University of Stavanger Faculty of Science	SUDSEA 7			
MASTER'	S THESIS			
Study program/ Specialization:	Spring semester, 2011			
Offshore technology – Offshore Systems	Open / Restricted access			
Writer: Ivar Andreas Devold	(Writer's signature)			
Faculty supervisor: Daniel Karunakaran				
External supervisor: Arild Østhus				
Title of thesis: Finite element analysis of a friction clamp located on a North Sea jacket				
Credits (ECTS): 30 Key words:				
	Pages: 76 + Enclosure: 137 Stavanger, 15.06.2011			

Abstract

This master thesis is written on the University of Stavanger spring 2011 in collaboration with Subsea 7. When transporting hydrocarbons from seabed to top side on a jacket platform there is always the need of a riser. Risers are attached to the platform leg or bracing by means of riser clamps. The riser loads together with environmental forces transfers large stresses to the clamps. To ensure that the clamps can withstand these loads over the design life, several analyses have to be performed. This thesis covers the design methodology and the most important analyses using a FE (Finite Element) tool, on one of the clamps designed by Subsea 7 for the Ekofisk 2/4-B platform.

Basically three analyses are performed; ULS (Ultimate Limit State) stress check and FLS (Fatigue Limit State) check for the clamp and the bolts, in addition to a non-linear slippage analysis. The action loads from the riser are given by the jacket operator. The environmental forces on the riser and the clamps are calculated to find the largest load combination in the horizontal- and vertical direction. For the various analyses different load- and material factors are applied to the forces. The worst load combination is applied in the analysis which is conducted in ANSYS, FE tool. The linear FE analysis has to be setup correctly to obtain good results.

The results for the ULS stress check are in general within allowable limits, i.e. below design yield. There is however some peak stresses in local areas that are above design yield. Common practice is to conduct a non-linear analysis and check if the peak stresses are due to secondary effects. To disregard the secondary effects the plastic strain obtained in the non-linear analysis have to be insignificant. The results obtained indicate that the peak stresses are due to secondary effects, hence the clamp meets the requirements for the ULS criteria.

In the FLS check three hot spots is checked including a weld. Stress ranges are obtained from the cyclical loads and the number of cycles during the design life calculated. The fatigue damage factor found shall not exceed the fatigue utilization factor calculated for the clamp. This ensures that the clamp will avoid fatigue damage in the design life. It is shown that welds are more fragile to fatigue than plated structures. Regardless all the hot spots are within allowable limits.

The slippage analysis is performed to find out if there is enough statically friction force in the riser clamp to avoid the clamp from sliding. The clamping force is depended of the bolt pretension. Too much tension can cause to high pressure on the jacket leg causing it to buckle and too low tension can cause the clamp to slip. The results show that there are sufficient sticking elements in the clamp to avoid slippage.

Preface

This master thesis is written by Ivar A. Devold during the spring of 2011 at the University of Stavanger. In November 2010 I contacted Professor Daniel Karunakaran who works at Subsea 7 S.A. (Subsea 7 Inc. before merged with Acergy S.A in January 2011) and asked if they had any subjects I could look into for my thesis. We had a meeting on Subsea 7 where we discussed possible subjects and came to the conclusion that a study into friction clamps would be the best topic for my thesis. The title of the master thesis became "Finite element analysis of a friction clamp located on a North Sea jacket". The purpose of the thesis was in short to learn the design methodology including the tools, by perform finite element analyses on riser clamps. The tool used for the thesis was ANSYS v13 that is widely used in the industry, thus it was a good opportunity to get familiar with such tool.

In the start a lot of time was spent to get familiar with what friction clamps. Before starting using the analysis tool (ANSYS) I had to read and learn how the system works. The well known "trial and error method" was frequently used. Although most of the results were incorrect in the beginning I learned a lot from it.

I would like to give a special thanks to Professor Daniel Karunakaran my faculty supervisor and Siv.Ing Arild Østhus my external supervisor for great guiding trough the thesis. Another person that deserves acknowledgement is Dr. Dasharatha Achani for helping me a lot with ANSYS and the thesis in general. A thanks also goes to Dr. Qiang Chen and Siv.Ing Kristian Lindtveit for helping me. Gratitude goes to other people in Subsea 7 as well, which have gladly helped me with questions when I have asked.

> Stavanger, 15. June 2011

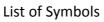
Ivar A. Devold

List of Contents

Abstract	11
PrefaceI	II
List of SymbolsV	Ш
1. Introduction	1
1.1. Scope of document	1
1.2. Document description	2
2. Basic riser clamp designs	3
2.1. Basic clamps	3
2.1.1. Adjustable clamps	4
2.1.2. Stub piece connection clamps	5
2.1.3. Load-bearing clamps	6
3. Clamp study	8
4. Pre analysis work	0
4.1. Bolt specification1	0
4.1.1. Bolt quality1	1
4.1.2. Pre-tension and tension loss1	2
4.1.3. Tension tool1	4
4.2. Riser and clamp loads1	.5
4.2.1. Riser loads1	6
4.2.2. Clamp loads1	6
4.2.3. Self-weight2	0
4.2.4. Hydrostatic pressure	0
4.3. Critical load combinations 2	1
4.3.1. Horizontal load combination2	1
4.3.2. Vertical load combination	2
4.4. Slippage2	3
4.5. New stresses in jacket leg2	.4

- Finite element analysis of a friction clamp located on a North Sea jacket -

4.6.	Fati	gue (FLS)	24
5. Def	initic	ns	26
5.1.	Line	ar vs. nonlinear analysis	26
5.2.	Con	vergence, load steps and substeps	27
5.3.	Nor	linear contacts	27
5.4.	Disc	continuities	29
6. Ana	lysis	setup in ANSYS	30
6.1.	Eng	ineering data	30
6.2.	Geo	metry	31
6.3.	Mo	del	32
6.3.	1.	Connections	32
6.3.	2.	Mesh	32
6.4.	Gen	eral setup	33
6.5.	ULS	setup	33
6.5.	1.	Pre-tension applied	34
6.5.	2.	Loads applied	35
6.6.	Slip	page setup	37
6.7.	FLS	setup	37
7. Res	ults.		39
7.1.	Acc	eptance criteria	39
7.1.	1.	Bolt capacity	39
7.1.	2.	Clamp capacity	39
7.1.	3.	Slippage criteria	40
7.1.	4.	Hoop buckling criteria	40
7.1.	5.	Fatigue criteria	40
7.2.	ULS	stress check	41
7.2.	1.	Bolt check	41
7.2.	2.	Bolt pre-tension only	42
7.2.	3.	Bolt pre-tension, ULS-b 135° and ULS-b down	42
7.3.	Slip	page analysis	49
7.4.	Nev	v stresses in jacket leg	53


7.	5.	Fatigue check	56
	7.5.	.1. Critical areas and bolts	57
8.	Disc	cussions and conclusions	63
8.	1.	ULS stress	63
8.	2.	Slippage	64
8.	3.	New stresses in jacket leg	64
8.	4.	Fatigue	64
8.	5.	Summary and recommendations	65
9.	Refe	ferences	66

mp

List of Symbols

A_s	Nominal stress area	[m ²]
A_s	Share area	[m²]
C_A	Added mass coefficient	[-]
C_D	Drag coefficient	[-]
C_S	Slamming/impact coefficient	[-]
$F_{H,E}$	Horizontal riser force in east direction	[N]
$F_{H,S}$	Horizontal riser force in south direction	[N]
F_N	Normal sectional force	[N]
F_S	Slamming sectional force	[N]
$F_{V,max}$	Maximum vertical friction force	[N]
$F_{b,cap}$	Maximum capacity of bolt	[N]
F_b	Pre-tension force	[N]
F_{bd}	Dynamic force in bolt	[N]
F_d	Dynamic force	[N]
F_{fd}	Dynamic force in fundament	[N]
Fo	Pre-tension	[N]
F _{pre}	Allowed pre-tension force	[N]
\dot{H}_{max}	Maximum wave height	[m]
H_s	Significant wave height	[m]
T_d	Design life in seconds	[s]
T_p	Peak period	[s]
ā	Intercept of the design S-N curve with the log N axis	[-]
f_{ub}	Ultimate stress for bolt	[MPa]
f_y	Yield stress	[MPa]
f_{yd}	Design yield	[MPa]
n_0	Number of cycles	[-]
p_d	Design pressure	[MPa]
p_d	Allowable pressure	[MPa]
и	Horizontal particle velocity	[m/s]
ν	Fluid particle velocity	[m/s]
W	Vertical particle velocity	[m/s]
ù	Horizontal particle acceleration	$[m/s^2]$
<i>ν</i>	Fluid particle acceleration	$[m/s^2]$
Ŵ	Vertical particle acceleration	$[m/s^2]$
Ŷ <i>м</i> b	Material factor buckling	[-]
γ_b	Material factor for bolt	[-]
γ_s	Material factor for steel	[-]
$\sigma_{h,d}$	Design hoop stress	[MPa]
σ_{pc}	Contact pressure	[MPa]
v_0	Average zero-crossing frequency	[1/s]
$\Delta \sigma_o$	Stress range	[MPa]
h	Weibull stress range shape distribution parameter	[-]

Α	Cross sectional area	[m ²]
D	Diameter	[mm]
D	Fatigue damage factor	[-]
Ε	Young's modulus	[MPa]
Н	Trough-to-crest wave height	[m]
L	Length	[mm]
Т	Wave period	[s]
d	Mean water depth	[m]
k	Stiffness	[N/m]
k	Wave number	[1/m]
m	Negative inverse slope of the S-N curve	[-]
q	Weibull scale parameter	[-]
t	Time	[s]
t	Thickness	[mm]
x	Displacement	[mm]
Ζ	Distance from mean free surface positive upward	[m]
$\Gamma\left(1+\frac{m}{h}\right)$	Gamma function	[-]
ε	Strain	[-]
η	Fatigue utilization factor	[-]
λ	Wave length	[m]
μ	Friction factor	[-]
ρ	Mass density of fluid	[kg/m ³]
σ	Stress	[MPa]

1.Introduction

When recovering hydrocarbons from platforms there is always the need of risers. A riser is defined as a vertical or near-vertical segment of pipe connecting facilities above water to the subsea- base or pipeline (Guo, Shanhong, Chacko, & Ghalambor, 2005). Friction clamps are used to attach the riser securely to the legs or braces of the platform and are widely used on all North Sea jackets both over and under the sea surface. Riser and riser clamps transfer substantial loads from wave and currents to the jacket structure. Depending on the pipeline and the riser system the thermal expansion of the pipe may be transferred to the jacket trough the riser clamps. Thus there is important to design and construct these clamps to achieve a specific design life for the different platform requirements.

1.1. Scope of document

Subsea 7 have designed six riser clamps for an 18" ID riser on the Ekofisk 2/4-B platform that are already fabricated and installed. Several analyses need to be performed to assess whether the clamps have enough capacity to support the riser. The purpose of this thesis is to understand the design methodology, perform the required analyses and discuss the results for the capacity of the clamp against the relevant acceptance criteria from specified code/standard. Further the aim includes to get familiar with the FE (Finite Element) tool and compare the results to previous results from Subsea 7 (Subsea 7 [Internal document], 2006). The scope of work also includes identifying the forces acting on the clamp and specifying the bolt pre-tension before checking the clamp against structural failure criteria. The main contents of the thesis outlined as below:

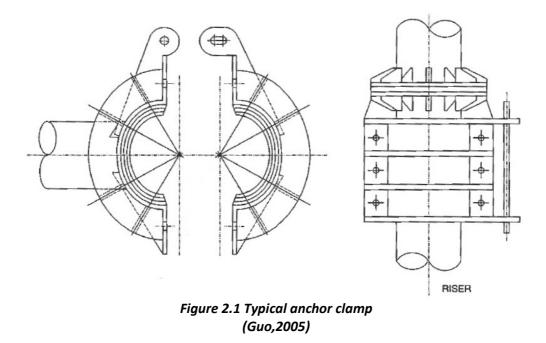
- **7** Specification of initial bolt tension and loss in tension
- **7** ULS stress check with pre-tension in bolts and environmental loads from supported riser
- **7** Non-linear slippage analyses
- **7** Check of jacket leg for new stresses
- 7 Fatigue check of critical details
- 7 Fatigue check of bolts
- **7** Summary and recommendations

This means the thesis will basically cover analyses for stress and fatigue checks against environmental and riser loads. Slippage analyses will be conducted to ensure that the static friction force from the jacket clamp is large enough to prevent the clamp from sliding.

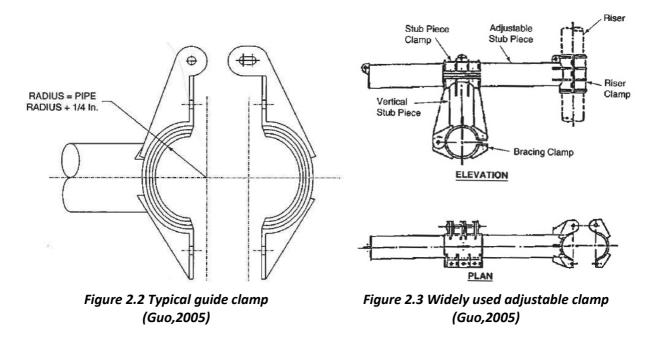
The thesis work mainly focuses on the design and analysis part. The other important design considerations such as influence of thermal expansion, corrosion and installation/fabrication tolerances are not covered in this work.

1.2. Document description

In chapter 2 an introduction of basic riser clamp designs are presented to get an impression on riser clamps. Chapter 3 gives a description of the clamps designed by Subsea 7 including details of their function, location and the differences between them. The processes to find the loads act on the clamp are described in chapter 4. Chapter 5 explains some useful definition of terms and methods used in FEA (Finite Element Analysis). The setup of the various FE analyses is described in chapter 6. In chapter 7 the results are presented as well as the acceptance criteria. The summary, conclusions and discussions are stated in chapter 8. The references are found in chapter 9.


2.Basic riser clamp designs

There are different clamp designs to the various areas of use. For shallow water risers (less than 100 feet) the riser is guided by encircling clamps, not suspended. For deep water risers there normally is a suspension clamp located above or below the waterline to restrain the riser laterally. A slight gap should be used for the encirclement clamps so that the riser can move vertically and hang off the suspension clamp.


The spacing between each encirclement clamp is determined of the environmental loads, normally resulting in closer spacing in the splash zone. Near the seabed the spacing can be large due to the available bracing. The bottom clamp should not be too close to the sea bottom due to the expansion of the pipeline. Sometimes the clamps are attached to the jacket legs to have good support for the riser, but this exposes the riser for potential boat impact in the splash zone.

2.1. Basic clamps

The two most commonly used clamps are the anchor clamp and guide clamp shown in Figure 2.1 and Figure 2.2, respectively. The guide clamps are designed to allow vertical movement and therefore have an internal diameter slightly larger than the riser diameter. Anchor clamps restrain the riser so it is fixed. If there is no need of an anchor clamp, the guiding clamps will carefully squeeze the riser to support it. Normally the clamps are hinged in one end to make them easier to install, but this depends upon the application.

2.1.1. Adjustable clamps

Adjustable clamps have the possibility to change the position on the riser-end after installed on the jacket and are therefore more flexible. One of the most widely used adjustable clamp concept can be seen in Figure 2.3. It consists of a tubular stub piece fitted to the riser clamp. The adjustable stub piece is then connected to a vertical stub piece clamped to the bracing, like in the figure, or to a stub piece welded to the jacket. The maximum load of the stub piece is determined by the wall thickness where axial forces, shear forces and bending moments are taken into account. Adjustable stub pieces will result in large moments especially when the stub piece is fully extracted, and this will be transferred to the vertical stub piece. This results in larger stiffness and higher grade materials.

Another type of adjustable clamp is shown in Figure 2.4. The clamp is used for the diagonals on jackets in the North Sea. Figure 2.5 illustrates another type that have a double clamp for the bracing and the stub piece and a single clamp for the riser connection. The double clamp can also be adjusted in the rotational plane as shown in Figure 2.6 to allow even more misalignment of the riser.

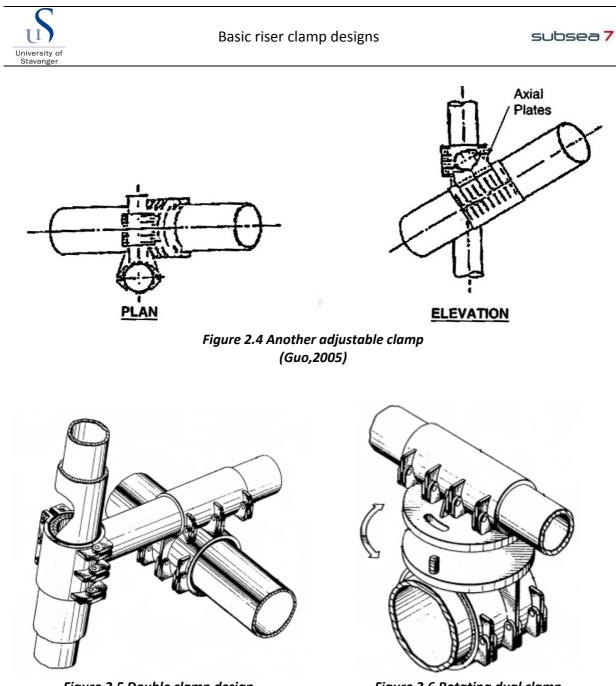
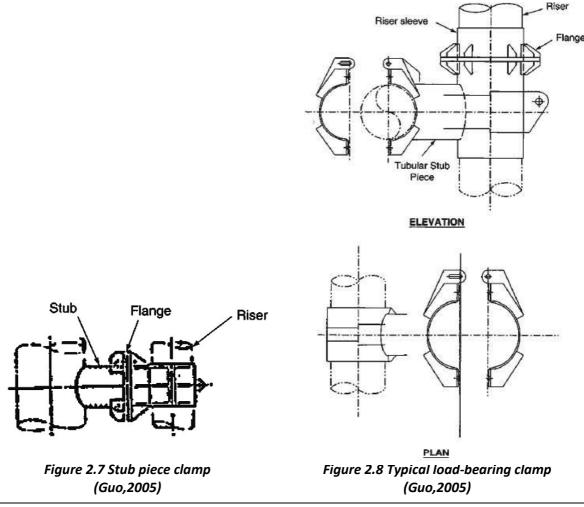
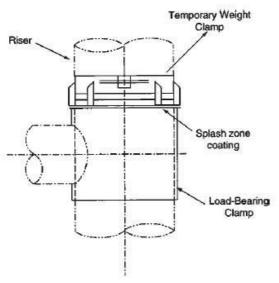


Figure 2.5 Double clamp design (Hauber, 1973)

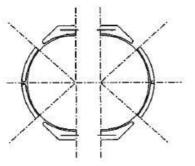
Figure 2.6 Rotating dual clamp (Hauber, 1973)


2.1.2. Stub piece connection clamps

In addition to the vertical stub piece seen before in Figure 2.3, another alternative is to weld on a stub piece with a flange on the jacket. Figure 2.7 shows one with a plated clamp design and one with a tubular clamp design.



2.1.3. Load-bearing clamps


Load-bearing clamps are normally located above sea level and can either be welded directly on the jacket or be connected using a friction grip clamp. The strength of the stub piece depends of the fixity of the riser in the riser clamp. If it is completely fixed, all forces and moments will be transferred to the clamp and the stub piece has to be stronger. When the riser is to be seated, the riser is fitted with a flange that sits on top of the load-bearing riser clamp. The flange faces can be bolted together or resting on each other (see Figure 2.8). If the connection is not bolted, only translational and vertical forces will be transferred to the clamp resulting in a lighter clamp design than if the connection is bolted. During installation and testing of riser and pipeline, a temporary weight clamp (shown in Figure 2.9 and Figure 2.10) can be used to transfer the weight to the load-bearing clamp.

PLAN Figure 2.9 Temporary weight clamp (Guo,2005)

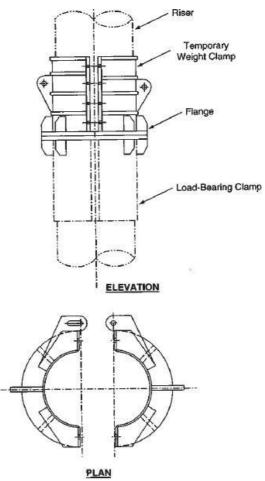
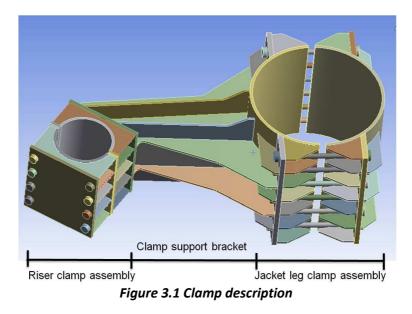


Figure 2.10 Another temporary weight clamp (Guo,2005)

3.Clamp study

The clamps in this thesis are of the type guiding clamps i.e., they make sure that the riser doesn't move in the horizontal direction while the vertical forces and weight of the riser is taken by a riser hang-off on the cellar deck.


There are constructed six clamps with different jacket OD and different elevations, data can be seen in Table 3.1.

Riser clamp	Jacket leg OD [inch]	Elevation (from seabed) [m]	
Riser clamp 1	45	10,000	
Riser clamp 2	45	25,000	
Riser clamp 3	45	40,000	
Riser clamp 4	45	54,000	
Riser clamp 5	46	66,000	
Riser clamp 6	42	78,000	

Table 3.1 Clamp data

A drawing of the connection positions for the clamps on the jacket is presented in Appendix A. Special attention has to be taken for clamp 6 which according to the drawing is in the splash zone. In this zone there will be considerable larger forces due to wave loads and corrosion protection may not be sufficient.

Detailed clamp drawings are found in Appendix A. From the drawings, it can be seen that the clamps in general consist of three parts: the riser clamp assembly, jacket leg clamp assembly and clamp support bracket (see Figure 3.1).

The support bracket transfers the force from the riser clamp to the jacket leg clamp. The bracket consists of many stiffener plates to make sure it is strong enough to withstand forces form different directions. The stiffeners are designed with smooth curves to avoid hot spots where stress concentrations can build up. The riser clamp assembly and the bracket are fitted together with a flange so there is the possibility for some adjustment under installation.

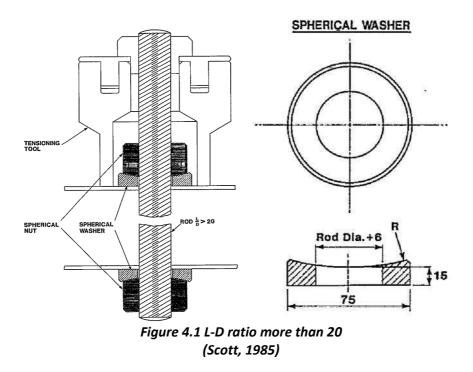
The riser clamp assembly consists of two shells connected with hinges for easier installation, and bolted together. The inside of the shells is coated with ribbed neoprene, a rubber-like coating, which will damp and take up small impact loads form the riser. The edges on the inside of the shells are rounded so that no sharp corners will wear on the riser. Also a riser bumper is part of the riser clamp for easier installation of the riser when guiding it into position.

The jacket leg clamp assembly also consists of two shells with hinges and bolts. The bracket is welded to the front shell. There is space between the clamp shells to make sure that the diameter of the clamp is smaller than the diameter of the leg when the clamp is tightened. Vertical plates with stiffeners support the tension from the bolts. The edges are rounded like the guide clamp of the same reason but to avoid damage on the jacket leg instead of the riser.

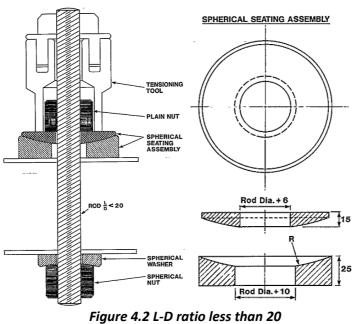
There are some differences between the clamps. Clamps 2, 3 and 4 are identical. Also clamp 5 is very much alike but has a larger diameter for the jacket clamp. Clamps 1 and 6 have different geometry. In addition clamp 6 uses another bolt material since it is in the splash zone. The riser guides are the same for all clamps except for clamp 6.

The clamp steel has these properties:

Yield strength	355	[MPa]
Tensile strength	510	[MPa]
E-modulus	207000	[MPa]
Poisson ratio	0.3	
Density	7850	[kg/m ³]


4.Pre analysis work

4.1. Bolt specification


Bolts are the connection elements in the jacket clamp and the riser clamp, and it's very important that the quality and strength are sufficient to ensure the specific design life. Different bolts have to be selected for different environments, like above and below water, and the pre-tension has to be correct to endure the dynamic loads and avoid fatigue. There have been situations where clamps have slipped and slide down the jacket leg because of pre-tension loss.

The most common bolts used for clamps are stud bolts. A stud bolt is basically a treaded rod which is fastened with nuts on each side. Earlier stud bolts were only treaded in the ends but they had a tendency to fail in the transition between the bar and the treads. Therefore it is now normal practice to use fully treaded stud bolts to prevent such stress concentrations.

To avoid bending stress in the stud bolts the bolt holes are in general large and spherical washers are used. If the length-diameter ratio of the rod are larger than 20 (L/D>20) a spherical nut and a spherical washer is used, see Figure 4.1. If the ratio is smaller than 20 (L/D<20) the assembly have a plane nut with a spherical seating washer on top of the spherical washer like in Figure 4.2.

(Scott, 1985)

4.1.1. Bolt quality

The quality depends upon the strength, environment exposure, corrosion resistance requirements and toughness requirements. The requirements are different when it is subsea, in the splash zone or on the deck side. Subsea 7 have been part of a Joint Industry Project (JIP) called "Bolts and Nuts", see Appendix B. The purpose was to create a guideline for the specification, design and installation of fasteners for the offshore oil and gas industry. The content is gathered from different standards (e.g. ISO, ASTM, and NORSOK) and intended as a guideline, but should not replace these standards.

The JIP concludes that:

- **7** <u>L7</u> bolts are recommended <u>subsea</u> with cathodic protection (CP)
- 7 In the <u>splash zone</u> and where CP cannot be ensured alloy <u>625</u> fasteners should be used.

The report also recommends using ASTM A194 Grade 4 or Grade 7 nuts for L7 bolts. The chosen materials with mechanical properties are summarized in Table 4.1.

	Туре	Yield strength	Ultimate strength
Bolts	ASTM A320, Grade L7	730 N/mm ²	860 N/mm ²
Nuts	ASTM A193, Grade 4/S3		
Spherical washers	Steel		
In the splash zone:			
Bolts	Inconel 625	414 N/mm ²	830 N/mm ²
Nuts	Inconel 625		
Spherical washers	Inconel 625		

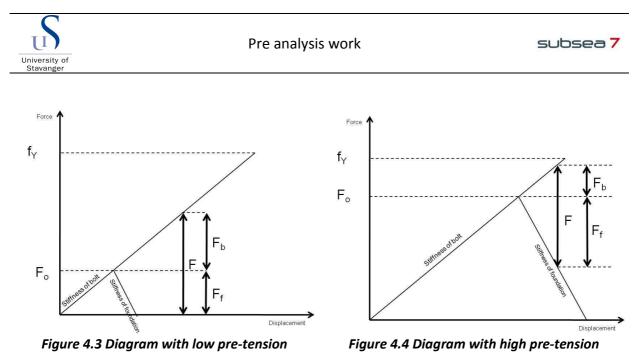
Table 4.1 Bolt material data

The bolt sizes can be seen in Table 4.2. Note that the drawings aren't up to date. The M27 stud bolts have been changed to M33.

Riser guide		Jacket clamp		
Riser clamp	Dimensions	Nominal stress	Dimensions	Nominal stress
	X Grip length	area, A _s	X Grip length	area, A _s
Riser clamp 1	M33 X 700	694 mm ²	M45 X 780	1265 mm ²
Riser clamp 2	M33 X 700	694 mm ²	M45 X 780	1265 mm ²
Riser clamp 3	M33 X 700	694 mm ²	M45 X 780	1265 mm ²
Riser clamp 4	M33 X 700	694 mm ²	M45 X 780	1265 mm ²
Riser clamp 5	M33 X 700	694 mm ²	M45 X 780	1265 mm ²
Riser clamp 6	M33 X 700	694 mm ²	M45 X 780	1265 mm ²
Table 4.2 Bolt sizes				

The length-diameter ratio for the riser guide bolts are:

$$\frac{L}{D} = \frac{700}{33} = 21,2 > 20$$


The ratio for the jacket clamp bolts are:

$$\frac{L}{D} = \frac{780}{45} = 17,3 < 20$$

Hence, there should be used spherical washer with spherical nut for the riser guide bolts and a seating washer with spherical washer for the jacket clamp bolts.

4.1.2. **Pre-tension and tension loss**

Bolts have low fatigue strength. For this reason the dynamic loads in the bolt have to be as low as possible. This is achieved by pre-loading the bolts under installation. From Figure 4.3 it can be seen that the pre-tension, F_0 , is low. Because of this the bolt, F_{bd} , takes a larger portion of the dynamic load, F_d , than the foundation, F_{fd} . As shown in Figure 4.4 the pretension is larger, so the foundation takes more of the load while the bolt takes a much smaller share of the load. Bolts with a high length-diameter ratio have a lower stiffness than bolts with a low ratio. For more theory see (Waløen, 1976) and (Gelgele, 2008).

According to Hooke's law; a bolt with a displacement with low stiffness will experience a lower load than a bolt with higher stiffness (F=kx). Therefore a higher length-diameter ratio

Experience shows that over the time bolts will get a relaxation, or loss in pre-tension, because of plastic deformation in the foundation, bolt, etc. Thus the pre-tension should be as large as possible, but because of uncertainties in friction factors etc., it is hard to know the exact pre-load and the bolt can easily be damaged. It is common practice to use about 70-75% of yield stress for the pre-tension.

According to NS 3464 the maximum allowable pre-tension is:

$$F_{pre} = 0,63 \cdot f_{ub} \cdot A_s$$

will result in lower fatigue.

where,

 f_{ub} = ultimate stress of the bolt A_s = share area

And according to North Sea Design Premises¹ (ConocoPhillips [Internal document], 1993), the initial relaxation after pre-tension is 15-20% and long term relaxation is 15%. These values are only to be used for initial design. For practical engineering work these values should be confirmed by the tensioner-jack supplier. To be on the safe side 20% is chosen for the initial relaxation. For the riser guiding clamps and Inconel 625 bolts the initial relaxation is 15%. This is because slippage is not critical for the riser guides and the Inconel 625 bolts are more ductile than the A320 bolts, therefore the Inconel 625 bolts will have a lower tension. The results can be seen in Table 4.3:

 $^{^{1}}$ The North Sea Design Premises (NSDP) is an internal document from ConocoPhillips, one of the Subsea 7 clients.

	M45 A320 L7 [kN] Inconel 625 [kN]		M33	
			A320 L7 [kN]	Inconel 625 [kN]
Theoretical pre-tension	685,4	661,5	376,0	362,9
Compared to yield	74,2 %	126,3 %	74,2 %	126,3 %
Initial relaxation	20 %	15 %	15 %	15 %
Initial residual pre-tension	548,3	562,2	319,6	308,5
Long term relaxation	15 %	15 %	15 %	15 %
Lon term pre-tension	466,1	477,9	271,7	262,2

Table 4.3 Pre-tension, initial calculations

As mentioned, common practice is to use 70-75% of yield stress for pre-tension. From Table 4.3 it can be seen that the A320 bolts are good, but the Inconel 625 bolts are exceeding the 75% by much. This is not accepted. Therefore the theoretical pre-tension is set to 75% of yield for the Inconel bolts. This is shown in Table 4.4.

	M45		M33		
	A320 L7 [kN]	Inconel 625 [kN]	A320 L7 [kN]	Inconel 625 [kN]	
Theoretical pre-tension	685,4	392,8	376,0	215,5	
Compared to yield	74,2 %	75,0 %	74,2 %	75,0 %	
Initial relaxation	20 %	15%	15 %	15 %	
Initial residual pre-tension	548,3	333,9	319,6	183,2	
Long term relaxation	15 %	15 %	15 %	15 %	
Lon term pre-tension	466,1	283,8	271,7	155,7	

Table 4.4 Pre-tension, corrected calculations

4.1.3. Tension tool

Common method subsea for pre-tension of bolts is to use axial hydraulic devices. They grip around the stud bolt and stretches it by hydraulic power to the desired tension, and the nut is then tighten through the opening in the bottom with a Tommy bar as seen in Figure 4.5. Such tools are accurate compared to a torque wrench because it eliminates the friction between the nut and foundation. An example of such equipment that could handle the pre-tension for the clamps is the Aqua-jack tool from Hydratight (see Figure 4.6). From the datasheet in Appendix C, tool no. AJ3 and AJ5 should be able to pre-tension the bolts for all clamps.

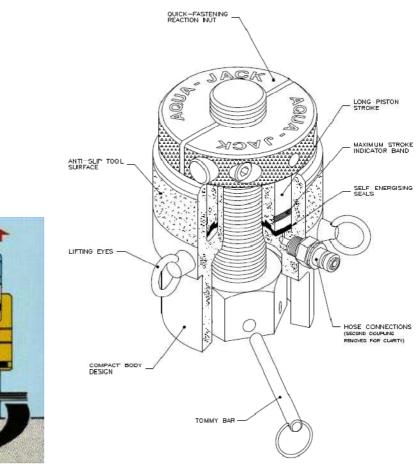


Figure 4.5 Axial tensioning principle (Hydratight, 2011)

Figure 4.6 The Aqua-jack subsea bolt tensioner (Hydratight, 2011)

4.2. Riser and clamp loads

The weather in the North Sea is harsh and the forces on the riser can be large especially from the waves. The environmental loads (current and waves) will act on the riser and the guide clamp, and be transferred to the jacket clamp.

4.2.1. Riser loads

Table 4.5 presents given inputs of the support reactions from the platform operator:	
Tuble no presento biten inputo or the support reactions non the platform operation.	

Support	Lood	Su	upport reactions [k	N]
Elevation	Load	F _Y (North)	F _x (East)	F _z (Vertical)
Flowetion	Functional loads	13	-6	2
Elevation +78000	Installation loads	±6	±1	±1
+78000	Max. wave load	±131	±137	±16
Flouration	Functional loads	-29	4	-4
Elevation	Installation loads	±19	±1	±3
+66000	Max. wave load	±166	±169	±20
Flouration	Functional loads	32	-2	4
Elevation	Installation loads	±27	±5	±4
+54000	Max. wave load	±151	±146	±19
Flouration	Functional loads	15	5	2
Elevation +40000	Installation loads	±23	±13	±3
+40000	Max. wave load	±126	±118	±15
Flouration	Functional loads	-46	-20	-6
Elevation	Installation loads	±14	±12	±2
+25000	Max. wave load	±89	±87	±11
Flouetier	Functional loads	164	72	21
Elevation	Installation loads	±4	±4	0
+10000	Max. wave load	±69	±66	±9

Table 4.5 Support reactions

The axis system is given with y-axis pointing north, x-axis east, and z-axis upwards. The waves and currents that act on the clamp, and self-weight as well, is not included. Note that the functional loads are fixed in space and act simultaneously. The wave and installation loads could both vary 360° in direction and the vertical loads vary upwards and downwards.

4.2.2. Clamp loads

The waves and currents will not only act on the riser but also on the clamp, especially on the bracket. The wave and current forces are larger when applied perpendicular on the clamp. Therefore the loads are applied as shown in Figure 4.7. According to DNV-RP-C205 and Morison's load formula the sectional force is given as:

$$F_N = \rho(1 + C_A)A\dot{v} + \frac{1}{2}\rho C_D Dv|v|$$
 where,

 ρ = mass density of fluid C_A = added mass coefficient (with cross-sectional area as reference area)

- A = cross sectional area
- \dot{v} = fluid particle acceleration
- C_D = drag coefficient
- D = diameter or typical cross-sectional dimension
- v = fluid particle (waves and/or current) velocity

The total force consists of an added mass/inertia component and a drag component. The coefficients for added mass and drag can be found in Appendix D and E of the DNV-RP-C205. The acceleration and velocity are not in phase, so the maximum force will be a combination of these two components. The spreadsheets developed to find the largest horizontal and vertical force can be found in Appendix D. For simplicity the clamp is regarded as a cylinder with height/diameter of 0.8 m and a projected length of 2 m. The significant wave height, H_s, and the wave period, T, are set to be 13.1 m and 14.5 s, respectively (see Figure 4.8). This gives a maximum wave height of 24.3 m (H_{max}=1.86H_s). The current velocity is assumed to be 0.7 m/s and in the same direction as the waves.

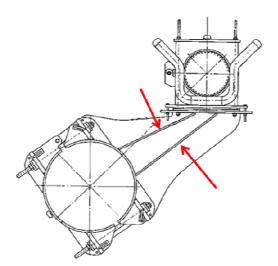
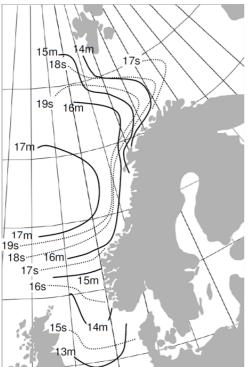



Figure 4.7 Wave and current on clamp

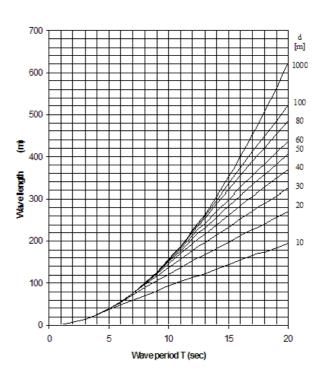


Figure 4.8 Significant wave height H_s and peak period T_p (NORSOK N-003)

Figure 4.9 Wave length as function of wave period (DNV-RP-C205)

For Airy wave theory in general water depth (water depth is 73.8 m):

Horizontal particle velocity, *u* is:

Horizontal particle acceleration, \dot{u} is:

Vertical particle velocity, w is:

Vertical particle acceleration, \dot{w} is:

$$\frac{\pi H}{T} \frac{\cosh[k(z+d)]}{\sinh(kd)} \cos \theta$$
$$\frac{2\pi^2 H}{T^2} \frac{\cosh[k(z+d)]}{\sinh(kd)} \sin \theta$$
$$\frac{\pi H}{T} \frac{\sinh[k(z+d)]}{\sinh(kd)} \sin \theta$$

- ^ -

$$-\frac{2\pi^2 H}{T^2} \frac{\cosh[k(z+d)]}{\sinh(kd)} \cos\theta$$

where,

- *d* = mean water depth
- H = trough-to-crest wave height
- $k = 2\pi/\lambda =$ wave number
- λ = wave length
- T = wave period
- z = distance from mean free surface positive upward
- ϑ = kx- ω t; ω = 2 π /T = angular wave frequency

The wave length, λ , is found to be 310 m using Figure 4.9. For the clamps within ±12.15 m (24.3/2) of the mean sea level, i.e. the two upper clamps can experience wave slamming/impact. The others will be fully submerged at any time and the conventional Morrison's equation with drag and added mass terms should be used.

In DNV-RP-C205 the slamming section force on a vertical slender structure is given as:

$$F_S = \frac{1}{2}\rho C_S Dv^2$$

where

 ρ = mass density of fluid C_S = slamming/impact coefficient D = diameter or typical cross-sectional dimension v = fluid particle velocity

The slamming coefficient according to DNV should be 5.15 for a cylinder but the maximum slamming force doesn't act on the whole section area at once. The force only act on a small fraction of the area in the beginning and then gets distributed over the rest of the area until it is pure drag. Therefore it is common to use a higher drag coefficient instead of the slamming force. A drag coefficient of 2.4 for the top clamps is a good assumption.

The largest horizontal forces on the clamp due to wave/slamming and current loads identified in Appendix D are listed in Table 4.6.

Riser clamp	Elevation	z-value [m]	Horizontal wave force [kN]
Riser clamp 6	78000	4,2	96,2
Riser clamp 5	66000	-7,8	65,4
Riser clamp 4	54000	-19,8	37,1
Riser clamp 3	40000	-33,8	26,4
Riser clamp 2	25000	-48,8	20,0
Riser clamp 1	10000	-63,8	17,1

Table 4.6 Maximum horizontal wave forces on clamp

In Table 4.7 the largest vertical forces are listed.

Riser clamp	Elevation	z-value [m]	Vertical wave force [kN]
Riser clamp 6	78000	4,2	66,4
Riser clamp 5	66000	-7,8	39,0
Riser clamp 4	54000	-19,8	-18,0
Riser clamp 3	40000	-33,8	8,9
Riser clamp 2	25000	-48,8	-3,7
Riser clamp 1	10000	-63,8	-1,3

Table 4.7 Maximum vertical wave forces on clamp

The combined force of the horizontal and vertical forces is also presented in Appendix D. It can be seen that the combined force is dominated by the horizontal force and peaks when the horizontal force peaks (t=14s). These values can be seen in Table 4.8.

Riser clamp	Elevation	z-value [m]	Vertical wave force [kN]
Riser clamp 6	78000	4,2	-5,7
Riser clamp 5	66000	-7,8	-4,6
Riser clamp 4	54000	-19,8	-3,7
Riser clamp 3	40000	-33,8	-2,6
Riser clamp 2	25000	-48,8	-1,6
Riser clamp 1	10000	-63,8	-0,6

Table 4.8 Vertical wave forces when horizontal peaks

4.2.3. Self-weight

The self-weight of the clamps were given by Subsea 7 and are listed in Table 4.9.

Riser clamp	Elevation	Self-weight [kN]
Riser clamp 6	78000	-36,0
Riser clamp 5	66000	-31,5
Riser clamp 4	54000	-31,5
Riser clamp 3	40000	-31,5
Riser clamp 2	25000	-31,5
Riser clamp 1	10000	-36,0

Table 4.9 Weight of clamps

The forces act downwards.

4.2.4. Hydrostatic pressure

The enclosed area in between the stiffener plates in the bracket arm will experience hydrostatic pressure from the water. The water pressure increases 10 kPa for each meter of water depth. On the surface the pressure is 1 atm, equal to 101,325 kPa. This will give the clamps an absolute pressure of 1 atm plus the pressure from the water depth. But since the clamps are manufactured onshore under atmospheric pressure the gauge pressure acting on the clamp will only be the pressure due to water depth. The hydrostatic pressure for the different camps is shown in Table 4.10. Pressure due to waves washing over the clamps in the splash zone is small and neglected.

Riser clamp	Water depth [m]	Pressure [MPa]
Riser clamp 6	-4,2	0
Riser clamp 5	7,8	0,078
Riser clamp 4	19,8	0,198
Riser clamp 3	33,8	0,338
Riser clamp 2	48,8	0,488
Riser clamp 1	63,8	0,638

Table 4.10 Hydrostatic pressure

4.3. Critical load combinations

For the ULS stress and the slippage analysis the critical load combinations are needed to find the correct load factors. The load combination contributing to the largest moments on each clamp will be used. According to NORSOK N-001 the ultimate limit state shall be checked for two action combinations, a and b, with the action factors presented in Table 4.11.

Action combination	Permanent actions	Variable actions	Environmental actions
а	1,3	1,3	0,7
b	1,0	1,0	1,3

Table 4.11 Action factors for ULS

4.3.1. Horizontal load combination

The horizontal loads listed in Table 4.5 and Table 4.6 are combined and proper action factors applied according ULS criteria. Appendix E presents the spreadsheet developed to identify the largest twisting moments around the vertical axis, i.e. the jacket leg. To achieve the largest moments the variable riser loads (wave and installation loads) act perpendicular to its moment arm, i.e. in the 135° direction or 315° direction. At the same time the wave and current forces act in the same direction as the riser loads (see Figure 4.10). The functional loads are fixed. Note that in Appendix E the reaction loads listed in Table 4.5 are converted to riser loads, i.e. opposite direction. The functional and installation loads are categorized as permanent action and wave loads as environmental actions. For the horizontal forces the F_{Y^-} values (north) are used and applied for the 135°/315° direction.

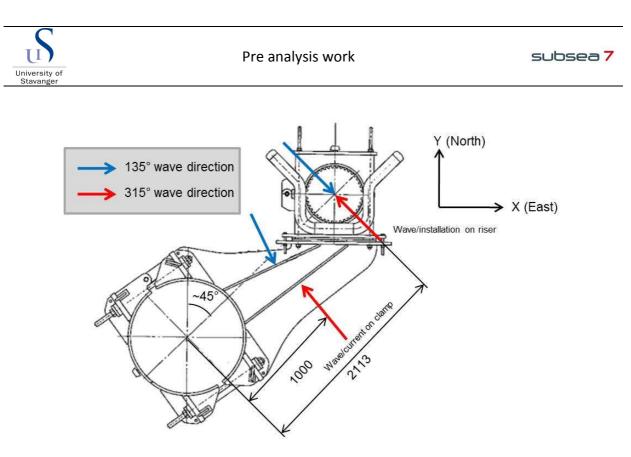
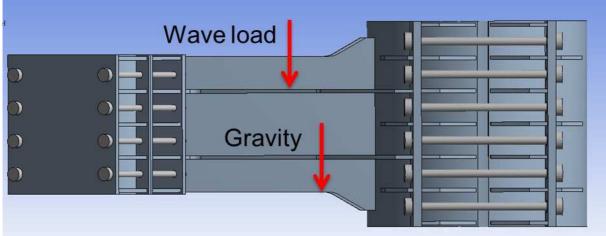


Figure 4.10 Force directions

The forces presented in Table 4.6 act perpendicular to the stiffener plates, i.e. 155° or 322° direction, as seen in Figure 4.10. Even though the wave forces on the clamp do not act in the exact same direction as for the riser (155/322 and 135/315) it is assumed that they can occur from the same wave conditions. The results from the spreadsheet can be seen in Table 4.12.

Riser clamp	Sum of moments ULS-a [kNm]		Sum of moments ULS-b [kNm]	
Riser claimp	135°	315°	135°	315°
Riser clamp 6	319,5	-187,4	535,2	-370,3
Riser clamp 5	282,6	-371,6	537,9	-563,4
Riser clamp 4	391,6	-236,7	<u>574,5</u>	-431,0
Riser clamp 3	288,9	-233,8	446,6	-386,8
Riser clamp 2	134,1	-224,0	262,7	-318,7
Riser clamp 1	306,4	65,0	360,7	-63,8


Table 4.12 Largest moments about jacket leg

The max values, in bold, show the load combination that gives the largest twisting moment about the jacket leg for each clamp.

4.3.2. Vertical load combination

To identify the most critical vertical load combination (see Appendix E) the F_z -values (vertical) in Table 4.5 are used. The functional loads are fixed and the others, which can vary, applied up- and downward. The jacket leg has an inclination of 7°. Therefore the forces from the riser and the self-weight are converted to be parallel to the jacket leg while the wave

Figure 4.11 Vertical loads

loads on the clamp already are parallel. The horizontal component due to the parallelization is neglected. The clamp wave loads are conservatively applied downwards in same direction as the gravity. The wave loads and gravity act on the top of the bracket as seen in Figure 4.11. The moment arms are found using ANSYS. The results from Appendix E are presented in Table 4.13.

Riser clamp	Sum of moments ULS-a [kNm]		Sum of moments ULS-b [kNm]	
Riser claimp	Up	Down	Up	Down
Riser clamp 6	-64,0	-116,4	-78,1	-169,5
Riser clamp 5	-11,3	-86,4	-8,7	-130,3
Riser clamp 4	-16,0	-93,6	3,3	<u>-117,1</u>
Riser clamp 3	-12,3	-72,7	7,2	-87,2
Riser clamp 2	4,8	-38,4	18,2	-50,1
Riser clamp 1	-79,7	-106,2	-48,0	-97,1

Table 4.13 Largest moment in the vertical plane

The max values, in bold, show the load combination that gives the largest moment about the axis perpendicular to the jacket leg axis.

4.4. Slippage

Slippage can occur when there is not enough static friction between two surfaces. For the clamp this is important between the jacket clamp/jacket leg connection and to some extent the connection between the riser guide shells. The pre-tension in the bolts have to be sufficient to create enough static friction force so that no slippage occurs. Normal practice at subsea 7 is to use a safety factor of 2 on all external loads when performing a slippage analysis.

4.5. New stresses in jacket leg

The jacket leg is a cylindrical hollow column and can therefore be considered as a pipe. When the clamp is squeezed around the jacket leg it will apply pressure similar to how hydrostatic pressure adds hoop stress to a pipe section. This application can therefore be simplified as a pipe influenced by surrounding pressure. In NORSOK N-004 the hoop buckling stress can be calculated:

$$\sigma_{h,d} = \frac{p_d D}{2t} \le \frac{f_y}{\gamma_{Mb}}$$

where,

 $\begin{array}{l} \sigma_{h,d} = \text{design hoop stress} \\ p_d &= \text{design pressure} \\ f_y &= \text{yield stress} \\ \gamma_{Mb} &= \text{material factor buckling} \\ \mathsf{D} &= \text{outer diameter} \end{array}$

4.6. Fatigue (FLS)

According to NORSOK N-004 the aim of fatigue check is to ensure that the structure will have adequate fatigue life. Simplified this means that the structure shall not fail because of cracking during the design life of the structure. For fatigue it is the cycling loads that are assessed, i.e. wave loads. For FLS a factor of 1.0 is used for the environmental loads (see Table 4.14).

Action combination	Permanent actions	Variable actions	Environmental actions
FLS			1.0

Table 4.14 FLS factors

In addition according to NORSOK N-004 the number of load cycles shall be multiplied with the appropriate factor in Table 4.15.

Classification of structural	Access for inspection and repair		
components based on damage	No access or in	Acces	ssible
consequence	the splash zone	Below splash	Above splash
		zone	zone
Substantial consequences	10	3	2
Without substantial consequences	3	2	1

Table 4.15 Design fatigue factor (DFF)

For simplicity all clamps are classified as "No access or in the splash zone" and the "Without substantial consequences". This means that a DFF factor of 3 is to be used in the calculations. The design life for the clamps is given to be 23 years.

- Finite element analysis of a friction clamp located on a North Sea jacket -

The maximum wave load in the worst direction is conservatively used for the fatigue calculations. The simplified fatigue analysis in DNV-RP-C203 is used:

$$D = \frac{v_0 T_d}{\bar{a}} q^m \Gamma\left(1 + \frac{m}{h}\right) \leq \eta$$

where,

$$q = \frac{\Delta \sigma_o}{(\ln n_0)^{1/h}}$$

a	- Maibull coole parameter
q	= Weibull scale parameter
v_0	= average zero-crossing frequency
T_d	= design life in seconds
ā	= intercept of the design S-N curve with the log N axis
т	= negative inverse slope of the S-N curve
h	= Weibull stress range shape distribution parameter
$\Delta \sigma_o$	= stress range exceeded once out of n ₀ cycles
n_0	= the number of cycles over the time period for which the stress range level
	$arDelta\sigma_o$ is defined
$\Gamma\left(1+\frac{m}{h}\right)$	= gamma function

5.Definitions

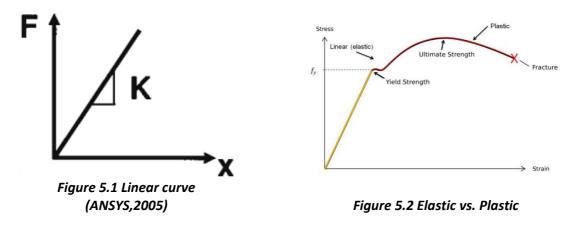
Before reading the next chapters, there are some definitions and concepts that can be helpful in order to understand the context.

5.1. Linear vs. nonlinear analysis

In a linear analysis the equations obey Hooke's law:

F = kx

where,


F = force k = stiffness (constant) x = displacement

This means that the relationship between force and displacement (and stresses) is constant. If the force doubles, the displacement also doubles (see Figure 5.1). For example certain materials like steel, obey Hook's law in the elastic region where stress vs. strain is close to linear (yellow in Figure 5.2). The equation can be converted to this form:

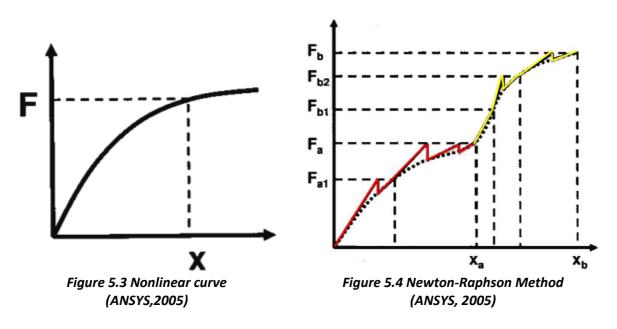
 $\sigma = E\epsilon$

There are in general three forms of nonlinearities:

- 7 Geometric nonlinearities: Large deformations in a structure can cause non-linear behavior due to change in geometric configurations.
- 7 Material nonlinearities: When the stress is in the plastic region (red in Figure 5.2) the material cannot be looked at as linear any more.
- 7 Contact: Nonlinearity can come from an abrupt change in stiffness when two surfaces are coming into contact with each other.

In a non-linear analysis the stiffness depends upon the displacement:

F = k(x)x


This means that if the force doubles the displacement necessarily doesn't (See Figure 5.3). A non-linear analysis uses iterations to find the solution because the relationship between F and x is not known in beforehand.

5.2. Convergence, load steps and substeps

As mentioned above non-linear solutions have to be iterated. The iteration method used is the Newton-Raphson Method which uses a series of linear approximation with corrections until the result is within a limit. When the limit is reached the equation is in equilibrium and the solution has converged. In Figure 5.4 a simple example is presented. There are two load steps, i.e. two changes in the loading, F_a (red) and F_b (yellow). Load F_a is again divided into two substeps, F_{a1} and F_{a2} . This means that 50% of the load F_a is applied in the first iteration until it converges, and then the second 50% is applied. When F_a has converged, F_b is applied in three substeps. Both loads have five iterations resulting in; two load steps, 5 substeps and ten iterations. (A force convergence graph from the ULS analysis is shown in Figure 5.5.)

5.3. Nonlinear contacts

A contact is non-linear when two surfaces touch each other such that they become mutually tangent (ANSYS, 2005). Linear contacts like bounded or "glued" are fairly easy and quick to solve, but non-linear contacts like frictional are hard to solve because the program have to iterate to obtain a solution.

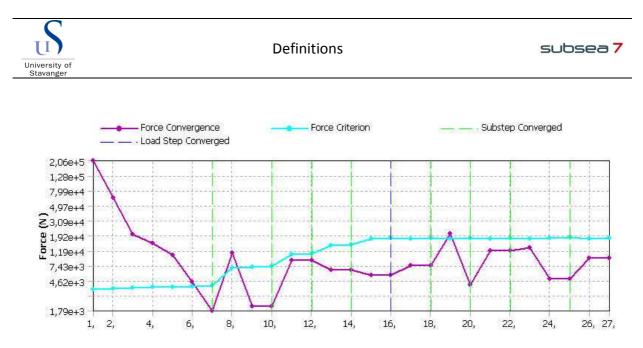


Figure 5.5 Force convergence graph

As mentioned, for non-linear contacts the systems contact status is dependent upon the stiffness. The stiffness is the most important parameter affecting both accuracy and convergence behavior. When two objects come into contact with each other they physically cannot interpenetrate. Therefore the FE program has to establish a relationship between the objects so they do not pass through each other. When this happens the program have enforced contact compatibility. When having penetration the program has failed to enforce contact compatibility. To manage this there are different mathematical algorithms available for the user to choose from. For frictional there is:

7	Pure Penalty:	$F_{normal} = k_{normal} x_{penetration}$
7	Augmented Lagrange:	$F_{normal} = k_{normal} x_{penetration} + \lambda$

7 Normal Lagrange: $F_{normal} = DOF$

From the Pure Penalty and Augmented Lagrange it can be seen that ideally the normal stiffness should be infinite, which will result in zero penetration. This is not numerically possible but as long as the penetration is small or negligible the result will be accurate. The penetration should be less than 1-2% of the target element thickness. A high stiffness results in good accuracy but can cause oscillation in the convergence because the objects are bouncing off each other. Because the Augmented Lagrange has an additional term, λ , it is not that sensitive to the stiffness. This results in minimum penetration and good convergence. The Normal Lagrange adds an additional degree of freedom, contact pressure. This means that normal stiffness is not needed and the penetration is near zero, but the computer time is longer.

