5 - Cellar deck live loads

5.1.6. Summary

5.1.6.1. Weather deck

Table 5.1.6.1 shows the summary of the live loads on the weather deck.

Tuble 5.1.6.1 Weather deek summary of five founds.						
Weather deck	Weather deck:					
Storage area:						
Plategirder	300mm	400mm	500mm			
width, b:						
Force:	4.5 kN/m	6 kN/m	7.5 kN/m			
Walkway area:						
Plategirder	220mm	300mm	400mm	500mm		
width, b:						
Force:	0.88 kN/m	1.2 kN/m	1.6 kN/m	2 kN/m		

Table 5.1.6.1 - Weather deck summary of live loads.

5.1.6.2. Mezzane deck

Table 5.1.6.2 shows the summary of the live loads on the mezzane deck.

Table 5.1.6.2 - Mezzane deck summary of live loads.

Mezzane deck					
Storage area:					
Plategirder	250mm	300mm	400mm		
widh, b:					
Force	3.75 kN/m	4.5 kN/m	6 kN/m		
Walkway area:	;				
Plategirder	220mm	250mm	300mm	400mm	
width, b:					
Force:	0.88 kN/m	1 kN/m	1.2 kN/m	1.6 kN/m	
Laydown area:					
Plategirder	250mm	300mm	400mm		
width, b:					
Force:	3.75 kN/m	4.5 kN/m	6 kN/m		

Thomas Gjerde

5.1.6.3. Upper main deck

Table 5.1.6.3 shows the summary of the live loads on the upper main deck.

Table 5.1.6.3 - Upper main deck summary of live loads.

Upper main deck					
Storage area:					
Plategirder	250mm	300mm	400mm	600mm	
width, b:					
Force:	3.75 kN/m	4.5 kN/m	6 kN/m	9 kN/m	
Walkway area:					
Plategirder	250mm	300mm	400mm		
width, b:					
Force:	1 kN/m	1.2 kN/m	1.6 kN/m		
Laydown area:					
Plategirder	250mm	300mm	400mm		
width, b:					
Force:	3.75 kN/m	4.5 kN/m	6 kN/m		
Area between	equipment:				
Plategirder	250mm	400mm			
width, b:					
Force:	1.25 kN/m	2 kN/m			

5.1.6.4. Lower main deck

Table 5.1.6.4 shows the summary of the live loads on the lower main deck.

Thomas Gjerde

Table 5.1.6.4 - Lower main deck summary of live load
--

Lower main deck					
Storage area:					
Plategirder	250mm	300mm	400mm		
width, b:					
Force:	3.75 kN/m	4.5 kN/m	6 kN/m		
Walkway area:					
Plategirder	200mm	250mm	300mm		
width, b:					
Force:	0.8 kN/m	1 kN/m	1.2 kN/m		
Area between o	equipment:				
Plategirder	250mm	300mm	400mm		
width, b:					
Force:	1.25 kN/m	1.5 kN/m	2 kN/m		

5.1.6.5. Cellar deck

Table 5.1.6.5 shows the summary of the live loads on the lower main deck.

Cellardeck						
Storage area:	Storage area:					
	200mm	300mm	400mm	500mm		
Plategirder						
width, b:						
Force:	3 kN/m	4.5 kN/m	6 kN/m	7.5 kN/m		
Walkway area	:					
Plategirder	200mm	220mm	300mm	400mm	500mm	
width, b:						
Force:	0.8 kN/m	0.88 kN/m	1.2 kN/m	1.6 kN/m	2 kN/m	
Laydown area:						
Plategirder	200mm	300mm	400mm	500mm	600mm	
width, b:						
Force:	3 kN/m	4.5 kN/m	6 kN/m	7.5 kN/m	9 kN/m	

Table 5.2.6.5 - Cellar deck summary of live loads.

5.2.Wind loads

The wind loads affecting the platform are calculated only for the outer horizontal beams on each of the decks.

5.2.1. Wind statistics near the Draupner field

The following table shows the percentage distribution of the wind speed and wind direction.

The data are based on modeled data from the years 1958-2009.

Windspeed	Direction	0 n							
m/s	Ν	NE	E	SE	S	SW	W	NW	OMNI
0-3	0,86	0,79	0,69	0,72	0,86	0,89	0,91	0,92	6,64
3-6	2,83	1,73	1,89	2,33	3,22	3,16	2,77	3,05	20,98
6-9	3,67	1,25	1,68	3,17	4,64	4,30	3,63	4,31	26,64
9-12	3,09	0,48	1,20	3,07	3,63	3,63	3,37	3,78	22,25
12-15	1,65	0,14	0,72	2,43	2,22	2,42	2,20	2,22	14,01
15-18	0,56	0,02	0,35	1,34	0,92	1,10	1,00	0,86	6,14
18-21	0,19	0,01	0,13	0,63	0,32	0,40	0,39	0,39	2,45
21-24	0,05	0,00	0,05	0,23	0,08	0,11	0,13	0,10	0,74
24-27	0,01	0,00	0,01	0,04	0,01	0,01	0,02	0,02	0,13
27-30	0,00	-	0,01	-	-	0,00	0,01	0,01	0,02
>30	-	-	-	-	-	0,00	0,00	0,00	0,00
TOTAL	12,89	4,41	6,74	13,94	15,89	16,03	14,43	15,66	100,00

Table 5.2.1 - Wind speed statistics.

5.2.2. Wind rose

A presentation of the wind, a wind rose (See figure 5.2.2.1), is created from table 5.2.1 to see which direction the wind is dominant.

Thomas Gjerde

Figure 5.2.2.2 – Total wind direction.

For the calculation of the force caused by the wind, it's important to know where the majority of the wind comes from. As seen from the windrose, the majority of the wind occurs in the

area NW - W - SW - S - SE. For simplicity, the wind direction chosen for the calculation is North West (NW), South West (SW) and South East (SE).

The data (Table 5.2.1) was given in such a late period of the semester, so the wind speed for calculating the wind force is set to 38 m/s (1 hour average) according to the regulations of NORSOK N-003.

5.2.3. Summary of wind load calculations

The following loads are calculated by the regulations of NORSOK N-003 and the calculation itself is presented in Appendix A. The wind loads from the calculations are given in kN/m^2 , and then multiplied with the height of each plate girder. This is conducted due to get the loads per length meter.

Table 5.2.3.1 shows the height above sea level for each deck and the wind velocity at these heights.

Deck:	Height	Shape	Turbulence	Turbulence 1 hour	
	above	factor, C:	intensity	mean wind	wind velocity
	sealevel, z:		factor, I _u :	speed, U(z):	u(z,t):
Cellar deck	30m	0.148	0.124	44.192 m/s	60.135 m/s
Lower main	38m	0.148	0.118	45.524 m/s	61.116 m/s
deck					
Upper main	40m	0.148	0.116	45.813 m/s	61.328 m/s
deck					
Mezzane	45.5m	0.148	0.113	46.539 m/s	61.859 m/s
deck					
Weather	51m	0.148	0.110	47.182 m/s	62.329 m/s
deck					

Table 5.2.3.1 - Summary of wind velocities at the different decks.

Table 5.2.3.2 shows the wind loads per length meter on beam element for every deck.

