Universitetet i Stavanger						
DET TEKNISK-NATURVIT	DET TEKNISK-NATURVITENSKAPELIGE FAKULTET					
MASTEROPPGAVE						
Studieprogram/spesialisering: Vårsemesteret, 2011						
Konstruksjoner og materialer, bygg.	Åpen					
Forfatter:						
Tov Ramberg						
	(signatur forfatter)					
Fagansvarlig: Jonas Thor Snæbjørnsson	Fagansvarlig: Jonas Thor Snæbjørnsson					
Veileder(e): Bjørn Uppstad						
Tittel på masteroppgaven: Analyse og desig jordskjelv. En sammenligning av Stedstøpt v	n av skjærvegger i betong utsatt for vegger og prefabrikkerte veggelementer.					
Studiepoeng: 30						
Emneord:						
Jordskjelv	Sidetall: 66					
Skjærvegger i betong	+ vedlegg/annet: 78					
Elementbygg i betong						
Duktilitet	Stavanger, 27. juni 2011					

Forord

Denne rapporten er resultat av en masteroppgave ved Universitet i Stavanger på linjen for konstruksjoner og materialer. Oppgaven er utført vårsemesteret 2011 for Procon AS avdeling Stavanger og består i å sammenligne et prefabrikkert betongelement bygg med en tilsvarende stedstøpt bygning utsatt for jordskjelv.

En stor takt til ekstern veileder Bjørn Uppstad i Procon for hans gode råd og oppfølging under prosessen. Veiledning har blitt gitt under ukentlige møter. Takk til Víctor Hugo Zamora i AS Betong som har hjulpet til med opplysninger og detaljer rundt det prefabrikkerte referanse bygget og omvisning i produksjonshallen. Takk til veileder på skolen Jonas Thor Snæbjørnsson for oppfølging under veis, råd og ikke minst hjelp med element dimensjonerings programmet SAP2000.

Stavanger 27. juni 2011

Tov Ramberg

SAMMENDRAG

Problemstillingen er å se på et reelt prefabrikkert betongelementbygg der det er ønskelig å jordskjelvdimensjonere bygget i duktilitesklassen middels duktilitet. Hovedfokuset er Skjærvegger laget av prefabrikkerte betong elementer. Det sammenlignes med en stedstøpt løsning av det samme bygget for å kunne se forskjellene. Dette gjøres etter gjeldene norske standarder.

Hovedresultater er kommet fram på bakgrunn av modelleringsprogrammet SAP 2000, håndberegninger, standarder og støttelitteratur.

Vurderingen er at, med en rekke forutsetninger for byggets geometri og oppbygning, kan det oppnås middels duktilitet med en relativt høy konstruksjonsfaktor.

Notasjoner

Symbolregister	
А	areal
A _e	ekvivalent skjærareal
Ct	avstivningsfaktor
D	skiveutstrekning
E	elastisitetsmodul
F	kraft
F _b	skjærkraft ved fundamentnivå eller ved toppen av stiv kjeller
G	skjærmodul
$G_{k,j}$	karakteristisk verdi for permanent påvirkning
Н	høyde
Ι	treghetsmoment
K _n	fordelt stivhet
$\mathbf{M}^{\mathrm{eff}}$	effektiv medsvingende masse
M_n	fordelt masse
P _n (t)	fordelte krefter
$\mathbf{Q}_{k,i}$	karakteristisk verdi for variabel påvirkning
Т	svingeperiode
a	akselerasjon
ag40HZ	berggrunnens akselerasjon
c	dempning
C _{kr}	kritisk dempning
d	elastisk forskyvning
f_{n}	naturlig frekvens
h	høyde

h ^{eff}	effektiv høyde
k	stivhet
k _p	konstruksjonsfaktor avhengig av den prefabrikerte konstruksjonens energiabsorpsjonsevne
k _w	faktor som reflekterer den vanligste bruddformen i bæresystemer med vegger
m	masse
q	konstruksjonsfaktoren
r	respons
$\overline{r_n}$	modal bidragsfaktor
S _d (T)	dimensjonerende spektrum
S	den romlige fordelingen av krefter uavhengig av tid
t	tid
u	forskyvning
Γ_{n}	medvirkende modal faktor
γ_1	seismisk faktor
Δ_{t}	total deformasjon
Δb	bøyedeformasjon
Δs	skjærdeformasjon
ζ	dempningsforhold
θ	sensitivitetsfaktoren
к	tverrsnittskonstant
ρ	densitet
$ ho_{in}$	korrelasjonskoeffisienten
Φ	modal matrise
A	vektor for svingeform

$\psi_{2,i}$	faktor for en tilnærmet permanent verdi for en variabel påvirkning
Ω^2	spektral matrise
ω	vinkelfrekvens

Forkortelser

ABSSUM	absolutt sum
CQC	komplett kvadratisk kombinasjon
DCH	duktilitetsklasse for høy duktilitet
DCL	duktilitetsklasse for lav duktilitet
DCM	duktilitetsklasse for middels duktilitet
EN	europeisk norm
HD	hulldekke
NS	norsk standard
NA	nasjonalt tillegg
RHA	responshistorieanalyse
RSA	responsspektrumanalyse
RIF	rådgivende ingeniørers forening
SRSS	kvadratroten av summen av kvadratene
EC0	NS-EN 1990:2002+NA:2008
EC1-1	NS-EN 1991-1-1:2002+NA:2008
EC1-3	NS-EN 1991-1-3:2003+NA:2009
EC1-4	NS-EN 1991-1-4:2005+NA:2009
EC2	NS-EN 1992-1-1:2004+NA:2008
EC8	NS-EN 1998-1:2004+NA:2008
D.O.1-etg	dekke over 1. etasje
D.O.2-etg	dekke over 2. etasje
D.O.3-etg	dekke over 3. etasje
D.O.4-etg	dekke over 4. etasje

sek	sekunder
rad	radianer
pkt	punkt

VIII

INNHOLD

Fo	ror	d			II
Sa	mn	nen	drag		III
No	otas	jon	er		IV
	Syr	nbo	lreg	isterIV	7
]	For	kor	telse	erV	I
1	I	nnle	ednii	ng	11
	1.1		Avg	rensning	l
	1.2		Jord	lskjelv design11	l
2	R	Refe	rans	sebygget	13
	2.1		Geo	metri13	3
3	S	lam	men	ligning av prefabrikkerte og stedstøpte løsninger	17
	3.1		Inne	ervegger i betong17	7
	3	3.1.	1	Elementvegger	7
	3	3.1.2	2	Stedstøpte vegger	l
	3.2		Ytte	ervegger	l
	3	3.2.	1	Sandwichelementer	l
	3	3.2.2	2	Stedstøpte vegger	1
	3.3		Knu	tepunkter, trapp og reposer24	1
	3	3.3.	1	Elementer	1
	3	3.3.2	2	Stedstøpt	5
4	S	stati	sk o	g dynamisk analyse	27
4	4.1		Høy	vdeformelen	7
4	4.2		Dun	kley`s metode27	7
4	4.3		Syst	tem med en frihetsgrad)
	Z	1.3.	1	Udempet system med en frihetsgrad)
	2	1.3.2	2	Dempet system med en frihetsgrad	l
		4.	.3.2.	1 Underdempet system	2
		4.	3.2.	2 Underdempet system med ytre påvirkning	3
4	4.4		Moc	dalanalyse	5
	Z	1.4.	1	Frekvenser og svingeformer	5
	Z	1.4.2	2	Modalligninger for udempede systemer med ytre dynamisk påvirkning37	7

	4.4	.3 Det modale bidraget til responsen av bygningen		
	4.4	.4 Responsspektrumanalyse		
	4.5	Responsspektra	40	
5	Din	nensjonering etter EC8	4	41
	5.1	Utelatelseskriterier	41	
	5.2	Regularitet	42	
	5.3	Seismisk masse	44	
	5.4	Egenperiode	44	
	5.5	Betong bygg i DCL og DCM	44	
	5.5	.1 Konstruksjonsfaktor (q)	45	
	5.5	.2 Stedstøpt sammenlignet med prefabrikkert	45	
6	Pla	n modell og tverrkraft metoden	4	17
	6.1	Metode	47	
	6.2	Egenperioder	47	
	6.3	Laster	47	
7	Ror	nlig modell og modal responsspektrumanalyse	4	19
	7.1	Metode		
	7.2	Egenskaper		
	7.3	Forskjeller mellom elementbygget og stedstøpt løsning	51	
	7.4	Egenperioder og frekvenser	51	
	7.5	Laster	54	
8	Dul	tile skjærvegger i betong	5	56
	Q 1	stadstanta vagaar		
	0.1	steustøpte vegget	56	
	8.2	prefabrikkerte vegger	56 58	
9	8.2 Dis	prefabrikkerte vegger kusjon og Konklusjon	56 58 	51
9	8.2 Dis 9.1	prefabrikkerte vegger kusjon og Konklusjon Kommentarer og videre undersøkelser	56 58 62	51
9 Re	8.2 Dis 9.1	prefabrikkerte vegger kusjon og Konklusjon Kommentarer og videre undersøkelser	56 	51 53

1 INNLEDNING

Dimensjonering for jordskjelv har framtil de siste årene ikke vært påkrevd i Norge. I 2004 kom NS 3491-12, standarden omhandler de seismiske lastene og var gjeldene fram til mars 2010. I 2008 kom NS-EN 1998-1:2004+NA:2008 (EC8), denne tar for seg de seismiske klassene i Norge og hvordan man dimensjonerer ulike typer bygg for disse lastene. I dag er det EC8 som er den gjeldene Norske standarden på området (Standard, 2008a).

Oppgaven er skrevet på oppdrag fra Procon Stavanger AS. I dag bygges mye med betongelementer i Norge. Det var et ønske at det skulle sees på duktiliteten til betongelementer, deres tilhørende knutepunkter og spesielt duktiliteten til skjærvegger. Dette med tanke på at EC8 gir mulighet, eller eventuelt kan gi krav om at det skal dimensjoneres i DCM. Hva gjøres og kan gjøres for å oppnå den ønskede duktiliteten var et av de viktigste spørsmålene. Det er valgt å ta utgangspunkt i et reelt bygg som er bygd i Norge.

Et bygg satt opp i Bergen er brukt som referansebygg i oppgaven. Dette er et område på fastlandet i Norge hvor en av de antatt største grunnakselerasjonene oppstår, henviser til figur NA.(901) (Standard, 2008a). Oppgaven omhandler forskjellen mellom vertikale avstivningsvegger i stedstøpt betong og prefabrikkerte veggelementer i betong. Det har blitt sett på hvordan disse dimensjoneres i forskjellige duktilitetsklasser, dvs. DCL og DCM, og hvilke løsninger som er vanlig å bruke i dag. Fokuset har vært å finne de riktige jordskjelvlastene og sammenligne duktiliteten til slike veggsystemer. Stedstøpte konstruksjoner kan lettere dimensjoneres for DCM. Når det gjelder bygg oppført i betongelementer kan det oppstå problemer med å oppnå høy duktilitet. Den prefabrikkerte løsningen er dermed gitt mest fokus.

1.1 AVGRENSNING

Det var ønskelig å finne et bygg som hadde en relativ enkel geometri og en passe størrelse slik at beregninger ikke skulle bli for kompliserte. Likevel har det vært noen forenklinger og temaer det ikke har blitt sett på. De viktigste er:

- Fundamenteringen er sett bort i fra.
- Arealreduksjonsfaktor er ikke tatt med.
- Mulig effekt på referansebygget fra omkringliggende bygninger er ikke tatt med i beregninger.

Andre antagelse og begrensninger er nevnt underveis i rapporten.

1.2 JORDSKJELV DESIGN

Ett bygg med god jordskjelvdesign er

- Regulært i oppriss og plan.
- Har redundans.
- Har soner som tar opp plastiske deformasjoner.

• Har en forutsigbar oppførsel under jordskjelv belastningen.

2 Referansebygget

Bygget er et kombinert nærings- og boligbygg satt opp i Bergen. Det er oppført i prefabrikkerte betongelementer der veggelementene er produsert og montert av AS Betong mens hulldekkene er produsert av Block Berge Bygg AS og montert av AS betong. AS Betong er leverandør av betongelementer lokalisert rett utenfor Ålgård i Rogaland. De leverer betongelementer til de fleste bygningstyper fra tradisjonelle bygg til bygg med særpreg og spesialtilpassninger. Tak og lettvegger er i tre.

Type bygg	leilighet/foretningsbygg (butikk i 1 etasje, kontor i
	2 og setasje og boliger i 4 og s etasje)
Bygge materiale	Betong og noe tre
Etasjer	5
Grunnflate	194 m ²
Høyde	16,45 m
Egenvekt	880 tonn
Seismisk masse	922 tonn
Pålitelighetsklasse	2
Seismisk klasse	П
Seismisk faktor (γ_1)	1,0
Grunnforhold	D
a _{g40HZ}	0.9 m/s^2 (dette er en vurdering av beliggenhet)

2.1 GEOMETRI

Det nye bygget skal stå helt inntil eksisterende bebyggelse med en klaring på ca. 2 cm på det nærmeste slik man kan se på bilde 1 til bilde 3. Bilde 1 gir også et godt inntrykk av bygget slik det er i planet og hvordan det ligger i forhold til eksisterende bebyggelse.

Bilde 1. Byggets beliggenhet i forhold til eksisterende bygninger og form i planet.

Bilde 2. Viser området der bygget skal stå.

Bilde 3. Slik bygget fremstod mai 2011.

På Bilde 2 ser man hvor bygget skal stå, det har tidligere stått et bygg der med butikk i første etasje. Dette bygget ble skadet i 2008 etter en brann i nabobygget. bilde 3 viser bygget slik det framstod i mai 2011, montasje av betongelementer er ferdig. I første etasje er det en stor åpning der det skal settes inn vindu, denne åpningen kommer til å påvirke stivheten til veggen. I bakgrunnen kan man se konturene av heissjakten, der mye av de seismiske kreftene i x-retning ville blitt tatt opp. På bilde 4 ser man bygget som stod der i tidligere tider. Som man kan se av bilde 3 og bilde 4 har nabobyggene stått der siden før

1925, de er da ikke dimensjonert for jordskjelv, uten at det betyr med sikkerhet at de har dårlige egenskaper med tanke på jordskjelv.

Bilde 4. Bildet er fra ca 1925 og viser bygget som stod der før.

Figur 1. D.O.1-etg. Der sandwichelementer er merket med gult og massive betongvegger blått.

Figur 2. Figur til venstre viser bygget bakfra, figur til høyre viser bygget forfra.

Geometrien til bygget endrer seg fra første til andre etasje og fra tredje til fjerde, slik man får ett inntrykk av i figur 2. For mer detaljert oversikt av byggets og elementenes geometri henvises det til appendix A.

I Figur 2 er ikke etasjeskillene vist, i tillegg er det en balkong på dekke over 4. etasje som ikke er vist på figuren, denne kan man se på figur A7 i appendix A. Ytterveggene er sandwichelementer med en tykkelse på 360-410mm, mens avstivende innervegger er massive betongelementer med tykkelse 200mm. På figur 1 er sandwichelementer merket med gult og avstivende innervegger merket med blått. På dekke over 3. etasje er 14 m² av arealet terrasse, denne er utført med HD, men får en høyere egenlaster pga. påstøp osv., dette blir mer omtalt i kapitel 3, det samme gjelder taket over 1. etasje. Balkongen på dekke over 4. etasje er et betongelement som vil ha en annen vekt pr. m² og stivhet enn hulldekkene. Alle hulldekkene har samme tykkelse på 265 mm, detaljert informasjon om disse finnes i appendix G. Taket bæres av limtredragere og I-bjelker av tre.

Elementene er kodet etter hvilken etasje de står i og om det er et sandwichelement, massivt betongelement eller hulldekke. Massive betongelementer har koding GU101 der det første tallet står for hvilken etasje den står i og 01 er nummerering av elementene i den samme etasjen. Kodingen GUX01 betyr alle etasjer der det er et element med denne nummerering. Sandwichelementer har kodingen V101 der det første tallet står for hvilken etasje elementet står i og 01 er nummereringen av elementene. Da er VX01 på samme måte som for GUX01. Hulldekkene har merking H101 der tallene har samme koding som massive elementer og sandwichelementer.

3 SAMMENLIGNING AV PREFABRIKKERTE OG STEDSTØPTE LØSNINGER

3.1 INNERVEGGER I BETONG

3.1.1 ELEMENTVEGGER

Innervegger av betong er massive. Elementene er delt inn som vist i figur 3 under. Veggene GUX06 og GUX01 begynner i første og går uavbrutt opp til og med 4. etasje. I 5. etasje er veggene av tre, disse veggene påvirker i liten grad byggets stivhet. I 1. etasje har GU106 en døråpning som reduserer veggens stivhet i denne etasjen betraktelig. GUX01 har døråpninger og en liten utsparing i samtlige etasjer, noe som vil redusere stivheten. Veggene i heissjakten GUX02,GUX03, GUX03 og GUX05 er gjennomgående fra 1. til 5. etasje. Heisjaktvegg GUX05 har åpning for heis dør i hver etasje, denne åpningen reduserer stivheten til veggskiven betydelig. Stivheten til veggen kan økes ved å legge inn ekstra armering og øke armeringens forankringslengde mellom vegg og fundament.

Figur 3. Elementinndelingen av innervegger i 2. etasje.

Figur 4. Armeringstegning av GU103.

BØYEL	IST	E				
Pos	Dim	Kapp Lengde	Ал	Skisse – mål i mm	Kvalitet	Dor
M1	12	980	8	005 500	B500NC	32
M11-K131	5	705	1	0 130 b-704 1-9980 A-7.03	B500NA	32

Figur 5. Bøyeliste GU103.

Armeringstegninger og bøyeliste i figur 4 og figur 5 gir et inntrykk av armeringen til de massive elementene, K189 er et armeringsnett med Ø6 mm. Veggene er ikke bundet sammen i de vertikale fugene, dette betyr at veggene virker som separate skiver. I over gang mellom vegg - fundament og vegg - vegg er det benyttet innstøpte gjengehylser i bunnen av elementene og korrugerte stålrør i toppen av veggene, vist i figur 10 kapitel 3.3. Når det benyttes innstøpt gjengehylse trenger man ikke korrugerte rør som på fyllingsrør, dermed unngås sår i overflaten på veggelementene. På element GU105 er det benyttet oppstikkende armering fra fundamentet, økt forankringslengde og korrugert påfyllingsrør for påfylling av nonset¹, slik det er vist i figur 6. Dette er gjort for å få bedre forankring til fundamentet. I tillegg er det lagt inn ekstra gjengestang i dette elementet og GU103, veggene vil da kunne ta opp større sideveise krefter i y-retning, retningen er definert i appendix C. Ser man på geometrien til bygget (se appendix A) så har det minst skivestivhet mot horisontale krefter i y-retning. Gjengestangene er M24 med forankringslengde 500mm og armeringsjern i GU105 er Ø25mm med forankringslengde 700mm, vist på figur 6.

 $^{^{1}}$. Nonset er en sementbasert tørrmørtel som ekspanderer 1 - 3 % før avbinding, denne fylles i de korrugerte rørene for å sikre vedheft mellom vegg og gjengestang/armering.

Figur 6. Heissjaktvegger med innfestingsdetaljer.

3.1.2 Stedstøpte vegger

Hadde heissjakten vært stedstøpt ville veggene blitt laget som en monolittisk konstruksjon. Skjærkrefter og momenter hadde blitt overført i hjørner, og der det i referansebygget er elementinndeling ville veggene vært koblet sammen til en vegg. Overgangen mellom etasjene blir monolittisk. I Figur 7 vises armering slikt den kunne vært utført i hjørne av en heissjakt, vertikal armering og lukkearmering er ikke vist. Løsning av armering for jordskjelv er beskrevet senere i rapporten.

Figur 7. Armering av stedstøpt løsning i et hjørne.

3.2 YTTERVEGGER

3.2.1 SANDWICHELEMENTER

Alle yttervegger er sandwichelementer. Sandwichelementene er bygd opp av to betongsjikt med isolasjonsmateriale i mellom. Det innerste betongsjiktet er den bærende delen mens det ytre sjiktet henger i bøyler som er forankret i det indre betongsjiktet. Det ytre sjiktet bidrar i liten grad til konstruksjonens stivhet og tar ikke opp laster fra andre elementer. Vanligvis er det 80mm tykt og armert med nett. Det indre betongsjiktet består også av en flate på 80mm, men for å øke bærekapasiteten og stivheten lages det en ramme rundt og søyler i mellom. I figur 8 er sandwichelement V101 vist der søylene og rammen rundt har tykkelse 220mm. Å velge den riktige stivheten til slike elementer er vanskelig. I samråd med betongelementleverandøren har stivheten blitt valgt lik en tilsvarende en massiv betongvegg med tykkelse på 180mm. I bilde 5 ser man et sandwichelement under produksjon. Betongen som ligger nedi formen er det som skal bli fasaden. Opp av betongen stikker bøylene som er forankringen mellom ytre og indre sjikt. Sandwichelementene i referansebygget veier 5.2kN/m². Disse er, på samme måte som for de massive elementene, koblet sammen i de horisontale fugene og har ingen sammenkobling i de vertikale fugene. Elementene virker da som separate skiver. Skiveinndelingen er vist i appendix A.

Bilde 5. Sandwichelement under produksjon hos AS Betong.

Figur 8. Snitt av sandwichelement V101 sett nedenifra og opp.

Figur 9. Snitt av sandwichelementet V101 sett inn fra siden.

Bilde 6. Armering i hjørnet på et sandwichelement.

3.2.2 Stedstøpte vegger

Med en stedstøpt løsning ville veggene ikke vært delt inn i elementer slik referansebygget er. Bygget hadde blitt monolittisk og fått en høyere stivhet. Vertikal armering hadde vært gjennomgående i etasjene. Horisontal armering ville også vært gjennomgående og hjørnene bundet samme med bøyler, slik det er vist i figur 7.

3.3 KNUTEPUNKTER, TRAPP OG REPOSER

3.3.1 ELEMENTER

Knutepunkter er viktig i elementkonstruksjon for at kreftene skal overføres mellom elementene. Kreftene som overføres er i hovedsak skjærkrefter, strekk og trykk. Slik knutepunktene i referansebygget er utformet er det begrenset overføring av moment mellom elementene. Det finnes løsninger av knutepunktene med momentoverføring, det er vist noen eksempler på dette i (International Federation for Structural Concrete, 2003). Spesielt med tanke på seismiske krefter, er det viktig at kreftene fra dekkene overføres til de vertikale avstivende veggene, heretter kalt skjærvegger. Dekket må ha høy stivhet i forhold til skjærveggene for at dette skal skje på en stabil måte (Standard, 2008a). I figur 10 til 12 er det vist knutepunkter som er brukt i referansebygget. Knutepunktene mellom de massive betongelementene og sandwichelementene er utført på samme måte. Det er brukt innstøpt gjengehylse og gjengestang som sammenbinding i de horisontale fugene, og u-bøyler og randarmering for endeopplegget på hulldekke. I overgangen sidekant hulldekke mot vegg er det brukt gjengehylse, gjengestang og u-bøyler. Det er lagt inn ekstra forsterkninger i hulldekket rundt heissjakt på dekke over 1. etasje, vist i appendix A figur A2. Ved å gjøre dette sikrer man at kreftene overføres mellom dekket og skjærveggene (Alexander, Vinje, Brekke, & Hopp, 2006). Reposer er lagt ann som vist i figur 13, ved bruk av bajonetter, trappeelementene som er fritt opplagt på reposene. Bajonettene overfører horisontal og vertikale krefter, men ikke moment. Reposene og tappene bidrar lite til stivheten av bygget.

Figur 10. Overgang vegg-hulldekke-vegg, hulldekke endeopplegg, sandwichelementer.

Figur 12. Overgang vegg-hulldekke-vegg, hulldekke sidekant, massive betongelementer.

Figur 13. Til venstre plantegning av repos og trapp i fjerde etasje, til høyre overgang mellom repo-vegg-hulldekke.

3.3.2 Stedstøpt

Den stedstøpte løsningen skiller seg fra elementenes knutepunkt ved at her overføres moment i knutepunktene. Trapper og repos blir armert sammen og kan festes til vegger slikt at de bidrar til stivheten av bygget.

Figur 14. Stedstøpte knutepunkter, vertikal armering er ikke vist i figuren til høyre.

4 STATISK OG DYNAMISK ANALYSE

I konstruksjonsstandarder, som for eksempel EC8 (Standard, 2008a), er det vist metoder for å finne seismiske krefter. Disse er basert på den første svingeformen til en struktur, med enkle korreksjoner for effekten av høyere svingeformer. Slike metoder passer best for regulære og enkle bygg. Bygninger som har en jevn massefordeling og er symmetriske, oppfører seg på en forutsigbar måte. De beregnede dimensjonerende kreftene blir tilnærmet korrekte for slike bygg. Mens for bygg som er usymmetrisk, har en ujevn massefordeling og er irregulære passer en dynamisk analyse bedre. Dette fordi en dynamisk analyse beregner laster som oppstår pga. torsjon, effekten av høyere svingeformer og fordelingen av horisontale etasjevise krefter bedre(Taranath, 2005). EC8 gir et krav for når dynamiske metoder skal brukes og antall svingeformer som skal tas med. Videre i dette kapitelet vil det bli gitt en enkel innføring av de statiske metoder som er brukt i denne oppgaven, og til slutt en kort gjennomgang av de dynamiske metodene. Det blir ikke gjort en gjennomgang av systemer med to eller flere frihetsgrader. Beregningsmetoder for disse skiller seg ikke mye fra systemer med en frihetsgrad, største forskjellen ligger i mengde arbeid med utregningen.