5.4. Discontinuities

Secondary stresses can come from discontinuities and lead to high local or nodal peak stresses. Such stresses is usually "fake" and can come from sudden changes in geometry (geometrical discontinuity) or from changes in material properties (material discontinuity), e.g. between two objects with different materials. "Fake" stresses from discontinuity, if proven, can be disregarded.

6.Analysis setup in ANSYS

The FE (Finite Element) analyses for the clamp design were performed using the general FE software ANSYS v13. ANSYS v13 workbench starts up with a project where analyze type is decided. To obtain a solution several steps have to be performed. For the ULS stress, slippage and fatigue check the static structural analysis is chosen.

As mentioned before, the purpose of this thesis was to be familiar with finite element software and to understand the structural analysis and design methodology. Since clamp 4 was identified to subject the largest horizontal forces, see Table 4.12, and that the vertical forces at this point were assumed to be less critical than the horizontal forces, clamp 4 was selected to be used for further analyses.

6.1. Engineering data

The first step, engineering data, is to define material properties. There is a standard data base of different materials to select from, but no material that matched with the material used on the clamp. Therefore two materials are created:

- **7** "Clamp steel" for the general clamp
- 7 "A320" for the A320 grade L7 bolts

The structural analysis performed is linear, i.e. the stress-strain relationship of the material is linear. The properties can be found in the ANSYS printouts (Appendix F^2).

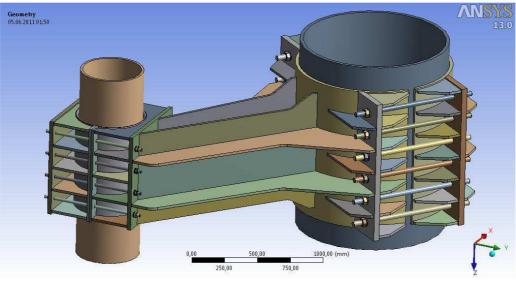


Figure 6.1 Imported clamp

² The ANSYS print-out of all analysis is too big to attach as appendix in the thesis. As of this reason only one analysis is included in the appendix as an example. The rest of the analyses are included in the digital version.

6.2. Geometry

Geometry for use in ANSYS workbench either can be modeled in Design Modeler or it can be imported from other CAD programs. Subsea 7 had designed the clamps in Inventor (CAD) so a simplified geometry with a section of the jacket leg and riser was imported to ANSYS (see Figure 6.1). FEA is very time consuming and if the geometry is complicated the computational time can be long. Therefore the geometry is simplified even more by removing objects that are not important for the analysis like nuts and washers. The same is done with unnecessary faces shown in Figure 6.2 and Figure 6.3. There were some problems finding the right clamp file to import. The file used was not up to date so some changes had to be made. The bolts and bolt holes were too small and was therefore enlarged. At the same time a little end piece was added in each end of the bolts to simulate the washer and nuts to obtain a better distribution of the pre-tension force, see Figure 6.4.

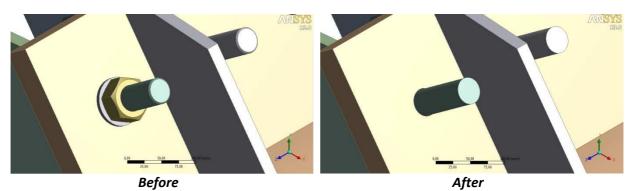
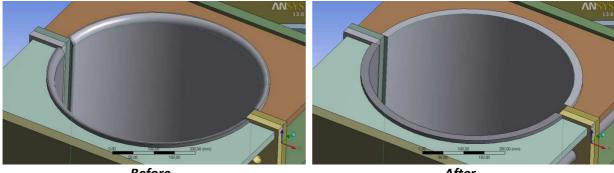



Figure 6.2 Model simplification

After

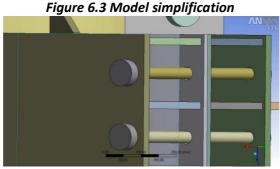


Figure 6.4 Washer/nut simplification

6.3. Model

In the model section it is necessary to describe the analysis environment like to establish boundary conditions, apply forces, define algorithms, etc. In the model the material properties are also assigned to its respective parts.

6.3.1. Connections

When the model is imported it recreates the different components, like stiffener plates, bolts, etc., as independent parts. The contacts between these parts have to be defined. There are several contact types available. The most relevant types for this analysis are bonded and frictional contact. ANSYS automatically applies bonded contact for the parts that have clearance within a defined range. These contacts have to be checked to be correct and some of them need to be changed if necessary. For example the contact between the two jacket clamp shells and the jacket leg is frictional and needed to be changed. Also the contact between the riser shells is frictional. A friction factor of 0.21 (steel to steel under water) is used for these contacts. MPC (Multi-Point Constraint) contact is a type of bonded contact and is often used to simulate welds. MPC contacts are used on the stiffener plates.

6.3.2. Mesh

In general the finite element (FE) mesh has great influence on computational time, memory usage, and accuracy of FE analysis. A reasonable mesh is obtained by simplifying the geometry. A mesh consists of elements which are jointed together in nodes. In FEA the mesh grid consists of material and structural properties that define how the model reacts when loads are applied. The node density should be larger where the stresses are high. The mesh should be symmetrical and "look good", i.e. if the mesh grid is to be square the ratio between the height and length of the element should not be too far from 1. This is very important to obtain a good solution. The mesh for the clamp was fitted by using different methods on the various shapes. The mesh can be seen in Figure 6.5. The end and vertical plates (where the bolts are connected) plus the stiffener plates (where the forces and bending would be large) were sized with at least two layers/divisions to be able to take internal moments.

Analysis setup in ANSYS

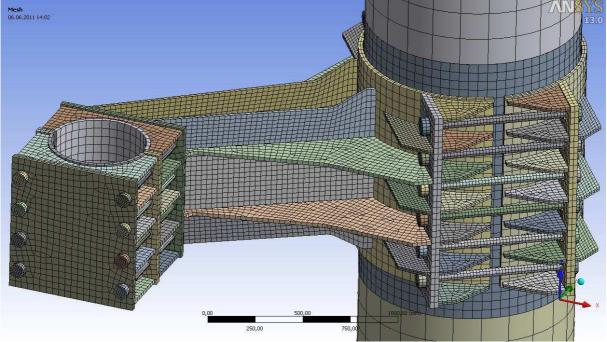


Figure 6.5 Mesh

6.4. General setup

After the FE mesh is completed, loads and boundary conditions on the FE model are to be established. The jacket leg was constrained on the faces on both the upper and the lower end. To be sure that the constraining didn't affect the clamp, the jacket leg was extended 3 m each way (see Figure 6.6). The loads are applied in two load steps; first the pre-tension is applied in the bolts and then the riser and clamp loads are applied. The pre-tension is locked in the second load step. Each load step has 5 substeps meaning a load increment of 20% for each convergence (see Figure 5.5).

(More specific details about connections, mesh, loads, supports, etc. may be found in the ANSYS print-outs in Appendix F.)

6.5. ULS setup

Two FE models were generated for the ULS stress check, one model to check the stresses in the clamp and the second model to check the stresses in the bolts. The theoretical pre-tension is conservatively multiplied with a factor of 1.3 for the clamp check

and for the bolt check the theoretical pre-tension value is used.

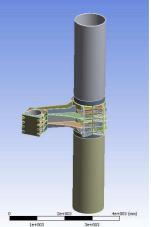


Figure 6.6 Extended jacket leg

- Finite element analysis of a friction clamp located on a North Sea jacket -

6.5.1. Pre-tension applied

The bolt tensions calculated in Table 4.4 are applied without any relaxation and combined with a load factor of 1.3 for the clamp check. The pre-tension values for the different clamps are listed in Table 6.1. For the bolt check the theoretical tension presented in Table 4.4 is used.

Riser clamp	M45 [kN]	M33 [kN]
Riser clamp 6 (Inconel)	510,64	280,15
Riser clamp 5	891,02	488,8
Riser clamp 4	891,02	488,8
Riser clamp 3	891,02	488,8
Riser clamp 2	891,02	488,8
Riser clamp 1	891,02	488,8

Table 6.1 Pre-tension applied in ANSYS

ANSYS has a special function for pre-tension which was applied on each bolt. The applied pre-tension for clamp 4 can be seen in Figure 6.7.

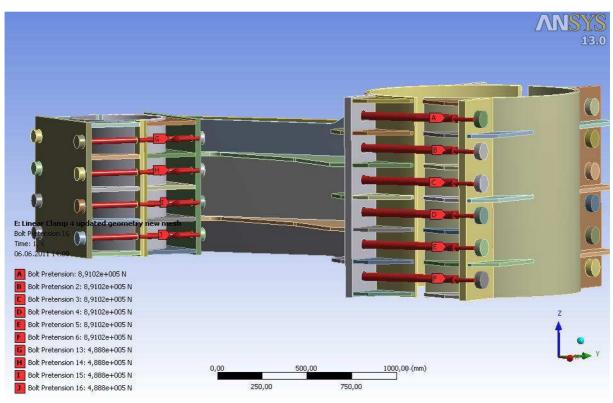


Figure 6.7 Bolt pre-tension applied

6.5.2. Loads applied

In chapter 4.3 the most critical load combinations were identified and a summary form Appendix E can be seen in Table 6.2.

Clamp 1	Clamp 2	Clamp 3	Clamp 4	Clamp 5	Clamp 6
Х	Х	Х	Х	Х	Х
Х	-	Х	Х	-	Х
-	Х	-	-	Х	-
-	-	-	-	-	-
X (ULS-a)	Х	Х	Х	Х	Х
	X X - -	X X X - - X 	X X X X - X - X - - X - - - -	X X X X X - X X - X - - - - - -	X X X X X - X X - X - - - X - - - - - -

Table 6.2 Load directions

It shows that ULS-b gives the largest load combination on all clamps except vertical combination on clamp 1. This means that the loads should be combined with the correct ULS-a/b factors. The clamp is not symmetric horizontally and vertically, and the horizontal-and vertical force are not in phase. Because of this the clamp should be checked for stresses when applying peak horizontal force plus the contribution of vertical force at the same phase time, and vice versa. A stress check should also be performed when the combination of the horizontal and vertical loads is peaking. For the present thesis work, it is conservatively assumed that the maximum horizontal and maximum vertical wave loads act simultaneously. This will not be the case in reality.

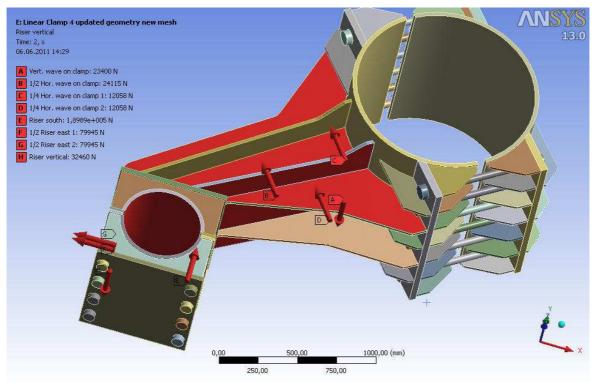


Figure 6.8 Riser and wave/current loads on clamp

Analysis setup in ANSYS

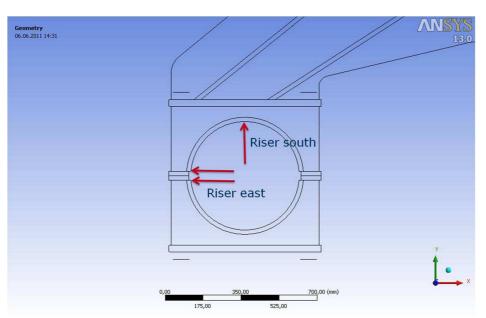


Figure 6.9 Load distribution on riser guide

The forces from the riser and wave/current loads on clamp 4 can be seen in Figure 6.8. The riser loads are distributed on riser guide as shown in Figure 6.9. The horizontal riser force in 135° direction is decomposed into global directions (south and east). The east component is divided into two new components and distributed equally on the two riser shells. The south component is applied on the inner shell. The vertical force acts on the outer shell. The friction factor between steel and neoprene is assumed to be 0.6 meaning that vertical friction force can reach maximum of:

$$F_{V,max} = \sqrt{F_{H,S}^{2} + F_{H,E}^{2}} \cdot \mu = \sqrt{189,89^{2} + 159,89^{2}} \cdot 0,6 = \underline{148,9kN}$$

where,

 $F_{H,S}$ = horizontal riser force in south direction $F_{H,E}$ = horizontal riser force in east direction μ = friction factor

This means that if the vertical riser force is 148.9 kN or less, the whole force will be applied to the riser shell. The wave and current forces on the clamp are applied perpendicular on the bracket plates as shown in the figure. The loads applied on clamp 4 (load step 2) are listed in Table 6.3 and are for the worst load direction identified in Appendix E with the correct ULS-b factors. Remember that the functional loads are fixed.

	South [kN]	East [kN]	Parallel [kN]					
Functional loads	32,00	2,00	-3,97					
Installation loads	19,09	19,09	-3,97					
Wave loads	138,80	138,80	-24,52					
Sum	189,89	159,89	-32,46					
Waves normal on o	lamp	48,23						
Waves vertical on o	clamp	-23,40						
Pressure on closed	area	0,198 MPa						

Table 6.3 Applied loads for clamp 4

6.6. Slippage setup

The slippage analysis is done by applying the theoretical pre-tension with initial and long term relaxation, i.e. a factor of 0.68. This result in a pre-tension of 466.1 kN for the M45 bolts and 271.7 kN for the M33 bolts. The forces from the riser and waves are applied with a factor of 2, see Table 6.4.

	South [kN]		Parallel [kN]					
Functional loads	64,00	4,00	-7,94					
Installation loads	38,18	38,18	-7,94					
Wave loads	213,54	213,54	-37,72					
Sum	315,72	255,72	-53,60					
Waves normal on o	lamp	74,20						
Waves vertical on o	clamp	-36,00						
Pressure on closed	area	0,396 MPa						

Table 6.4 Applied loads for slippage analysis

6.7. FLS setup

For the fatigue check the forces are applied in the same way as for the ULS case only with the FLS factor of 1. Only cyclic loads are to be used for FLS, i.e. wave loads. The loads are applied in three steps. In first step the loads in the 135° direction starts from zero and goes to maximum. In step two the maximum load in the 135° direction alters to maximum in the 315° directions. Finally in the third step the loads returns to zero. The vertical wave forces are applied downwards in all steps. These loads can be seen in Table 6.5. Since it would be difficult to extract the cyclic stress range while having pre-tension in the bolts, the only way was to change the non-linear (frictional) contact to linear (bounded) contact. This simplified assumption is reasonable for a clamped connection where the sliding distance is near zero.

	South [kN]		Parallel [kN]					
Functional loads	0	0	0					
Installation loads	0	0	0					
Wave loads	±106,77	±106,77	-18,86					
Sum	±106,77	±106,77	-18,86					
Waves normal on o	lamp		±37,10					
Waves vertical on o	clamp		-18,00					
Pressure on closed	area		0 MPa					

Table 6.5 Wave loads for FLS

7.Results

7.1. Acceptance criteria

To fulfill the requirements of design code or standard, the results for capacity should be checked against the acceptance criteria. The relevant acceptance criteria for different components are described in the following sections.

7.1.1. Bolt capacity

The maximum capacity of a bolt according to NS-EN-1993-1-8 is:

$$F_{b,cap} = \frac{0.9 \cdot f_{ub} A_s}{\gamma_b}$$

where,

 $\begin{array}{ll} f_{ub} & = \text{ultimate stress of the bolt} \\ A_s & = \text{shear area} \\ \gamma_b & = \text{material factor for bolt} \end{array}$

According to NORSOK N-004 the material factor for bolts is 1.3 meaning the capacities are:

Force, F _{b,max} [kN]	753,2	413,2
Stress, σ _{b,max} [MPa]	595,4	595,4

Table 7.1	Bolt	capacity
-----------	------	----------

7.1.2. Clamp capacity

For the clamp the yield is 355 MPa and the material factor for the steel according to NORSOK N-004 is 1.15. The design yield is then:

$$f_{yd} = \frac{f_y}{\gamma_s} = \frac{355}{1.15} = \underline{308,7}$$

where,

 f_y = yield stress for the clamp γ_s = material factor for steel

This means that the stresses in the clamp should not exceed 308.7 MPa.

7.1.3. Slippage criteria

For the slippage check there should be enough statically frictional contact to ensure that the clamp doesn't slide.

7.1.4. Hoop buckling criteria

By using the most conservative material factor of 1.45 for the hoop buckling stress calculations in NORSOK N-004, the allowable pressure around the jacket leg can be:

$$p_d \le \frac{2t f_y}{\gamma_{Mb} D} = \frac{2 \cdot 25, 4 \cdot 355}{1, 45 \cdot 1143} = 10,9 MPa$$

where,

 $\begin{array}{ll} t & = {\rm thickness} \\ \gamma_{Mb} & = {\rm material\ factor} \\ D & = {\rm outer\ diameter\ of\ jacket\ leg} \end{array}$

7.1.5. Fatigue criteria

To ensure that the structure will not encounter fatigue, the fatigue damage, D, must be lower than the fatigue utilization factor η . The utilization factor is a function of design life and design life factor (DFF). On interpolation using the values from Table 7.2, a design life of 23 years and DFF of 3 (chapter 4.6) give the utilization factor:

$$\eta = 0.27 + (23 - 20) \left(\frac{0.33 - 0.27}{25 - 20}\right) = 0.306$$

DFF	Design life in years								
DFF	5	10	15	20	25	30	50		
1	4,0	2,0	1,33	1,00	0,80	0,67	0,40		
2	2,0	1,0	0,67	0,50	0,40	0,33	0,20		
3	1,33	0,67	0,44	0,33	0,27	0,22	0,13		
5	0,80	0,40	0,27	0,20	0,16	0,13	0,08		
10	0,40	0,20	0,13	0,10	0,08	0,07	0,04		

Table 7.2 Utilization factor η as function of design life and design fatigue factor (DNV-RP-C203)

7.2. ULS stress check

When designing structures their capacity has to be checked against the ultimate limit state (ULS). This means that the structures have to avoid collapse when applying peak loads. The clamps have to resist the forces from the pre-tension, self-weight, waves and currents, and the loads transferred from the riser.

7.2.1. Bolt check

In Figure 7.1 the theoretical bolt tension and the environmental loads are applied. The figure shows that the resulting stresses in the M45 bolts are in the range between 360-450 MPa. The stresses in the M33 blots range between 420-430 MPa. The maximum stress of 907 MPa in Figure 7.2 occurs in the transition zone between the bolt and the washer/nut. This peak stress may not be "real" because the nut will be fastened to the threads on the stud bolt and the stress will be distributed.

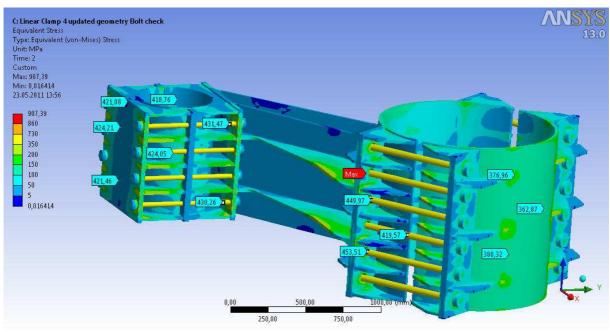


Figure 7.1 Bolt check

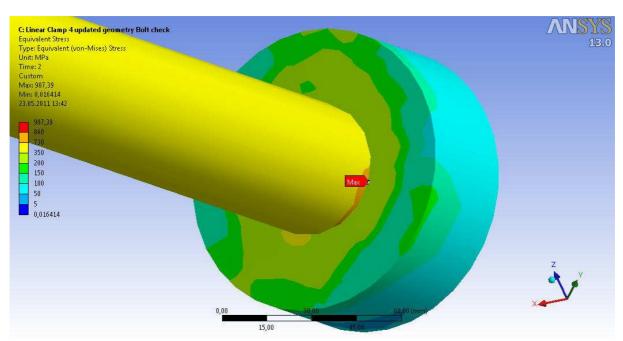


Figure 7.2 Max bolt stress

7.2.2. Bolt pre-tension only

[]

University of Stavanger

Figure 7.3 shows the dominance of the pre-tension only (with a factor of 1.3) for the jacket clamp and riser clamp. An independent band was added to the stress range bar (the color bar to the left) to see the stress relationship between the jacket and riser clamp. The stress range bar is set so that stresses over yield (308.7 MPa) shows in orange and stresses over tensile stress in red. It can be seen that the brown color, less than 5 MPa, on the bracket indicates that there is negligible interaction between the clamps. This means that if further analysis is to be done on only the riser guide, the model can be divided into a sub model where the front jacket shell can be considered as bounded to the jacket leg. The maximum stress of 1198.6 MPa is on the edge of the washer/nut down to the end plate.

7.2.3. Bolt pre-tension, ULS-b 135° and ULS-b down

Figure 7.4 shows the results when bolt pre-tension and the environmental loads are applied. It can be seen that the change in the predicted stresses is insignificant. Further the figure show that the stresses are transferred more to one side.

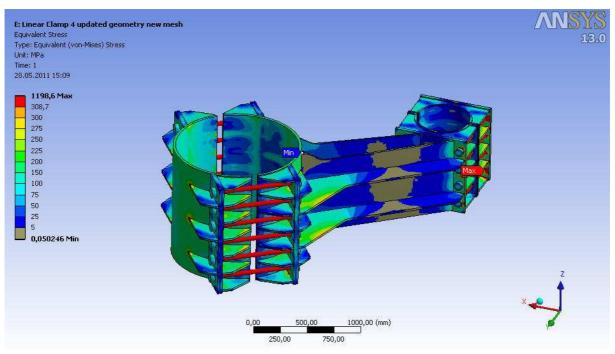


Figure 7.3 Pre-tension only

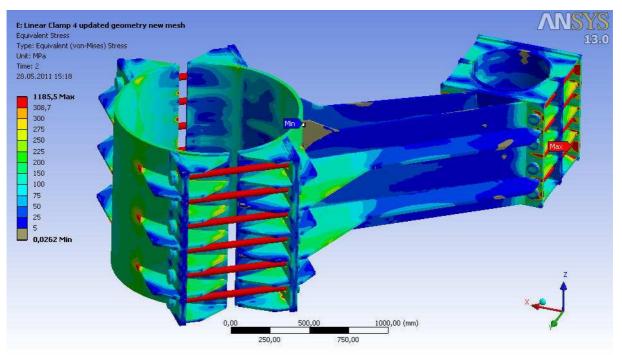


Figure 7.4 All loads applied

It can be seen in Figure 7.5 that the stresses are over design yield stress (308.7 MPa) in the transition region between the stiffener and the back shell. The highest predicted stress is 560.6 MPa. The stresses in back shell are typically 160-180 MPa, similar as for the action of pre-tension only.

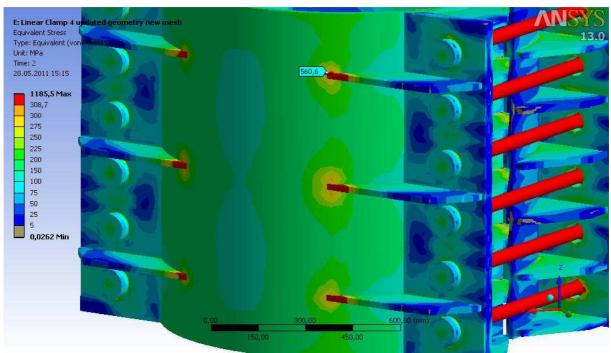


Figure 7.5 Stiffeners on back shell

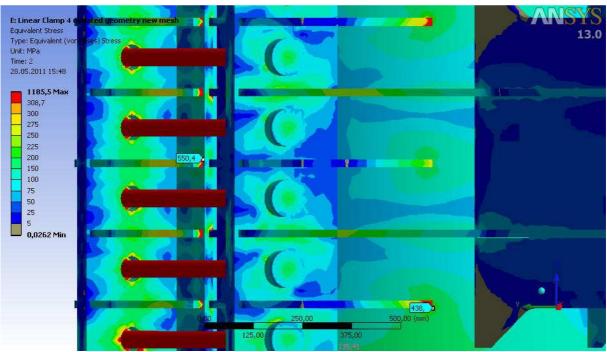


Figure 7.6 Front shell and side stiffeners

From Figure 7.6 it can be seen that the situation is the same for the horizontal stiffeners on the side and the stiffeners on the front shell. The peak stress is 550.4 MPa on the side stiffeners and 438 MPa on the front shell. On the other side (Figure 7.7) the stress is even higher at the same locations, with a maximum of 661.4 MPa on the side stiffener. The

stiffeners on the front shell have a maximum stress of 490 MPa and in the bend on the horizontal plate of the clamp arm the stress is as high as 333.6 MPa.

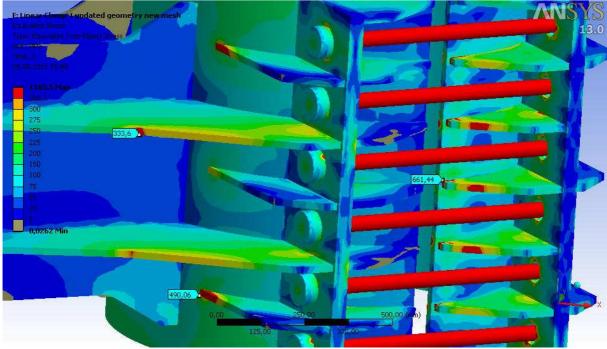
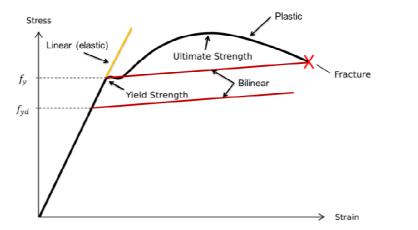


Figure 7.7 Other side



Figure 7.8 Riser guide



On the riser guide in Figure 7.8 the maximum stress is 456.3 MPa if the areas around the washer/bolts are ignored.

Several of these stresses that are peak can be unrealistic due to secondary effects such as material and geometrical discontinuities. Peak stresses due to secondary effect does not cause global distortion of the structure. Normal procedure to identify the peak stresses is trough stress linearization. The stresses after eliminating the peaks shall be checked whether they are within acceptable limits.

Alternatively the influence of secondary effects can be verified by performing non-linear analysis and check whether there is any plastic strain. The results for total strain (elastic + plastic) shall be within allowable limits.

The present work also covers non-linear analysis to verify the effects of peak stress. If there is high stresses above yield there should be plastic strain (σ = $E\varepsilon$), if not the stresses are "fake". The non-linear analysis includes material curve that follows by bilinear isotropic hardening properties with ideal plastic flow (see Figure 7.9). The yield stress defined in the material curve corresponds to design yield that is 308.7 MPa after considering the material factor (1.15).

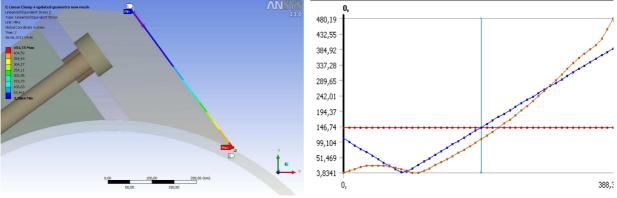


Figure 7.10 Linearized stress and plot

Results

Figure 7.10 shows the linearized stress on the stiffener plate on the back shell. In the results plot it is show that the linearized stress (blue) now have a maximum of 385 MPa which was 560 MPa before linearization. Still the stresses are too high so a plastic strain check was conducted. The plastic strain from Figure 7.11 on the stiffener with the highest stress on the back shell has a maximum of 0.092% strain.

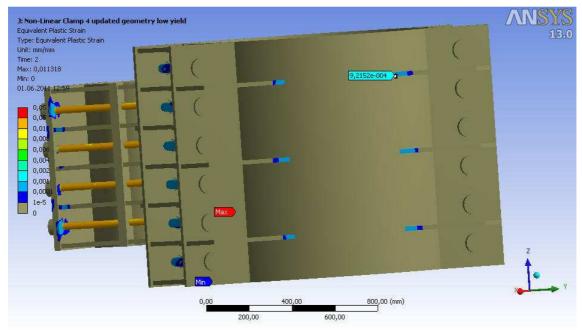


Figure 7.11 Plastic strain on back shell

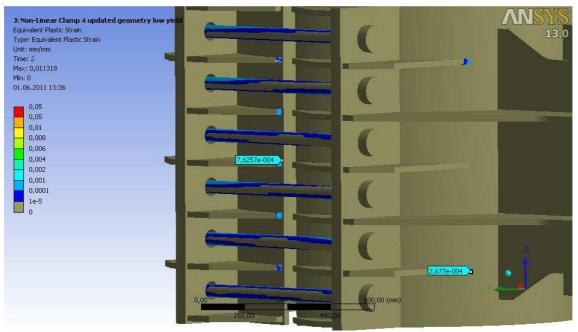


Figure 7.12 Plastic strain on the side and front shell

For the side and the front shell the plastic strains on the stiffeners are 0.076% and 0.027%, respectively (see Figure 7.12). Similarly Figure 7.13 shows the plastic strains for the side stiffener on the back shell (on the other side) which is 0.1%, and the strain for the stiffener on the front shell is 0.047%. The figure further shows zero plastic strain in the region on the horizontal plate where high stresses are found in linear analysis (see Figure 7.7).

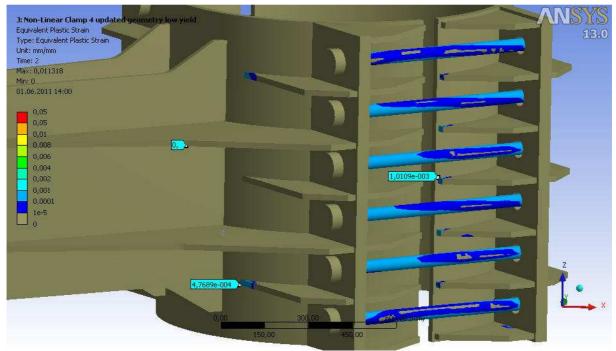


Figure 7.13 Plastic strain other side

48

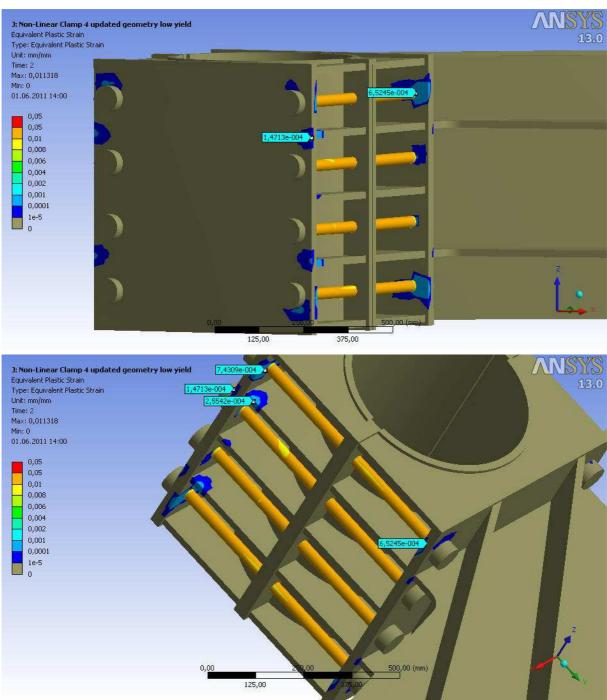


Figure 7.14 Plastic strain on riser guide

For the riser guide in Figure 7.14 the plastic strains do not exceed 0.074%.

7.3. Slippage analysis

Figure 7.15 shows the penetration on the back shell. Referring to chapter 5.3 the penetration can be 1-2 % of the thickness on the structural target element (jacket leg). The thickness of the leg is 25.4 mm which means that the penetration can maximum be 0.25 mm

(i.e., 1%). The maximum penetration on the back shell is $5.9 \cdot e^{-7}$ mm slight to the side of the shell. In general the penetration is zero. Regardless the penetration is much below 0.25 mm. The front shell in Figure 7.16 has a maximum of $1.2 \cdot e^{-3}$ mm on the side edge of the shell. The rest of the front shell has in general zero penetration. Also here the penetration is well below the allowable value.

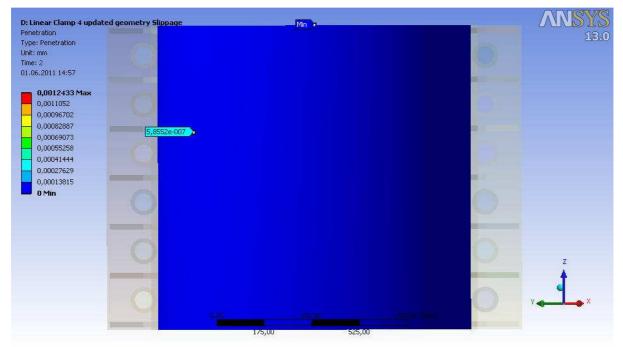


Figure 7.15 Penetration back shell

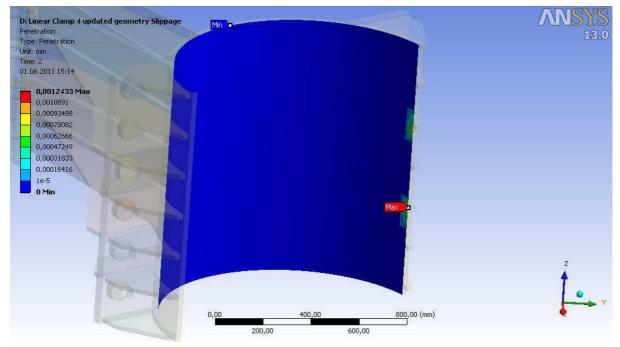


Figure 7.16 Penetration on front shell

Results

In Figure 7.17 the contact status for the back shell can be seen, where red color means that there is enough static friction so that no slippage occurs. Approximately one half of the shell is sticking. The front shell is presented in Figure 7.18 and the result is much the same as for the back shell with some fewer elements sticking. These results can be confirmed by the graph in Figure 7.19 which shows the contacts over the time steps.

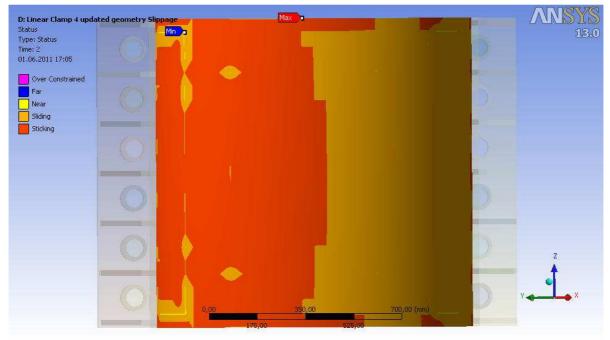


Figure 7.17 Status back shell

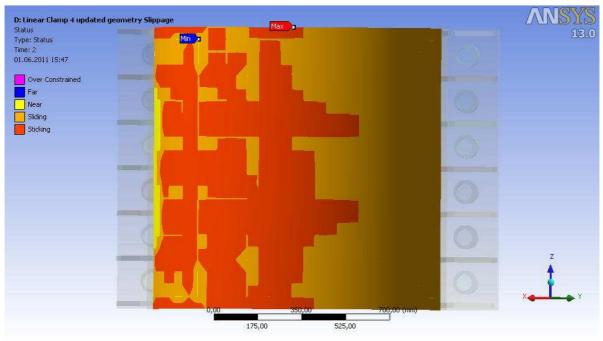
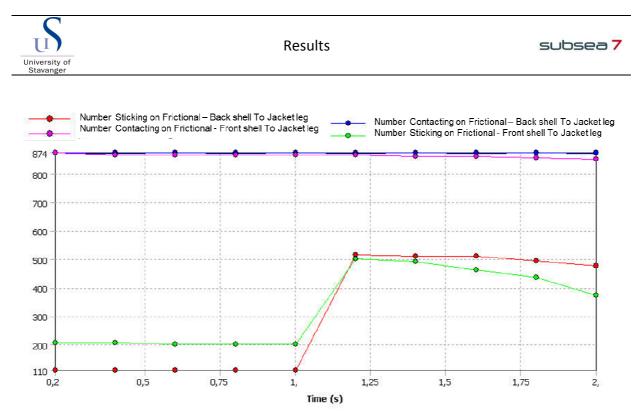



Figure 7.18 Status front shell

Figure 7.19 Element status for jacket clamp

Figure 7.20 shows the penetration between the contact surfaces on riser guide. The penetration is in general below $8.71 \cdot e^{-8}$ mm and the maximum of $1.27 \cdot e^{-7}$ mm is around the second lowest bolt hole.

The status for the frictional contact between the riser guide shells can be seen in Figure 7.21. The figure shows that approximately 60% of the elements are sticking. This can be confirmed by the graph in Figure 7.22. The other frictional contact between the riser guide shells is identical.

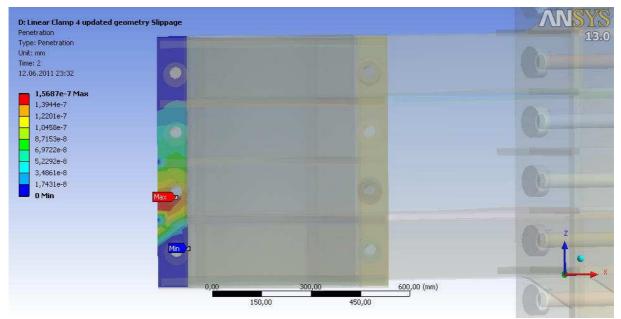
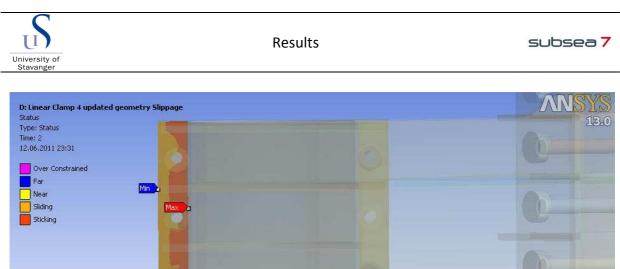



Figure 7.20 Penetration on riser guide

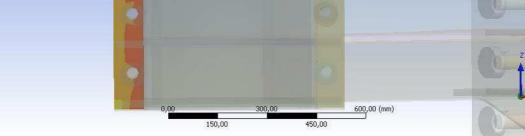


Figure 7.21 Status riser guide

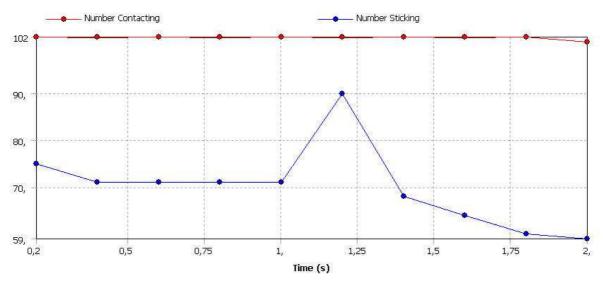


Figure 7.22 Element status for riser guide

7.4. New stresses in jacket leg

The pressure contribution from the clamping was taken from the ULS conditions of the clamp check (pre-tension with a factor of 1.3). The pressure from the back and front shell is shown in Figure 7.23 and Figure 7.24, respectively. The back shell has typically a pressure of 6-7 MPa and the front shell typically 4-5 MPa. Around the stiffer bracket the pressure are slightly higher, typically around 15 MPa.

Results

U

University of Stavanger

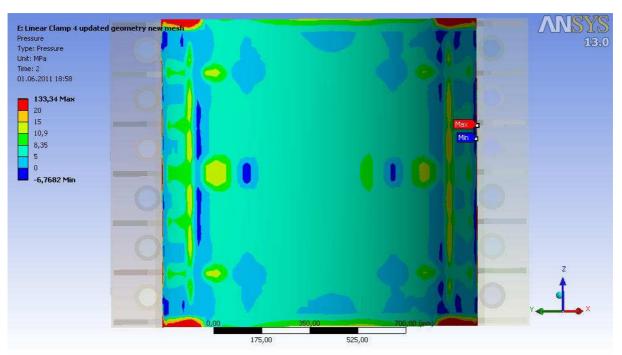


Figure 7.23 Pressure on back shell

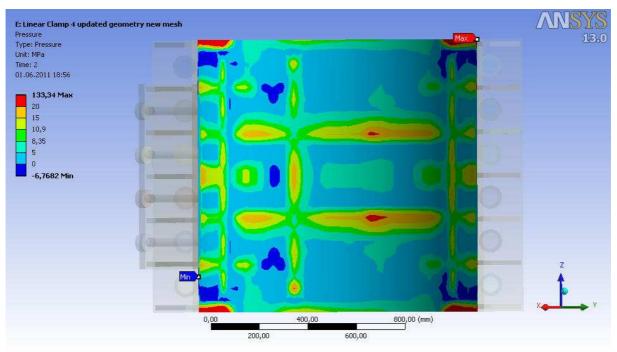
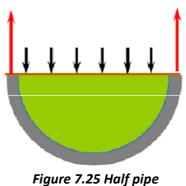



Figure 7.24 Pressure on front shell

(Karunakaran, 2010)

A simple calculation to find the pressure due to the clamping is to look at a half pipe as seen in Figure 7.25. The red arrows represents the pre-tension and the black arrows the contact pressure. The forces have to be in equilibrium. There are 12 bolts with pre-tension of 891.02 kN and dimensions as shown in Figure 7.26. This leads to:

$$F_b = \sigma_{pc}A$$

where,

 F_b = pre-tension force σ_{pc} = contact pressure A = area

$$\sigma_{pc} = \frac{F_b}{A} = \frac{12 \cdot 891020}{1160 \cdot 1120} = 8,23 \text{ MPa}$$

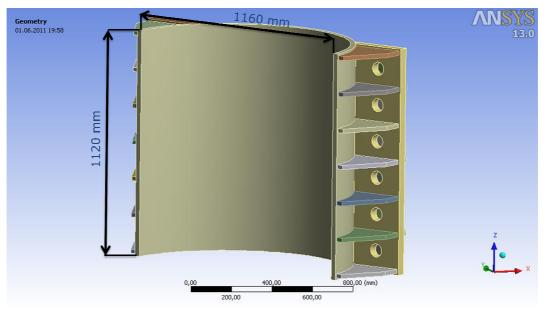


Figure 7.26 Clamp measures

7.5. Fatigue check

By checking the stresses in the clamp it can be seen that the jacket clamp and riser guide is fairly unaffected and that the cyclic loads have most influence on the riser arm (see Figure 7.27). The highest stresses are in the sharp corner near the riser guide and on the horizontal plate in the riser arm (see Figure 7.27 and Figure 7.28). Therefore these two areas and bolts including the weld near the sharp corner were checked for fatigue. In the fatigue calculations the correct principle stresses were used.

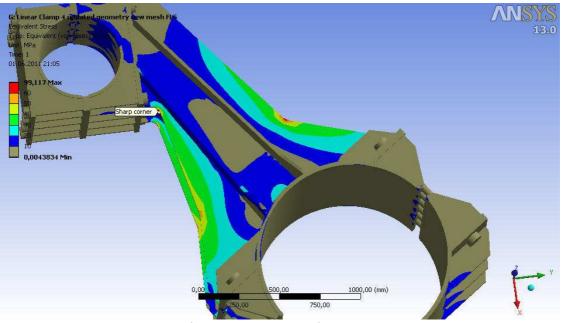


Figure 7.27 FLS von-Mises stress

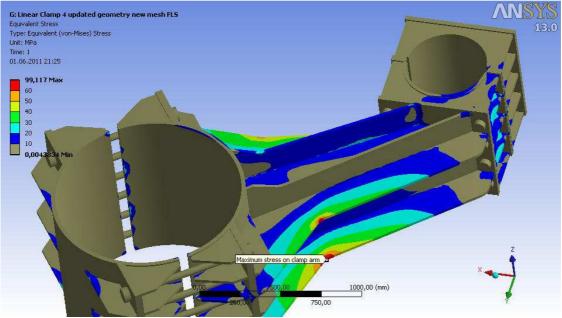


Figure 7.28 Maximum on clamp arm

7.5.1. Critical areas and bolts

In DNV-RP-C203 Appendix A, the corner and the plate on the clamp arm are classified as structural detail C. The bolts are classified as class W3 and the weld near the sharp corner as class G (thickness less than 150mm).

In Figure 7.29 the corner and weld is shown with maximum principal stress, i.e. tension. The corner and the weld on the top plate have maximum stresses of 68.2 MPa and 28.3 MPa, whereas the stresses in the corner and the weld on the bottom plate are 56.5 MPa and 23.6 MPa, respectively. Figure 7.30 presents the minimum principal stress, i.e. compression. Similarly for compression the corner and the weld on the top plate have maximum stress of 56.7 MPa and 26.3 MPa, while the stress in the corner and the weld on the bottom plate are 68.7 MPa and 28.5 MPa, respectively.

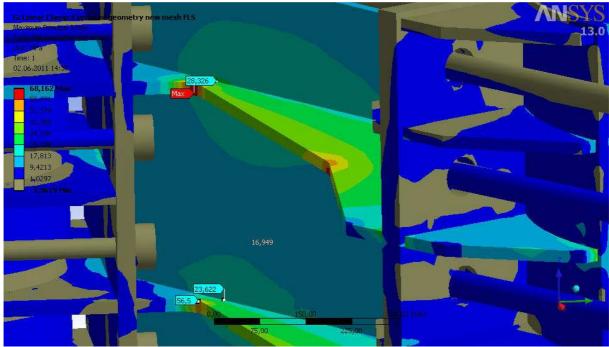
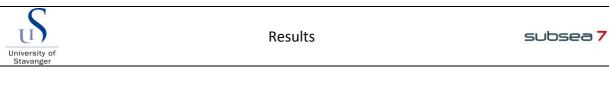



Figure 7.29 Maximum principal stress on corner and weld

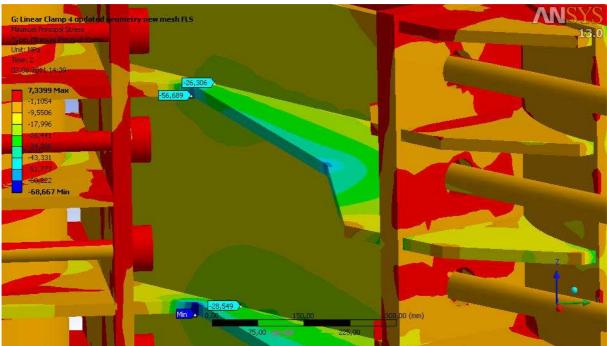


Figure 7.30 Minimum principal stress on corner and weld

For the top horizontal plate (see Figure 7.31 and Figure 7.32) the results shows maximum tension of 94.3 MPa and maximum compression of 69.5 MPa. The maximum stress for the bottom plate is 73.5 MPa for tension and 99.3 MPa for compression.

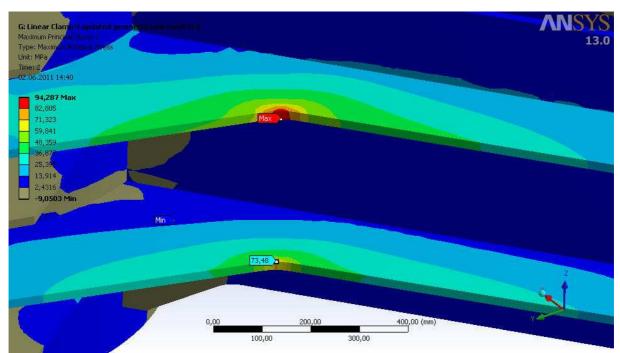


Figure 7.31 Maximum principal stress on horizontal plate

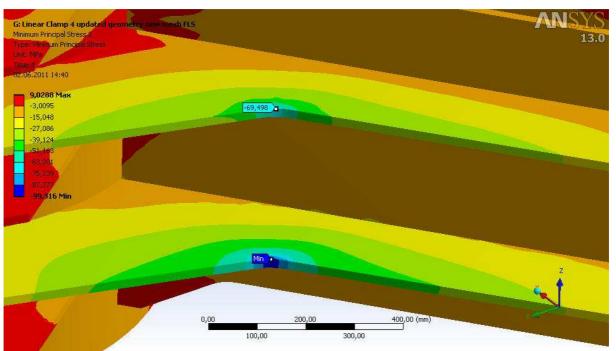


Figure 7.32 Minimum principal stress on horizontal plate

The stress ranges, $\Delta \sigma_o$, are found by adding the values for tension and compression. This results in a stress range of 124.9 MPa for the corner on the top plate and 125.2 MPa for the corner on the bottom plate. For the weld on the top plate the stress range is 54.6 MPa while for the weld on the bottom plate the stress range is 52.1 MPa. Similarly also for the top and bottom horizontal plates the stress ranges are 164 MPa and 172.8 MPa, respectively. Since the sharp corner and the horizontal plate are in the same structural class, only the one with the highest stress range needs to be checked, i.e. the bottom horizontal plate.

For the fatigue check the bolt with the highest equivalent stress was chosen. Figure 7.33 presents the stresses due to tension as 6.9 MPa and Figure 7.34 presents the stresses due to compression as 8.9 MPa. The resulting stress range for the bolt is 15.8 MPa.

In The North Sea the average wave period is approximately 8 seconds. This results in number of cycles over the 23 years to be:

$$n_0 = \frac{23 \cdot 365 \cdot 24 \cdot 60 \cdot 60}{8} = 9,0666 \cdot 10^7$$

To be conservative, the number of cycles until failure is assumed to be less than one million (N $\leq 10^6$ cycles). Table 7.4 gives values for *m* and log \bar{a} as listed below in Table 7.3:

S-N curve	т	$\log \bar{a}$
C	3,0	12,192
W3	3,0	10,998
G	3,0	10,570
	~	1 of 1

Table 7.3 Values for 10⁶ cycles

IJ

University of Stavanger Results

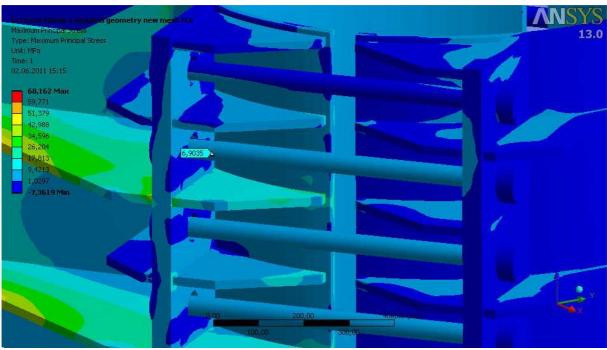


Figure 7.33 Maximum principal stress on bolts

Figure 7.34 Minimum principal stress on bolts

By assuming a Weibull shape parameter, h, between 0.8 and 0.9 (i.e. 0.85) the gamma function can be found in Table 7.5 to be:

$$\Gamma\left(1+\frac{m}{h}\right) = 12,118$$

S-N curve $N \le 10$ m_1		$N > 10^{6} cycles$ $\log \overline{a}_{2}$	Fatigue limit at 107 cycles*)	Thickness exponent k	Stress concentration in the S N detail as derived by the hot	
	m ₁	$\log \overline{a}_i$	$m_2 = 5.0$			spot method
B1	4.0	14.917	17.146	106.97	0	
B2	4.0	14.685	16.856	93.59	0	1
С	3.0	12.192	16.320	73.10	0.15	
C1	3.0	12.049	16.081	65.50	0.15	
C2	3.0	11.901	15.835	58.48	0.15	
D	3.0	11.764	15.606	52.63	0.20	1.00
E	3.0	11.610	15.350	46.78	0.20	1.13
F	3.0	11.455	15.091	41.52	0.25	1.27
F1	3.0	11.299	14.832	36.84	0.25	1.43
F3	3.0	11.146	14.576	32.75	0.25	1.61
G	3.0	10.998	14.330	29.24	0.25	1.80
W1	3.0	10.861	14.101	26.32	0.25	2.00
W2	3.0	10.707	13.845	23.39	0.25	2.25
W3	3.0	10.570	13.617	21.05	0.25	2.50
Т	3.0	11.764	15.606	52.63	0.25 for SCF ≤ 10.0 0.30 for SCF >10.0	1.00

Table 7.4 S-N curves in seawater with cathodic protection
(DNV-RP-C203)

Table 5-1	Numerical	values for	Γ (1+ m/h)		
h	m = 3.0	h	m = 3.0	h	m = 3.0
0.60	120.000	0.77	20.548	0.94	7.671
0.61	104.403	0.78	19.087	0.95	7.342
0.62	91.350	0.79	17.772	0.96	7.035
0,63	80.358	0.80	16.586	0.97	6.750
0.64	71.048	0.81	15.514	0.98	6.483
0.65	63.119	0.82	14.542	0.99	6.234
0.66	56.331	0.83	13.658	1.00	6.000
0.67	50.491	0.84	12.853	1.01	5.781
0.68	45.442	0.85	12.118	1.02	5.575
0.69	41.058	0.86	11.446	1.03	5.382
0.70	37.234	0.87	10.829	1.04	5.200
0.71	33.886	0.88	10.263	1.05	5.029
0.72	30.942	0.89	9.741	1.06	4.868
0.73	28.344	0.90	9.261	1.07	4.715
0,74	26.044	0.91	8.816	1.08	4.571
0.75	24.000	0.92	8.405	1.09	4.435
0.76	22.178	0.93	8.024	1.10	4.306

Table 7.5 Numerical values for the gamma function(DNV-RP-C203)

A summary of the results needed for the fatigue calculations are presented in Table 7.6.

S-N curve	т	$\log \bar{a}$	h	$\Gamma\left(1+\frac{m}{h}\right)$	$\Delta \sigma_o$
С	3,0	12,192	0.85	12,118	172.8 MPa
W3	3,0	10,998	0.85	12,118	15.8 MPa
G	3,0	10,570	0.85	12,118	54.6 MPa
	C W3	C 3,0 W3 3,0	C 3,0 12,192 W3 3,0 10,998	C 3,0 12,192 0.85 W3 3,0 10,998 0.85	S-N curvem $\log \bar{a}$ h $\Gamma\left(1+\frac{1}{h}\right)$ C3,012,1920.8512,118W33,010,9980.8512,118

Table 7.6 Stress range results

The Weibull shape parameter is:

$$q = \frac{\Delta \sigma_o}{(\ln n_0)^{1/h}}$$

And the fatigue damage is:

$$D = \frac{v_0 T_d}{\bar{a}} q^m \Gamma\left(1 + \frac{m}{h}\right) \leq \eta$$

Horizontal plate:

$$q = \frac{\Delta \sigma_o}{(\ln n_0)^{1/h}} = \frac{172.8}{(\ln (9,0666 \cdot 10^7))^{1/0.85}} = 5,645 MPa$$
$$D = \frac{v_0 T_d}{\bar{a}} q^m \Gamma \left(1 + \frac{m}{h}\right) = \frac{n_o}{10^{\log \bar{a}}} q^m \Gamma \left(1 + \frac{m}{h}\right) = \frac{9,0666 \cdot 10^7}{10^{12,192}} \cdot 5,645^3 \cdot 12,118 = \underline{0,127}$$

Bolts:

$$q = \frac{\Delta \sigma_o}{(\ln n_0)^{1/h}} = \frac{15.8}{(\ln (9.0666 \cdot 10^7))^{1/0.85}} = 0.516 MPa$$
$$D = \frac{n_o}{10^{\log \bar{a}}} q^m \Gamma \left(1 + \frac{m}{h}\right) = \frac{9.0666 \cdot 10^7}{10^{10.998}} \cdot 0.516^3 \cdot 12.118 = \underline{0.00152}$$

Weld on bracket:

$$q = \frac{\Delta \sigma_o}{(\ln n_0)^{1/h}} = \frac{54.6}{(\ln (9,0666 \cdot 10^7))^{1/0.85}} = 1,784 MPa$$
$$D = \frac{n_o}{10^{\log \bar{a}}} q^m \Gamma \left(1 + \frac{m}{h}\right) = \frac{9,0666 \cdot 10^7}{10^{10,570}} \cdot 1,784^3 \cdot 12,118 = \underline{0,168}$$

8.Discussions and conclusions

8.1. ULS stress

Bolt check:

The results show that the M45 bolts have stresses between 360-450 MPa which are within the maximum allowable stress of 595 MPa. The results also show that the stresses in the M33 bolts are below the allowable stress with stresses around 420-430 MPa. The maximum stresses in Figure 7.2 may as mentioned be "unrealistic" and is probably due to geometrical discontinuities. But regardless of this the washer/nut knob is irrelevant for this analysis and the peak stresses can be disregarded. It is clear from the results that the bolts can withstand the maximum forces obtained in accordance with the ULS criteria.