Thomas Gjerde

Table 5.2.3.2 - Wind loads	per length meter.
----------------------------	-------------------

Cellardeck:							
Plategirder	500mm	600mm	700mm	800mm	1000mm	1500mm	1800mm
height, h:							
Force:	1.981	2.377	2.773	3.169	3.961	5.942	7.130
	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m
Lower main deck:							
Plategirder	400mm	500mm	800mm	1000mm			
height, h:							
Force:	1.637	2.046	3.273	4.091			
	kN/m	kN/m	kN/m	kN/m			
Upper main deck:							
Plategirder	340mm	400mm	800mm	1000mm	1500mm		
height, h:							
Force:	1.401	1.648	3.296	4.120	6.180		
	kN/m	kN/m	kN/m	kN/m	kN/m		
Mezzane deck:							
Plategirder	400mm	450mm	600mm	1000mm			
height, h:							
Force:	1.677	1.886	2.515	4.192			
	kN/m	kN/m	kN/m	kN/m			
Weather deck:							
Plategirder	600mm	800mm					
height, h:							
Force:	2.553	3.404					
	kN/m	kN/m					

5.3.Bridge landing

The load affecting the platforms bridge landing, is found from a bridge used between the Ekofisk K and Ekofisk B platform at the Ekofisk field. The bridge is just an example used for the purpose of finding a suitable load for the bridge landing.

Thomas Gjerde

Figure 5.3.1 - The location of the bridge landing on the platform.

The selfweight of the bridge is given as 2958,5 kN. The bridge is 110m long and 5m wide and the bridge landing is 8,5m long and 8,29m wide. The force from the bridge is calculated as four nodal forces, one on each corner of the bridge landing:
Thomas Gjerde

Selfweight bridge:

 $q_{selfweight} := 2958.5 kN$

Area of bridge:

 $A_{bridge} := 110 \text{m} \cdot 5 \text{m} = 550 \text{m}^2$

Load per m²:

 $q_{bridge} := \frac{q_{selfweight}}{A_{bridge}} = 5.379 \frac{kN}{m^2}$

Area of bridgelanding:

 $A_{bridgelanding} := 8.5 \text{m} \cdot 8.29 \text{m} = 70.465 \text{m}^2$

Force from bridge:

 $F_{bridge} := q_{bridge} \cdot A_{bridgelanding} = 379.038 kN$

Force per corner:

$$F_{\text{corner}} := \frac{F_{\text{bridge}}}{4} = 94.759 \text{kN}$$

Figure 5.3.2 - The loads on the bridge landing.

Thomas Gjerde

The platform is checked to see if there is a better location for the bridge landing. It is checked for its initial location of the bridge landing compared to one other location. A total of two locations of the bridge landing is checked and compared with each other (See figure 5.3.1.1 and 5.3.2.1).

When finding the other location for the bridge landing, it is assumed that the other platform that is connected to the Draupner platform has not yet been built. The placement of the other platform has not been decided, so it will not affect the finding of another location for the bridge landing.

5.3.1. Location 1

This is the actual placement of the bridge landing at the Draupner platform and the results from the analysis will be compared to this location.

Thomas Gjerde

Figure 5.3.1.1 – The placement of the bridge landing at location 1.

5.3.2. Location 2a

Because of the movement of the bridge landing in location 2a, some of the beams are divided into more and smaller beams. Beam 1004 from location 1 is now beam 1119, 1120, 1121, 1122, 1123 and 1124. Beam 1014 from location 1 is now beam 1014 and 1117.

Thomas Gjerde

Figure 5.3.2.1 - The location of the bridge landing at location 2a.

5.4.Load from crane and tower

As seen from figure 2.1, the Draupner E platform includes a crane and tower. The high tower will be exposed for massive wind which can lead to VIV. This will cause fatigue damage to the tower itself and also to the structure beneath. The crane can also experience VIV, and the structure beneath both the tower and the crane, has to be strong enough to withstand these forces. The structure also has to withstand the moment created by the wind on both the crane and the tower. Lifting operations of the crane will also create moments the structure has to withstand.

The specifications for the crane and the tower have not been provided. Therefore, the load effects from the crane and the tower will not be considered.

Thomas Gjerde

5.5.Load combinations

The load combinations used in this thesis is presented in table 5.5. The load factors used for each combination are found in NORSOK N-001 Table 1 – Partial action factors for the limit states.

For the different locations, there have been two additional ULS load combinations and one additional SLS load combination:

ULS:

One combination with the bridge landing, and one combination without both the bridge landing and the bridge itself. This is done in addition to the load combinations presented in table 5.5.

SLS:

A combination without the bridge landing and the bridge is done in addition to the load combinations presented in table 5.5.

Comb	Combination L/C Name	Primary	Primary L/C Name	Factor
1000	ULS-A WIND NORTH WEST	100	DEADWEIGHT	1,3
		110	BRIDGELANDING	1,3
		200	WALKWAY WD	1,3
		210	WALKWAY MD	1,3
		220	WALKWAY UMD	1,3
		230	WALKWAY LMD	1,3
		240	WALKWAY CD	1,3
		300	STORAGE WD	1,3
		310	STORAGE MD	1,3
		320	STORAGE UMD	1,3
		330	STORAGE LMD	1,3
		340	STORAGE CD	1,3
		400	LAYDOWN MD	1,3
		410	LAYDOWN UMD	1,3
		420	LAYDOWN CD	1,3
		500	EQUIPMENT UMD	1,3
		510	EQUIPMENT LMD	1,3
		600	NW WD	0,7
		610	NW MD	0,7
		620	NW UMD	0,7

Table 5.5 - Load combinations.

Page 41 of 95

Thomas Gjerde

		630	NW LMD	0,7
		640	NW CD	0,7
1100	ULS-A WIND SOUTH WEST	100	DEADWEIGHT	1,3
		110	BRIDGELANDING	1,3
		200	WALKWAY WD	1,3
		210	WALKWAY MD	1,3
		220	WALKWAY UMD	1,3
		230	WALKWAY LMD	1,3
		240	WALKWAY CD	1,3
		300	STORAGE WD	1,3
		310	STORAGE MD	1,3
		320	STORAGE UMD	1,3
		330	STORAGE LMD	1,3
		340	STORAGE CD	1,3
		400	LAYDOWN MD	1,3
		410	LAYDOWN UMD	1,3
		420	LAYDOWN CD	1,3
		500	EQUIPMENT UMD	1,3
		510	EQUIPMENT LMD	1,3
		700	SW WD	0,7
		710	SW MD	0,7
		720	SW UMD	0,7
		730	SW LMD	0,7
		740	SW CD	0,7
1200	ULS-A WIND SOUTH EAST	100	DEADWEIGHT	1,3
		110	BRIDGELANDING	1,3
		200	WALKWAY WD	1,3
		210	WALKWAY MD	1,3
		220	WALKWAY UMD	1,3
		230	WALKWAY LMD	1,3
		240	WALKWAY CD	1,3
		300	STORAGE WD	1,3
		310	STORAGE MD	1,3
		320	STORAGE UMD	1,3
		330	STORAGE LMD	1,3
		340	STORAGE CD	1,3
		400	LAYDOWN MD	1,3
		410	LAYDOWN UMD	1,3
		420	LAYDOWN CD	1,3
		500	EQUIPMENT UMD	1,3
		510	EQUIPMENT LMD	1,3
		800	SE WD	0,7
		810	SE MD	0,7
		820	SE UMD	0,7
		830	SE LMD	0,7
2000		840	SE CD	0,7
2000	ULS-B WIND NORTH WEST	100	DEADWEIGHT	1