4.1 Høydeformelen

Høydeformelen er vist som et alternativ i pkt.4.3.3.2.2 i EC8 for å finne byggets egenperiode for den første svingeform (T_1). Formelen er utledet av empiriske data fra målinger av perioden til bygg av varierende form og type. Ligning 1 viser høydeformelen for utregning egenperioden (T_1), henviser til pkt. 4.3.2.2(3) i EC8

$$T_1 = C_t \cdot H^{\frac{3}{4}}$$
(1)

der

- Ct er 0,0085 for momentstive romlige stålrammer, 0,0075 for momentstive romlige betongrammer og eksentriske avstivede stålrammer og 0,050 for alle andre konstruksjoner.
- H er høyden av bygningen fra fundamentet eller fra overkanten av stiv kjeller, i meter, m.

Alternativ utregning av C_t for veggskiver er vist i pkt. 4.3.2.2(4) i EC8. Verdiene av C_t er forskjellige i de ulike lands standarder. T₁ er ment å gi en periode litt lavere en den som er virkelig for bygget, ca. 10-20%. Ref. (*Betongelementboken*, 2007; Geol, 1998).

4.2 DUNKLEY'S METODE

Dunkley`s metode er en teoretisk metode som passer godt for skjærvegger i betong. Høydeformelen har vist seg å være unøyaktig for betongbygninger med avstivende system av skjærvegger i betong (Geol, 1998). Dunkley`s metode er basert på en kombinasjon av perioden man får fra skjær-og bøyedeformasjon i en bjelke.

Figur 15. $bøye(\Delta b)$ og skjærdeformasjon(Δs)

$$T = \sqrt{T_b^2 + T_s^2}$$
(2)

Ligning 2. Perioden ved kombinasjon av bøye (T_b) og skjærperioden (T_s).

$$T_{\rm b} = \frac{2\pi}{3,516} \sqrt{\frac{\rm m}{\rm EI}} {\rm H}^2 \tag{3}$$

Ligning 3. Bøyeperioden (T_b).

$$T_{\rm s} = 4\sqrt{\frac{\rm m}{\kappa \rm G}} \frac{1}{\sqrt{\rm A}} \,\rm H \tag{4}$$

Ligning 4. Skjærperioden (T_s).

$$T = 4\sqrt{\frac{m}{\kappa G}} \frac{1}{\sqrt{A_e}} H$$
(5)

Ligning 5. Den kombinerte perioden (Dunkley`s metode).

$$A_{e} = \frac{A}{\left[1 + 0.83 \left(\frac{H}{D}\right)^{2}\right]}$$
(6)

Ligning 6. Ekvivalent skjærareal (Ae).

Ved å kombinere 3 med 4 får man 5, dette er omtalt i artikkel "Period formulas for concrete shear wall bulidings" utgitt i "Jurnal of engineering" (Geol, 1998). For at formelen skal passe for et bygg må den gjøres om slik at man kan legge inn den totale masse av bygget og alle avstivende skjærvegger. Noen antagelser må gjøres, bl.a. at etasjeskillene er uendelig stive og koblet til skjærveggene, bygget er symmetrisk i plan og oppriss og at stivhet av skjærveggene er jevnt fordelt på hele høyden. Da blir Ligningen.

$$T = 40 \sqrt{\frac{\rho}{\kappa G}} \frac{1}{\sqrt{\overline{A}_e}} H$$
(7)

Ligning 7. Dunkley`s tilpasset bygninger.

$$\overline{A}_{e} = 100 \frac{A_{e}}{A_{b}}$$
(8)

Ligning 8. Ekvivalent skjærareal i prosent av grunnflatearealet.

$$A_{e} = \sum_{i=1}^{NW} \left(\frac{H}{H_{i}}\right)^{2} \frac{A_{i}}{\left[1+0.83\left(\frac{H_{i}}{D_{i}}\right)^{2}\right]}$$
(9)

Ligning 9. Ekvivalent skjærareal tilpasset bygninger.

der

$$\rho$$
 vekt pr volum (kg/m³)

- κ tverrsnittskonstant
- G skjærmodul
- A_e ekvivalent skjærareal
- \overline{A}_{e} ekvivalent skjærareal i prosent av grunnflatearealet
- H total høyden av bygget
- H_i Skivens høyde fra grunnivå for skive i
- D_i Skiveutstrekning i den betraktede retning for skive i
- A_i Skivearealet for skive i

Metoden er brukt i RIF regneark for utregning av jordskjelvlaster vist i appendix D.

4.3 SYSTEM MED EN FRIHETSGRAD

Dette er en dynamisk metode som beskriver bevegelsen til et system av en masse (m), festet til en bjelke, vegg, fjær eller lignende med stivhet (k). Et slikt system har en svingform som vist i figur 16, bevegelsesligningen som beskriver system er utledet fra Newtons andre lov $F = m \cdot a$. Dette systemet kan også ha en dempning (c) innebygd. Det skilles mellom tre typer dempning: 1) overdempet, 2) kritisk dempet og 3) underdempet system, vist i figur 17. Sist nevnte er den de fleste bygninger kategoriseres under. Det er kun enkle konstruksjoner som kan beskrives med slike ligninger. Som oftest må det flere frihetsgrader til for å beskrive konstruksjonens oppførsel. Konstruksjonen kan bli utsatt for mange forskjellige ytre påvirkning har mye å si for hvordan responsen er. Det kan være en impulslast, harmonisk bevegelse, jordskjelv osv. I dette kapitelet er det omtalt systemer der bevegelsene er i det elastiske området. For mer informasjon om oppførsel medregnet den plastiske sonen av et system henvises det til spesiallitteratur som (Chopra, 2001).

4.3.1 UDEMPET SYSTEM MED EN FRIHETSGRAD

Ser man bort i fra ytre påvirkning og dempning blir det som vist i ligning 10. Man får fri bevegelse ved å plassere massen i figur 16 ut av likevektsposisjonen med forskyvning u(0) og gi den en starthastighet $\dot{u}(0)$ ved tiden t = 0. Med disse startverdibetingelsene, blir løsningen til den homogene ligningen 11. Utledning er vist i "Dynamic of structures" kapittel 2, (Chopra, 2001). I ligning 12 er, ω_n , den naturlige vinkelfrekvensen uttrykt i (rad/sek) fra, ω_n , kan man finne den naturlige perioden, T_n, vist i ligning 13 og den naturlige frekvensen, f_n , vist i ligning 14. Som man kan se av ligning 11 styres vinkelfrekvensen kun av massen og stivheten. T_n beskriver hvor lang tid i sekunder det tar for systemet å gjennomføre en syklus, denne er også kun avhengig av massen og stivheten. For mer detaljert beskrivelse henvises det til (Chopra, 2001; Rao, 2005).

Figur 16. Udempet system med en frihetsgrad der, u, er forskyvning.

$$m\ddot{u} + ku = 0 \tag{10}$$

$$\mathbf{u}(t) = \mathbf{u}(0)\cos\omega_{n}t + \frac{\dot{\mathbf{u}}(0)}{\omega_{n}}\sin\omega_{n}t$$
(11)

hvor

$$\omega_{n} = \sqrt{\frac{k}{m}}$$
(12)

$$T_n = \frac{2\pi}{\omega_n}$$
(13)

$$f_{\rm n} = \frac{1}{T_{\rm n}} \tag{14}$$

4.3.2 DEMPET SYSTEM MED EN FRIHETSGRAD

Ved å sette ytre påvirkninger lik null kan man, som tidligere nevnt, utrykke ligningen som vist i ligning 15. Når systemet vist i figur 17 beveger seg en syklus blir noe av energien tatt opp av systemet, energien blir uttrykt som, c, dempning. Denne dempningen påvirker systemets, T_n, naturlige periode, dermed får vi en ny periode, T_d, dempet naturlig periode vist i ligning 20. Som nevnt tidligere har vi forskjellige dempningstyper, se figur 17. Bygninger av interesse i denne oppgaven, er vanligvis et underdempet system. I EC8 er det foreslått et, ζ , dempningsforhold på 5 % av bygninger dersom ikke nærmere undersøkelser er gjort. Ser man på ligning 17 består dempning er den minste motstandskraften i systemet som trengs for å stoppe systemet fra å passere likevektspunktet. Det vil si at når c = c_{kr} blir ζ = 1 som vist i figur 17.

Figur 17. Dempet system med en frihetsgrad.

$$m\ddot{u} + c\dot{u} + ku = 0 \tag{15}$$

$$\ddot{\mathbf{u}} + 2\zeta \omega_{\mathbf{n}} \dot{\mathbf{u}} + \omega_{\mathbf{n}}^2 \mathbf{u} = 0 \tag{16}$$

Der, $\omega_n = \sqrt{k/m}$, er som vist tidligere

$$\zeta = \frac{c}{2m\omega_{\rm n}} = \frac{c}{c_{\rm kr}} \tag{17}$$

$$c_{kr} = 2m\omega_n = 2\sqrt{km} = \frac{2k}{\omega_n}$$
(18)

4.3.2.1 UNDERDEMPET SYSTEM

Ved å bruke de samme startverdibetingelser som nevnt i starten av kapitel 4.3.1 kan differensialligningen løses ved vanlig metode. For et underdempet system der $c < c_{kr}$ og $\zeta < 1$ blir løsningen som vist i ligning 19, u(t) beskriver systemets posisjon ved en gitt tid (t). Med et dempningsforhold på rundt 0,05, reduseres amplituden betraktelig mindre pr. syklus over tid enn ved et dempningsforhold på rett under 1. Som man kan se av ligning 20 så reduseres vinkelfrekvensen, ω_n , som følge av dempningsforholdet og vi får den naturlige dempede vinkelfrekvensen, ω_d . Perioden i ligning 21, blir dermed lengre. Det er verd og merke seg at for et dempningsforhold på 0,05 er endringen små. For utledning av ligningen henvises det til kapitel 2 i (Chopra, 2001).

$$\mathbf{u}(t) = e^{-\zeta \omega_{n} t} \left[\mathbf{u}(0) \cos \omega_{n} + \frac{\dot{\mathbf{u}}(0) + \zeta \omega_{n} \mathbf{u}(0)}{\omega_{d}} \sin \omega_{d} t \right]$$
(19)

Hvor

$$\omega_{\rm d} = \omega_{\rm n} \sqrt{1 - \zeta^2} \tag{20}$$

$$T_{d} = \frac{T_{n}}{\sqrt{1 - \zeta^{2}}}$$
(21)

Figur 17. Fribevegelse av et kritiskdempet $\zeta = 1$, overdempet $\zeta = 2$ og underdempet system $\zeta = 0.1$.

4.3.2.2 UNDERDEMPET SYSTEM MED YTRE PÅVIRKNING

Den ytre påvirkningen kan være representert på mange måter som nevnt i starten av kapitelet. I denne oppgaven er den ytre påvirkningen i form av jordskjelv av interesse. I ligning 22 beskrives grunnakselerasjonen $\ddot{u}_g(t)$ som en ytrekraft, $-m\ddot{u}_g(t)$, på systemet.

De indre kreftene i systemet er da f_m , f_d og f_s . Ved å dividere på massen kan man se av ligning 24 at deformasjonen av systemet, ved en gitt akselerasjon avhenger, kun av, T_n , ω_n og ζ . Dette betyr at systemet kan ha forskjellig stivhet og masse så lenge T_n og ζ er lik (Chopra, 2001). Egenperioden og dempningen av en bygning er av stor betydning når man bruker responsspektrum i forbindelse med dimensjonering for jordskjelv.

Figur 18. Dempet system med en frihetsgrad, u_g er forskyvning av grunnen, u^t er den totaleforskyvningen.

$$\mathbf{f}_{m} + \mathbf{f}_{d} + \mathbf{f}_{s} = -\mathbf{m}\ddot{\mathbf{u}}_{s}(\mathbf{t}) \tag{22}$$

 $m\ddot{u} + c\dot{u} + ku = -m\ddot{u}_{g}(t) \tag{23}$

Ved å dele på, m, får vi utrykket

$$\ddot{\mathbf{u}} + 2\zeta \omega_{\mathbf{n}} \dot{\mathbf{u}} + \omega_{\mathbf{n}}^2 \mathbf{u} = -\ddot{\mathbf{u}}_{\mathbf{n}}(\mathbf{t}) \tag{24}$$

Fordi grunnakselerasjonen under ett jordskjelv er svært uregelmessige og varierende, se figur 19, kan ikke analytisk metoder beskrive bevegelsene på en god måte, det må brukes numeriske metoder. Hvilken numeriske metode varierer ut ifra type ytre påkjenning. De numeriske metodene er beskrevet i (Chopra, 2001; Rao, 2005).

Figur 19. Viser variasjonen av grunnakselerasjonen over tid, for flere tidligere jordskjelv, hentet fra (Chopra, 2001).

4.4 MODALANALYSE

Høye bygninger eller usymmetriske bygninger kan ofte få mange svingeformer. Da er modalanalyse en godt egnet metode å bruke. Modalanalyse er benyttet for å finne jordskjelvlaster på referansebygget og den stedstøpte løsningen. Modalanalysen er kombinert med responsspektrumet, gitt i EC8, for å finne jordskjelvlastene. Dette er en responsspektrumanalyse (RSA). Modalanalysen kan også kombineres med tidshistorie fra et tidligere jordskjelv, eller en grunnakselerasjon $\ddot{u}_{o}(t)$ for å finne bygningens respons.

Sist nevnte er en responshistorieanalyse (RHA), dette er omtrent det samme som omtalt i punkt 4.3 bare med flere svingeformer og frihetsgrader. RSA er vanlig å bruke ved design av bygninger fordi denne analysen gir designforskyvningen og kreftene ved bruk av det nasjonale designresponsspekteret. Metoden gir ikke et like nøyaktig svar som ved bruk av RHA, men er vanligvis godt nok for dimensjonering av bygninger.

4.4.1 FREKVENSER OG SVINGEFORMER

Modal i denne sammenhengen betyr å beskrive for eksempel en bygnings egensvingninger ved hjelp av koordinater. En bygning med flere etasjer har gjerne flere svingeformer. Disse svingeformene har hver sin periode, frekvens og forskyvning, se figur 20. Bygninger har et sett av naturlige svingformer som kommer ved å gi bygningen en startforskyvning. Antall svingeformer kommer ann på kompleksitet av strukturen, antall etasje, om det er utsatt for torsjons osv. Hvilke steder bygninger blir utsatt for forskyvningene og hvilke retninger avgjør hvilken svingeform bevegelsen får. For eksempel kan man gi motsatt rettet starforskyvninger på to forskjellige steder og man kan få svingeform som en bue, se tegning to i figur 20. Blir bevegelsen initiert av et jordskjelv kan bygget ha varierende respons avhengig av jordskjelvets styrke, varighet eller grunnbevegelser. Det kritiske er om jordskjelvet har en grunnbevegelse som stemmer med et at bygningens egensvingeformer. Med modalanalyse kan man ta med de forskjellige svingingene et bygg har og sammenkoble dem med RSA og RHA. I modalanalyse introduseres egenverdiproblemer der løsningene gir naturlige vinkelfrekvenser, ω_{n} , og svingeformer ϕ_{n} . ϕ_{n} er vektorer som beskriver formen på bevegelsen i svingeform, n, (der n går fra 1,2,...,N) dette gjelder også for vinkelfrekvensen der n ikke lenge står for naturlig selv om det er byggets naturlige egenfrekvens. Bygget kan gjøres om til et system der bevegelsesligningen kan beskrives på samme grunnlag som tidligere.

$$\mathbf{u}(\mathbf{t}) = \mathbf{q}_{\mathrm{n}}(\mathbf{t})\boldsymbol{\phi}_{\mathrm{n}} \tag{25}$$

Ligning 25 er for et system med to frihetsgrader uten ytre påvirkning, der A_n og B_n er konstanter

$$q_n(t) = A_n \cos \omega_n t + B_n \sin \omega_n t$$
(26)

Ved å sette inn differensialligningen får vi da

$$\left[-\omega^2 \mathbf{m} \phi_n + \mathbf{k} \phi_n\right] \mathbf{q}_n(\mathbf{t}) = 0 \tag{27}$$

$$\mathbf{k}\boldsymbol{\phi}_{\mathrm{n}} = \boldsymbol{\omega}_{\mathrm{n}}^{2}\mathbf{m}\boldsymbol{\phi}_{\mathrm{n}} \tag{28}$$

$$\left[\mathbf{k} - \omega_{n}^{2}\mathbf{m}\right]\phi_{n} = 0 \tag{29}$$

$$\det\left[k - \omega_n^2 m\right] = 0 \tag{30}$$

Man kan finne vinkelfrekvensen fra andregradsligningen 30, når man da har vinkelfrekvensen kan man gå tilbake å finne vektoren i ligning 29, som er koordinater til svingeformene. Har man flere frihetsgrader kan man sette det opp på matriseform som vist i ligning 31 og 32

$$\Phi = \begin{bmatrix} \phi_{1n} \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{1N} \\ \phi_{21} & \phi_{22} & \phi_{2N} \\ \phi_{N1} & \phi_{N2} & \phi_{NN} \end{bmatrix}$$
(31)
$$\Omega^{2} = \begin{bmatrix} \omega_{1}^{2} & & \\ & \omega_{2}^{2} & \\ & & & \omega_{N}^{2} \end{bmatrix}$$
(32)

Matrisen, Φ , kalles en *modal matrise* og egenverdien kan samles i en *spektral matrise*, Ω^2 .

$$k\Phi = m\Phi\Omega^2 \tag{33}$$

eller

$$\left[\mathbf{k} - \Omega^2 \mathbf{m}\right] \Phi = 0 \tag{34}$$

I ligning 33 er k og m stivhetsmatriser og massematriser for de forskjellige elementene. Dempningen, c, av strukturen kan også tas med i beregningene, det skilles mellom *klassisk dempning* og *ikke klassisk dempning*. Det som skiller dem er hvordan dempningen er fordelt i strukturen. Den *klassiske dempningen* gir en diagonal matrise med N antall differensialligninger, som kan løses med klassisk modalanalyse. Den *ikke klassiske dempningen* får ikke en diagonal matrise og kan ikke løses på klassikk metode. Svingeformene er ikke ekvivalente med svingeformen for det udempede systemet.

Metoden for modalanalyse brukt i denne oppgaven er uten dempning. Demping er medregnet i responsspekteret som en fast verdi, der man har forskjellige kurver ut i fra grad av dempning.

På grunn av ortogonaliteten mellom matrisene kan man utrykke ligningen slik som vist i ligningene 35 og 36, dette er diagonale matriser, beviset på dette finnes i spesiallitteratur som, (Chopra, 2001).

$$\mathbf{K} = \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{k} \boldsymbol{\Phi} \quad \text{og} \quad \mathbf{M} = \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{m} \boldsymbol{\Phi} \tag{35}$$
$$\mathbf{K}_{n} = \boldsymbol{\phi}_{n}^{\mathrm{T}} \mathbf{k} \boldsymbol{\phi}_{n} \text{ og } \mathbf{M}_{n} = \boldsymbol{\phi}_{n}^{\mathrm{T}} \mathbf{m} \boldsymbol{\phi}_{n}$$
(36)

Ligningene 36 har relasjonen.

$$\mathbf{K}_{n} = \omega_{n}^{2} \mathbf{M}_{n} \tag{37}$$

4.4.2 MODALLIGNINGER FOR UDEMPEDE SYSTEMER MED YTRE DYNAMISK PÅVIRKNING Bevegelsesligninger er som tidligere, men med tilpassning til flere frihetsgrader. Løsningen gjelder for strukturer utsatt for dynamiske bevegelser i det lineære området. Når man har flere frihetsgrader er det effektivt og skrive om ligningen til modale koordinater. Forskyvningsvektoren, u, kan deles opp i modale bidrag (Chopra, 2001). Hvert bidrag har sin påvirkning på strukturen, forenklet kan man si at summen av disse bidragene er den totale forskyvningen.

$$\mathbf{u}(t) = \sum_{r=1}^{N} q_r(t) \phi_r = \Phi q(t)$$
(38)

Ved å sette dette inn i den kjente bevegelsesligningen og deretter bruke den ortogonale relasjonen som er vist tidligere kan man skrive ligningen på formen.

$$M_{n}\ddot{q}_{n}(t) + K_{n}\dot{q}_{n}(t) = P_{n}(t)$$
(39)

 M_n og K_n er som tidligere vist den *fordelte massen* og *fordelte stivheten*. $P_n(t)$ er de *fordelt kreftene* på strukturen. Ligning 39 beskriver da en av svingeformene i et system med flere frihetsgrad. Vet man ligningen for en av svingeformene kan vi uten å vite noe om de andre løse denne. Det er en slik ligning pr. svingeform. På matriseform blir da ligningen.

$$M\ddot{q} + Kq = P(t) \tag{40}$$

M og K, som er de diagonale matrisene, har blitt introdusert tidligere mens P(t) er en kolonnevektor av de *fordelte kreftene*. De ikke koblede differensialligningen man får kan gjøres om til et sett av ikke koblede ligninger med modal koordinater, $q_n(t)$ der n = 1, 2, ..., N. og forskyvningen finner man da fra ligning 38.

For dempede systemer blir det da på samme måte, forutsatt at matrisen for dempning, C, er en ikke koblet matrise.

Den totale forskyvningen kan finnes ved å bruke superposisjonsmetoden. Metoden går ut på og summer alle forskyvningene fra ligningen. Det kan gjøres fordi hver modale ligning er på samme form som for et system med en frihetsgrad. Forutsetninger for å bruke denne metoden er at analysen er lineær og dersom det er dempning må den være en *klassisk dempning*, den totale forskyvning blir da.

$$u(t) = \sum_{n=1}^{N} u_n(t) = \sum_{n=1}^{N} q_n(t)\phi_n$$
(41)

4.4.3 DET MODALE BIDRAGET TIL RESPONSEN AV BYGNINGEN

Hvor stort bidrag man har fra den totale massen i bygget varierer fra en svingeform til neste. Dette bidraget blir viktig i analysen av strukturen, siden den da påvirker responsen av bygningen.

$$\Gamma_{n} = \frac{\phi_{n}^{T} s}{M_{n}}$$
(41)

 Γ_n er en faktor som sier noen om hvor stort bidrag en enkelt svingform har på responsen av strukturen, senere omtalt som *medvirkende modal faktor*. s, gir den romlige fordelingen av krefter uavhengig av tid. Den totale responsen der alle responsbidragene er med blir da.

$$\mathbf{r}(t) = \sum_{n=1}^{N} \mathbf{r}_{n}(t) = \sum_{n=1}^{N} \mathbf{r}_{n}^{st} \left[\omega_{n}^{2} \mathbf{D}_{n}(t) \right]$$
(42)

$$D_{n}(t) = \frac{q_{n}(t)}{\Gamma_{n}}$$
(43)

I Ligning 42 er det ikke tatt med utregninger, det henvises til litteratur, som (Chopra, 2001), for å se framgangsmetoden. r_n^{st} er den modale statiske responsen, det skilles mellom en statisk del og en dynamisk del, disse summeres sammen til den totale responsen. Metoden er for dynamisk ytre påvirkning, for å implementere tidshistorie fra et jordskjelv må det gjøres på en litt annen måte. Den grunnlegende framgangsmetoden er lik. Metoden er ikke tatt med i denne oppgaven.

Man kan også uttrykke hvor stort bidrag en svingeform har på responsen av strukturen, her kalt den *modale bidragsfaktoren*, \overline{r} , denne kommer fra utrykket.

$$\mathbf{r}_{n}(t) = \mathbf{r}_{n}^{st} \overline{\mathbf{r}}_{n} \left[\omega_{n}^{2} \mathbf{D}_{n}(t) \right]$$
(44)

$$\overline{\mathbf{r}}_{n} = \frac{\mathbf{r}_{n}^{st}}{\mathbf{r}^{st}} \tag{45}$$

De nevnte faktorene kan brukes videre i modalanalyser både under påvirkning av dynamisk ytrekraft, tidshistorie og responsspektrum. Man kan finne skjærkrefter ved bunnen av strukturen for de forskjellige svingeformene, der faktorene beskriver størrelsen av bidraget fra de forskjellige svingeformene. Summen av disse er da det totale bidraget. Faktorene benyttes for å finne for eksempel effektiv medsvingende masse, M^{eff}, og effektiv høyde, h^{eff}, når man ser på hver svingeform som ekvivalente systemer med en frihetsgrads, se figur 20. M^{eff} og h^{eff} kan da brukes til å finne skjærkrefter ved bunnen. Ved spesielle analysemetoder som for eksempel bruk av statisk korreksjon kan, $\overline{r_n}$, brukes. For bygninger der de høye frekvensene er mye større enn freskvensene fra et jordskjelv kan man se på disse som statiske, dette gjør beregningen enklere.