Clamp check:

By comparing the results for action of pre-tension only and for all the loads applied the change in the stresses is relatively small, meaning that the pre-tension from the bolts contributes the largest stresses in the clamp. Since the stresses are roughly the same on the top and the bottom of the clamp it appears that the vertical loads are less critical than the horizontal loads. Further it looks like the maximum peak stress from the pre-tension only (load step 1) is due to discontinuity but is anyway structural irrelevant.

The results show that the stresses are in general within acceptable limits except for some hot spots. There are typically high stresses exceeding design yield in the end of many stiffener plates and on the bend of the horizontal plate in the bracket arm. As mentioned stress linearization technique is used to avoid peak stresses which do not cause structural failure. Even after stress linearization, the stresses obtained from the analysis exceeded design yield in certain transition regions of geometric discontinuity. For clear engineering judgment and better understanding on effects of secondary stresses due to discontinuities, a non-linear analysis was conducted.

The maximum equivalent plastic strain obtained from the results is 0.1% which is insignificant. The resulting total strain (elastic + plastic) is 0.3%. These strains are confined to local and do not cause any gross structural deformation of the clamp. Therefore the strains are considered to be disregarded. In summary it can be concluded that the clamp will withstand against peak forces from the environment and that the clamp meets the design criteria against the ULS stress check.

It can be discussed why not doing a non-linear analysis in the first place. The reason is that the results from the linear analysis within yield is conservative and takes less computational time. For example, with regarding to the computational time, the FE model took about 12.5 hours for linear analysis whereas for non-linear analysis it took about 19 hours. Hence the

practice in the industry is to first do a linear analysis, and if the stresses still are outside allowable values, a non-linear analysis is conducted. It should be noted that the clamp geometry is complicated. A simpler geometry would probably not experience that many discontinuities.

8.2. Slippage

The results show that the penetration is low as expected since the contact algorithm used for the frictional contact is Normal Lagrange (see chapter 5.3). The penetration is well below the allowable value for both the jacket clamp and the riser guide. This means that the results are accurate enough.

The graph from Figure 7.19 shows that the back shell has the most sticking elements when all loads are applied. This means that the back shell is most active in preventing the clamp from sliding. That is logical because the front shell should be stiffer due to the bracket arm and this result in a smaller contact area than for the softer back shell. It is concluded that with a load factor of 2 and maximum relaxation, the jacket clamp has sufficient number of sticking elements to avoid slippage. The same applies for the riser guide.

8.3. New stresses in jacket leg

When disregarding the peak pressure, the contact pressure from the jacket clamp on the jacket leg was within the 10.9 MPa. It should be noted that this is only the contribution from the clamp. Since the jacket leg may already have residual stress the new stresses from the clamp have to be checked by the jacket owner.

8.4. Fatigue

There were three hot spots that were checked in the fatigue calculations. The hot spots include the bend in the horizontal plate, a weld on the bracket arm and the bolts. From the results it is shown that the largest fatigue damage is calculated to be on the weld even though the stress range is three times larger on the horizontal bracket plate. This shows that welds are more fragile for fatigue, which emphasizes the importance of good welding. Regardless the fatigue damage is less than the utilization factor of 0.306 for all areas; hence the clamp meets the requirements for the FLS check.

8.5. Summary and recommendations

The results from the analysis in the thesis and the Subsea 7 report are comparable. Even though the values are not identical the same conclusions are drawn. However there are several ways to do such analyses. The way the analysis is carried out is individual and may vary between users. The major differences in the analyses between the report and the thesis are probably the mesh, contact algorithms and the applied forces. The mesh in the previous Subsea 7 report shares the nodes whereas the mesh in the present thesis does not share the nodes. This leads to two completely different meshes which will result in somewhat different values. Mainly in the previous report Pure Penalty algorithm is used for the bounded contacts while in the present MPC algorithm is used to simulate the welds. This also leads to variation between the results. Regardless a non-linear analysis had to be conducted in the thesis to prove that the peak stresses was "fake".

It should be noted that analysis was only performed on one clamp (clamp 4). For future work beyond this thesis, analysis for the other clamps should be performed as well. For experimental purposes other mesh and contact algorithms could be tested and compared. An analysis to see how corrosion and erosion affects the clamps over the design life, if loss of cathodic protection should occur, could also have been interesting. Analyzing the effect of thermal expansion of the riser and subsea pipeline, especially on the bottom clamp, could be another approach. The present clamps can also be compared against new design proposals.

9.References

ANSYS. (2005). ANSYS Workbench - Simulation Strctural Nonlinearities.

Chakrabarti, S. K. (2005). Handbook of Offshore Engineering, Vol.1. Illinois: Elsevier.

ConocoPhillips [Internal document]. (1993). North Sea Design Premises.

DNV-RP-C203. (2010, April). Fatigue design of offshore steel structures.

DNV-RP-C205. (2010, October). Environmental conditions and environmental loads.

Gelgele, H. L. (2008). Dimensjonering av maskinelementer. Stavanger: UiS.

Guo, B., Shanhong, S., Chacko, J., & Ghalambor, A. (2005). *Offshore Pipelines*. Amsterdam: GPP/Elsevier.

Hauber, F. R. (1973). Patentnr. 3749429. USA.

Hydratight. (2011). *Hydraulic Bolt Tensioners*. Retrieved April 5, 2001, from http://www.hydratight.com/en/products/tension

Karunakaran, D. (2010). MOK-160 Rørledninger og stigerør [Lecture notes], UiS.

NORSOK N-001. (2004, February). Structural design. Rev.4.

NORSOK N-003. (2007, September). Actions and action effects. Edition 2.

NORSOK N-004. (2004, October). Design of steel structures. Rev.2.

NS-EN-1993-1-8. (2005, November). Knutepunkter og forbindelse.

NTH. (1982). Marin hydromekanikk. Trondheim: Universitetet i Trondheim.

Scott, G. A. (1985). *Studbolting Experience in the Underwater Evironment of the North Sea.* Houston: OTC 5050.

Subsea 7 [Internal document]. (2006). Clamp design report. Stavanger.

Subsea 7 et al. (2007). Bolts and nuts.

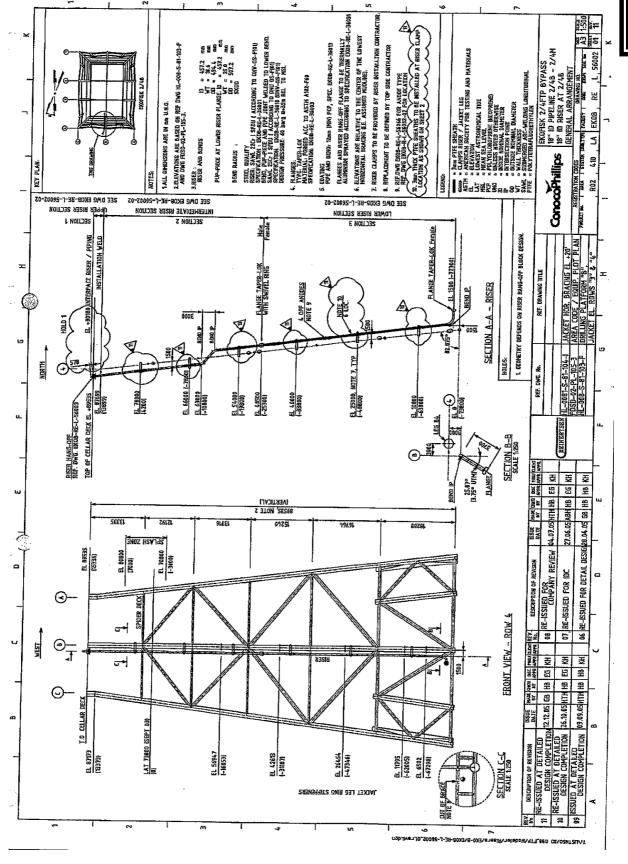
Virginia Tech. (2004, September 23). *Introduction to Finite Element Analysis*. Retrieved April 2011, from Laboratory for Scientific Visual Analysis:

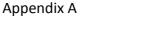
http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/num/widas/history.html

Waløen, Å. Ø. (1976). *Maskindeler 2* (2. utg.). Trondheim: Tapir.

References

Appendix A


subsea 7

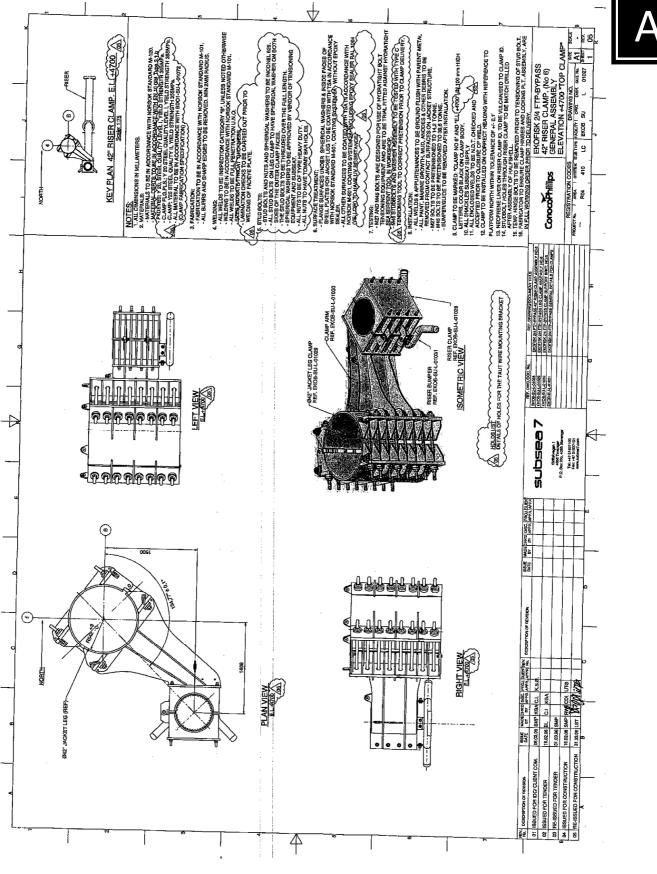


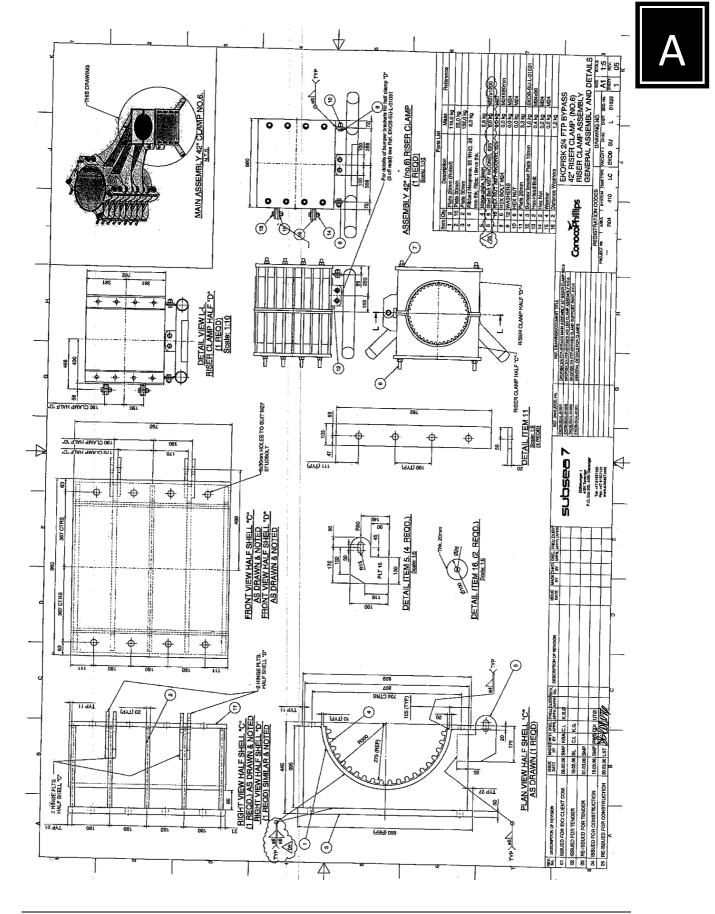
Appendix A

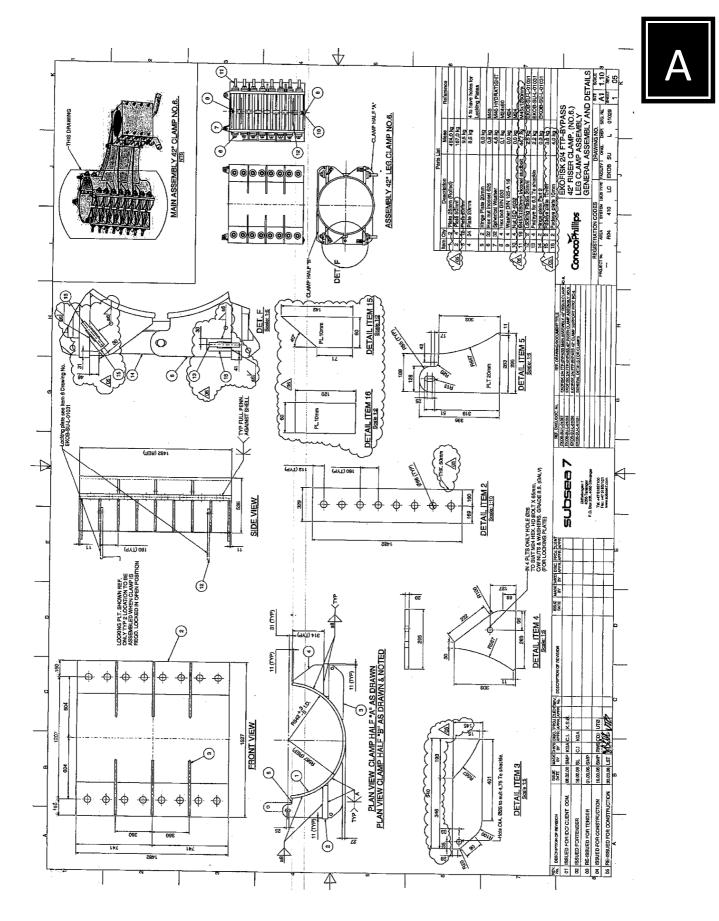
Drawings

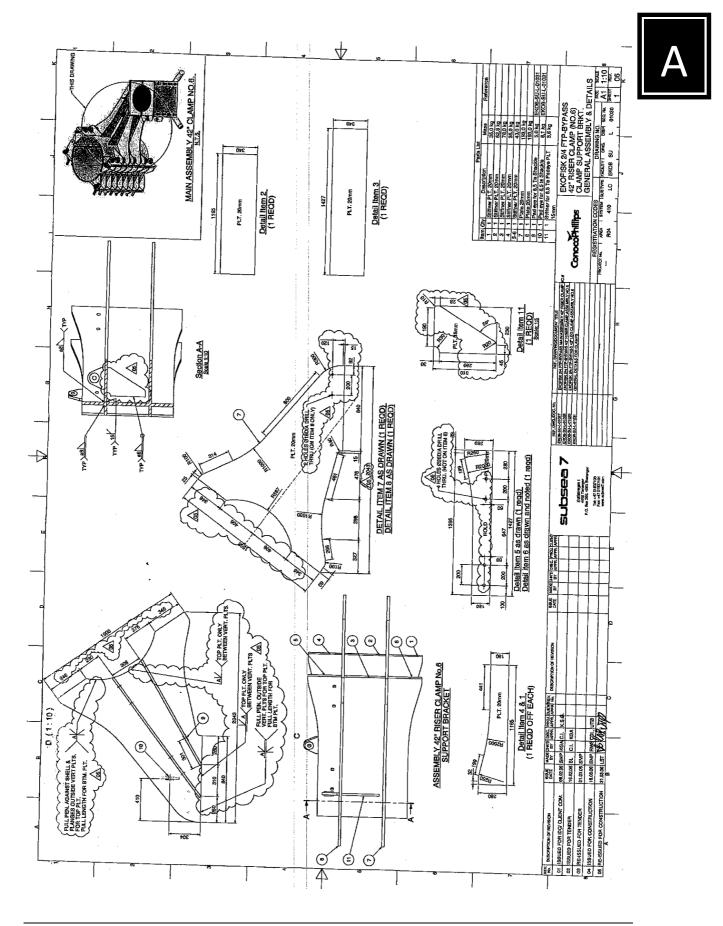
(1 Pages)

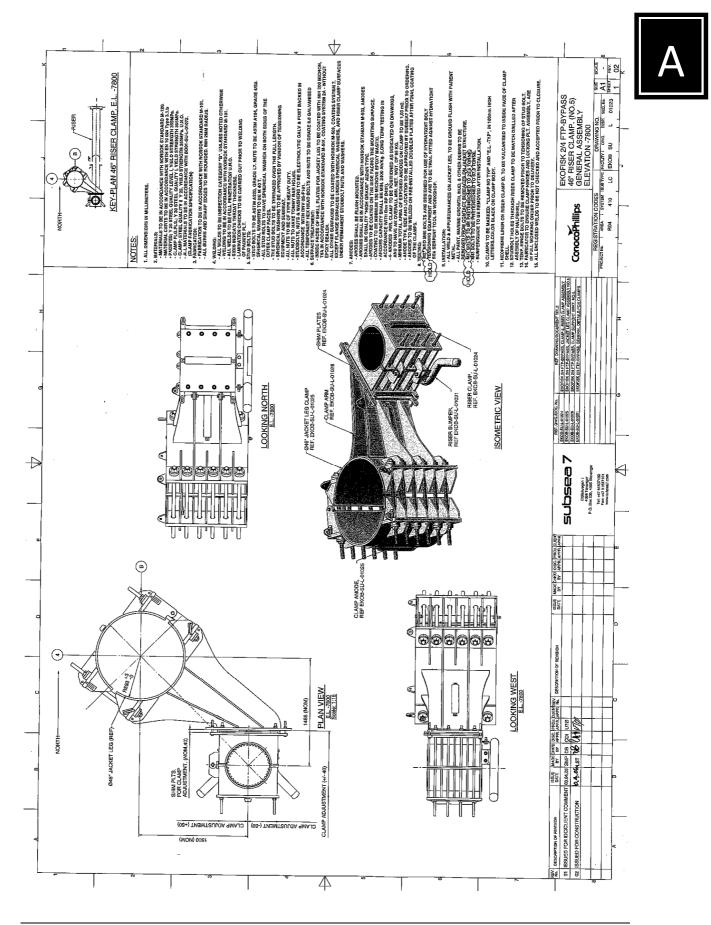
IJ

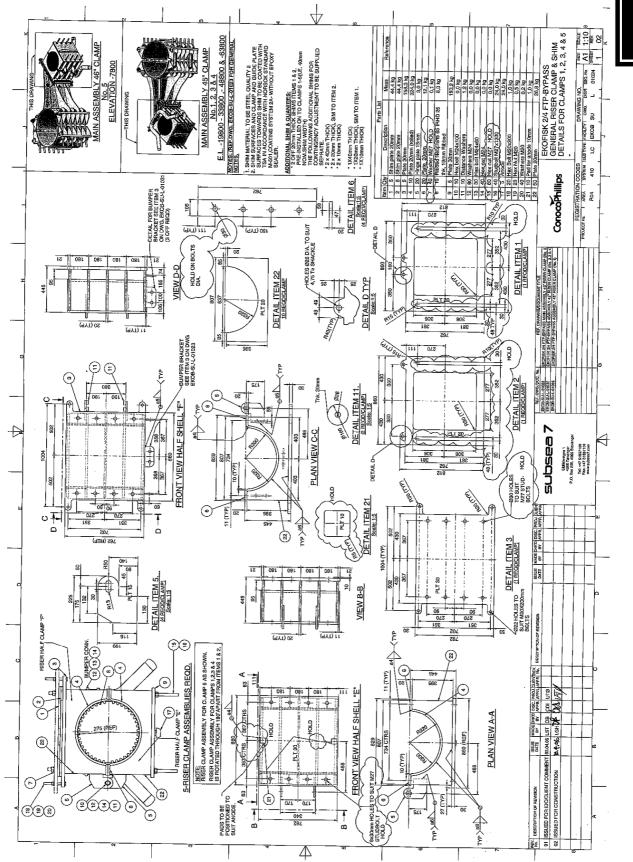

University of Stavanger







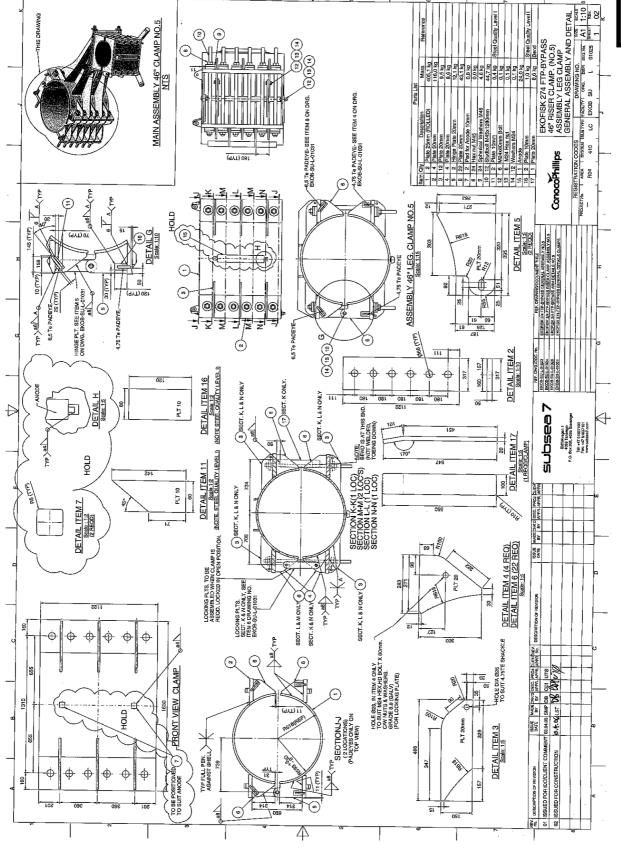


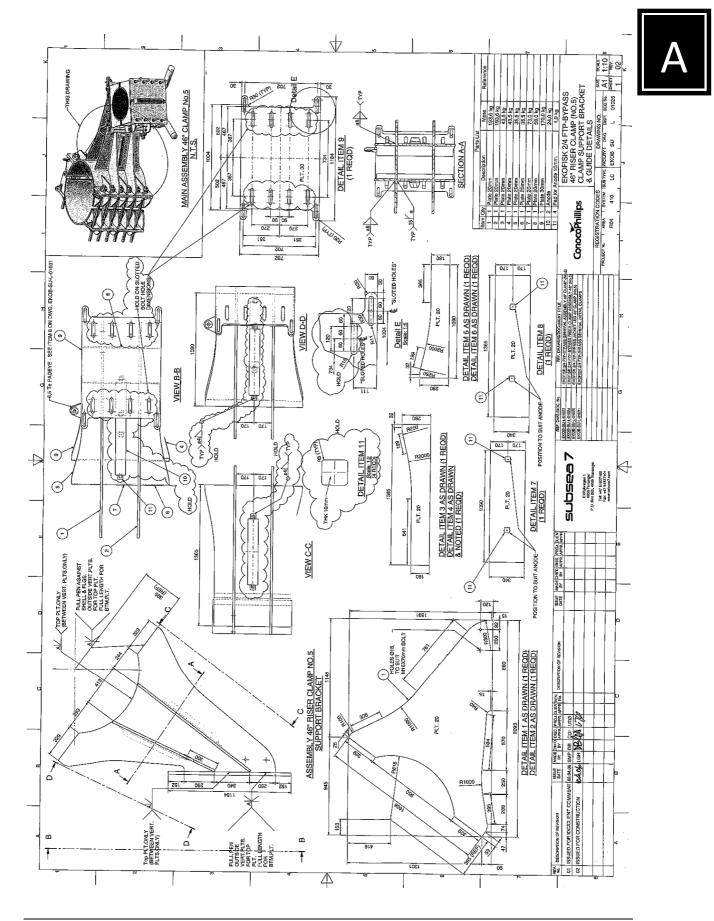

-Finite element analysis of a friction clamp located on a North Sea jacket-

A-6

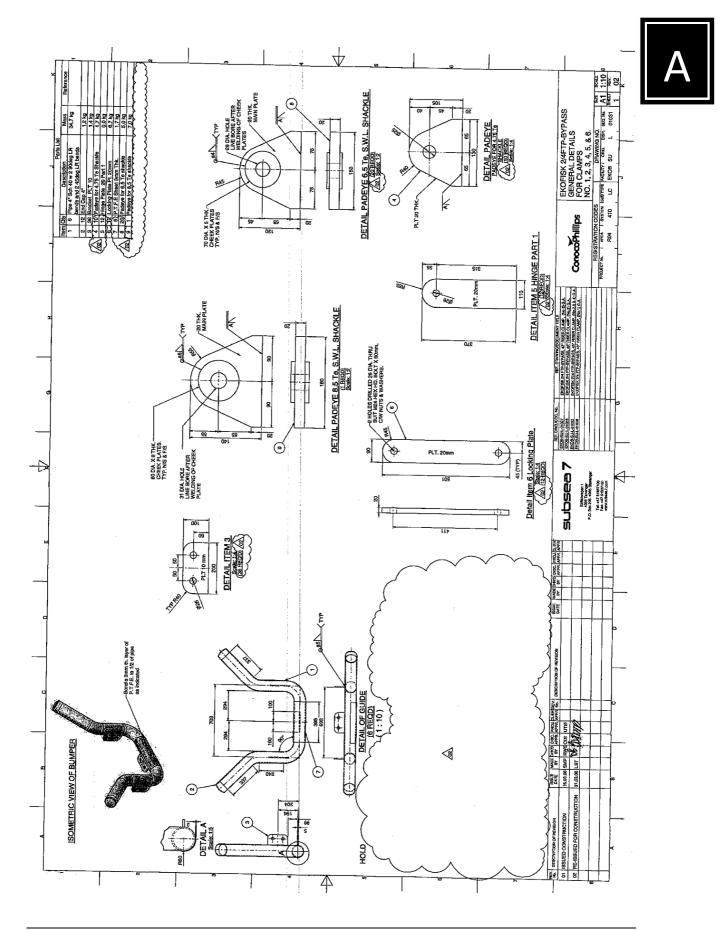
-Finite element analysis of a friction clamp located on a North Sea jacket-

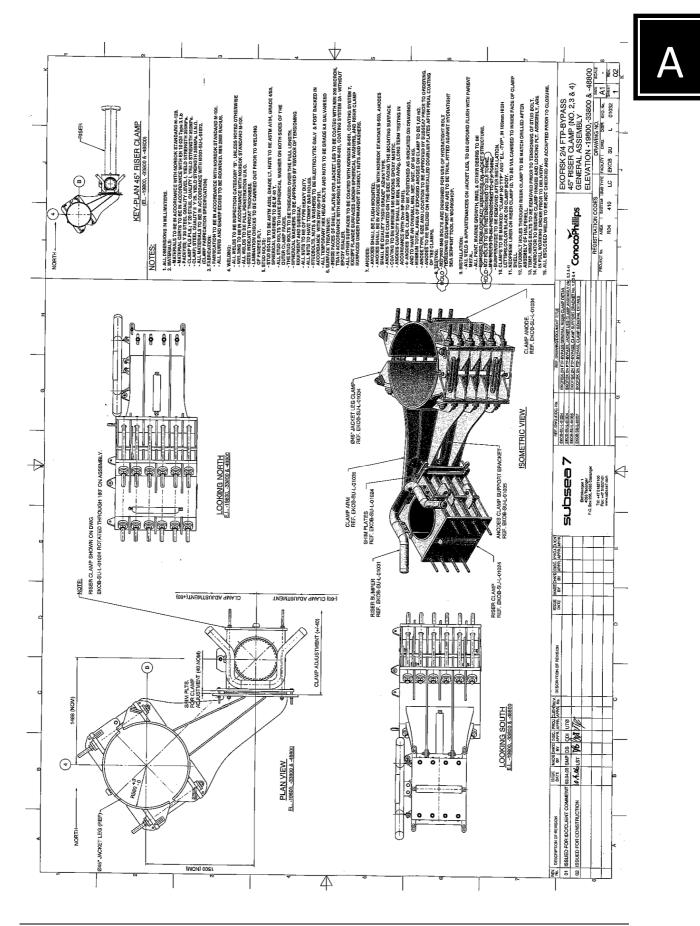
IJ

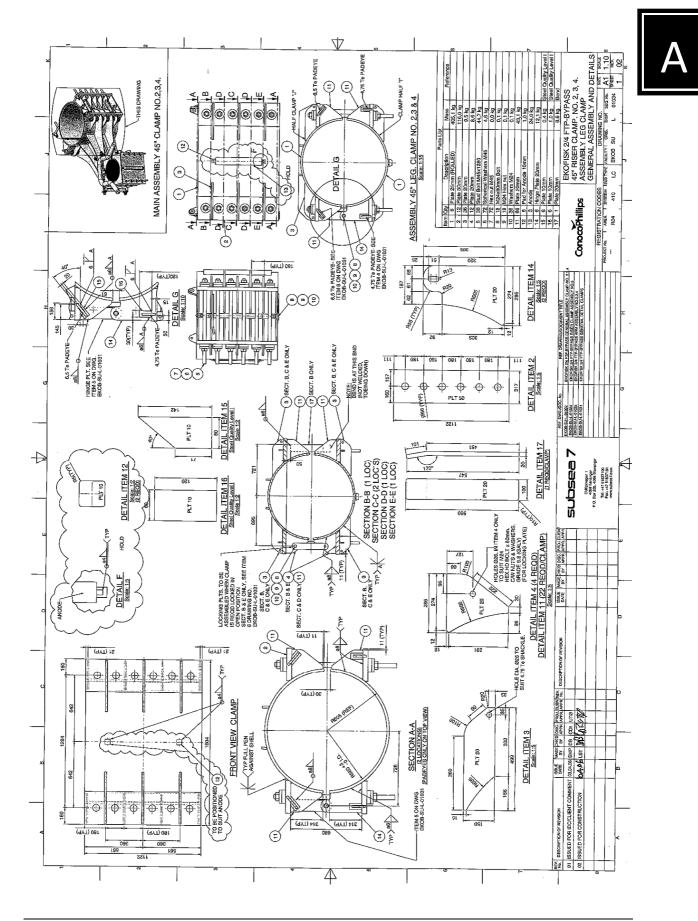

University of Stavanger



 \forall







S DRAWING

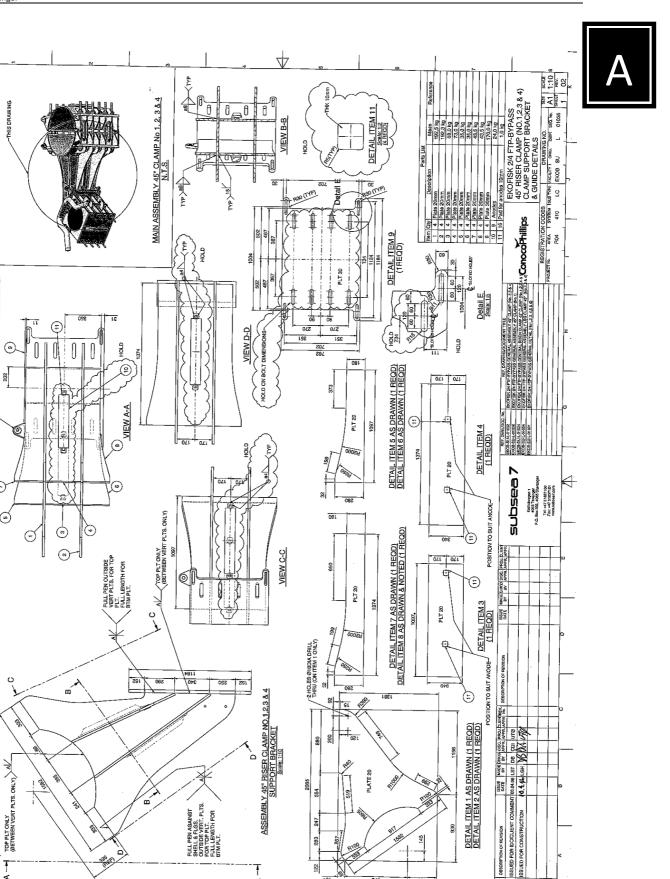
1 H

EKOB-SU-L-01031

ITEM 8 ON DWG.

6.5 Te PADEYE - SEF 202

-Ð


6

G

Ŧ

2 3997EF)

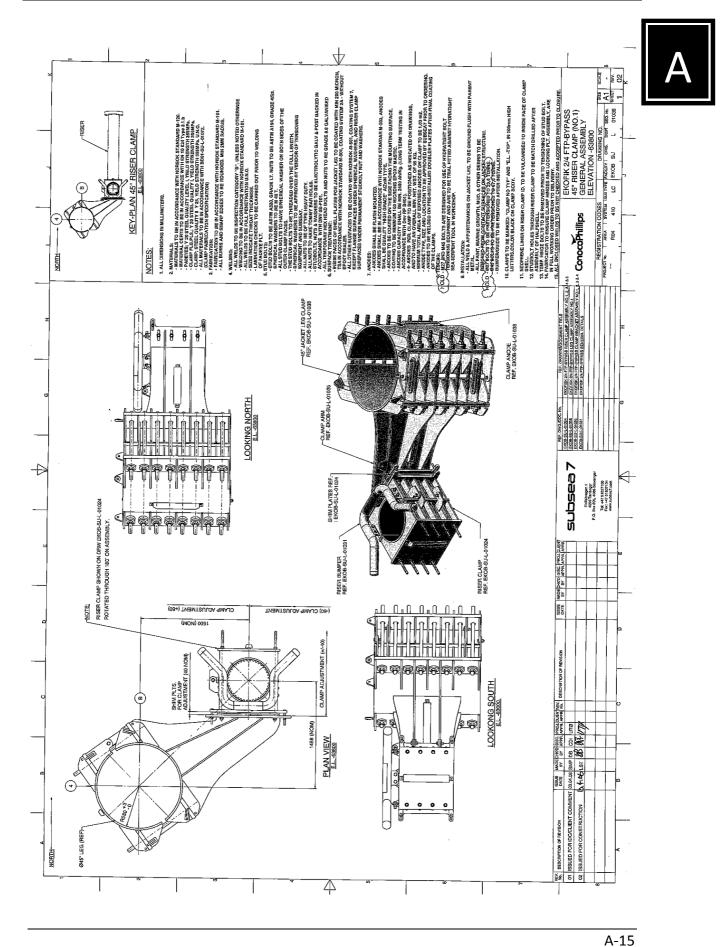
(ത

247

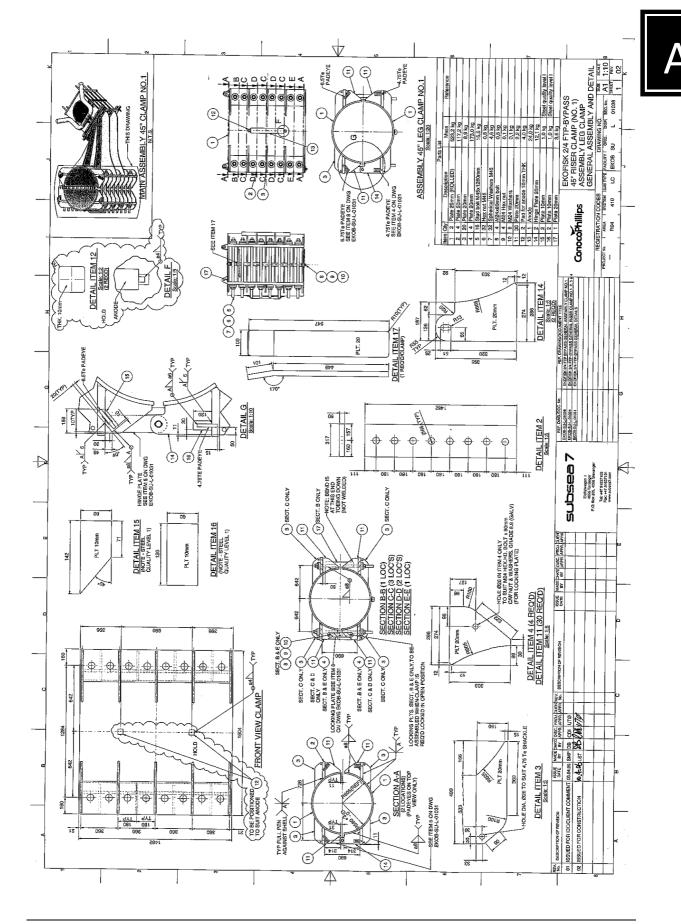
283

101

4



930


ส่ 582 145

-Finite element analysis of a friction clamp located on a North Sea jacket-

Appendix B

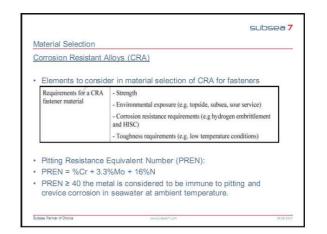
"Bolts and Nuts"

(1 Pages)

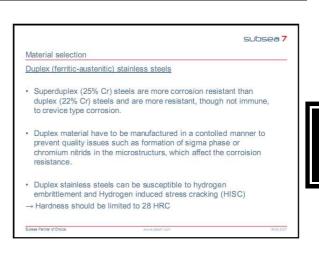
Appendix B

U

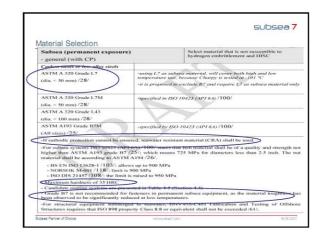
University of Stavanger



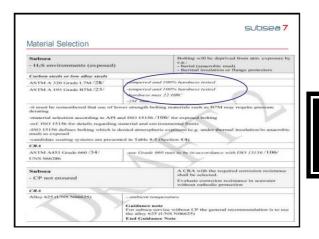
	subsea7
Content	
 Joint Industry Project (JIP) – Bolts and Fasteners Material Selection Corrosion Protection 	
•Specification and Fabrication of fasteners •Conclution	
ubsea Partner of Choice www.acteus?.com	04.09.3007


		subsea 7
Joint	Industry Project (JIP) - Bolts and Fasteners	
TS	ubsea 7 has been part of a Joint Industry project (JIP). he purpose was to create a guideline for the pecification, Design and Installation of Fasteners for le Offshore Oil and Gas Industry.	
in A	he guideline is not a contractual document, and is tended for guidance only. Existing standards (e.g ISO, STM, NORSOK) should also be used for material election of fasteners.	
• T	he guideline covers the following topics: – Fasters Selection, Specification and Fabrication – Design of Botted Connections – Controlled Assembly of Botted Connections	
e	astener: A metallic screw, nut, bolt or stud having xternal or internal threads, with a nominal diameter of 6 m or larger (1/4 inch or larger)	

N	laterial Selection
C	Carbon Steel and Low alloy Materials
	Fasteners are generally made of carbon and low alloy steel. The majority of bolts used in the oil and gas industry are specified according to ASTM A 193 grade B7 or ASTM A320 grade L7.
•	B7 bolts = ASTM A 194 Grade 2H (C-Mn steel) or Grade 7 (low alloy steel) nuts.
•	L7 bolts = ASTM A 194 Grade 4 or Grade 7 nuts.
•	ISO 10423 nut grade 2H and 2HM are also accepted With L7 bolts.



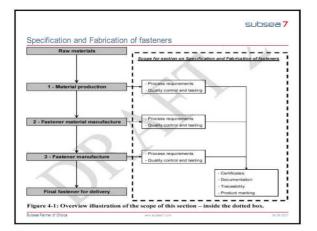
ustenitic Stainless Stee	Is (solid solution and Precipitation har	dened)
	ts shall not be used at max operating °C if exposed to wet marine atmosphe	re
Nubera Partner of Choice	www.audeaa7.com	24.04.0007


subsea7	bsea
Material selection Material Selection	
Duplex materials should not be used for critical and pressure containing bolted connections.	
 The use of duplex stainless steel in subsea bolting exposed to cathodic protection is not recommended, ref DNV-RP-F112 The alloys C276 and 625 have in some cases been used as been used as	en C276
Subase Partner of Oracie www.subasi7.com 06.052007 Subase Partner of Oracie www.subasi7.com	04.09.2

Splash zone - structural components and riser sys	tems
	applications where cathodic protection can not be ensured. s shall be made of seawater resistant material, < <u>g.allov 625/725</u>

CRA				
ASTM A 193 Grade B8M/25/	(All sizes)			
Alloy 718	- Hardness max 35 HRC			
Alloy 625	-solution treated condition. This means SMYS app. 300 MPa. Some cold work is required and acceptable for fasteners in this material.			
UNS S66286	-precipitation hardened austenitic stainless steel			
ASTM A 453 Grade 660 /34/	- Hardness max. 35 HRC			
25Cr duplex	 -It is generally not recommended to use DSS as subsea fastener material exposed to CP due to susceptibility to HISC, ref. DNV RP- F112 /73/ 			
Guidance note: Martensitic, ferrific, duplex and precipitation hardened stäinless steels are susceptible to HISC and should not be used for bolting in submerged service when they will be protected by cathodic protection. End guidance note				

Corrosion Protection	Corrosion Protection
Low alloy Steels require the following corrosion protection: Coating for atmospheric service	Cathodic Protection (i.e anodes)
 Coaling for annopping service Cathodic protection for subsea applications 	 All subsea installations shall have Cathodic protection. This is a general requirement found in ISO/API documents for subsea.
 Corrosion resistant alloys (CRA) will require corrosion protection when used in subsea applications, mainly in the form of Cathodic protection 	 For fastener material such as low alloy steels, corrosion protection is required. To avoid HISC the low alloy material for fasteners used in conjunction with Cathodic protection shall comply with the following requirements:
	 The strength class shall not exceed the Property Class 8.8 according to ISO-898-1 for bolt
	- Property Class 8 for nuts according to ISO 898-2
	 Max bolt hardness shall be: 35HRC (ref. ISO 21457)
ubese Partner of Choice www.actiosal.com 04.06.2027	Subses Partner of Choice versionaal?.com (843)


subsea 7

Corrosion Protection

Subsea Partner of Choic


- In subsea applications the fasteners will have corrosion protection from the cathodic protection system. Consequently a coating on fasteners for subsea application should not be required.
- Corrosion protection alternatives for subsea bolting are specified in some standards, e.g. ISO 13628-1 and NORSOK M-001
- Note: The use of coatings represents a particular challange for bolting
 as the tolerance for the threads restricts the coating thickness. On the other hand a thin coating can be damaged due to the mechanical forces during bolting installation.

0011001011110000				
Subsea systems, re-	f ISO 13628-1 /104/ and NORSOK M-001 /119/			
Coating system	Typical properties and concerns			
Zinc	- Thick conting is achieved			
- hot dipped	 The possibility for dissolution of zinc leading to loss of pretension has been identified by some standards and recommend selection a thinner coating (e.g. phosphatting or electroplating). 			
	- Fasteners harder than Rockwell 35 HRC shall not be hot galvanised			
Zinc – electrodeposited	 Avoid the risk of dissolution of a thick zine coating leading to loss of bolt pretension 			
(electroplating)	- Will only provide corrosion protection during construction, storage and commissioning			
	 Surface treatment and coating will introduce hydrogen in the bolt which may rough in increased susceptibility to HISC. Post-process degassing is required by most standards to remove hydrogen. 			
	- Fasteners harder than Rockwell 35 FIRC shall not be electroplated			
Zinc	- Thickness of 10 to 100 µm			
- thermo diffusion	- Provides an even coating thickness.			
hosphating	 Avoid the risk of dissolution of a thick zine coating leading to loss of bolt pretension 			
	- Will only provide corrosion protection during construction, storage and commissioning			
	 Surface treatment and coating application will introduce hydrogen in the bolt which may result in increased susceptibility to HISC 			
Organic coatings - PTFT based coating 12	 Low and consistent value for the friction coefficient (e.g. for torque based bollad joints) 			
~	 Surface treatment (acid bath) will introduce hydrogen in the bolt which may result in increased susceptibility to hydrogen embrittlement and HISC 			
	 Necessary to ensure electrical continuity between the bolt and the structural liem (required by all standards) If continuity is not ensured separate strapping will be needed for each fastener 			
	For more information, see "Topside - marine environments" above.			
Nickel - electroless	-Special equipment			
	 Suitable in crude oil sour service systems 			

	subsea
S	pecification and Fabrication of fasteners
	Appendix 1 in the guideline contains a: Guidance on prescription and Procurement of fasteners
	Appendix 2 in the guideline contains an: Example of Fastener Data Sheet. This data sheet should clerly define all relevant aspects of the end product and should be included in the specification.

	subsea		
Specification and Fabric	ation of fasteners		
FAST	FENER DATA SHEET		
Fastener specification	ISO 898-1:2009 and DNV RP** < This document>		
Description	Stud bolt, M39 x 2.5 x 435, class 8.8, Xylan coated		
End use	Low temperature piping application. Pre-stressed using bo tensioner. Tensile loaded application.		
Quality management system	ISO 9001 or equivalent.		
Quality plan	To be submitted for prior approval detailing comprehensiv manufacture, inspection and test details.		
Manufacturer/s	Details of all manufacturer's, from steel making to finishe fastener, to be provided for prior approval. The right is reaerve to assess any manufacturer before manufacture commences.		
Threads	Rolled threads applied after completion of all heat treatment.		
Mechanical testing	ISO 898-1 test series FF2 (feasible tests) plus machined Kv te specimens per ISO898-1 test series MP1 (property no. 17).		
Test frequency	One bolt per 50 bolts (or part thereof) per cast per h treatment batch to be submitted for testing (or more than one necessary to fulfil apocified testing scope).		
Ductility	Minimum 14% on gauge length 5D.		

Subsea Partner of C

subsea 7

Conclusion

Subsea Partner of Choice

- · For subsea with Cathodic Protection L7 bolts are recommended to be used.
- To avoid HISC the low alloy material for fasteners used in conjunction with Cathodic protection shall comply with the following requirements: The strength class shall not exceed the Property Class 8.8 according to ISO-898-1 for bolt

 - Property Class 8 for nuts according to ISO 898-2
 - Max bolt hardness shall be: 35HRC (ref. ISO 21457)
- · 625 bolts when Cathodic protection can not be ensured

Conclusion

- · Coating shall be used if components/structures have to be stored
- before deploying: i.e. wax and oils for short tearm measures
 - Zinc Electrodepoited (Thickness 2-25 micron)

Splash Zone: fastners should be avoided in splash zone applications where cathodic protection can not be ensured. If unavoidable fastners shall be Alloy 625

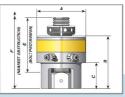
- Ordering of Fasteners:
 Specification with data sheet included
 Close follow-up required

Subsea Partner of Choice

Appendix C

Hydratight – Aqua-jack data sheet

(1 Pages)



Edited by Foxit Reader Copyright(C) by Foxit Software Company,2005-2008 For Evaluation Only.

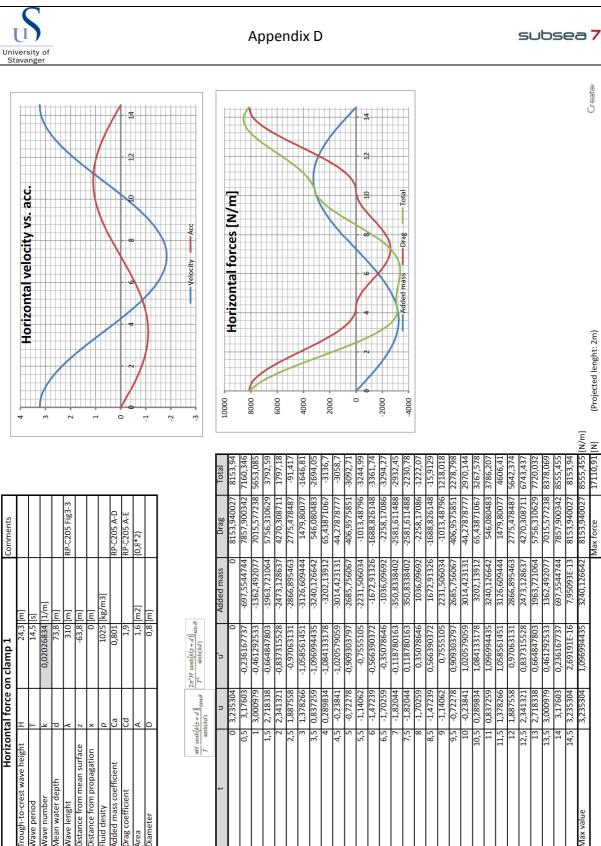
SUBSEA BOLT TENSIONERS - AQUAJACK® DATA SHEET

- Unique reaction nut design allows rapid tool removal and application to long bolts and damaged threads
- 30mm (1.180") maximum piston stroke for tools AJ2 to AJ8.
 20mm (0.78") maximum for tools AJ0 and AJ1. All tools incorporate visible piston stroke indicators
- Innovative tool design ensures maximum tool strokes can be used without overstroking the piston or oil spillage
- Maximum tool operating pressure 1500 bar (21,750 psi)

Tension	er Ref	Tool Hyd Area	Max Load	А	В	c	D	E	F	G
Bolt Dia.	Tool No.	in²	LBS	in	in	in	in	in	in	in
5⁄8"	AJ0	0.748	16,269	2.05	3.70	1.27	1.85	3.94	8.74	0.79
3⁄4"	AJ1	1.55	33,713	2.60	3.50	1.37	2.36	3.78	8.54	1.00
7/8"	AJ1	1.55	33,713	2.60	3.50	1.37	2.36	3.78	8.54	1.00
1"	M	33 2.56	55,680	 377,4	1 kN ^P	1.97	2.95	4.92	11.37	1.20
11/8"	AJ2	2.56	55,680 🗸	3.23	4.72	1.97	2.95	4.92	11.37	1.20
1 ¹ /4"	AJ3	3.90	84,825	3.86	5.16	2.28	3. <mark>6</mark> 2	5.12	12.09	1.50
13⁄8"	AJ3	3.90	84,825	3.86	5.16	2.28	3.62	5.12	12.09	1.50
11/2"	AJ4 M	5.69	123,758	<mark>883,6</mark>	kN ³⁵	2.48	3.78	5.31	12.55	1.77
15/8"	AJ4	5.69	123,758	4.49	5.35	2.48	3.78	5.31	12.55	1.77
13⁄4"	AJ5	9.13	198,578	5.47	5.75	2.76	4.49	5.51	13.4	2.05
17⁄8"	AJ5	9. 1 3	198,578	5.47	5.75	2.76	4.49	5.51	13.4	2.05
2"	AJ5	9. 1 3	198,578	5.47	5.75	2.76	4.49	5.51	13.4	2.05
21/4"	AJ6	12.86	279,705	6.46	6.34	3.23	5.43	5.91	14.45	2.48
21/2"	AJ6	12.86	279,705	6.46	6.34	3.23	5.43	5.91	14.45	2.48
23/4"	AJ7	19.14	416,295	7.56	7.01	3.74	6.18	6.19	15.74	2.99
3"	AJ7	19.14	416,295	7.56	7.01	3.74	6.18	<mark>6</mark> .19	15.74	2.99
31/4"	AJ8	23.94	520,695	8.50	7.60	4.29	7.18	6.5	16.22	3.35
31/2"	AJ8	23.94	520,695	8.50	7.60	4.29	7.18	6.5	16.22	3.35

AQUAJACK is a registered trademark of Hydratight Limited.