Thomas Gjerde

		110	BRIDGELANDING	1
		200	WALKWAY WD	1
		210	WALKWAY MD	1
		220	WALKWAY UMD	1
		230	WALKWAY LMD	1
		240	WALKWAY CD	1
		300	STORAGE WD	1
		310	STORAGE MD	1
		320	STORAGE UMD	1
		330	STORAGE LMD	1
		340	STORAGE CD	1
		400	LAYDOWN MD	1
		410	LAYDOWN UMD	1
		420	LAYDOWN CD	1
		500	EQUIPMENT UMD	1
		510	EQUIPMENT LMD	1
		600	NW WD	1,3
		610	NW MD	1,3
		620	NW UMD	1,3
		630	NW LMD	1,3
		640	NW CD	1,3
2100	ULS-B WIND SOUTH WEST	100	DEADWEIGHT	1
		110	BRIDGELANDING	1
		200	WALKWAY WD	1
		210	WALKWAY MD	1
		220	WALKWAY UMD	1
		230	WALKWAY LMD	1
		240	WALKWAY CD	1
		300	STORAGE WD	1
		310	STORAGE MD	1
		320	STORAGE UMD	1
		330	STORAGE LMD	1
		340	STORAGE CD	1
		400	LAYDOWN MD	1
		410	LAYDOWN UMD	1
		420	LAYDOWN CD	1
		500	EQUIPMENT UMD	1
		510	EQUIPMENT LMD	1
		700	SW WD	1,3
		710	SW MD	1,3
		720	SW UMD	1,3
		730	SW LMD	1,3
		740	SW CD	1,3
2200	ULS-B WIND SOUTH EAST	100	DEADWEIGHT	1
		110	BRIDGELANDING	1
		200	WALKWAY WD	1
		210	WALKWAY MD	1

Thomas Gjerde

		220	WALKWAY UMD	1
		230	WALKWAY LMD	1
		240	WALKWAY CD	1
		300	STORAGE WD	1
		310	STORAGE MD	1
		320	STORAGE UMD	1
		330	STORAGE LMD	1
		340	STORAGE CD	1
		400	LAYDOWN MD	1
		410	LAYDOWN UMD	1
		420	LAYDOWN CD	1
		500	EQUIPMENT UMD	1
		510	EQUIPMENT LMD	1
		800	SE WD	1,3
		810	SE MD	1,3
		820	SE UMD	1,3
		830	SE LMD	1,3
		840	SE CD	1,3
3000	SLS WIND NORTH WEST	100	DEADWEIGHT	1
		110	BRIDGELANDING	1
		200	WALKWAY WD	1
		210	WALKWAY MD	1
		220	WALKWAY UMD	1
		230	WALKWAY LMD	1
		240	WALKWAY CD	1
		300	STORAGE WD	1
		310	STORAGE MD	1
		320	STORAGE UMD	1
		330	STORAGE LMD	1
		340	STORAGE CD	1
		400	LAYDOWN MD	1
		410	LAYDOWN UMD	1
		420	LAYDOWN CD	1
		500	EQUIPMENT UMD	1
		510	EQUIPMENT LMD	1
		600	NW WD	1
		610	NW MD	1
		620	NW UMD	1
		630	NW LMD	1
		640	NW CD	1
3100	SLS WIND SOUTH WEST	100	DEADWEIGHT	1
		110	BRIDGELANDING	1
		200	WALKWAY WD	1
		210	WALKWAY MD	1
		220	WALKWAY UMD	1
		230	WALKWAY LMD	1
		240	WALKWAY CD	1

Page 44 of 95

Thomas Gjerde

		300	STORAGE WD	1
		310	STORAGE MD	1
		320	STORAGE UMD	1
		330	STORAGE LMD	1
		340	STORAGE CD	1
		400	LAYDOWN MD	1
		410	LAYDOWN UMD	1
		420	LAYDOWN CD	1
		500	EQUIPMENT UMD	1
		510	EQUIPMENT LMD	1
		700	SW WD	1
		710	SW MD	1
		720	SW UMD	1
		730	SW LMD	1
		740	SW CD	1
3200	SLS WIND SOUTH EAST	100	DEADWEIGHT	1
		110	BRDIGELANDING	1
		200	WALKWAY WD	1
		210	WALKWAY MD	1
		220	WALKWAY UMD	1
		230	WALKWAY LMD	1
		240	WALKWAY CD	1
		300	STORAGE WD	1
		310	STORAGE MD	1
		320	STORAGE UMD	1
		330	STORAGE LMD	1
		340	STORAGE CD	1
		400	LAYDOWN MD	1
		410	LAYDOWN UMD	1
		420	LAYDOWN CD	1
		500	EQUIPMENT UMD	1
		510	EQUIPMENT LMD	1
		800	SE WD	1
		810	SE MD	1
		820	SE UMD	1
		830	SE LMD	1
		840	SE CD	1
3300	SLS NO WIND	100	DEADWEIGHT	1
		110	BRIDGELANDING	1
		200	WALKWAY WD	1
		210	WALKWAY MD	1
		220	WALKWAY UMD	1
		230	WALKWAY LMD	1
		240	WALKWAY CD	1
		300	STORAGE WD	1
		310	STORAGE MD	1
		320	STORAGE UMD	1

Page 45 of 95

Thomas Gjerde

	330	STORAGE LMD	1
	340	STORAGE CD	1
	400	LAYDOWN MD	1
	410	LAYDOWN UMD	1
	420	LAYDOWN CD	1
	500	EQUIPMENT UMD	1
	510	EQUIPMENT LMD	1

Thomas Gjerde

6 RESULTS

6.1.Results for ULS

The structure is checked for three different ULS conditions, one condition with the bridge landing and the bridge attached, one with the bridge landing only and one where neither the bridge landing or the bridge itself attached. The structure is also checked for two SLS conditions, one condition where the bridge landing and the bridge attached, and one where neither the bridge landing nor the bridge itself is attached.

6.1.1. Location 1

Table 6.1.1.1 shows the five elements that have the highest utilization ratio when the bridge landing and the bridge itself is attached.

ULS-1-1, with bridge landing and bridge						
Beam nr	Profile	Utilization	Terms	Load		
1014	Custom	0,675	VMIS	2000		
1012	Custom	0,545	VMIS	2000		
1056	Custom	0,490	STAB	1000		
1058	Custom	0,452	STAB	1200		
1032	Custom	0,447	STAB	1100		

Table 6.1.1.1 - Five most utilized elements.

Table 6.1.1.2 shows the five elements that have the highest utilization ratio when only the bridge landing is attached.

ULS-1-2, with the bridge landing only						
Beam nr	Profile	Utilization	Terms	Load		
1014	Custom	0,639	VMIS	2000		
1012	Custom	0,528	VMIS	2000		
1056	Custom	0,462	STAB	1000		
1032	Custom	0,448	STAB	1100		
1058	Custom	0.409	STAB	1200		

Table 6.1.1.2 - Five most utilized elements.

Thomas Gjerde

Table 6.1.1.3 shows the five elements that have the highest utilization ratio without the bridge landing and the bridge.

ULS-1-3, without the bridge landing and the bridge					
Beam nr	Profile	Utilization	Terms	Load	
1014	Custom	0,707	STAB	2000	
1032	Custom	0,500	STAB	1000	
1012	Custom	0,487	VMIS	2000	
1056	Custom	0,424	STAB	1000	
1044	Custom	0,396	STAB	1200	

Table 6.1.1.3 - Five most utilized elements.

Table 6.1.1.4 shows the comparison between the different ULS analysis. ULS-1-2 and ULS-1-3 will be compared to ULS-1-1 and the grey color will show which ratio is the highest. The gray color shows the beam that is not included in the five highest utilization ratios.

Table 6.1.1.4 - Comparison of five most utilized beams.