Figur 20. Eksempel på svingeformer, M^{eff} og h^{eff}, figuren er hentet fra (Løset, Lurén, Vinje, & Skau, 2011).

4.4.4 RESPONSSPEKTRUMANALYSE

For en slik analyse bruker man responsspektrumet tilhørende det enkelte land eller området. Responsspektrumet gir maks verdier av grunnakslerasjonen i forskjellige retninger for et antatt jordskjelv. Nettopp fordi man bare bruker maksimum verdier kan man ikke summere opp responsen og få den totale responsen av strukturen, som beskrevet tidligere. Resultatet blir da altfor konservativt. Det finnes ingen eksakt løsning med denne metoden, det er kun tilnærminger, men det finnes kombinasjoner av responsene som gir gode nok svar for bruk ved dimensjonering av bygninger. Vi har noen kjente kombinasjoner som, ABSSUM, SRSS og CQC. r_{n0} er modale maks verdier av responsen for de enkelte svingeformene.

$$\mathbf{r}_{0} \le \sum_{n=1}^{N} |\mathbf{r}_{n0}|$$
 (46)

ABSSUM, er *absolutt sum* av de modale kombinasjonen, dvs. at alle responsene er summer sammen med positivt fortegn . Dette gir et meget konservativt resultat og er sjelden å foretrekke til bruk ved bygningsdesign.

$$r_0 \simeq \sqrt{\sum_{n=1}^{N} r_{n0}^2}$$
 (47)

SRSS, er *kvadratroten av summen av kvadratene*, denne metoden fungerer godt for modeller der frekvensene til de enkelte svingformen ikke ligger nærme hverandre i størrelse.

$$\mathbf{r}_{0} \simeq \sqrt{\sum_{i=1}^{N} \sum_{n=1}^{N} \rho_{in} \mathbf{r}_{i0} \mathbf{r}_{n0}}$$
(48)

CQC, er *komplett kvadratisk kombinasjon*, kombinasjonen fungerer for et større spekter av konstruksjoner. Dette fordi kombinasjonen tar med seg relasjonen mellom responsene. Desto mindre forskjellen mellom konstruksjonens naturlige frekvenser er, desto større blir relasjonen mellom dem. Denne relasjonen utrykkes ved korrelasjonskoeffisienten, ρ_{in} , som varierer mellom 0 og 1.

4.5 Responsespektra

Det finnes forskjellig typer responsspektrum, her blir bare designspektrumet brukt i EC8 omtalt. Responsspektret har forskjellige kurver bestemt fra grunnens sammensetning. Det benyttes et dempningsforhold på 5 %.

5 DIMENSJONERING ETTER EC8

Den norske jordskjelvstandarden, EC8, gir bestemmelse for dimensjonering av konstruksjoner utsatt for jordskjelv. I standarden klassifiseres konstruksjoner etter type bygning (formål ved bruk), geometri og bæresystemets bygningsmateriale. Standarden bruker elastisk responsspekt til finne de seismiske lastene konstruksjonen skal designes for. Hvilken type grunn konstruksjonen står på er viktig å vite siden hver grunntype har sine respektive responsspektra. Fastlands-Norge er delt inn i seismiske soner, der hver sone har en referanseverdi for berggrunnens akselerasjon, ag40HZ. Derfor er beliggenheten av bygningen viktig ved dimensjoneringen. Standarden gir grunnlag for å se bort fra dimensioneringen for jordskjelv for enkelte bygningstyper, ved lav seismisitet og i kombinasjon med andre aktuelle laster. Disse kan summeres opp som utelatelseskriterier og er kommentert nærmere senere. EC8 omhandler også metoder man kan eller skal brukes for å finne de seismiske lastene og beskrivelse av metoder ved designkonstruksjoner. I denne oppgaven er det design av betongkonstruksjoner som er av interesse. Regularitet i plan og oppriss er viktige faktorer som er med å bestemme hvilke analysemetoder som skal brukes. Disse faktorene er også med på å definere konstruksjonens evner til å ta opp energien fra jordskjelv.

5.1 UTELATELSESKRITERIER

Som nevnt gir EC8 muligheter til å utelate dimensjonering for jordskjelv, disse kravene er kontrollert for referansebygget. Det er konkludert med at bygningen må dimensjoneres for jordskjelv.

De forskjellige kriteriene er

- 1. Ved svært lav seismisitet er det normalt ikke påkrevd å vise tilstekkelig sikkerhet av bygget, kravet er gitt i nasjonalt tillegg i EC8.
- 2. For konstruksjoner i seismisk klasse I, se nasjonalt tillegg.
- 3. For lette trekonstruksjoner, se nasjonalt tillegg.
- 4. Når dimensjonerende spektrum, $S_d(T) < 0.05 = 0.49 \text{ m/s}^2$ forutsatt at $q \le 1.5$, nasjonalt tillegg.
- 5. I kombinasjon med andre relevante laster skal jordskjelvlasten være mindre eller lik se punkt 4.4.1. i EC8.

I Punkt 5 kan lastkombinasjonen se ut som vist i ligning 49, (Løset, 2010).

$$F_{b} \leq (1, 5 \cdot \text{vind} + 1, 05 \cdot \text{skjev}) \cdot (\gamma_{c\text{bruddgrense}} / \gamma_{c\text{DCL}})$$
(49)

Jordskjelvlasten, F_b , er skjærkraften i overkant av grunn eller stiv kjeller. Konstruksjonsfaktoren, q, skal være lik den for lite energiabsorberende konstruksjoner, dvs. q \leq 1,5. Kraften må samtidig være basert på lineær elastisk analyse. Modellen som er brukt for å finne laster må være basert på lineær elastisk analyse. Bygningen bør være enkel i oppriss og plan, se punkt 2.2.4(1) og (4) i EC8. Kontroll av lastkombinasjonen er vist i appendix F. Jordskjelvlaste er større enn fra andre aktuelle laster

 $963kN > (1,5 \cdot 386kN + 32kN) \cdot 1,5/1,2 = 764kN$

5.2 Regularitet

I EC8 skilles det mellom regulære og ikke regulære bygningskonstruksjoner. Det har blitt gjort kontroll av referansebygget med hensyn til regularitet i plan og oppriss, dette er vist i appendix C. Kontrollen viser at referansebygget ikke er regulært i plan eller oppriss. Bygget klassifiseres også som et torsjonsmykt system grunnet ligning 4.1b) i EC8, som ikke er oppfylt, noe som får stor innvirkning på konstruksjonsfaktoren, q. I EC8 er temaet omtalt i punkt 4.2.3. Tabell 2 er en gjengivelse av tabell 4.1 i EC8, denne tar for seg hvilken type metode man skal bruke i den videre analysen for å finne de riktige jordskjelvlastene. Tabellen går ut i fra bygningskonstruksjonens regularitet i plan og oppriss.

Tabell 2. Konsekvenser av konstruksjonens regularitet for seismisk analyse og dimensjonering, henviser til: EC8 pkt. 4.2.3.1(3) tabell 4.1(Standard, 2008a).

Regularitet Tillatt forenkling			Konstruksjonsfaktor	
Plan	Oppriss	Modell Lineær-elastisk analyse		(for lineær analyse)
Ja	Ja	Plan	Tverrkraft'	Referanseverdi
Ja	Nei	Plan	Modal	Redusert verdi
Nei	Ja	Romlig*	Tverrkraft'	Referanseverdi
Nei	Nei	Romlig	Modal	Redusert verdi

I oppgaven er det benyttet en plan modell med tverrkraftmetoden for referansebygget, og en romlig modell med modalanalyse for referansebygget og den stedstøpte løsning. Den plane modellen kan ikke brukes ved det endelige designet av referansebygget fordi kriteriene til regularitet ikke er oppfylt hverken i oppriss eller plan, men i en startfase og for sammenligning er den av interesse for den videre analysen. Det er viktig å merke seg at i tabellen er det gitt et krav om reduksjon av konstruksjonsfaktoren, q, reduksjonen er satt til 20 % i EC8. Denne faktoren er et mål på bygningens evne til å ta opp og omfordele energi, og er derfor av interesse i denne oppgaven.

Utregning av stivhetssenteret til referansebygget, vist i appendix C, er gjort etter metode beskrevet i aktuell litteratur (Løset, et al., 2011). Stivheten til skivene i referansebygget er delt inn i bidrag fra bøyestivhet, K_b, og skjærstivhet, K_s, summert sammen gir disse den totale stivheten. Denne metoden er utledet etter relasjonen.

$$\Delta_{t} = \frac{F}{K} = \frac{F}{K_{b}} + \frac{F}{K_{s}}$$
(50)

$$\Delta_{\rm t} = \Delta_{\rm b} + \Delta_{\rm s} \tag{51}$$

Den totale forskyvningen, Δ_t , er summen av forskyvning fra bøyning, Δb , og skjær, Δs , som vist i figur 21 (Hopp & Alexander, 2005).

Figur 21. bøyning av en skive utsatt for en horisontal kraft, F, i toppen.

Deremetrer og krev	D.C).1-etg.	D.O.2 og 3-etg.		
Farametrer og krav	x - retning $y - retning$		x –retning	y – retning	
e_{ox} eller e_{oy} (m)	4,4	0,6	4,9	0,9	
r_x eller r_y (m)	10,7	4,7	10,3	4,5	
$I_s (m^4)$	6,5	6,5	6,4	6,4	
Krav: $r_i \ge I_s$	ОК	Ikke OK	ОК	Ikke OK	
Krav: $e_{oi} \le 0, 3 \times r_i$	Ikke OK	OK	Ikke OK	OK	

Tabell 3. Resultater og krav for regularitet i plan.

Tabell 4. Resultater og krav for regularitet i oppriss.

Krav	Figur C	9	Figur C10 der	$L=L_1$
$\frac{L-L_2}{L} \le 0,30$	$\frac{20,5-10,5}{20,5} = 0,48$	Ikke OK		
$\frac{L_1 - L_2}{L} \le 0,10$	$\frac{15,9-10,5}{20,5} = 0,26$	Ikke OK	$\frac{13,8-10,6}{13,8} = 0,23$	Ikke OK

5.3 SEISMISK MASSE

Den seismiske masse består av egenvekten av referanse bygget pluss en permanent andel fra de variable lastene. Lastkombinasjonen er gitt i ECO (Standard, 2008b). Det henvises til appendix B for utregninger.

Total egenvekt av bygget			
kN	tonn		
8612	878		
Total seismisk masse av bygget			
kN	tonn		
9052	923		

Tabell 5.	Egenvekt og	seismisk	masse.
-----------	-------------	----------	--------

5.4 Egenperiode

Det er beskrevet tre forskjellige metoder som kan brukes for å finne egenperioden til en bygning i EC8, disse er.

1. $T_1 = C_t \cdot H^{\frac{3}{4}}$

2. $T_1 = 2 \cdot \sqrt{d}$

3. Modalanalyse

Punkt 1. er høydeformelen, denne er beskrevet i kapitel 4. I punkt 2. er, d, den elastiske forskyvningen av toppen på bygningen som følge av gravitasjonslastene som er påført i horisontalretningen, i meter. Punkt 3 er modalanalyse beskrevet i kapitel 4. De to første punktene har begrensninger ved bruk som omhandler høyde av bygget, periodens varighet og regulariteten i oppriss, se punkt 4.3.3.2.1 i EC8. Det siste punktet kan benyttes for nesten alle typer bygg. I denne oppgaven er høydeformelen, modalanalyse og Dunkley`s metode benyttet. Beregninger og resultater er vist i appendix D og E. Fra resultatene kan man se at det er relativt stor forskjell mellom periodene ved bruk av forskjellige metoder, spesielt i y-retning.

5.5 BETONG BYGG I DCL OG DCM

Byggets evne til å ta opp energien forårsaket av jordskjelv deles inn i duktilitetsklasser. Der bygninger i DCL (lav) er konstruksjoner med lite energiabsorpsjon og DCM (middels) er energiabsorberende konstruksjoner. Det finnes også en klasse DCH (høy) men denne benyttes ikke i Norge. I enkelte tilfeller, som vil bli omtalt senere, gir EC8 krav om å dimensjonere bygninger etter kravene for DCM. Men det kan likevel være av interesse for en ingeniør å dimensjonere et bygg i DCM selv om det ikke skulle være et krav for den aktuelle bygningen. Bakgrunnen for dette kan være at man kan reduseres kreftene som bygget dimensjoneres for og at bygget har en dokumentert restkapasitet dersom prosedyrene for DCM er fulgt. Størrelsen på konstruksjonsfaktoren, q, har direkte sammenheng med hvilken duktilitetsklasse et bygg havner i. For betongbygninger som er av interesse i denne oppgaven defineres DCL for $q \le 1,5$ og DCM for $1,5 < q \le 4,0$.

5.5.1 KONSTRUKSJONSFAKTOR (q)

I EC8 bruker man lineær analyse for å finne kreftene, ved å bruke faktoren kan man ta hensyn til den ikke lineære oppførselen av bygningen. Økning av faktoren gir reduksjon av dimensjonerende krefter. Faktoren kan være forskjellig i de to horisontale retningene, men duktilitetsklassen skal være lik for begge retningene. Siden dimensjoneringen i EC8 baserer seg på et elastisk responsspektrum vil kraften bli høyer enn de faktiske kreftene i DCM. Dette er tilfelle siden bygg med, q, i DCM designes slik at en del energien blir tatt opp duktilt. Den totale energien under en duktil spennings/tøynings- kurve er mindre enn for en tilsvarende elastisk kurve. Konstruksjonsfaktor på 1,5 kan brukes til å fastsette de seismiske påvirkningene, uansett bæresystem og regularitet i oppriss, henviser til Punkt 5.3.3 EC8 (Standard, 2008a).

Doromotor	Konstruksjonsfaktor (q)				
Farameter	Stedstøpt løsning	Elementbygget			
q _o	2,0	2,0			
k _w	1,0	1,0			
Reduksjon	0,8	0,8			
k _p		1,0			
Ganget sammen	1,6	1,6			

Tabell 6. Konstruksjonsfaktor etter punkt 5.2.2.2 og 5.11.1.4 i EC8.

For mer informasjon henvises det til Appendix D. Kriterier for å sette k_p lik 1,0 er gitt i EC8 under punkt 5.11.1.4(1).

5.5.2 Stedstøpt sammenlignet med prefabrikkert

I DCL kan dimensjonering etter EC2 (Standard, 2005) benyttes for stedstøpte konstruksjoner og prefabrikkerte konstruksjoner, men med et tillegg for prefabrikkerte systemer gitt under punkt 5.2.1(2) og 5.3 i EC8.

I DCM gjelder det spesifikke regler for stedstøpte konstruksjoner og prefabrikkerte konstruksjoner.

Punktet om særskilte tilleggstiltak for prefabrikkerte konstruksjoner er et viktig. Det sier at bestemmelsen for rundt prefabrikkerte konstruksjoner gjelder for regulære bygg. Men med et unntak vis den uregelmessige konstruksjonens dokumentasjon baseres på underpunktene gitt punktet 5.11.1.3.3 i EC8. Dette punktet henviser igjen til De generelle særskilte tilleggstiltakene for betongbygg.

6 PLAN MODELL OG TVERRKRAFT METODEN

Ved bergninger med den plane modellen er det brukt et regneark laget av Dr. techn. Olav Olsen AS for RIF (rådgivendeingeniørers forening)beregninger med resultater er vist i appendix D. Det er kun referansebygget det er gjort beregninger for. Forutsetningene for å bruke den plane modellen og tverrkraft metoden er at bygningen er regulær i oppriss og plan. Som nevnt tidligere, noe referanse bygningen ikke tilfredsstiller. Men metoden er allikevel brukt for å gi et grunnlag for den videre analysen og for sammenligning. Standarden krever at man kontrollere for andre ordens virkning og tar det med viss aktuelt, i denne oppgaven er dette ikke gjort. Den relevante lastvirkningen skal da ganges med faktoren beregnet fra sensitivitetsfaktoren, θ , gitt i ligning 4.28 i EC8.

6.1 Metode

For å finne egenperioder er høydeformelen og Dunkley`s metode brukt, disse er beskrevet tidligere i kapitel 4.

Lasten som skal tas med i beregningen er fordelt pr etasje. Etasje arealet i referansebygget er forskjellig men har blitt gjort om til ett ekvivalent areal. Det er arealet i på dekket over andre etasje og tredje som har blitt sett på som viktige for valg av det ekvivalente arealet. Den tottale seismiske massen for bygget er regnet på forhånd, denne er da blitt brukt som sjekk for massen i regnearket er riktig. Massene har blitt fordelt så realistisk som mulig i modellen. For skivevegger av sandwichelementer har densiteten blitt økt for at den totale lasten skal bli riktig. Massen av vegger som ikke er medregnet som avstivende i modellen har blitt fordelt på etasjen de hører til. Stivheten av veggskivene blir ikke tatt med ved beregning av høydeformelen men er tatt for Dunkely`s metode.

6.2 Egenperioder

Når Dunkley`s metode benyttes blir egenperioden mer riktig siden det skilles mellom de horisontale retningene. Høydeformelen benyttet i regnearket gir lik periode i begge retninger grunnet lik C_t faktor i begge retninger. Det kan beregnes en periode for hver av retningen ved å regne en, C_t, faktor for hver av retningene slik det er beskrevet i EC8.

6.3 LASTER

Lastvirkningen er beregnet etter metode gitt i EC8. Forskjellig konstruksjonsfaktorer er benyttet for å illustrere reduksjonene dette gir se appendix D. Kombinasjon av retningene og effekten av torsjon er ikke tatt med i beregningen for den plane modellen. Dette er gjort i med den romlige modell omtalt i neste kapitel.

7 ROMLIG MODELL OG MODAL RESPONSSPEKTRUMANALYSE

For å lage en romlig modell av bygning har element programmet SAP2000 blitt benyttet. Det er gjort en modalanalyse og en modal responsspektrumanalyse (RSA). RSA kombinerer den modale analysen med det nasjonale responsspekteret, RSA er omtalt i kapitel 4. Det er laget en modell for element bygget og en for den stedstøpte løsningen. Resultater er vist i appendix E.

Figur 22. Baksiden av modellen i SAP2000

Figur 23. Framsiden modellen fra SAP2000.

7.1 Metode

Hvert enkelt element er modulert i modellen. Hovedfokus har vært å lage en modell som er så realistisk som mulig. I denne sammenhengen er det vekt av bygget, stivhet og geometri. Elementer som er brukt er tynne skjell elementer, i SAP kan elementene formes som firkanter eller trekanter. frikant elementene (Q4) har fire noder ett i hvert hjørne og trekant elementene (CST) har tre, ett i hvert hjørne. Trekant elementer har blitt brukt minst mulig fordi disse er utsatt for "skjærlåsning", dermed kan konstruksjonen bli for stiv (Cook, 2002). Det finnes andre typer trekant elementer som gjør det bedre i forhold til skjær, slike elementer er ikke tilgjengelig i SAP2000.

7.2 Egenskaper

Modellen er laget med tanke på å finne egenperioden og jordskjelvlastene ved bruk av det elastiske responsspektrumet. Og med en reduksjon av kreftene som følge av økt konstruksjonsfaktor om mulig. Stivheten er basert på betongens e-modul og tykkelse. Derfor har det i noen tilfeller blitt gjort endringer av betongens e-modul slik at stivheten blir riktig. Dette er for eksempel gjort med hulldekke elementene slik at stivheten er lik den som er oppgitt fra hulldekke leverandøren. For sandwichelementene er densiteten økt slik at total vekten skal stemme. Den ekvivalente tykkelsen er økt for Sandwichelementer med vindusåpninger, grunnet at disse er ekstra forsterket. Dette gjøres under produksjonen av elementene for å kompensere for noe av stivhetstapet vindusåpningene gir. Det er betongens egenskaper i den elastiske sonen som benyttes i analysen, dermed har armering liten påvirkning på stivheten når frekvenser og perioder skal finnes. På dette grunnlaget er knutepunktene mellom vegg og dekket modulert med full overføring av stivhet. Utformingen av knutepunktene i referansebygget er vist i kapitel 3. Et alternativ kunne vært og redusere overføringen av stivheten noe og da spesielt for sidekant hulldekke se figur 11. For en ikke lineær analyse hadde dette ikke vært riktig og knutepunktene burde vært modulert annerledes.

7.3 FORSKJELLER MELLOM ELEMENTBYGGET OG STEDSTØPT LØSNING

De to forskjellig modellene er like i geometri. Forskjellen ligger i overgangen mellom vegg elementene. For referansebygget, som er et prefabrikkert elementbygg, er veggeskivene modulert separat og det er da ingen overføring krefter mellom veggelementen i de horisontale fugene. Overføringen av kraften skjer i etasjeskillene. Den stedstøpte løsningen er veggeflaten og hjørner modulert med full overføring av krefter.

Figur 24. Viser moduleringen av et hjørne til referansebygget.

7.4 Egenperioder og frekvenser

For å finne egenperioder og frekvenser bruker SAP modalanalyse, modalanalyse er omtalt i kapitel 4. Resultater er vist i appendix E. Forskjellen på periodene mellom den stedstøpt løsning og referanse bygget er ikke veldig stor se tabell 7 og 8. Frekvensene er noe større for det stedstøpte bygget, detter er rimelige resultater siden den stedstøpte bygningen har sammenkoblede vegger. I den første svingeformen er det minst forskjell mellom bygningen. Dette skyldes sannsynligvis at det er færre vegger som kobles sammen i yretning enn i x-retning for det stedstøpte bygget. Første svingeform er vist i figur 25, svingeformen er i y-retning. Stivheten er minst i denne retningen og derfor blir perioden lengst. Svingeform 1 og 3 er blandinger av rotasjon om z-akse (som gir torsjon) og sideveis bevegelse se tabell 9 og 10. Tredje svingeform er sideveis bevegelse i x-retning i denne retningen er bygget vesentlig stivere enn i y-retning, se figur 27. De fleste svingeformene som kommer etter den fjerde er lokale svingninger. Referansebygget får flere lokale svingeformer, se figur 28, dette skyldes at veggelementene ikke er koblet sammen i de horisontale fugene. Torsjon effektene kommer av at bygget ikke er regulært i plan eller oppriss, (Taranath, 2005).

TABLE E15: Modal Periods And Frequencies								
OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue		
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2		
MODAL	Mode	1	0,142548	<mark>7,0152</mark>	44,078	1942,8		
MODAL	Mode	2	0,071406	<mark>14,004</mark>	87,993	7742,7		
MODAL	Mode	3	0,064731	<mark>15,449</mark>	97,066	9421,8		
MODAL	Mode	4	0,059258	<mark>16,875</mark>	106,03	11242		

Tabell 7. De første periodene og frekvensene til referanse bygget.

Tabell 8. De første periodene og frekvensene til det stedstøpte bygget.

TABLE E20: Modal Periods And Frequencies								
OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue		
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2		
MODAL	Mode	1	0,128946	<mark>7,7552</mark>	48,727	2374,3		
MODAL	Mode	2	0,062251	<mark>16,064</mark>	100,93	10188		
MODAL	Mode	3	0,059953	<mark>16,68</mark>	104,8	10983		
MODAL	Mode	4	<mark>0,05425</mark>	<mark>18,433</mark>	115,82	13414		

Tabell 9. Det modale masseforholdet for sideveis forflytning, referanse bygget.

TABLE E16: Modal Participating Mass Ratios							
OutputCase	StepType	StepNum	Period	UX	UY	UZ	
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	
MODAL	Mode	1	0,142548	0,00452	<mark>0,64889</mark>	0,000006547	
MODAL	Mode	2	0,071406	0,04889	0,00805	0,00001649	
MODAL	Mode	3	0,064731	<mark>0,56194</mark>	0,00783	0,0082	
MODAL	Mode	4	0,059258	0,000006893	0,16863	0,0004	

Tabell 10. det modale masseforholdet for rotasjon, referanse bygget

TABLE E16 fortsetter: Modal Participating Mass Ratios							
OutputCase	StepType	StepNum	Period	RX	RY	RZ	
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	
MODAL	Mode	1	0,142548	<mark>0,5411</mark>	0,00245	0,49478	
MODAL	Mode	2	0,071406	0,00954	0,0335	0,07245	
MODAL	Mode	3	0,064731	0,00006868	<mark>0,48035</mark>	<mark>0,24497</mark>	
MODAL	Mode	4	0,059258	0,02596	0,00027	0,01191	

Figur 25. Første svingeform for referansebygget, perioden 0,14 s.

Figur 26. Andre Svingeform for referansebygget, periode 0,07 s.

Figur 27. Tredje Svingeform for den stedstøpte løsningen, Periode 0,06 s.

Figur 28. Referansebygget, svingeformen viser hvordan elementene kan svinge uavhengig av hverandre.