Further details can be obtained from your local Hydratight representative or via the website **www.hydratight.com**



Appendix D

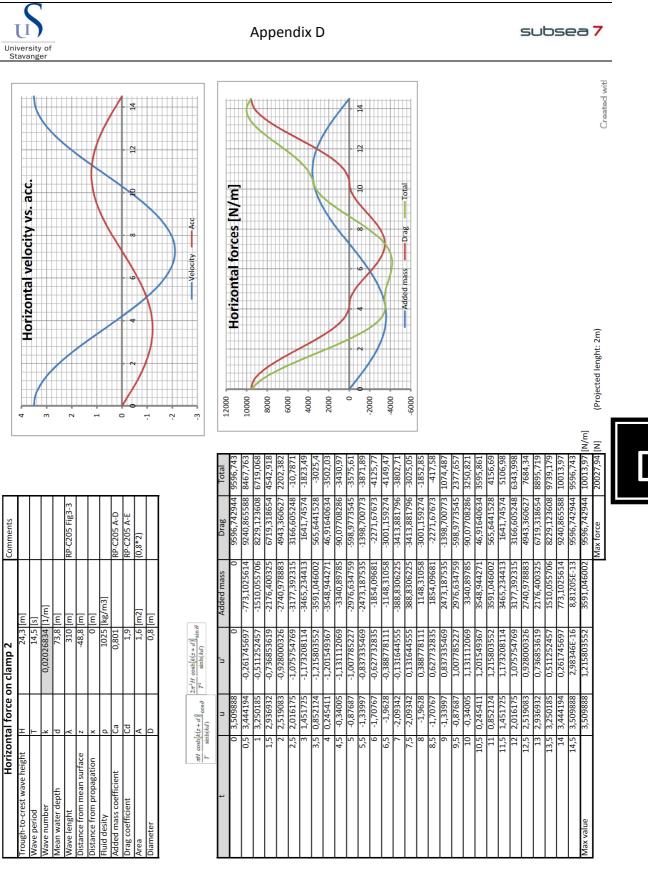
Horizontal and vertical wave forces on clamp

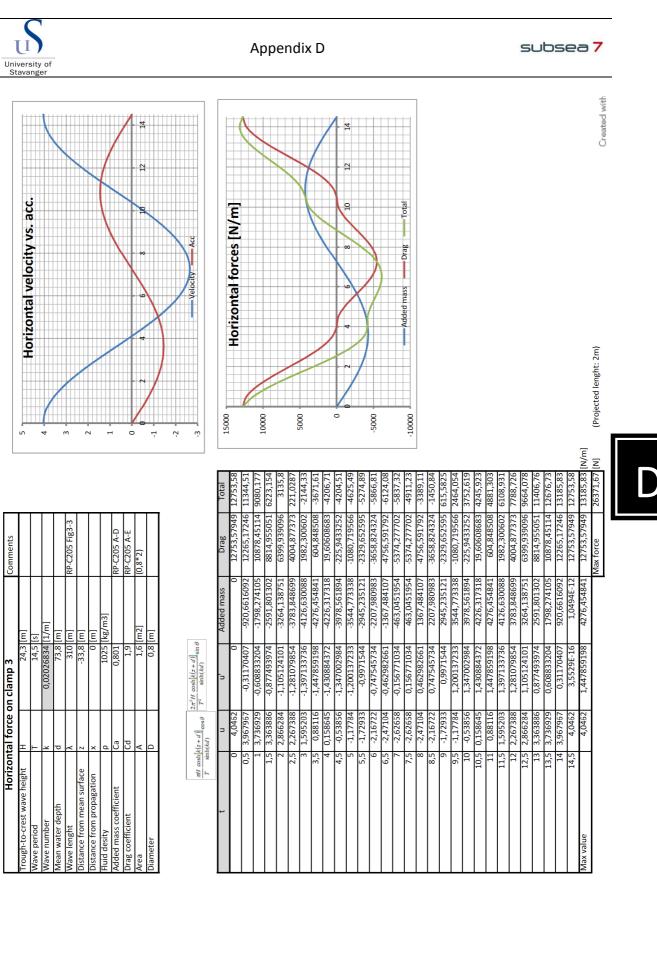
(1 Pages)

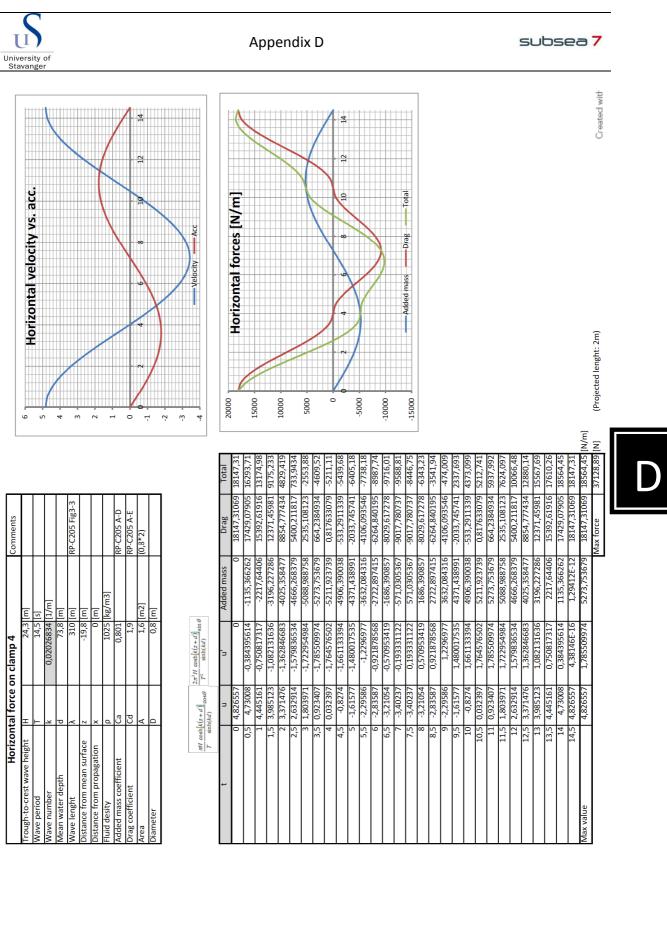
D-1

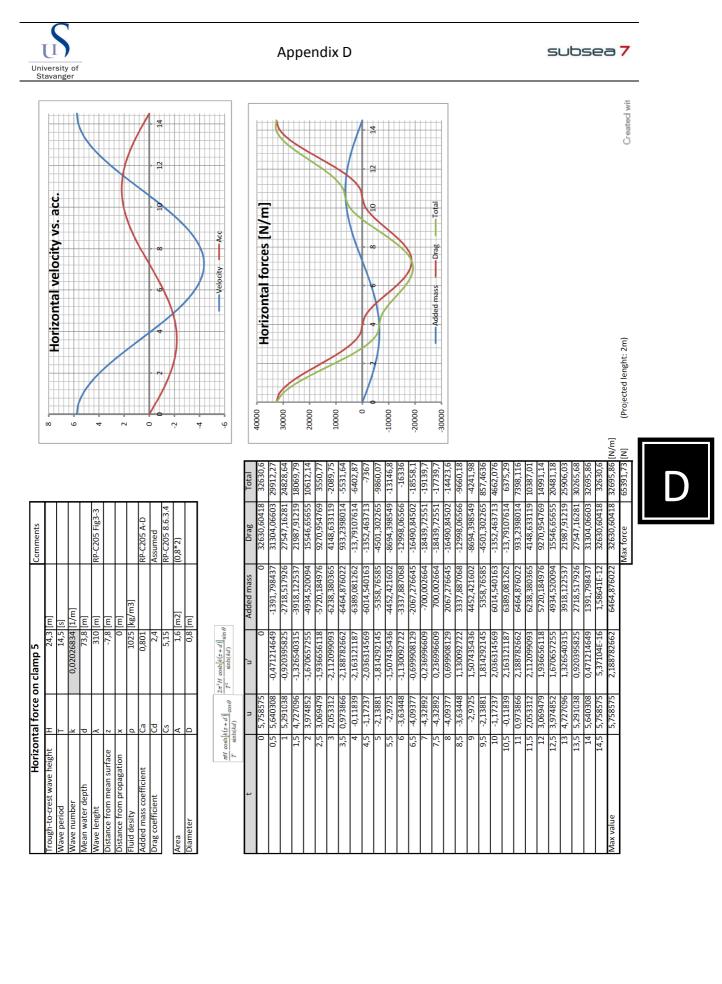
Creater

(Projected lenght: 2m)


Ξ


17110.91


Aax force


Jiamete **Vrea**

Jax

University of Stavanger	Appendix D	subsea <mark>7</mark>	
⁸ ⁶ ⁶ ⁶ ⁷ ⁷ ⁷ ⁶ ⁶ ⁶ ⁶ ⁷ ⁷ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	6000 5000 4000 2000 0 1000 - 2000 - 2000 - 2000 - 2000 - 2000 - 0 -	1 E	
6.3 4 0 83 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-24674,4 -17499,9 -9180,54 -121947 -121947 -121547 -1265,565 -9105,857 -13346,96 20201,28 -20200	D
Comments RP-C205 Fig3-3 RP-C205 Fig3-3 RP-C205 A-D Assumed RP-C205 8.6.3.4 (0,8*2)		<u></u> <u></u> <u></u>	
(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Added mass 0 -1730,970524 -3381,00279 -4872,943123 -4872,943123 -114,156276 -7758,63246 -7758,63246 -7758,63246 -6664,661966 -5537,447341 -5537,547341 -5537,547341 -5537,547341 -5537,547341 -5537,547341 -5537,547341 -5537,547341 -5577,55777 -5537,55777 -5537,55777 -5537,55777 -5537,557777 -5537,557777 -5537,5577777777777777777777777777777777	2571,058311 4151,308102 5537,447341 6664,661696 6664,661956 7986,038378 7986,03837 8040,323613 4872,943123 3841,032052 1730,9702279 1730,9702279 1730,9702279 1730,9702279 1730,9702279 1730,9702279 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,9702276 1730,07226 1730,0726 1730,0726 17300,0726 1730,0726 1730,0726 1730,0726 1730,0726 1730,0726	
Horizontal force on clamp 6 height H 24,3 [15] r 0,02026834 [15] k 0,02026834 [16] d 73,8 [m] d 210 [m] d 200 [m] d 2,15 [m] d 2,4 [m] d 0,8 [m] d 0,8 [m] d 0,8 [m] d	u 0 -0,586046547 -1,144690209 -1,64980429 -1,64980429 -2,077785394 -2,077785394 -2,72174541 -2,722174541 -2,532550381 -2,53550381 -2,535	0,870471117 1,40548855 1,874781496 2,256423158 2,525423158 2,52550381 2,690281 2,69026423 2,772174541 2,772174541 2,6903693 1,1649806423 1,164980209 0,586046547 6,67993E-16 6,57933E-16	
$\begin{array}{c c} \mbox{rizontal force of} \\ \mbox{ght} & \mbox{H} \\ \mbox{f} \ \mbox{f} \\ \mbox{f} \ \mbox{f} \\ \mbox{f} \ $	u 6,991316 6,844229 6,409844 6,409844 6,409844 1,772912 3,548605 -0,31782 -1,62866 -1,62866 -1,62866 -2,83061 -2,83061 -2,83061 -5,26199 -5,26199 -5,56444	-5,26199 -4,69076 -4,69076 -3,86747 -2,83061 -1,62866 -0,21822 -1,62866 -3,646906 -3,546906 -4,772912 5,7084473 -5,991316 -6,991316	
Horizont: Trough-to-crest wave height 1 Wave period 1 Wave number 1 Mean water depth 0 Wave lenght 2 Distance from propagation 2 Distance from	t 0 0 1 1 1 5 2 2 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5	8,5 8,5 8,5 8,5 10,5 10,5 11,5 11,5 11,5 12,5 13,5 13,5 13,5 13,5 13,5 13,5 13,5 13	

Appendix D

Vertical velocity vs. acc.

0,6

mment

24,3 14.5

Vertical force on clamp 1

to-crest wave height

ave perio

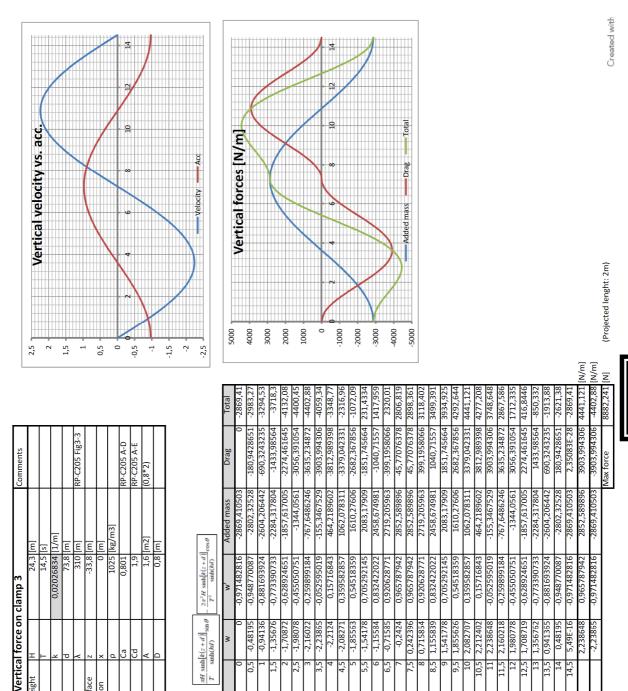
Mave period	_	[c] C,41	[<]			
Wave number	k	0,02026834 [1/m	[1/m]			0.4
Mean water depth	q	73,8	73,8 [m]			
Wave lenght	۷	310	310 [m]	RP-C205 Fig3-3		
Distance from mean surface	Z	-63,8 [m]	[m]			0,2
Distance from propagation	×	0	[m]			
Fluid desity	Р	1025	1025 [kg/m3]			
Added mass coefficient	Ca	0,801		RP-C205 A-D		
Drag coefficient	cd	1,9		RP-C205 A-E		/
Area	A	1,6	1,6 [m2]	(0,8*2)		-0,2
Diameter	Δ	0,8	0,8 [m]			
						-04
$\frac{\pi H}{T} \frac{\sin \theta}{\sin \theta}$	$\frac{\pi H}{T} \frac{\sinh\left[k(z+d)\right]}{\sinh(kd)} \hat{\theta}$	$-\frac{2\pi^2 H}{T^2}\frac{\sinh[k(z+d)]}{\sinh(kd)}\cos\theta$	$\int \cos \theta$			-0,6
t	×	3	Added mass	Drag	Total	
0	0	-0,219669282	L	0	-648,824	Vertical forces [N/m]
0,5		-0,214533537	-633,6548351		-642,906	600
Т		-0,199366441	-588,8566952	-35,29568321	-624,152	
1,5		-0,174877192	-516,5242707		-589,843	400
7 5		-0,142210881			-536,331 460,405	
5,2 ج		-0,102894946			-460,185 250 445	200
		36/10/860/0-	ſ.	-185,8664023	-359,445	
ς,Σ Λ	2402,0-	-0,011892655	-35,1266221 101 0600200		-234,/34 00 0060	
1					-03,3000	
2,4 5					6/,38/01	-200
Ω II					220,9045	
c/c					3/0,3021	-400
9	-0,26135	0,12822281 0,700712020	07949494826	-53,21088336	502,/385	
n'0		0,20010200			034,4490	
		7/5185812/0		·	042,08U3	Added mass
c, / e	- I	0,2183815/0			647,36U8	
0		0,2081/0292			00/7/00	
C,8 2	- I	0,18822500			609,1604	
0 0	0,348623 0.41050	U,1594/8909	4/1,0432839	94,b/814//8	503,/214	
01		0.081307983			412 922	
10,5		0,035538535	104,9680388		299,9229	
11	0,506198	-0,011892655		199,6078387	164,4812	
11,5	0,488463	-0,058767758	-173,5788011	185,8664023	12,2876	
12		-0,102894946	-303,9146284	156,2706205	-147,644	
12,5		-0,142210881			-303,748	
13		-0,174877192	Ċ	73,31844056	-443,206	
13,5		-0,199366441		35,29568321	-553,561	
14		-0,214533537		9,251451565	-624,403	
14,5		-0,219669282	'		-648,824	
Max value	0,506198	0,218381572			647,3608 [N/m]	[m]
Min value	-0,5062	-0,219669282	-648,8239792		-648,824 [N/m]	
				Max force	-1297,65 [N]	(Projected lenght: 2m)

Appendix D

Comments

Vertical force on clamp 2

		•				
Trough-to-crest wave height	н	24,3	[m]			1,5 Vertical velocity ve acc
Wave period	Т	14,5	[s]			
Wave number	×	0,02026834 [1/m]	[1/m]			
Mean water depth	p	73,8 [m]	[m]			
Wave lenght	۲	310 [m]	[m]	RP-C205 Fig3-3		
Distance from mean surface	z	-48,8 [m]	[m]			0,5
Distance from propagation	×	0	[m]			
Fluid desity	٩	1025	1025 [kg/m3]			
Added mass coefficient	Ca	0,801		RP-C205 A-D		
Drag coefficient	Cd	1,9		RP-C205 A-E		
Area	A	1,6 [m2	[m2]	(0,8*2)		-0.5
Diameter	0	0,8 [m]	[m]			
		Г				
$\frac{\pi H}{T}$	$\frac{\pi H}{T} \frac{\sinh[k(z+d)]}{\sinh(kd)} \sin \theta$	$\int \frac{2\pi^2 H}{T^2} \frac{\sinh[k(z+d)]}{\sinh(kd)} \cos\theta$	cosθ			-1,5
				Ċ	H	
t	>	.M	Added mass	Drag	lotal	
			-1680,836149		-1680,84	Vertical forces IN/m]
0,5			-1641,539134		-1703,63	
	L -0,55143	-0,516476474	-1525,485573	-236,8746404	-1762,36	1500
1,5			-1338,102003	-492,0510856	-1830,15	
	2 -1,00093		-1088,15027	-780,4480675	-1868,6	
2,5			-787,3178396	-1048,755646	-1836,07	
	3 -1,26541	-0,152243097	-449,6713023	-1247,37739	-1697,05	
3,5	5 -1,31135	-0,03080898	-90,99863462	-1339,598238	-1430,6	
	4 -1,29598	0,092065732	271,9290281	-1308,371242	-1036,44	
4,5		0,210635552	622,1415916		-537,327	-200 -
		0,319356288	943,2635058		22,84842	-1000
5,5		0,413144279	1220,279467	-635,3992944	584,8802	
	6 -0,67706	0,487614102	1440,236516	-357,106244	1083,13	-1500
6,5		0,539283632	1592,849707	-136,9781709	1455,872	
	7 -0,14199	0,565736859	1670,983015	-15,70556453	1655,277	
2'2		0,565736859	1670,983015	15,70556453	1686,689	
	8 0,419331	0,539283632	1592,849707	136,9781709	1729,828	
8,5		0,487614102	1440,236516	357,106244	1797,343	
		0,413144279	1220,279467	635,3992944	1855,679	
9,5		0,319356288	943,2635058		1863,679	
10		0,210635552	622,1415916		1781,61	
10,5		0,092065732	271,9290281	1308,371242	1580,3	
11		-0,03080898	-90,99863462	1339,598238	1248,6	
11,5		-0,152243097	-449,6713023		797,7061	
12		-0,266558497	-787,3178396		261,4378	
12,5		-0,368409918	-1088,15027		-307,702	
13	3 0,794761	-0,4530349	-1338,102003	492,0510856	-846,051	
13,5		-0,516476474	-1525,485573	236,8746404	-1288,61	
14		1	-1641,539134	62,08788337	-1579,45	
14,5		1	-1680,836149			
Max value	1,31135		1670,983015		1863,679 [N/m]	
Min value	-1,31135	-0,569072788	-1680,836149		-1868,6	
				Max force	-3737,2 [N]	(Projected lenght: 2m)



-Finite element analysis of a friction clamp located on a North Sea jacket-	

subsea 7

Appendix D

-2.2386

5 S

2,5

≥

3 പ്പ

ag coefficient

iid desity

stance from mean surface stance from propagation dded mass coefficient

an water depth

ve numbe ve lengh

height

-to-crest wave

1,35676

L3,5

12,5

-2,2386

2,16021

0

subsea 7

Appendix D

Vertical velocity vs. acc.

Comment

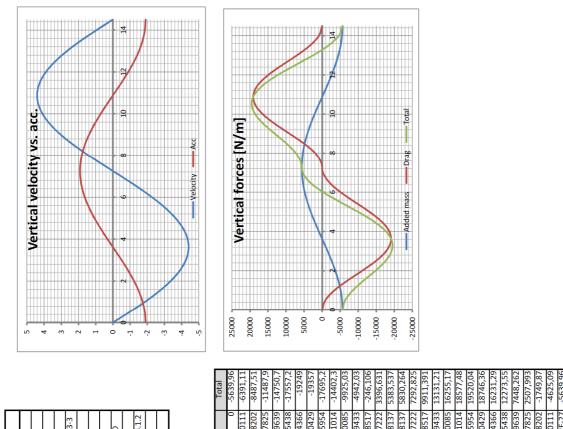
24,3 [m] 14.5 [s]

Vertical force on clamp 4

wave height

rough-to-crest <u>Nave period</u>

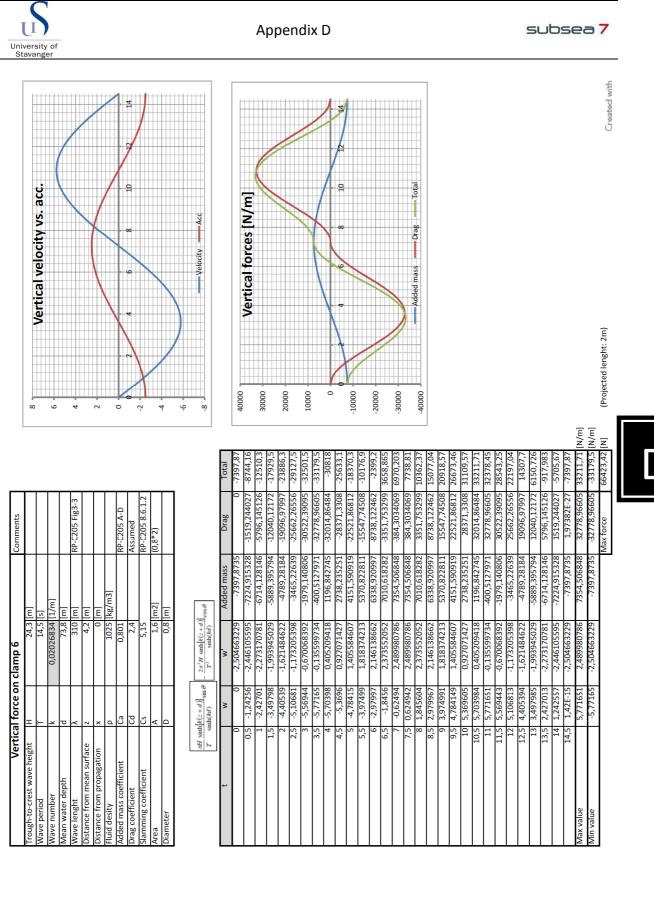
	Instructure k 0.00006841 (I/m) pc.205 frg.3 Instructure i 33 (Im) pc.205 frg.3 Instructure i 33 (Im) pc.205 frg.3 Instructure i 0.000 1.010 Instructure i 0.000 1.010 Instructure i 1.010 1.010 Instructure	
Image: construction: Image: co	Multit dieth d 3/3 [m] eC05 fig3 bit of constants 3/3 [m] e/2 (m) 0/2 (m) 0/2 (m) e/2 (m) 0/2 (m) 0/2 (m) e/2 (m) 0/2 (m) </td <td>3</td>	3
	Intention A 330 (m) Re-Color fig.3 Contrommentation A 300 (m) Re-Color fig.3 Contrommentation A 300 (m) Re-Color fig.3 Contrommentation A 1.1 Re-Color AF Contrommentation A 1.1 Re-Color AF Contrommentation A 1.1 Re-Color AF Contrommentation Color 1.1 Re-Color AF Re-Color AF Contromorecontromentation	
	Interform 13.8 [m] 13.8 [m] continuent k 1005 (kg/m3) (kg/m3) continuent k 1005 (kg/m3) (kg/m3) (kg/m3) continuent k 116 113 (kg/m3) (kg/m3) (kg/m3) continuent k 114 (kg/m3) (kg/m3) (kg/m3) (kg/m3) continuent k (kg/m3) (kg/m3) (kg/m3) <t< td=""><td></td></t<>	
	enclusion k 00 01 dense from propertion c 0801 BC056 AE mass conflictent c 0801 BC056 AE finance 0 0.05 0.031 BC056 AE finance 0 0.05 0.031 BC056 AE finance 0 0.031 BC056 AE 0.011 finance 0 0.013706 AE 0.013706 0.013706 finance 0 0.0333343 0.0137363 0.013736 finance 0 0.0333433 0.0137363 0.013736 finance 0 0.0333433 0.00337433 0.0033743 finance 1.13865031 2.3337500 0.031743 0.000 finance 1.138765031 2.337366 0.013741 0.000 finance 1.13865031 2.3373760 <td></td>	
	Mass conflictent D 1005 Ref and the construction 100 conflictent C 10 <t< td=""><td></td></t<>	
Officerer Description Per-OID AD (Contraction Per-OID AD (Contraction <th< td=""><td>Intersectificant Ica 0,001 PPC-005 AE 0 conflictant Ica 0,01 PPC-005 AE 0 0 conflictant Ica 0,01 PPC-005 AE 0 0 conflictant Ica 0,03*31 0.03*31 0.03*31 0 0 fram[t-r]m Tomation Distribution Distribution Distribution Distribution Distribution Distribution Distribution fram[t-r]m Tomation 1,47743756 4317,346 4317,346 4317,347 400 4317,347 400 4317,347 400 4317,347 400 4317,347 400 4317,347 400 4317,347 4313,3356 4317,347 4313,3356 4317,347 4313,3356 4317,347 4313,3356 4317,347 4313,3356 4317,347 4313,348 4317,347 4313,3356 4317,330 4317,347 4313,3556 4317,330 4317,330 4317,330 4317,330 4317,330 4317,330 4317,330 4317,330 4317,330 4</td><td></td></th<>	Intersectificant Ica 0,001 PPC-005 AE 0 conflictant Ica 0,01 PPC-005 AE 0 0 conflictant Ica 0,01 PPC-005 AE 0 0 conflictant Ica 0,03*31 0.03*31 0.03*31 0 0 fram[t-r]m Tomation Distribution Distribution Distribution Distribution Distribution Distribution Distribution fram[t-r]m Tomation 1,47743756 4317,346 4317,346 4317,347 400 4317,347 400 4317,347 400 4317,347 400 4317,347 400 4317,347 400 4317,347 4313,3356 4317,347 4313,3356 4317,347 4313,3356 4317,347 4313,3356 4317,347 4313,3356 4317,347 4313,348 4317,347 4313,3356 4317,330 4317,347 4313,3556 4317,330 4317,330 4317,330 4317,330 4317,330 4317,330 4317,330 4317,330 4317,330 4	
continent dd 13 64 13 64 14	continent Ica 1,9 (0.3') Pr-cto At bit 1,0 (0.3') eter 0 0 0,3') 0 0,3') eter 0 0,3') 0 0,3') 0 eter 0 0,3') 0 0,3') 0 0 eter 0 -1,4'/with 0 -1,4'/with 0 0 0 eter 0 0,1'/with -1,3'/with -1,3'/with -1,3'/with -1,3'/with eter 0 0,0'/with -1,4'/with -1,3'/with -1,3'/with -1,3'/with eter 0 0,0'/with -1,3'/with -1,3'/with -1,3'/with -1,3'/with eter 0 0,0'/with -1,3'/with -1,3'/with -1,3'/with -1,3'/with 1 1,3'/with -1,3'/with -1,3'/with -1,3'/with -1,3'/with -1,3'/with 1 -1,3'/with -1,3'/with -1,3'/with -1,3'/with -1,3'/with -1,3'/with 1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	etcr n 16 m31 (0.8*2) etcr 0 0.8 m1 0.8*2) etcr 0.8 m1 0.8*2) 0.8*2) etcr 0.8 m1 2.3*1 state 2.3*1 state 2.3*1 state 2.3*1 state etcr math(1+n) T math(1+n) T math(1+n) 0.8*2) etcr math(1+n) T math(1+n) T math(1+n) 0.8*2) etcr math(1+n) T math(1+n) T math(1+n) math(1+n) etcr math(1+n) T math(1+n) T math(1+n) math(1+n) etcr math(1+n) T math(1+n) T math(1+n) math(1+n) etcr math(1+n) T math(1+n) math(1+n) math(1+n) math(1+n) etcr math(1+n) math(1+n) math(1+n) math(1+n) math(1+n) math(1+n) etcr math(1+n) math(1+n) math(1+n) math(1+n) <thmath(1+n)< th=""> math(1+n) <t< td=""><td></td></t<></thmath(1+n)<>	
0 0 0 0 0 1	Image: constraint of the stand of	
$\frac{4 + 1}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	for the first of land	
$ \frac{1}{r} 1$	$\frac{47}{T}$ sum[k[t:+d]]_{und} $\frac{1}{T}$ $\frac{1}{T}$ sum[k[t:+d]]_{und} $\frac{1}{T}$ <	ŗ.
T m.m. T m.m. 1 m.m. 7 m.m. m.m. 1 m.m. 1.47764756 4717.3346 4217.3346 4717.3346 1 1.38358 1.3957576 4317.3347 3417.3346 4717.3346 1 1.38358 1.39575706 4317.3346 4317.3346 4317.3346 1 1.38358 1.39575796 4317.3346 4317.3346 4317.3346 1 1.38359 4301.3397.5599 4327.5999 4327.5991 437.7591 2 2.3118 0.97369431 827.37291 833.33558 460.133 334.255 3 3.3156 0.07730190 238.331931 333.33538 460.133 437.755 3 3.3157 0.07730190 238.233191 333.335.83 460.146 44.43.335.333 432.541.43 3 3.3158 1.03660113 237.7566 238.331.93 236.744.43 44.43.235.244.43 44.43.235.244.43 44.43.235.244.43 44.43.247.44.43 44.43.247.44.44.44.44.44.44.44.44	T statuto $T_{\rm c}$ autoto $T_{\rm c}$ autoto 1 0 0 1.27843/56 0 421734 0 0 1000 0 0 0 1.38358 1.394461572 4118,73471 390,8702318 4505,611 0 42173456 0 42173456 0 42173456 0 42173456 0 4217345 0 0 0 0 0 0 1010 0 0 1010 0 42173456 0 </td <td>Velocity</td>	Velocity
I m m media mass Drag media mass media mass <thmedia mass<="" th=""> <thmedia mass<="" th=""> media mass</thmedia></thmedia>	t w w faded mass Drag 1000 05 0.70835 1.427843765 -4217,33645 0 -217,33 1 1.3838 1.25587505 -8877,550908 -3517,33645 0 217,33 1 1.3838 1.25587505 -8877,550908 -491,22889 -555,051 -6655,01 2 -5,114 0.7130109 -320346471 -3705,43595 -6602,37266 -655,07 2 -5,91126 0.568814072 -3705,43595 -6602,372366 -655,07 2 -2,91126 0.53049415 -682,2391126 -353,55616 -554,448 3 -3,3077 0.53049415 682,2381126 -759,5571339 -000 4 -3,25169 0.23099415 682,2381126 -333,5561 -333,356 5 -2,27352 -0,0714934 -938,3348 -000 -000 5 -3,27139 0,025849435 -660,171439 -938,3348 -000 6 -1,6988 1.2354,6125 -236,5134<	
0 0 1.43856 1.438756 4.417,3717 3.60,7031 6.417,386 5.1387 1 1.38356 1.13857500 3.817,3703 3.60,703	0 -0 -1,427843766 -4217,3345 -4217,3345 -4205,51 -4217,335 -4205,51 -4217,335 -4205,51 -4217,554 -4205,51 -4217,554 -4205,51 -4217,526 -4455,07 -400,51 -4175,51 -400,51 -4175,51 -400,51 -4175,51 -400,51 -4175,51 -400,51 -4175,51 -400,51 -4175,51 -400,51 -4175,51 -400,51 -4175,51 -400,51 -4175,51 -400,51 -4115,51 -400,51 -4115,51 -400,51 -4115,51 -400,51 -4115,51 -400,51 -4115,51 -400,51 -4115,51 -400,51 -4115,51 -400,51 -4115,51 -400,51 -4115,51 -400,51 -4115,51 -400,51 -4115,51	Total 10000
1 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-4217,34
1 1.43837301 3737,350301 5433,1 5633,1 5737,55030 5433,1 2 3.110 0.93416471 3737,550301 5633,1 3737,5503 5433,1 3 3.175 0.587196671 373,53560 7563,11 5737,5605 7564 764,11 3 3.100 0.58719511 833,35560 3433,3558 3661,66 90 90 90 4 3.50010 0.58719511 833,35560 3433,355 3661,66 90 90 90 90 5 2.20010 0.0770106 353,31560 333,3153 3437,75 90 91 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93	1 -1,38536 -1,2958/5901 -645,07 -645,07 1,5 -1,99411 -1,13666521 -3357,392312 -3097,675668 6455,07 2,5 -2,91126 -0,668814072 -1975,435995 -6602,37261 -8577,81 3 -3,175 -0,031301903 -1128,257016 -7852,783234 8981,04 3 -3,175 -0,031301903 -258,3219931 8433,35581 8661,58 3 -3,57120 0,0230999415 682,2891126 -823,5501 -5574,48 4,5 -3,57604 1,036608137 -3061,767258 4000,114934 -385,336 5,5 -2,52604 1,036608137 3061,767258 4000,114934 -365,516 6,5 -1,05713 1,353100673 3915,51269 382,338 -103 7,5 0,355201 1,419473684 4192,614253 -387,37569 493,360,5516 6,5 -1,05713 1,331310659 382,31659 493,360,551 -1017 7,5 0,361073 0,361,767258 4000,114934 <t< td=""><td>-4509,61</td></t<>	-4509,61
1 2.35149 0.03730105 600.373591 600.373591 600.373591 600.373591 600.373591 600.37591 600.36931 600.37591 60	$ \begin{array}{c} 1 & 1.2.342.6471 & -0.248.1407 & -0.570.7545.81 & -0.07.70103 & -0.572.57016 & -0.07.7301903 & -0.572.57016 & -0.07.7301903 & -0.572.57016 & -0.07.7301903 & -0.572.57016 & -0.07.7301903 & -0.05.8814072 & -0.038198.67 & -1128.2.57016 & -7852.783234 & -8981.04 & -3.251.69 & 0.230999415 & 682.2891126 & -8235.76606 & -7554.48 & -4.3.251.66 & -0.2281.2132 & -3.051.07 & 0.0528499458 & 1.22345.8177 & -3.041.13019 & -3.427.7 & -0.38105.673 & -3.060.114934 & -332.5316 & -3427.7 & -2437.7 & -4417.7 & -4$	-5318,/8 5455 07
2.3 3.2 3.113 0.6668(1407) 1975,43595 6607.37366 8517,81 0.00 3 3.7516 0.73099415 872,83234 8681,04 7338,31931 861,07 7378,31931 861,07 7378,31931 861,07 7378,31931 861,07 740,07 760,07	2,5 -2,9175 -0,38198867 -1128,257016 -7852,78515 8577,81 3 -3,175 -0,38198867 -1128,257016 -7852,783234 8981,04 3,5 -3,25027 -0,077301903 -228,219313 8235,75656 -7554,48 4,5 -3,25169 0,230999415 682,2891126 8235,75656 -7554,48 4,5 -3,25169 0,23099455 156,097133 7293,5371 -5738,33 5,5 -2,226604 1,036608137 3061,767258 -4000,114934 -335,516 6,5 -1,05213 1,533100673 3396,57272 86,23371659 313,555516 7 -0,356261 1,419473684 4192,614253 98,87336005 4093,741 7,5 -1,05213 1,353100673 3996,57272 86,23371659 313,435 7,6 -1,052651 1,419473684 4192,614253 98,87336005 4093,741 7,6 -0,3556265 1,419473684 4192,614253 98,873,335005 4914,3305 8 1,055111 1,35310673 3995,5144223 396,51727 38,873,335005 3916,616,88 <	-7643.51
3 3.105 0.38710886 1128,257016 382.78323 8881.04 4 3.306107 0.037391931 833.533511 853.661.06 833.661.06 4 3.306107 0.5330990458 160.097138 3733.33381 8661.05 5 2.32604 105608133 3661.714672 3936.57146 273.83.56 5 2.32604 105608133 3661.714672 3936.57123 863.73316 0.003.14334 6 -1.6688 1.73347366 403.714672 396.571243 386.17673 366.1668 37.3156 37.3166 37.316 37.316 37.316 37.316 37.316 37.316 37.316 37.316 37.316 37.316 37.317 37.317 366.17673 </td <td>3 -3,1/5 -0,38198867 -1128,257016 -7852,783234 -8981,04 3,5 -3,29027 -0,077301903 -228,321931 8661,68 4,5 -3,05109 0,230999415 682,7833581 8661,68 4,5 -3,05109 0,230999415 682,7381126 8235,76606 -7538,336 4,5 -3,05101 0,528499458 156201 2328,313605 -3427,7 5,5 -2,2603 1,035608137 3061,76275 4000,114934 -385,316 6 -1,6988 1,22345817 361,76275 -398,8736005 4037,413 7 -0,356263 1,419473684 4192,614253 -398,87336005 4037,413 7 -0,356263 1,419473684 4192,614253 98,87336005 4937,413 7 -0,356263 1,419473684 4192,614253 98,87336005 4937,413 7 -0,356263 1,419473684 4192,614253 98,817,335005 4931,735 8 1,05164 3,3371659 1,3651,138 326,5146 -0,</td> <td>1 -8577,81</td>	3 -3,1/5 -0,38198867 -1128,257016 -7852,783234 -8981,04 3,5 -3,29027 -0,077301903 -228,321931 8661,68 4,5 -3,05109 0,230999415 682,7833581 8661,68 4,5 -3,05109 0,230999415 682,7381126 8235,76606 -7538,336 4,5 -3,05101 0,528499458 156201 2328,313605 -3427,7 5,5 -2,2603 1,035608137 3061,76275 4000,114934 -385,316 6 -1,6988 1,22345817 361,76275 -398,8736005 4037,413 7 -0,356263 1,419473684 4192,614253 -398,87336005 4037,413 7 -0,356263 1,419473684 4192,614253 98,87336005 4937,413 7 -0,356263 1,419473684 4192,614253 98,87336005 4937,413 7 -0,356263 1,419473684 4192,614253 98,817,335005 4931,735 8 1,05164 3,3371659 1,3651,138 326,5146 -0,	1 -8577,81
35 3.79027 0.07730100 2.383,235381 \$661.68 4,5 3.25057 0.070399415 \$823,567666 7554,48 5 2.77732 0.801.287453 256,714672 5794,41330 3737,753 5 2.77732 0.801.287453 256,714673 395,57526 373,41330 3737,753 6 2.105213 1.353100613 390,57727 862,3371659 313,4255 300,3741 7 0.356263 1.134347364 4192,514233 988,333605 4293,371659 313,4255 7 0.356263 1.419473684 4192,514233 988,333605 4293,371659 313,4255 7 0.3562631 1.333100613 396,57727 862,3371659 313,4255 420,41330 4604 4084 4094 7 0.3562631 1.33310653 396,57727 862,337163 4383,490 4900	3,5 -3,29027 -0,077301903 -228,3219931 8433,353581 8661,68 4 -3,25169 0,230999415 682,2891126 -8236,76606 -5754,48 4,5 -3,06107 0,528499458 1560,597118 -7733,351 -4457 5,5 -2,72732 0,801287453 256,714672 5794,413301 -3437,77 5,5 -2,72733 0,801287453 3061,76578 -4000,114934 -933,348 6 -1,6988 1,223458177 361,65501 -2248,139134 136,5516 7 -0,355263 1,419473684 4192,614253 98,87336005 4039,41330 7 -0,355263 1,419473684 4192,614253 98,87336005 4951,794 7 -0,355263 1,419473684 4192,614253 98,87336005 4931,42350 8 1,05111 1,53140753 361,767258 4000,114934 7061,882 9 2,26604 1,036608137 3061,767258 4000,114934 7061,882 9 2,272319 0,81028773 361,767258 88,61,794 9 10 3,0510973 <td< td=""><td>-8981,04</td></td<>	-8981,04
4 3.25169 0.23099445 682.399116 833.56/160 753.4.48 5 5 2.7050 0.02380945 156.01 1.5383.6	4 -3.25169 0,230999415 682.2891126 -8236,756606 -7554,48 4,5 -3.06107 0,528499458 1560,997138 -7293,53711 -5738,356 5 -2,27024 10,801287453 2361,67558 -4000,114934 -3427,7 5,5 -2,72132 0,801287453 2361,67563 3134,235 -3487,7 6 -1,6588 1,22345817 361,67573 365,714675 361,365511 5794,41334 -4607,1413 7 -0,55626 1,419473684 4192,614253 98,7336005 4031,414 -46 7,5 0,556213 1,5531006773 3996,57227 862,3371659 41836,909 8,5 1,6952131 1,5531006773 396,57227 862,3371659 4856,909 8,5 1,6952131 1,535300573 3581,57501 286,733605 4931,418 9 2,5604 1,036608137 366,714672 361,41330 8161,128 9 2,5604 1,036608137 366,714672 2793,43306 4001,114934 10	-8661,68
45 3.06107 0.528499458 1560.97113 7323.53 538.3477 55 2.75604 1,036608137 306.1/4773 399.5721 86.1,3473 338.33610 65 1,688 1,33346817 306.1/4773 399.5721 86.1,3373 366.1 7.5 2.75604 1,333106613 306.1/473 399.5721 86.733765 134.335 7.0 0.556.50 1,41947368 4192.614353 38733605 3134,337 996.5721 86.733765 4100.14934 706.1 900.14934 900.14934 900.14934 900.14934 900.14934 900.14934 900.14934 900.14934 706.1 900.97148 900.14934 900.14934 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 910.991 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 900.97148 910.991 900.97148 910.991 910.991 910.991 910.991 910.	4,5 -3,06107 0,528499458 1560,997138 -7299,559711 5738,35 5 -2,72732 0,8012887453 2366,714672 -5794,413309 -3427,7 5,5 -2,726688 1,22345817 3613,65501 -2348,133605 33427,7 6 -1,6588 1,22345817 3613,65501 -2348,133605 4393,348 7 -0,356263 1,419473684 4192,614253 -98,87336005 4093,741 7 -0,356263 1,419473684 4192,614253 -98,87336005 4093,741 7 -0,356263 1,419473684 4192,614553 -98,87336005 4093,741 7 -0,356263 1,419473684 4192,614853 3861,794 -0 7 -0,356263 1,419473684 4192,61483 7661,882 -0 8 -1,056081 1,0356087 331,55591 8861,357 -0 8 1,0561073 0,52849435 256,71467 5794,413309 8161,128 9 2,5604 1,0366081 103,7011 836	0 -7554,48
5 2,72,604 1,03608137 266,7140/2 -93,348 -000 6 1,05503 1,035608137 366,157258 4000,114914 1365,109 7 0,35656 1,14373603 396,57227 88,23371659 134,235 7 0,356561 1,14373663 139,51205 393,55727 88,033605 493,513 7 0,356561 1,14373663 1395,5727 88,23371659 485,596 485,596 8 1,057131 1,1353100673 399,57727 88,23371659 485,794 860,796 9 2,5664 1,353100673 361,56570 234,139144 861,794 900 9 2,5664 1,355701 236,171434 700.61,88 200,114934 706,188 9 2,5664 1,355701 833,35558 800,357 900,578 900 10 3,61073 0,52849458 138,357828 800,357 1000 900 11 3,174956 0,77391903 236,578328 803,705318 236,517 110,374 1000 11 2,17401 0,323896571 2397	5. -2,7/2/32 0,801.28/443 2366,7146/2 -5/94,413309 -342.7/ 5. -2,56604 1,036608137 3061,76728 -4000,114934 -938,348 6,5 -1,0598 1,233310673 3995,57277 -5248,13914 1355,516 7 -0,356.265 1,419473684 4192,614253 98,87336005 4291,448 7,5 0,355.265 1,419473684 4192,614253 98,87336005 4291,448 8,1 1,052131 1,353100673 3996,57277 862,3371659 4851,794 9 2,26604 1,036608137 3061,76728 4000,114934 7661,882 9,5 1,052131 1,353100673 3996,57277 86,3371659 4851,794 9 2,26604 1,036608137 3061,76728 4000,114934 761,882,999 8,1 1,0573319 0,801287453 3061,76728 4000,114934 761,882,999 9,2,727319 0,80137473 3613,65501 2,293,41330 8161,128 10 3,051014 1,35201188 1,33535	-5738,36
J. J.<	J.J. Libroson Journary Libroson Julton Julton Ju	-3427,7
6.5 1.0000 0.356.05 1.419473684 4192.614253 98.87336005 40.93.741 7 0.356.05 1.419473684 4192.614253 98.87336005 4093.741 8 1.0356.05 1.419473684 4192.614253 98.8733605 4093.741 8 1.0351.0673 396.5721 86.733165 4858.909 493.5165 400.114934 7061.883 9 2.26604 1.03560813 306.176728 86.733165 485.909 491.200 9 2.26604 1.03660813 366.714672 5794.413309 811.128 860.3571 95 2.272319 0.801287453 2366.714672 5794.413309 811.128 10 3.061073 0.528099415 6.82.738318 7061.886 701.4934 11 3.061073 0.52369961 280.335711 8860.357 10.601.483 -01ag 11 3.061073 0.5238999126 882.7850 891.9055 335.7324 67.4,526 11 3.174995 0.602337961 650.3375961	0 1,050,0 1,25310673 399,57227 5,24,371557 120,356 7 0,35626 1,419473684 4192,614253 98,87336005 4291,488 7 0,356263 1,419473684 4192,614253 98,87336005 4291,488 8 1,052131 1,533100673 3996,57227 862,3371659 4856,909 8 1,052131 1,533100673 3996,57227 862,3371659 4856,909 8 1,052131 1,533100673 3996,5727 862,3371659 4856,909 9 2,26604 1,036608137 3061,76758 4000,114934 7861,882 9 2,26604 1,036608137 3061,76758 4000,114934 7661,882 9 2,26604 1,036608137 3061,76758 4000,114934 7661,882 9 2,26604 1,03660913 305511461 206,993 2051,947 13 3,05104 0,333531 8433,353581 8205,032 111,128 11 3,290269 -0,77301903 228,321931 671,	1365 516
7 0.356.26 1,4194736.84 4192,614253 38,87336005 4093,741	7 -0.35626 1,419473684 4192,614253 -98,87336005 4093,741 * 7,5 0,356263 1,419473684 4192,614253 98,87336005 4291,488 * 8 1,052131 1,353100673 3396,5727 86,3371659 4858,009 4291,488 8,5 1,052131 1,353100673 3306,176725 98,87336005 4291,488 9,5 1,25604 1,036608137 3061,767258 4000,114934 7061,882 9,5 2,25604 1,0361073 0,580138783 3306,1767258 4000,114934 7061,882 9,5 2,751694 1,0360173 0,580138783 3565,714675 450,9130 8161,128 10 3,061073 0,580138743 1560,997138 7299,359711 8860,357 10,5 3,251694 0,230999415 682,2891126 823,579616 8919,055 11 3,290269 -0,077301903 -228,3219931 8433,35331 8075,032114 12 2,911401 -1,136696571 -1,374,5766 4913,56066	3134,235
7,5 0,356.26 1,4194736.84 4192,614253 98,87336005 4291,488 -10000 -10000 -10487 -10000 8 1,052131 1,353100673 3996,57127 86.3371659 4858,909 486.3791 361.794 7061 791,488 791,488 791,581 205,571 85.3371659 485.3371659 485.3371659 486.357 4001,188 95 72.2660 123439413 7061,882 906,57128 860,357 86.357 86.1,594 95.57660 8919,055 8916,158 915,158 123,26126 82.35,76051 833,353581 8205,032 8235,7632 807,032 850,357 850,357 125,5506 8919,055 833,55333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,527333 816,5273234 816,225233 816,21733 817,526 813,52608 8191,526 815,713 816,5273234	7/5 0,356263 1,419473684 4192,614253 98,87336005 4291,488 8 1,052131 1,533100673 3996,57277 862,3371659 4856,909 8.5 1,055131 1,533100673 3996,57277 862,3371659 4856,909 9 2,26604 1,036608137 3061,76728 4000,114934 5651,7943 9 2,26604 1,036608137 3061,76728 4000,114934 561,880,357 9,5 2,772319 0,801287453 2366,714672 5794,413309 8161,128 13 3,051703 0,58849458 7590,93178 8860,357 11 3,290269 -0,077301903 -228,3219931 8433,35334 674,526 11 3,290269 -0,077301903 -228,3219931 8433,353334 674,526 12 2,911262 -0,58814072 -1128,557016 7893,3334 674,526 12 2,911401 -1,136696521 -2730,245783 4913,56051 1336,014 12 2,914401 -1,3246833 4913,56051	4093,741
8 1,051131 1,533100673 3996,57227 86.2,3371659 488.909 9 5,1,698802 1,223458177 361,5671 248,139134 861,794 9 2,72319 0,080158133 3061,76728 4000,114393 810,1882 9 2,723193 0,080158133 3061,76725 5794,413303 810,1503 10 3,051073 0,528499458 1560,997138 7299,359711 8860,357 10 3,251694 0,230999415 682,2891126 8236,76606 8919,055 11 3,290269 -0,77301903 -228,310931 843,355334 4615,4526 11,5 3,174995 -0,3819867 -1128,257016 852,783324 4675,032 12 2,91411 -1,13669521 -2197,34593 4605,37234 465,633 12,5 1,994111 -1,13669521 -337,73534 431,25603 239,717 13,1,9383577 -1,29587590 -1997,655608 233,5538 235,731 3207,617 13,5 1,944115 -1,13669521 -337,73534 431,25603 239,717 14,5 6,07733164 <td>8 1,052131 1,553100673 3996,57227 862,3371659 4856,909 8.5 1,698802 1,2346137 3613,65501 2248,39134 861,794 9 2,26604 1,036608137 3661,76758 4000,114934 3661,822 9.5 1,505802 1,23649455 3565701 2248,339134 3861,794 9.5 2,772319 0,801287453 2366,714672 8400,114934 7661,882 9.5 2,772319 0,801287453 2366,714672 8794,13309 8161,128 10 3,050173 0,538499415 682,2891126 826,5937 860,357 11 3,290269 -0,77301903 -228,3219931 8433,35334 674,526 11.5 3,174995 -0,38198867 -1118,55,7016 7825,73251 6507,34573 12 2,91162 -0,58814077 -1975,44533 4913,56051 133,014 12 2,99111 -1,136696521 -3275,323212 3097,655608 236,51371 13 2,99111 -1,136696521 -38</td> <td>4291,488</td>	8 1,052131 1,553100673 3996,57227 862,3371659 4856,909 8.5 1,698802 1,2346137 3613,65501 2248,39134 861,794 9 2,26604 1,036608137 3661,76758 4000,114934 3661,822 9.5 1,505802 1,23649455 3565701 2248,339134 3861,794 9.5 2,772319 0,801287453 2366,714672 8400,114934 7661,882 9.5 2,772319 0,801287453 2366,714672 8794,13309 8161,128 10 3,050173 0,538499415 682,2891126 826,5937 860,357 11 3,290269 -0,77301903 -228,3219931 8433,35334 674,526 11.5 3,174995 -0,38198867 -1118,55,7016 7825,73251 6507,34573 12 2,91162 -0,58814077 -1975,44533 4913,56051 133,014 12 2,99111 -1,136696521 -3275,323212 3097,655608 236,51371 13 2,99111 -1,136696521 -38	4291,488
8.5 1,695802 1,22345817 3613,65501 2.248,139134 5861,794 9 2,72604 1,036608137 3061,167258 4000,114934 7061,882 9.5 2,77313 0,61073 0,528499478 1560,997138 1560,357 10 3,061073 0,528499458 1560,997138 7299,359711 8860,357 11 3,290269 0,077301903 -228,2391126 823,57831 8205,032 11 3,290269 0,077301903 -228,239912 8205,032 123,579 12 2,174995 -0,3819867 -1128,257016 7852,783334 6724,526 11 3,290269 -0,077301903 -228,57993 6602,372961 4656,937 12 2,174995 -0,9881407 -1913,56051 2133,014 13 1,994111 -1,136696521 -3357,550908 1491,228893 -235,778 14,5 8,077=16 -1,995875608 1491,228893 -2335,331 8919,056 14,5 8,077=164253 8433,553581 8433,553581 8919,056 8413,56063 14,5 1,413 -1,22843766 </td <td>8.5 1,69802 1,2345817 3613,65501 2248,139134 5861,794 9 2,26604 1,036608137 3061,76758 4000,114934 7661,882 9.5 2,727319 0,801287453 2366,714672 5794,413309 8161,128 9.5 2,727319 0,801287453 2366,714672 5794,413309 816,1,28 10 3,051073 0,538499458 1560,99138 7299,359711 8860,357 11 3,590269 -0,77301903 -228,3219931 8433,353581 8205,032 11.5 3,174995 -0,38198867 -1118,5,57016 782,783234 6724,526 11.5 3,174995 -0,38198867 -1118,5,57016 782,783234 6724,526 12 2,911262 -0,58814072 -1975,43533 4913,260051 2136,0371 12 2,991411 -1,136696521 -3273,232312 3097,655608 2336,1371 13,5 1,399417 -1,135609521 -3283,732312 3097,655608 2336,765 13,593417 1,39246563</td> <td>_</td>	8.5 1,69802 1,2345817 3613,65501 2248,139134 5861,794 9 2,26604 1,036608137 3061,76758 4000,114934 7661,882 9.5 2,727319 0,801287453 2366,714672 5794,413309 8161,128 9.5 2,727319 0,801287453 2366,714672 5794,413309 816,1,28 10 3,051073 0,538499458 1560,99138 7299,359711 8860,357 11 3,590269 -0,77301903 -228,3219931 8433,353581 8205,032 11.5 3,174995 -0,38198867 -1118,5,57016 782,783234 6724,526 11.5 3,174995 -0,38198867 -1118,5,57016 782,783234 6724,526 12 2,911262 -0,58814072 -1975,43533 4913,260051 2136,0371 12 2,991411 -1,136696521 -3273,232312 3097,655608 2336,1371 13,5 1,399417 -1,135609521 -3283,732312 3097,655608 2336,765 13,593417 1,39246563	_
9 2.26604 1,036608137 3061,167258 4000,114934 7061,582 9.5 2,727319 0,801287453 2366,714672 5794,413309 8161,128 10 3,251694 0,202899458 1550,997138 7293,55711 8860,357 11 3,251694 0,202899456 82,578312 8205,035 11 3,290269 -0,077301903 -228,321951 8433,35381 8205,032 11 3,290269 -0,077301903 -228,57016 7852,783234 6724,526 12 2,911262 -0,668814072 -1975,435995 6602,372961 4656,937 12 2,911367 -0,38198867 -1128,257016 7852,783234 6714,526 13 2,99111 -1,13664571 -3790,24783 4913,26608 -2355,5393 -2356,51 13,5 1,994111 -1,13664571 -3757,5908 1491,226893 -2356,51 -335,51 13,5 1,998411 -1,13664571 -3790,247783 491,2,26608 -3097,675608 -3235,51 14,5 0,708349 -1,132646576 -3217,33646 5007,8324 -317,34	9 2,26604 1,036608137 3061,167258 4000,114334 7061,882 9,5 2,772319 0,801287453 2366,714672 5794,413309 8161,128 10 3,061073 0,528499458 1239,5571 8860,357 10,5 3,561073 0,528499455 682,2891126 8826,76606 8919,055 11 3,290269 -0,73301903 -228,3219931 8843,357 827,5926 11,5 3,174995 -0,38198667 -1128,257016 782,783126 6724,526 11,5 3,174995 -0,38198667 -1128,257016 782,783234 6724,526 12 2,911401 -0,38198667 -1128,257016 7827,73261 4656,337 12 2,911401 -1,34666521 -3377,93234 6724,526 133,014 12 2,99111 -1,136696521 -3377,93293 4913,260651 2359,117 13 1,994111 -1,136696521 -3877,55093 1941,228893 -236,537 13,59324 6,77477 390,870269 1,337477	
9.) L/L12139 U,801.L28/43-3 Z-36b,1740/2 S)794,413-309 B161,1.28 10. 3,2061073 0,528499458 1560,997138 7299,359711 8860,357 11. 3,290.269 -0,0773019913 682,2891126 8813,35581 820,9055 11.5 3,174995 -0,38198867 -1128,257016 7852,783234 6724,526 11.2 2,911262 -0,68814072 -1975,435995 6602,372961 4656,937 11.2 2,911262 -0,68814072 -1975,435995 6602,372961 4656,937 12.2 2,511401 -0,924366471 -2730,245783 4913,260051 2183,014 12.5 2,511401 -0,924366471 -2730,245783 4913,256082 2356,32 13.5 1,994111 -1,32647505 -3877,392312 3907,655688 -235,316 14.6 0,708349 -1,13666571 -3357,55098 1491,228893 -235,513 13.5 1,394461572 -4181,73477 300,702318 3173,346 3077,5138 14.5 0,7073496 5,717,33646 5,77738 3173,355281 8919,055 <tr< td=""><td>9,1 1,7/2/319 0,80128/43-3 2366,7146/2 5/94,413309 8161,128 10 3,061073 0,528499458 15.600 813,353571 860,357 11 3,790269 0,077301903 528,3291126 826,557 866,537 11,5 3,7590269 0,077301903 -228,3291126 826,5606 8919,055 11,5 3,714995 0,38198867 -1128,257016 783,353581 8205,032 11,5 3,174995 -0,38198867 -1128,257016 782,783234 6724,526 12 2,911262 -0,38198867 -1128,257016 782,7783261 4656,937 12 2,911401 -0,924366521 -3757,392312 3097,65608 259,711 13,5 1,994111 -1,136696521 -3877,559008 1491,228893 -336,537 13,5 1,994111 -1,136966521 -3877,559008 1491,228893 -336,711 13,5 1,39461577 -4,118,737477 390,8702318 -3727,87 14,5 8,07F-16 -1,427843766 -4217,33646 5,07823F-28 4217,34 3,290269 1,419473684 4192,614253 8433,353581 8919,055 N/m -3,290277 -1,427843766 -4217,33646 5,07823F-28</td><td>_</td></tr<>	9,1 1,7/2/319 0,80128/43-3 2366,7146/2 5/94,413309 8161,128 10 3,061073 0,528499458 15.600 813,353571 860,357 11 3,790269 0,077301903 528,3291126 826,557 866,537 11,5 3,7590269 0,077301903 -228,3291126 826,5606 8919,055 11,5 3,714995 0,38198867 -1128,257016 783,353581 8205,032 11,5 3,174995 -0,38198867 -1128,257016 782,783234 6724,526 12 2,911262 -0,38198867 -1128,257016 782,7783261 4656,937 12 2,911401 -0,924366521 -3757,392312 3097,65608 259,711 13,5 1,994111 -1,136696521 -3877,559008 1491,228893 -336,537 13,5 1,994111 -1,136966521 -3877,559008 1491,228893 -336,711 13,5 1,39461577 -4,118,737477 390,8702318 -3727,87 14,5 8,07F-16 -1,427843766 -4217,33646 5,07823F-28 4217,34 3,290269 1,419473684 4192,614253 8433,353581 8919,055 N/m -3,290277 -1,427843766 -4217,33646 5,07823F-28	_
10.5 3.251694 0.230999415 68.236.70616 8.36,76501 8.36,76501 11.1 3.174995 0,38198867 -1128,257016 8.83,55381 8.05,032 11.2 2,911262 -0,68814072 -1975,435995 6602,372961 4626,937 12 2,911262 -0,688814072 -1975,435995 6602,372961 4626,937 13.2 1,994111 -1,136696521 -337,392312 3097,675608 -259,717 13.5 1,994111 -1,136696521 -337,539238 4913,260051 2133,014 13.5 1,383577 -1,295875905 -3827,550908 1491,228893 -235,632 14. 0,708349 -1,39461572 -4191,73646 5,0783234 -317,336,32 14.5 8.07516 -1,42784376 -4117,33646 5,0783233 -312,336,32 14. 3.290269 1,419473684 4192,614253 8433,355381 8981,06 (Mmi 3.290269 1,419473684 4192,614253 8433,355381 8981,06 (Mmi -3,290,217,31 3.290269 1,419473684 4192,614253 8433,355381 8981,06 <td>10.5 3,51504 0,523099415 682,2891156 823,55666 8919,055 11 3,290269 -0,38198867 -1128,257016 823,5581 8205,032 11.5 3,174995 -0,38198867 -1128,257016 783,353581 8205,032 12 2,911262 -0,38198867 -1128,257016 783,735395 607,37261 4656,637 12 2,911262 -0,5814072 -1975,435995 6607,37261 4656,537 12 2,911401 -1,136696521 -3377,33234 6724,526 259,117 13 1,994111 -1,136696521 -3377,332312 3097,655608 233,014 13 1,994111 -1,136696521 -3877,550908 1491,228893 -336,327 14 0,708349 -1,394461572 -4118,737477 390,8702318 -3727,87 14,5 8,07F-16 -1,427843766 -4217,33646 5,078235281 8919,055 3,290269 1,419473684 4192,614253 8433,353581 8919,055 M/m -3,290277 -1,4278</td> <td></td>	10.5 3,51504 0,523099415 682,2891156 823,55666 8919,055 11 3,290269 -0,38198867 -1128,257016 823,5581 8205,032 11.5 3,174995 -0,38198867 -1128,257016 783,353581 8205,032 12 2,911262 -0,38198867 -1128,257016 783,735395 607,37261 4656,637 12 2,911262 -0,5814072 -1975,435995 6607,37261 4656,537 12 2,911401 -1,136696521 -3377,33234 6724,526 259,117 13 1,994111 -1,136696521 -3377,332312 3097,655608 233,014 13 1,994111 -1,136696521 -3877,550908 1491,228893 -336,327 14 0,708349 -1,394461572 -4118,737477 390,8702318 -3727,87 14,5 8,07F-16 -1,427843766 -4217,33646 5,078235281 8919,055 3,290269 1,419473684 4192,614253 8433,353581 8919,055 M/m -3,290277 -1,4278	
11 3,290269 -0,077301903 -228,3219931 8433,353581 8205,032 11,5 3,174995 -0,38198867 -1128,257016 7852,783234 6724,526 12 2,911262 -0,668814072 -1975,435995 6602,372961 4656,937 13,5 2,511401 -0,924366471 -2730,245783 4913,260051 2133,014 13,5 1,994111 -1,136696521 -3357,392312 3097,65608 -259,717 13,5 1,383577 -1,136696521 -337,59038 1491,228893 -2336,32 14,6 0,708349 -1,136465172 -4191,228893 -2336,32 4017,34 14,15 8,07516 -1,22984161572 -4191,7384 -317,346 -317,346 14,5 8,07516 -1,427843766 -50783238 1321,536 Nm -217,346 14,5 3,290269 1,4192,614753 8433,35581 8981,046 Nm -4192,614753 2,300250 -1,427843766 -4192,614753 8433,35581 8981,046 Nm -4192,614754 3,290269 1,4192,614753 8433,355581 8981,046 Nm	11 3,290269 -0,077301903 -228,3219931 8433,353581 8205,032 11,5 3,174995 -0,38198867 -1128,257016 7852,783234 6724,526 12 2,911262 -0,688814072 -1975,435995 6602,372611 4656,937 12,5 2,511401 -0,924366471 -2730,245783 4913,60501 2183,014 13,1 1,994111 -1,136696521 -3877,590308 1491,228893 -336,317 13,1 1,994111 -1,136696521 -3877,590308 1491,228893 -336,327 13,1 1,994111 -1,136696521 -3877,590308 1491,228893 -336,326 14,0 0,708349 -1,394461572 -4118,37477 390,8702318 -3727,87 14,5 8,07F-16 -1,427843766 -4217,33646 5,078235-28 4217,34 3,290269 1,419473684 4192,614253 8433,353581 8919,0055 N/m] -3,290277 -1,427843766 -4217,33646 5,078235-28 4217,34	
11,5 3,174995 -0,38198867 -1128,257016 7852,783234 6724,526 12 2,911262 -0,668814072 -1975,435995 6602,372961 4626,937 12,5 2,511401 -0,924366471 -2730,245783 4913,260051 2183,014 13,5 1,994111 -1,136696521 -3357,392312 3097,675608 -259,717 14,5 0,708349 -1,136461572 -4191,228893 -2336,32 14,0 0,708349 -1,238461572 -4191,238693 -2336,32 14,0 0,708349 -1,329461572 -4191,738646 -4117,346 14,1 0,708349 -1,3294461572 -4118,737477 309,707314 14,5 0,708349 -1,42784456 -4117,3464 -4117,346 14,5 0,708349 -1,419473684 4192,614753 8433,353581 8919,055 13,290269 1,419473684 -4192,614253 8433,355381 8981,064 [Nm] -3,20027 -1,427843766 -4217,33546 8433,355381 -1996,251 [N]	11,5 3,174995 -0,38198867 -1128,257016 7852,783234 6724,526 12 2,911262 -0,668814072 -1975,435995 6607,372661 4656,937 12,5 2,511401 -0,924366471 -2730,245783 4913,560051 2183,014 13,5 1,994111 -1,136696521 -3375,39212 3097,655608 -2359,717 13,5 1,994111 -1,136696521 -3877,559008 1491,228893 -335,321 14,0 0,708349 -1,99461572 -4118,737477 390,8702318 -3727,87 14,5 8,07F-16 -1,427843766 -4217,33646 5,078235-28 4217,34 3,290269 1,419473684 4192,614253 8433,353581 8919,055 N/m -3,290277 -1,427843766 -4217,33646 5,078235-28 4217,34 N/m	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12 2,911262 -0,668814072 -1975,43595 6602,372661 46.56,937 12,5 2,511401 -0,924366471 -2730,245783 4913,560651 2183,014 13 1,994111 -1,136696521 -3877,590908 14913,28893 -336,717 13,5 1,38249 -1,136461572 -4118,737477 390,8705318 -3729,787 14 0,708349 -1,427843766 -4118,737477 390,8702318 -3727,87 14,5 8,07F-16 -1,427843766 -4217,33646 5,07823E-28 4217,34 3,290269 1,419473684 4192,614253 8433,353581 8919,055 N/m -3,29027 -1,427843766 -4217,33646 5,07823E-28 4217,34 -3,29027 -1,427843766 -4217,33646 5,07823E-28 4217,34	
12.5 2,511401 -0,924366471 -2730,245783 4913,260051 2183,014 13 1,994111 -1,136665511 -3357,392312 3097,675608 -259,717 13,5 1,388297 -1,136665511 -3377,392312 3097,675608 -2357,312 14,5 0,708349 -1,39461572 -4118,737477 390,8702318 -3717,34 14,5 8,075-16 -1,427843766 -4217,33546 5,0782322.8 -317,34 3,290.05 1,419977864 4127,613254 8433,355351 8981,004 (Nm) 3,290.27 -1,427843766 -4217,33546 5,0782352.8 -317,34 Max force -3,290.27 -1,427843766 -4217,33541 8981,007 (Nm) Projected lenght: 2m)	12,5 2,511401 -0,924366471 -2730,245783 4913,260051 2183,014 13 1,994111 -1,136696521 -3357,392312 3097,675608 -259,717 13,5 1,383577 -1,295875905 -3827,550908 1491,25893 -2356,32 14,5 8,078349 -1,394461572 4118,737477 390,8702318 -3727,87 14,5 8,0776-16 -1,427843766 -4217,33646 5,07823E-28 4217,34 3,290269 1,419473684 4192,614253 8433,353581 8919,055 [N/m] -3,29027 -1,427843766 -4217,33646 -8433,353581 8919,055 [N/m]	<u> </u>
13 1.994111 -1.136696521 -3357.392312 307,675608 -259,717 13,5 1.383577 -1.295875905 -3827,550908 1491,228893 -2336,32 14,5 0,708349 -1.394461572 -4118,73477 390,8702318 -372,38 3,290269 1,41278433564 -4217,33646 -8433,353581 8919,075 [N/m] -3,29027 -1,427843766 -4217,33646 -8433,353581 8919,076 [N/m] Max force -1.7962,1 [N] (Projected lenght: 2m)	13 1,994111 -1,136696521 -3357,392312 3097,675608 -259,717 13,5 1,383377 -1,295875905 -3827,550908 1491,22893 -2356,32 14,5 8,076-16 -1,427843766 -4118,737477 390,8702318 -3727,87 3,290269 1,419473684 4192,614253 8433,353581 8919,055 [N/m] -3,29027 -1,427843766 -4217,33646 -8433,353581 8919,055 [N/m]	
13.5 -1.295875905 -3827,550908 1491,228893 -2336,32 14 0.708349 -1.394461572 -4118,737477 390,8702318 -3727,87 14.5 8.07Fe16 -1.4127843766 -4211,73646 5,078235:28 8433,35581 891,056 NM 3.290269 1,4127843766 -4217,33646 5,823,55581 8991,056 NM 3.29027 -1,427843766 -4217,33648 -433,355581 8991,067 NM Max force -1,796,61253 8433,355581 8991,067 NM NM	13.5 1,383577 -1,295875905 -3827,559068 1491,25893 -2336,32 14 0,708349 -1,394461572 -4118,737477 390,8702318 -377787 14,5 8,0716-16 -1,427843766 -4217,33646 5,078235-28 -4217,34 3,290269 1,419473684 4192,614253 8433,353581 8919,055 N/m] -3,290277 -1,427843766 -4217,33646 5,078335-38 8433,353581 8919,055 N/m]	
14 0,708349 -1,394461572 4118,734477 390,8702318 -3727,87 14,5 8,07E-16 -1,227843766 -4217,33646 5,07823E-28 4217,34 3,290269 1,419473684 4192,614253 893,355581 8919,055 [N/m] -3,29027 -1,427843766 -4217,33646 -8433,355581 -8981,076 [N/m] Max force -1.7962,1 [N] (Projected lenght: 2m)	14 0,708349 -1,394461572 -4118,73/477 390,80/2318 -3727,87 14,5 8,076-16 -1,427843766 -4217,33646 5,07823E-28 -4217,34 3,290269 1,419473684 4192,614253 8433,353581 8919,055 [N/m] -3,29027 -1,427843766 -4217,33646 -8433,353581 8981,04 [N/m]	
14,5 8,07E-16 -1,427843766 -4217,33646 5,07823E-28 4217,34 3,290269 1,419473684 4192,614253 8433,353581 8919,055 [N/m] -3,29027 -1,427843766 -4217,33646 -8433,353581 -8981,04 [N/m] Max force -17962,1 [N] (Projected lenght: 2m)	14.5 8.07E-16 -1.427843766 -4217,33646 5,07825E-28 4217,34 3.290269 1.419473684 4192,614253 8433,353581 8919,055 [N/m] -3,29027 -1.427843766 -4217,33646 -8433,353581 8981,04 [N/m]	
3,290269 1,419473684 4192,614253 8433,353581 8919,055 [N/m] -3,29027 -1,427843766 -4217,33646 -8433,353581 -8981,04 [N/m] Max force -1.7962,1 [N] (Projected lenght: 2m)	3,290269 1,419473684 4192,614253 8433,35381 8919,055 [N/m] -3,29027 -1,427843766 -4217,33646 -8433,353581 8913,04 [N/m]	-4217,34
-3,29027 -1,427843766 -4217,33646 -8433,353831 -8981,04 [N/m] Max force 1-17962,1 [N] (Projected lenght: 2m)	-3,29027 -1,427843766 -4217,33646 -8433,353581 -8981,04 [N/m]	8919,055
		53581 -8981,04 [N/m]
0.65	[N] T,202/1-	[N] T,202/1-