ULS ANALYSIS		ULS-1-1, with		ULS-1-2, with the		ULS-1-3, without	
1		bridge landing and		bridge landing only		the bridge landing	
		bridge				and the bidge	
Beam nr	Profile	Utilization	Load	Utilization	Load	Utilization	Load
		ratio		ratio		ratio	
1014	Custom	0,675	2000	0,639	2000	0,707	2000
1012	Custom	0,545	2000	0,528	2000	0,487	2000
1056	Custom	0,490	1000	0,462	1000	0,424	1000
1058	Custom	0,452	1200	0,409	1200	0,319	1200
1032	Custom	0,447	1100	0,448	1100	0,500	1000
1044	Custom	0,346	1200	0,396	1200	0,396	1200

Thomas Gjerde

Figure 6.1.1 - The highest utilized beams in the ULS analysis for location 1.

6.1.2. Location 2a

Table 6.1.2.1 shows the five elements that have the highest utilization ratio when the bridge landing and the bridge itself is attached.

ULS-2-1, with bridge landing and bridge						
Beam nr	Profile	Utilization	Terms	Load		
1014	Custom	3,089	VMIS	1200		
1117	Custom	1,441	STAB	1000		
1056	Custom	0,674	STAB	1000		
1032	Custom	0,641	STAB	1100		
1019	Custom	0,619	VMIS	1100		

Table 6.1.2.1 - The five most utilized elements.

Thomas Gjerde

Table 6.1.2.2 shows the five elements that have the highest utilization ratio when only the bridge landing is attached.

ULS-2-2, with the bridge landing only						
Beam nr	Profile	Utilization	Terms	Load		
1014	Custom	2.312	STAB	1000		
1117	Custom	1.085	STAB	1000		
1032	Custom	0.591	STAB	1100		
1056	Custom	0.590	STAB	1000		
1019	Custom	0.492	VMIS	1100		

Table 6.1.2.2 - The five most utilized elements.

Table 6.1.2.3 shows the five elements that have the highest utilization ratio without the bridge landing and the bridge.

Table 6.1.2.3 - The five most utilized elements.

ULS-2-3, without the bridge landing and the bridge						
Beam nr	Profile	Utilization	Terms	Load		
1117	Custom	0,656	STAB	2000		
1014	Custom	0,537	VMIS	2100		
1032	Custom	0,500	STAB	1000		
1012	Custom	0,487	VMIS	2000		
1056	Custom	0,424	STAB	1000		

Table 6.1.2.4 shows the comparison between the different ULS analysis. ULS-2-2 and ULS-2-3 will be compared to ULS-2-1 and the green color will show which ratio is the highest. The gray color shows the beam that is not included in the five highest utilization ratios.

1 4010 0.112	Tuble 0.1.2.1 Comparison of the first utilized elements.						
ULS ANALYSIS ULS-2-1, with		ULS-2-2, with the		ULS-2-3, without			
2	a	bridge land	ling and	bridge land	ling only	g only the bridge landing	
		bridge	-			and the bidge	
Beam nr	Profile	Utilization	Load	Utilization	Load	Utilization	Load
		ratio		ratio		ratio	
1014	Custom	3,089	1200	2,312	1000	0,537	2100
1117	Custom	1,441	1000	1,085	1000	0,656	2000
1056	Custom	0,674	1000	0,590	1000	0,424	1000
1032	Custom	0,641	1100	0,591	1100	0,500	1000
1019	Custom	0,619	1100	0,492	1100	0,320	2000
1012	Custom	0,461	2100	0,447	2100	0,487	2000

Table 6.1.2.4 - Comparison of the five most utilized elements.

Thomas Gjerde

Figure 6.1.2 - The highest utilized beams in the ULS analysis for location 2a.

6.1.3. Reinforcement and adding of a new beam

As seen from the results from location 2a, beam 1014 and 1117 have a higher utilization ration than 1, and will therefore fail. The reason for this is that the beams are not able to take up the forces caused by beam 1133 (See figure 6.1.3.1). Therefore a new beam has to be added to support and take up the forces from beam 1133 that comes from the load from the bridge landing and the bridge. A new location, Location 2b, has to be checked.

Thomas Gjerde

Figure 6.1.3.1 - The new added beam.

A reinforcement of beam 1014 and 1117 is also needed and the same profile that is used for beam 1020 and 1037, is used for beams 1014 and 1117 (See figure 6.1.3.2):

Reinforcement of beam 1014 and 1117					
Height: Width:					
Section size:	1000mm	400mm			
Top flange size:	30mm	400mm			
Bottom flange size:	30mm	400mm			
Web size:	12mm	940mm			

Table 6.1.3.1 - Beam reinforcement.

Thomas Gjerde

Table 6.1.3.2 - Profile of the old beam.

Profile of the old beam					
	Height:	Width:			
Section size:	800mm	250mm			
Top flange size:	20mm	250mm			
Bottom flange size:	20mm	250mm			
Web size:	12mm	760mm			

Figure 6.1.3.2 – It's the highlighted beams that needs to be reinforced.

6.1.4. Location 2b

Table 6.1.4.1 shows the five elements that have the highest utilization ratio when the bridge landing and the bridge itself is attached.

Thomas Gjerde

ULS-3-1, with bridge landing and bridge						
Beam nr	Profile	Utilization	Terms	Load		
1119	Custom	0.760	VMIS	1200		
1051	Custom	0.665	VMIS	1100		
1056	Custom	0.660	STAB	1000		
1031	Custom	0.660	VMIS	1000		
1032	Custom	0.644	STAB	1100		

Table 6.1.4.1 - The five most utilized elements.

Table 6.1.4.2 shows the five elements that have the highest utilization ratio when only the bridge landing is attached.

Table 0.1.4.2 - The five most duffized clements.						
ULS-3-2, with the bridge landing only						
Beam nr	Profile	Utilization	Terms	Load		
1032	Custom	0.591	STAB	1100		
1056	Custom	0.581	STAB	1000		
1119	Custom	0.536	VMIS	1200		
1051	Custom	0.503	VMIS	1100		
1034	Custom	0.487	STAB	1100		

Table 6.1.4.2 - The five most utilized elements.

Table 6.1.4.3 shows the five elements that have the highest utilization ratio without the bridge landing and the bridge.

Tuble 0.1.1.9 The five most utilized elements.						
ULS-3-3, without the bridge landing and the bridge						
Beam nr	Profile	Utilization	Terms	Load		
1032	Custom	0.503	STAB	1000		
1012	Custom	0.451	VMIS	2000		
1056	Custom	0.407	STAB	1000		
1044	Custom	0.396	STAB	1200		
1064	Custom	0.387	STAB	1200		

Table 6.1.4.3 - The five most utilized elements.

Table 6.1.4.4 shows the comparison between the different ULS analysis. ULS-3-2 and ULS-3-3 will be compared to ULS-3-1 and the green color will show which ratio is the highest. The gray color shows the beam that is not included in the five highest utilization ratios.

Thomas Gjerde

Table 6.1.4.4 - Comparison of the five most utilized elements.							
ULS ANALYSIS		ULS-3-1, with		ULS-3-2, w	vith the	ULS-3-3, w	vithout
2	b	bridge land	ling and	bridge land	ling only	the bridge	landing
		bridge				and the bid	lge
Beam nr	Profile	Utilization	Load	Utilization	Load	Utilization	Load
		ratio		ratio		ratio	
1119	Custom	0.760	1200	0,536	1200	0,093	1200
1051	Custom	0.665	1100	0,503	1100	0,334	2000
1056	Custom	0.660	1000	0,581	1000	0,407	1000
1031	Custom	0.660	1000	0,435	1000	0,171	2100
1032	Custom	0.644	1100	0,591	1100	0,503	1000
1034	Custom	0.622	1100	0,487	1100	0,250	2000
1012	Custom	0.447	2000	0,446	2000	0,451	2000
1044	Custom	0.421	1200	0,414	1200	0,396	1200
1064	Custom	0.386	1000	0,372	1000	0,387	1200

Figure 6.1.4 - The highest utilized beams in the ULS analysis for location 2b.