7.5 LASTER

Lastene er vist i appendix E, det er brukt RSA for å finne lastene. Når denne metoden brukes kan ikke responsene summers direkte, disse må kombineres. Dette skyldes at responsspektrumet brukt i den nasjonale standarden baserer seg på maksimum verdier for jordskjelvet. I kapitel 4 er dette temaet omtalt. For den aktuelle modellen er det brukt fullstendig kvadratirsk kombinasjon (CQC), denne gir gode resultater der frekvensen ligger nærme hverandre i størrelse. For de aktuelle retningene sier standarden at den effektive modale massen skal være 90 % av den totale massen. Alle medsvingende masser større enn 5 % av den totale massen skal være tatt med. Dette er tilfredsstilt i de aktuelle modellene. lastene er blitt beregnet med, q, lik 1,5 og 3,0.

q lik 1,6 er ikke tatt med siden det ikke gir noen stor forskjell fra, q, lik 1,5.

q, lik 3,0 er tatt for å vise reduksjon av lastene dette gir.

Tabell 11. Skjærkrefter ved fundamentet med q lik 1,5, dimensjonerende last er merket med gult.

TABLE E13: Base Reactions							
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ		
Text	Text	Text	KN	KN	KN		
G E	LinStatic		-0,000001193	0,000002251	<mark>8791,55</mark>		
QN	LinStatic		-2,249E-07	6,614E-07	<mark>404,73</mark>		
QS	LinStatic		5,762E-15	2,241E-13	<mark>91,74</mark>		
JΧ	LinRespSpec	Max	597,267	69,095	50,102		
JΥ	LinRespSpec	Max	69,54	942,938	8,335		
JZ	LinRespSpec	Max	29,71	4,836	115,145		
<mark>J X30%, Y</mark>	Combination	<mark>Max</mark>	<mark>248,72</mark>	<mark>963,667</mark>	<mark>23,365</mark>		
<mark>J X30%, Y</mark>	Combination	<mark>Min</mark>	<mark>-248,72</mark>	<mark>-963,667</mark>	<mark>-23,365</mark>		
J X, Y30%	Combination	Max	618,129	351,977	52,602		
J X, Y30%	Combination	Min	-618,129	-351,977	-52,602		

8 DUKTILE SKJÆRVEGGER I BETONG.

Bygningen skal danne plastiske soner på steder man har forutsatt at det skal skje. For en bygning med skjærvegger i betong, slik som referanse bygget, skal dette skje i de horisontal avstivende veggene. For referanse bygget er det heissjakt veggen som er valgt å fokusere på, og da spesielt veggene som tar opp krefter i y-retning, se kapitel 3 for beskrivelse av hvilke veggskiver dette er. For skjærvegger skal da de plastisksonene oppstå rettover grunn nivå men ikke i koblingen mellom fundamentet og veggen. Fundamentet og overgangen til veggen skal ha en overstyrke i forhold til den plastiske sonen i veggen, se figur 28 (International Federation for Structural Concrete, 2003).

Figur 29. Eksempel på en ekvivalent monolittisk skjærvegg.

I EC8 er definisjonen av duktile vegger at fundamentet ikke skal rotere som ett resultat av jordskjelv rystelsene. Den plastiske sonen skal dannes i veggen rettover fundamentet eller toppen av stivekjeller.

8.1 STEDSTØPTE VEGGER

Veg tykkelsen b_{wo} skal være større enn maks av 0,15 meter og $h_s/20$ der h_s den frietasje høyden.

Det skal tas høyde for usikkerheten ved moment fordelingen over høyden av slanke, primær seismiske vegger. Slanke vegger er vegger med et forhold mellom h_w/l_w større enn 2. Ved å gi moment kurven en vertikal forskjøvet omhylningskurve tar man høyde for denne usikkerheten, se figur 30. Der, a, er momentkurven fra analysen, b, er dimensjonerende omhylningsfaktor, a₁, er forskyvning av strekk kraft linjen. Viss ikke annet er fastsatt kan a_1 settes lik h_{cr} , der h_{cr} er den kritiske høyden gitt i ligning 5.19a og 5.19b i EC8. Den plastiske sonen dannes i denne høyden. Den normaliserte aksialkraften, v_d , skal ikke overskride 0,4.

Figur 30. Dimensjonerende omhylningskurve for bøyemomenter i slanke veggsystemer.

Kromningsduktiliteten, μ_{Φ} , gir krav til bøyle armering. viss det ikke brukes en mer nøyaktig metode kan det volumetriske kravet til bøyle armeringen, ω_{wd} , finnes fra ligningen 5.20 punkt 5.4.3.4.2.(4) i EC8. Bøylearmeringen skal plasseres i hele den kritiske høyden og i en utstrekning vist i figur 31. Bøylearmeringen skal ha 135° kroker med forlengelse på 10d_{bw}.

Sveiste armeringsskjøter skal ikke forekomme innen for den kritiske sonen. Forankringslengden av armeringen økes med 50 % av det som er gitt i EC2, dette gjelder store lett armerte vegger.

Figur 31. Bøylearmerte randelement på den frie kanten av en vegg, figuren er hentet fra punkt 5.4.3.4.2(6) i EC8.

8.2 PREFABRIKKERTE VEGGER

Reglen for stedstøpte vegger gjelder også for prefabrikkerte vegger, men med noen tilleggs regler beskrevet i kapitel 5.11 i EC8. Det er viktig at man identifiseres byggets plastiske soner og hvilke konstruksjons deler som ligger utenfor. Viss en konstruksjons del som er konstruert for elastisk oppførsel er koblet til en vegg som er dimensjonert for duktil oppførsel, burde virkningen dette har på byggets evne til å ta opp energi kontrolleres, se b) figur 32. Eller som det er skrevet i EC8 identifiser virkningen av forbindelsen på konstruksjonens energiabsorpsjonsevne (Standard, 2008a).

Figur x. a) forbindelse utenfor kritisk område b) overdimensjonert forbindelse i kritisk område c) duktile forbindelser mellom skjærvegger der disse er plasser innefor det kritiske området d) Friksjon mellom horisontale støpeskjøter som vanligvis kan ta opp skjærkrefter skal ikke medregnes. Egen skjærarmering i skjøten skal ta opp all skjærkraften.

Når utsparinger som ligger nærmer støpeskjøter enn 2,5 ganger veggtykkelsen burde dette området dimensjoneres som for lokal duktilitet.

9 DISKUSJON OG KONKLUSJON

Prefabrikkert elementbygg kan dimensjoneres i DCM. Hvor duktilt bygget og skjærveggene ansees å være er avhengig av flere faktorer, de viktigst er:

- Regularitet i oppriss og plan.
- Plastiske soner dannes i de kritiske delene av bygget.
- At horisontale skjøter av duktile elementvegger ikke gjøres innenfor den kritiske høyden av veggen. Åpninger i disse veggene må unngås spesielt i første etasje. Små utsparinger kan tillates utenfor kritisk sone.
- Overstyrkefaktor på konstruksjonsdeler som er tiltenkt å oppføre seg elastisk, et eksempel på dette er etasjeskiller i skiveavstivede bygninger.

Regularitet i plan er ekstremt viktig, dersom stivhetssenteret og massesenteret er langt fra hverandre vil det oppstå store torsjonskrefter i bygget.

- Fordelingen av jordskjelvlastene blir dårligere, noe som fører til at konsentrasjonen av laster blir stor på enkelte vegger.
- Vridningen av veggene gjør at de får krefter som går ut av planet.
- Det er usikkerhet i hvor de plastiske sonene oppstår.
- Konstruksjonsfaktoren må reduseres betraktelig.

I tillegg får bygg som ikke er regulære i oppriss en reduksjon på 20 % av konstruksjonsfaktoren, grunnet faren for at viktige vegger ikke er gjennomgående fra grunn til topp.

Rådgivende ingeniører burde komme tidlig inn i planleggingen av utforming til jordskjelvutsatte bygg. Dette gjelder også de steder i Norge der jordskjelv blir dimensjonerende, og da spesielt for prefabrikkerte betongbygg som dimensjoneres etter kravene for DCM. I samarbeid med arkitekt kan bygget utformes gunstig med tanke på jordskjelv. Dette vil da gjøre prosessen enklere med å sikre bygget mot jordskjelv.

Grunnakselerasjonen, byggets seismiske masse, massefordelingen og perioden er viktige faktorer. Å finne den riktige perioden er avgjørende for størrelsen av jordskjelvkreftene, det ser man på responsspektrumet vist i Appendix D.

Reduksjonen av kreftene som konstruksjonsfaktoren gir, er betydelige slik man kan se i appendix D og E. Prebarikkerte skjærvegger av betong kan designes med høye konstruksjonsfaktorer. Forutsatt at bygget er regulært i plan og oppriss kan punktene i kapitel 5 i standarden og spesielt 5.11 gjennomføres. Riktig oppbygning av veggen gjøres med:

- Overstyrke i koblingen mellom vegg og fundament.
- Økt antall bøyler i kritisk sonen.
- Bruk av omhylningskurve for dimensjonerende moment.

• At horisontale skjærkrefter tas opp kun av egen skjærarmering (Løset, et al., 2011; Standard, 2008a).

Armeringsbøyler øker sikkerheten og duktiliteten av veggen. Ved bruk av bøyler som er lagt på riktig måte og med vertikal armering på innsiden, holdes betongen på plass når bygningen blir utsatt for sykliske bevegelser.

For at problemstillingen ikke skulle være for vanskelig å besvare, var det et ønske at byggets geometri var relativt enkel. Det viste seg at bygget ikke var så enkelt som ønskelig.

9.1 KOMMENTARER OG VIDERE UNDERSØKELSER

Skjærvegger av prefabrikkerte elementer blir vanligvis koblet sammen ved hver etasje, den horisontale fugen fylles med betong på byggeplass. Kontakten mellom fugen og veggelementet blir ikke like god som for et stedstøpt tilfelle. Det er kommentert i litteratur at stivheten i slike fuger reduseres med opptil 50 %, (Alexander, et al., 2006). Dette er ikke tatt med under modelleringen av bygget i SAP2000. Det kunne for eksempel lages en modell hvor dette er modellert, og sett hvor mye perioden til bygget endrer seg og hvor store deformasjonene blir.

Varigheten av jordskjelv i Norge er interessant i forhold til hvor mange sykluser en vegg blir utsatt for, dette har betydning for utviklingen av den plastiske sonen. Sonen utvikler seg mindre ved et kortvarig jordskjelv, spørsmålet er om tettheten av bøyler som kreves i standarden for DCM er nødvendig i Norge.

En "pushoveranalyse" og/eller en tidshistorieanalyse kunne vært av interesse å gjøre på referansebygget. Man kan da se hvor de plastiske sonene oppstår og finne mer spesifikt hvor svakhetene til konstruksjonen ligger. Det kunne også vært mulig å finne en mer eksakt verdi for q ved bruk av "pushoveranalyse".

En kontroll av stivheten til hulldekket i planet kunne vært gjort for å finne ut om den har overstyrke. Etasjeskillene er viktig i prefabrikkerte betongelementbygg, disse overfører de horisontale kreftene til skjærveggene. Store variasjoner av stivheten i planet kan føre til at krefter ikke blir overført som antatt.

Referanser

- Alexander, S., Vinje, L., Brekke, A., & Hopp, J. (2006). Elementer og knutepunkter (Vol. B. C). Oslo: Betongelementforeningen.
- Betongelementboken. (2007). Oslo: Betongelementforeningen.
- Chopra, A. K. (2001). Dynamics of structures: theory and applications to earthquake engineering. Upper Saddle River, N.J.: Prentice Hall.
- Cook, R. D. (2002). Concepts and applications of finite element analysis. New York: Wiley.
- Geol, R. K. C., Anil K. (1998). Journal of structural engineering. 124(4), 425-433.
- Hopp, J., & Alexander, S. (2005). Avstivning og kraftoverføring (Vol. B. B). Oslo: Betongelementforeningen.
- International Federation for Structural Concrete, f. (2003). Seismic design of precast concrete building structures. Lausanne: Sprint-Digital-Druck Stuttgart.
- Løset, Ø. (2010). Dimensjonering for jordskjelv: veileder til NS-EN 1998-1:2004+NA:2008: Rådgivende ingeniørers forening.
- Løset, Ø., Lurén, H., Vinje, L., & Skau, H. (2011). Dimensjonering for jordskjelv (Vol. H). Oslo: Betongelementforeningen.
- Rao, S. S. (2005). Mechanical vibrations. Singapore: Pearson/Prentice Hall.
- Standard, N. (2005). Eurokode 2: Prosjektering av betongkonstruksjoner, Del 1-1, Allmenne regler og regler for bygninger. Oslo: Norges standardiseringsforbund.
- Standard, N. (2008a). Eurokode 8: Prosjektering av konstruksjoner for seismisk påvirkning, Del 1, Allmenne regler, seismiske laster og regler for bygninger. Lysaker: Standard Norge.
- Standard, N. (2008b). Eurokode: Grunnlag for prosjektering av konstruksjoner. Lysaker: Standard Norge.
- *Taranath, B. S. (2005). Wind and earthquake resistant buildings: structural analysis and design. New York: Marcel Dekker.*

APPENDIX

	Side
A	67
В	87
C	91
D	109
E	123
F	139
G	143

APPENDIX A - GEOMETRIEN TIL REFERANSEBYGGET

Dette appendixet gir en oversikt over geometrien til bygget i plan og oppriss. Tegningene er laget av AS Betong, hulldekkeleverandør eller arkitekt. Tegningene er ikke i målestokk. D.O.2-etg. og D.O.3-etg. har like ytre mål, derfor er kun det ene planet målsatt.

Plan

Figur A1. D.O.1-etg. viser sandwichelementer (koding Vxxx) og massive elementer (GUxxx).

Figur A2. D.O.1-etg. med inndelingen av hulldekkene.

Figur A3. D.O.2-etg. viser sandwichelementer (koding Vxxx) og massive elementer (GUxxx).

Figur A4. D.O.2-etg. med inndelingen av hulldekkene. Trappeutsparingen mellom H209 og H210 har ikke blitt tatt hensyn til i oppgaven.

Figur A5. D.O.3-etg. På terrassen mellom akse D og C ligger hulldekkene normalt på den retningen som er vist på tegningen. D.O.3-etg. har samme ytre mål som D.O.2-etg.

Figur A6. D.O.3-etg. med inndelingen av hulldekkene.

Figur A7. D.O.4-etg. Balkongen mellom akse C og D er et betongelement og understøttes av stålsøyler.

Figur A8. D.O.4-etg. med inndelingen av hulldekkene.

Figur A9. Heissjakt og repos.

Figur A10. Plantegning av trapp og repos i fjerde etasje, det er kun valgt å ha med en representativ plantegning pga. små ulikheter mellom etasjene.

Figur A11. Overgangen mellom repos, GUX01 og hulldekket. Reposene har innebygde bajonetter som ligger ann på veggen, bajonettene er også merket med rødt i figur A10 og A9.

Figur A12. Snitt-tegninger av trappesjakten.

Figur A13. Overgang vegg-hulldekke-vegg, hulldekke sidekant.

Figur A14. Overgang vegg-hulldekke-vegg, hulldekke endeopplegg.

Figur A15. Fasade i akse C.

Figur A16. Fasade i akse 3 og D.

Figur A17. Fasade i akse 1 og fasade mellom akse 1 og 2.

Figur A18. Fasade i akse B.

Figur A20. Fasade i akse A.

Figur A21. Fasade i akse 4.

Figur A22. Innvendige massive betongvegger.

Figur A23. Vegger i heissjakt av massiv betong.

Figur A24. Vegger i heissjakt med innfestningsdetaljer.

APPENDIX B - SEISMISK MASSE OG EGENVEKT

I dette appendixet er det vist hvordan egenvekten og den seismiske massen er beregnet. For å få en bedre forståelse av kodingen av elementene og hvor de forskjellige elementene er i bygget henvises det til appendix A. For seismiske lastkombinasjoner, lastefaktorer og laster henvises det til: Grunnlag for prosjektering av konstruksjoner NS-EN 1990:2002+NA:2008 (EC0), Laster på konstruksjoner NS-EN 1991-1-1:2002+NA:2008 (EC1-1), Laster på konstruksjoner NS-EN 1991-1-3:2003+NA:2009 (EC1-3) og Laster på konstruksjoner NS-EN 1991-1-4:2005+NA:2009 (EC1-4).

$$\sum_{j\geq l}G_{k,j}+P+A_{Ed}+\sum_{i\geq l}\psi_{2,i}Q_{k,i}$$

Henviser til EC0, pkt. 6.4.3.4(2)

 $\psi_2 = 0, 3$ for bolig $\psi_2 = 0, 3$ for kontor $\psi_2 = 0, 2$ for snølaster

Henviser til EC0, tabell NA.A1.1.

LASTER FRA ETASJESKILLENE

Det har blitt gjort forenklinger ved beregning av snølaster på tak, dette er kommentert i hovedrapporten. Vekt av reposer og trapper er gitt i tonn fra betongelementleverandøren.

Tabell B1. Egenlaster, snølaster og nyttelaster på og fra etasjeskillene og tak.

			Areal uten yttervegger,		
		Areal uten	trappe- og	Vekt	Vekt av
	Areal	yttervegger	heissjakt	HD265	påstøp
Dekker, balkong, tak osv.	(m²)	(m²)	(m²)	(kN/m²)	(kN/m²)
D.O.1-etg	194	170,0	150	3,8	0,4
D.O.2-etg	166	143,0	123	3,8	0,4
D.O.3-etg	166	143,0	123	3,8	0,4
D.O.4-etg	100	91,0	71	3,8	0,4
Balkong O.4. etasje	14				
Tak	170				
Ekstra påstøp på taket O.1. etasje	22				1,9
Ekstra påstøp på terrasse O.3. etasje	13				1,9
Trapper					
Repos					

		Vekt fra					Vekt med	Vekt med
Vekt		himling og					nyttelaster	nyttelaster
balkong	Vekt av	lettvegger	Snø-	Nytte-			og	og
O.4 etasje	taket	OSV	laster	laster	Vekt	Vekt	snølaster	snølaster
 (kN/m²)	(kN/m²)	(kN/m²)	(kN/m²)	(kN/m²)	(kN)	(tonn)	(kN)	(tonn)
		1,5		0,9	849,0	86,6	984,0	100,4
		1,5		0,9	696,2	71,0	806,9	82,3
		1,5		0,6	696,2	71,0	770,0	78,5
		1,5		0,6	401,9	41,0	444,5	45,3
4,8				0,6	67,2	6,9	75,6	7,7
	1,5		0,3		255,0	26,0	309,4	31,6
			0,3		42,2	4,3	49,3	5,0
				0,6	25,0	2,5	32,8	3,3
						23,5		23,5
						12,4		12,4
					Sum	345,3		390,1

Tabell B2. Egenlaster, snølaster og nyttelaster på og fra etasjeskillene og tak.

Tabell B3. Omregning til (kN/m²).

Dekker, balkong, tak	Tykkelse	Densitet	Vekt
OSV.	(m)	(kN/m³	(kN/m²)
Påstøp på dekke inne	0,015	24	0,4
Påstøp på dekke ute	0,08	24	1,9
Balkong O.4. etasje	0,2	24	4,8
Fra kN til tonn		0,102	

EGENVEKT VEGGER

	Areal	Tykkelse	Sandwich	Innervegger		Vekt
Veggskiver	(m²)	(m)	(kN/m²)	(kN/m³)	Vekt (kN)	(tonn)
VX01	99,4		5,2		516,9	52,7
VX02	62,6		5,2		325,5	33,2
V502	24,5		5,2		127,4	13,0
VX03	31,8		5,2		165,4	16,9
V403	16,7		5,2		86,8	8,9
VX04	34,7		5,2		180,4	18,4
V104	28,9		5,2		150,3	15,3
VX05	57,7		5,2		300,0	30,6
VX06	50,0		5,2		260,0	26,5
V107	21,6		5,2		112,3	11,5
VX07	32,7		5,2		170,0	17,3
VX08	60,0		5,2		312,0	31,8
VX11	52,6		5,2		273,5	27,9
VX12	95,3		5,2		495,6	50,5
GUX01	53,3	0,2		25,0	266,5	27,2
GUX02	28,6	0,2		25,0	143,0	14,6
GUX03	33,2	0,2		25,0	166,0	16,9
GUX04	28,6	0,2		25,0	143,0	14,6
GUX05	33,2	0,2		25,0	166,0	16,9
GUX06	13,8	0,2		25,0	69,0	7,0
			_	Sum	4429,7	451,8

Tabell B4. Vegger som er tatt med ved enkle beregninger av byggets stivhet.

Tabell B5. Vegger som ikke er tatt med ved enkle beregninger av byggets stivhet.

	Areal	Tykkelse	Sandwich	Innervegger) (- l - t (l - N l)	Vekt
veggskiver	(m-)	(m)	(KIN/M ⁻)	(KN/m²)	Vekt (kiv)	(tonn)
VX09	42,8		5,2		222,6	22,7
VX10	26,3		5,2		136,8	13,9
VX13	63,0		5,2		327,6	33,4
V413*	13,1		5,2		68,1	6,9
GU406					12,3	1,3
GU407					12,3	1,3
GU408					12,3	1,3
				Sum	791,8	80,8

Tabell B6. Total vekt av vegger.

Sum 5221,5 532,6

Total egenvekt av bygget					
kN	tonn				
8612	878				
Total seismisk ma	asse av bygget				
kN	tonn				
9052	923				

Tabell B7. Total seismisk vekt og egenvekt av bygget.

Appendix C - Kriterier for Regularitet

I dette vedlegget har kap. 4 i EC8 (NS-EN 1998-1:2004+NA:2008) og dimensjoneringseksempler i Bind H til betongelementforeningen (2011) blitt fulgt ved kontroll og metoder for utregninger. For at bygget skal betraktes på riktig måte med hensyn til jordskjelvdimensjonering må regulariteten til bygget i planet og oppriss kontrolleres. Hvilke metoder man skal bruke ved utregning av jordskjelvlaster ut fra byggets regularitet er vist i tabell C1 hentet fra EC8. Som man kan se i Tabell C1 er kriteriene for konstruksjonens regularitet viktig. For ikke regulære bygninger blir analyse prosessen mer omstendelig grunnet at det er vanskelig å forutsi bygningens oppførsel. Det er også viktig å merke seg at konstruksjonsfaktoren reduseres for ikke regulære bygg.

Regularitet			Tillatt forenkling	Konstruksjonsfaktor
Plan	Oppriss	Modell Lineær-elastisk analyse		(for lineær analyse)
Ja	Ja	Plan	Tverrkraft'	Referanseverdi
Ja	Nei	Plan	Modal	Redusert verdi
Nei	Ja	Romlig*	Tverrkraft'	Referanseverdi
Nei	Nei	Romlig	Modal	Redusert verdi

Tabell C1. Konsekvenser av konstruksjonens regularitet for seismisk analyse og dimensjonering, henviser til: EC8 pkt. 4.2.3.1(3) tabell 4.1.

$REGULARITET \ I \ PLANET$

Pkt. 4.2.3.2 i EC8 gir bestemmelser for om konstruksjonen er regulær i planet. Kontrollen har blitt gjort på D.O.1-etg., D.O.2-etg. og D.O.3-etg. Dette fordi disse planene er antatt som de viktigste og mest karakteristiske planene med tanke på form og stivhet.

Pkt. 4.2.3.2(2) Byggningen skal være tilnærmet symmetrisk om to ortogonale akser, noe bygget ikke tilfredsstiller slik man kan se i figur C1 og C2.

Figur C1. D.O.1-etg.

Figur C2. D.O.2 og 3-etg.

Figur C3. D.O.1-etg. avgrenset av en konveks polygonal linje.

Figur C4. D.O.2 og 3-etg avgrenset av en konveks polygonal linje.

Pkt. 4.2.3.2(3) EC8 sier at hver av de tilbaketrukkede delene i planet ikke må ha et større areal enn 5% av det totale arealet i planet. Arealet som er skravert i figur C3 er det største av de tilbaketrukkede arealene. Arealet som måles er det mellom den polygonale, konvekse linjen og ytterkanten av planet. Flatearealet til D.O.1-etg. er 194m² og det skraverte arealet er 19m², noe som gir et forhold på 9,7%. Bygget er dermed ikke innenfor kravene til regularitet i planet. Normalt hadde dette vært nok til å kunne gå videre i prosessen med å dimensjonere bygget for jordskjelvlaster, men fordi det her skal utføres en analyse av bygget er det av interesse å gjennomføre videre kontroll. Dette vil gi en god forståelse av byggets svakheter og styrker.

Pkt. 4.2.3.2(4) Stivheten til gulvet skal være tilstrekkelig stor sammenlignet med stivheten til veggskivene. Dette kan utfra geometrien, som er mer detaljer beskrevet i appendix A, og stivheten, som er mer detaljert beskrevet senere i dette vedlegget, sies å

være delvis oppfylt. Byggets form i planet kan ligne litt på en L, se figur C2, noe som kan tilsi at man må kontrollere stivheten til gulvplanet i lengderetningen.

Pkt. 4.2.3.2(5) Slankheten $\lambda = L_{max}/L_{min}$ i planet ikke større enn 4. Med $L_{max} = 20$ (m) og $L_{min} = 8$ (m) er bygget godt innenfor.

Pkt. 4.2.3.2(6) Avstanden mellom stivhetssenteret og massesenteret (e_{ox} og e_{oy}) sammenlignes med "torsjonsradiusen" (r_x og r_y) og "torsjonsradiusen" med treghetsradiusen (I_s). Det har blitt gjort kontroll for både D.O.1, 2 og 3-etg. pga. geometriske forskjeller.