Created with

(Projected lenght: 2m)

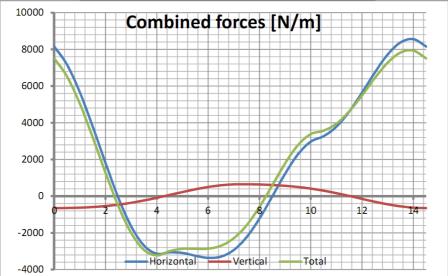
Appendix D



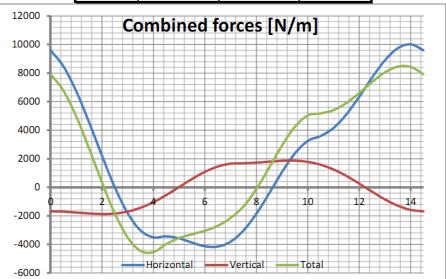
]			
t	M	w'	Added mass	Drag	Total	
0		-1,909495463	-5639,962178	0	-5639,96	
0,5	-0,9473	-1,86485252	-5508,102997	-883,0110111	-6391,11	
1	-1,8503	-1,733011146	-5118,691041	-3368,8202	-8487,51	
1,5	-2,66678	-1,520136097	-4489,934781	-6997,927825	-11487,9	
2	-3,35857	-1,236181173	-3651,234161	-11099,49639	-14750,7	
2,5		-0,894423792	-2641,80589	-14915,35438	-17557,2	
ſ,	-4,24601	-0,510844149	-1508,849711	-17740,14366	-19249	
3,5		-0,103378	-305,3413968	-19051,70429	-19357	
4		0,308921988	912,4443417	-18607,5954	-17695,2	
4,5		0,706777128	2087,565197	-16489,91014	-14402,3	
5	-3,64732	1,071584155	3165,073824	-13090,10085	-9925,03	
5,5	-3,03044	1,386285098	4094,587116	-9036,619433	-4942,03	
9	-2,27186	1,63616489	4832,642066	-5078,748517	-246,106	
6,5	-1,40704	1,809539431	5344,728044	-1948,097222	3396,631	
2	-0,47644	1,898301918	5606,900478	-223,3638137	5383,537	
7,5		1,898301918	5606,900478	223,3638137	5830,264	
∞	1,407044	1,809539431	5344,728044	1948,097222	7292,825	
8,5	2,271856	1,63616489	4832,642066	5078,748517	9911,391	
6		1,386285098	4094,587116	9036,619433	13131,21	
9'2		1,071584155	3165,073824	13090,10085	16255,17	
10		0,706777128	2087,565197	16489,91014	18577,48	
10,5	4,348581	0,308921988	912,4443417	18607,5954	19520,04	
11	4,400169	-0,103378	-305,3413968	19051,70429	18746,36	
11,5		-0,510844149	-1508,849711	17740,14366	16231,29	
12		-0,894423792	-2641,80589	14915,35438	12273,55	
12,5	m	-1,236181173	-3651,234161	11099,49639	7448,262	
13		-1,520136097	-4489,934781	6997,927825	2507,993	
13,5	1,850297	-1,733011146	-5118,691041	3368,8202	-1749,87	
14	<u> </u>	-1,86485252	-5508,102997	883,0110111	-4625,09	
14,5	1,08E-15	-1,909495463	-5639,962178	1,14722E-27	-5639,96	
Max value	4,400169	1,898301918	5606,900478	19051,70429		[W/m]
Min value	-4,40017	-1,909495463	-5639,962178	-19051,70429	-19357 [h	[m/m]
				Max force	39040,08 [N]	2
						Γ

Vartica	force of	<u>Vartical force on clamn 5</u>		Commonte
		ר מווושה ו		COMMENTS
Trough-to-crest wave height	н	24,3 [m]	[m]	
Wave period	T	14,5 [s]	[s]	
Wave number	×	0,02026834 [1/m]	[1/m]	
Mean water depth	d	73,8 [m]	[<mark>m</mark>]	
Wave lenght	٧	310 [m]	[<u>m</u>]	RP-C205 Fig3-3
Distance from mean surface	z	-7,8 [m]	[<u>m</u>]	
Distance from propagation	×	0	0 [m]	
Fluid desity	b	1025	1025 [kg/m3]	
Added mass coefficient	Ca	0,801		RP-C205 A-D
Drag coefficient	Cd	2,4		Assumed
Slamming coefficient	cs	5,15		RP-C205 8.6.1.2
Area	A	1,6	1,6 [m2]	(0,8*2)
Diameter	D	0,8 [m]	[m]	

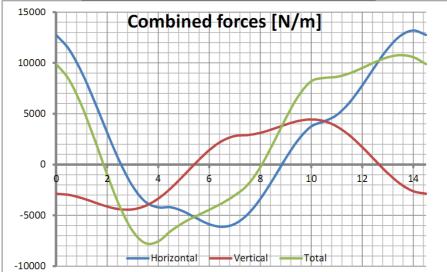
 $2\pi^2 H \sinh[k(z+i)$


 $\frac{\pi H}{T} \frac{\sinh[k(z+d)]}{\sinh(kd)} \sin \theta$

	Combined fo	-	1
t	Horizontal	Vertical	Total
0	8153,940027	-648,8239792	7505,11605
0,5	7160,345868	-642,9062866	6517,43958
1	5653,085162	-624,1523784	5028,93278
1,5	3792,589565	-589,8427112	3202,74685
2	1797,180075	-536,3309942	1260,84908
2,5	-91,41697607	-460,1852489	-551,602225
3	-1646,808674	-359,4452034	-2006,25388
3,5	-2694,046159	-234,7344608	-2928,78062
4	-3136,700409	-89,9867981	-3226,68721
4,5	-3058,701919	67,38701064	-2991,31491
5	-3092,713652	226,9644856	-2865,74917
5,5	-3244,993994	376,3651361	-2868,62886
6	-3361,739408	502,7385993	-2859,00081
6,5	-3294,26778	594,4495664	-2699,81821
7	-2932,445328	642,6803258	-2289,765
7,5	-2230,777648	647,3607646	-1583,41688
8	-1222,07394	635,2706363	-586,803304
8,5	-15,91288856	609,160366	593,247477
9	1218,018074	565,7214317	1783,73951
9,5	2278,798482	501,258764	2780,05725
10	2970,144343	412,9220109	3383,06635
10,5	3267,577831	299 <i>,</i> 9228756	3567,50071
11	3786,207125	164,4812166	3950,68834
11,5	4606,410214	12,28760115	4618,69782
12	5642,37395	-147,6440078	5494,72994
12,5	6743,437348	-303,7484965	6439,68885
13	7720,031693	-443,2058301	7276,82586
13,5	8378,069315	-553,561012	7824,5083
14	8555,454816	-624,4033835	7931,05143
14,5	8153,940027	-648,8239792	7505,11605

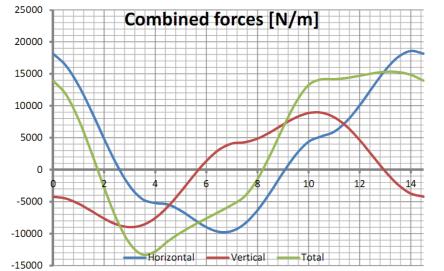


	Combined fo	rce on clamp	2
t	Horizontal	Vertical	Total
0	9596,742944	-1680,836149	7915,9068
0,5	8467,763026	-1703,627017	6764,13601
1	6719,067902	-1762,360214	4956,70769
1,5	4542,918329	-1830,153088	2712,76524
2	2202,381745	-1868,598337	333,783407
2,5	-10,78706682	-1836,073485	-1846,86055
3	-1823,488673	-1697,048692	-3520,53737
3,5	-3025,401849	-1430,596872	-4455,99872
4	-3502,027865	-1036,442214	-4538,47008
4,5	-3430,974933	-537,3270954	-3968,30203
5	-3575,612114	22,84842045	-3552,76369
5,5	-3871,888308	584,8801724	-3287,00814
6	-4125,77354	1083,130272	-3042,64327
6,5	-4149,469854	1455,871536	-2693,59832
7	-3802,712418	1655,277451	-2147,43497
7,5	-3025,051173	1686,68858	-1338,36259
8	-1852,848694	1729,827878	-123,020817
8,5	-417,5799191	1797,34276	1379,76284
9	1074,486762	1855,678761	2930,16552
9,5	2377,657405	1863,678591	4241,336
10	3250,820767	1781,610279	5032,43105
10,5	3595,860678	1580,30027	5176,16095
11	4156,690155	1248,599603	5405,28976
11,5	5106,980153	797,7060878	5904,68624
12	6343,997563	261,4378062	6605,43537
12,5	7684,33951	-307,7022023	7376,63731
13	8895,718978	-846,0509172	8049,66806
13,5	9739,179314	-1288,610933	8450,56838
14	10013,96815	-1579,451251	8434,5169
14,5	9596,742944	-1680,836149	7915,9068

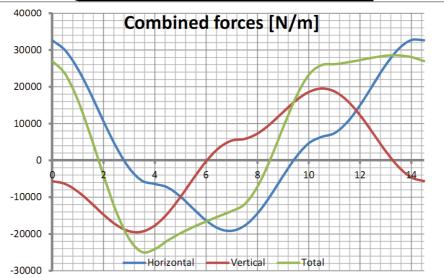


C
U)
niversity of Stavanger

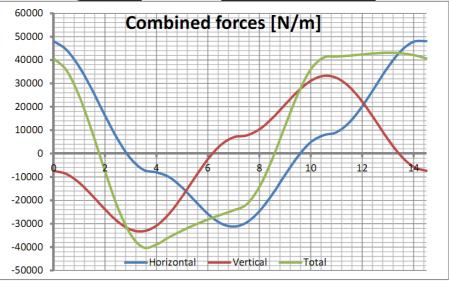
t 0,5 1 1,5 2,5 2,5 3 3,5	Horizontal 12753,57949 11344,51085 9080,177033 6223,153749 3135,800345 221,0286737	Vertical -2869,410503 -2983,268146 -3294,530765 -3718,303445 -4132,078651	Total 9884,16898 8361,24271 5785,64627 2504,8503
0,5 1 1,5 2,5 3 3,5	11344,51085 9080,177033 6223,153749 3135,800345	-2983,268146 -3294,530765 -3718,303445	8361,24271 5785,64627
1 1,5 2,5 3 3,5	9080,177033 6223,153749 3135,800345	-3294,530765 -3718,303445	5785,64627
1,5 2 2,5 3 3,5	6223,153749 3135,800345	-3718,303445	
2 2,5 3 3,5	3135,800345		2504 8503
2,5 3 3,5		-4132.078651	
3 3,5	221,0286737		-996,278305
3,5		-4400,447154	-4179,41848
	-2144,329486	-4402,883497	-6547,21298
	-3671,606333	-4059,341059	-7730,94739
4		-3348,770438	-7555,48167
4,5	-4204,505219	-2316,964021	-6521,46924
5	-4625,492905	-1072,091796	-5697,5847
5,5		231,4334264	-5043,45429
6	,	1417,959411	-4448,84589
6,5		2320,010156	-3804,06574
7	-5837,322898	2806,819132	-3030,50377
7,5	-4911,232507	2898,36066	-2012,87185
8	,	3118,40177	-270,705915
8,5		3499,390551	2048,54721
9	615,5825259	3934,924754	4550,50728
9,5		4292,643916	6756,69769
10	,	4441,120642	8193,73921
10,5	4245,923405	4277,208359	8523,13176
11	4881,303349	3748,647553	8629,9509
11,5		2867,586248	8976,51694
12	,	1712,334955	9501,06103
12,5	9664,077847	416,8446399	10080,9225
13	11406,75635	-850,3321641	10556,4242
13,5	12676,72524	-1913,882118	10762,8431
14	13185,83407	-2621,382415	10564,4517
14,5	12753,57949	-2869,410503	9884,16898
Co	ombined f	orces [N/I	n]



t Horizontal Vertical Total 0 18147,31069 -4217,33646 13929,9742 0,5 16293,71279 -4509,607709 11784,1051 1 13174,9751 -5318,7798 7856,1953 1,5 9175,232524 -6455,06792 2720,1646 2 4829,418956 -7643,505833 -2814,08688 2,5 733,943438 -8577,808956 -7843,86552 3 -2553,880635 -8981,04025 -11534,9209 3,5 -4609,515186 -8661,675574 -13271,1908 4 -5211,106106 -7554,476948 -12765,5831 4,5 -5439,681171 -5738,362573 -11178,0437 5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,52554 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 8,5	0 18147,31069 -4217,33646 13929,9742 0,5 16293,71279 -4509,607709 11784,1051 1 13174,9751 -5318,7798 7856,1953 1,5 9175,232524 -6455,06792 2720,1646 2 4829,418956 -7643,505833 -2814,08688 2,5 733,943438 -8577,808956 -7843,86552 3 -2553,880635 -8981,04025 -11534,9209 3,5 -4609,515186 -8661,675574 -13271,1908 4 -5211,106106 -7554,476948 +12765,5831 4,5 -5439,681171 -5738,362573 -11178,0437 5,5 -7738,177861 -938,3476757 -8676,52554 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9	0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6 6,5 7	18147,31069 16293,71279 13174,9751 9175,232524 4829,418956 733,943438 -2553,880635 -4609,515186 -5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-4217,33646 -4509,607709 -5318,7798 -6455,06792 -7643,505833 -8577,808956 -8981,04025 -8661,675574 -7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	13929,9742 11784,1051 7856,1953 2720,1646 -2814,08688 -7843,86552 -11534,9209 -13271,1908 -12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
0,516293,71279-4509,60770911784,1051113174,9751-5318,77987856,19531,59175,232524-6455,067922720,164624829,418956-7643,505833-2814,086882,5733,943438-8577,808956-7843,865523-2553,880635-8981,04025-11534,92093,5-4609,515186-8661,675574-13271,19084-5211,106106-7554,476948-12765,58314,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,3568491323,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322<	0,516293,71279-4509,60770911784,1051113174,9751-5318,77987856,19531,59175,232524-6455,067922720,164624829,418956-7643,505833-2814,086882,5733,943438-8577,808956-7843,865523-2553,880635-8981,04025-11534,92093,5-4609,515186-8661,675574-13271,19084-5211,106106-7554,476948-12765,58314,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,3568491323,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322<	0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7	16293,71279 13174,9751 9175,232524 4829,418956 733,943438 -2553,880635 -4609,515186 -5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-4509,607709 -5318,7798 -6455,06792 -7643,505833 -8577,808956 -8981,04025 -8661,675574 -7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	11784,1051 7856,1953 2720,1646 -2814,08688 -7843,86552 -11534,9209 -13271,1908 -12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
1 13174,9751 -5318,7798 7856,1953 1,5 9175,232524 -6455,06792 2720,1646 2 4829,418956 -7643,505833 -2814,08688 2,5 733,943438 -8577,808956 -7843,86552 3 -2553,880635 -8981,04025 -11534,9209 3,5 -4609,515186 -8661,675574 -13271,1908 4 -5211,106106 -7554,476948 -12765,5831 4,5 -5439,681171 -5738,362573 -11178,0437 5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,5254 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5	1 13174,9751 -5318,7798 7856,1953 1,5 9175,232524 -6455,06792 2720,1646 2 4829,418956 -7643,505833 -2814,08688 2,5 733,943438 -8577,808956 -7843,86552 3 -2553,880635 -8981,04025 -11534,9209 3,5 -4609,515186 -8661,675574 -13271,1908 4 -5211,106106 -7554,476948 -12765,5831 4,5 -5439,681171 -5738,362573 -11178,0437 5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,5254 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5	1 1,5 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7	13174,9751 9175,232524 4829,418956 733,943438 -2553,880635 -4609,515186 -5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-5318,7798 -6455,06792 -7643,505833 -8577,808956 -8981,04025 -8661,675574 -7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	7856,1953 2720,1646 -2814,08688 -7843,86552 -11534,9209 -13271,1908 -12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
1,59175,232524-6455,067922720,164624829,418956-7643,505833-2814,086882,5733,943438-8577,808956-7843,865523-2553,880635-8981,04025-11534,92093,5-4609,515186-8661,675574-13271,19084-5211,106106-7554,476948-12765,58314,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,3568491323,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,623112,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31	1,59175,232524-6455,067922720,164624829,418956-7643,505833-2814,086882,5733,943438-8577,808956-7843,865523-2553,880635-8981,04025-11534,92093,5-4609,515186-8661,675574-13271,19084-5211,106106-7554,476948-12765,58314,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,3568491323,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,623112,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31	1,5 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7	9175,232524 4829,418956 733,943438 -2553,880635 -4609,515186 -5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-6455,06792 -7643,505833 -8577,808956 -8981,04025 -8661,675574 -7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	2720,1646 -2814,08688 -7843,86552 -11534,9209 -13271,1908 -12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
24829,418956-7643,505833-2814,086882,5733,943438-8577,808956-7843,865523-2553,880635-8981,04025-11534,92093,5-4609,515186-8661,675574-13271,19084-5211,106106-7554,476948-12765,58314,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,0315881443,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	24829,418956-7643,505833-2814,086882,5733,943438-8577,808956-7843,865523-2553,880635-8981,04025-11534,92093,5-4609,515186-8661,675574-13271,19084-5211,106106-7554,476948-12765,58314,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,0315881443,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	2 2,5 3 3,5 4 4,5 5 5,5 6 6 6,5 7	4829,418956 733,943438 -2553,880635 -4609,515186 -5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-7643,505833 -8577,808956 -8981,04025 -8661,675574 -7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	-2814,08688 -7843,86552 -11534,9209 -13271,1908 -12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
2,5733,943438-8577,808956-7843,865523-2553,880635-8981,04025-11534,92093,5-4609,515186-8661,675574-13271,19084-5211,106106-7554,476948-12765,58314,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	2,5733,943438-8577,808956-7843,865523-2553,880635-8981,04025-11534,92093,5-4609,515186-8661,675574-13271,19084-5211,106106-7554,476948-12765,58314,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	2,5 3 3,5 4 4,5 5 5,5 6 6 6,5 7	733,943438 -2553,880635 -4609,515186 -5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-8577,808956 -8981,04025 -8661,675574 -7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	-7843,86552 -11534,9209 -13271,1908 -12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
3 -2553,880635 -8981,04025 -11534,9209 3,5 -4609,515186 -8661,675574 -13271,1908 4 -5211,106106 -7554,476948 -12765,5831 4,5 -5439,681171 -5738,362573 -11178,0437 5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,52554 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 <td< td=""><td>3 -2553,880635 -8981,04025 -11534,9209 3,5 -4609,515186 -8661,675574 -13271,1908 4 -5211,106106 -7554,476948 -12765,5831 4,5 -5439,681171 -5738,362573 -11178,0437 5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,52554 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 <td< td=""><td>3 3,5 4 4,5 5 5,5 6 6,5 7</td><td>-2553,880635 -4609,515186 -5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502</td><td>-8981,04025 -8661,675574 -7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893</td><td>-11534,9209 -13271,1908 -12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038</td></td<></td></td<>	3 -2553,880635 -8981,04025 -11534,9209 3,5 -4609,515186 -8661,675574 -13271,1908 4 -5211,106106 -7554,476948 -12765,5831 4,5 -5439,681171 -5738,362573 -11178,0437 5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,52554 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 <td< td=""><td>3 3,5 4 4,5 5 5,5 6 6,5 7</td><td>-2553,880635 -4609,515186 -5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502</td><td>-8981,04025 -8661,675574 -7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893</td><td>-11534,9209 -13271,1908 -12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038</td></td<>	3 3,5 4 4,5 5 5,5 6 6,5 7	-2553,880635 -4609,515186 -5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-8981,04025 -8661,675574 -7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	-11534,9209 -13271,1908 -12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
3,5-4609,515186-8661,675574-13271,19084-5211,106106-7554,476948-12765,58314,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	3,5-4609,515186-8661,675574-13271,19084-5211,106106-7554,476948-12765,58314,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	3,5 4 4,5 5 5,5 6 6,5 7	-4609,515186 -5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-8661,675574 -7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	-13271,1908 -12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
4 -5211,106106 -7554,476948 -12765,5831 4,5 -5439,681171 -5738,362573 -11178,0437 5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,52554 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12	4 -5211,106106 -7554,476948 -12765,5831 4,5 -5439,681171 -5738,362573 -11178,0437 5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,52554 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12	4 4,5 5 5,5 6 6,5 7	-5211,106106 -5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-7554,476948 -5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	-12765,5831 -11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
4,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	4,5-5439,681171-5738,362573-11178,04375-6405,184732-3427,698637-9832,883375,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	4,5 5,5 6 6,5 7	-5439,681171 -6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-5738,362573 -3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	-11178,0437 -9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,52554 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5 </td <td>5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,52554 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5<!--</td--><td>5 5,5 6 6,5 7</td><td>-6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502</td><td>-3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893</td><td>-9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038</td></td>	5 -6405,184732 -3427,698637 -9832,88337 5,5 -7738,177861 -938,3476757 -8676,52554 6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5 </td <td>5 5,5 6 6,5 7</td> <td>-6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502</td> <td>-3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893</td> <td>-9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038</td>	5 5,5 6 6,5 7	-6405,184732 -7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-3427,698637 -938,3476757 1365,515876 3134,235104 4093,740893	-9832,88337 -8676,52554 -7622,22173 -6581,77303 -5495,07038
5,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,0315881443,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	5,5-7738,177861-938,3476757-8676,525546-8987,7376091365,515876-7622,221736,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,0315881443,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	5,5 6 6,5 7	-7738,177861 -8987,737609 -9716,008135 -9588,811273 -8446,7502	-938,3476757 1365,515876 3134,235104 4093,740893	-8676,52554 -7622,22173 -6581,77303 -5495,07038
6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 1323,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 11,5 7624,096882 6724,526218 14348,6231 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5 17610,26322 -2336,322015 15273,9412 14	6 -8987,737609 1365,515876 -7622,22173 6,5 -9716,008135 3134,235104 -6581,77303 7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 1323,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 11,5 7624,096882 6724,526218 14348,6231 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5 17610,26322 -2336,322015 15273,9412 14	6 6,5 7	-8987,737609 -9716,008135 -9588,811273 -8446,7502	1365,515876 3134,235104 4093,740893	-7622,22173 -6581,77303 -5495,07038
6,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	6,5-9716,0081353134,235104-6581,773037-9588,8112734093,740893-5495,070387,5-8446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,41721315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	6,5 7	-9716,008135 -9588,811273 -8446,7502	3134,235104 4093,740893	-6581,77303 -5495,07038
7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12 10066,4802 4626,936965 14693,4172 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5 17610,26322 -2336,322015 15273,9412 14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742	7 -9588,811273 4093,740893 -5495,07038 7,5 -8446,7502 4291,487613 -4155,26259 8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12 10066,4802 4626,936965 14693,4172 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5 17610,26322 -2336,322015 15273,9412 14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742	7	-9588,811273 -8446,7502	4093,740893	-5495,07038
7,58446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,53541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	7,58446,75024291,487613-4155,262598-6343,2264214858,909436-1484,316988,53541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	7,5	-8446,7502		
8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12 10066,4802 4626,936965 14693,4172 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5 17610,26322 -2336,322015 15273,9412 14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742	8 -6343,226421 4858,909436 -1484,31698 8,5 -3541,94278 5861,794144 2319,85136 9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12 10066,4802 4626,936965 14693,4172 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5 17610,26322 -2336,322015 15273,9412 14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1231,10,010	
8,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	8,5-3541,942785861,7941442319,851369-474,009237061,8821926587,872969,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	8		4858,909436	
9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12 10066,4802 4626,936965 14693,4172 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5 17610,26322 -2336,322015 15273,9412 14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742	9 -474,00923 7061,882192 6587,87296 9,5 2337,69325 8161,12798 10498,8212 10 4373,098904 8860,356849 13233,4558 10,5 5212,741372 8919,055173 14131,7965 11 5937,992172 8205,031588 14143,0238 11,5 7624,096882 6724,526218 14348,6231 12 10066,4802 4626,936965 14693,4172 12,5 12880,13591 2183,014268 15063,1502 13 15567,6871 -259,7167035 15307,9704 13,5 17610,26322 -2336,322015 15273,9412 14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742				
9,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	9,52337,693258161,1279810498,8212104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742				
104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	104373,0989048860,35684913233,455810,55212,7413728919,05517314131,7965115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	9,5		8161,12798	
115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	115937,9921728205,03158814143,023811,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742		4373,098904	8860,356849	13233,4558
11,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	11,57624,0968826724,52621814348,62311210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	10,5	5212,741372	8919,055173	14131,7965
1210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	1210066,48024626,93696514693,417212,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	11	5937,992172	8205,031588	14143,0238
12,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	12,512880,135912183,01426815063,15021315567,6871-259,716703515307,970413,517610,26322-2336,32201515273,94121418564,44531-3727,86724614836,578114,518147,31069-4217,3364613929,9742	11,5	7624,096882	6724,526218	14348,6231
13 15567,6871 -259,7167035 15307,9704 13,5 17610,26322 -2336,322015 15273,9412 14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742	13 15567,6871 -259,7167035 15307,9704 13,5 17610,26322 -2336,322015 15273,9412 14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742	12		4626,936965	
13,5 17610,26322 -2336,322015 15273,9412 14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742	13,5 17610,26322 -2336,322015 15273,9412 14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742	12,5			
14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742	14 18564,44531 -3727,867246 14836,5781 14,5 18147,31069 -4217,33646 13929,9742				
14,5 18147,31069 -4217,33646 13929,9742	14,5 18147,31069 -4217,33646 13929,9742		,		
Combined forces [N/m]	Combined forces [N/m]	14,5	18147,31069	-4217,33646	13929,9742
	combined forces [w/m]		mbinod f	orcos [N]/r	~1



(Combined fo	rce on clamp	5
t	Horizontal	Vertical	Total
0	32630,60418	-5639,962178	26990,642
0,5	29912,2676	-6391,114008	23521,1536
1	24828,64489	-8487,511241	16341,1336
1,5	18069,78966	-11487,86261	6581,92705
2	10612,13646	-14750,73055	-4138,59409
2,5	3550,769793	-17557,16027	-14006,3905
3	-2089,747246	-19248,99337	-21338,7406
3,5	-5531,636221	-19357,04569	-24888,6819
4	-6402,872338	-17695,15106	-24098,0234
4,5	-7367,003876	-14402,34495	-21769,3488
5	-9860,068115	-9925,027031	-19785,0951
5,5	-13146,82015	-4942,032317	-18088,8525
6	-16335,95273	-246,1064513	-16582,0592
6,5	-18558,12166	3396,630821	-15161,4908
7	-19139,72818	5383,536665	-13756,1915
7,5	-17739,72285	5830,264292	-11909,4586
8	-14423,56837	7292,825266	-7130,74311
8,5	-9660,178593	9911,390583	251,21199
9	-4241,976947	13131,20655	8889,2296
9,5	857,4635849	16255,17468	17112,6383
10	4662,076449	18577,47534	23239,5518
10,5	6375,290186	19520,03974	25895,3299
11	7398,115824	18746,3629	26144,4787
11,5	10387,01348	16231,29395	26618,3074
12	14991,13974	12273,54849	27264,6882
12,5	20481,17665	7448,262227	27929,4389
13	25906,03473	2507,993044	28414,0278
13,5	30265,68074	-1749,870841	28515,8099
14	32695,86447	-4625,091986	28070,7725
14,5	32630,60418	-5639,962178	26990,642



(Combined fo	rce on clamp	6
t	Horizontal	Vertical	Total
0	48096,44347	-7397,8735	40698,57
0,5	44362,99824	-8744,159356	35618,8389
1	37047,71671	-12510,27327	24537,4434
1,5	27192,33474	-17929,51751	9262,81723
2	16279,16501	-23886,26181	-7607,0968
2,5	5972,964871	-29127,49195	-23154,5271
3	-2170,308561	-32501,53176	-34671,8403
3,5	-6974,790624	-33179,47885	-40154,2695
4	-8045,45261	-30818,0221	-38863,4747
4,5	-10090,32424	-25633,09555	-35723,4198
5	-14548,79009	-18370,2772	-32919,0673
5,5	-20255,43195	-10176,92227	-30432,3542
6	-25802,47903	-2399,201465	-28201,6805
6,5	-29816,53449	3658,864983	-26157,6695
7	-31228,72025	6970,203441	-24258,5168
7,5	-29487,54287	7738,810255	-21748,7326
8	-24674,41787	10362,37158	-14312,0463
8,5	-17499,86282	15077,04346	-2422,81936
9	-9180,537271	20918,56789	11738,0306
9,5	-1219,466695	26673,45904	25453,9923
10	4870,163517	31109,56605	35979,7296
10,5	7846,663729	33211,70759	41058,3713
11	9105,856602	32378,45325	41484,3099
11,5	13346,95636	28543,25015	41890,2065
12	20201,27742	22197,03917	42398,3166
12,5	28553,22511	14307,69813	42860,9232
13	36938,22099	6150,725923	43088,9469
13,5	43809,72229	-917,9830204	42891,7393
14	47824,93929	-5705,671301	42119,268
14,5	48096,44347	-7397,8735	40698,57

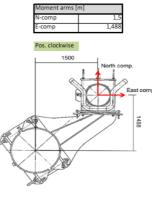
Appendix E

Horizontal and vertical load combinations

(1 Pages)

E-1

unctional nvironmental


Appendix E

						Combinded rise	r only
Elevation	Load	Riser loads [kl	N]	Use FY		135	· · · · · ·
clevation	LUAU	F _y (North)	F _x (East)	values are	F _y values	N component	E com
Elevation	Functional loads	-13	6	used and			
78000	Installation loads	±6	±1	applyed on	6	-4,24	1
	Max. wave load	±131	±137	45 deg.	131	-92,63	
Elevation	Functional loads	29	-4				
66000	Installation loads	±19	±1	1	19	-13,44	1
	Max. wave load	±166	±169	1	166	-117,38	1
Elevation	Functional loads	-32	2	1			
54000	Installation loads	±27	±5	1	27	-19,09	
	Max. wave load	±151	±146	1	151	-106,77	1
Elevation	Functional loads	-15	-5	1			
40000	Installation loads	±23	±13	1	23	-16,26	i
	Max. wave load	±126	±118	1	126	-89,10)
Elevation	Functional loads	46	20	1			
25000	Installation loads	±14	±12	1	14	-9,90	
	Max. wave load	±89	±87	1	89	-62,93	
Elevation	Functional loads	-164	-72	1			
10000	Installation loads	±4	±4	1	4	-2,83	
	Max, wave load	±69	+66	1	69	-48.79	

ULS-a Rise	,			
1,3 Elevation	135°		315°	
0,7	N	E	N	E
78000	-87,26	78,16	53,46	-62,56
66000	-61,93	94,43	137,33	-104,83
54000	-141,16	102,16	57,96	-96,96
40000	-103,01	77,01	64,01	-90,01
25000	2,88	82,92	116,72	-30,92
10000	-251,03	-55,77	-175,37	-131,43

8000

ULS-b	ULS-b Ris	ser only			
Functional	1 Elevation	135°		315°	
Environmental	1,3	N	E	N	E
	78000	-137,66	130,66	111,66	-118,66
	66000	-137,03	162,03	195,03	-170,03
	54000	-189,90	159,90	125,90	-155,90
	40000	-147,09	127,09	117,09	-137,0
	25000	-45,71	111,71	137,71	-71,7
	10000	-230,26	-5,74	-97,74	-138,2

315 nent E

4,24 92,63

13,44

117,38

19,09 106,77

16,26 89,10

9,90

62,93

2,83 48,79

-4,24 -92,63

-13,44

117,38

-19,09

-16,26 -89,10

-9.9

-62,9

-2,83 -48,79

onen 4,24 92,63

13,44

117,38

19,09 106,77

16,26 89,10

9,90

62,93

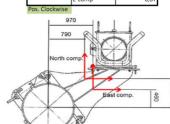
2,83 48,79

Sum of mom	ents ULS-a
135°	315°
247,2	-173,3
233,4	-362,0
363,8	-231,2
269,1	-229,9
119,1	-221,1
293.6	67,5
Riser loads o	nly
Riser loads o	
Riser loads o Sum of mom	ents ULS-b
Riser loads o Sum of mom 135°	ents ULS-b 315°
Riser loads o Sum of mom 135° 400,9 446,6 522,8	ents ULS-b 315° -344,1 -545,5 -420,8
Riser loads o Sum of mom 135° 400,9 446,6	ents ULS-b 315° -344,1 -545,5
Riser loads o Sum of mom 135° 400,9 446,6 522,8	ents ULS-b 315° -344,1 -545,5 -420,8

wave clam	p loads [kiv]	100	
		Comp from N	(
96,2		-87,19	[
65,4		-59,27	ĺ
37,1		-33,62	ĺ
26,4		-23,93	ſ
20		-18,13	ſ
17,1		-15,50	ĺ
			-

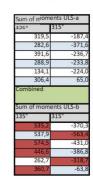
-15,50	7,23	13,47	-10,53
	Moment arms		[m]
	155	N-comp	0,9
		E-comp	0,46
	322	N-comp	0,79
		E-comp	0.67

75,8


75,81 51,54 29,24 20,80

15,76

-40,26 -22,84 -16,25


40,6

27,64 15,68 11,16

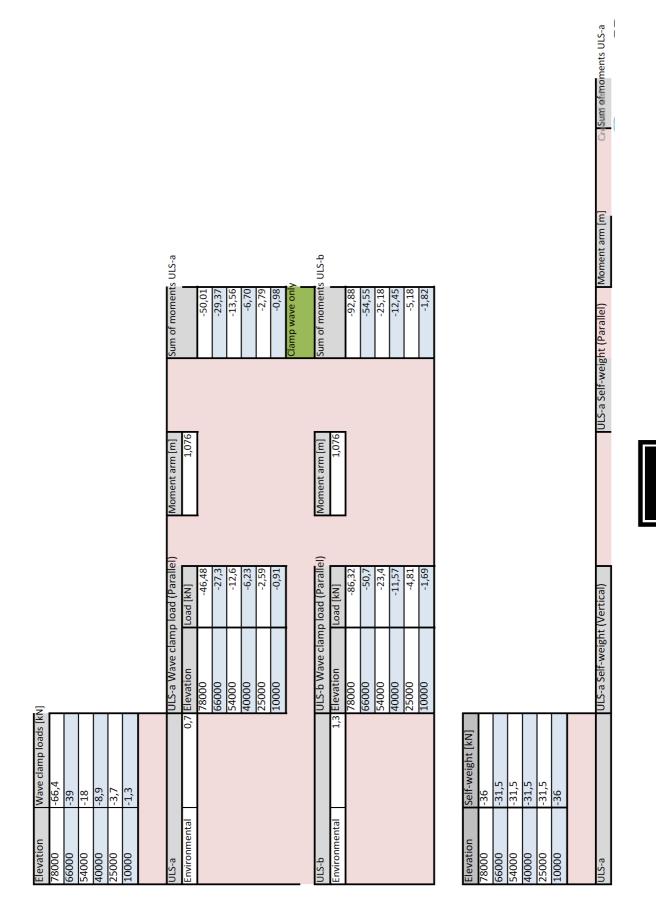
|--|

Sum of m		
155°		322°
	72,3	-14,1
4	9,1	-9,6
1	27,9	-5,5
	9,8	-3,9
	15,0	-2,9
	2,9	-2,5
Clamp Ioa	ds on	ly
	ds on	ly
Clamp loa	ds on	ly
Clamp loa Sum of mo	ds on	ly ts ULS-b
Clamp loa Sum of mo 155°	ds on	ly ts ULS-b 322°
Clamp loa Sum of mo 155°	omen 34,3	ly ts ULS-b 322° -26,3
Clamp loa Sum of mo 155° 13 S	ds on omen 34,3 91,3	ly ts ULS-b 322° -26,3 -17,9
Clamp loa Sum of me 155°	ds on omen 34,3 91,3 51,8	ly ts ULS-b 322° -26,3 -17,9 -10,1

5

0,7 Elevatio	n 155'	0		322°	
	N	E		N	E
78000		61,03	28,46	53,06	-41,46
66000		41,49	19,35	36,08	-28,18
54000		23,54	10,98	20,46	-15,99
40000		16,75	7,81	14,56	-11,38
25000		12,69	5,92	11,03	-8,62
10000		10,85	5,06	9,43	-7,37

ULS-b	ULS-b Clan	np only			
Environ	1,3 Elevation	155°		322°	
·		N	E	N	E
	78000	-113,34	52,85	98,55	-76,99
	66000	-77,05	35,93	67,00	-52,34
	54000	-43,71	20,38	38,01	-29,69
	40000	-31,10	14,50	27,04	-21,13
	25000	-23,56	10,99	20,49	-16,01
	10000	-20,15	9,39	17,52	-13,69



subsea 7

	Ludu Eunotional laads	F _Z (vertical)		F _z values							
		-7									
1		T1 416		1 16							
	Functional loads	-10		01							
1	Installation loads	<u>+3</u>		3							
1	Max. wave load	±20		20							
1	Functional loads	-4									
1	Installation loads	±4		4							
I I	Max. wave load	±19		19							
	Functional loads	-2									
	Installation loads	±3		3							
	Max. wave load	±15		15							
1	Functional loads	6									
1	Installation loads	±2		2							
1	Max. wave load	±11		11							
	Functional loads	-21									
	Installation loads	0		0							
	Max. wave load	1		6							
		ULS-a Riser only (Vertical)	(ertical)			ULS-a Riser only (Parallel)	y (Parallel)	Moment arm [m]	[m]	Sum of moments ULS-a	nts ULS-a
	1,3	Elevation	Up	Down		Up	Down		2,113	Up dU	Down
Environmental	0,7	0,7 78000	6'6	-15,1		9,83	-14,99		1	20,76	-31,67
1		66000	23,1	-12,7	•	22,93	-12,61			48,45	-26,64
		54000	13,3	-23,7		13,20	-23,52			27,89	-49,70
		40000	11,8	-17	•	11,71	-16,87			24,75	-35,65
		25000	18,1	-2,5		17,97	-2,48			37,96	-5,24
		10000	-21	-33,6	•	-20,84	-33,35			-44,04	-70,47
					•					Riser only	
		ULS-b Riser only (Vertical)	/ertical)	Γ		<u>ULS-b Riser only (Parallel)</u>	y (Parallel)	[m] Moment arm	[m]	Sum of moments ULS-b	nts ULS-b
1	1	Elevation	Up	Down	-	Up	Down		2,113	Up dU	Down
Environmental	1,3	78000	19,8	-23,8		19,65	-23,62		1	41,53	-49,91
		66000	33	-25		32,75	-24,81			69,21	-52,43
		54000	24,7	-32,7		24,52	-32,46			51,80	-68,58
		40000	20,5			20,35				42,99	-51,38
		25000	22,3		•	22,13				46,77	-21,60
		10000	-9,3	-32,7		-9,23	-32,46		Created with	-19,50	-68,58

Appendix E

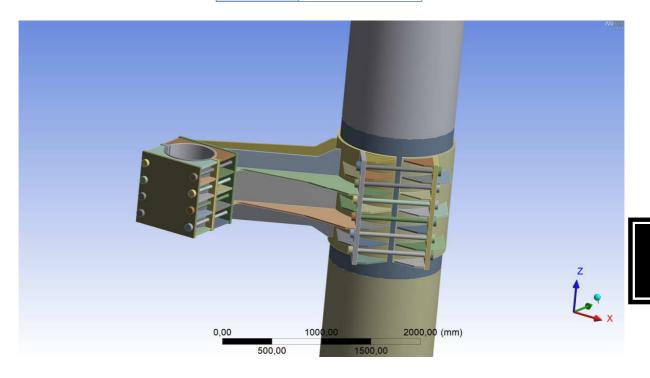
-34,70 -30,36 -30,36	-30,36 -30,36 -34,70 Self-wight	Sum of moments ULS-b -26,69 -23,36 -23,36 -23,36 -23,66
0,747		el) Moment arm [m] 0,747
-46,45 -40,64 -40,64 -40,64	-40,64 -40,64 -46,45	ULS-b Self-weight (Parallel) -35,73 -31,27 -31,27 -31,27 -35,73
8,5,5,7	মি মি জি	
Load [kN] -46,8 -40,95 -40,95	-40,95 -40,95 -46,8	tt (Vertical) Load (kN) -36 -31,5 -31,5 -31,5 -31,5 -36 -36
1,3 Elevation 78000 66000 54000	40000 25000 10000	ULS-b Self-weight (Vertical) 1 Elevation Load [kN] 78000

Elevation	Sum of moments ULS-a	s ULS-a
	Up	Down
78000	-63,95	-116,38
66000	-11,29	-86,37
54000	-16,03	-93,62
40000	-12,32	-72,72
25000	4,81	-38,39
10000	-79,72	-106,15
Combined		
Elevation	Sum of moments ULS-b	s ULS-b
	dD	Down
78000	-78,05	-169,49
66000	-8,70	-130,34
54000	3,27	-117,11
40000	7,19	-87,19
25000	18,24	-50,13
10000	-48,01	60'26-

Appendix F

ANSYS print-outs

(1 Pages)



Bolt check

First Saved	Thursday, April 28, 2011
Last Saved	Saturday, May 21, 2011
Product Version	13.0 Release

Contents

- <u>Units</u>
- Bolt check (C4)
 O Geom
 - <u>Geometry</u>
 - Parts
 Part 10⁻
 - Part 107
 - Part 107
 - <u>Parts</u>
 - Body Groups
 - Parts
 - Parts
 - Parts
 - Body Groups
 - Solid
 - Solid
 - Parts
 - O <u>Construction Geometry</u>
 - <u>Path</u> O <u>Coordinate Systems</u>
 - O Connections
 - O <u>Connections</u> Con
 - Contacts Contact Regions
 - O Mesh
 - Mesh Controls
 - O Static Structural (C5)
 - Analysis Settings
 - Standard Earth Gravity
 - Loads
 - Bolt Pretension
 - Bolt Pretension 6
 - Bolt Pretension 11
 - Bolt Pretension 16
 - Solution (C6)
 - Solution Information
 - <u>Results</u>
- Material Data
 - O <u>Clamp steel</u>
 - o <u>A320</u>

Units

TABLE 1

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsi					
Angle	Degrees					
Rotational Velocity	rad/s					
Temperature	Celsius					

Bolt check (C4)

Geometry

TABLE 2 Bolt check (C4) > Geometry						
Object Name	Geometry					
State	Fully Defined					
	Definition					
Source	C:\Documents and Settings\SS7N0605\My Documents\ANSYS final\Analysis Clamp					

	4_files\dp0\SYS-3\DM\SYS-3.agdb			
Tuno				
Type	DesignModeler			
Length Unit	Millimeters			
Element Control	Program Controlled			
Display Style	Part Color			
	Bounding Box			
Length X	2669,6 mm			
Length Y	2739,6 mm			
Length Z	7500, mm			
	Properties			
Volume	1,0542e+009 mm ³			
Mass	8275,2 kg			
Scale Factor Value	1,			
	Statistics			
Bodies	135			
Active Bodies	135			
Nodes	227755			
Elements	34990			
Mesh Metric	Skewness			
Min	1,34222502290619E-07			
Max	0,701342273938782			
Average	0,263600745331541			
Standard Deviation	0,204632867506524			
	Preferences			
Parameter Processing	Yes			
Personal Parameter Key	DS			
CAD Attribute Transfer	No			
Named Selection Processing	No			
Material Properties Transfer	No			
CAD Associativity	Yes			
Import Coordinate Systems	No			
Reader Save Part File	No			
Import Using Instances	Yes			
Do Smart Update	No			
Attach File Via Temp File	Yes			
Temporary Directory	C:\Documents and Settings\SS7N0605\Local Settings\Temp			
Analysis Type	3-D			
Enclosure and Symmetry Processing	Yes			

	TABLE 3	
Bolt check ((C4) > Geometry >	Pa

Bolt check (C4) > Geometry > Parts							
Object Name Part 19 Part 20 Part 21 Part 22 Part 23							
State			Me	eshed			
		Graphic	s Properties				
Visible				Yes			
Transparency				1			
		De	finition				
Suppressed				No			
Stiffness Behavior			Fle	exible			
Coordinate System			Default Coo	rdinate System			
Reference Temperature			By En	vironment			
		M	aterial				
Assignment			Clan	np steel			
Nonlinear Effects			•	Yes			
Thermal Strain Effects				Yes			
		Boun	ding Box				
Length X	336,33 mm	235,4	8 mm	408,5 mm	235,48 mm		
Length Y	290,6 mm	290,6 mm 483,39 mm 324,69 mm 483,39 mm					
Length Z		_), mm			
		Pro	operties				