Thomas Gjerde

Table 6.1.4.5 shows the comparison between beam 1012, 1056 and 1032 with the bridge landing and the bridge attached in all of the three cases.

		Location 1		Location 2a		Location 2b	
Beam nr	Profile	Utilization	Load	Utilization	Load	Utilization	Load
		ratio		ratio		ratio	
1012	Custom	0,545	2000	0,461	2100	0,447	2000
1056	Custom	0,490	1000	0,674	1000	0,660	1000
1032	Custom	0,447	1100	0,641	1100	0,644	1100

Table 6.1.4.5 - Comparison between beam 1012, 1056 and 1032.

6.1.5. Utilization factor variation

Figure 6.1.5 shows a presentation of the ten highest utilized beam elements and how much the utilization factor varies. The vertical axis (Y) represents the average of the ten highest utilization factors where the average is situated at X=0. The horizontal axis (X) represents how much the utilization factors differ from the average. Location 2a not has been taken account for in this presentation.

Figure 6.1.5 – Variation of the utilization factors.

Thomas Gjerde

6.2.SLS Results

The structure is checked for two conditions, one condition where the bridge landing is not attached and one condition where the bridge landing and the bridge itself is attached.

In both conditions, all of the beams are assumed and considered to be cantilever beams, and according to the requirements of NORSOK N-001, the maximum deflection for a cantilever beam is 2L/250 (Table 2 – Limiting values for vertical deflections).

By judging the results from the ULS analysis, Location 2a has two failed beams. Therefore, a SLS analysis of Location 2a is not done, only for Location 2b.

6.2.1. Nodal displacement, Location 1

The beams between the fixed support and node 5, 6 and 7, (See figure 6.2.1.1 and 6.2.1.2) will be checked for displacement in y-direction. The beams between the fixed support and node 205, 7 and 207, are considered to be vertical beams and will be checked for displacement in the z-direction.

Thomas Gjerde

Figure 6.2.1.1 - Displacement in all directions in node 5, 6, 7, 205 and 207 without the bridge landing and the bridge attached.

Thomas Gjerde

Figure 6.2.1.2- Displacements in all directions in node 5, 6, 7, 205 and 207 with the bridge landing and the bridge attached.

Table 6.2.1.1 shows the nodal displacement before installation of the bridge landing and the bridge.

rable 0.2.1.1 - Notai displacement.						
Nodal d	isplacement be	fore installation	n of the bridge	landing and the	e bridge	
Node	5	6	7	205	207	
Load	1200	1200	1200	2100	2000	
Maximum	0,660mm	0,364mm	2,415mm	1,204mm	8,309mm	
displacement						
Length of	3000mm	3000mm	8500mm	10000mm	10000mm	
beam						
Requirements	24mm	24mm	68mm	80mm	80mm	
for maximum						
deflection in						
beam. 2L/250						

Table 6.2.1.1 -	- Nodal	displacement.
-----------------	---------	---------------

Thomas Gjerde

Table 6.2.1.2 shows the nodal displacement after installation of the bridge landing and the bridge.

Nodal displacement after installation of the bridge landing and the bridge							
Node	5	6	7	205	207		
Load	1200	1200	1200	2000	2000		
Maximum	8,650mm	1,223mm	6,641mm	1,735mm	12,957mm		
displacement							
Length of	3000mm	3000mm	8500mm	10000mm	10000mm		
beam							
Requirements	24mm	24mm	68mm	80mm	80mm		
for maximum							
deflection in							
beam, 2L/250							

Table 6.2.1.3 shows a summary and the difference in nodal displacements before and after installation of the bridge landing and the bridge.

Summary of nodal displacements for location 1					
Node	5	6	7	205	207
Before the	0,660mm	0,364mm	2,415mm	1,204mm	8,309mm
installation					
of the bridge					
landing and					
the bridge.					
After the	8,650mm	1,223mm	6,641mm	1,735mm	12,957mm
installation					
of the bridge					
landing and					
the bridge.					
Difference in	7,990mm	0,859mm	4,226mm	0,531mm	4,648mm
mm					
Difference in	1210,6%	236,0%	175,0%	44,1%	55,9%
%					

Table 6	213	- Summary	of nodal	displacements
Table 0	0.2.1.3	- Summary	of noual	displacements.

6.2.2. Nodal displacement, Location 2b

Every beam will be checked for nodal displacement in y-direction.

Thomas Gjerde

Figure 6.2.2.1 – Displacements in all directions in node 7, 207, 331 and 335 without the bridge landing and the bridge attached.

Thomas Gjerde

Figure 6.2.2.2 - Displacement in all directions in node 7, 207, 331 and 331 with the bridge landing and the bridge attached.

Table 6.2.2.1 shows the nodal displacement before installation of the bridge landing and the bridge.

Nodal displacement before installation of the bridge landing and the bridge				
Node	7	207	331	335
Load	1200	1200	1200	1200
Maximum	2,237mm	2,617mm	6,126mm	6,797mm
displacement				
Length of beam	8500mm	8500mm	8500mm	8500mm
Requirements	68mm	68mm	68mm	68mm
for maximum				
deflection in				
beam, 2L/250				

Table 6.2.2.1 - Nodal displacement.

Thomas Gjerde

Table 6.2.2.2 shows the nodal displacement after installation of the bridge landing and the bridge.

Nodal displacement after installation of the bridge landing and the bridge				
Node	7	207	331	335
Load	1200	1200	1000	1000
Maximum	7,558mm	8,750mm	15,108mm	17,185mm
displacement				
Length of beam	8500mm	8500mm	8500mm	8500mm
Requirements	68mm	68mm	68mm	68mm
for maximum				
deflection in				
beam, 2L/250				

Table 6.2.2.2 - N	odal displacement
-------------------	-------------------

Table 6.2.2.3 shows a summary and the difference in nodal displacements before and after installation of the bridge landing and the bridge.

Summary of nodal displacements for location 2b				
Node	7	207	331	335
Before the	2,237mm	2,617mm	6,126mm	6,797mm
installation of				
the bridge				
landing and the				
bridge.				
After the	7,558mm	8,750mm	15,108mm	17,185mm
installation of				
the bridge				
landing and the				
bridge.				
Difference in	5,321mm	6,133mm	8,982mm	10,388mm
mm				
Difference in	237,9%	234,5%	146,6%	152,8%
%				

Table 6.2.2.3 –	Summarv	of nodal	displacements.
1 4010 0.2.2.3	Summary	or nouur	displacements.

Thomas Gjerde

7. CONCLUSION

From the results in chapter 6, the ULS results, for location 1 and 2b, the capacity is high enough to withstand the forces they are subjected to. For Location 2a, beam 1014 and 1117 (See figure 6.1.3.2) has an utilization factor higher than 1. Therefore, this location will not be approved and will not be considered as an option when considering another location for the bridge landing.

All of the displacements checked in the SLS analysis are well within the requirements set by the NORSOK N-001 standard.