 $e_{ox} \le 0, 3 \times r_x$ $r_x \ge I_s$

der

eox er avstanden mellom stivhetssenteret og massesenteret, målt langs x-retningen;

r_x er kvadratroten av torsjonstivhet og sidestivhet i y-retning ("torsjonsradius"); og

I_s er gulvmassens treghetsradius i planet

VEGGSKIVESTIVHET OG STIVHETSSENTER

Forskyvning : $\Delta t = \frac{F_i}{K} = \frac{F_i}{K_b} + \frac{F_i}{K_s}$ Bøyestivhet : $K_b = \frac{3EI}{h^3}$ Skjærstivhet : $K_s = \frac{EA}{3h}$ Arealmoment : $I = \frac{t \times l^3}{12}$ Veggskiver B30 : $E_{cm} = 33000 (N / mm^2)$ [EC2, tabell3.1] Sandwichelementer har tykkelse t = 0, 18m Homogenevegger har tykkelse t = 0, 2

Figur C5. Viser stivhetssenter(SS), massesenter (MS) i D.O.1-etg.

Tabell C2, C3, C4 og C5 viser utregninger for avstanden (e_{ox} og e_{oy}) mellom MS og SS på D.O.1-etg. Ikke alle veggene er med som avstivende veggskiver, de samme veggskivene som er med i dette vedlegget er også brukt i appendix D-I, som viser utregninger med RIF regneark. For å se plasseringen til de enkelte skivene i planet henvises det til appendix A.

	Skive nummerering		Skivehøyde	Lengde	Tykkelse	Areal
Skive						
koding	X-retning	Y-retning	h (m)	L (m)	t (m)	A (m²)
VX01	1		12,95	7,28	0,18	1,310
VX02	2		16,45	5,07	0,18	0,913
VX04	3		12,95	5,08	0,18	0,914
VX07	4		12,95	3,65	0,18	0,657
VX11	5		16,45	3,55	0,18	0,639
VX12	6		12,95	6,24	0,18	1,123
GUX01	7		12,95	1,9	0,2	0,380
GUX02	8		16,45	1,74	0,2	0,348
GUX04	9		16,45	1,74	0,2	0,348
VX03		10	9,39	3,1	0,18	0,558
VX05		11	10,05	2,7	0,18	0,486
VX06		12	10,05	2	0,18	0,360
VX08		13	16,45	3,2	0,18	0,576
GUX03		14	16,45	2,02	0,2	0,404
GUX05		15	16,45	1,35	0,2	0,270
GUX06		16	16,45	0,55	0,2	0,110

Tabell	C2.	Geometri	av	veggskiver.
--------	-----	----------	----	-------------

			Areal-		Skjær-	Samlet-
Skive nun	nmerering	E-modul	moment	Bøyestivhet	stivhet	stivhet
X-retning	Y-retning	E (N/mm²)	I (m⁴)	Kb (kN/m)	Ks (kN/m)	K (kN/m)
1		33000	5,7874	263822	1113081	213272
2		33000	1,9549	43476	610249	40585
3		33000	1,9664	89641	776710	80366
4		33000	0,7294	33250	558069	31381
5		33000	0,6711	14925	427295	14421
6		33000	3,6446	166139	954069	141499
7		33000	0,1143	5211	322780	5128
8		33000	0,0878	1953	232705	1936
9		33000	0,0878	1953	232705	1936
	10	33000	0,4469	53434	653674	49396
	11	33000	0,2952	28795	531940	27316
	12	33000	0,1200	11704	394030	11366
	13	33000	0,4915	10931	385167	10630
	14	33000	0,1374	3055	270152	3021
	15	33000	0,0410	912	180547	907
	16	33000	0,0028	62	73556	62

Tabell C3. Tekniske egenskaper til veggskiver.

		Senterkoordinater til hver skive med origo i		Horisontal hver s	Horisontal stivhet til hver skive		Stivhetsmoment til hver skive	
Skive num	nmerering	punkt C, vis	st i Figur C5					
X-retning	Y-retning	X (m)	Y (m)	Kx (kN/m)	Ky (kN/m)	Y*Kx	X*Ky	
1		16,4	9,7	213272		2068742		
2		10,2	9,7	40585		393673		
3		5,5	13,5	80366		1084943		
4		4,7	3,4	31381		106694		
5		11,2	1,6	14421		23074		
6		16,1	1,6	141499		226398		
7		8,5	4,5	5128		23078		
8		11,6	5	1936		9682		
9		11,6	3,2	1936		6197		
	10	8	11,4		49396		395167	
	11	0	11,1		27316		0	
	12	0	5,9		11366		0	
	13	6,5	1,6		10630		69094	
	14	12,7	4,2		3021		38367	
	15	10,8	4,2		907		9800	
	16	6,5	4,2		62		401	
			SUM	530525	102698	3942481	512828	

Tabell C4. Senterkoordinater og stivhet av veggskiver.

Tabell C5. Beregning av massesenter og eksentrisitet for D.O.1-etg.

$xt = \sum (X^*Ky) / \sum Ky$ 5,0 mPlassering av lokal x akse: $yt = \sum (Y^*Kx) / \sum Kx$ 7,4 mMassesenter i y-retning:Msy6,8 mMassesenter i x-retning:MSx9,4 mEksentrisitet for last i y-retningen: $eox = MSx-xt$ 4,4 mEksentrisitet for last i y-retningen: $eoy = MSy-yt$ -0,6 m	Plassering av lokal y-akse:		
Plassering av lokal x akse: $y_t = \sum (Y^*Kx) / \sum Kx$ 7,4mMassesenter i y-retning:6,8mMassesenter i x-retning:6,8mMSx9,4mEksentrisitet for last i y-retningen:9,4mEksentrisitet for last i y-retningen:4,4mEksentrisitet for last i y-retningen:-0,6m	$x_t = \sum (X^*Ky) / \sum Ky$	5,0	m
$y_t = \sum (Y^*Kx) / \sum Kx$ 7,4mMassesenter i y-retning:Msy6,8mMassesenter i x-retning:MSx9,4mMSx9,4mEksentrisitet for last i y-retningen:eox = MSx-xt4,4mEksentrisitet for last i y-retningen:eoy = MSy-yt-0,6m	Plassering av lokal x akse:		
Massesenter i y-retning:Msy6,8Massesenter i x-retning:MSx9,4MSx9,4Eksentrisitet for last i y-retningen: $e_{ox} = MSx-xt$ 4,4Eksentrisitet for last i y-retningen: $e_{oy} = MSy-yt$ -0,6	$y_t = \sum (Y^*Kx) / \sum Kx$	7,4	m
Msy6,8mMassesenter i x-retning:mMSx9,4mEksentrisitet for last i y-retningen:4,4mEksentrisitet for last i y-retningen:meoy = MSy-yt-0,6m	Massesenter i y-retning:		
Massesenter i x-retning:MSx9,4MSx9,4Eksentrisitet for last i y-retningen: $e_{ox} = MSx-xt$ 4,4Eksentrisitet for last i y-retningen: $e_{oy} = MSy-yt$ -0,6	Msy	6,8	m
MSx9,4mEksentrisitet for last i y-retningen: $4,4$ mEksentrisitet for last i y-retningen: $e_{oy} = MSy-yt$ $-0,6$ m	Massesenter i x-retning:		
Eksentrisitet for last i y-retningen: $e_{ox} = MSx-xt$ 4,4mEksentrisitet for last i y-retningen:	MSx	9,4	m
eox = MSx-xt4,4mEksentrisitet for last i y-retningen:eoy = MSy-yt-0,6	Eksentrisitet for last i y-retninge	n:	
Eksentrisitet for last i y-retningen: eoy = MSy-yt -0,6 m	eox = MSx-xt	4,4	m
<u>eoy</u> = MSy-yt -0,6 m	Eksentrisitet for last i y-retninge	n:	
	eoy = MSy-yt	-0,6	m

Figur C6. Viser stivhetssenter (SS), massesenter (MS) i D.O.2 og 3-etg.

Tabell C6, C7, C8 og C9 viser utregninger for avstanden (e_{ox} og e_{oy}) mellom MS og SS på D.O.2 og 3-etg. Ikke alle veggene er med som avstivende veggskiver, de samme veggskivene som er med i dette vedlegget er også brukt i appendix D-I, utregninger med RIF regneark.

	Skive nun	nmerering	Skivehøyde	Lengde	Tykkelse	Areal
Skive						
koding	X-retning	Y-retning	h (m)	L (m)	T (m)	A (m²)
VX01	1		12,95	7,28	0,18	1,310
VX02	2		16,45	5,07	0,18	0,913
VX04	3		12,95	5,08	0,18	0,914
VX07	4		12,95	3,65	0,18	0,657
VX11	5		16,45	3,55	0,18	0,639
VX12	6		12,95	6,24	0,18	1,123
GUX01	7		12,95	1,9	0,2	0,380
GUX02	8		16,45	1,74	0,2	0,348
GUX04	9		16,45	1,74	0,2	0,348
VX03		10	9,39	3,1	0,18	0,558
VX05		11	10,05	2,7	0,18	0,486
VX06		12	10,05	2	0,18	0,360
VX08		13	16,45	3,2	0,18	0,576
GUX03		14	16,45	2,02	0,2	0,404
GUX05		15	16,45	1,35	0,2	0,270
GUX06		16	16,45	0,55	0,2	0,110

			Areal-		Skjær-	Samlet-
Skive num	nmerering	E-modul	moment	Bøyestivhet	stivhet	stivhet
		E				
X-retning	Y-retning	(N/mm²)	I (m⁴)	Kb (kN/m)	Ks (kN/m)	K (kN/m)
1		33000	5,7874	263822	1113081	213272
2		33000	1,9549	43476	610249	40585
3		33000	1,9664	89641	776710	80366
4		33000	0,7294	33250	558069	31381
5		33000	0,6711	14925	427295	14421
6		33000	3,6446	166139	954069	141499
7		33000	0,1143	5211	322780	5128
8		33000	0,0878	1953	232705	1936
9		33000	0,0878	1953	232705	1936
	10	33000	0,4469	53434	653674	49396
	11	33000	0,2952	28795	531940	27316
	12	33000	0,1200	11704	394030	11366
	13	33000	0,4915	10931	385167	10630
	14	33000	0,1374	3055	270152	3021
	15	33000	0,0410	912	180547	907
	16	33000	0,0028	62	73556	62

Skive nummerering		Senterkoordinater til hver skive med origo i punkt C. vist i Figur C6		Horisontal stivhet til hver skive		Stivhetsmomentet til hver skive	
		• •					
X-retning	Y-retning	X (m)	Y (m)	Kx (kN/m)	Ky (kN/m)	Y*Kx	X*Ky
1		13,7	9,7	213272		2068742	
2		7,5	9,7	40585		393673	
3		2,5	13,5	80366		1084943	
4		2	3,4	31381		106694	
5		8,5	1,6	14421		23074	
6		13,4	1,6	141499		226398	
7		5,8	4,5	5128		23078	
8		8,9	5	1936		9682	
9		8,9	3,2	1936		6197	
	10	5,3	11,4		49396		261798
	11	0	11,1		27316		0
	12	0	5,9		11366		0
	13	3,8	1,6		10630		40393
	14	10	4,2		3021		30210
	15	8,1	4,2		907		7350
	16	3,8	4,2		62		234
		SI	UM	530525	102698	3942481	339986

Tabell C8. Senterkoordinater og stivhet av veggskiver.

Tabell C9. Beregning av massesenter og eksentrisitet for D.O.2 og 3-etg.

Plassering av lokal y-akse:		
$x_t = \sum (X^*Ky) / \sum Ky$	3,3	m
Plassering av lokal x akse:		
$y_t = \sum (Y^*Kx) / \sum Kx$	7,4	m
Massesenter i y-retning:		
Msy	6,5	m
Massesenter i x-retning:		
MSx	8,2	m
Eksentrisitet for last i y-retningen	:	
eox = Msx-xt	4,9	m
Eksentrisitet for last i y-retningen	:	
eoy = Msy-yt	-0,9	m

ROTASJONSTIVHET

Koding	Skive	X=Xi-Xt	Y=Yi-Yt	Y*Kx	Х*Ку	Y²*Kx	X²*Ky
VX01	1	11,4	2,3	483855		1097733	
VX02	2	5,2	2,3	92076		208894	
VX04	3	0,5	6,1	487720		2959834	
VX07	4	-0,3	-4,0	-126504		509973	
VX11	5	6,2	-5,8	-84094		490378	
VX12	6	11,1	-5,8	-825118		4811494	
GUX01	7	3,5	-2,9	-15033		44065	
GUX02	8	6,6	-2,4	-4708		11447	
GUX04	9	6,6	-4,2	-8194		34670	
VX03	10	3,0	4,0		148506		446477
VX05	11	-5,0	3,7		-136406		681150
VX06	12	-5,0	-1,5		-56757		283416
VX08	13	1,5	-5,8		16013		24123
GUX03	14	7,7	-3,2		23281		179418
GUX05	15	5,8	-3,2		5269		30593
GUX06	16	1,5	-3,2		93		140
					SUM	10168487	1645317

Tabell C10: Rotasjons	stivhet 1	etasje.
-----------------------	-----------	---------

Krot=∑Y ² *Kxi+∑X ² *Kyi	11813805
ŕx	10,7
ŕу	4,7

$$\mathbf{r}_{\mathrm{x}} = \sqrt{\frac{\mathbf{K}_{\mathrm{rot}}}{\sum \mathbf{K}_{\mathrm{yi}}}} \, \mathbf{r}_{\mathrm{y}} = \sqrt{\frac{\mathbf{K}_{\mathrm{rot}}}{\sum \mathbf{K}_{\mathrm{xi}}}}$$

Koding	Skive	X=Xi-Xt	Y=Yi-Yt	Y*Kx	Х*Ку	Y²*Kx	X²*Ky
VX01	1	10,4	2,3	483855		1097733	
VX02	2	4,2	2,3	92076		208894	
VX04	3	-0,8	6,1	487720		2959834	
VX07	4	-1,3	-4,0	-126504		509973	
VX11	5	5,2	-5,8	-84094		490378	
VX12	6	10,1	-5,8	-825118		4811494	
GUX01	7	2,5	-2,9	-15033		44065	
GUX02	8	5,6	-2,4	-4708		11447	
GUX04	9	5,6	-4,2	-8194		34670	
VX03	10	2,0	4,0		98271		195507
VX05	11	-3,3	3,7		-90432		299379
VX06	12	-3,3	-1,5		-37627		124567
VX08	13	0,5	-5,8		5203		2547
GUX03	14	6,7	-3,2		20209		135188
GUX05	15	4,8	-3,2		4346		20815
GUX06	16	0,5	-3,2		30		15
					SUM	10168487	778018

Tabell C11: Rotasjonsstivhet 2. og 3. etasje.

$K_{rot} = \sum Y^{2*} K_{xi} + \sum X^{2*} K_{yi}$	10946505
rx	10,3
ry	4,5

TREGHETSMOMENT OG GULVMASSENS TREGHETSRADIUS (Is)

Ved beregninger av treghetsmoment har det blitt gjort en forenkling av geometrien til planet slik man kan se i figur C7 og C8. Dette er gjort for å gjøre beregningen enklere, endringene er så små og til sikker side at det ikke vil påvirke resultatet mye. Ett nytt massesenter har også blitt beregnet slik at dette passer med den nye geometrien.

Figur C7. Viser massesenter (MS) til den forenklede geometrien til D.O.1-etg.

Treghetsmomentene (I_{ii}) til D.O.1-etg., som er vist i figur C7, kan beregnes på følgende måte ved bruk av normalakse teoremet:

$$\begin{split} \mathbf{I}_{z} &= \mathbf{I}_{x} + \mathbf{I}_{y} \\ \mathbf{I}_{y1} &= \frac{\mathbf{m}_{1}\mathbf{l}_{1}^{2}}{3} \ \mathbf{I}_{x1} = \frac{\mathbf{m}_{1}\mathbf{h}_{3}^{2}}{3} \\ \mathbf{I}_{y2} &= \frac{\mathbf{m}_{2}\mathbf{l}_{1}^{2}}{3} \ \mathbf{I}_{x2} = \frac{\mathbf{m}_{2}\mathbf{h}_{1}^{2}}{3} \\ \mathbf{I}_{y3} &= \frac{\mathbf{m}_{3}\mathbf{l}_{2}^{2}}{3} \ \mathbf{I}_{x3} = \frac{\mathbf{m}_{3}\mathbf{h}_{1}^{2}}{3} \\ \mathbf{I}_{y4} &= \frac{\mathbf{m}_{4}\mathbf{l}_{2}^{2}}{3} \ \mathbf{I}_{x4} = \frac{\mathbf{m}_{4}\mathbf{h}_{2}^{2}}{3} \end{split}$$

Resultatet er vist i tabell C12.

D.O.1-etg	Total gulvmasse (he	entet fra	a appendix B)	x B) 107580 kg			
	li (m)	hi (m)	mi (kg)	Ai (m²)	Ixi (kgm²)	lyi (kgm²)	
1	8,7	5,3	32425,7	60,9	529621	818102	
2	10,8	3,5	24550,9	46,1	229878	619420	
3		7,0	30477,0	57,2	285366	1184946	
4			20126,3	37,8	82182	782512	
5							
6							
	SUM		107580,0	202,1	1127048	3404979	
				Σlxi (kgm²)·	+Σlyi (kgm²)	4532027	
			-	ls (m)		6,5	
	m1	Y h3 h2 m₀	m₅				
	m2	MS m₃	m₄		5200	x	
	7700	h1					

Tabell C12. Treghetsmoment for D.O.1-etg.

Figur C8. Viser massesenter (MS) til den forenklede geometrien til D.O.2-etg.

Treghetsmomentene (I_{ii}) til D.O.2-etg. som er vist i figur C8, kan beregnes på følgende måte ved bruk av normalakse teoremet:

$$\begin{split} I_{y1} &= \frac{m_1}{A_1} \int_{l_2}^{l_1} x^2 dA = \frac{m_1}{(l_1 - l_2)h_3} \int_{l_2}^{l_1} x^2 h_3 dx = \frac{m_1}{(l_1 - l_2)} \left[\frac{x^3}{3} \right]_{l_2}^{l_1} = \frac{m_1(l_1^3 - l_2^3)}{3(l_1 - l_2)} \\ I_{x1} &= \frac{m_1}{A_1} \int_{0}^{h_3} y^2 dA = \frac{m_1}{(l_1 - l_2)h_3} \int_{0}^{h_3} y^2 (l_1 - l_2) dy = \frac{m_1(l_1 - l_2)}{(l_1 - l_2)h_3} \left[\frac{y^3}{3} \right]_{0}^{h_3} = \frac{m_1h_3}{3} \\ I_{y2} &= \frac{m_2(l_1^3 - l_2^3)}{3(l_1 - l_2)} \\ I_{x2} &= \frac{m_2h_1}{3} \\ I_{y3} &= \frac{m_3}{A_3} \int_{0}^{l_2} x^2 dA = \frac{m_3}{h_1l_2} \int_{0}^{l_2} x^2 h_1 dx = \frac{m_3}{l_2} \left[\frac{x^3}{3} \right]_{0}^{l_2} = \frac{m_3l_2^2}{3} \\ I_{x3} &= \frac{m_3}{A_3} \int_{0}^{h_1} y^2 dA = \frac{m_3}{h_1l_2} \int_{0}^{l_2} y^2 l_2 dy = \frac{m_3}{h_1} \left[\frac{x^3}{3} \right]_{0}^{l_1} = \frac{m_3h_1^2}{3} \\ I_{y4} &= \frac{m_4l_3^2}{3} I_{x4} = \frac{m_4h_1^2}{3} \\ I_{y5} &= \frac{m_5l_3^2}{3} I_{x5} = \frac{m_5h_2^2}{3} \\ I_{y6} &= \frac{m_6l_2^2}{3} I_{x6} = \frac{m_6h_2^2}{3} \end{split}$$

Resultatet er vist i tabell C13.

Tabell C13. Treghetsmoment for D.O.2-etg.

D.O.2-etg	Total gulvmasse (hentet fra appendix B)				89480 kg	
	li (m)	hi (m)	mi (kg)	Ai (m²)	lxi (kgm²)	lyi (kgm²)
1	7,7	5,2	2 21824,4	40,6	356465	919316
2	1,9	3,5	5 16212,4	30,2	146128	682921
3	9,1	7,0) 5311,0	9,9	47869	6391
4			25436,7	47,3	229269	702138
5			17120,9	31,9	69910	472593
6			3574,7	6,7	14597	4302
	SUM		89480,0	166,5	864239	2787660
Σlxi (kgm²)+Σlyi (kgm²)					3651898	
				ls (m)		6,4

Deremetrer og krov	D.C).1-etg.	D.O.2 og 3-etg.		
Farametrer og krav	x – retning y – retning		x –retning	y – retning	
e_{ox} eller e_{oy} (m)	4,4	0,6	4,9	0,9	
r_x eller r_y (m)	10,7	4,7	10,3	4,5	
$I_s (m^4)$	6,5	6,5	6,4	6,4	
Krav: $\mathbf{r}_{i} \ge \mathbf{I}_{s}$	OK	Ikke OK	ОК	Ikke OK	
Krav: $e_{oi} \le 0, 3 \times r_i$	Ikke OK	ОК	Ikke OK	ОК	

Tabell C14. Resultater og krav.

REGULARITET I OPPRISS

Pkt. 4.2.3.3 i EC8 gir kriterier for kontroll av regularitet i oppriss. Disse er knyttet til bygges geometri i x og y-retning.

Figur C9. Oppriss i zx-retning, de blå linjene illustrerer etasjeskillene.

Figur C10. Oppriss i zy-retning, de blå linjene illustrerer etasjeskillene.

Siden de tilbaketrukkede delene av bygget ikke er aksesymmetriske må pkt. 4.2.3.3(5)c og figur 4.1 d i EC8 benyttes ved kontroll.

Krav	Figur C	9	Figur C10 der	$L=L_1$
$\frac{L-L_2}{L} \le 0,30$	$\frac{20,5-10,5}{20,5} = 0,48$	Ikke OK		
$\frac{L_1 - L_2}{L} \le 0,10$	$\frac{15,9-10,5}{20,5} = 0,26$	Ikke OK	$\frac{13,8-10,6}{13,8} = 0,23$	Ikke OK

Tabell C15. Resultater og krav.

OPPSUMMERING

Bygningen er ikke regulær i oppriss eller plan. Dette betyr ved å se i Tabell C1 at en romlig modell med modal analyse må utføres, og man får en redusert konstruksjonsfaktor, i EC8 er reduksjonen 20 % se pkt. 4.2.3.1.(7).
APPENDIX D - RIF regneark

Konstruksjonsfaktoren

Tabell D1. Summen av Hwi og Lwi.

Referans	e bygget	Stedstøpt	
Hwi	Lwi	Hwi	Lwi
12,95	7,28		
16,45	5,07		
12,95	5,08		
12,95	3,65	14	12
16,45	3,55	13	5
12,95	6,24	13	3,7
12,95	1,9	14	10
16,45	1,74	13	1,9
16,45	1,74	16,5	1,8
9,39	3,1	16,5	1,8
10,05	2,7	9,4	3,1
10,05	2	10	4,7
16,45	3,2	16,5	3,2
16,45	2,02	16,45	2,02
16,45	1,35	16,45	1,35
16,45	0,55	16,45	0,55
225,84	51,17	185,25	51,12

 $k_{\rm W} = \begin{cases} 1,00, \text{ for frame and frame - equivalent dual systems} \\ (1 + \alpha_{\rm o})/3 \le 1, \text{but not less than 0,5, for wall, wall - equivalent and torsionally} \\ \text{flexible systems} \end{cases}$

$$\alpha_{\rm o} = \sum h_{\rm wi} / \sum l_{\rm wi}$$

where

 $h_{\rm wi}$ is the height of wall *i*; and

 $l_{\rm wi}$ is the length of the section of wall *i*.

$$k_{w} = \frac{1+4,4}{3} = 1,8 \ge 1,0$$

$$k_{w} = 1,0$$

$$k_{w} = \frac{1+3,6}{3} = 1,5 \ge 1,0$$

$$k_{w} = 1,0$$

Konstruksjonsfaktor (q)			
Parameter	Stedstøpt løsning	Elementbygget	
\mathbf{q}_{o}	2,0	2,0	
k _w	1,0	1,0	
Reduksjon	0,8	0,8	
k _p		1,0	
totalt	1.6	1.6	

Tabell D2. Konstruksjonsfaktor etter punkt 5.2.2.2 og 5.11.1.4 i EC8.

חור		Bestemmelse av jordskjelvslaster for regulære, skiveavstivede bygninger etter forenklede metoder	Dato 27.06.11	Dok. nr. 2
RADGIVENDE INGENIGREES FORENING	Prosjekt nr. 1	Prosjekt Masteroppgave, referansebygget.	Rev. 27.06.11	Sign. T.R

Angi opplysninger om byggverkets hovedgeometri og egenskaper

Alle felter som er merket grå bør fylles inn.