-Finite element analysis of a friction clamp located on a North Sea jacket-

F-4

Volume	9,1092e+005 mm ³	092e+005 mm ³ 1,0129e+006 mm ³			
Mass	7,1508 kg			7,9516 kg	
Centroid X	564,14 mm	695,	7 mm	61,271 mm	695,7 mm
Centroid Y	-379, mm	-161,6	62 mm	711,6 mm	-161,62 mm
Centroid Z	-540, mm	360, mm	-360, mm	-1,1288e-015 mm	1,5689e-015 mm
Moment of Inertia Ip1	22793 kg•mm²	95549	kg∙mm²	12352 kg·mm ²	95549 kg⋅mm²
Moment of Inertia Ip2	42679 kg∙mm²	12352	kg∙mm²	95549 kg⋅mm²	12352 kg·mm ²
Moment of Inertia Ip3	64995 kg∙mm²			1,0737e+005 kg·mm ²	
		Sta	atistics		
Nodes	518			932	
Elements	65			117	
Mesh Metric			Ske	ewness	
Min	0,014530416356964	4,21646506874607E-02 4,21644331178599E-02 4,21646506874607E-			4,21646506874607E-02
Max	0,512002193506522	0,701342273938782		0,701342177947464	0,701342273938782
Average	0,165039530216544	0,485150395565254		0,485150428159298	0,485150395565255
Standard Deviation	0,120344254612298	0,1406675	569688933	0,140667649270927	0,140667569688932

			ABLE 4) > Geometry > Parts		
Object Name	Part 24	Part 25	Part 26	Part 27	Part 28
State			Meshed		
		Graphic	s Properties		
Visible		•	Yes		
Transparency			1		
		De	finition		
Suppressed			No		
Stiffness Behavior			Flexible		
Coordinate System		De	fault Coordinate Syster	n	
Reference Temperature			By Environment		
		Μ	laterial		
Assignment			Clamp steel		
Nonlinear Effects			Yes		
Thermal Strain Effects			Yes		
		Bour	nding Box		
Length X	929,21 mm	215,6 mm		327,63 mm	
Length Y	1068,6 mm	246,64 mm		302,57 mm	
Length Z	1120	, mm		20, mm	
		Pro	operties		
Volume	5,0068e+007 mm ³	1,3534e+007 mm ³		9,1092e+005 mm ³	
Mass	393,03 kg	106,24 kg		7,1508 kg	
Centroid X	-312,08 mm	65,168 mm		186,12 mm	
Centroid Y	-226,74 mm	-715,75 mm		-653,64 mm	
Centroid Z	4,7978e-013 mm	9,4673e-006 mm	-9,6753e-016 mm	-180, mm	-360, mm
Moment of Inertia Ip1	1,06e+008 kg·mm ²	1,199e+007 kg·mm²		22793 kg⋅mm²	
Moment of Inertia Ip2	5,2331e+007 kg⋅mm ²	1,1222e+007 kg·mm ²		42679 kg⋅mm²	
Moment of Inertia Ip3	7,657e+007 kg⋅mm²	8,0408e+005 kg·mm ²		64995 kg∙mm²	
		St	atistics		
Nodes	10107	4357		518	
Elements	1748	724		65	
Mesh Metric			Skewness		
Min	2,71679800190106E- 02	1,16506240940307E- 02	1,45303156343443E- 02	1,45303156	343413E-02
Max	5,86283932118858E- 02	0,556331699641993		0,512002513503947	
Average	4,27387397704627E-	0,221742520621231	0,165039542186167	0,165039542186164	0,16503954218616

subsea 7

	02						
Standard Deviation	9,46938275428752E- 03	0,128803220686873	0,120344267704764	0,120344	267704762		
			ABLE 5) > Geometry > Parts				
Object Name	Part 29	Part 30	Part 31	Part 32	Part 33		
State			Meshed				
		Graphi	cs Properties				
Visible		•	Yes				
Transparenc			1				
У							
		D	efinition				
Suppressed			No				
Stiffness Behavior			Flexible				
Coordinate							
System		De	fault Coordinate Syste	m			
Reference							
Temperature			By Environment				
		Ν	laterial				
Assignment			Clamp steel				
Nonlinear			Yes				
Effects			100				
Thermal Strain Effects			Yes				
		Bou	nding Box				
Length X		Bounding Box 408,5 mm 327,63 mm 408,5 mm					
Length Y		302,57			324,69 mm		
Length Z		002,01	20, mm		024,00 mm		
Longuit		Pr	operties				
Volume		9,1092e+			1,0129e+006 mm ³		
Mass		7,150	8 kg		7,9516 kg		
Centroid X		186,12			-61,271 mm		
Centroid Y		-653,6	4 mm		-711,6 mm		
Centroid Z	180, mm	360, mm	-540, mm	540, mm	-360, mm		
Moment of		22793 k	a.mm ²		12352 kg⋅mm²		
Inertia Ip1		22133 K	9		12002 Kg'IIIIII-		
Moment of		42679 k	g•mm²		95549 kg⋅mm²		
Inertia Ip2			-		v		
Moment of Inertia Ip3		64995 k	.g∙mm²		1,0737e+005 kg⋅mm ²		
monta ipo		S	tatistics				
Nodes		51			932		
Elements		65			117		
Mesh Metric			Skewness		1		
Min	1,45303156343438E	1,45303156343455E	1,45303156343444E	1,45303156343455E	4,21644331178634E		
	-02	-02	-02	-02	-02		
Max		0,512002513503932	0,512002513503946	0,512002513503932	0,70134217794746		
Average	0,165039542186167	0,165039542186166	0,165039542186164	0,165039542186166	0,485150428163655		
Standard Deviation	0,1203442	67704763	0,120344267704762	0,120344267704763	0,14066764927183		

	TABLE 6 Bolt check (C4) > Geometry > Parts						
Object Name	Part 34	Part 35	Part 36	Part 37	Part 38		
State			Meshed				
		Graph	ics Properties				
Visible			Yes				
Transparenc	Transparenc						
У	y						
Definition							
Suppressed			No				

Stiffness Behavior	Flexible							
Coordinate System		Default Coordinate System						
Reference Temperature			By Environment					
. ,			Material					
Assignment			Clamp steel					
Nonlinear Effects			Yes					
Thermal Strain Effects			Yes					
		Bo	unding Box					
Length X	408,5 mm	195,11 mm		336,33 mm				
Length Y	324,69 mm	273,09 mm		290,6 mm				
Length Z	20, mm	1120, mm		20, mm				
	Properties							
Volume	1,0129e+006 mm ³	1,3534e+007 mm ³		9,1092e+005 mm ³				
Mass	7,9516 kg	106,24 kg		7,1508 kg				
Centroid X	-61,271 mm	-660,58 mm	-564,14 mm					
Centroid Y	-711,6 mm	283,16 mm		379, mm				
Centroid Z	360, mm	-2,4537e-006 mm	-2,9132e-015 mm	180, mm	360, mm			
Moment of Inertia lp1	12352 kg⋅mm²	1,199e+007 kg⋅mm²		22793 kg⋅mm²				
Moment of Inertia Ip2	95549 kg∙mm²	1,1222e+007 kg⋅mm²		42679 kg⋅mm²				
Moment of Inertia Ip3	1,0737e+005 kg⋅mm²	8,0407e+005 kg⋅mm²		64995 kg∙mm²				
			Statistics					
Nodes	932	4357		518				
Elements	117	724		65				
Mesh Metric			Skewness					
Min	4,21644331178634E -02	0,01165068797102	1,45304163569723E -02	1,45304163569712E -02	1,45304163569723E -02			
Max	0,701342177947461	0,55633171164692 8	0,512002193506532 0,512002193506526					
Average	0,485150428163655	0,22174255235831 5		0,165039530216549				
Standard Deviation	0,140667649271831	0,12880323429954 6	0,120344254612296	0,120344254612295	0,120344254612296			

TABLE 7

		Bolt check (C	4) > Geometry > Parts	;		
Object Name	Part 39	Part 40	Part 41	Part 42	Part 43	
State			Meshed			
		Graph	ics Properties			
Visible			Yes			
Transparenc			1			
у			•			
		E	Definition			
Suppressed			No			
Stiffness Behavior		Flexible				
Coordinate System		Default Coordinate System				
Reference Temperature		By Environment				
			Material			
Assignment			Clamp steel			
Nonlinear Effects		Yes				
Thermal Strain Effects	Yes					
		Bo	unding Box			

Length X		336,33 mm				
Length Y		290,6	3 mm		483,39 mm	
Length Z			20, mm			
		P	roperties			
Volume		9,1092e+	-005 mm³		1,0129e+006 mm ³	
Mass		7,150)8 kg		7,9516 kg	
Centroid X		-564,1	4 mm		-695,7 mm	
Centroid Y		379,	mm		161,62 mm	
Centroid Z	-180, mm	-360, mm	540, mm	-540, mm	360, mm	
Moment of Inertia lp1		22793 kg·mm ²				
Moment of Inertia Ip2	42679 kg·mm²				12352 kg⋅mm²	
Moment of Inertia Ip3		64995 kg⋅mm²				
		S	Statistics			
Nodes		5	18		932	
Elements		65				
Mesh Metric						
Min	1,45304163569674E -02	1,45304163569723E -02	4,21646506874514E -02			
Max	0,512002193506529		0,701342273938776			
Average		0,165039530216549			0,485150395565254	
Standard Deviation	0,120344254612296	0,1203442	254612295	0,120344254612296	0,140667569688932	

TABLE 8 Bolt check (C4) > Geometry > Parts

	Bolt o	check (C4) > Geometry >	Parts			
Object Name	Part 44	Part 45	Part 46	Part 1		
State		Mes	shed	·		
		Graphics Properties				
Visible Yes						
Transparency			1			
		Definition				
Suppressed		Ν	lo			
Stiffness Behavior		Flex	kible			
Coordinate System		Default Coord	dinate System			
Reference Temperature		By Envi	ronment			
		Material				
Assignment		Clam	o steel			
Nonlinear Effects		Y	es			
Thermal Strain Effects		Y	es			
		Bounding Box				
Length X	235,48 mm	408,5 mm	235,48 mm	929,21 mm		
Length Y	483,39 mm	324,69 mm	483,39 mm	1068,6 mm		
Length Z		20, mm	·	1120, mm		
		Properties				
Volume		1,0129e+006 mm ³		5,0068e+007 mm ³		
Mass		7,9516 kg		393,03 kg		
Centroid X	-695,7 mm	-61,271 mm	-695,7 mm	312,08 mm		
Centroid Y	161,62 mm	-711,6 mm	161,62 mm	226,74 mm		
Centroid Z	-360, mm	-4,7832e-016 mm	1,8368e-015 mm	1,1107e-013 mm		
Moment of Inertia Ip1	95549 kg⋅mm²	12352 kg⋅mm²	95549 kg⋅mm²	1,06e+008 kg·mm ²		
Moment of Inertia Ip2	12352 kg·mm ²	95549 kg⋅mm²	12352 kg·mm ²	5,2331e+007 kg·mm ²		
Moment of Inertia Ip3		1,0737e+005 kg·mm ²		7,657e+007 kg·mm ²		
		Statistics				
Nodes		932		10107		
Elements		117		1748		
Mesh Metric		Skev	vness			
Min	4,21646506874514E-02	4,21644331178634E-02	4,21646506874514E-02	0,027167980019022		
Max	0,701342273938782	0,701342177947461	0,701342273938776	5,86283932117944E-02		
Average	0,485150395565254	0,485150428163655	0,485150395565254	0,042738738994393		

Bolt check

 Standard Deviation
 0,140667569688932
 0,140667649271831
 0,140667569688932
 9,46938220017718E-03

	TABLE 9 Bolt check (C4) > Geometry > Body Groups				
Object Name	Part 107				
State	Meshed				
Graphic	cs Properties				
Visible	Yes				
De	efinition				
Suppressed	No				
Assignment	Clamp steel				
Coordinate System	Default Coordinate System				
Bour	nding Box				
Length X	1143, mm				
Length Y	1143, mm				
Length Z	1500, mm				
Pre	operties				
Volume	1,3377e+008 mm ³				
Mass	1050,1 kg				
Centroid X	8,8696e-002 mm				
Centroid Y	5,9198e-014 mm				
Centroid Z	1,4986e-013 mm				
Moment of Inertia Ip1	3,5829e+008 kg·mm ²				
Moment of Inertia Ip2	3,5836e+008 kg·mm ²				
Moment of Inertia Ip3	3,2482e+008 kg·mm ²				
St	atistics				
Nodes	15480				
Elements	2160				
Mesh Metric	Skewness				
Min	2,77778071567026E-02				
Max	_,				
Average					
Standard Deviation	1,42767360555372E-07				

Bolt check (C4) > Geo	metry > Part 107 > Parts		
Object Name	Part 107		
State	Meshed		
Graphics	s Properties		
Visible	Yes		
Transparency	1		
Def	inition		
Suppressed	No		
Stiffness Behavior	Flexible		
Coordinate System	Default Coordinate System		
Reference Temperature	By Environment		
Material			
Assignment	Clamp steel		
Nonlinear Effects	Yes		
Thermal Strain Effects	Yes		
Bound	ding Box		
Length X	1143, mm		
Length Y	1143, mm		
Length Z	1500, mm		
Pro	perties		
Volume	1,3377e+008 mm ³		
Mass	1050,1 kg		
Centroid X	8,8696e-002 mm		
Centroid Y	5,9198e-014 mm		
Centroid Z	1,4986e-013 mm		
Moment of Inertia Ip1	3,5829e+008 kg·mm ²		

Moment of Inertia Ip2	3,5836e+008 kg·mm ²
Moment of Inertia Ip3	3,2482e+008 kg·mm ²
Sta	tistics
Nodes	15480
Elements	2160
Mesh Metric	Skewness
Min	2,77778071567026E-02
Max	2,77785598226894E-02
Average	2,77781025473718E-02
Standard Deviation	1,42767360555372E-07

TABLE 11 Bolt check (C4) > Geometry > Parts

		Bolt check (C	(4) > Geometry > Parts	<u>s</u>		
Object Name	Part 110	Part 2	Part 3	Part 4	Part 5	
State			Meshed			
		Graph	nics Properties			
Visible			Yes			
Transparency			1			
		Definition				
Suppressed			No			
Stiffness Behavior			Flexible			
Coordinate System		[Default Coordinate Syst	em		
Reference Temperature			By Environment			
			Material			
Assignment			Clamp steel			
Nonlinear Effects			Yes			
Thermal Strain Effects		Yes				
	Bounding Box					
Length X	700, mm	215,6 mm	327,63 mm			
Length Y	30, mm	246,64 mm		302,57 mm		
Length Z	760, mm	1120, mm		20, mm		
			Properties			
Volume	1,5702e+007 mm ³	1,3534e+007 mm ³		9,1092e+005 mm ³		
Mass	123,26 kg	106,24 kg		7,1508 kg		
Centroid X	-1500, mm	-65,168 mm		-186,12 mm		
Centroid Y	-1165,5 mm	715,75 mm		653,64 mm		
Centroid Z	2,5653e-012 mm	-4,8088e-006 mm	-2,2434e-015 mm	-180, mm	-360, mm	
Moment of Inertia Ip1	5,9579e+006 kg·mm ²	1,199e+007 kg·mm ²		22793 kg⋅mm²		
Moment of Inertia Ip2	1,0891e+007 kg⋅mm²	1,1222e+007 kg⋅mm²		42679 kg⋅mm²		
Moment of Inertia Ip3	4,9515e+006 kg⋅mm²	8,0407e+005 kg⋅mm²	64995 kg·mm²			
			Statistics			
Nodes	5624	4357	518			
Elements	978	724	65			
Mesh Metric		Skewness				
Min	9,3076260280272E- 04	0,011650618861668	1,45303156343499E- 02	1,45303156343448E- 02	1,45303156343438E- 02	
Max	0,675486079914591	0,556331700654277		0,512002513503938		
Average	0,108166880821473	0,221742526456546		0,165039542186167		
Standard Deviation	0,129785120724642	0,128803227615819		0,120344267704764		

TABLE 12 Bolt check (C4) > Geometry > Parts						
Object Name Part 6 Part 7 Part 8 Part 9 Part 10						
State Meshed						

	Graph	nics Properties			
Visible	•	Yes			
Transparency		1			
		Definition			
Suppressed		No			
Stiffness Behavior		Flexible			
Coordinate System	Γ	Default Coordinate Syste	em		
Reference Temperature		By Environment			
		Material			
Assignment		Clamp steel			
Nonlinear Effects		Yes			
Thermal Strain Effects		Yes			
	Во	unding Box			
Length X	327,0	63 mm		408,5 mm	
Length Y	302,4	57 mm		324,69 mm	
Length Z		20, mm			
		Properties			
Volume	9,1092e	+005 mm³		1,0129e+006 mm ³	
Mass		i08 kg		7,9516 kg	
Centroid X		12 mm		61,271 mm	
Centroid Y		64 mm		711,6 mm	
Centroid Z	180, mm 360, mm	-540, mm	540, mm	-360, mm	
Moment of Inertia Ip1	22793	kg∙mm²		12352 kg⋅mm²	
Moment of Inertia Ip2	42679	kg∙mm²		95549 kg∙mm²	
Moment of Inertia Ip3	64995	1,0737e+005 kg·mm²			
Statistics					
Nodes	5	932			
Elements		117			
Mesh Metric		Skewness			
Min	1,45303156343506E-02	1,45303156343457E- 02	1,45303156343511E- 02	4,21644331178599E- 02	
Max	0,512002513503949 0,512002513503941	0,512002513503941	0,701342177947464		
Average	0,165039	542186167		0,485150428159298	
Standard Deviation	0,120344267704764 0,140667649270926				

TABLE 13 Bolt check (C4) > Geometry > Parts

		BOIL CHECK (C4) > Geometry > Parts	•		
Object Name	Part 11	Part 12	Part 13	Part 14	Part 15	
State			Meshed		·	
		Graphi	cs Properties			
Visible			Yes			
Transparenc y			1			
		D	efinition			
Suppressed	No					
Stiffness Behavior	Flexible					
Coordinate System		Default Coordinate System				
Reference Temperature	By Environment					
	Material					
Assignment		Clamp steel				
Nonlinear Effects	Yes					

Thermal Strain Effects	Yes						
	Bounding Box						
Length X	408,5 mm	195,11 mm		336,33 mm			
Length Y	324,69 mm	273,09 mm		290,6 mm			
Length Z	20, mm	1120, mm		20, mm			
	Properties						
Volume	1,0129e+006 mm ³	1,3534e+007 mm ³		9,1092e+005 mm ³			
Mass	7,9516 kg	106,24 kg		7,1508 kg			
Centroid X	61,271 mm	660,58 mm		564,14 mm			
Centroid Y	711,6 mm	-283,16 mm	-379, mm				
Centroid Z	360, mm	-5,177e-006 mm	-3,5192e-015 mm 180, mm 360, mm				
Moment of Inertia lp1	12352 kg⋅mm²	1,199e+007 kg⋅mm²	22793 kg·mm²				
Moment of Inertia Ip2	95549 kg⋅mm²	1,1222e+007 kg·mm ²	42679 kg·mm²				
Moment of Inertia Ip3	1,0737e+005 kg⋅mm²	8,0404e+005 kg·mm ²		64995 kg⋅mm²			
		S	tatistics				
Nodes	932	4357		518			
Elements	117	724		65			
Mesh Metric			Skewness				
Min	4,21644331178599E -02	1,16506503059919E -02	0,01453041635696 1,45304163569654E 1,453041635696 4 -02 -02		1,45304163569653E -02		
Max	0,701342177947464	0,5563317185945		0,512002193506519			
Average	0,485150428159297	0,2217425443135		0,165039530216544			
Standard Deviation	0,140667649270927	0,128803236805365	0,120344254612298				

TABLE 14 Bolt check (C4) > Geometry > Parts

	Bolt check (C4) > 0	Geometry > Parts		
Object Name	Part 16	Part 17	Part 18	
State		Meshed		
	Graphics P	roperties		
Visible		Yes		
Transparency		1		
	Defini	ition		
Suppressed		No		
Stiffness Behavior		Flexible		
Coordinate System	D	efault Coordinate System	1	
Reference Temperature		By Environment		
	Mate	rial		
Assignment		Clamp steel		
Nonlinear Effects		Yes		
Thermal Strain Effects	Yes			
	Boundir	ng Box		
Length X	336,33 mm			
Length Y	290,6 mm			
Length Z		20, mm		
	Prope	rties		
Volume		9,1092e+005 mm ³		
Mass		7,1508 kg		
Centroid X		564,14 mm		
Centroid Y		-379, mm		
Centroid Z	-180, mm	-360, mm	540, mm	
Moment of Inertia Ip1		22793 kg-mm ²		
Moment of Inertia Ip2		42679 kg∙mm²		
Moment of Inertia Ip3		64995 kg∙mm²		
	Statis	tics		
Nodes		518		
Elements		65		
Mesh Metric		Skewness		

Min	1,45304163569657E-02	0,014530416356964	1,45304163569654E-02
Max	0,512002193506524 0,512002193506519		2193506519
Average	0,165039530216544		
Standard Deviation	0,120344254612298		

TABLE 15 Bolt check (C4) > Geometry > Body Groups					
Object Name	Part 167	Part 168			
State	Meshed				
	Graphics Properties				
Visible	Y	es			
	Definition				
Suppressed	N	lo			
Assignment	Clamp	o steel			
Coordinate System	Default Coord	linate System			
Bounding Box					
Length X	1392,7 mm	1966,4 mm			
Length Y	942,57 mm	1529,5 mm			
Length Z	940, mm	380, mm			
Properties					
Volume	e 3,9039e+007 mm ³ 4,5002e+007 mm ³				
Mass	306,46 kg	353,26 kg			
Centroid X	-1002,7 mm	-878,93 mm			
Centroid Y	-735,24 mm	-622,01 mm			
Centroid Z	-4,7355e-009 mm	2,8422e-014 mm			
Moment of Inertia Ip1	-2,5695e+007 kg·mm ²	-1,6966e+007 kg·mm ²			
Moment of Inertia Ip2	7,4899e+007 kg·mm ²	1,0256e+008 kg·mm ²			
Moment of Inertia Ip3	5,7134e+007 kg·mm ²	1,0344e+008 kg·mm ²			
	Statistics				
Nodes	20043	20548			
Elements	2620	2866			
Mesh Metric	Skew	ness			
Min	1,28570008830285E-02	1,34222502290619E-07			
Max	0,635024754850647	0,630612494438596			
Average	0,374806121704758	0,106056267466017			
Standard Deviation	0,161278383303815	9,07650311926692E-02			

F

TABLE 16 olt check (C4) > Geometry > Part 167 > Parts

		Bolt check (C4) > Ge	ometry > Part 167 > P	arts				
Object Name	Part 167:Body 2	Part 167:Body 2 Part 167:Body 1 Part 167:Body 3 Part 167:Body 4 Part 167:Body 5						
State			Meshed					
		Graphic	s Properties					
Visible			Yes					
Transparency			1					
		De	finition					
Suppressed			No					
Stiffness Behavior		Flexible						
Coordinate System		Default Coordinate System						
Reference Temperature		By Environment						
		М	aterial					
Assignment	t Clamp steel							
Nonlinear Effects	Yes							
Thermal Strain Effects	Yes							
		Bour	iding Box					
Length X	1179,9) mm	1055,2 mm	1179,9 mm	1055,2 mm			
Length Y	942,57	' mm	670,02 mm	942,57 mm	670,02 mm			
Length Z	340, mm		280, mm		340, mm			

	Properties						
Volume	1,0122e+007 mm ³	5,6268e+006 mm ³	4,6715e+006 mm ³	5,6268e+006 mm ³	8,3205e+006 mm ³		
Mass	79,46 kg	44,171 kg	36,671 kg	44,171 kg	65,316 kg		
Centroid X	-1140, mm	-1115,2 mm	-840,34 mm	-1115,2 mm	-866,03 mm		
Centroid Y	-684,09 mm	-664,15 mm	-802,05 mm	-664,15 mm	-818,62 mm		
Centroid Z	2,3553e-013 mm	286,15 mm	-287,36 mm	-286,15 mm	3,6174e-013 mm		
Moment of Inertia Ip1	7,6815e+005 kg⋅mm²	1,464e+005 kg⋅mm²	1,2495e+005 kg⋅mm²	1,464e+005 kg⋅mm²	6,3142e+005 kg⋅mm²		
Moment of Inertia Ip2	1,5442e+007 kg·mm²	8,8149e+006 kg⋅mm²	5,0138e+006 kg⋅mm²	8,8149e+006 kg·mm ²	8,7827e+006 kg⋅mm²		
Moment of Inertia Ip3	1,4679e+007 kg·mm ²	8,6714e+006 kg⋅mm²	4,8913e+006 kg⋅mm²	8,6714e+006 kg⋅mm²	8,1556e+006 kg⋅mm²		
		Sta	atistics				
Nodes	4602	3154	2666	3154	3801		
Elements	612	408	344	408	504		
Mesh Metric			Skewness				
Min	1,28570008830285E- 02	0,121940228772664	0,147043142256577	0,121940228773237	0,251582609432595		
Max	0,56888569447759	0,56888569447732	0,635024754850643	0,568885694477314	0,635024754850484		
Average	0,290302644765428	0,327842794622525	0,431158863841133	0,327842794622421	0,476527383998892		
Standard Deviation	0,174997260051432	0,142869233338681	0,136697230319947	0,142869233338616	0,112863319428897		

TABLE 17 Bolt check (C4) > Geometry > Part 167 > Parts

Object Name	Part 167:Body 6			
State	Meshed			
•	s Properties			
Visible	Yes			
Transparency	1			
Def	inition			
Suppressed	No			
Stiffness Behavior	Flexible			
Coordinate System	Default Coordinate System			
Reference Temperature	By Environment			
Ma	aterial			
Assignment	Clamp steel			
Nonlinear Effects	Yes			
Thermal Strain Effects	Yes			
Bounding Box				
Length X	1055,2 mm			
Length Y	670,02 mm			
Length Z	280, mm			
Pro	perties			
Volume	4,6715e+006 mm ³			
Mass	36,671 kg			
Centroid X	-840,34 mm			
Centroid Y	-802,05 mm			
Centroid Z	287,36 mm			
Moment of Inertia Ip1	1,2495e+005 kg·mm ²			
Moment of Inertia Ip2	5,0138e+006 kg·mm ²			
Moment of Inertia Ip3	4,8913e+006 kg·mm ²			
Sta	tistics			
Nodes	2666			
Elements	344			
Mesh Metric	Skewness			
Min	0,147043142256505			
Max	0,635024754850647			
Average	0,431158863840972			
Standard Deviation	0,136697230320043			

TABLE 18 Bolt check (C4) > Geometry > Part 168 > Parts					
Object Name	Part 168:Body 1	Part 168:Body 2			
State	Mes	hed			
	Graphics Properties				
Visible	Ye	es			
Transparency	1	1			
	Definition				
Suppressed	N				
Stiffness Behavior	Flex				
Coordinate System	Default Coord				
Reference Temperature	By Envi	ronment			
	Material				
Assignment	Clamp steel				
Nonlinear Effects	Yes				
Thermal Strain Effects	Yes				
Bounding Box					
Length X					
Length Y	1529,				
Length Z	20,	mm			
	Properties				
Volume	2,2501e+				
Mass	176,6	0			
Centroid X	-878,9				
Centroid Y	-622,0				
Centroid Z	180, mm	-180, mm			
Moment of Inertia Ip1	1,5073e+0	-			
Moment of Inertia Ip2	3,6657e+0				
Moment of Inertia Ip3	5,1718e+0	07 kg⋅mm²			
	Statistics	40557			
Nodes	9991	10557			
Elements	1389	1477			
Mesh Metric	Skew				
Min	1,34222502				
Max	0,579184356596601	0,630612494438596			
Average		0,114087235964726			
Standard Deviation	8,66241219683841E-02	9,38161024265272E-02			

olt check	TABLE 18 (C4) > Geometry > Part	168 > Parts
ect Name	Part 168:Body 1	Part 16

TABLE 19 Bolt check (C4) > Geometry > Parts

		BOIL CHECK (C	34) > Geometry > Parts				
Object Name	Solid	Solid	Part 109	Part 111	Part 112		
State		Meshed					
		Grap	hics Properties				
Visible			Yes				
Transparency			1				
			Definition				
Suppressed No							
Stiffness Behavior	Flavibla						
Coordinate System	Default Coordinate System						
Reference Temperature	By Environment						
			Material				
Assignment			Clamp steel				
Nonlinear Effects	VAC						
Thermal Strain Effects	VAC						
		Bo	ounding Box				
Length X	1143,	mm	537,51 mm	680,	mm		
Length Y	1143,	mm	249,5 mm	299,5	5 mm		

Length Z	3000	, mm	760, mm	20,	mm
		Pre	operties		
Volume	2,6754e+	-008 mm³	1,1783e+007 mm ³	2,0069e+	-006 mm³
Mass	2100	,2 kg	92,497 kg	15,7	54 kg
Centroid X	6,6132e-014 mm	1,9257e-014 mm		-1500, mm	
Centroid Y	1,0519e-013 mm	9,9001e-014 mm	-1327,1 mm	-1284	,5 mm
Centroid Z	2250, mm	-2250, mm	-6,6222e-012 mm	2,4593e-014 mm	-180, mm
Moment of Inertia Ip1	1,8919e+0	09 kg∙mm²	4,9266e+006 kg·mm ²	1,0414e+005 kg·mm ²	
Moment of Inertia Ip2	$1.8919e+009 ka.mm^2$		7,3606e+006 kg·mm ²	9,4954e+005 kg·mm ²	
Moment of Inertia Ip3	$6.4951e+008 ka.mm^2$		3,4268e+006 kg⋅mm ²	1,0526e+006 kg·mm ²	
		St	atistics		
Nodes	34	80	2189	10	31
Elements	480		288	124	
Mesh Metric			Skewness		
Min	8,33332971479483E- 02	8,33332971479644E- 02	5,84098799933312E- 02	2,12269373262377E-02	
Max	8,33337649077044E- 02	8,33337649077013E- 02	0,10380946899594	0,536835591001785	0,536835591001779
Average	8,33335459135925E- 02	8,33335459136026E- 02	8,11234012466018E- 02	0,148645748660336	0,148645748660335
Standard Deviation	1,44899518002028E- 07	1,44868802682552E- 07	1,46773819037213E- 02	0,110950983017304	0,110950983017305

TABLE 20 Bolt check (C4) > Geometry > Parts

		Bolt check (C	34) > Geometry > Part	S		
Object Name	Part 113	Part 114	Part 115	Part 116	Part 117	
State			Meshed			
		Grapł	nics Properties			
Visible			Yes			
Transparenc y			1			
		I	Definition			
Suppressed			No			
Stiffness Behavior		Flexible				
Coordinate System		Default Coordinate System				
Reference Temperature		By Environment				
Material						
Assignment	Clamp steel					
Nonlinear Effects	Yes					
Thermal Strain Effects			Yes			
		Во	ounding Box			
Length X		680, mm		91,30)3 mm	
Length Y		299,5 mm		20,	mm	
Length Z		20, mm		760	, mm	
		F	Properties			
Volume		2,0069e+006 mm ³		1,3018e-	+006 mm³	
Mass		15,754 kg		10,2	19 kg	
Centroid X		-1500, mm		-1805,1 mm	-1194,9 mm	
Centroid Y		-1284,5 mm		-1490	D, mm	
Centroid Z	-360, mm	180, mm	360, mm	3,3542e-011 mm	-4,4782e-011 mm	
Moment of Inertia Ip1	1,0414e+005 kg·mm ² 4,9745e+005 kg·mm ²					
Moment of Inertia Ip2		9,4954e+005 kg·mm ²	2	5,0454e+0	005 kg∙mm²	
Moment of Inertia Ip3		1,0526e+006 kg·mm ²	2	7765,3	kg∙mm²	

	Statistics							
Nodes		1031		8	50			
Elements		124		1()2			
Mesh Metric		Skewness						
Min	2,12269373262377E -02	2,12269373262376E -02	2,12269373262377E -02	9,72112528705313E -03	9,86837835606333E -03			
Max	0,536835591001794	0,53683559100177	0,536835591001789	0,658890449569679	0,658890373985007			
Average	0,148645748660335	0,148645748660334	0,148645748660336	0,206164372933614	0,206158639887314			
Standard Deviation	0,110950983017304	0,1109509	983017305	0,184451658814402	0,184459935982683			

			> Geometry > Parts			
Object Name	Part 118	Part 119	Part 120	Part 121	Part 122	
State			Meshed			
		Graphic	s Properties			
Visible			Yes			
Transparency			1			
		De	efinition			
Suppressed		No				
Stiffness Behavior			Flexible			
Coordinate System		De	fault Coordinate Syste	m		
Reference Temperature			By Environment			
		N	laterial			
Assignment Clamp steel						
Nonlinear Effects		Yes				
Thermal Strain Effects		Yes				
Bounding Box						
Length X	537,51 mm 700, mm 680, mm					
Length Y		249,5 mm 30, mm 299,5 mm				
Length Z	760, mm 20, mm					
			operties			
Volume	1,1783e+007 mm ³	1,5702e+007 mm ³		2,0069e+006 mm ³		
Mass	92,497 kg	123,26 kg		15,754 kg		
Centroid X			-1500, mm			
Centroid Y	-1672,9 mm	-1834,5 mm		-1715,5 mm		
Centroid Z	-1,3631e-011 mm	1,9927e-013 mm	-9,8983e-015 mm	-180, mm	-360, mm	
Moment of Inertia Ip1	4,9266e+006 kg·mm ²	5,9579e+006 kg·mm ²		1,0414e+005 kg·mm ²	2	
Moment of Inertia Ip2	7,3606e+006 kg⋅mm ²	1,0891e+007 kg⋅mm²		9,4954e+005 kg⋅mm ²	2	
Moment of Inertia Ip3	3,4268e+006 kg·mm ²	4,9515e+006 kg⋅mm ²		1,0526e+006 kg·mm ²	2	
		St	atistics			
Nodes	2189	5624		1031		
Elements	288	978		124		
Mesh Metric			Skewness			
Min	5,84098851592735E- 02	9,30762602808091E- 04	0,0212269	037326253	2,12269373262391E- 02	
Max	0,103809468995915	0,67548607991459	0,536835591001759	0,536835591001777	0,536835591001769	
Average	8,11233961389966E- 02	0,108166880821472	0,148645748660329		0,148645748660328	
Standard Deviation	0,014677417570033	0,129785120724641	0,110950983017306	0,110950983017307	0,110950983017308	

TABLE 21

TABLE 22 Bolt check (C4) > Geometry > Parts					
Object Name	Part 123	Part 124	Part 125	Part 126	
Object Name	1 411 120		1 011 120	1 011 120	

-Finite element analysis of a friction clamp located on a North Sea jacket-

F

State	State Meshed					
Graphics Properties						
Visible		Yes				
Transparency			1			
		Definition				
Suppressed			No			
Stiffness Behavior		FI	exible			
Coordinate System			ordinate System			
Reference Temperature		By En	vironment			
		Material				
Assignment			np steel			
Nonlinear Effects			Yes			
Thermal Strain Effects			Yes			
		Bounding Box				
Length X		0, mm		91,303 mm		
Length Y		9,5 mm	20, mm			
Length Z	20), mm	760, mm			
		Properties				
Volume	,	e+006 mm ³	,	-006 mm ³		
Mass		754 kg	10,219 kg			
Centroid X		00, mm	-1194,9 mm	-1805,1 mm		
Centroid Y		5,5 mm), mm		
Centroid Z	180, mm	360, mm	-6,5523e-011 mm	-1,1769e-011 mm		
Moment of Inertia Ip1		-005 kg∙mm²		05 kg⋅mm²		
Moment of Inertia Ip2		-005 kg∙mm²		05 kg⋅mm²		
Moment of Inertia Ip3	1,0526e+	-006 kg∙mm²	7765,3	kg∙mm²		
	1	Statistics				
Nodes	1031 850					
Elements	124 102					
Mesh Metric	Skewness					
	,	2,12269373262577E-02	,	-,		
	0,536835591001777	0,536835591001776	0,658890368375126	0,658890449569678		
	0,148645748660329	0,148645748660328	0,206167038736625	0,206158948167862		
Standard Deviation	0,110950983017308	0,110950983017307	0,184452193922543	0,184457535519197		

Bolt check (C4) > Geometry > Body Groups					
Object Name Solid Solid					
State	Meshed				
	Graphics Properties				
Visible	Y	es			
	Definition				
Suppressed	N	lo			
Assignment	A3	20			
Coordinate System	Default Coord	linate System			
	Bounding Box				
Length X	657,48 mm	33, mm			
Length Y	494,88 mm 699, mm				
Length Z	45, mm 33, mm				
	Properties				
Volume	1,2405e+006 mm ³	5,9785e+005 mm ³			
Mass 9,7382 kg 4,6932 kg		4,6932 kg			
Centroid X	-368,45 mm	-1793,4 mm			
Centroid Y	507,13 mm	-1500, mm			
Centroid Z	450, mm	270, mm			
Moment of Inertia Ip1	7,2917e+005 kg·mm ²	1,9044e+005 kg·mm ²			
Moment of Inertia Ip2	-5,2529e+005 kg·mm ² 632,4 kg·mm ²				
Moment of Inertia Ip3	-70830 kg⋅mm²	1,9044e+005 kg·mm ²			
	Statistics				
Nodes	2469	2955			
Elements	450	540			

TABLE 23 Bolt check (C4) > Geometry > Body Groups

Bolt check

Mesh Metric	Skewness		
Min	0,440138732486726 0,4401188850031		
Max	0,551232086350019	0,551257731534364	
Average	0,50000000065278	0,50000000065288	
Standard Deviation	3,80711342255428E-02	3,80890151526413E-02	

TABLE 24 Bolt check (C4) > Geometry > Solid > Parts					
Object Name Solid					
State	Meshed				
Graphics	s Properties				
Visible	Yes				
Transparency	1				
Definition					
Suppressed	No				
Stiffness Behavior	Flexible				
Coordinate System	Default Coordinate System				
Reference Temperature	By Environment				
Ma	aterial				
Assignment	A320				
Nonlinear Effects	Yes				
Thermal Strain Effects	Yes				

Nonlinear Effects	Yes				
Thermal Strain Effects	Yes				
Bounding Box					
Length X	657,48 mm				
Length Y	494,88 mm				
Length Z	45, mm				
Pro	perties				
Volume	1,2405e+006 mm ³				
Mass	9,7382 kg				
Centroid X	-368,45 mm				
Centroid Y	507,13 mm				
Centroid Z	450, mm				
Moment of Inertia Ip1	2440,1 kg·mm ²				
Moment of Inertia Ip2	4,9244e+005 kg·mm ²				
Moment of Inertia Ip3	4,9244e+005 kg·mm ²				
Sta	tistics				
Nodes	2469				
Elements	450				
Mesh Metric	Skewness				
Min	0,440138732486726				
Max	0,551232086350019				
Average	0,50000000065278				
Standard Deviation	3,80711342255428E-02				

TABLE 25 Bolt check (C4) > Geometry > Solid > Parts					
Object Name Solid					
State	Meshed				
Graphics	s Properties				
Visible	Yes				
Transparency	1				
Def	inition				
Suppressed No					
Stiffness Behavior	Flexible				
Coordinate System	Default Coordinate System				
Reference Temperature	By Environment				
Ма	aterial				
Assignment	A320				
Nonlinear Effects	Yes				
Thermal Strain Effects	Yes				
Bound	ding Box				

Bolt check

Length X	33, mm	
Length Y	699, mm	
Length Z	33, mm	
Pro	perties	
Volume	5,9785e+005 mm ³	
Mass	4,6932 kg	
Centroid X	-1793,4 mm	
Centroid Y	-1500, mm	
Centroid Z	270, mm	
Moment of Inertia Ip1	1,9044e+005 kg·mm ²	
Moment of Inertia Ip2	632,4 kg⋅mm²	
Moment of Inertia Ip3	1,9044e+005 kg·mm ²	
Sta	tistics	
Nodes	2955	
Elements	540	
Mesh Metric	Skewness	
Min	0,44011888500314	
Max	0,551257731534364	
Average	0,50000000065288	
Standard Deviation	3,80890151526413E-02	
Standard Deviation	3,80890151526413E-02	

TABLE 26 Bolt check (C4) > Geometry > Parts

		Bolt check (C	4) > Geometry > Parts	i		
Object Name	Solid	Solid	Solid	Solid	Solid	
State	Meshed					
Graphics Properties						
Visible			Yes			
Transparenc y			1			
		I	Definition			
Suppressed			No			
Stiffness Behavior			Flexible			
Coordinate System		D	efault Coordinate Syste	em		
Reference Temperature			By Environment			
			Material			
Assignment			A320			
Nonlinear Effects			Yes			
Thermal Strain Effects			Yes			
		Bo	unding Box			
Length X	88,788 mm	75,	mm	33, mm	75, mm	
Length Y	101,18 mm	35,	mm	699, mm	35, mm	
Length Z	96, mm	75,	mm	33, mm	75, mm	
	,	P	roperties			
Volume	2,8953e+005 mm ³	1,5463e-	+005 mm³	5,9785e+005 mm ³	1,5463e+005 mm ³	
Mass	2,2728 kg	1,21	38 kg	4,6932 kg	1,2138 kg	
Centroid X	-700,15 mm		,4 mm	-1206,		
Centroid Y	266,14 mm	-1867, mm	-1133, mm	-1500, mm	-1867, mm	
Centroid Z	450, mm	· · ·		, mm	· · · · · · · · · · · · · · · · · · ·	
Moment of Inertia Ip1	2591,8 kg·mm ²	545,7	kg∙mm²	1,9044e+005 kg·mm²	545,7 kg⋅mm²	
Moment of Inertia Ip2	1597,4 kg⋅mm²	844,83 kg·mm ² 632,4 kg·mm ² 844,83 kg·mm ²				
Moment of Inertia Ip3	1597,3 kg∙mm²	545,7	kg∙mm²	1,9044e+005 kg·mm ²	545,7 kg⋅mm²	
			Statistics	·		
Nodes	410		69	2955	569	
Elements	62	8	38	540	88	
Mesh Metric						

Min	5,26584940020604E -03	2,51621975414209E -02	2,51621969437135E -02	0,435521393777587	2,51621759087575E -02
Max	0,391125818314752	0,383604260619502	0,383604337010751	0,553019810894248	0,38360425277399
Average	0,192729337112471	0,169521137800938	0,169521111280568	0,500460391492182	0,169520833422492
Standard Deviation	0,134589805395133	0,124651328327566	0,124651385384051	4,46728240124611E -02	0,124651080812731

			ABLE 27 4) > Geometry > Parts		
Object Name	Solid	Solid	Solid	Solid	Solid
State			Meshed		
		Graph	ics Properties		
Visible			Yes		
Transparenc y			1		
		D	efinition		
Suppressed			No		
Stiffness Behavior			Flexible		
Coordinate System		De	efault Coordinate Syste	m	
Reference Temperature			By Environment		
			Material		
Assignment			A320		
Nonlinear Effects			Yes		
Thermal Strain Effects			Yes		
		Βοι	Inding Box		
Length X	75, mm				
Length Y	35, mm	699, mm 35, mm		699, mm	
Length Z	75, mm	33, mm 75, mm			33, mm
		Р	roperties		
Volume	1,5463e+005 mm ³	5,9785e+005 mm ³	1,5463e+	005 mm³	5,9785e+005 mm ³
Mass	1,2138 kg	4,6932 kg	1,213	38 kg	4,6932 kg
Centroid X	-1206,6 mm		-1793,4 mm		-1206,6 mm
Centroid Y	-1133, mm	-1500, mm	-1867, mm	-1133, mm	-1500, mm
Centroid Z	270, mm		90,	mm	
Moment of Inertia Ip1	545,7 kg∙mm²	1,9044e+005 kg·mm ²	545,7	⟨g∙mm²	1,9044e+005 kg⋅mm ²
Moment of Inertia Ip2	844,83 kg·mm²	632,4 kg·mm²	844,83	kg∙mm²	632,4 kg∙mm²
Moment of Inertia Ip3	545,7 kg⋅mm²	1,9044e+005 kg·mm ²	545,7	⟨g∙mm²	1,9044e+005 kg·mm ²
		S	statistics		
Nodes	569	2955	56	59	2955
Elements	88	540 88		540	
Mesh Metric			Skewness		
Min	2,51621695420813E -02	0,44011888500314	8500314 2,51621975414209E 2,51621969437135E 0,43		
Max	0,383604459761315	0,551257731534364	0,383604260619502	0,383604337010751	0,553019810894248
Average	0,169520988949984	0,50000000065288	0,169521137800938	0,169521111280568	0,500460391492182
Standard Deviation	0,124651452410631	3,80890151526413E -02	0,124651328327566	0,124651385384051	4,46728240124611E -02

TABLE 28 Bolt check (C4) > Geometry > Parts					
Object Name	Solid	Solid	Solid	Solid	Solid
State			Meshed		
		Graph	ics Properties		
Visible	Visible Yes				
Transparenc	Transparenc 1				

F

У								
		Definition						
Suppressed		No						
Stiffness Behavior			Flexible					
Coordinate System		De	efault Coordinate Syste	m				
Reference Temperature			By Environment					
			Material					
Assignment			A320					
Nonlinear Effects			Yes					
Thermal Strain Effects			Yes					
		Βοι	unding Box					
Length X	75,	mm	33, mm	75,	mm			
Length Y	35,	mm	699, mm	35,	mm			
Length Z	75,	mm	33, mm	75,	mm			
		Р	roperties					
Volume	1,5463e+	005 mm³	5,9785e+005 mm ³	1,5463e+	-005 mm³			
Mass	1,213	38 kg	4,6932 kg	1,2138 kg				
Centroid X	-1206	,6 mm		-1793,4 mm				
Centroid Y	-1867, mm	-1133, mm	-1500, mm	-1867, mm	-1133, mm			
Centroid Z	90,	mm		-90, mm				
Moment of Inertia lp1	545,7	kg∙mm²	1,9044e+005 kg·mm ²	545,7	⟨g∙mm²			
Moment of Inertia lp2	844,83	kg∙mm²	632,4 kg∙mm²	844,83	kg∙mm²			
Moment of Inertia Ip3	545,7 H	kg∙mm²	1,9044e+005 kg·mm ²	545,7	⟨g∙mm²			
		S	Statistics					
Nodes	56	59	2955	56	69			
Elements	8	8	540	8	8			
Mesh Metric			Skewness					
Min	2,51621759087575E -02	2,51621695420813E -02	0,44011888500314	2,51621975414209E -02	2,51621969437135E -02			
Max	0,38360425277399	0,383604459761315	0,551257731534364	0,383604260619502	0,383604337010751			
Average	0,169520833422492	0,169520988949984	0,50000000065288	0,169521137800938	0,169521111280568			
Standard Deviation	0,124651080812731	0,124651452410631	3,80890151526413E -02	0,124651328327566	0,124651385384051			

	TAB	LE 29	
-		-	

			ABLE 29 4) > Geometry > Parts				
Object Name	Solid	Solid	Solid	Solid	Solid		
State			Meshed	·			
		Graph	ics Properties				
Visible			Yes				
Transparenc y		1					
		D	efinition				
Suppressed			No				
Stiffness Behavior		Flexible					
Coordinate System		D	efault Coordinate Syste	m			
Reference Temperature			By Environment				
		l	Material				
Assignment			A320				
Nonlinear Effects	linear Yes						
Thermal Strain Effects			Yes				

Bolt check

Bounding Box							
Length X	33, mm	75,	mm	33, mm	75, mm		
Length Y	699, mm	35,	mm	699, mm	35, mm		
Length Z	33, mm	75,	mm	33, mm	75, mm		
Properties							
Volume	5,9785e+005 mm ³	1,5463e+	-005 mm³	5,9785e+005 mm ³	1,5463e+005 mm ³		
Mass	4,6932 kg	1,213	38 kg	4,6932 kg	1,2138 kg		
Centroid X		-1206,6 mm		-1793	,4 mm		
Centroid Y	-1500, mm	-1867, mm	-1133, mm	-1500, mm	-1867, mm		
Centroid Z		-90, mm		-270	, mm		
Moment of Inertia Ip1	1,9044e+005 kg·mm ²	545,7	⟨g∙mm²	1,9044e+005 kg·mm ²	545,7 kg∙mm²		
Moment of Inertia Ip2	632,4 kg∙mm²	844,83	kg∙mm²	632,4 kg∙mm²	844,83 kg⋅mm²		
Moment of Inertia Ip3	1,9044e+005 kg⋅mm²	545,7 I	⟨g∙mm²	1,9044e+005 kg⋅mm²	545,7 kg⋅mm²		
		S	Statistics				
Nodes	2955	56	69	2955	569		
Elements	540	8	8	540	88		
Mesh Metric			Skewness				
Min	0,435521393777587	2,51621759087575E -02	2,51621695420813E -02	0,44011888500314	2,51621975414209E -02		
Max	0,553019810894248	0,38360425277399	0,383604459761315	0,551257731534364	0,383604260619502		
Average	0,500460391492182	0,169520833422492	0,169520988949984	0,50000000065288	0,169521137800938		
Standard Deviation	4,46728240124611E -02	0,124651080812731	0,124651452410631	3,80890151526426E -02	0,124651328327566		

TABLE 30 - 4 -

			ABLE 30 I) > Geometry > Parts						
Object Name	Solid								
State	Meshed								
		Graphi	cs Properties						
Visible			Yes						
Transparenc y			1						
		D	efinition						
Suppressed			No						
Stiffness Behavior			Flexible						
Coordinate System		De	efault Coordinate System	n					
Reference Temperature			By Environment						
		I	Material						
Assignment	A320								
Nonlinear Effects	Yes								
Thermal Strain Effects			Yes						
		Bou	nding Box						
Length X	75, mm	33, mm	75, n	nm	88,788 mm				
Length Y	35, mm	699, mm	35, n	nm	101,18 mm				
Length Z	75, mm	33, mm	75, n	nm	96, mm				
		Pi	operties						
Volume	1,5463e+005 mm ³	5,9785e+005 mm ³	1,5463e+0	005 mm³	2,8953e+005 mm ³				
Mass	1,2138 kg	4,6932 kg	1,213	8 kg	2,2728 kg				
Centroid X	-1793,4 mm		-1206,6 mm		-36,758 mm				
Centroid Y	-1133, mm	-1500, mm	-1867, mm	-1133, mm	748,13 mm				
Centroid Z		-270,	mm		450, mm				
Moment of Inertia Ip1	545,7 kg⋅mm²	1,9044e+005 kg·mm²	545,7 kg	g∙mm²	2591,8 kg⋅mm²				
Moment of Inertia Ip2	844,83 kg·mm²	632,4 kg⋅mm²	844,83 k	g∙mm²	1597,4 kg⋅mm²				

Moment of Inertia Ip3	545,7 kg⋅mm²	1,9044e+005 kg·mm ²	545,7 kg⋅mm²		1597,4 kg·mm²			
	Statistics							
Nodes	569	2955	56	69	377			
Elements	88	540	8	8	56			
Mesh Metric		Skewness						
Min	2,51621969437135E -02	0,435521393777587	2,51621759087575E -02	2,51621695420813E -02	7,67962448515975E -02			
Max	0,383604337010751	0,553019810894248	0,383604252773993	0,383604459761315	0,382442778011599			
Average	0,169521111280568	0,500460391492182	0,169520833422492 0,169520988949984		0,265142950721297			
Standard Deviation	0,124651385384051	4,46728240124611E -02	0,124651080812731	0,124651452410631	9,51828443407145E -02			

		DOIL CHECK (C	4) > Geometry > Parts					
Object Name	Solid	Solid	Solid	Solid	Solid			
State			Meshed					
		Graph	ics Properties					
Visible			Yes					
Transparenc			1					
У								
		C	Definition					
Suppressed			No					
Stiffness			Flexible					
Behavior			1 10/10/10					
Coordinate		D	efault Coordinate Syste	em				
System								
Reference Temperature			By Environment					
remperature			Material					
Assignment		l	A320					
Nonlinear								
Effects			Yes					
Thermal								
Strain Effects			Yes					
	Bounding Box							
Length X	657,48 mm				88,788 mm			
Length Y	494,88 mm	101,1	8 mm	494,88 mm	101,18 mm			
Length Z	45, mm	96,	mm	45, mm	96, mm			
Properties								
Volume	1,2405e+006 mm ³	2,8953e+	-005 mm ³	1,2405e+006 mm ³	2,8953e+005 mm ³			
Mass	9,7382 kg	2,272	28 kg	9,7382 kg	2,2728 kg			
Centroid X	368,46 mm	36,76 mm	700,15 mm	-368,45 mm	-700,15 mm			
Centroid Y	-507,14 mm	-748,13 mm	-266,15 mm	507,13 mm	266,14 mm			
Centroid Z		450, mm		270,	mm			
Moment of Inertia lp1	2440,1 kg·mm²	2591,8 kg∙mm²	2590,1 kg∙mm²	2440,1 kg∙mm²	2591,8 kg•mm²			
Moment of Inertia Ip2	4,9244e+005 kg·mm ²	1597,4	kg∙mm²	4,9244e+005 kg·mm ²	1597,4 kg⋅mm²			
Moment of Inertia Ip3	4,9244e+005 kg⋅mm²	1597,4 kg⋅mm²	1595,7 kg⋅mm²	4,9244e+005 kg⋅mm²	1597,3 kg∙mm²			
		8	Statistics					
Nodes	2469		77	2469	498			
Elements	450	450 56 450 78						
Mesh Metric			Skewness					
Min	0,440138732485638	5,99716297886576E -02	0,130115686410123	0,440138732486726	8,61703737395741E -02			
Max	0,551232086355783	0,356001720473829	0,428612801636582	0,551232086350019	0,55610654203922			
Average	0,50000000065292	0,260406958772791	0,306112068889663	0,50000000065278	0,273157987943119			
Standard Deviation	3,80711342266405E -02	0,094434851504264	7,39375375836418E -02	3,80711342255428E -02	0,12152744702881			

TABLE 31 Bolt check (C4) > Geometry > Parts

TABLE 32 Bolt check (C4) > Geometry > Parts

Object Name	Solid	Solid	Solid	Solid	Solid		
State		Meshed					
		Graph	ics Properties				
Visible			Yes				
Transparenc			1				
У		F	efinition				
Suppressed			No				
Suppressed			-				
Behavior			Flexible				
Coordinate		D					
System		De	efault Coordinate Syste	em			
Reference			By Environment				
Temperature							
			Material				
Assignment			A320				
Nonlinear Effects			Yes				
Thermal							
Strain Effects			Yes				
		Βοι	Inding Box				
Length X	88,788 mm	657,48 mm	88,78	8 mm	657,48 mm		
Length Y	101,18 mm	494,88 mm	101,1	8 mm	494,88 mm		
Length Z	96, mm	45, mm	96,	mm	45, mm		
		Р	roperties				
Volume	2,8953e+005 mm ³	1,2405e+006 mm ³	2,8953e+	005 mm³	1,2405e+006 mm ³		
Mass	2,2728 kg	9,7382 kg	2,272	28 kg	9,7382 kg		
Centroid X	-36,758 mm	368,46 mm	36,76 mm	700,15 mm	-368,45 mm		
Centroid Y	748,13 mm	-507,14 mm	-748,13 mm	-266,15 mm	507,13 mm		
Centroid Z		270,	mm		90, mm		
Moment of Inertia Ip1	2591,8 kg⋅mm²	2440,1 kg⋅mm²	2591,8 kg⋅mm²	2590,1 kg⋅mm²	2440,1 kg·mm²		
Moment of Inertia Ip2	1597,4 kg∙mm²	4,9244e+005 kg⋅mm²	1597,4	kg∙mm²	4,9244e+005 kg·mm²		
Moment of Inertia Ip3	1597,4 kg⋅mm²	4,9244e+005 kg·mm ²	1597,4 kg⋅mm²	1595,7 kg⋅mm²	4,9244e+005 kg⋅mm²		
		S	tatistics				
Nodes	377	2469	37	77	2469		
Elements	56	450		6	450		
Mesh Metric			Skewness				
Min	7,67962448515975E -02	0,440138732485638	40138732485638 5,99716297886576E 0,130115686410123 0,44013873248				
Max	0,382442778011599	0,551232086355783	0,356001720473829	0,428612801636582	0,551232086350019		
Average	0,265142950721297	0,50000000065292	0,260406958772791	0,306112068889663	0,50000000065278		
Standard Deviation	9,51828443407145E -02	3,80711342266405E -02	0,094434851504264	7,39375375836418E -02	3,80711342255428E -02		