Considering that both the ULS and SLS analyses are approved, both of the placements of the bridge landing (location 1 and location 2b) can be considered to be real life placements. From figure 6.1.5 one can see that the ten highest utilized beam elements in location 2b are higher utilized than in location 1. The deviation from the average utilization factor is also smaller in location 2b and this means that beam elements are more evenly distributed.

Assumptions made in this thesis:

- The loads, including live loads and wind loads, affecting the platform.
- The load combinations.
- The selection and analysis of beam elements in the defined section of the platform.
- The cost of reinforcement and adding the new beam has not been considered.
- The other platform in the Draupner field has not been built and that is a factor that doesn't contribute to selection of the placement of the bridge landing.

In terms of all the assumptions made for this thesis, and that the beam elements in location 2b have a higher and more even utilization factor than in location 1, it can be reasonable to consider placing the bridge landing in location 2b.

With other assumptions, it is possible that other conclusions may be drawn.

Thomas Gjerde

8. REFERENCES

NORSOK N-001 (Rev. 7, June 2010), *Integrity of offshore structures*. http://www.standard.no/

NORSOK N-003 (September 2007, Edition 2), *Actions and action effects*. <u>http://www.standard.no/</u>

NORSOK N-004 (Rev. 2, October 2004), Design of steel structures.

http://www.standard.no/

Sedeniussen, Ørjan. (2007), *Bro mellom Ekofisk K(EKOK) og EkofiskB(EKOB)*, kanditatoppgave. Stavanger, Norge.

Wind data from Meteorologisk institutt by Magnar Reistad

Thomas Gjerde

APPENDIX

Page 66 of 95

Thomas Gjerde

A. WIND LOADS

A.1. CHARACTERISTIC WIND VELOCITY:

Reference height: $z_{ref} := 10m$ Cellar deck height: $z_{cd} := 30m$ Lower main deck height: $z_{Imd} := 38m$ Upper main deck height: $z_{umd} := 40m$ Mezzane deck height: $z_{md} := 45.5m$ Weather deck height: $z_{wd} := 51m$ Reference time:

 $t_0 := 3600s$

Gust wind duration:

t := 3s

Wind velocity at reference height:

 $U_{z.ref} := 38 \frac{m}{s}$

Air density:

 $\rho_{air} := 1.226 \frac{\text{kg}}{\text{m}^3}$

Wind angle:

 $\alpha := 45$

Shape coefficient:

 $C_{s} := 2.1$

Thomas Gjerde

Shape factor C:

$$C_{\text{C}} = 5.7310^{-2} \cdot \left(1 + 0.15 U_{\text{z.ref}} \frac{\text{s}}{\text{m}}\right)^{0.5}$$

Turbulence intensity factor I_u:

$$I_{ucd} := 0.06 \left(1 + 0.043 U_{z.ref} \cdot \frac{s}{m}\right) \cdot \left(\frac{z_{cd}}{z_{ref}}\right)^{-0.22}$$

1 hour mean wind speed U(z):

$$U_{cd}(z) := U_{z,ref}\left(1 + C \cdot ln\left(\frac{z_{cd}}{z_{ref}}\right)\right)$$

Characteristic wind velocity u(z,t):

$$u_{cd}(z,t) := U_{cd}(z) \cdot \left(1 - 0.4 H_{ucd} \cdot \ln\left(\frac{t}{t_0}\right)\right)$$
$$u_{cd}(z,t) = 60.135 \frac{m}{s}$$

Turbulence intensity factor Iu:

$$I_{ulmd} := 0.06 \left(1 + 0.043 U_{z,ref} \frac{s}{m}\right) \cdot \left(\frac{z_{lmd}}{z_{ref}}\right)^{-0.22}$$

1 hour mean wind speed U(z):

$$U_{lmd}(z) := U_{z,ref}\left(1 + C \cdot ln\left(\frac{z_{lmd}}{z_{ref}}\right)\right)$$

Characteristic wind velocity u(z,t):

$$u_{\text{Imd}}(z,t) := U_{\text{Imd}}(z) \cdot \left(1 - 0.41 I_{\text{u}\text{Imd}} \ln\left(\frac{t}{t_0}\right)\right)$$
$$u_{\text{Imd}}(z,t) = 61.116 \frac{m}{s}$$

Turbulence intensity factor Iu:

$$I_{uumd} := 0.0 \left(1 + 0.043 U_{z.ref} \frac{s}{m} \right) \cdot \left(\frac{z_{umd}}{z_{ref}} \right)^{-0.22}$$

1 hour mean wind speed U(z):

$$U_{umd}(z) := U_{z.ref}\left(1 + C \cdot \ln\left(\frac{z_{umd}}{z_{ref}}\right)\right)$$

Characteristic wind velocity u(z,t):

$$u_{umd}(z,t) := U_{umd}(z) \cdot \left(1 - 0.4 H_{uumd} \cdot \ln\left(\frac{t}{t_0}\right)\right)$$
$$u_{umd}(z,t) = 61.328 \frac{m}{s}$$

Turbulence intensity factor I_u:

$$I_{umd} := 0.06 \left(1 + 0.043 U_{z.ref} \frac{s}{m}\right) \cdot \left(\frac{z_{md}}{z_{ref}}\right)^{-0.22}$$

1 hour mean wind speed U(z):

$$U_{md}(z) := U_{z,ref}\left(1 + C \cdot \ln\left(\frac{z_{md}}{z_{ref}}\right)\right)$$

Characteristic wind velocity u(z,t):

$$u_{md}(z,t) := U_{md}(z) \cdot \left(1 - 0.4 H_{umd} \cdot \ln\left(\frac{t}{t_0}\right)\right)$$
$$u_{md}(z,t) = 61.859 \frac{m}{s}$$

Thomas Gjerde

Turbulence intensity factor Iu:

$$I_{uwd} := 0.06 \left(1 + 0.043 U_{z,ref} \cdot \frac{s}{m}\right) \cdot \left(\frac{z_{wd}}{z_{ref}}\right)^{-0.22}$$

1 hour mean wind speed U(z):

$$U_{wd}(z) := U_{z,ref}\left(1 + C \cdot ln\left(\frac{z_{wd}}{z_{ref}}\right)\right)$$

Characteristic wind velocity u(z,t):

$$\begin{split} \mathbf{u}_{wd}(z,t) &:= \mathbf{U}_{wd}(z) \cdot \left(1 - 0.4 \mathbf{H} \mathbf{I}_{uwd} \cdot \ln\left(\frac{t}{t_0}\right)\right) \\ \mathbf{u}_{wd}(z,t) &= 62.329 \frac{m}{s} \end{split}$$

A.2. MEAN WIND ACTION

A.2.1. WEATHER DECK:

Height of girder:

 $h_{600} := 600 \text{mm}$

Force on plate girder:

$$F_{wd600} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{600} \cdot u_{wd}(z,t)^2 \cdot \sin(\alpha)$$

 $F_{wd600} = 2.553 \frac{kN}{m}$

Height of girder:

 $h_{800} := 800 \text{mm}$

Force on plate girder:

$$F_{wd800} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{800} u_{wd}(z,t)^2 \cdot \sin(\alpha)$$

$$F_{wd800} = 3.404 \frac{kN}{m}$$

Thomas Gjerde

A.2.2. MEZZANE DECK:

Height of girder:	Height of girder:
$h_{400} := 400 \text{mm}$	$h_{450} := 450 mm$
Force on plate girder:	Force on plate girder:
$F_{md400} = \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{400} u_{md}(z,t)^2 \cdot \sin(\alpha)$	$F_{md450} = \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{450} u_{md}(z,t)^2 \cdot \sin(\alpha)$
$F_{md400} = 1.677 \frac{kN}{m}$	$F_{md450} = 1.886 \frac{kN}{m}$
Height of girder:	Height of girder:
$h_{600} = 600 \text{mm}$	$h_{1000} := 1000 \text{mm}$
Force on plate girder:	Force on plate girder:
$F_{md600} = \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{600} u_{md}(z,t)^2 \cdot \sin(\alpha)$	$F_{md1000} = \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{1000} u_{md}(z,t)^2 \cdot \sin(\alpha)$
$F_{md600} = 2.515 \frac{kN}{m}$	$F_{md1000} = 4.192 \frac{kN}{m}$

A.2.3. UPPER MAIN DECK:

Height of girder:

 $h_{340} := 340 mm$

Force on plate girder:

Height of girder: $h_{400} = 400 \text{mm}$

Force on plate girder:

 $F_{umd340} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{340} \cdot u_{umd}(z,t)^2 \cdot \sin(\alpha)$ $F_{umd340}=1.401\frac{kN}{m}$

$$F_{umd400} \coloneqq \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{400} \cdot u_{umd}(z,t)^2 \cdot \sin(\alpha)$$
$$F_{umd400} \equiv 1.648 \frac{kN}{m}$$

Thomas Gjerde

Height of girder:

 $h_{800} := 800 \text{mm}$

Force on plate girder:

 $F_{umd800} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{800} \cdot u_{umd}(z,t)^2 \cdot \sin(\alpha)$

 $F_{umd800} = 3.296 \frac{kN}{m}$

Height of girder:

 $h_{1,000} := 1000 \text{mm}$

Force on plate girder:

$$F_{umd1000} = \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{1000} u_{umd}(z,t)^2 \cdot \sin(\alpha)$$

$$F_{umd1000} = 4.12 \frac{kN}{m}$$

Height of girder:

 $h_{1500} := 1500 \text{mm}$

Force on plate girder:

 $F_{umd1500} = \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{1500} u_{umd}(z,t)^2 \cdot \sin(\alpha)$

 $F_{umd1500} = 6.18 \frac{kN}{m}$

A.2.4. LOWER MAIN DECK:

Height of girder:

 $h_{400} = 400 \text{mm}$

Force on plate girder:

 $F_{lmd400} = \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{400} u_{lmd}(z,t)^2 \cdot \sin(\alpha)$

 $F_{lmd400} = 1.637 \frac{kN}{m}$

 $h_{500} := 500 \text{mm}$

Height of girder:

Force on plate girder:

 $F_{lmd500} = \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{500} u_{lmd}(z,t)^2 \cdot \sin(\alpha)$

$$F_{\text{lmd500}} = 2.046 \frac{\text{kN}}{\text{m}}$$

Thomas Gjerde

Height of girder:

 $h_{800} := 800 \text{mm}$

Force on plate girder:

 $F_{lmd800} = \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{800} u_{lmd}(z,t)^2 \cdot \sin(\alpha)$

 $F_{lmd800} = 3.273 \frac{kN}{m}$

Height of girder:

$$h_{1,000} := 1000 \text{mm}$$
Force on plate girder:

$$F_{1md1000} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{1000} u_{1md}(z,t)^2 \cdot \sin(\alpha)$$

$$F_{1md1000} = 4.091 \frac{\text{kN}}{\text{m}}$$

A.2.5.CELLAR DECK:

Height of girder:

 $h_{500} := 500 \text{mm}$

Force on plate girder:

$$F_{cd500} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{500} \cdot u_{cd}(z,t)^2 \cdot \sin(\alpha)$$

 $F_{cd500} = 1.981 \frac{kN}{m}$

Height of girder:

 $h_{700} := 700 \text{mm}$

Force on plate girder:

$$F_{cd700} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{700} \cdot u_{cd}(z,t)^2 \cdot \sin(\alpha)$$
$$F_{cd700} = 2.773 \frac{kN}{m}$$

Height of girder:

 $h_{600} = 600 \text{mm}$

Force on plate girder:

$$F_{cd600} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{600} \cdot u_{cd}(z,t)^2 \cdot \sin(\alpha)$$

$$F_{cd600} = 2.377 \frac{kN}{m}$$

Height of girder:

 $h_{800} := 800 \text{mm}$

Force on plate girder:

$$F_{cd800} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{800} u_{cd}(z,t)^2 \cdot \sin(\alpha)$$
$$F_{cd800} = 3.169 \frac{kN}{m}$$
Thomas Gjerde

Height of girder:

 $h_{1,000} = 1000 \text{mm}$

Force on plate girder:

 $F_{cd1000} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{1000} u_{cd}(z,t)^2 \cdot \sin(\alpha)$

 $F_{cd1000} = 3.961 \frac{kN}{m}$

Height of girder:

 $h_{1.500} = 1500 \text{mm}$

Force on plate girder:

$$F_{cd1500} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{1500} u_{cd}(z,t)^2 \cdot \sin(\alpha)$$

 $F_{cd1500} = 5.942 \frac{kN}{m}$

Height of girder:

 $h_{1800} := 1800 mm$

Force on plate girder:

 $F_{cd1800} := \frac{1}{2} \cdot \rho_{air} \cdot C_s \cdot h_{1800} u_{cd}(z,t)^2 \cdot \sin(\alpha)$

 $F_{cd1800} = 7.13 \frac{kN}{m}$

B. LIVE LOADS

B.1. WEATHER DECK

Storage area:

$q_{\text{storage}} := 15 \cdot \frac{\text{kN}}{\text{m}^2}$	
300mm Girder:	500mm Girder:
$Q_{s300} := q_{storage} \cdot 300 \text{mm} = 4.5 \frac{\text{kN}}{\text{m}}$	$Q_{s500} := q_{storage} \cdot 500 \text{mm} = 7.5 \frac{\text{KN}}{\text{m}}$
400mm Girder:	
$Q_{s400} := q_{storage} \cdot 400 \text{mm} = 6 \cdot \frac{\text{kN}}{\text{m}}$	
Walkway area:	
$q_{walkway} := 4 \frac{kN}{m^2}$	
220mm Girder:	400mm Girder:
$Q_{w220} := q_{walkway} \cdot 220 \text{mm} = 0.88 \frac{\text{kN}}{\text{m}}$	$Q_{w400} := q_{walkway} \cdot 400 \text{mm} = 1.6 \frac{\text{kN}}{\text{m}}$
300mm Girder:	500mm Girder:
$Q_{w300} := q_{walkway} \cdot 300 \text{mm} = 1.2 \frac{\text{kN}}{\text{m}}$	$Q_{w500} := q_{walkway} \cdot 500 \text{mm} = 2 \cdot \frac{kN}{m}$

B.2. MEZZANE DECK

Storage area:

 $q_{\text{storage}} := 15 \frac{\text{kN}}{\text{m}^2}$

250mm Girder:

$$Q_{s250} := q_{storage} \cdot 250 \text{mm} = 3.75 \frac{\text{kN}}{\text{m}}$$

300mm Girder:

$$Q_{s300} := q_{storage} \cdot 300 \text{mm} = 4.5 \frac{\text{kN}}{\text{m}}$$

400mm Girder:

 $Q_{s400} := q_{storage} \cdot 400 \text{mm} = 6 \cdot \frac{\text{kN}}{\text{m}}$

Laydown area:

$$q_{laydown} := 15 \frac{kN}{m^2}$$

250mm Girder:

$$Q_{1250} := q_{1aydown} \cdot 250 \text{mm} = 3.75 \frac{\text{kN}}{\text{m}}$$

300mm Girder:

$$Q_{1300} := q_{1aydown} \cdot 300 \text{mm} = 4.5 \frac{\text{kN}}{\text{m}}$$

400mm Girder:

$$Q_{1400} := q_{1aydown} \cdot 400 \text{mm} = 6 \cdot \frac{\text{kN}}{\text{m}}$$

Walkway area:

 $q_{\text{walkway}} := 4 \frac{\text{kN}}{\text{m}^2}$

220mm Girder:

$$Q_{w220} := q_{walkway} \cdot 220 \text{mm} = 0.88 \frac{\text{kN}}{\text{m}}$$

. . .