Etasjeskillere

Antall etasjer 5		Gulvflate 145 [m²]	Egenvekt de 25	kke [kN/m ³]	Ekvivalent de 0,226	ekketykkelse [m]
Etasjehøyde	Etasjehøyde for hvert etasjenivå [m]						
1	2	3	4	5	6	7	8
3,65	3,2	3,2	2,9	3,5			
9	10	11	12	13	14	15	16
Nyttelast for	nvert etasje	nivå ¹⁾ [kN/m ²]					
1	2	3	4	5	6	7	8
3,8	4	3,7	3,4	-3,7			
9	10	11	12	13	14	15	16

Avstivningssystem²⁾

Karakteristisk betongfasthet	E-modul	Tverrkontraksjon
30 [MPa]	2,64E+10 [N/m ²]	0,2

	X-retning	Y-retning	Skivehøyde	Lengde	Tykkelse	Egenvekt
	Kryss av	Kryss av	(H _i)	(D _i)	(t _i)	(γ _i)
	med "x"	med "x"	[m]	[m]	[m]	[kN/m ³]
1	х		12,95	7,28	0,18	28
2	х		16,45	5,07	0,18	28
3	х		12,95	5,08	0,18	28
4	х		12,95	3,65	0,18	28
5	х		16,45	3,55	0,18	28
6	х		12,95	6,24	0,18	28
7	х		12,95	1,9	0,2	25
8	х		16,45	1,74	0,2	25
9	х		16,45	1,74	0,2	25
10		х	9,39	3,1	0,18	28
11		х	10,05	2,7	0,18	28
12		х	10,05	2	0,18	28
13		х	16,45	3,2	0,18	28
14		х	16,45	2,02	0,2	25
15		х	16,45	1,35	0,2	25
16		x	16.45	0.55	0.2	25

Merknader:

1) Aktuell kombinasjonsfaktor (ψ) etter NS-EN 1990:2002 ref. /2/ må være ivaretatt ved innsetting i tabellen.

2) Feltene må fylles inn dersom alternativ utregning av egenperioden ønskes, jfr. Alt. 2 under "Resultater".

Ved forenklet beregning av både skiveavstivede og øvrige avstivningssystem etter NS-EN 1998-1 §4.3.3.2.2, jfr. Alt. 1 under "Resultater" behøves feltene ikke å fylles inn.

NB! Forutsetninger for bruk av regnearket og forenklede metoder iht. NS-EN 1998-1

a) Forenklede metoder kan benyttes ved beregning av jordskjelvslaster for konstruksjoner med enkel geometri og lik fundamentering. b) Byggverkets stivhetsenter og massetyngdepunkt i planet er nær sammenfallende

- c) Samtlige skiver antas parallelt med byggets to ortogonale plane akser, altså x- eller y-aksen
- d) Bidrag fra høyere svingeformer og torsjon kan neglisjeres
- e) Samtlige skiver er tilstrekkelig opplagret på grunnivå og virker monolottisk forbundet mellom etasjeskillene
- f) Betongstivheter antas å være i uopprisset tilstand (Stadium I)

0,9 [m/s²]

Г 1.00

1,50

1,60

0,15

0.45

1,50

DIE				Bestemmelse av jordskjelvslaster for regulære,	Dato	Dok. nr.
			sk	iveavstivede bygninger etter forenklede metoder	27.06.11	2
	KIF	Prosj	jekt nr.	Prosjekt	Rev.	Sign.
	ADGIVENDE NGENIØRERS ORENING	1		Masteroppgave, referansebygget.	27.06.11	T.R

Angi opplysninger om byggverk etter NS-EN 1998-1

Alle felter som er merket grå bør fylles inn.

Aritmetiske utrykk for dimensjonerende akselerasjonspekteret $S_d(T)$ er gitt ved:

Referanse til NS-EN 1998-1:

^{§ 3.2.2.5(4)}P

0 < T ≤ T _B	S _d (T) =	a _g *S*(2/3 +(T/T _B)*(2,5/q - 2/3))
$T_B < T \le T_C$	S _d (T) =	a _g *S*2,5/q
$T_{C} < T \leq T_{D}$	S _d (T) =	a _g *S*2,5*(T _C /T)/q ≥ 0.2*ag
T _D < T	S _d (T) =	a _g *S*2,5*(T _C *T _D /T ²)/q ≥ 0.2*ag

Følgende parametre bør innsettes:

Spissverdi for berggrunnens akselerasjon (ag40HZ)

Se	isr	nisk	faktor (γ _i)	
-				

ett et kryss (X) for en gitt klasse			
	Klasse	Byggverk	γi
	I	ref. Tabell NA.4 (902)	0,70
х	=	ref. Tabell NA.4 (902)	1,00
	=	ref. Tabell NA.4 (902)	1,40
	IV	ref. Tabell NA.4 (902)	2.00

Konstruksjonsfaktor (q)^{1) 2) 3)}

Grunnforsterkningsfaktor (S)

T_B (s)

T_c (s)

T_D (s)

Sett et kryss (X) for en gitt duktilitetsklasse	
---	--

		0	
	Nivå	Konstruksjonens duktilitetsklasse	q
х	DCL	Lav duktilitet	1,50
	DCM	Middels duktilitet	3,00
	DCH	Høv duktilitet	-

Figur NA.3 (901 og 902)

Tabell NA.4(901) og Tabell NA.4(902)

Tabell NA.6.1

DCL q ≤ 1.5 DCM q ≤ 4

Tabell NA.3.1 og Tabell NA.3.3

Sett	et kryss (X)	for en gitt grunnforholdtype							
	Туре	Beskrivelse	V _{s,30}	N _{SPT}	Cu	S	Τ _B	T _C	T _D
			[m/s]	[slag/30cm]	[kPa]		[S]	[s]	[s]
	A	ref. Tabell NA.3.1	> 800	-	-	1,00	0,10	0,25	1,50
	В	ref. Tabell NA.3.1	360 - 800	> 50	> 250	1,25	0,10	0,30	1,50
	С	ref. Tabell NA.3.1	180 - 360	15 - 50	70 - 250	1,40	0,15	0,35	1,50
х	D	ref. Tabell NA.3.1	130 - 180	10 - 15	40 - 70	1,60	0,15	0,45	1,50
	ш	ref. Tabell NA.3.1				1,70	0,10	0,35	1,50
	S ₁ ⁴⁾	ref. Tabell NA.3.1	< 100	-	10 - 20				
			(antydet)						
	S ₂ ⁴⁾	ref. Tabell NA.3.1							

Avstviningsfaktor for utregning av egenperiode ved Alt. 1 (Ct)

0,050

§ 4.3.3.2.2(3)

Sett	et kryss (X) for gitt avstivnir	igssystem
	Avstivningssystem	Ct
	Stålramme	0,085
	Betongramme	0,075
Х	Skiver og øvrige system	0,050

Merknader:

1) Bruken av q tar hensyn til innflytelsen av viskøs dempning ref. pkt. 3.2.2.5(3)P

2)

Under forutsetning at q velges lik eller mindre enn 1.5 kreves ikke ytterligere påvisning av duktilitet etter pkt. 2.2.2 For 1.5< q ≤ 4 forutsetter at bærekonstruksjonen i bygget har større evne til å oppta og fordele jordskjelvkreftene etter pkt. 2.2.2 3) Dette regnearket tar ikke henysn til at q kan ha ulik verdi i de to retningene.

4) For byggegrunner der grunnforholdene samsvarer med S1 eller S2 kreves spesielle undersøkelser for å fastslå den seismiske påvirkningen ref. pkt. 3.1.2 (4)P.

		Bestemmelse av jordskjelvslaster for regulære,	Dato	Dok. nr.	
	חור		skiveavstivede bygninger etter forenklede metoder	27.06.11	2
	KIF	Prosjekt nr.	Prosjekt	Rev.	Sign.
	ADGIVENDE IGENIØRERS DRENING	1	Masteroppgave, referansebygget.	27.06.11	T.R

Byggverkets betraktede høyde	16,45	m
Total masse	945	tonn
Spissverdi for grunnakselerasjon	0,9	m/s ²
Seismisk klasse		
Konstruksjonsfaktor	1,5	
Grunnforholdstype	D	

Egenperioder, dimensjonerende grunnakselerasjon og skjærkraft ved grunnnivå

Generelt:

Alle beregninger baseres på NS-EN 1998-1:2004, i tillegg til et alternativt egenperiodeberegning. Merk at betigelsene for bruk av denne metoden må tilfredsstilles etter NS-EN 1998-1.

Utregning av første egenperiode:

Alternativt 1) Forenklet metode for generelle og regulære bygninger under 40 m høyde (NS-EN 1998-1 § 4.3.3.2.2(3))

 $T_1 = C_t \cdot H^{3/4}$ der Ct - faktoren er gitt ved tabellen under "Input - NS-EN 1998-1"

Alternativt 2) Forenklet metode for regulære og skiveavstivede bygninger etter Dunkerley's metode (Ref. /3/ og /4/)

Benyttes for en nøyaktigere beskrivelse av skiven stivhetsfordeling etableres egenperioden alternativt basert på avstivningsskivenes hovedgeometri, bøyestivhet samt skjærfleksibilitet. Forutsetter at avstivningssystemet under "Input-Hovedgeometri" er definert. En kort beskrivelse av metoden er gitt under "Detaljer".

$$T = 40 \ \sqrt{\frac{\rho}{\kappa G}} \frac{1}{\sqrt{\tilde{A}_{\epsilon}}} H$$

Egenperiode utregning	Alternativ 1	Alternativ 2
Kryss av (X) for ønsket alternativ for egenperiodeutregning	х	

Egensvingeperioder og frekvenser	T _x	0,41	[s]
	Ty	0,41	[s]
	f _x	2,45	[Hz]
	fy	2,45	[Hz]
Dimensjonerende akselerasjon for et én-frihetsgradssystem	S _{dx}	1,92	[m/s ²]
	S _{dy}	1,92	[m/s ²]
Dimensjonerende skjærkraft ved grunnivå for	F _{bx}	1542	[kN]
for et én-frihetsgradssystem	F _{by}	1542	[kN]

KONKLUSJON: Dimensjonering for jordskjelvpåvirkning må gjennomføres For utregning av etasjevise krefter se tabellen under

Fordeling av horisontale etasjevise krefter fra jordskjelvspåvirkning

Fordelingen baseres på et system der kreftene fordeles etasjevis i det massen av både dekker og skiver tillempes i hver etasje. Illustrasjon av bæresystemet er vist under.

Basert på en forenklet utbøyningsform for den første svingemoden kan de horisontale etasjevise kreftene etableres med følgende uttrykk (§ 4.3.3.2.3):

$$F_i = F_b \frac{z_i m_i}{\sum_{j=n} z_j m_j}$$

Etasje	Masser Dekke Skiver Totalt			Høyde x	masse	Etasjevise	e krefter ^{1) 2)}	Akk. etasjevise krefter ^{1) 2)} fra overliggende etasjer		
	W _d	W _s	m _i	z _i m _i	z _i m _i	$F_{i,\mathbf{x}}$	$F_{i,y}$	F _{ai,x}	F _{ai,x}	
	[tonn]	[tonn]	[tonn]	[m*tonn]	[m*tonn]	[kN]	[kN]	[kN]	[kN]	
1	139,7	137,8	277,5	1012,9	1012,9	201	201	1542	1542	
2	142,6	81,5	224,1	1535,0	1535,0	304	304	1341	1341	
3	138,2	71,7	209,9	2109,6	2109,6	418	418	1038	1038	
4	133,8	49,5	183,2	2373,1	2373,1	470	470	620	620	
5	28,8	17,2	46,1	757,5	757,5	150	150	150	150	
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16				Tatal alderation		° FI-NI7				
				i otal skjærkra	n vea grunniva	a [KN]	$\Sigma F_{i,x}$	1542	1542	
				Totalt moment	ved grunnivå	[kNm]	$\Sigma F_{i,x} z_i$	15563	15563	

Tabell - Oversikt over etasjevise horisontale krefter samt globale reaksjonskrefter ved grunnivå

Merknad:

1)

De oppgitte etasjevise kreftene gjelder for lastkomponenter i en ortogonal retning for seg. Dimensjonerende lastvirkning kan etableres ved kombinasjonsregelene gitt i NS-EN 1998-1 §4.3.3.5 Effekten av utilsiktet torsjon må ivaretas iht. NS-EN 1998-1 § 4.3.3.2.4

2)

חור		Dato 27.06.11	Dok. nr. 2	
	Prosjekt nr. 1	Prosjekt Masteroppgave, referansebygget.	Rev. 27.06.11	Sign. T.R

Referanser

- /1/ NS-EN 1998-1:2004+NA:2008: Prosjektering av konstruksjoner for seismisk påvirkning.
- NS-EN 1990-1.2004-NA.2008. Prospecting av konstruksjoner for seisnisk pavirking.
 NS-EN-1990:2002+NA:2008: Grunnlag for prosjektering av konstruksjoner
 "Period Formulas for Concrete Shear Walls Buildings" R. K. Goel, A. Chopra, JSE (1998)
 "Dynamic of Structures: Theory and Applications to Earthquake Engineering", A. Chopra (1995)
 "Dimensjonerig for JORDSKJELV Veileder til bruk av NS-En 1998-1:2004+NA:2008", RIF(2010)

Brukerdokumentasjon:

Utviklet av:

Dr. techn. Olav Olsen AS Dicks vei 10 , P. O. Box 139 NO-1325 Lysaker Sentralbord: +47 67 82 80 00 Fax:+47 67 82 80 80 www.olavolsen.no

Utregning av stivhets- og masseegenskaper for etablering av egenperioder

Total høyde:	16,45 m	(H)	
Grunnareal:	145 m²	(A _b)	
Total vekt:	944,8 tonn	(M)	
Egenvekt dekker	417,6 tonn		
Nyttevekt dekker	165,5 tonn		
Vekt av avst. skiver	361,7 tonn		
Vekt/"volum"	396,1 kg/m°	(ρ)	
Skjærmodul	11,0 GPa	(G)	
Tverrsnittskonstant	0,8	(κ)	

Kort beskrivelse av Dunkerly's metode for utregning av egenperioder for skivesavstivede bygninger:

Første egenperiode i en gitt ortogonal retning er som følger:

ρ er byggets totale masse per total "volum" (grunnareal x høyde)

κ tverrsnittskonstant for skjærstivhetbidrag for rektangulær formede skiver

G betongskivenes skjærmodul i uopprisset tilstand

Ā_e = 100A_e/A_b, der A_b er byggets grunnareal

 $T = 40 \ \sqrt{\frac{\rho}{\kappa G}} \frac{1}{\sqrt{\tilde{A}_{\epsilon}}} H$

H er byggets totale høyde

der

Totalt skiveareal (Ae) består av følgende sum for alle medvirkende skiver i en gitt ortogonal retning:

$$A_{\epsilon} = \sum_{i=1}^{NW} \left(\frac{H}{H_i}\right)^2 \frac{A_i}{\left[1 + 0.83 \left(\frac{H_i}{D_i}\right)^2\right]}$$

der H_i skivens høyde fra grunnivå for skive i

- A skivearealet for skive i
- D_i skiveutstrekning i den betraktede retning for skive i

		Stivhets	egenskaper i	x-retnin	g		
Skivenr.	Hi	Wi	H/Hi	Di	Hi/Di	Ai	Aei
1	12,95	48,44	1,2702703	7,28	1,78	1,31	0,58
2	16,45	42,85	1	5,07	3,24	0,91	0,09
3	12,95	33,80	1,2702703	5,08	2,55	0,91	0,23
4	12,95	24,28	1,2702703	3,65	3,55	0,66	0,09
5	16,45	30,00	1	3,55	4,63	0,64	0,03
6	12,95	41,52	1,2702703	6,24	2,08	1,12	0,40
7	12,95	12,54077472	1,2702703	1,9	6,815789	0,38	0,0155
8	16,45	14,58868502	1	1,74	9,454023	0,348	0,004629
9	16,45	14,58868502	1	1,74	9,454023	0,348	0,004629
10							
11							
12							
13							
14							
15							
16							
						A _e	1,455041
						Ae'	1,003477

										Skivemasse	er i x-retning									
Etasje	Zi	H*	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	W/H	W per etasje
1	3,650	3,650	3,740183	2,604771	2,609908	1,875229	1,823853	3,205872	0,9684	0,88685	0,88685								18,60	97,66
2	6,850	3,200	3,740183	2,604771	2,609908	1,875229	1,823853	3,205872	0,9684	0,88685	0,88685								18,60	59,53
3	10,050	3,200	3,740183	2,604771	2,609908	1,875229	1,823853	3,205872	0,9684	0,88685	0,88685								18,60	56,74
4	12,950	2,900	3,740183	2,604771	2,609908	1,875229	1,823853	3,205872	0,9684	0,88685	0,88685								18,60	37,83
5	16,450	3,500		2,604771			1,823853			0,88685	0,88685								6,20	10,85
6																				
7																				
8																				
9																				
10																				
11																				
12																				
13																				
14																				
15																				
16																				

Skivenr.	Hi	W	H/Hi	Di	Hi/Di	Ai	Aei
1							
2							
3							
4							
5							
6							
7							
8							
9							
10	9,39	14,96	1,7518637	3,10	3,03	0,56	0,20
11	10,05	13,94	1,6368159	2,70	3,72	0,49	0,10
12	10,05	10,33	1,6368159	2,00	5,03	0,36	0,04
13	16,45	27,04	1	3,20	5,14	0,58	0,03
14	16,45	16,9362895	1	2,02	8,143564	0,404	0,0072
15	16,45	11,31880734	1	1,35	12,18519	0,27	0,0021
16	16,45	4,611365953	1	0,55	29,90909	0,11	0,0001

										Skivemasse	er i y-retnii	ng								
Etasje	Zi	H*	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	W/H	W per etasje
1	3,650	3,650										1,592661	1,387156	1,027523	1,644037	1,029562	0,688073	0,280326	7,65	40,16
2	6,850	3,200										1,592661	1,387156	1,027523	1,644037	1,029562	0,688073	0,280326	7,65	21,93
3	10,050	3,200											1,387156	1,027523	1,644037	1,029562	0,688073	0,280326	6,06	14,97
4	12,950	2,900													1,644037	1,029562	0,688073	0,280326	3,64	11,65
5	16,450	3,500													1,644037	1,029562	0,688073	0,280326	3,64	6,37
6																				
7																				
8																				
9																				
10																				
11																				
12																				
13																				
14																				
15																				
16																				

Etablering av dimensjonerende horisontal responsspekter

Horisontal dimensjonerende spekter	S _d
Dimensjonerende grunnakselerasjon	a _g
Referanseperioder	S,T _b , T _c ,T _d og T _e
Konstruksjonsfaktor	q

Innsatte verdier						
S	Tb	Tc	Td	Te	ag	q
1,60	0,15	0,45	1,50	4	0,72	1,50

DIE				Bestemmelse av jordskjelvslaster for regulære,	Dato	Dok. nr.
	חור			skiveavstivede bygninger etter forenklede metoder	27.06.11	2
	KIF	F	Prosjekt nr.	Prosjekt	Rev.	Sign.
	ÁDGIVENDE NGENIØRERS ORFNING	ŀ	1	Masteroppgave, referanse bygget.	27.06.11	T.R

Byggverkets betraktede høyde	16,45	m
Total masse	945	tonn
Spissverdi for grunnakselerasjon	0,9	m/s ²
Seismisk klasse		
Konstruksjonsfaktor	1,6	
Grunnforholdstype	D	

Egenperioder, dimensjonerende grunnakselerasjon og skjærkraft ved grunnnivå

Generelt:

Alle beregninger baseres på NS-EN 1998-1:2004, i tillegg til et alternativt egenperiodeberegning. Merk at betigelsene for bruk av denne metoden må tilfredsstilles etter NS-EN 1998-1.

Utregning av første egenperiode:

Alternativt 1) Forenklet metode for generelle og regulære bygninger under 40 m høyde (NS-EN 1998-1 § 4.3.3.2.2(3))

 $T_1 = C_t \cdot H^{3/4}$ der Ct - faktoren er gitt ved tabellen under "Input - NS-EN 1998-1"

Alternativt 2) Forenklet metode for regulære og skiveavstivede bygninger etter Dunkerley's metode (Ref. /3/ og /4/)

Benyttes for en nøyaktigere beskrivelse av skiven stivhetsfordeling etableres egenperioden alternativt basert på avstivningsskivenes hovedgeometri, bøyestivhet samt skjærfleksibilitet. Forutsetter at avstivningssystemet under "Input-Hovedgeometri" er definert. En kort beskrivelse av metoden er gitt under "Detaljer".

$$T = 40 \ \sqrt{\frac{\rho}{\kappa G}} \frac{1}{\sqrt{\tilde{A}_{\epsilon}}} H$$

Egenperiode utregning	Alternativ 1	Alternativ 2
Kryss av (X) for ønsket alternativ for egenperiodeutregning	х	

Egensvingeperioder og frekvenser	T _x	0,41	[s]
	Ty	0,41	[s]
	f _x	2,45	[Hz]
	fy	2,45	[Hz]
Dimensjonerende akselerasjon for et én-frihetsgradssystem	S _{dx}	1,80	[m/s ²]
	S _{dy}	1,80	[m/s ²]
Dimensjonerende skjærkraft ved grunnivå for	F _{bx}	1446	[kN]
for et én-frihetsgradssystem	F _{by}	1446	[kN]

KONKLUSJON: Dimensjonering for jordskjelvpåvirkning må gjennomføres når q > 1.5. NA.3.2.1(5)P For utregning av etasjevise krefter se tabellen under

		Bestemmelse av jordskjelvslaster for regulære,	Dato	Dok. nr.
חור		skiveavstivede bygninger etter forenklede metoder	27.06.11	2
KIF	Prosjekt nr.	Prosjekt	Rev.	Sign.
ÅDGIVENDE NGENIØRERS ORFNING	1	Masteroppgave, referanse bygget.	27.06.11	T.R

Byggverkets betraktede høyde	16,45	m
Total masse	945	tonn
Spissverdi for grunnakselerasjon	0,9	m/s ²
Seismisk klasse	11	
Konstruksjonsfaktor	3	
Grunnforholdstype	D	

Egenperioder, dimensjonerende grunnakselerasjon og skjærkraft ved grunnnivå

Generelt:

Alle beregninger baseres på NS-EN 1998-1:2004, i tillegg til et alternativt egenperiodeberegning. Merk at betigelsene for bruk av denne metoden må tilfredsstilles etter NS-EN 1998-1.

Utregning av første egenperiode:

Alternativt 1) Forenklet metode for generelle og regulære bygninger under 40 m høyde (NS-EN 1998-1 § 4.3.3.2.2(3))

 $T_1 = C_t \cdot H^{3/4}$ der Ct - faktoren er gitt ved tabellen under "Input - NS-EN 1998-1"

Alternativt 2) Forenklet metode for regulære og skiveavstivede bygninger etter Dunkerley's metode (Ref. /3/ og /4/)

Benyttes for en nøyaktigere beskrivelse av skiven stivhetsfordeling etableres egenperioden alternativt basert på avstivningsskivenes hovedgeometri, bøyestivhet samt skjærfleksibilitet. Forutsetter at avstivningssystemet under "Input-Hovedgeometri" er definert. En kort beskrivelse av metoden er gitt under "Detaljer".

$$T = 40 \ \sqrt{\frac{\rho}{\kappa G}} \frac{1}{\sqrt{\tilde{A}_{\epsilon}}} H$$

Egenperiode utregning	Alternativ 1	Alternativ 2
Kryss av (X) for ønsket alternativ for egenperiodeutregning	х	

Egensvingeperioder og frekvenser	T _x	0,41	[s]
	Ty	0,41	[s]
	f _x	2,45	[Hz]
	fy	2,45	[Hz]
Dimensjonerende akselerasjon for et én-frihetsgradssystem	S _{dx}	0,96	[m/s ²]
	S _{dy}	0,96	[m/s ²]
Dimensjonerende skjærkraft ved grunnivå for	F _{bx}	771	[kN]
for et én-frihetsgradssystem	F _{by}	771	[kN]

KONKLUSJON: Dimensjonering for jordskjelvpåvirkning må gjennomføres når q > 1.5. NA.3.2.1(5)P For utregning av etasjevise krefter se tabellen under

Fordeling av horisontale etasjevise krefter fra jordskjelvspåvirkning

Fordelingen baseres på et system der kreftene fordeles etasjevis i det massen av både dekker og skiver tillempes i hver etasje. Illustrasjon av bæresystemet er vist under.