Bolt check (C4) > Geometry > Parts										
Object Name	Solid	Solid Solid Solid Solid Solid								
State			Meshed							
	Graphics Properties									
Visible			Yes							
Transparenc			1							
у			1							
			Definition							
Suppressed			No							
Stiffness Behavior			Flexible							
Coordinate System		C	Default Coordinate Syste	em						
Reference Temperature	By Environment									
			Material							

Assignment			A320		
Nonlinear Effects			Yes		
Thermal Strain Effects			Yes		
		Βοι	unding Box		
Length X	88,788	,8 mm	657,48 mm	88,788	,8 mm
Length Y	101,1	18 mm	494,88 mm	101,18	8 mm
Length Z	96, r	mm	45, mm	96, 1	mm
		P	roperties		
Volume	2,8953e+	+005 mm³	1,2405e+006 mm ³	2,8953e+	-005 mm³
Mass	2,272	28 kg	9,7382 kg	2,272	28 kg
Centroid X	-700,15 mm	-36,758 mm	368,46 mm	36,76 mm	700,15 mm
Centroid Y	266,14 mm	748,13 mm	-507,14 mm	-748,13 mm	-266,15 mm
Centroid Z			90, mm		
Moment of Inertia lp1	2591,8	kg∙mm²	2440,1 kg·mm ²	2591,8 kg·mm²	2590,1 kg⋅mm²
Moment of Inertia lp2	150771	kg∙mm²	4,9244e+005 kg·mm²	1597,4	kg∙mm²
Moment of Inertia Ip3	1507 3 ka.mm ²	1597,4 kg∙mm²	4,9244e+005 kg⋅mm²	1597,4 kg∙mm²	1595,7 kg⋅mm²
		Ş	Statistics		
Nodes	498	377	2469	37	/7
Elements	78	56	450	50	,6
Mesh Metric			Skewness		
Min	8,61703737395741E -02	7,67962448515975E -02	0,440138732485638	5,99716297886576E -02	0,130115686410123
Max	0,55610654203922	0,382442778011599	0,551232086355783	0,356001720473829	0,428612801636582
Average	0,273157987943119	0,265142950721297	0,50000000065292	0,260406958772791	0,306112068889663
Standard Deviation	0 12152744702881	9,51828443407145E -02	3,80711342266405E -02	0,094434851504264	7,39375375836418E -02

			ABLE 34 4) > Geometry > Parts	5	
Object Name	Solid	Solid	Solid	Solid	Solid
State			Meshed	·	·
		Graphi	ics Properties		
Visible			Yes		
Transparenc y			1		
		D	efinition		
Suppressed			No		
Stiffness Behavior			Flexible		
Coordinate System		De	efault Coordinate Syste	em	
Reference Temperature			By Environment		
		ŀ	Material		
Assignment			A320		
Nonlinear Effects			Yes		
Thermal Strain Effects			Yes		
		Bou	Inding Box		
Length X	657,48 mm	88,788	8 mm	657,48 mm	88,788 mm
Length Y	494,88 mm	101,18	8 mm	494,88 mm	101,18 mm
Length Z	45, mm	96, i	mm	45, mm	96, mm
		Pi	roperties		
Volume	1,2405e+006 mm ³	2,8953e+		1,2405e+006 mm ³	2,8953e+005 mm ³
Mass	9,7382 kg	2,272	0	9,7382 kg	2,2728 kg
Centroid X	-368,45 mm	-700,15 mm	-36,758 mm	368,46 mm	36,76 mm
Centroid Y	507,13 mm	266,14 mm	748,13 mm	-507,14 mm	-748,13 mm

Centroid Z		-90, mm							
Moment of Inertia lp1	2440,1 kg⋅mm²	2591,8	kg∙mm²	2440,1 kg⋅mm²	2591,8 kg⋅mm²				
Moment of Inertia Ip2	4,9244e+005 kg·mm ²	1597,4 kg⋅mm² 4		4,9244e+005 kg·mm ²	1597,4 kg⋅mm²				
Moment of Inertia Ip3	4,9244e+005 kg·mm ²	1597,3 kg⋅mm²	1597,4 kg⋅mm²	4,9244e+005 kg·mm ²	1597,4 kg⋅mm²				
	Statistics								
Nodes	2469	498	377	2469	377				
Elements	450	78	56	450	56				
Mesh Metric			Skewness						
Min	0,440138732486726	8,61703737395741E -02	7,67962448515975E -02	0,440138732485638	5,99716297886576E -02				
Max	0,551232086350019	0,55610654203922	0,382442778011599	0,551232086355783	0,356001720473829				
Average	0,50000000065278	0,273157987943119	0,265142950721297	0,50000000065292	0,260406958772791				
Standard Deviation	3,80711342255428E -02	0,12152744702881	9,51828443407145E -02	3,80711342266405E -02	0,094434851504264				

TABLE 35	
It check (CA) > Geometry >	Dar

TABLE 35 Bolt check (C4) > Geometry > Parts					
Object Name	Solid	Solid	Solid	Solid	Solid
State			Meshed	·	
		Graph	ics Properties		
Visible			Yes		
Transparenc y			1		
		D	efinition		
Suppressed			No		
Stiffness Behavior			Flexible		
Coordinate System		De	efault Coordinate Syste	em	
Reference Temperature			By Environment		
			Material		
Assignment			A320		
Nonlinear Effects			Yes		
Thermal Strain Effects			Yes		
		Βοι	Inding Box		
Length X	88,788 mm	657,48 mm	88,78	8 mm	657,48 mm
Length Y	101,18 mm	494,88 mm	101,1	8 mm	494,88 mm
Length Z	96, mm	45, mm 96, mm 45, mm		45, mm	
		Р	roperties		
Volume	2,8953e+005 mm ³	1,2405e+006 mm ³	2,8953e+	-005 mm³	1,2405e+006 mm ³
Mass	2,2728 kg	9,7382 kg	2,27	28 kg	9,7382 kg
Centroid X	700,15 mm	-368,45 mm	-700,15 mm	-36,758 mm	368,46 mm
Centroid Y	-266,15 mm	507,13 mm	266,14 mm	748,13 mm	-507,14 mm
Centroid Z	-90, mm		-270	, mm	
Moment of Inertia Ip1	2590,1 kg·mm ²	2440,1 kg⋅mm²			2440,1 kg⋅mm²
Moment of Inertia Ip2	1597,4 kg∙mm²	4,9244e+005 kg⋅mm ²	mm² 1597,4 kg·mm² 4,9244e+005 kg		4,9244e+005 kg⋅mm ²
Moment of Inertia Ip3	1595,7 kg·mm²	4,9244e+005 kg⋅mm²	1597,3 kg∙mm²	1597,4 kg∙mm²	4,9244e+005 kg⋅mm²
Statistics					
Nodes	377	2469	498	377	2469
Elements	56	450	78	56	450
Mesh Metric			Skewness		
Min	0,130115686410123	0,440138732486726	8,61703737395741E -02	7,67962448515975E -02	0,440138732485638
Max	0,428612801636582	0,551232086350019	0,55610654203922	0,382442778011599	0,551232086355783
•	0,306112068889663	0,50000000065278	0,273157987943119	0,265142950721297	0,50000000065292

-Finite element analysis of a friction clamp located on a North Sea jacket-

F

subsea 7

Standard	7,39375375836418E	3,80711342255428E	0.12152744702881	9,51828443407144E	3,80711342266405E
Deviation	-02	-02	0,12152744702661	-02	-02

TABLE 36 Bolt check (C4) > Geometry > Parts					
Object Name	Solid	Solid	Solid	Solid	Solid
State			Meshed		
		Graph	ics Properties		
Visible		•	Yes		
Transparenc y			1		
y		D	Definition		
Suppressed			No		
Stiffness					
Behavior			Flexible		
Coordinate System		De	efault Coordinate Syste	m	
Reference Temperature			By Environment		
Temperature			Material		
Assignment			A320		
Nonlinear					
Effects			Yes		
Thermal Strain Effects			Yes		
		Βοι	unding Box		
Length X	88,78	8 mm	657,48 mm	88,78	8 mm
Length Y	101,1	8 mm	494,88 mm	101,1	8 mm
Length Z	96, mm 45, mm 96, mm				mm
Properties					
Volume	2,8953e+005 mm ³ 1,2405e+006 mm ³ 2,8953e+005 mm ³			005 mm³	
Mass	2,272	28 kg	9,7382 kg	2,272	28 kg
Centroid X	36,76 mm	700,15 mm	-368,45 mm	-700,15 mm	-36,758 mm
Centroid Y	-748,13 mm	-266,15 mm	507,13 mm	266,14 mm	748,13 mm
Centroid Z	-270	, mm		-450, mm	
Moment of Inertia Ip1	2591,8 kg·mm ² 2590,1 kg·mm ²		2440,1 kg·mm²	2591,8	kg∙mm²
Moment of Inertia Ip2	1597,4 kg·mm²		4,9244e+005 kg·mm ²	1597,4	kg·mm²
Moment of Inertia Ip3	1597,4 kg·mm²	1595,7 kg·mm²	4,9244e+005 kg·mm ²	1597,3 kg∙mm²	1597,4 kg⋅mm²
		S	Statistics		
Nodes	377 2469 498 377				377
Elements	56		450	78	56
Mesh Metric	Skewness				
Min	5,99716297886575E -02	0,130115686410123	0,440138732486726	8,61703737395741E -02	7,67962448515975E -02
Max	0,356001720473829	0,428612801636582	0.551232086350019	0,55610654203922	0,382442778011599
Average	0,260406958772791	0.306112068889663	0.500000000065278	0.273157987943119	0,265142950721297
Standard	9,44348515042642E -02	7,39375375836418E -02	3,80711342255428E -02	0,12152744702881	9,51828443407144E -02
Domaion	52	52	52		<u>, 72</u>

	Т	A	Bl	_E	37	

Bolt check (C4) > Geometry > Parts			
Object Name	Solid	Solid	Solid
State		Meshed	
Graphics Properties			
Visible		Yes	
Transparency	1		
	Defin	ition	
Suppressed		No	
Stiffness Behavior		Flexible	
Coordinate System]	Default Coordinate System	n

Reference Temperature		By Environment		
	Mat	erial		
Assignment		A320		
Nonlinear Effects		Yes		
Thermal Strain Effects		Yes		
	Boundi	ing Box		
Length X	657,48 mm	88,78	8 mm	
Length Y	494,88 mm	101,1	8 mm	
Length Z	45, mm	96,	mm	
	Prop	erties		
Volume	1,2405e+006 mm ³	2,8953e+005 mm ³		
Mass	9,7382 kg 2,2728 kg			
Centroid X	368,46 mm	36,76 mm	700,15 mm	
Centroid Y	-507,14 mm	-748,13 mm	-266,15 mm	
Centroid Z	-450, mm			
Moment of Inertia Ip1	2440,1 kg·mm ²	2591,8 kg⋅mm²	2590,1 kg⋅mm²	
Moment of Inertia Ip2	4,9244e+005 kg·mm ²	1597,4	kg∙mm²	
Moment of Inertia Ip3	4,9244e+005 kg·mm ²	1597,4 kg⋅mm²	1595,7 kg⋅mm²	
Statistics				
Nodes	2469	377		
Elements	450	56		
Mesh Metric	Skewness			
Min	0,440138732485637	5,99716297886575E-02	0,130115686410123	
Max	0,551232086355783	0,356001720473829	0,428612801636582	
Average	0,50000000065292	0,260406958772791	0,306112068889663	
Standard Deviation	3,80711342266405E-02	9,44348515042642E-02	7,39375375836418E-02	

Bolt check (C4) > Construction Geometry

Object Name	Construction Geometry	
State	Fully Defined	
Display		
Show Mesh	No	

F	

TABLE	39	

Bolt check (C4) > Construction Geometry > Paths		
Object Name	Path	
State	Fully Defined	
Defin	ition	
Path Type	Two Points	
Path Coordinate System	Global Coordinate System	
Number of Sampling Points	47,	
Suppressed	No	
Start		
Coordinate System	Global Coordinate System	
Start X Coordinate	347,42 mm	
Start Y Coordinate	-522,42 mm	
Start Z Coordinate	472,5 mm	
Location	Defined	
End		
Coordinate System	Global Coordinate System	
End X Coordinate	347,42 mm	
End Y Coordinate	-522,42 mm	
End Z Coordinate	427,5 mm	
Location	Defined	

Coordinate Systems

 TABLE 40

 Bolt check (C4) > Coordinate System

 Object Name
 Global Coordinate System

State	Fully Defined
Det	finition
Туре	Cartesian
Coordinate System ID	0,
C	Drigin
Origin X	0, mm
Origin Y	0, mm
Origin Z	0, mm
Directio	nal Vectors
X Axis Data	[1, 0, 0,]
Y Axis Data	[0, 1, 0,]
Z Axis Data	[0,0,1,]

Connections

TABLE 41	
----------	--

s
Connections
Fully Defined
Yes
Yes

TABLE 42 Bolt check (C4) > Connections > Contacts

Object Name	Contacts
State	Fully Defined
Def	inition
Connection Type	Contact
S	соре
Scoping Method	Geometry Selection
Geometry	All Bodies
Auto I	Detection
Tolerance Type	Value
Tolerance Value	1, mm
Face/Face	Yes
Face/Edge	No
Edge/Edge	No
Priority	Include All
Group By	Bodies
Search Across	Bodies

TABLE 43

Bolt check (C4) > Connections > Contacts > Contact Regions

_						
	Object Name	Bonded - Part 110 To Part 111	Bonded - Part 110 To Part 112	Bonded - Part 110 To Part 113	Bonded - Part 110 To Part 114	Bonded - Part 110 To Part 115
	State			Fully Defined		
				Scope		
	Scoping Method			Geometry Selection		
	Contact			1 Face		
	Target			1 Face		
	Contact Bodies	Part 110				
•	Target Bodies	Part 111	Part 112	Part 113	Part 114	Part 115
			D	efinition		
	Туре			Bonded		
	Scope Mode	Automatic				
	Behavior	Symmetric				
	Suppressed	I No				
	Advanced					

Formulation	Pure Penalty
Normal Stiffness	Program (Controlled
Update Stiffness	
Pinball Region	Program Controlled

	Bolt cl	neck (C4) > Connectiv	ons > Contacts > Cont	tact Regions		
Object Name	Bonded - Part 109	Bonded - Part 109	Bonded - Part 109	Bonded - Part 109	Bonded - Part 109	
Object Name	To Part 111	To Part 112	To Part 113	To Part 114	To Part 115	
State			Fully Defined			
			Scope			
Scoping Method			Geometry Selection			
Contact			1 Face			
Target			1 Face			
Contact Bodies		Part 109				
Target Bodies	Part 111	Part 112	Part 113	Part 114	Part 115	
		D	Definition			
Туре			Bonded			
Scope Mode			Automatic			
Behavior			Symmetric			
Suppressed			No			
		A	dvanced			
Formulation			Pure Penalty			
Normal Stiffness		Program Controlled				
Update Stiffness		Never				
Pinball Region			Program Controlled			

	Bolt cl		ABLE 45 ons > Contacts > Con	tact Regions	
Object Name	Bonded - Part 109 To Part 116	Bonded - Part 109 To Part 117	Bonded - Part 111 To Part 116	Bonded - Part 111 To Part 117	Bonded - Part 112 To Part 116
State			Fully Defined		
			Scope		
Scoping Method			Geometry Selection		
Contact			1 Face		
Target			1 Face		
Contact Bodies	Part 109 Part 111			Part 112	
Target Bodies	Part 116	Part 117	Part 116	Part 117	Part 116
		D	efinition		
Туре			Bonded		
Scope Mode			Automatic		
Behavior			Symmetric		
Suppressed			No		
		A	dvanced		
Formulation			Pure Penalty		
Normal Stiffness			Program Controlled		
Update Stiffness	Never				
Pinball Region			Program Controlled		

		T/	ABLE 46		
	Bolt cl	heck (C4) > Connectio	ons > Contacts > Con	tact Regions	
Object Name	Bonded - Part 112 To Part 117	Bonded - Part 113 To Part 116	Bonded - Part 113 To Part 117	Bonded - Part 114 To Part 116	Bonded - Part 114 To Part 117
	TUFall III	TOFAILTIO	TOFAILIT	TOFAILITO	TOFAILTI

State	Fully Defined						
			Scope				
Scoping Method			Geometry Selection				
Contact			1 Face				
Target			1 Face				
Contact Bodies	Part 112 Part 113 Part 114				rt 114		
Target Bodies	Part 117	Part 116	Part 117	Part 116	Part 117		
		l	Definition				
Туре			Bonded				
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		l	Advanced				
Formulation			Pure Penalty				
Normal Stiffness	Program Controlled						
Update Stiffness	Never						
Pinball Region			Program Controlled				

Bolt check (C4) > Connections > Contacts > Contact Regions						
Object Name	Bonded - Part 115	Bonded - Part 115	Bonded - Part 118	Bonded - Part 118	Bonded - Part 118	
Object Name	To Part 116	To Part 117	To Part 120	To Part 121	To Part 122	
State			Fully Defined			
			Scope			
Scoping Method			Geometry Selection			
Contact			1 Face			
Target			1 Face			
Contact Bodies	Part	Part 115 Part 118				
Target Bodies	Part 116	Part 117	Part 120	Part 121	Part 122	
		D	efinition			
Туре			Bonded			
Scope Mode			Automatic			
Behavior			Symmetric			
Suppressed		No				
		Ad	dvanced			
Formulation	n Pure Penalty					
Normal Stiffness	Program Controlled					
Update Stiffness	Never					
Pinball Region			Program Controlled			

TABLE 48

	Bolt check (C4) > Connections > Contacts > Contact Regions				
Object Name	Bonded - Part 118	Bonded - Part 118	Bonded - Part 118	Bonded - Part 118	Bonded - Part 119
Object Name	To Part 123	To Part 124	To Part 125	To Part 126	To Part 120
State			Fully Defined		
			Scope		
Scoping			Geometry Selection		
Method			Geometry Selection		
Contact			1 Face		
Target			1 Face		
Contact		Part	118		Part 119
Bodies		i ait	110		T all 113
Target Bodies	Part 123	Part 124	Part 125	Part 126	Part 120
		D	efinition		
Туре			Bonded		

-Finite element analysis of a friction clamp located on a North Sea jacket-

F

Scope Mode	Automatic
Behavior	Symmetric
Suppressed	No
	Advanced
Formulation	Pure Penalty
Normal Stiffness	Program (Controlled
Update Stiffness	Never
Pinball Region	Program Controlled

Bolt check (C4) > Connections > Contacts > Contact Regions							
Object Name	Bonded - Part 119						
•	To Part 121	To Part 122	To Part 123	To Part 124	To Part 125		
State			Fully Defined				
			Scope				
Scoping Method			Geometry Selection				
Contact			1 Face				
Target			1 Face				
Contact Bodies		Part 119					
Target Bodies	Part 121	Part 122	Part 123	Part 124	Part 125		
		D	efinition				
Туре			Bonded				
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		A	dvanced				
Formulation			Pure Penalty				
Normal Stiffness	Program Controlled						
Update Stiffness			Never				
Pinball Region			Program Controlled				

ontacts > Contact Regions Bolt check (C4) > Conno

 TABLE 50

 Bolt check (C4) > Connections > Contacts > Contact Regions

Bolt check (C4) > Connections > Contacts > Contact Regions								
Object Name	Bonded - Part 120 To Part 126	Bonded - Part 121 To Part 125	Bonded - Part 121 To Part 126	Bonded - Part 122 To Part 125	Bonded - Part 122 To Part 126			
State			Fully Defined					
	Scope							
Scoping Method		Geometry Selection						
Contact			1 Face					
Target			1 Face					
Contact Bodies	Part 120	Part	121	Part 122				
Target Bodies	Part 126	Part 125	Part 126	Part 125	Part 126			
		D	efinition					
Туре			Bonded					
Scope Mode			Automatic					
Behavior			Symmetric					
Suppressed			No					
		A	dvanced					
Formulation			Pure Penalty					
Normal Stiffness		Program Controlled						
Update Stiffness		Never						
Pinball Region			Program Controlled					

	Bolt ch	eck (C4) > Connectio	ons > Contacts > Con	tact Regions			
Object Name	Bonded - Part 123 To Part 125	Bonded - Part 123 To Part 126	Bonded - Part 124 To Part 125	Bonded - Part 124 To Part 126	Frictional - Part 116 To Part 126		
State			Fully Defined				
		:	Scope				
Scoping Method			Geometry Selection				
Contact			1 Face				
Target			1 Face				
Contact Bodies	Part	123	Part	124	Part 116		
Target Bodies	Part 125	Part 126	Part 125	Par	t 126		
Definition							
Туре		Bor	ded		Frictional		
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
Friction Coefficient					0,21		
		Ac	Ivanced				
Formulation		Pure F	Penalty		Normal Lagrange		
Normal Stiffness		Program	Controlled				
Update Stiffness		Ne	ver				
Pinball Region		Program Controlled Radiu					
Interface Treatment		Adjust to Touc					
Pinball Radius					10, mm		
Time Step Controls					None		

TABLE 52 Bolt check (C4) > Connections > Contacts > Contact Regions

Object Name	Frictional - Part 117 To Part 125	Frictional - Part 24 To Part 107	Frictional - Part 1 To Part 107	Bonded - Part 19 To Part 1	Bonded - Part 19 To Part 12	
State	101 411 120	, art for	Fully Defined	101 411 1	101 att 12	
		Sco	•			
Scoping Method			eometry Selection			
Contact			1 Face			
Target			1 Face			
Contact Bodies	Part 117	Part 24	Part 1	Par	t 19	
Target Bodies	Part 125	Part	107	Part 1	Part 12	
Definition						
Туре		Frictional		Bor	ded	
Friction Coefficient	0,21					
Scope Mode	Automatic	Mar	iual	Automatic		
Behavior			Symmetric			
Suppressed			No			
		Advar	nced			
Formulation		Normal Lagrange		Pure F	Penalty	
Interface Treatment		Adjust to Touch				
Pinball Region		Radius		Program	Controlled	
Pinball Radius	10, mm	25, 1	mm			
Time Step Controls	None					
Normal Stiffness				Program	Controlled	
Update Stiffness				Ne	ver	

TABLE 53 Bolt check (C4) > Connections > Contacts > Contact Regions

F-34

Object Name	Bonded - Part 20 To Part 1	Bonded - Part 20 To Part 12	Bonded - Part 21 To Part 1	Bonded - Part 21 To Part 12	Bonded - Part 22 To Part 1		
State			Fully Defined				
Scope							
Scoping Method		Geometry Selection					
Contact			1 Face				
Target			1 Face				
Contact Bodies	Par	t 20	Pai	Part 21			
Target Bodies	Part 1	Part 12	Part 1	Part 12	Part 1		
		De	efinition				
Туре			Bonded				
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		Ac	lvanced				
Formulation			Pure Penalty				
Normal Stiffness		Program Controlled					
Update Stiffness			Never				
Pinball Region			Program Controlled				

Bolt check (C4) > Connections > Contacts > Contact Regions

_		naci negions	0113 > 0011acts > 001		Don c			
	Bonded - Part 24 To	Bonded - Part 24 To			Bonded - Part 22 To	Object Name		
	Part 26	Part 25	Part 12	Part 1	Part 2	State		
	Fully Defined							
			Scope					
	Scoping Method Geometry Selection							
			1 Face			Contact		
			1 Face			Target		
	t 24	Part 22 Part 23 Part 24						
	Part 26	Part 2 Part 1 Part 12 Part 25				Target Bodies		
			Definition	C				
1			Bonded			Туре		
1			Automatic			Scope Mode		
			Symmetric			Behavior		
			No			Suppressed		
			dvanced	Α				
1			Pure Penalty			Formulation		
	Program Controlled							
			Never			Update Stiffness		
			Program Controlled			Pinball Region		
-								

TABLE 55

Bolt check (C4) > Connections > Contacts > Contact Regions

Bonded - Part 24 To Part 27	Bonded - Part 24 To Part 28	Bonded - Part 24 To Part 29	Bonded - Part 24 To Part 30	Bonded - Part 24 To Part 31			
		Fully Defined					
Scope							
	Geometry Selection						
		1 Face					
		1 Face					
Part 24							
Part 27	Part 28	Part 29	Part 30	Part 31			
	Part 27	Part 27 Part 28	Part 27 Part 28 Part 29 Fully Defined Scope Geometry Selection 1 Face 1 Face Part 24	Part 27 Part 28 Part 29 Part 30 Fully Defined Scope Geometry Selection 1 Face 1 Face Part 24			

	Definition
Туре	Bonded
Scope Mode	Automatic
Behavior	Symmetric
Suppressed	No
	Advanced
Formulation	Pure Penalty
Normal Stiffness	
Update Stiffness	
Pinball Region	Program Controlled

TABLE 56 Bolt check (C4) > Connections > Contacts > Contact Regions

Object Name	Bonded - Part 24 To Part 32	Bonded - Part 24 To Part 33	Bonded - Part 24 To Part 34	Bonded - Part 24 To Part 35	Bonded - Part 24 To Part 36		
State			Fully Defined				
			Scope				
Scoping Method			Geometry Selection				
Contact			1 Face				
Target			1 Face				
Contact Bodies		Part 24					
Target Bodies	Part 32	Part 33	Part 34	Part 35	Part 36		
		D	efinition				
Туре			Bonded				
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		Ad	lvanced				
Formulation			Pure Penalty				
Normal Stiffness		Program Controlled					
Update Stiffness		Never					
Pinball Region			Program Controlled				

TABLE 57 Bolt check (C4) > Connections > Contacts > Contact Regions

Bolt check (C4) > Connections > Contacts > Contact Regions						
Object Name	Bonded - Part 24 To	Bonded - Part 24 To		Bonded - Part 24 To	Bonded - Part 24 To	
	Part 37	Part 38	Part 39	Part 40	Part 41	
State			Fully Defined			
			Scope			
Scoping Method			Geometry Selection			
Contact			1 Face			
Target			1 Face			
Contact Bodies		Part 24				
Target Bodies	Part 37	Part 38	Part 39	Part 40	Part 41	
		De	efinition			
Туре			Bonded			
Scope Mode			Automatic			
Behavior			Symmetric			
Suppressed			No			
		Ac	dvanced			
Formulation			Pure Penalty			
Normal Stiffness		Program Controlled				
Update Stiffness			Never			

Bolt check

subsea 7

Pinball Region

Program Controlled

			ABLE 58			
			ons > Contacts > Cont		Devide de Devid 0.4 Te	
Object Name	Bonded - Part 24 To Part 42	Bonded - Part 24 To Part 43	Bonded - Part 24 To Part 44	Bonded - Part 24 To Part 45	Bonded - Part 24 To Part 46	
State			Fully Defined			
			Scope			
Scoping Method			Geometry Selection			
Contact			1 Face			
Target			1 Face			
Contact Bodies		Part 24				
Target Bodies	Part 42	Part 43	Part 44	Part 45	Part 46	
		De	efinition			
Туре			Bonded			
Scope Mode			Automatic			
Behavior			Symmetric			
Suppressed			No			
		Ac	lvanced			
Formulation			Pure Penalty			
Normal Stiffness		Program Controlled				
Update Stiffness			Never			
Pinball Region			Program Controlled			

TABLE 59

Bolt check (C4) > Connections > Contacts > Contact Regions

Doit check (04) > Connections > Contacts > Contact Regions						
Object Name	Bonded - Part 24 To Part 167:Body 3	Bonded - Part 24 To Part 167:Body 5	Bonded - Part 24 To Part 167:Body 6	Bonded - Part 24 To Part 168:Body 1	Bonded - Part 24 To Part 168:Body 2	
State			Fully Defined			
			Scope			
Scoping Method			Geometry Selection			
Contact			1 Face			
Target			1 Face			
Contact Bodies		Part 24				
Target Bodies	Part 167:Body 3	Part 167:Body 5	Part 167:Body 6	Part 168:Body 1	Part 168:Body 2	
		D	efinition			
Туре			Bonded			
Scope Mode			Automatic			
Behavior			Symmetric			
Suppressed			No			
		A	dvanced			
Formulation			Pure Penalty			
Normal Stiffness			Program Controlled			
Update Stiffness			Never			
Pinball Region		Program Controlled				

TABLE 60 Bolt check (C4) > Connections > Contacts > Contact Regions							
Object Name	Object Name Bonded - Part 25 To						
State	Part 26 Part 27 Part 28 Part 29 Part 30						
Oldic	Scope						
Scoping Geometry Selection							

Method						
Contact	1 Face					
Target			1 Face			
Contact Bodies		Part 25				
Target Bodies	Part 26	Part 27	Part 28	Part 29	Part 30	
		1	Definition			
Туре			Bonded			
Scope Mode			Automatic			
Behavior			Symmetric			
Suppressed			No			
		A	Advanced			
Formulation			Pure Penalty			
Normal Stiffness	Program Controlled					
Update Stiffness	Never					
Pinball Region		Program Controlled				

Bolt check (C4) > Connections > Contacts > Contact Regions							
Object Name	Bonded - Part 25 To						
Object Name	Part 31	Part 32	Part 33	Part 34	Part 45		
State			Fully Defined				
			Scope				
Scoping Method			Geometry Selection				
Contact			1 Face				
Target			1 Face				
Contact Bodies		Part 25					
Target Bodies	Part 31	Part 32	Part 33	Part 34	Part 45		
		D	efinition				
Туре			Bonded				
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		Ad	dvanced				
Formulation			Pure Penalty				
Normal Stiffness	Program Controlled						
Update Stiffness			Never				
Pinball Region			Program Controlled				

F

TABLE 62

Bolt check (C4) > Connections > Contacts > Contact Regions Bonded - Part 35 To Part 36 Bonded - Part 35 To Part 38 Bonded - Part 25 To Bonded - Part 25 To Bonded - Part 35 **Object Name** Part 168:Body 1 Part 168:Body 2 To Part 37 State Fully Defined Scope Scoping **Geometry Selection** Method 1 Face Contact Target 1 Face Contact Part 25 Part 35 Bodies **Target Bodies** Part 168:Body 1 Part 168:Body 2 Part 36 Part 37 Part 38 Definition Туре Bonded Scope Mode Automatic Behavior Symmetric Suppressed No

	Advanced							
Formulation	Pure Penalty							
Normal Stiffness	Program (Controlled							
Update Stiffness								
Pinball Region	Program Controlled							

	Bolt ch	neck (C4) > Connection	ons > Contacts > Cont	tact Regions		
Object Name	Bonded - Part 35 To					
	Рап 39	Part 40	Part 41	Part 42	Part 43	
State	L		Fully Defined			
			Scope			
Scoping Method	I		Geometry Selection			
Contact			1 Face			
Target			1 Face			
Contact Bodies			Part 35			
Target Bodies	Part 39	Part 40	Part 41	Part 42	Part 43	
		D	efinition			
Туре			Bonded			
Scope Mode			Automatic			
Behavior			Symmetric			
Suppressed			No			
		A	dvanced			
Formulation			Pure Penalty			
Normal Stiffness		Program Controlled				
Update Stiffness		Never				
Pinball Region			Program Controlled			

TABLE 64

	Bolt check (C4) > Connections > Contacts > Contact Regions							
Object Name	Bonded - Part 35 To Part 44	Bonded - Part 35 To Part 46	Bonded - Part 35 To Part 168:Body 1	Bonded - Part 35 To Part 168:Body 2	Bonded - Part 35 To Solid			
State			Fully Defined					
	Scope							
Scoping Method		Geometry Selection						
Contact			1 Face					
Target			1 Face					
Contact Bodies		Part 35						
Target Bodies	Part 44	Part 46	Part 168:Body 1	Part 168:Body 2	Solid			
			Definition					
Туре			Bonded					
Scope Mode			Automatic					
Behavior			Symmetric					
Suppressed			No					
			Advanced					
Formulation			Pure Penalty					
Normal Stiffness		Program Controlled						
Update Stiffness	Never							
Pinball Region			Program Controlled					

TABLE 65 Bolt check (C4) > Connections > Contacts > Contact Regions

Object Name	Bonded - Part 1 To Part 2	Bonded - Part 1 To Part 3	Bonded - Part 1 To Part 4	Bonded - Part 1 To Part 5	Bonded - Part 1 To Part 6		
State			Fully Defined				
	Scope						
Scoping Method							
Contact			1 Face				
Target			1 Face				
Contact Bodies			Part 1				
Target Bodies	Part 2	Part 3	Part 4	Part 5	Part 6		
		De	efinition				
Туре			Bonded				
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		Ac	Ivanced				
Formulation			Pure Penalty				
Normal Stiffness	Program Controlled						
Update Stiffness	Never						
Pinball Region	Program Controlled						

TABLE 66 Bolt check (C4) > Connections > Contacts > Contact Regions

	BOILCI	leck (C4) > Connection	ons > Contacts > Con	itact Regions			
Object Name	Bonded - Part 1 To Part 7	Bonded - Part 1 To Part 8	Bonded - Part 1 To Part 9	Bonded - Part 1 To Part 10	Bonded - Part 1 To Part 11		
State			Fully Defined				
			Scope				
Scoping Method							
Contact			1 Face				
Target			1 Face				
Contact Bodies			Part 1				
Target Bodies	Part 7	Part 8	Part 9	Part 10	Part 11		
		D	efinition				
Туре			Bonded				
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		A	dvanced				
Formulation		Pure Penalty					
Normal Stiffness	Program Controlled						
Update Stiffness	Never						
Pinball Region			Program Controlled				

 TABLE 67

 Bolt check (C4) > Connections > Contacts > Contact Regions

Bonded - Part 1 To	Bonded - Part 1 To	Bonded - Part 1 To	Bonded - Part 1 To	Bonded - Part 1 To			
Part 12	Part 13	Part 14	Part 15	Part 16			
		Fully Defined					
Scope							
Scoping							
		Geometry Selection					
		1 Face					
		1 Face					
		Dort 1					
Parti							
Part 12	Part 13	Part 14	Part 15	Part 16			
Definition							
	Bonded - Part 1 To Part 12	Bonded - Part 1 To Part 12 Part 13 Part 13 Part 13 Part 13	Bonded - Part 1 To Part 12Bonded - Part 1 To Part 13Bonded - Part 1 To Part 14Part 12Geometry SelectionI Face1 FacePart 1Part 12	Bonded - Part 1 To Part 12Bonded - Part 1 To Part 13Bonded - Part 1 To Part 14Bonded - Part 1 To Part 15Fully DefinedScopeI FaceI FacePart 12Part 13Part 14Part 170 Part 14Bonded - Part 1 To Part 14Part 1I FacePart 1Part 12Part 13Part 14Part 15			

Туре	Bonded
Scope Mode	Automatic
Behavior	Symmetric
Suppressed	No
	Advanced
Formulation	Pure Penalty
Normal Stiffness	Program Controlled
Update Stiffness	NOV/Or
Pinball Region	Program Controlled

Bolt check (C4) > Connections > Contacts > Contact Regions Bonded - Part 110 To Part Bonded - Part 1 To Bonded - Part 1 To Bonded - Part 107 Bonded - Part 107 **Object Name** Part 17 Part 18 To Solid To Solid 167:Body 2 State Fully Defined Scope Scoping Method **Geometry Selection** Contact 1 Face Target 1 Face Contact Part 1 Part 107 Part 110 Bodies **Target Bodies** Part 17 Part 18 Solid Part 167:Body 2 Definition Туре Bonded Scope Mode Automatic Behavior Symmetric Suppressed No Advanced Formulation Pure Penalty Normal **Program Controlled** Stiffness Update Never Stiffness **Pinball Region Program Controlled**

TABLE 69

.

.

	Bolt check (C4) > Connections > Contacts > Contact Regions						
Object Name	Bonded - Part 110	Bonded - Part 110	Bonded - Part 110	Bonded - Part 110	Bonded - Part 110		
Object Name	To Part 167:Body 1	To Part 167:Body 3	To Part 167:Body 4	To Part 167:Body 5	To Part 167:Body 6		
State			Fully Defined				
	Scope						
Scoping Method	Geometry Selection						
Contact			1 Face				
Target			1 Face				
Contact Bodies		Part 110					
Target Bodies	Part 167:Body 1	Part 167:Body 3	Part 167:Body 4	Part 167:Body 5	Part 167:Body 6		
		D	efinition				
Туре			Bonded				
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		A	dvanced				
Formulation			Pure Penalty				
Normal Stiffness	Program Controlled						
Update Stiffness		Never					

Bolt check

subsea 7

Pinball Region

Program Controlled

TABLE 70 Bolt check (C4) > Connections > Contacts > Contact Regions							
Object Name	Bonded - Part 110 To	Bonded - Part 110 To		Bonded - Part 110			
Object Name	Part 168:Body 1	Part 168:Body 2	To Solid	To Solid	To Solid		
State			ly Defined				
		Scope					
Scoping Method		Geom	etry Selection				
Contact			1 Face				
Target			1 Face				
Contact Bodies		F	Part 110				
Target Bodies	Part 168:Body 1	Part 168:Body 2		Solid			
		Definition	ı				
Туре		I	Bonded				
Scope Mode		A	utomatic				
Behavior		S	/mmetric				
Suppressed			No				
		Advanced	ł				
Formulation		Pu	re Penalty				
Normal Stiffness	Program Controlled						
Update Stiffness	Never						
Pinball Region	Program Controlled						

TABLE 71 Bolt check (C4) > Connections > Contacts > Contact Regions							
Object Name	Bonded - Part 110 To Solid						
State			Fully Defined		·		
			Scope				
Scoping Method			Geometry Selection				
Contact			1 Face				
Target			1 Face				
Contact Bodies		Part 110					
Target Bodies			Solid			1	
		D	efinition				
Туре			Bonded				
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		Ad	dvanced				
Formulation	Pure Penalty						
Normal Stiffness	Program Controlled						
Update Stiffness	Never						
Pinball Region			Program Controlled				

TABLE 72 Bolt check (C4) > Connections > Contacts > Contact Regions					
Object Name	Bonded - Part 2 To Part 3	Bonded - Part 2 To Part 4	Bonded - Part 2 To Part 5	Bonded - Part 2 To Part 6	Bonded - Part 2 To Part 7
State	State Fully Defined				
	Scope				
Scoping			Geometry Selection		

Method						
Contact		1 Face				
Target			1 Face			
Contact Bodies			Part 2			
Target Bodies	Part 3	Part 4	Part 5	Part 6	Part 7	
		D	efinition			
Туре			Bonded			
Scope Mode			Automatic			
Behavior			Symmetric			
Suppressed		No				
		A	dvanced			
Formulation			Pure Penalty			
Normal Stiffness		Program Controlled				
Update Stiffness	Never					
Pinball Region			Program Controlled			

TABLE 73 Bolt check (C4) > Connections > Contacts > Contact Regions

Bolt cneck (C4) > Connections > Contacts > Contact Regions					
Object Name	Bonded - Part 2 To Part 8	Bonded - Part 2 To Part 9	Bonded - Part 2 To Part 10	Bonded - Part 2 To Part 11	Bonded - Part 12 To Part 13
State			Fully Defined		
			Scope		
Scoping Method			Geometry Selection		
Contact			1 Face		
Target			1 Face		
Contact Bodies		Part 2 Part 12			
Target Bodies	Part 8	Part 9	Part 10	Part 11	Part 13
		Γ	Definition		
Туре			Bonded		
Scope Mode			Automatic		
Behavior			Symmetric		
Suppressed			No		
		4	dvanced		
Formulation		Pure Penalty			
Normal Stiffness	Program Controlled				
Update Stiffness	Never				
Pinball Region			Program Controlled		

F

TABLE 74 Bolt check (C4) > Connections > Contacts > Contact Regions

	Bolt check (C4) > Connections > Contacts > Contact Regions				
Object Name	Bonded - Part 12 To	Bonded - Part 12 To		Bonded - Part 12 To	Bonded - Part 12 To
· ·	Part 14	Part 15	Part 16	Part 17	Part 18
State			Fully Defined		
			Scope		
Scoping Method		Geometry Selection			
Contact			1 Face		
Target	1 Face				
Contact Bodies	Part 12				
Target Bodies	Part 14	Part 15	Part 16	Part 17	Part 18
		De	efinition		
Туре			Bonded		
Scope Mode	Automatic				
Behavior	Symmetric				
Suppressed	No				
	Advanced				

Formulation	Pure Penalty
Normal	Program Controlled
Stiffness	
Update	Never
Stiffness	i vevei
Pinball Region	Program Controlled

Bolt check (C4) > Connections > Contacts > Contact Regions						
Object Name	Bonded - Part 167:Body 2 To Part	Bonded - Part 167:Body 2 To Part	Bonded - Part 167:Body 1 To Part	Bonded - Part 167:Body 3 To Part	Bonded - Part 167:Body 4 To Part	
Object Name	168:Body 1	168:Body 2 168:Body 2	168:Body 1	168:Body 2	168:Body 2	
State			Fully Defined			
			Scope			
Scoping Method		Geometry Selection				
Contact			1 Face			
Target			1 Face			
Contact Bodies	Part 167:Body 2 Part 167:Body 1 Part 167:Body 3		Part 167:Body 4			
Target Bodies	Part 168:Body 1	Part 168:Body 2	Part 168:Body 1	Part 168:Body 2		
		C	Definition			
Туре			Bonded			
Scope Mode			Automatic			
Behavior			Symmetric			
Suppressed			No			
		Α	dvanced			
Formulation			Pure Penalty			
Normal Stiffness	Program Controlled					
Update Stiffness	Never					
Pinball Region	Program Controlled					

TABLE 76

	Bolt chec	ck (C4) > Connections > C	Contacts > Contact Regio	ns	
Object Name	Bonded - Part 167:Body 5 To Part 168:Body 1	Bonded - Part 167:Body 5 To Part 168:Body 2	Bonded - Part 167:Body 6 To Part 168:Body 1	Bonded - Part 119 To Solid	Bonded - Part 119 To Solid
State		Fu	Illy Defined		
		Scope			
Scoping Method		Geom	netry Selection		
Contact			1 Face		
Target			1 Face		
Contact Bodies	Part 167	7:Body 5	Part 167:Body 6	Part	119
Target Bodies	Part 168:Body 1	Part 168:Body 2	Part 168:Body 1	Solid	
		Definitio	on		
Туре			Bonded		
Scope Mode		ŀ	Automatic		
Behavior		5	Symmetric		
Suppressed			No		
		Advance	ed		
Formulation		Pure Penalty			
Normal Stiffness	Program Controlled				
Update Stiffness	Never				
Pinball Region		Program Controlled			

	Bolt ch	neck (C4) > Connectio	ons > Contacts > Cont	tact Regions	
Object Name	Bonded - Part 119	Bonded - Part 119	Bonded - Part 119	Bonded - Part 119	Bonded - Part 119
Object Name	To Solid	To Solid	To Solid	To Solid	To Solid
State			Fully Defined		
			Scope		
Scoping Method			Geometry Selection		
Contact			1 Face		
Target			1 Face		
Contact Bodies	Part 119				
Target Bodies	Solid				
		De	efinition		
Туре			Bonded		
Scope Mode			Automatic		
Behavior			Symmetric		
Suppressed			No		
		Ac	dvanced		
Formulation			Pure Penalty		
Normal Stiffness	Program Controlled				
Update Stiffness	Never				
Pinball Region			Program Controlled		

TABLE 77

Bolt check (C4) > Connections > Contacts > Contact Regions Bonded - Part 119 To Bonded - Solid To Bonded - Solid To Bonded - Solid To Bonded - Solid To **Object Name** Solid Solid Solid Solid Solid State Fully Defined Scope Scoping **Geometry Selection** Method Contact 1 Face Target 1 Face Part 119 Solid **Contact Bodies** Solid Target Bodies Definition Bonded Туре Scope Mode Automatic Behavior Symmetric Suppressed No Advanced Formulation Pure Penalty Normal Program Controlled Stiffness Update Never Stiffness Program Controlled **Pinball Region**

TABLE 79

Bolt check (C4) > Connectio	ns > Contacts > Contact Regions

Object Name	Bonded - Solid To Solid				
State			Fully Defined		
		Ś	Scope		
Scoping Method		Geometry Selection			
Contact		1 Face			
Target	1 Face				
Contact Bodies	Solid				
Target Bodies	Solid				

	Definition
Туре	Bonded
Scope Mode	Automatic
Behavior	Symmetric
Suppressed	No
	Advanced
Formulation	Pure Penalty
Normal Stiffness	Program Controlled
Update Stiffness	Never
Pinball Region	Program Controlled

 TABLE 80
 Bolt check (C4) > Connections > Contacts > Contact Regions

				<u> </u>			
Object Name	Bonded - Solid To Solid						
State			Fully Defined				
		:	Scope				
Scoping Method		Geometry Selection					
Contact			1 Face				
Target			1 Face				
Contact Bodies			Solid				
Target Bodies			Solid				
		De	finition				
Туре	Bonded						
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		Ad	lvanced				
Formulation			Pure Penalty				
Normal Stiffness		Program Controlled					
Update Stiffness		Never					
Pinball Region			Program Controlled				

TABLE 81

IN BEE VI						
Bolt check (C4) > Connections > Contacts > Contact	t Regions					

Bolt check (C4) > Connections > Contacts > Contact Regions								
Object Name	Bonded - Solid To Solid	Bonded - Solid To Solid	Bonded - Solid To Solid	Bonded - Part 25 To Solid	Bonded - Part 25 To Solid			
State	Solid	Gond	Fully Defined	00//4	00//4			
Cluid	State							
Scoping Method	Scoping Geometry Selection							
Contact			1 Face					
Target			1 Face					
Contact Bodies		Solid		Par	t 25			
Target Bodies			Solid					
		[Definition					
Туре			Bonded					
Scope Mode			Automatic					
Behavior			Symmetric					
Suppressed			No					
		A	dvanced					
Formulation			Pure Penalty					
Normal Stiffness	Program Controlled							
Update Stiffness		Never						
Pinball Region			Program Controlled	b				

		T/	ABLE 82					
Bolt check (C4) > Connections > Contacts > Contact Regions								
Object Name	Bonded - Part 25 To	Bonded - Part 35 To						
Object Name	Solid	Solid	Solid	Solid	Solid			
State			Fully Defined					
	Scope							
Scoping Method								
Contact			1 Face					
Target			1 Face					
Contact Bodies		Part 25 Part 35						
Target Bodies			Solid					
		De	efinition					
Туре			Bonded					
Scope Mode			Automatic					
Behavior			Symmetric					
Suppressed			No					
		Ac	Ivanced					
Formulation			Pure Penalty					
Normal Stiffness	Program Controlled							
Update Stiffness	Never							
Pinball Region			Program Controlled					

TABLE 83 Bolt check (C4) > Connections > Contacts > Contact Regions

Boit check (C4) > Connections > Contacts > Contact Regions								
Object Name	Bonded - Part 35 To Solid	Bonded - Part 2 To Solid						
State			Fully Defined	1				
	Scope							
Scoping Method								
Contact			1 Face					
Target			1 Face					
Contact Bodies		Part 35 Part 2						
Target Bodies	Bodies Solid							
		De	finition					
Туре			Bonded					
Scope Mode			Automatic					
Behavior			Symmetric					
Suppressed		No						
		Ad	vanced					
Formulation			Pure Penalty					
Normal Stiffness	Program (controlled							
Update Stiffness								
Pinball Region			Program Controlled					

TABLE 84 Bolt check (C4) > Connections > Contacts > Contact Regions

Object Name	Bonded - Part 2 To Solid						
State			Fully Defined				
	Scope						
Scoping Method		Geometry Selection					
Contact		1 Face					
Target		1 Face					
Contact Bodies		Part 2					
Target Bodies	Solid						
	Definition						

Туре	Bonded				
Scope Mode	Automatic				
Behavior	Symmetric				
Suppressed	No				
	Advanced				
Formulation	Pure Penalty				
Normal Stiffness	Program (Controlled				
Update Stiffness	NAVAF				
Pinball Region	Program Controlled				

TABLE 85 Bolt check (C4) > Connections > Contacts > Contact Regions

Object Name	Bonded - Part 12 To				Bonded - Part 12 To			
Object Name	Solid	Solid	Solid	Solid	Solid			
State			Fully Defined					
		;	Scope					
Scoping Method		Geometry Selection						
Contact			1 Face					
Target			1 Face					
Contact Bodies			Part 12					
Target Bodies			Solid					
		De	finition					
Туре		Bonded						
Scope Mode			Automatic					
Behavior			Symmetric					
Suppressed			No					
		Ac	Ivanced					
Formulation			Pure Penalty					
Normal Stiffness	Program Controlled							
Update Stiffness		Never						
Pinball Region			Program Controlled					

TABLE 86 Bolt check (C4) > Connections > Contacts > Contact Regions

Object Name	Bonded - Part 12 To Solid	Bonded - Solid To Solid					
State			Fully Defined				
		S	соре				
Scoping Method							
Contact			1 Face				
Target			1 Face				
Contact Bodies	Part 12		So	lid			
Target Bodies			Solid				
	Definition						
Туре	Type Bonded						
Scope Mode			Automatic				
Behavior			Symmetric				
Suppressed			No				
		Adv	vanced				
Formulation			Pure Penalty				
Normal Stiffness	Program Controlled						
Update Stiffness	Never						
Pinball Region			Program Controlled				

Bolt check (C4) > Connections > Contacts > Contact Regions								
Object Name	Bonded - Solid To	Bonded - Solid To	Bonded - Solid To	Bonded - Solid To	Bonded - Solid To			
Object Name	Solid	Solid	Solid	Solid	Solid			
State			Fully Defined					
Scope								
Scoping Method								
Contact			1 Face					
Target			1 Face					
Contact Bodies			Solid					
Target Bodies	Solid							
		De	finition					
Туре			Bonded					
Scope Mode			Automatic					
Behavior			Symmetric					
Suppressed			No					
		Ad	lvanced					
Formulation			Pure Penalty					
Normal Stiffness		Program Controlled						
Update Stiffness		Never						
Pinball Region			Program Controlled					

TABLE 88 Bolt check (C4) > Connections > Contacts > Contact Regions

Bolt check (C4) > Connections > Contacts > Contact Regions									
Object Name	Bonded - Solid To Solid								
State			Fully Defined		·				
	Scope								
Scoping Method	Geometry Selection								
Contact			1 Face						
Target			1 Face						
Contact Bodies			Solid						
Target Bodies		Solid							
		De	finition						
Туре			Bonded						
Scope Mode			Automatic						
Behavior			Symmetric						
Suppressed			No						
		Ad	vanced						
Formulation	rmulation Pure Penalty								
Normal Stiffness	Program Controlled								
Update Stiffness	Never								
Pinball Region			Program Controlled						

TABLE 89

Bolt check (C4) > Connections > Contacts > Contact Regions

Object Name	Bonded - Solid To Solid						
State		Fully Defined					
	Scope						
Scoping Method		Geometry Selection					
Contact		1 Face					
Target		1 Face					
Contact Bodies		Solid					
Target Bodies	Solid						
		De	finition				

Туре	Bonded
Scope Mode	Automatic
Behavior	Symmetric
Suppressed	No
	Advanced
Formulation	Pure Penalty
Normal Stiffness	Program Controlled
Update Stiffness	Never
Pinball Region	Program Controlled

Bolt check (C4) > Connections > Contacts > Contact Regions Object Name Bonded - Solid To Solid State Fully Defined Scope Scoping Method **Geometry Selection** Contact 1 Face 1 Face Target **Contact Bodies** Solid **Target Bodies** Solid Definition Туре Bonded Scope Mode Automatic **Behavior** Symmetric Suppressed No Advanced Formulation Pure Penalty Normal Stiffness **Program Controlled** Update Stiffness Never Pinball Region **Program Controlled**

Mesh

Object Name State	Mesh Solved					
State	Solved					
Defaults						
Physics Preference	Mechanical					
Relevance	0					
Sizing						
Use Advanced Size Function	Off					
Relevance Center	Coarse					
Element Size	Default					
Initial Size Seed	Active Assembly					
Smoothing	Medium					
Transition	Fast					
Span Angle Center	Coarse					
Minimum Edge Length	20,0 mm					
Inflation						
Use Automatic Inflation	None					
Inflation Option	Smooth Transition					
Transition Ratio	0,272					
Maximum Layers	5					
Growth Rate	1,2					
Inflation Algorithm	Pre					
View Advanced Options	No					
Advanced						
Shape Checking	Standard Mechanical					
Element Midside Nodes	Program Controlled					

TABLE 91

F-50

Bolt check

No
Default (4)
Yes
Dimensionally Reduced
Disabled
Please Define
No
On
Default
227755
34990
Skewness
1,34222502290619E-07
0,701342273938782
0,263600745331541
0,204632867506524

TABLE 92 Bolt check (C4) > Mesh > Mesh Controls

Bolt check (C4) > Mesh > Mesh Controls							
Object Name	MultiZone	Body Sizing	MultiZone 2	Body Sizing 2	MultiZone 3		
State		-	Fully Defined				
		Scop	e				
Scoping Method			Geometry Selection				
Geometry	2 Bodie	s	3 Bodie	es	6 Bodies		
		Definiti	on				
Suppressed			No				
Method	MultiZone		MultiZone		MultiZone		
Mapped Mesh Type	Hexa		Hexa		Hexa/Prism		
Free Mesh Type	Not Allowed	Not Allowed Not Allowed			Not Allowed		
Element Midside Nodes	Use Global Setting Use Glo		Use Global Setting		Use Global Setting		
Src/Trg Selection	Automatic		Automatic		Automatic		
Source	Program Controlled Program (Program Controlled		Program Controlled		
Туре		Element Size		Element Size			
Element Size		150, mm		50, mm			
Behavior		Soft		Soft			
Advanced							
Mesh Based Defeaturing	Off		Off		Off		
Minimum Edge Length	3431,2 mm		20,06 mm		30, mm		
Write ICEM CFD Files	No		No		No		

TABLE 93 Bolt check (C4) > Mesh > Mesh Controls

Object Name	Edge Sizing	Face Sizing	MultiZone 4	Body Sizing 3	Edge Sizing 2		
State			Fully Defined				
		Scop	e				
Scoping Method			Geometry Selection				
Geometry	6 Edges	6 Faces	2 Bodie	es	2 Edges		
		Definiti	on				
Suppressed		No					
Туре	Number of Divisions	Element Size		Element Size	Number of Divisions		
Number of Divisions	2	2			2		
Behavior	Soft	Soft			Soft		
Bias Type	No Bias				No Bias		
Element Size		35, mm		50, mm			
Method			MultiZone				
Mapped Mesh Type		Hexa					
Free Mesh Type							
Element Midside Nodes			Use Global Setting				
Src/Trg Selection		Automatic					

Source		Program Controlled			
Advanced					
Mesh Based Defeaturing		Off			
Minimum Edge Length		25,033 mm			
Write ICEM CFD Files		No			

TABLE 94 Bolt check (C4) > Mesh > Mesh Controls

Object Name	MultiZone 5 Body Sizing 4 Sweep Method Face Sizing 2				MultiZone 6		
State	Fully Defined						
	Scope						
Scoping Method			Geometry Selection				
Geometry	2 Bodie	s	6 Bodies	6 Faces	40 Bodies		
		Definiti	on				
Suppressed			No				
Method	MultiZone		Sweep		MultiZone		
Mapped Mesh Type	Hexa/Prism				Hexa/Prism		
Free Mesh Type	Not Allowed				Not Allowed		
Element Midside Nodes	Use Global Setting		Use Global Setting		Use Global Setting		
Src/Trg Selection	Automatic	atic Automatic			Automatic		
Source	Program Controlled	gram Controlled Program Controlled			Program Controlled		
Туре		Element Size					
Element Size	30, mm		30, mm				
Behavior	Soft		Soft				
Target	Program Controlled						
Free Face Mesh Type			Quad/Tri				
Sweep Element Size			30, mm				
Sweep Bias Type			No Bias				
Element Option			Solid				
Constrain Boundary	No						
		Advanc	ed				
Mesh Based Defeaturing	Off				Off		
Minimum Edge Length	20, mm				20, mm		
Write ICEM CFD Files	No				No		