250mm Girder:

$$Q_{w250} := q_{walkway} \cdot 250 \text{mm} = 1 \cdot \frac{\text{kN}}{\text{m}}$$

300mm Girder:

 $Q_{w300} := q_{walkway} \cdot 300 \text{mm} = 1.2 \frac{\text{kN}}{\text{m}}$

400mm Girder:

 $Q_{w400} := q_{walkway} \cdot 400 \text{mm} = 1.6 \frac{\text{kN}}{\text{m}}$

B.3. UPPER MAIN DECK

Storage area:

 $q_{storage} := 15 \frac{kN}{m^2}$ 250mm Girder: $Q_{s250} := q_{storage} \cdot 250mm = 3.75 \frac{kN}{m}$ 300mm Girder: $Q_{s300} := q_{storage} \cdot 300mm = 4.5 \frac{kN}{m}$ 400mm Girder: $Q_{s400} := q_{storage} \cdot 400mm = 6 \frac{kN}{m}$ 600mm Girder:

 $Q_{s600} := q_{storage} \cdot 600 \text{mm} = 9 \cdot \frac{\text{kN}}{\text{m}}$

Area between equipment:

$$q_{equipment} := 5 \cdot \frac{kN}{m^2}$$

250mm Girder:

 $Q_{e250} := q_{equipment} \cdot 250 \text{mm} = 1.25 \frac{\text{kN}}{\text{m}}$

400mm Girder:

 $Q_{e400} := q_{equipment} \cdot 400 \text{mm} = 2 \cdot \frac{\text{kN}}{\text{m}}$

Laydown area:

$$q_{laydown} := 15 \frac{kN}{m^2}$$
250mm Girder:

$$Q_{1250} := q_{laydown} \cdot 250mm = 3.75 \frac{kN}{m}$$
300mm Girder:

$$Q_{1300} := q_{laydown} \cdot 300mm = 4.5 \frac{kN}{m}$$
400mm Girder:

$$Q_{1400} := q_{laydown} \cdot 400mm = 6 \cdot \frac{kN}{m}$$
Walkway area:

$$q_{walkway} := 4 \frac{kN}{m^2}$$
250mm Girder:

$$Q_{w250} := q_{walkway} \cdot 250mm = 1 \cdot \frac{kN}{m}$$

300mm Girder:

$$Q_{w300} := q_{walkway} \cdot 300 \text{mm} = 1.2 \frac{\text{kN}}{\text{m}}$$

400mm Girder:

$$Q_{w400mm} = q_{walkway} \cdot 400mm = 1.6 \frac{kN}{m}$$

B.4. LOWER MAIN DECK

Storage area: Walkway area: $q_{\text{storage}} := 15 \cdot \frac{\text{kN}}{\text{m}^2}$ $q_{\text{walkway}} := 4 \frac{\text{kN}}{\text{m}^2}$ 250mm Girder: 200 Girder: $Q_{s250} := q_{storage} \cdot 250 \text{mm} = 3.75 \frac{\text{kN}}{\text{m}}$ $Q_{w200} := q_{walkway} \cdot 200 \text{mm} = 0.8 \frac{\text{kN}}{\text{m}}$ 300mm Girder: 250mm Girder: $Q_{s300} := q_{storage} \cdot 300 \text{mm} = 4.5 \frac{\text{kN}}{\text{m}}$ $Q_{w250} := q_{walkway} \cdot 250 mm = 1 \cdot \frac{kN}{m}$ 400mm Girder: 300mm Girder: $Q_{s400} := q_{storage} \cdot 400 \text{mm} = 6 \cdot \frac{\text{kN}}{\text{m}}$ $Q_{w300} := q_{walkway} \cdot 300 \text{mm} = 1.2 \frac{\text{kN}}{\text{m}}$

Area between equipment:

 $q_{equipment} := 5 \cdot \frac{kN}{m^2}$

250mm Girder:

$$Q_{e250} := q_{equipment} \cdot 250 \text{mm} = 1.25 \frac{\text{kN}}{\text{m}}$$

300mm Girder:

$$Q_{e300} := q_{equipment} \cdot 300 \text{mm} = 1.5 \frac{\text{kN}}{\text{m}}$$

400mm Girder:

 $Q_{e400} := q_{equipment} \cdot 400 \text{mm} = 2 \cdot \frac{\text{kN}}{\text{m}}$

B.5. CELLAR DECK

Storage area:	Walkway area:
$q_{\text{storage}} := 15 \cdot \frac{\text{kN}}{\text{m}^2}$	$q_{walkway} := 4 \frac{kN}{m^2}$
200mm Girder:	200mm Girder:
$Q_{s200} := q_{storage} \cdot 200 \text{mm} = 3 \cdot \frac{\text{kN}}{\text{m}}$	$Q_{w200} := q_{walkway} \cdot 200 \text{mm} = 0.8 \frac{\text{kN}}{\text{m}}$
300mm Girder:	220mm Girder:
$Q_{s300} := q_{storage} \cdot 300 \text{mm} = 4.5 \frac{\text{kN}}{\text{m}}$	$Q_{w220} := q_{walkway} \cdot 220 \text{mm} = 0.88 \frac{\text{kN}}{\text{m}}$
400mm Girder:	300mm Girder:
$Q_{s400} := q_{storage} \cdot 400 mm = 6 \cdot \frac{kN}{m}$	$Q_{w300} := q_{walkway} \cdot 300 \text{mm} = 1.2 \frac{\text{kN}}{\text{m}}$
500mm Girder:	400mm Girder:
$Q_{s500} := q_{storage} \cdot 500 \text{mm} = 7.5 \frac{\text{kN}}{\text{m}}$	$Q_{w400} := q_{walkway} \cdot 400 \text{mm} = 1.6 \frac{\text{kN}}{\text{m}}$
Laydown area:	500mm Girder:
$q_{laydown} := 15 \frac{kN}{m^2}$	$Q_{w500} := q_{walkway} \cdot 500 \text{mm} = 2 \cdot \frac{kN}{m}$
200mm Girder:	
$Q_{1200} := q_{\text{storage}} \cdot 200 \text{mm} = 3 \cdot \frac{\text{kN}}{\text{m}}$	
300mm Girder:	
$Q_{1300} := q_{storage} \cdot 300 \text{mm} = 4.5 \frac{\text{kN}}{\text{m}}$	
400mm Girder:	
$Q_{1400} := q_{storage} \cdot 400 \text{mm} = 6 \cdot \frac{\text{kN}}{\text{m}}$	
500mm Girder:	
$Q_{1500} := q_{storage} \cdot 500 \text{mm} = 7.5 \frac{\text{kN}}{\text{m}}$	
600mm Girder:	
$Q_{1600} := q_{\text{storage}} \cdot 600 \text{mm} = 9 \cdot \frac{\text{kN}}{\text{m}}$	

C. PICTURE OF THE LOADS

Thomas Gjerde

D. DRAWINGS OF THE PLATFORM