Basert på en forenklet utbøyningsform for den første svingemoden kan de horisontale etasjevise kreftene etableres med følgende uttrykk (§ 4.3.3.2.3):

$$F_i = F_b \frac{z_i m_i}{\sum_{j=n} z_j m_j}$$

Etasje	Dekke	Masser Skiver	Totalt	Høyde x	masse	Etasjevise	e krefter ^{1) 2)}	Akk. etasjev fra overligo	vise krefter ^{1) 2)} Jende etasier
	W _d	W _s	m _i	z _i m _i	z _i m _i	$F_{i,\mathbf{x}}$	$F_{i,y}$	F _{ai,x}	F _{ai,x}
	[tonn]	[tonn]	[tonn]	[m*tonn]	[m*tonn]	[kN]	[kN]	[kN]	[kN]
1	139,7	137,8	277,5	1012,9	1012,9	100	100	771	771
2	142,6	81,5	224,1	1535,0	1535,0	152	152	671	671
3	138,2	71,7	209,9	2109,6	2109,6	209	209	519	519
4	133,8	49,5	183,2	2373,1	2373,1	235	235	310	310
5	28,8	17,2	46,1	757,5	757,5	75	75	75	75
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16				Total alcordurat			25		
				i otal skjærkra	it ved grunniva	a[KN]	ΣF _{i,x}	(71	71
				Totalt moment	ved grunnivå	[kNm]	$\Sigma F_{i,x} z_i$	7782	7782

Tabell - Oversikt over etasjevise horisontale krefter samt globale reaksjonskrefter ved grunnivå

Merknad:

1)

De oppgitte etasjevise kreftene gjelder for lastkomponenter i en ortogonal retning for seg. Dimensjonerende lastvirkning kan etableres ved kombinasjonsregelene gitt i NS-EN 1998-1 §4.3.3.5 Effekten av utilsiktet torsjon må ivaretas iht. NS-EN 1998-1 § 4.3.3.2.4

2)

			Bestemmelse av jordskjelvslaster for regulære,	Dato	Dok. nr.
	חור		skiveavstivede bygninger etter forenklede metoder	27.06.11	2
	KIF	Prosjekt nr.	Prosjekt	Rev.	Sign.
	ADGIVENDE NGENIØRERS ORFNING	1	Masteroppgave, referanse bygget.	27.06.11	T.R

Byggverkets betraktede høyde	16,45	m
Total masse	945	tonn
Spissverdi for grunnakselerasjon	0,9	m/s ²
Seismisk klasse	11	
Konstruksjonsfaktor	1,6	
Grunnforholdstype	D	

Egenperioder, dimensjonerende grunnakselerasjon og skjærkraft ved grunnnivå

Generelt:

Alle beregninger baseres på NS-EN 1998-1:2004, i tillegg til et alternativt egenperiodeberegning. Merk at betigelsene for bruk av denne metoden må tilfredsstilles etter NS-EN 1998-1.

Utregning av første egenperiode:

Alternativt 1) Forenklet metode for generelle og regulære bygninger under 40 m høyde (NS-EN 1998-1 § 4.3.3.2.2(3))

 $T_1 = C_t \cdot H^{3/4}$ der Ct - faktoren er gitt ved tabellen under "Input - NS-EN 1998-1"

Alternativt 2) Forenklet metode for regulære og skiveavstivede bygninger etter Dunkerley's metode (Ref. /3/ og /4/)

Benyttes for en nøyaktigere beskrivelse av skiven stivhetsfordeling etableres egenperioden alternativt basert på avstivningsskivenes hovedgeometri, bøyestivhet samt skjærfleksibilitet. Forutsetter at avstivningssystemet under "Input-Hovedgeometri" er definert. En kort beskrivelse av metoden er gitt under "Detaljer".

$$T = 40 \ \sqrt{\frac{\rho}{\kappa G}} \frac{1}{\sqrt{\tilde{A}_{\epsilon}}} H$$

Egenperiode utregning	Alternativ 1	Alternativ 2
Kryss av (X) for ønsket alternativ for egenperiodeutregning		х

Egensvingeperioder og frekvenser	T _x	0,14	[s]
	Ty	0,27	[s]
	f _x	7,32	[Hz]
	fy	3,75	[Hz]
Dimensjonerende akselerasjon for et én-frihetsgradssystem	S _{dx}	1,71	[m/s ²]
	S _{dy}	1,80	[m/s ²]
Dimensjonerende skjærkraft ved grunnivå for	F _{bx}	1372	[kN]
for et én-frihetsgradssystem	F _{by}	1446	[kN]

KONKLUSJON: Dimensjonering for jordskjelvpåvirkning må gjennomføres når q > 1.5. NA.3.2.1(5)P For utregning av etasjevise krefter se tabellen under

			Bestemmelse av jordskjelvslaster for regulære,	Dato	Dok. nr.
skiveavstivede bygninger etter forenklede metoder		27.06.11	2		
	KIF	Prosjekt nr.	Prosjekt	Rev.	Sign.
	ÅDGIVENDE NGENIØRERS ORFNING	1	Masteroppgave, referanse bygget.	27.06.11	T.R

Byggverkets betraktede høyde	16,45	m
Total masse	945	tonn
Spissverdi for grunnakselerasjon	0,9	m/s ²
Seismisk klasse		
Konstruksjonsfaktor	1,5	
Grunnforholdstype	D	

Egenperioder, dimensjonerende grunnakselerasjon og skjærkraft ved grunnnivå

Generelt:

Alle beregninger baseres på NS-EN 1998-1:2004, i tillegg til et alternativt egenperiodeberegning. Merk at betigelsene for bruk av denne metoden må tilfredsstilles etter NS-EN 1998-1.

Utregning av første egenperiode:

Alternativt 1) Forenklet metode for generelle og regulære bygninger under 40 m høyde (NS-EN 1998-1 § 4.3.3.2.2(3))

 $T_1 = C_t \cdot H^{3/4}$ der Ct - faktoren er gitt ved tabellen under "Input - NS-EN 1998-1"

Alternativt 2) Forenklet metode for regulære og skiveavstivede bygninger etter Dunkerley's metode (Ref. /3/ og /4/)

Benyttes for en nøyaktigere beskrivelse av skiven stivhetsfordeling etableres egenperioden alternativt basert på avstivningsskivenes hovedgeometri, bøyestivhet samt skjærfleksibilitet. Forutsetter at avstivningssystemet under "Input-Hovedgeometri" er definert. En kort beskrivelse av metoden er gitt under "Detaljer".

$$T = 40 \ \sqrt{\frac{\rho}{\kappa G}} \frac{1}{\sqrt{\tilde{A}_{\epsilon}}} H$$

Egenperiode utregning	Alternativ 1	Alternativ 2
Kryss av (X) for ønsket alternativ for egenperiodeutregning		х

-		
I _x	0,14	[S]
Ty	0,27	[s]
f _x	7,32	[Hz]
fy	3,75	[Hz]
S _{dx}	1,82	[m/s ²]
S _{dy}	1,92	[m/s ²]
F _{bx}	1460	[kN]
F _{by}	1542	[kN]
	$\begin{array}{c} T_{x}\\ T_{y}\\ f_{x}\\ f_{y}\\ \end{array}\\ \\ S_{dx}\\ S_{dy}\\ \\ F_{bx}\\ F_{by}\\ \end{array}$	$\begin{array}{c c} T_x & 0.14 \\ T_y & 0.27 \\ f_x & 7.32 \\ \hline f_y & 3.75 \\ \hline S_{dx} & 1.82 \\ \hline S_{dy} & 1.92 \\ \hline F_{bx} & 1460 \\ \hline F_{by} & 1542 \\ \end{array}$

KONKLUSJON: Dimensjonering for jordskjelvpåvirkning må gjennomføres For utregning av etasjevise krefter se tabellen under

		Bestemmelse av jordskjelvslaster for regulære,	Dato	Dok. nr.
חור		skiveavstivede bygninger etter forenklede metoder	27.06.11	2
KIF	Prosjekt nr.	Prosjekt	Rev.	Sign.
ÅDGIVENDE NGENIØRERS ORFNING	1	Masteroppgave, referanse bygget.	27.06.11	T.R

Byggverkets betraktede høyde	16,45	m
Total masse	945	tonn
Spissverdi for grunnakselerasjon	0,9	m/s ²
Seismisk klasse		
Konstruksjonsfaktor	3	
Grunnforholdstype	D	

Egenperioder, dimensjonerende grunnakselerasjon og skjærkraft ved grunnnivå

Generelt:

Alle beregninger baseres på NS-EN 1998-1:2004, i tillegg til et alternativt egenperiodeberegning. Merk at betigelsene for bruk av denne metoden må tilfredsstilles etter NS-EN 1998-1.

Utregning av første egenperiode:

Alternativt 1) Forenklet metode for generelle og regulære bygninger under 40 m høyde (NS-EN 1998-1 § 4.3.3.2.2(3))

 $T_1 = C_t \cdot H^{3/4}$ der Ct - faktoren er gitt ved tabellen under "Input - NS-EN 1998-1"

Alternativt 2) Forenklet metode for regulære og skiveavstivede bygninger etter Dunkerley's metode (Ref. /3/ og /4/)

Benyttes for en nøyaktigere beskrivelse av skiven stivhetsfordeling etableres egenperioden alternativt basert på avstivningsskivenes hovedgeometri, bøyestivhet samt skjærfleksibilitet. Forutsetter at avstivningssystemet under "Input-Hovedgeometri" er definert. En kort beskrivelse av metoden er gitt under "Detaljer".

$$T = 40 \ \sqrt{\frac{\rho}{\kappa G}} \frac{1}{\sqrt{\tilde{A}_{\epsilon}}} H$$

Egenperiode utregning	Alternativ 1	Alternativ 2
Kryss av (X) for ønsket alternativ for egenperiodeutregning		х

Egensvingeperioder og frekvenser	T _x	0,14	[S]
	Ty	0,27	[s]
	f _x	7,32	[Hz]
	fy	3,75	[Hz]
Dimensjonerende akselerasjon for et én-frihetsgradssystem	S _{dx}	0,94	[m/s ²]
	S _{dy}	0,96	[m/s ²]
Dimensjonerende skjærkraft ved grunnivå for	F _{bx}	757	[kN]
for et én-frihetsgradssystem	F _{by}	771	[kN]

KONKLUSJON: Dimensjonering for jordskjelvpåvirkning må gjennomføres når q > 1.5. NA.3.2.1(5)P For utregning av etasjevise krefter se tabellen under

APPENDIX E – RESULTATER FRA MODELLEN I SAP

INFO OM BYGGET

- G E er Egenvekt av bygget.
- Q N er Nyttelast.
- Q S er snølast.
- J X er jordskjelv laster i enkelt retninger, denne er i x-retning.
- J X30%, Y er jordskjelv kombinasjoner, denne er med tretti prosent i x retning.

TABLE E1: Area Section Properties									
Section	Material	MatAngle	AreaType	Туре					
Text	Text	Degrees	Text	Text					
Dekke	Dekker B45	0	Shell	Shell-Thin					
GU vegg	B30 VEGG	0	Shell	Shell-Thin					
Homogene/sjakt vegger	B30 VEGG	0	Shell	Shell-Thin					
Sandwich vegg med vindu	B30 VEGG med økt densitet	0	Shell	Shell-Thin					
Sandwich vegger	B30 VEGG med økt densitet	0	Shell	Shell-Thin					

Thickness	BendThick	Arc	InComp	CoordSys	Color	TotalWt	TotalMass
m	m	Degrees	Yes/No	Text	Text	KN	KN-s2/m
0,152	0,152				Green	2008,438	204,8
0,08	0,08				8404992	57,373	5,85
0,2	0,2				Green	1177,01	120,02
0,22	0,22				Green	539,173	54,98
0,18	0,18				Green	3505,892	319,2
	Thickness m 0,152 0,08 0,22 0,22 0,18	Thickness BendThick m m 0,152 0,152 0,08 0,08 0,2 0,22 0,18 0,18	Thickness BendThick Arc m 0 Degrees 0,152 0,152 0,08 0,08 0,22 0,22 0,18 0,18	Thickness BendThick Arc InComp m Degrees Yes/No 0,152 0,152 Yes/No 0,08 0,08 Yes/No 0,22 0,22 Yes/No 0,18 0,18 Yes/No	ThicknessBendThickArcInCompCoordSysmmDegreesYes/NoText0,1520,152	ThicknessBendThickArcInCompCoordSysColormDegreesYes/NoTextText0,1520,152SereenS4049920,080,08SereenGreen0,220,22SereenGreen0,180,18SereenGreen	ThicknessBendThickArcInCompCoordSysColorTotalWtmDegreesYes/NoTextTextKN0,1520,152Green2008,4380,080,08S7,3730,20,2Green1177,010,120,220,22Green539,1730,180,18Green3505,892

TABLE E2: Case - Modal 2 - Load Assignments - Eigen								
Case	LoadType	LoadName	TargetPar	StatCorrect				
Text	Text	Text	Percent	Yes/No				
MODAL	Acceleration	Accel UX	90	No				
MODAL	Acceleration	Accel UY	90	No				
MODAL	Acceleration	Accel UZ	90	No				

TABLE E3: Case - Response Spectrum 1 - General								
Case	ModalCombo	GMCf1	GMCf2	PerRigid	DirCombo	DampingType	ConstDamp	
Text	Text	Cyc/sec	Cyc/sec	Text	Text	Text	Unitless	
JΧ	CQC	1	40	SRSS	SRSS	Constant	0,05	
JΥ	CQC	1	40	SRSS	SRSS	Constant	0,05	
JΖ	CQC	1	40	SRSS	SRSS	Constant	0,05	

TABLE E4: Case - Response Spectrum 2 - Load Assignments									
Case	LoadType	LoadName	CoordSys	Function	Angle	TransAccSF			
Text	Text	Text	Text	Text	Degrees	m/sec2			
JΧ	Acceleration	U1	GLOBAL	Bergen	0	1			
JΥ	Acceleration	U2	GLOBAL	Bergen	0	1			
JΖ	Acceleration	U3	GLOBAL	Bergen vertikal	0	1			

TABLE E5: Case - Static 1 - Load Assignments							
Case	LoadType	LoadName	LoadSF				
Text	Text	Text	Unitless				
G E	Load pattern	DEAD	1				
QN	Load pattern	Nyttelast	1				
QS	Load pattern	Snolaster	1				

TABLE E6: Frame Section Properties 01 - General							
SectionName	Material	Shape					
Text	Text	Text					
Limtredrager	Limtre	SD Section					
Søyler i første etasje	Betong søyler	Rectangular					
TUBO-D139.7X4	Søyler S355	Pipe					

TABLE E7: Load Case Definitions								
Case	Туре	InitialCond	ModalCase	BaseCase	DesTypeOpt	DesignType		
Text	Text	Text	Text	Text	Text	Text		
G E	LinStatic	Zero			Prog Det	DEAD		
MODAL	LinModal	Zero			Prog Det	QUAKE		
QN	LinStatic	Zero			Prog Det	LIVE		
QS	LinStatic	Zero			Prog Det	LIVE		
JΧ	LinRespSpec		MODAL		Prog Det	QUAKE		
JΥ	LinRespSpec		MODAL		Prog Det	QUAKE		
JΖ	LinRespSpec		MODAL		Prog Det	QUAKE		

TABLE E10: Material Properties 01 - General								
Material	Туре	SymType	TempDepend	Color				
Text	Text	Text	Yes/No	Text				
B30 VEGG	Concrete	Isotropic	No	Blue				
B30 VEGG med økt densitet	Concrete	Isotropic	No	Blue				
Betong søyler	Concrete	Isotropic	No	Blue				
Dekker B45	Concrete	Isotropic	No	Blue				
Limtre	Other	Isotropic	No	Blue				
Søyler S355	Steel	Isotropic	No	Green				

TABLE E11: Material Properties 02 - Basic Mechanical Properties								
Material	UnitWeight	UnitMass	E1	G12				
		KN-						
Text	KN/m3	s2/m4	KN/m2	KN/m2				
B30 VEGG	24,517	2,5	33000000	13750000				
B30 VEGG med økt densitet	28	2,8552	33000000	13750000				
Betong søyler	24,517	2,5	33000000	13750000				
Dekker B45	23,536	2,4	36300000	15125000				
Limtre	4,2169	0,43	14700000	5250000				
Søyler S355	76,973	7,849	199947978,8	76903068,77				

KOMBINASJONER

TABLE E12: Combination Definitions							
ComboName	ComboType	AutoDesign	CaseType	CaseName			
Text	Text	Yes/No	Text	Text			
J X30%, Y	Linear Add	No	Response Spectrum	JΥ			
J X30%, Y			Response Spectrum	JΧ			
J X, Y30%	Linear Add	No	Response Spectrum	JΥ			
J X, Y30%			Response Spectrum	JΧ			
J X30%, Y30%, Z	Linear Add	No	Response Spectrum	JΧ			
J X30%, Y30%, Z			Response Spectrum	JΥ			
J X30%, Y30%, Z			Response Spectrum	JΖ			
J X, Y30%, Z30%	Linear Add	No	Response Spectrum	JΧ			
J X, Y30%, Z30%			Response Spectrum	JΥ			
J X, Y30%, Z30%			Response Spectrum	JΖ			
J X30%, Y, Z30%	Linear Add	No	Response Spectrum	JΧ			
J X30%, Y, Z30%			Response Spectrum	JΥ			
J X30%, Y, Z30%			Response Spectrum	JΖ			

Referanse bygget med q lik 1,5

- G E er Egenvekt av bygget.
- Q N er Nyttelast.
- Q S er snølast.
- J X er jordskjelv laster i enkelt retninger, denne er i x-retning.
- J X30%, Y er jordskjelv kombinasjoner, denne er med tretti prosent i x retning.
- Det som er merket med gult lasten kombinasjonen som blir dimensjonerende. Jordskjelv i vertikal retning er ikke nødvendig å ta med for referanse bygget, se EC8.
- Det som er merket med grønt er viktige tall
- RX er bidrag til rotasjon om x akse.
- UX er bidrag til forskyvning i x-retning.

TABLE E13: Base Reactions								
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ			
Text	Text	Text	KN	KN	KN			
G E	LinStatic		-0,000001193	0,000002251	<mark>8791,55</mark>			
QN	LinStatic		-2,249E-07	6,614E-07	<mark>404,73</mark>			
QS	LinStatic		5,762E-15	2,241E-13	<mark>91,74</mark>			
JΧ	LinRespSpec	Max	597,267	69,095	50,102			
JY	LinRespSpec	Max	69,54	942,938	8,335			
JZ	LinRespSpec	Max	29,71	4,836	115,145			
<mark>J X30%, Y</mark>	Combination	<mark>Max</mark>	<mark>248,72</mark>	<mark>963,667</mark>	<mark>23,365</mark>			
<mark>J X30%, Y</mark>	Combination	<mark>Min</mark>	<mark>-248,72</mark>	<mark>-963,667</mark>	<mark>-23,365</mark>			
J X, Y30%	Combination	Max	618,129	351,977	52,602			
J X, Y30%	Combination	Min	-618,129	-351,977	-52,602			
J X30%, Y30%, Z	Combination	Max	229,752	308,446	132,676			
J X30%, Y30%, Z	Combination	Min	-229,752	-308,446	-132,676			
J X, Y30%, Z30%	Combination	Max	627,042	353 <i>,</i> 428	87,146			
J X, Y30%, Z30%	Combination	Min	-627,042	-353 <i>,</i> 428	-87,146			
J X30%, Y, Z30%	Combination	Max	257,633	965,118	57,909			
J X30%, Y, Z30%	Combination	Min	-257,633	-965,118	-57,909			

TABLE E13: Base Reactions fortsetter								
OutputCase	GlobalMX	GlobalMY	GlobalMZ					
Text	KN-m	KN-m	KN-m					
JΧ	676,9814	6602,777	4050,7801					
JΥ	8914,7872	786,4738	10738,3301					
JZ	771,8459	1367,966	264,0759					
<mark>J X30%, Y</mark>	<mark>9117,8816</mark>	<mark>2767,307</mark>	<mark>11953,5641</mark>					
<mark>J X30%, Y</mark>	<mark>-9117,8816</mark>	<mark>-2767,31</mark>	<mark>-11953,5641</mark>					
J X, Y30%	3351,4175	6838,719	7272,2791					
J X, Y30%	-3351,4175	-6838,72	-7272,2791					
J X30%, Y30%, Z	3649,3765	3584,741	4700,809					
J X30%, Y30%, Z	-3649,3765	-3584,74	-4700,809					
J X, Y30%, Z30%	3582,9713	7249,109	7351,5019					
J X, Y30%, Z30%	-3582,9713	-7249,11	-7351,5019					
J X30%, Y, Z30%	9349,4354	3177,697	12032,7869					
J X30%, Y, Z30%	-9349,4354	-3177,7	-12032,7869					

TABLE E14: Modal Load Participation Ratios									
OutputCase	ItemType	Item	Static	Dynamic					
Text	Text	Text	Percent	Percent					
MODAL	Acceleration	UX	96 <mark>,2037</mark>	74,0524					
MODAL	Acceleration	UY	99,7348	91,501					
MODAL	Acceleration	UZ	71,6073	26,0018					

TABLE E15: Modal Periods And Frequencies										
OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue				
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2				
MODAL	Mode	1	<mark>0,142548</mark>	<mark>7,0152</mark>	44,078	1942,8				
MODAL	Mode	2	0,071406	<mark>14,004</mark>	87,993	7742,7				
MODAL	Mode	3	0,064731	<mark>15,449</mark>	97,066	9421,8				
MODAL	Mode	4	0,059258	<mark>16,875</mark>	106,03	11242				
MODAL	Mode	5	0,055816	17,916	112,57	12672				
MODAL	Mode	6	0,053147	18,816	118,22	13977				
MODAL	Mode	7	0,051566	19,393	121,85	14847				
MODAL	Mode	8	0,046785	21,375	134,3	18036				
MODAL	Mode	9	0,046091	21,696	136,32	18584				
MODAL	Mode	10	0,045271	22,089	138,79	19263				
MODAL	Mode	11	0,045131	22,158	139,22	19382				
MODAL	Mode	12	0,044019	22,717	142,74	20374				
MODAL	Mode	13	0,043592	22,94	144,13	20775				
MODAL	Mode	14	0,043408	23,037	144,75	20952				
MODAL	Mode	15	0,041594	24,042	151,06	22819				
MODAL	Mode	16	0,039811	25,119	157,83	24909				
MODAL	Mode	17	0,039589	25,259	158,71	25189				
MODAL	Mode	18	0,037324	26,793	168,34	28339				
MODAL	Mode	19	0,036957	27,058	170,01	28904				
MODAL	Mode	20	0,036342	27,516	172,89	29891				
MODAL	Mode	21	0,035922	27,838	174,91	30595				
MODAL	Mode	22	0,035684	28,024	176,08	31004				
MODAL	Mode	23	0,035527	28,148	176,86	31279				
MODAL	Mode	24	0,035303	28,326	177,98	31676				
MODAL	Mode	25	0,034897	28,656	180,05	32418				
MODAL	Mode	26	0,034399	29,07	182,65	33362				
MODAL	Mode	27	0,034367	29,098	182,83	33425				
MODAL	Mode	28	0,03394	29,464	185,13	34272				
MODAL	Mode	29	0,033328	30,005	188,52	35541				
MODAL	Mode	30	0,033306	30,025	188,65	35590				

TABLE E16: Modal Participating Mass									
	StenType	StenNum	Period			117			
Tovt	Tovt		Sec	Unitless	Unitless	Unitless			
	Mode	1	0 1/25/9	0.00452	0.64880	0.00006547			
	Mode	1	0,142346	0,00432	0,04005	0,000000347			
	Mode	2	0,071400	0,04889	0,00803	0,0001049			
	Mode	с л	0,004751	0,50194	0,00765	0,0082			
	Mode	4	0,039236	0,00000895	0,10803	0,0004			
	Mode	5	0,055610	0,02025	0,00051	0,02618			
	Mode	0	0,053147	0,04575	0,00096	0,08038			
	Mode	/	0,051500	0,00122	0,00035	0,0001387			
	Mada	٥ 0	0,040785	0,000003803	0,00012	0,00151			
	Mada	9	0,046091	0,0038	0,00101	0,05757			
MODAL	Node	10	0,045271	0,00286	0,00019	0,00039			
MODAL	Mode	11	0,045131	0,00401	0,00467	0,00015			
MODAL	Mode	12	0,044019	8,2/3E-08	0,01485	0,06108			
MODAL	Mode	13	0,043592	0,00528	0,00855	0,00582			
MODAL	Mode	14	0,043408	0,00184	0,0282	0,00482			
MODAL	Mode	15	0,041594	0,0086	0,00164	0,00203			
MODAL	Mode	16	0,039811	0,00497	0,00019	0,00052			
MODAL	Mode	17	0,039589	0,00252	0,00518	0,00051			
MODAL	Mode	18	0,037324	0,0012	0,000003665	0,00041			
MODAL	Mode	19	0,036957	0,00179	0,00004829	0,000008054			
MODAL	Mode	20	0,036342	0,00085	0,00106	0,00018			
MODAL	Mode	21	0,035922	0,00975	0,00255	0,00029			
MODAL	Mode	22	0,035684	0,00206	0,00523	0,00053			
MODAL	Mode	23	0,035527	0,00009687	0,0004	0,000006525			
MODAL	Mode	24	0,035303	0,00017	0,00007202	0,00002333			
MODAL	Mode	25	0,034897	0,00011	0,00035	0,00032			
MODAL	Mode	26	0,034399	0,00199	1,712E-07	2,883E-07			
MODAL	Mode	27	0,034367	0,0032	0,00002946	0,000006592			
MODAL	Mode	28	0,03394	1,461E-07	0,00118	0,00012			
MODAL	Mode	29	0,033328	0,00206	0,0024	0,00011			
MODAL	Mode	30	0,033306	0,00077	0,00204	0,00041			