TABLE 95 Bolt check (C4) > Mesh > Mesh Controls

Object Name	Body Sizing 5	MultiZone 7	Body Sizing 6	Patch Conforming Method	Body Sizing 7			
State		Fully Defined		Suppressed				
		Scop	e					
Scoping Method			Geometry Sel	ection				
Geometry	40 Bodies	14 Bodi	es	75 Bodies	2 Bodies			
		Definiti	ion					
Suppressed		No		Yes				
Туре	Element Size		Element Size		Element Size			
Element Size	30, mm		30, mm		75, mm			
Behavior	Soft		Soft		Soft			
Method		MultiZone		Tetrahedrons				
Mapped Mesh Type		Hexa/Prism						
Free Mesh Type		Not Allowed						
Element Midside Nodes		Use Global Setting		Use Global Setting				
Src/Trg Selection		Automatic						
Source		Program Controlled						
Active	Active			No, Suppresse	ed			
Algorithm				Patch Conforming				
	Advanced							
Mesh Based Defeaturing		Off						
Minimum Edge Length		20, mm						
Write ICEM CFD Files		No						

TABLE 96					
Bolt check (C4) > Mesh > Mesh C	ontrols				

Object Name	MultiZone 8	Face Sizing 3	Automatic Method	Face Sizing 4
State	Fully Defined			
	S	соре		
Scoping Method		Geometry	Selection	
Geometry	17 Bodies	24 Faces	20 Bodies	16 Faces
	Def	inition		
Suppressed		N	0	
Method	MultiZone		Automatic	
Mapped Mesh Type	Hexa			
Free Mesh Type	Not Allowed			
Element Midside Nodes	Use Global Setting		Use Global Setting	
Src/Trg Selection	Automatic			
Source	Program Controlled			
Туре		Element Size		Element Size
Element Size		20, mm		17,5 mm
Behavior		Soft		Soft
	Adv	vanced		
Mesh Based Defeaturing	Off			
Minimum Edge Length	235,62 mm			
Write ICEM CFD Files	No			

Static Structural (C5)

TABLE 97 Bolt check (C4) > Analysis							
Object Name Static Structural (C5)							
State	Solved						
Definiti	on						
Physics Type Structural							
Analysis Type	Static Structural						
Solver Target	Mechanical APDL						
Options							
Environment Temperature	22, °C						
Generate Input Only	No						

TABLE 98	
Bolt check (C4) > Static Structural (C5) > Analysis Settings	;

	Bolt check (64) > Static Structural (63) > Analysis Settings			
Object Name	Analysis Settings			
State Fully Defined				
	Step Controls			
Number Of Steps	2,			
Current Step Number	1,			
Step End Time	1, s			
Auto Time Stepping	On			
Define By Substeps				
Initial Substeps	5,			
Minimum Substeps	5,			
Maximum Substeps 30,				
Solver Controls				
Solver Type	Program Controlled			
Weak Springs	Program Controlled			
Large Deflection	Off			
Inertia Relief	Off			
	Restart Controls			
Generate Restart Points	Program Controlled			
Retain Files After Full Solve	No			
Nonlinear Controls				
Force Convergence	Program Controlled			

Moment Convergence	Program Controlled				
Displacement Convergence	Program Controlled				
Rotation Convergence	Program Controlled				
Line Search	Program Controlled				
Stabilization	Off				
	Output Controls				
Calculate Stress	Yes				
Calculate Strain	Yes				
Calculate Contact	No				
Calculate Results At	All Time Points				
	Analysis Data Management				
Solver Files Directory	C:\Documents and Settings\SS7N0605\My Documents\ANSYS final\Analysis Clamp 4_files\dp0\SYS-5\MECH\				
Future Analysis	None				
Scratch Solver Files Directory					
Save MAPDL db	No				
Delete Unneeded Files	Yes				
Nonlinear Solution	Yes				
Solver Units	Active System				
Solver Unit System	nmm				

TABLE 99 Bolt check (C4) > Static Structural (C5) > Analysis Settings Step-Specific "Step Controls"

Step	Step End Time	Initial Substeps	Carry Over Time Step
1	1, s	5,	
2	2, s		On

2	2, s		On
		TABLE 100	

Bolt check (C4) > Static Structural (C5) > Accelerations Object Name Standard Earth Gravity

Object Nume	Object Name Standard Earth Oravity		
State	Fully Defined		
Scope			
Geometry	All Bodies		
Definition			
Coordinate System	Global Coordinate System		
X Component	-0, mm/s² (ramped)		
Y Component	-0, mm/s² (ramped)		
Z Component	-9806,6 mm/s² (ramped)		
Suppressed	No		
Direction	-Z Direction		

FIGURE 2 Bolt check (C4) > Static Structural (C5) > Standard Earth Gravity

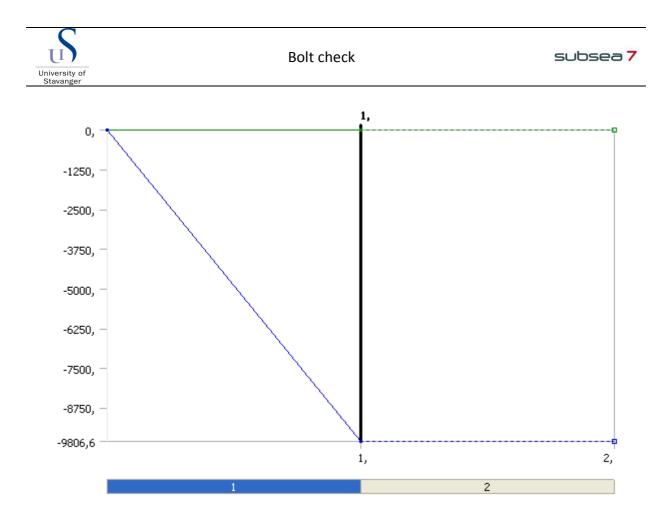


TABLE 101

Bolt check (C4) > Static Structural (C5) > Loads							
Object Name	Upper support	Lower support	Vert.	wave on clamp	1/2 Hor.	wave on clamp	1/4 Hor. wave on clamp 1
State		Fully Defined					
Scope							
Scoping Method	Geometry Selection						
Geometry	1 Face						
Definition							
Туре	Fixed Support Force						
Suppressed	No						
Define By	Vector						
Magnitude	Tabular Data						
Direction	Defined						

FIGURE 3 Bolt check (C4) > Static Structural (C5) > Vert. wave on clamp

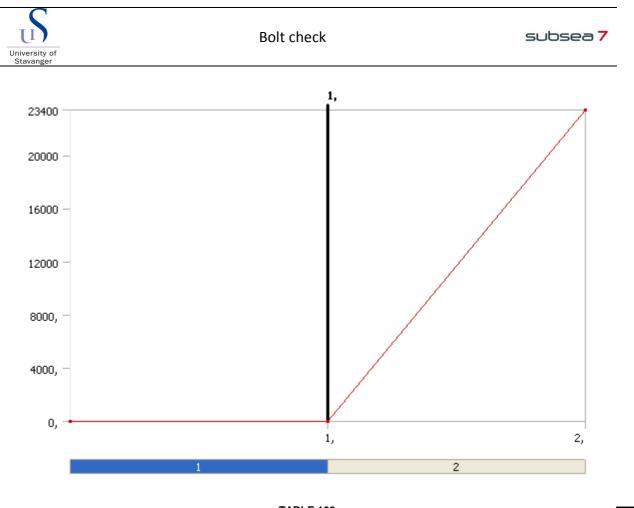
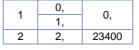



 TABLE 102

 Bolt check (C4) > Static Structural (C5) > Vert. wave on clamp

 Steps
 Time [s]

 Force [N]

F

FIGURE 4 Bolt check (C4) > Static Structural (C5) > 1/2 Hor. wave on clamp

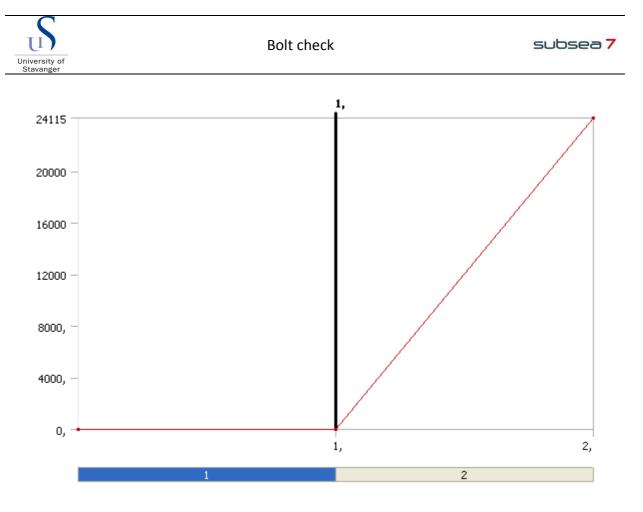
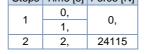



 TABLE 103

 Bolt check (C4) > Static Structural (C5) > 1/2 Hor. wave on clamp

 Steps
 Time [s]

 Force [N]

F

FIGURE 5 Bolt check (C4) > Static Structural (C5) > 1/4 Hor. wave on clamp 1

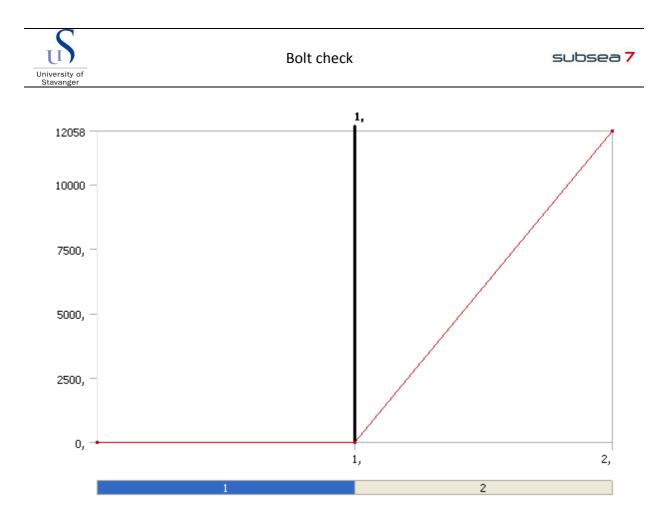


 TABLE 104

 Bolt check (C4) > Static Structural (C5) > 1/4 Hor. wave on clamp 1

 Steps
 Time [s]

 Force [N]

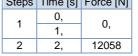


 TABLE 105

 Bolt check (C4) > Static Structural (C5) > Loads

Object Name	1/4 Hor. wave on clamp 2	Riser south	1/2 Riser east 1	1/2 Riser east 2	Riser vertical	
State		Fully Defined				
	Scope					
Scoping Method		Geometry Selection				
Geometry	1 Face 1 Edge		dge	1 Face		
Definition						
Туре		Force				
Define By	Vector Components		Vector			
Magnitude	Tabular Data			Tabular Data		
Direction	Defined				Defined	
Suppressed			No			
Coordinate System		GI	obal Coordinate S	System		
X Component			Tabular Data			
Y Component			Tabular Data			
Z Component			Tabular Data			

FIGURE 6 Bolt check (C4) > Static Structural (C5) > 1/4 Hor. wave on clamp 2

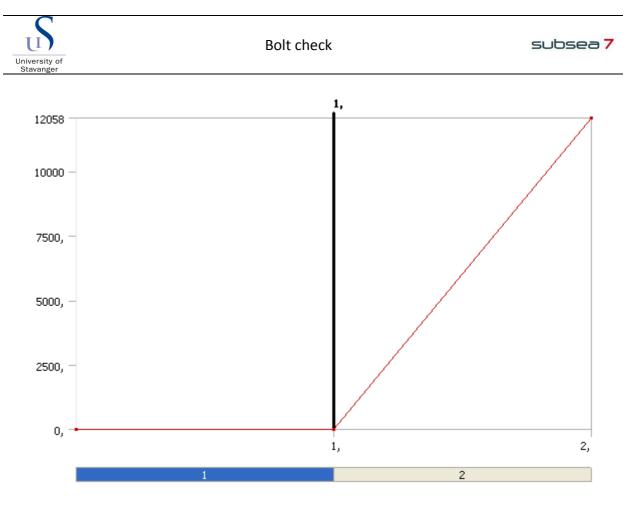


 TABLE 106

 Bolt check (C4) > Static Structural (C5) > 1/4 Hor. wave on clamp 2

 Steps
 Time [s]

 Force [N]

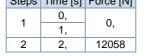


FIGURE 7 Bolt check (C4) > Static Structural (C5) > Riser south

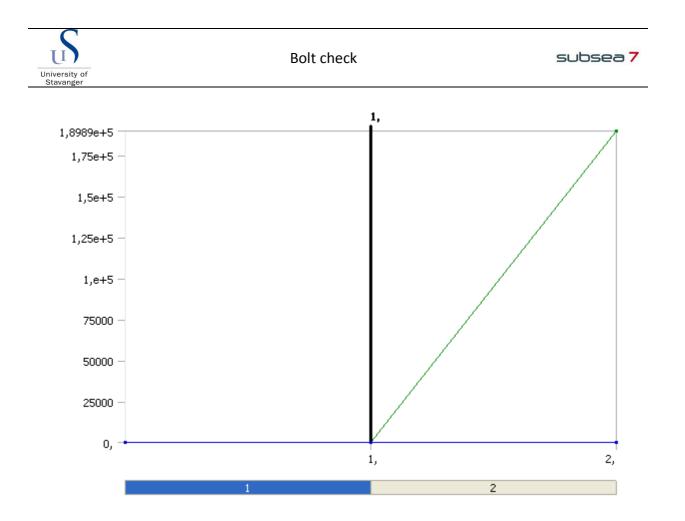


 TABLE 107

 Bolt check (C4) > Static Structural (C5) > Riser south

 Steps
 Time [s]
 X [N]
 Y [N]
 Z [N]

				- 11
1	0,		0	
1	1,	0,	Ο,	0,
2	2,		1,8989e+005	

FIGURE 8 Bolt check (C4) > Static Structural (C5) > 1/2 Riser east 1

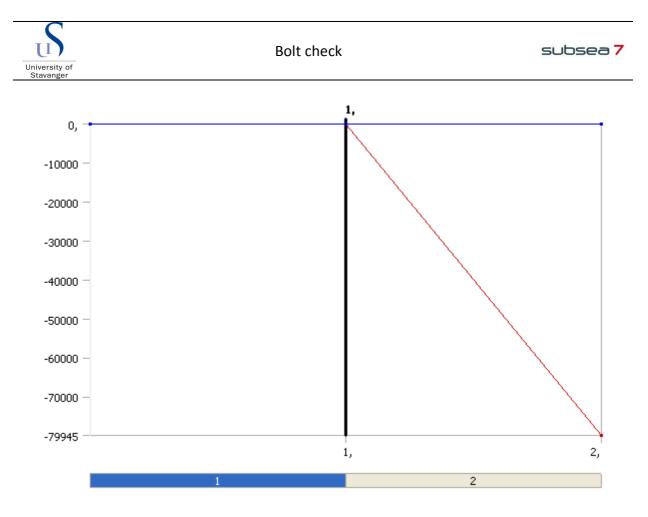


 TABLE 108

 Bolt check (C4) > Static Structural (C5) > 1/2 Riser east 1

 Steps
 Time [s]
 X [N]
 Y [N]
 Z [N]

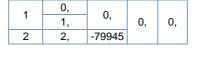


FIGURE 9 Bolt check (C4) > Static Structural (C5) > 1/2 Riser east 2

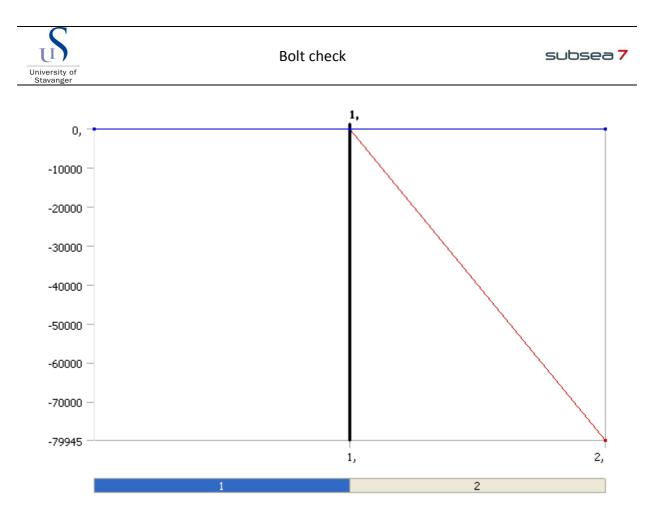


 TABLE 109

 Bolt check (C4) > Static Structural (C5) > 1/2 Riser east 2

 Steps
 Time [s]
 X [N]
 Y [N]
 Z [N]

1	0,	0,	0	0
2	1, 2,	-79945	U,	U,

FIGURE 10 Bolt check (C4) > Static Structural (C5) > Riser vertical

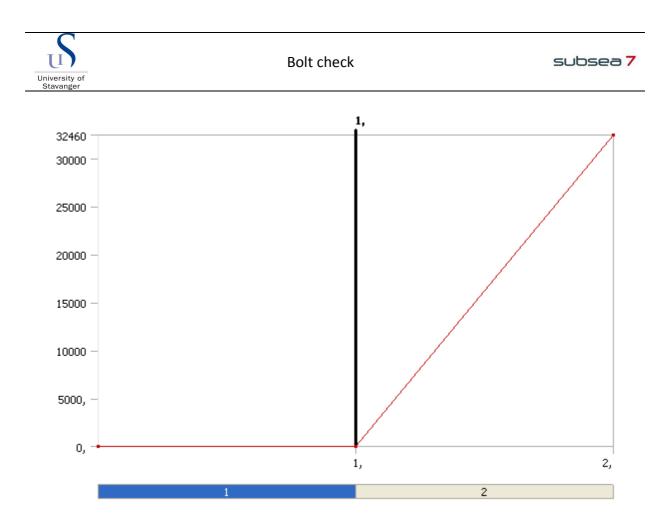
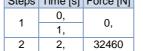
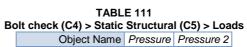




 TABLE 110

 Bolt check (C4) > Static Structural (C5) > Riser vertical

 Steps
 Time [s]
 Force [N]

State	Fully Defined				
Scope					
Scoping Method	Geometry Selection				
Geometry	1 Face				
Definition					
Type Pressure					
Define By	Normal To				
Magnitude	Tabular Data				
Suppressed	No				
Tabular Data					
Independent Variable	Time				

FIGURE 11 Bolt check (C4) > Static Structural (C5) > Pressure

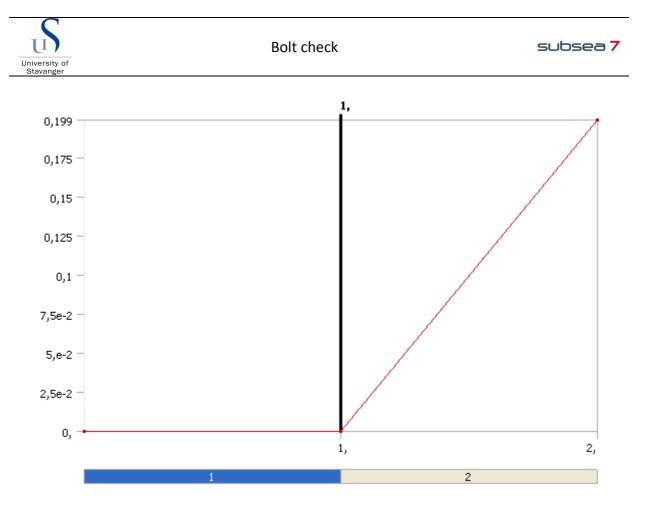


 TABLE 112

 Bolt check (C4) > Static Structural (C5) > Pressure

 Steps
 Time [s]

 Pressure [MPa]

1	1,	0,
2	2,	0,199

FIGURE 12 Bolt check (C4) > Static Structural (C5) > Pressure 2

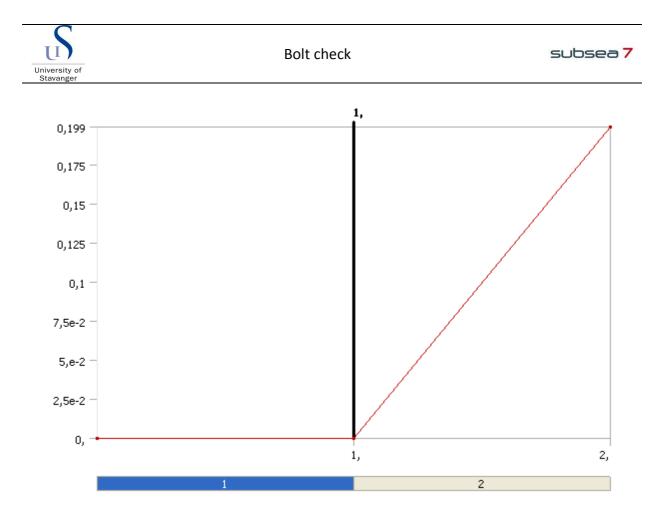


 TABLE 113

 Bolt check (C4) > Static Structural (C5) > Pressure 2

 Steps
 Time [s]
 Pressure [MPa]

 1
 0,
 0

1,

2,

0,

0,199

1

2

|--|

TABLE 114

Bolt check (C4) > Static Structural (C5) > Bolt Pretension							
Object Name	Bolt Pretension	Bolt Pretension Bolt Pretension 2 Bolt Pretension 3 Bolt Pretension 4 Bolt Pretens					
State	Fully Defined						
Scope							
oping Method	Geometry Selection						

Scoping Method	Geometry Selection		
Geometry	1 Face		
Definition			
Туре	Bolt Pretension		
Suppressed	No		
Define By	Load		
Preload	6,854e+005 N		

FIGURE 13 Bolt check (C4) > Static Structural (C5) > Bolt Pretension

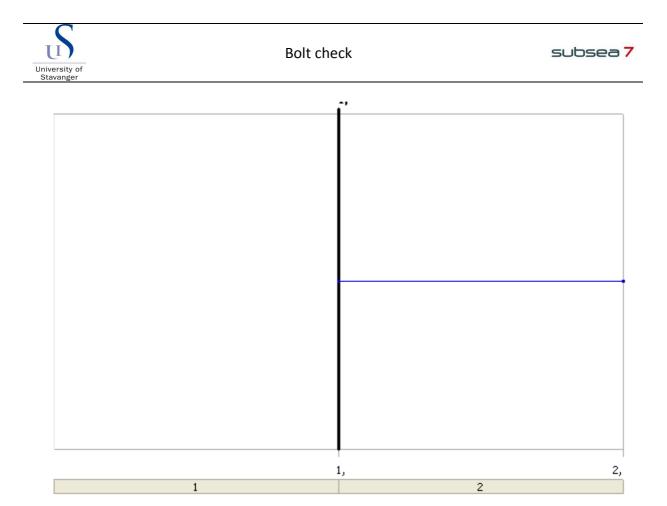


 TABLE 115

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension

Step	os	Define By	Preload [N]	Adjustment [mm]
1,		Load	6,854e+005	N/A
2,		Lock	N/A	IN/A

F

FIGURE 14 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 2

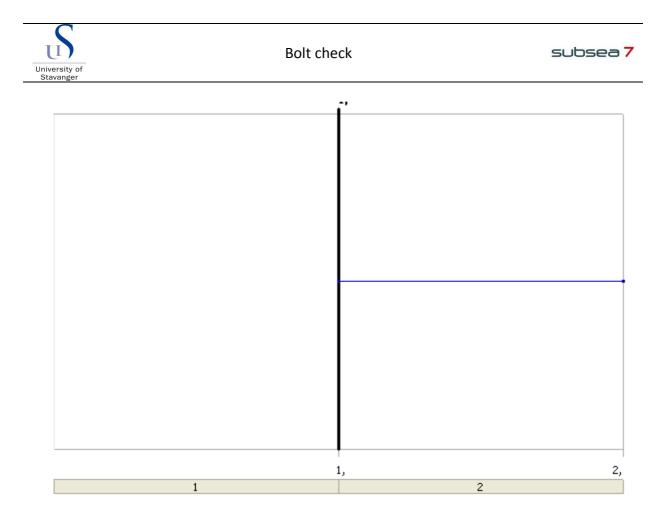


 TABLE 116

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 2

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	6,854e+005	N/A	
2,	Lock	N/A		

F

FIGURE 15 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 3

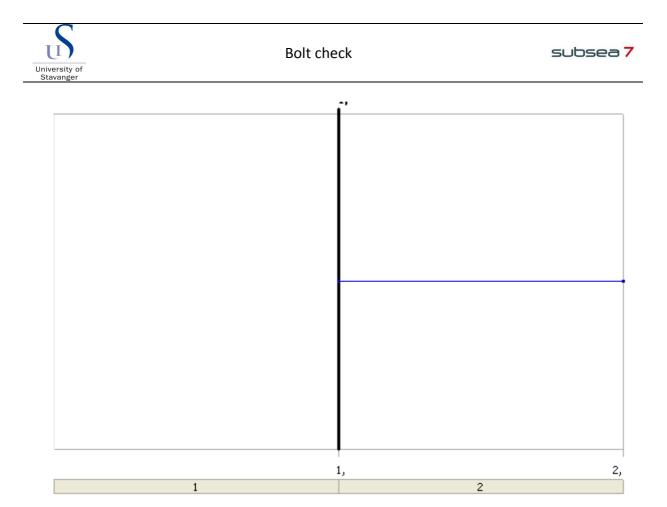


 TABLE 117

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 3

 Out
 D

 O
 D

 O
 D

 D
 D

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	6,854e+005	N/A	
2,	Lock	N/A		

F

FIGURE 16 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 4

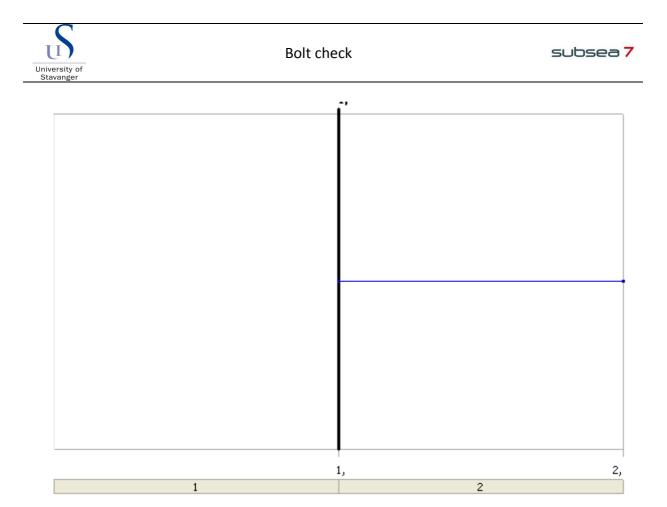


 TABLE 118

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 4

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	6,854e+005	N/A	
2,	Lock	N/A		

F

FIGURE 17 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 5

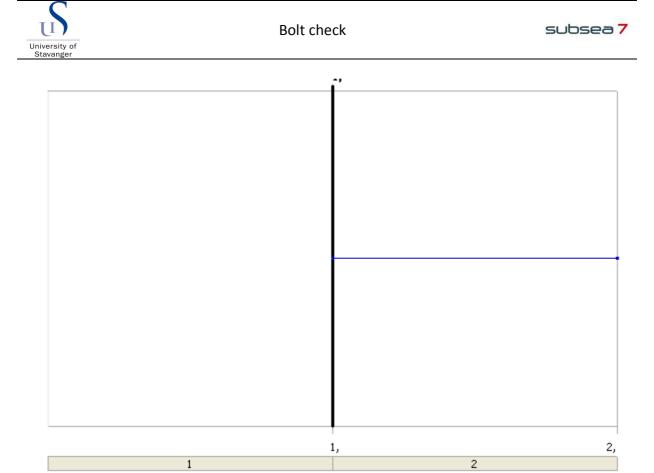


TABLE 119

Bolt c	heck ((C4) > Static	Structural (C5) > Bolt Pretens	sion 5
	Steps	Define By	Preload [N]	Adjustment [mm]	

Steps	Define By	Preload [N]	Adjustment [mm	
1,	Load	6,854e+005	N1/A	
2,	Lock	N/A	N/A	

TABLE 120

TABLE 120 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 6					
Object Name	Bolt Pretension 6	Bolt Pretension 7	Bolt Pretension 8	Bolt Pretension 9	Bolt Pretension 10
State			Fully Defined		
		So	ope		
Scoping Method			Geometry Selectio	n	
Geometry			1 Face		
		Defi	nition		
Туре			Bolt Pretension		
Suppressed		No			
Define By		Load			
Preload			6,854e+005 N		

FIGURE 18 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 6

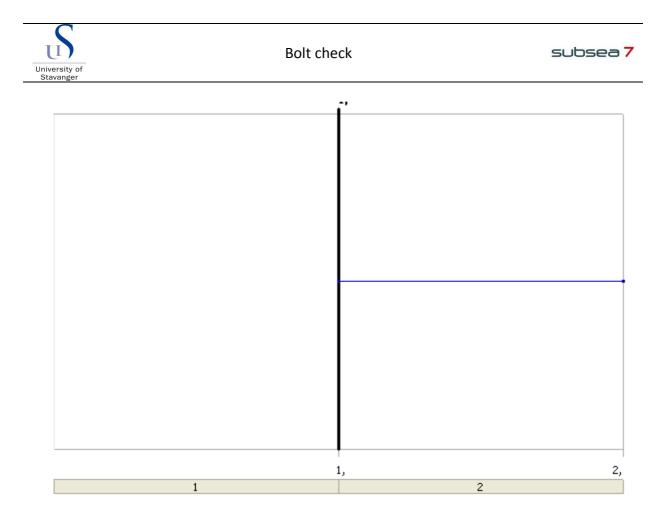


 TABLE 121

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 6

 Stars
 Define By Breleved [M]

 Adjustment [mm]

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	6,854e+005	N/A	
2,	Lock	N/A	IN/A	

FIGURE 19 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 7

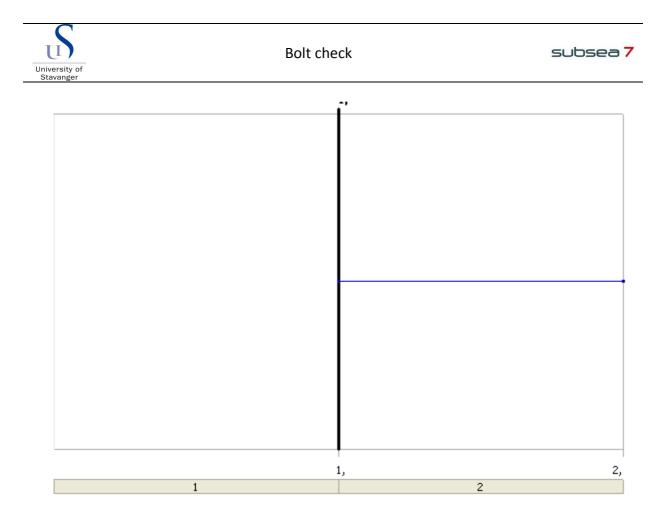


 TABLE 122

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 7

 Oliver Define Define (M)

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	6,854e+005	N/A	
2,	Lock	N/A	IN/A	

FIGURE 20 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 8

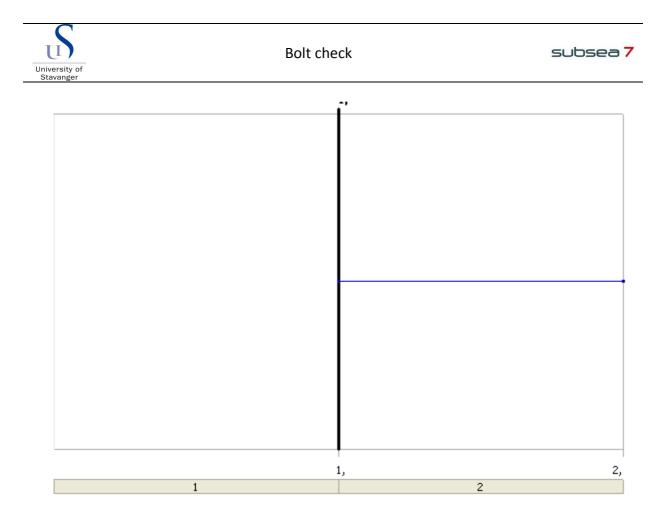


 TABLE 123

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 8

 State
 Define Dr. Drelead [M]

 Adjustment [mm]

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	6,854e+005	N/A	
2,	Lock	N/A	IN/A	

FIGURE 21 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 9

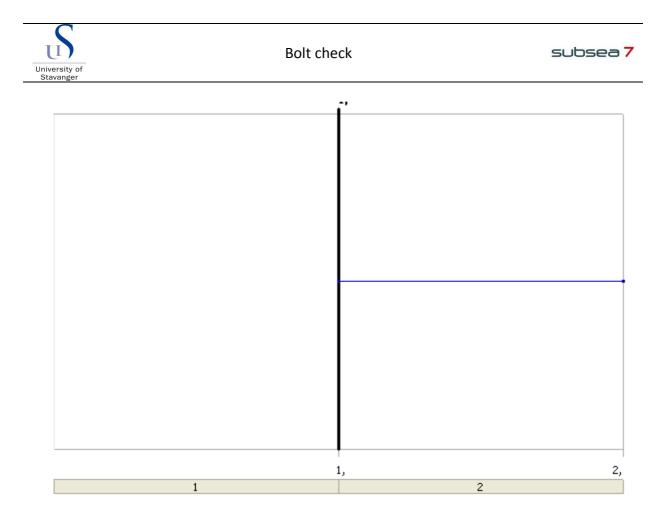


 TABLE 124

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 9

 Oliver Define Define (M)

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	6,854e+005	N/A	
2,	Lock	N/A	IN/A	

F

FIGURE 22 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 10

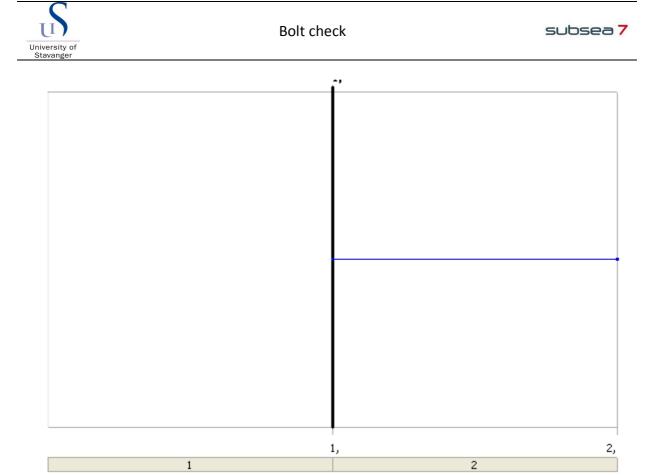


 TABLE 125

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 10

Steps	Define By	Preload [N]	Adjustment [mm]
1,	Load	6,854e+005	N/A
2,	Lock	N/A	IN/A

TABLE 126

	IABLE 126				
	Bolt check	(C4) > Static Struc	tural (C5) > Bolt Pi	retension 11	
Object Name	Bolt Pretension 11	Bolt Pretension 12	Bolt Pretension 13	Bolt Pretension 14	Bolt Pretension 15
State			Fully Defined		
		Sc	ope		
Scoping Method			Geometry Selection		
Geometry			1 Face		
		Defi	nition		
Туре			Bolt Pretension		
Suppressed		No			
Define By		Load			
Preload	6,854e-	+005 N		3,76e+005 N	

FIGURE 23 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 11

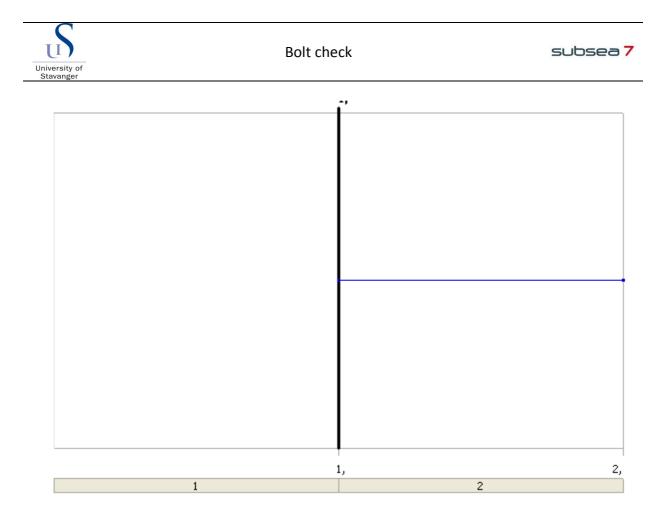


 TABLE 127

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 11

 Ctore
 Define Dr.

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	6,854e+005	N/A	
2,	Lock	N/A	IN/A	

FIGURE 24 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 12

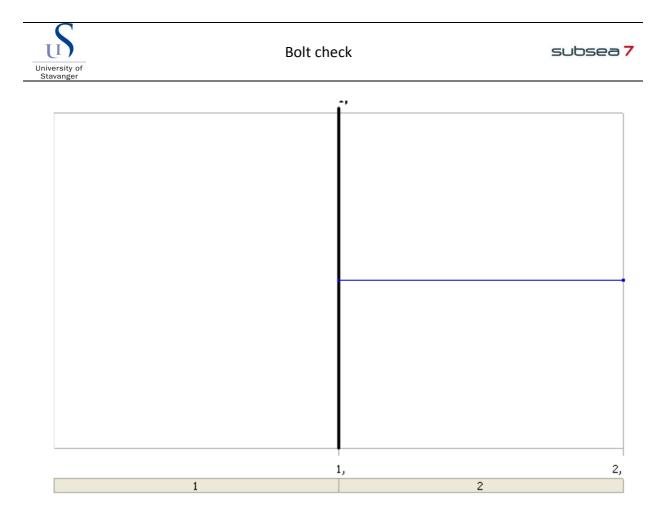


 TABLE 128

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 12

 Ourse Define Define (M)

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	6,854e+005	N/A	
2,	Lock	N/A	IN/A	

F

FIGURE 25 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 13

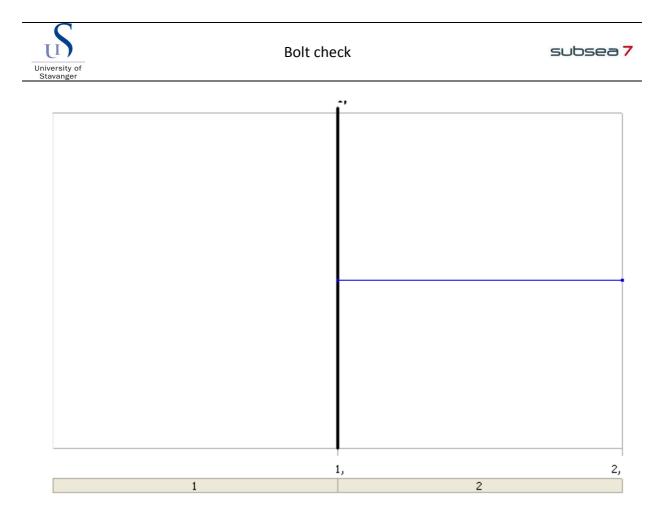


 TABLE 129

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 13

 Stand Define By Defined [N]

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	3,76e+005	N/A	
2,	Lock	N/A	IN/A	

FIGURE 26 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 14

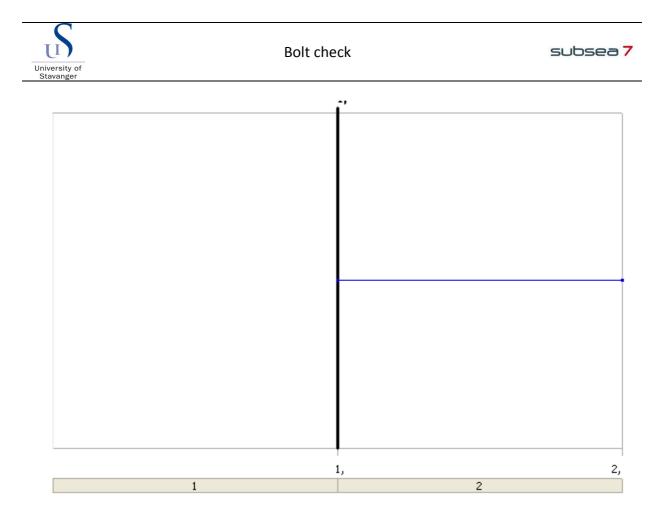


 TABLE 130

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 14

 Cture Define Du Declard (NII)

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	3,76e+005	N/A	
2,	Lock	N/A	IN/A	

FIGURE 27 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 15

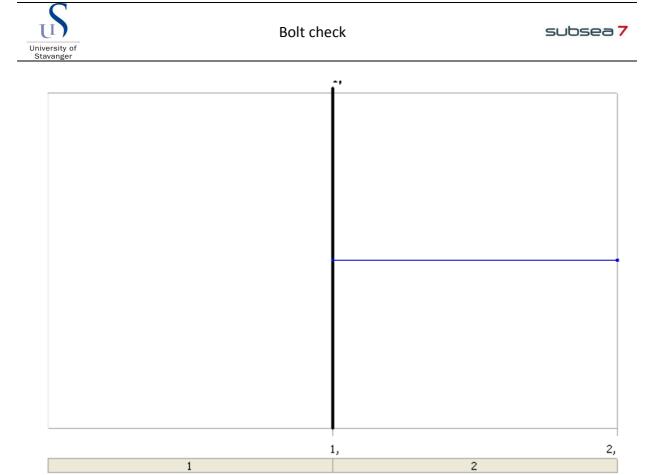


 TABLE 131

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 15

 State
 Define By Brolend [N]

Steps	Define By	Preload [N]	Adjustment [mm]
1,	Load	3,76e+005	N/A
2,	Lock	N/A	IN/A

TABLE	

TABLE 132					
	Bolt check	(C4) > Static Struc	tural (C5) > Bolt Pr	etension 16	
Object Name	Bolt Pretension 16	Bolt Pretension 17	Bolt Pretension 18	Bolt Pretension 19	Bolt Pretension 20
State			Fully Defined		
		Sc	оре		
Scoping Method			Geometry Selection		
Geometry			1 Face		
		Defi	nition		
Туре			Bolt Pretension		
Suppressed			No		
Define By	y Load				
Preload			3,76e+005 N		

FIGURE 28 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 16

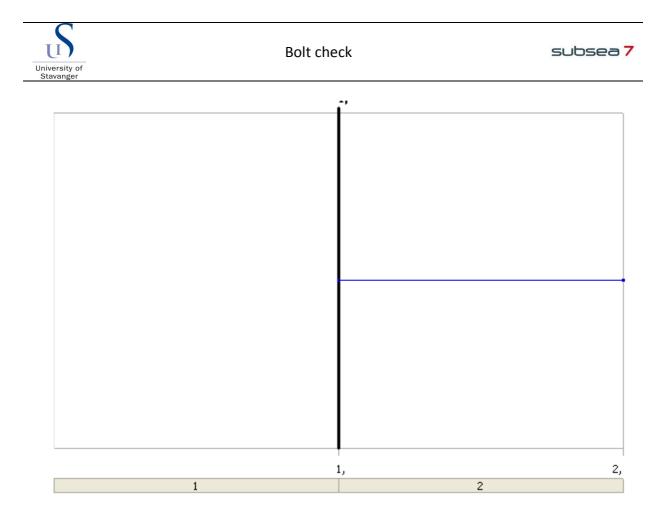


 TABLE 133

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 16

 Cture Define Du Declard (NII)

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	3,76e+005	N/A	
2,	Lock	N/A	IN/A	

FIGURE 29 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 17

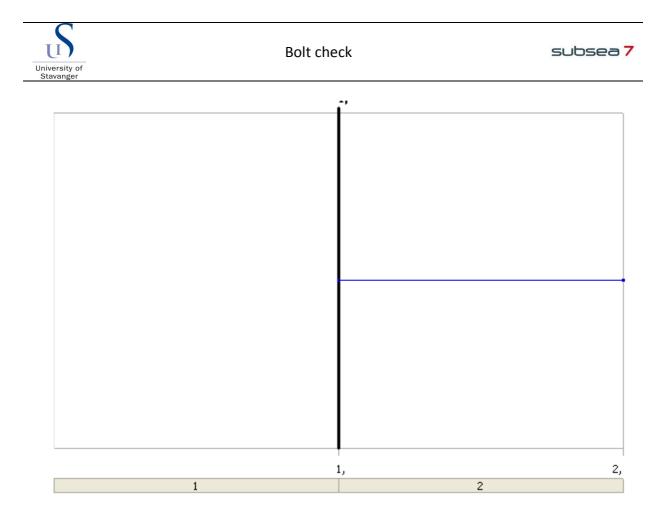


 TABLE 134

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 17

 Out D (C2) D

Steps	Define By	Preload [N]	Adjustment [mm]
1,	Load	3,76e+005	N/A
2,	Lock	N/A	IN/A

F

FIGURE 30 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 18

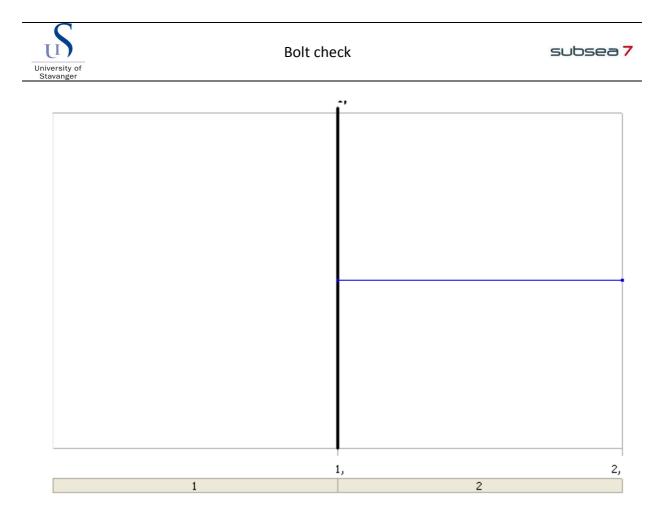


 TABLE 135

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 18

 Stage Define By Defined NII Adjustment [mm]

Steps	Define By	Preload [N]	Adjustment [mm]
1,	Load	3,76e+005	N/A
2,	Lock	N/A	IN/A

F

FIGURE 31 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 19

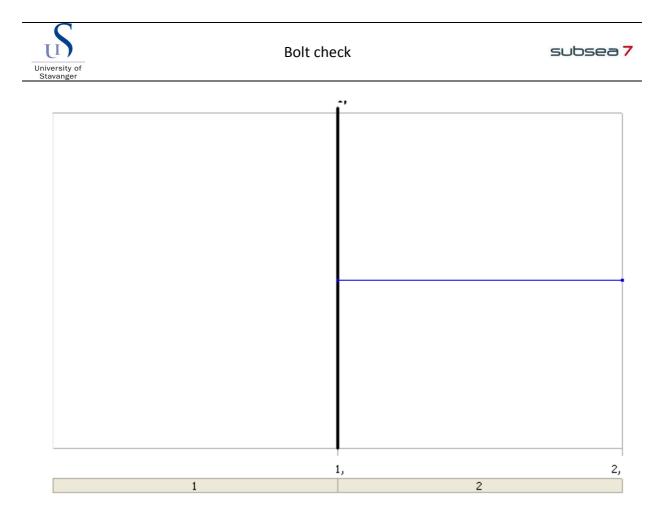


 TABLE 136

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 19

 Cture Define Du Declard (NII)

Steps	Define By	Preload [N]	Adjustment [mm]	
1,	Load	3,76e+005	N/A	
2,	Lock	N/A	IN/A	

FIGURE 32 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 20

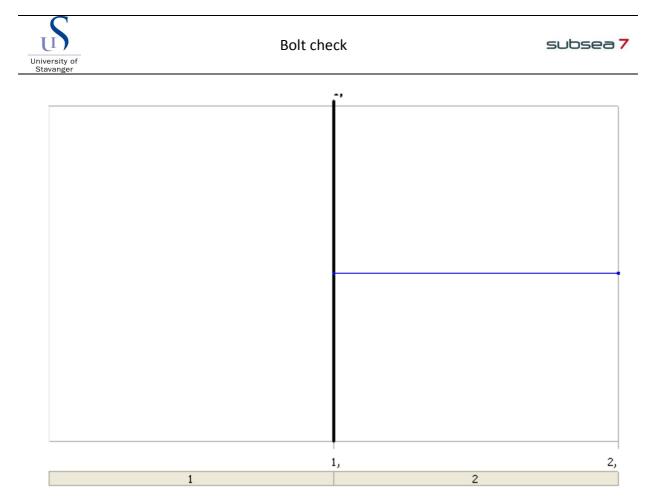


 TABLE 137

 Bolt check (C4) > Static Structural (C5) > Bolt Pretension 20

 Steps
 Define By
 Preload [N]
 Adjustment [mm]

0.000	201110 2)		
1,	Load	3,76e+005	N1/A
2,	Lock	N/A	IN/A

Solution (C6)

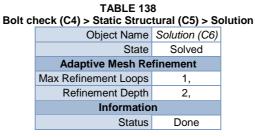
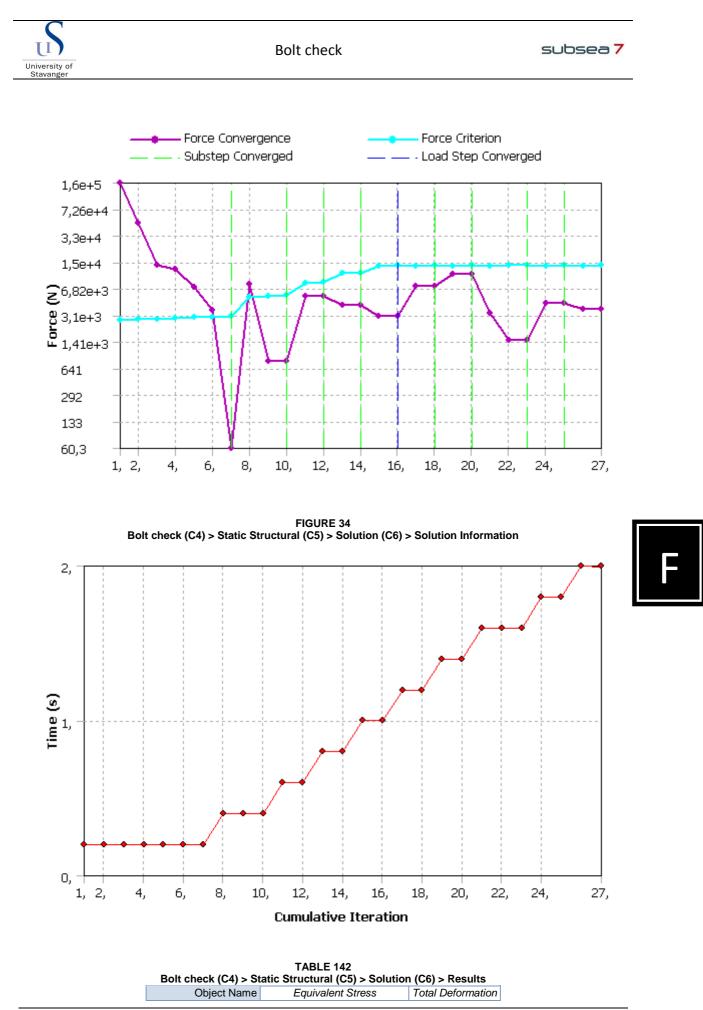


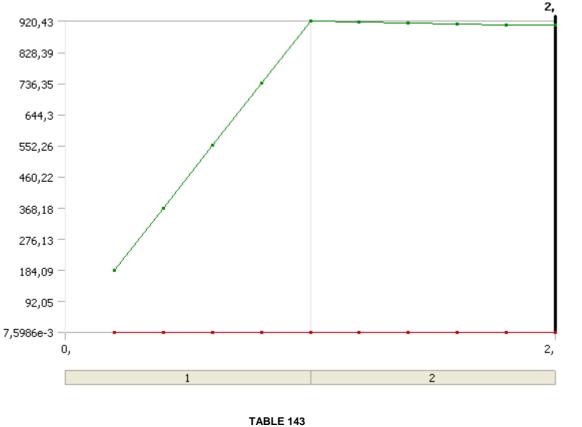
 TABLE 139


 Bolt check (C4) > Static Structural (C5) > Solution (C6) > Solution Information

 Object Name
 Solution Information

Solution Information
Solved
mation
Force Convergence
3
2, s
All

FIGURE 33 Bolt check (C4) > Static Structural (C5) > Solution (C6) > Solution Information



-Finite element analysis of a friction clamp located on a North Sea jacket-

State	Solved		
	Scope		
Scoping Method	Scoping Method Geometry Selection		
Geometry	All Bodies		
	Definition		
Туре	Equivalent (von-Mises) Stress	Total Deformation	
By	Time		
Display Time	2, s	Last	
Calculate Time History	Yes		
Identifier			
	Integration Point Results		
Display Option	Averaged		
	Results		
Minimum	1,6414e-002 MPa	0, mm	
Maximum	907,39 MPa	4,6196 mm	
Minimum Occurs On	Part 167:Body 4	Solid	
Maximum Occurs On	Solid		
Ι	/linimum Value Over Time		
Minimum	7,5986e-003 MPa	0, mm	
Maximum	3,8271e-002 MPa	0, mm	
Ν	laximum Value Over Time		
Minimum	184,16 MPa	0,4705 mm	
Maximum	920,43 MPa	4,6196 mm	
	Information		
Time	2, s		
Load Step	oad Step 2		
Substep	5		
Iteration Number	27		

FIGURE 41 Bolt check (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress

Bolt check (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress

-Finite element analysis of a friction clamp located on a North Sea jacket-

Time [s]	Minimum [MPa]	Maximum [MPa]	
0,2	7,5986e-003	184,16	
0,4	1,522e-002	368,27	
0,6	2,2875e-002	552,36	
0,8	3,056e-002	736,41	
1,	3,8271e-002	920,43	
1,2	3,8195e-002	917,81	
1,4	3,5831e-002	915,2	
1,6	2,5659e-002	912,6	
1,8 1,9109e-002		909,99	
2,	1,6414e-002	907,39	

FIGURE 42 Bolt check (C4) > Static Structural (C5) > Solution (C6) > Total Deformation

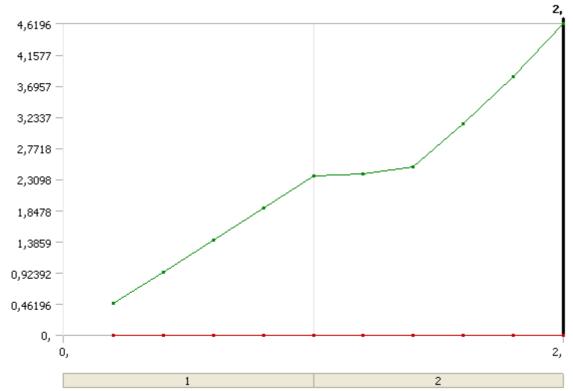


 TABLE 144

 Bolt check (C4) > Static Structural (C5) > Solution (C6) > Total Deformation

Time [s]	Minimum [mm]	Maximum [mm]
0,2	0,	0,4705
0,4		0,94253
0,6		1,4137
0,8		1,8845
1,		2,3564
1,2		2,3905
1,4		2,4972
1,6		3,1352
1,8		3,8278
2,		4,6196

Bolt check

Material Data

Clamp steel

TABLE 166 Clamp steel > Constants Density 7.85e-006 kg mm^-3

TABLE 167

Clamp steel > Isotropic Elasticity							
Temperature C	Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa			
	2.07e+005	0.3	1.725e+005	79615			

TABLE 168 Clamp steel > Tensile Yield Strength

Tensile Yield Strength MPa

355

TABLE 169 Clamp steel > Tensile Ultimate Strength Tensile Ultimate Strength MPa

510

A320

TABLE 170 A320 > Constants

Density 7.85e-006 kg mm^-3

TABLE 171 A320 > Isotropic Elasticity								
Temperature C	Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa				
	2.07e+005	0.3	1.725e+005	79615				

TABLE 172 A320 > Tensile Yield Strength Tensile Yield Strength MPa 730

TABLE 173 A320 > Tensile Ultimate Strength Tensile Ultimate Strength MPa 860