TABLE E16 fortsetter: Modal Participating Mass Ratios										
OutputCase	StepType	StepNum	Period	SumUX	SumUY	SumUZ				
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless				
MODAL	Mode	1	0,142548	0,00452	0,64889	0,000006547				
MODAL	Mode	2	0,071406	0,05341	0,65694	0,00002304				
MODAL	Mode	3	0,064731	0,61535	0,66478	0,00823				
MODAL	Mode	4	0,059258	0,61535	0,83341	0,00863				
MODAL	Mode	5	0,055816	0,63561	0,83371	0,03681				
MODAL	Mode	6	0,053147	0,68135	0,83467	0,12319				
MODAL	Mode	7	0,051566	0,68257	0,83503	0,1232				
MODAL	Mode	8	0,046785	0,68258	0,83515	0,12472				
MODAL	Mode	9	0,046091	0,68638	0,83616	0,18229				
MODAL	Mode	10	0,045271	0,68924	0,83635	0,18268				
MODAL	Mode	11	0,045131	0,69325	0,84102	0,18283				
MODAL	Mode	12	0,044019	0,69325	0,85587	0,24391				
MODAL	Mode	13	0,043592	0,69853	0,86442	0,24973				
MODAL	Mode	14	0,043408	0,70037	0,89262	0,25455				
MODAL	Mode	15	0,041594	0,70897	0,89426	0,25657				
MODAL	Mode	16	0,039811	0,71393	0,89445	0,2571				
MODAL	Mode	17	0,039589	0,71646	0,89963	0,25761				
MODAL	Mode	18	0,037324	0,71766	0,89964	0,25802				
MODAL	Mode	19	0,036957	0,71945	0,89969	0,25803				
MODAL	Mode	20	0,036342	0,7203	0,90074	0,2582				
MODAL	Mode	21	0,035922	0,73005	0,90329	0,25849				
MODAL	Mode	22	0,035684	0,73211	0,90853	0,25903				
MODAL	Mode	23	0,035527	0,7322	0,90893	0,25903				
MODAL	Mode	24	0,035303	0,73238	0,909	0,25906				
MODAL	Mode	25	0,034897	0,73249	0,90935	0,25937				
MODAL	Mode	26	0,034399	0,73448	0,90935	0,25937				
MODAL	Mode	27	0,034367	0,73769	0,90938	0,25938				
MODAL	Mode	28	0,03394	0,73769	0,91056	0,2595				
MODAL	Mode	29	0,033328	0,73975	0,91297	0,25961				
MODAL	Mode	30	0,033306	0,74052	0,91501	0,26002				

TABLE E16 fortsetter: Modal Participating Mass Ratios										
OutputCase	StepType	StepNum	Period	RX	RY	RZ				
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless				
MODAL	Mode	1	0,142548	<mark>0,5411</mark>	0,00245	<mark>0,49478</mark>				
MODAL	Mode	2	0,071406	0,00954	0,0335	0,07245				
MODAL	Mode	3	0,064731	0,00006868	<mark>0,48035</mark>	0,24497				
MODAL	Mode	4	0,059258	0,02596	0,00027	0,01191				
MODAL	Mode	5	0,055816	0,00872	0,00707	0,0092				
MODAL	Mode	6	0,053147	0,02732	0,02813	0,01997				
MODAL	Mode	7	0,051566	0,00047	0,00035	0,0011				
MODAL	Mode	8	0,046785	0,00056	0,00092	0,00009712				
MODAL	Mode	9	0,046091	0,03155	0,02577	0,00218				
MODAL	Mode	10	0,045271	0,001	0,00065	0,0032				
MODAL	Mode	11	0,045131	0,00032	0,00038	0,0036				
MODAL	Mode	12	0,044019	0,02766	0,0298	0,0061				
MODAL	Mode	13	0,043592	0,0003	0,00593	0,00001004				
MODAL	Mode	14	0,043408	0,00044	0,00367	0,0185				
MODAL	Mode	15	0,041594	0,00409	0,00009302	0,00605				
MODAL	Mode	16	0,039811	0,00207	0,00002625	0,00049				
MODAL	Mode	17	0,039589	0,00043	0,00072	0,00064				
MODAL	Mode	18	0,037324	0,00017	0,00001552	0,00025				
MODAL	Mode	19	0,036957	0,00001982	0,00056	0,00119				
MODAL	Mode	20	0,036342	0,00005369	0,00037	0,00063				
MODAL	Mode	21	0,035922	0,0001	0,00033	0,00472				
MODAL	Mode	22	0,035684	0,00065	0,000005937	0,00064				
MODAL	Mode	23	0,035527	0,00012	0,00003071	0,00049				
MODAL	Mode	24	0,035303	0,00015	0,00084	0,00015				
MODAL	Mode	25	0,034897	0,00004442	0,00018	0,00002009				
MODAL	Mode	26	0,034399	0,000007274	0,00011	0,0001				
MODAL	Mode	27	0,034367	0,00016	0,00013	0,00236				
MODAL	Mode	28	0,03394	0,00006648	0,00008408	0,00017				
MODAL	Mode	29	0,033328	0,000009584	0,00006673	0,00226				
MODAL	Mode	30	0,033306	0,00001605	0,00041	0,00026				

TABLE E16 fortsetter: Modal Participating Mass Ratios										
OutputCase	StepType	StepNum	Period	SumRX	SumRY	SumRZ				
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless				
MODAL	Mode	1	0,142548	0,5411	0,00245	0,49478				
MODAL	Mode	2	0,071406	0,55065	0,03596	0,56723				
MODAL	Mode	3	0,064731	0,55072	0,5163	0,8122				
MODAL	Mode	4	0,059258	0,57667	0,51657	0,82411				
MODAL	Mode	5	0,055816	0,5854	0,52364	0,83331				
MODAL	Mode	6	0,053147	0,61272	0,55177	0,85328				
MODAL	Mode	7	0,051566	0,61318	0,55212	0,85438				
MODAL	Mode	8	0,046785	0,61374	0,55305	0,85448				
MODAL	Mode	9	0,046091	0,6453	0,57882	0,85665				
MODAL	Mode	10	0,045271	0,6463	0,57947	0,85985				
MODAL	Mode	11	0,045131	0,64662	0,57985	0,86345				
MODAL	Mode	12	0,044019	0,67428	0,60965	0,86955				
MODAL	Mode	13	0,043592	0,67457	0,61558	0,86956				
MODAL	Mode	14	0,043408	0,67501	0,61925	0,88806				
MODAL	Mode	15	0,041594	0,6791	0,61934	0,8941				
MODAL	Mode	16	0,039811	0,68117	0,61937	0,89459				
MODAL	Mode	17	0,039589	0,68161	0,62008	0,89523				
MODAL	Mode	18	0,037324	0,68178	0,6201	0,89548				
MODAL	Mode	19	0,036957	0,6818	0,62066	0,89667				
MODAL	Mode	20	0,036342	0,68185	0,62104	0,8973				
MODAL	Mode	21	0,035922	0,68196	0,62136	0,90202				
MODAL	Mode	22	0,035684	0,68261	0,62137	0,90266				
MODAL	Mode	23	0,035527	0,68273	0,6214	0,90315				
MODAL	Mode	24	0,035303	0,68287	0,62224	0,9033				
MODAL	Mode	25	0,034897	0,68292	0,62242	0,90332				
MODAL	Mode	26	0,034399	0,68292	0,62253	0,90342				
MODAL	Mode	27	0,034367	0,68308	0,62266	0,90578				
MODAL	Mode	28	0,03394	0,68315	0,62275	0,90595				
MODAL	Mode	29	0,033328	0,68316	0,62281	0,90821				
MODAL	Mode	30	0,033306	0,68317	0,62323	0,90847				

Referanse bygget med q Lik 3,0

- Legg merke til reduksjonen q faktoren gir på jordskjelvlastene
- Momentene er i kNmm skulle vært kNm.

TABLE E17: Base Reactions									
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ				
Text	Text	Text	KN	KN	KN				
			-						
G E	LinStatic		0,000001193	0,000002251	8791,55				
QN	LinStatic		-2,249E-07	6,614E-07	404,73				
QS	LinStatic		5,762E-15	2,241E-13	91,74				
JΧ	LinRespSpec	Max	404,865	39,444	34,859				
JY	LinRespSpec	Max	39,653	506,658	5,663				
JZ	LinRespSpec	Max	14,848	2,436	58,917				
J X30%, Y	Combination	Max	161,112	518,491	16,121				
J X30%, Y	Combination	Min	-161,112	-518,491	-16,121				
J X, Y30%	Combination	Max	416,761	191,441	36,558				
J X, Y30%	Combination	Min	-416,761	-191,441	-36,558				
J X30%, Y30%, Z	Combination	Max	148,203	166,267	71,074				
J X30%, Y30%, Z	Combination	Min	-148,203	-166,267	-71,074				
J X, Y30%, Z30%	Combination	Max	421,215	192,172	54,233				
J X, Y30%, Z30%	Combination	Min	-421,215	-192,172	-54,233				
J X30%, Y, Z30%	Combination	Max	165,567	519,222	33,796				
J X30%, Y, Z30%	Combination	Min	-165,567	-519,222	-33,796				

TABLE E17 fortsetter: Base Reactions									
OutputCase	CaseType	StepType	GlobalMX	GlobalMY	GlobalMZ				
Text	Text	Text	KN-mm	KN-mm	KN-mm				
JΧ	LinRespSpec	Max	386535,91	4420960,62	2793151,99				
JΥ	LinRespSpec	Max	4616847,75	460540,51	5673860,86				
JZ	LinRespSpec	Max	396238,19	696942,27	131894,94				
J X30%, Y	Combination	Max	4732808,52	1786828,69	6511806,46				
J X30%, Y	Combination	Min	-4732808,52	-1786828,69	-6511806,5				
J X, Y30%	Combination	Max	1771590,24	4559122,77	4495310,25				
J X, Y30%	Combination	Min	-1771590,24	-4559122,77	-4495310,3				
J X30%, Y30%, Z	Combination	Max	1897253,29	2161392,6	2671998,79				
J X30%, Y30%, Z	Combination	Min	-1897253,29	-2161392,6	-2671998,8				
J X, Y30%, Z30%	Combination	Max	1890461,7	4768205,45	4534878,73				
J X, Y30%, Z30%	Combination	Min	-1890461,7	-4768205,45	-4534878,7				
J X30%, Y, Z30%	Combination	Max	4851679,98	1995911,37	6551374,94				
J X30%, Y, Z30%	Combination	Min	-4851679,98	-1995911,37	-6551374,9				

STEDSTØPT BYGG MED q LIK 1,5

TABLE E18: Modal Load Participation Ratios									
OutputCase	ItemType	Dynamic							
Text	Text	Text	Percent	Percent					
MODAL	Acceleration	UX	<mark>95,6023</mark>	71,55					
MODAL	Acceleration	UY	99,7212	90,5816					
MODAL	Acceleration	UZ	69,8432	26,4826					

TABLE E19: Base Reactions									
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ				
Text	Text	Text	KN	KN	KN				
			-						
G E	LinStatic		0,000001263	0,000002731	8907,252				
QN	LinStatic		-2,529E-07	8,535E-07	418,586				
QS	LinStatic		8,688E-14	4,32E-13	91,74				
JΧ	LinRespSpec	Max	572,492	55,119	47,903				
JΥ	LinRespSpec	Max	55,742	894,856	6,709				
JZ	LinRespSpec	Max	28,825	3,985	116,655				
J X30%, Y	Combination	<mark>Max</mark>	227,49	<mark>911,392</mark>	<mark>21,08</mark>				
<mark>J X30%, Y</mark>	Combination	<mark>Min</mark>	<mark>-227,49</mark>	<mark>-911,392</mark>	<mark>-21,08</mark>				
J X, Y30%	Combination	Max	589,214	323,575	49,915				
J X, Y30%	Combination	Min	-589,214	-323,575	-49,915				
J X30%, Y, Z30%	Combination	Max	236,137	912,587	56,077				
J X30%, Y, Z30%	Combination	Min	-236,137	-912,587	-56,077				
J X, Y30%, Z30%	Combination	Max	597,862	324,771	84,912				
J X, Y30%, Z30%	Combination	Min	-597,862	-324,771	-84,912				
J X30%, Y30%, Z	Combination	Max	217,295	288,977	133,039				
J X30%, Y30%, Z	Combination	Min	-217,295	-288,977	-133,039				

TABLE E19 fortsetter: Base Reactions									
OutputCase	CaseType	StepType	GlobalMX	GlobalMY	GlobalMZ				
Text	Text	Text	KN-m	KN-m	KN-m				
JΧ	LinRespSpec	Max	618,0844	6480,8733	3609,6866				
JΥ	LinRespSpec	Max	8511,1372	614,0295	10103,2827				
JZ	LinRespSpec	Max	781,6288	1377,4876	225,2676				
J X30%, Y	Combination	Max	8696,5625	2558,2915	11186,1887				
J X30%, Y	Combination	Min	-8696,5625	-2558,2915	-11186,189				
J X, Y30%	Combination	Max	3171,4256	6665,0821	6640,6714				
J X, Y30%	Combination	Min	-3171,4256	-6665,0821	-6640,6714				
J X30%, Y, Z30%	Combination	Max	8931,0512	2971,5378	11253,769				
J X30%, Y, Z30%	Combination	Min	-8931,0512	-2971,5378	-11253,769				
J X, Y30%, Z30%	Combination	Max	3405,9142	7078,3284	6708,2517				
J X, Y30%, Z30%	Combination	Min	-3405,9142	-7078,3284	-6708,2517				
J X30%, Y30%, Z	Combination	Max	3520,3953	3505,9584	4339,1584				
J X30%, Y30%, Z	Combination	Min	-3520,3953	-3505,9584	-4339,1584				

TABLE E20: I	Modal Peri	ods And Fre	equencies			
OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2
MODAL	Mode	1	0,128946	<mark>7,7552</mark>	48,727	2374,3
MODAL	Mode	2	0,062251	<mark>16,064</mark>	100,93	10188
MODAL	Mode	3	0,059953	<mark>16,68</mark>	104,8	10983
MODAL	Mode	4	<mark>0,05425</mark>	<mark>18,433</mark>	115,82	13414
MODAL	Mode	5	0,052825	18,93	118,94	14148
MODAL	Mode	6	0,051194	19,534	122,73	15064
MODAL	Mode	7	0,050932	19,634	123,36	15219
MODAL	Mode	8	0,045669	21,897	137,58	18929
MODAL	Mode	9	0,045298	22,076	138,71	19240
MODAL	Mode	10	0,044021	22,716	142,73	20372
MODAL	Mode	11	0,043291	23,1	145,14	21066
MODAL	Mode	12	0,042532	23,512	147,73	21824
MODAL	Mode	13	0,040933	24,43	153,5	23561
MODAL	Mode	14	0,039938	25,039	157,33	24751
MODAL	Mode	15	0,038918	25,695	161,45	26065
MODAL	Mode	16	0,037164	26,908	169,07	28583
MODAL	Mode	17	0,036225	27,605	173,45	30084
MODAL	Mode	18	0,035602	28,089	176,49	31147
MODAL	Mode	19	0,034843	28,7	180,33	32518
MODAL	Mode	20	0,034044	29,374	184,56	34063
MODAL	Mode	21	0,033896	29,502	185,37	34361
MODAL	Mode	22	0,032333	30,929	194,33	37764
MODAL	Mode	23	0,032161	31,094	195,37	38168
MODAL	Mode	24	0,031989	31,261	196,42	38580
MODAL	Mode	25	0,031611	31,634	198,76	39507
MODAL	Mode	26	0,030879	32,384	203,47	41402
MODAL	Mode	27	0,030685	32,589	204,76	41928
MODAL	Mode	28	0,030197	33,116	208,07	43294
MODAL	Mode	29	0,029659	33,716	211,85	44879
MODAL	Mode	30	0,02963	33,749	212,05	44966

STEDSTØPT BYGG MED q LIK	3
--------------------------	---

TABLE E21: Base I	Reactions				
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ
Text	Text	Text	KN	KN	KN
G E	LinStatic		-0,000001263	0,000002731	8907,252
QN	LinStatic		-2,529E-07	8,535E-07	418,586
QS	LinStatic		8,688E-14	4,32E-13	91,74
JΧ	LinRespSpec	Max	397,667	32,004	34,057
JY	LinRespSpec	Max	32,372	502,287	4,878
JZ	LinRespSpec	Max	14,523	2,078	60,485
J X30%, Y	Combination	Max	151,672	<mark>511,888</mark>	15,096
J X30%, Y	Combination	Min	-151,672	-511,888	-15,096
J X, Y30%	Combination	Max	407,379	182,69	35,521
J X, Y30%	Combination	Min	-407,379	-182,69	-35,521
J X30%, Y, Z30%	Combination	Max	156,029	512,511	33,241
J X30%, Y, Z30%	Combination	Min	-156,029	-512,511	-33,241
J X, Y30%, Z30%	Combination	Max	411,735	183,313	53,666
J X, Y30%, Z30%	Combination	Min	-411,735	-183,313	-53,666
J X30%, Y30%, Z	Combination	Max	143,534	162,365	72,166
J X30%, Y30%, Z	Combination	Min	-143,534	-162,365	-72,166

TABLE E21 fortsetter: Base Reactions						
OutputCase	CaseType	StepType	GlobalMX	GlobalMY	GlobalMZ	
Text	Text	Text	KN-m	KN-m	KN-m	
JΧ	LinRespSpec	Max	379,3406	4447,4691	2549,6566	
JY	LinRespSpec	Max	4599,9095	363,745	5567,8893	
JZ	LinRespSpec	Max	407,3732	710,0907	113,8735	
J X30%, Y	Combination	Max	4713,7117	1697,9857	6332,7862	
J X30%, Y	Combination	Min	-4713,7117	-1697,9857	-6332,7862	
J X, Y30%	Combination	Max	1759,3135	4556,5926	4220,0233	
J X, Y30%	Combination	Min	-1759,3135	-4556,5926	-4220,0233	
J X30%, Y, Z30%	Combination	Max	4835,9237	1911,0129	6366,9483	
J X30%, Y, Z30%	Combination	Min	-4835,9237	-1911,0129	-6366,9483	
J X, Y30%, Z30%	Combination	Max	1881,5254	4769,6198	4254,1854	
J X, Y30%, Z30%	Combination	Min	-1881,5254	-4769,6198	-4254,1854	
J X30%, Y30%, Z	Combination	Max	1901,1482	2153,4549	2549,1372	
J X30%, Y30%, Z	Combination	Min	-1901,1482	-2153,4549	-2549,1372	

Appendix F-Lastkombinasjoner

SKJEVSTILLING

Lastfaktorer					
Variable laster	1,05				
Egenlast	1,35				

Dimensjonerende egenvekt på og fra etasjeskillere (kN)	4573
Dimensjonerende egenvekt fra veggene (kN)	7049
Dimmensjonerende nyttelaster og snølaster (kN)	1648
Total dimensjonerende vekt (kN)	13269

Lastene har blitt beregnet på samme måte som forklart i Appendix B men med andre lastfaktorer. Egenlasten ganget med 1,35 er relativt konservativt, siden vindlasten sener blir ganget med 1,5. Bergninger av skjevstillingslasten er gjort etter EC2.

Total vekt av bygget med snølaster og nyttelaster	13269	kN
θο	0,005	
αn	0,67	
αm	0,73	
1	16,45	
m	16	
θi = θo*αn*αm	0,00242956	
Horisontal kraft er	<mark>32</mark>	<mark>kN</mark>

VINDLAST

Data fr	Data fra lastberegningsprogram				
Versjo	n 6.0.0				
Laget a	av: Ove Sletten				
Qkast	0,669	kN/m²			

E

90 grader			0 grader		
Cp10			Cp10		
D	0,52	kN/m²	D	0,54	kN/m²
E	-0,3	kN/m²	E	-0,36	kN/m²
Overtrykk	0,13	kN/m²	Overtrykk	0,13	kN/m²
Undertrykk	-0,2	kN/m²	Undertrykk	-0,2	kN/m²
h	16,45	m	h	16,45	m
d	18,4	m	d	12,7	m
h/d	0,9		h/d	1,3	
Korr. fakt.	0,85		Korr. fakt.	1	
Cd	1		Cd	1	
Cs	1		Cs	1	
Areal	190	m²	Areal	274	m²

Siden eksisterende bygninger ligger helt inntil i denne retningen er en side eksponert for vind, og sagt at den blir

utsatt for trykk

Laster	273	kN	Laster	485	kN
			Laster uten E	<mark>386</mark>	<mark>kN</mark>

JORDSKJELVLAST

Lasten er hentet fra Referanse bygget Appendix E og lastkombinasjonen, J X30%, Y, og med, q lik 1,5.

<mark>963 kN</mark>

KOMBINASJON

For at jordskjelv ikke trengs å tas hensyn til må jordskjelv $\leq 1,5$ vindlast + skjevstilings last $(\gamma_{cbruddgrense} / \gamma_{cDCL})$

 $963kN > (1,5 \cdot 386kN + 32kN) \cdot 1,5 / 1,2 = 764kN$

Jordskjelv er dimensjonerende last

Appendix F – Lastkombinasjoner 142

APPENDIX G – OPPLYSNINGER OM HULLDEKKE

1.0 Materialdata

Korreksjonsfaktor for Emodul pga tilslag	1	Data vedr. spennarmert elemen	t	
Materialkoeffisient betong	1,5	Strekkfasthet N/mm2 (fpk)		1860
Materialkoeffisient stål	1,15	0.1 % strekkgrense N/mm2 (fp0.1	k)	1700
Betongkvalitet	B45(C45/55)	Forlengelse ved største belastning	(euk)	0.037
Densitet (kg/m3)	2400	Spennarmering, Emodul	5 (0 000)	200000
Sement i fasthetsklasse (R/N/S)	N	Sylindertrykkfasthet ved avspenn	ing (fcki)	36
Armering flytegrense	500	Sylindertrykkfasthet ved transpor	t(fcki)	40
Bøyler flytegrense	500	Betongens alder ved avspenning	(døgn)	1
Relativ fuktighet i lagringsperioden %	70	2	(upBil)	100
Relativ fuktighet i ferdig bygg %	40	Eksponeringsklasser	uk-XC3	ok-XC3
Betongens alder ved pålastning (døgn)	28	Korrosionsomfintlig armering	unitios	URINCO
Effektiv høyde, h0 (EN1992-1-1 3.1.4(5))	360	Dimensjonerende levetid		50
Korttids Emodul, Ecm	36300	Min. overdekning (mm)	nk	ok
Dimensjonerende trykkfasthet, fcd	25.5	*)Min, kray for spennarmering	35	35
Aksial strekkfasthet, fctm	4	Toleranse	2	2
Dimensjonerende strekkfasthet, fetd	1.51	Nominell overdekning	37	37
processor and the second s		*)Kray til overdekning for bøyler	er 10 mm n	vindre
Kryptall, FI 0_28	1.15	Svinntøyning, 0, 28	er ro min n	-0.00000
Kryptall, FI 28_9000	1,65	Svinntøyning, 0_9000		-0,0004

NA.6.2.2(1) Følgende krav til tilslag i betongen er oppfylt: 1. Største tilslag etter NS-EN 12620: D>=16 mm 2. Det grove tilslaget >=50% av total tilslagsmengde 3. Grovt tilslag skal ikke være av kalkstein eller stein med tilsvarende lav fasthet

HD265 L= 8125			Side 2
Prosjekt	Ordre	Sign	Date 10-02-2011
Korskirkealmenning 2	55786	AL	

1.1 Tverrsnitt

	Antall h	ull 5		
	b	1200	1	mm
	h	265		mm
	b1	186		mm
	h1	186		mm
	h2	0		mm
	u	40		mm
	Zt Areal Ic	133 1,82E+05 1,57E+09	mm mm2 mm4	
0	Sc	7,86E+06	mm3	
	Wo	1,19E+07	mm3	
	Wu	1,18E+07	mm3	
	bw	270	mm	
	Symboler	Symboler: Se NS3473 12.3.2		

1.2 Armeringsdata

Kant	Lag nr	Kantavstand	Slakkarmering	Spennarmering	
uk	1	45		4d 11.3	

1.3 Bjelkeprofil

Utkragerlengde (mm)

Utkragerlengde (mm)			Minste effektive oppleggsbredde: 80 mm
	Venstre ende	Høyre ende	
Utløfting	800	800	
Lagring	400	400	
Transport	400	400	
Ferdig montert	50	50	

1.4 Lastfaktor og pålitelighetsklasse

	Lastfaktor			BENYTTES:	
	Nedbøyning	Risskontroll	Bruddgr. B1	Bruddgr. B2	
Permanent last	1,00	1,00	1,35	1,20	
Variabel last	1,00	0,50	1,05	1,50	
Pålitelighetsklasse		2	and the state of the second		
PSI -faktor		Kategori	A : Boliger		
Krav til maks. nedbøyning		Konstruksjoner der nedbøyning fører til skader			
Formsug ved avforming		0,00 kN/r	0,00 kN/m		