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Abstract

A dead leg is an inactive part of a process pipe, and it has been the cause of serious inci-
dents due to liquid reaching its threshold value (TV) for freezing. The existing industrial
approach for the design of dead legs is based on rules of thumb and reference standards.
Accordingly, a detailed understanding of the temperature development is not available.
An objective of this thesis is therefore to develop a Computational Fluid Dynamic (CFD)
model in OpenFOAM that can analyse such cases in a more comprehensive matter.

This study is based on investigations of the existing theory and industrial approach. This
is further used to develop a realistic CFD simulation. The results are obtained from two
dead leg geometries. One geometry presents the dead leg as a Fin, while the other geom-
etry presents the dead leg connected to a main pipe, creating a T-junction. The dead leg
dimensions are based on rules of thumb, namely a diameter of 2" and a length of 0.5m.
This gives a length to diameter ratio (L/D) of approximately 9.

The results are obtained from three cases. Where the Fin geometry is related to Case 01
and the T-junction is related to Case 02 and Case 03. Case 01 and Case 03, are purely
related to heat transfer, both steady-state and transient. The results of these two cases
differs with approximately 10%, indicating that the fin analysis may be sufficient when the
ALARP principle is taken into account. In addition, an analysis is performed to investigate
the effect of wind, which is observed to have a significant effect on the time for water to
reach TV. Case 02 introduces a flow field and turbulence in the T-junction. It is observed
that for a range of velocities, u= 1−2.86m/s, the circulation in the dead leg reach L/Di =
4−6 for the respective velocities. This results in a stagnant fluid in the end of the dead leg
as the circulation cease to exist. This effect is reflected in the temperature development,
the result implies almost no heat loss until L/Di = 4.5−6.8 where the temperature falls
rapidly. Consequently, the effect of circulation implies that a design criterion may be
established from further studies. Verification of the CFD-models has been performed by
the use of grid independence test, existing theory and previous experimental results by
Habib et al.
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1. Introduction

This thesis is a collaboration with Aker Solutions which is one of the leading engineering
companies in the oil and gas industry. The topic concerns the hazards of freezing of liquid
in pipe branches, hereby called dead legs. The term dead leg describes an inactive portion
of a pipe [Habib et al., 2005c], which is ended by a closed end. The dead leg may be
installed as part of by-pass lines, future tie-ins, a demolished part, instrument connection,
sampling points and so on. As of today the installation of dead legs is necessary to pro-
vide sufficient flexibility of the process. The approach to decide upon a design is done
by simple rules of thumb which are developed from previous experience and reference
standards.

From an extensive literature search it is found that there are some research reports pub-
lished which investigating dead legs and closed ducts. Among the published research the
focus is mainly on the effect of dead leg geometry, the flow field and circulation, the pres-
sure drop and the subsea dead leg heat transfer. There is not many studies regarding the
issue of heat transfer in topside dead legs.

Hong [1977] investigated the natural circulation in horizontal pipes. Hong addressed the
problem of natural circulation which occurred when a horizontal pipe had one closed
end and one end connected to another pipe where hot fluid was passing. Hong assumed
that due to the small tube wall thickness the temperature variation in the radial direction
across the wall could be ignored. He also found that there were two bulk temperatures
in the tube, one for the hot and one for the cold fluid. From these observations, Hong
discovered that the energy equation became the same as the differential equation for the
Fin-analysis.

Said, Badr, Hussaini and Habib studied the effect of geometry in vertical dead legs in re-
spect to the flow field and the oil/water separation [Habib et al., 2005c]. They performed
a CFD analysis on a vertical dead leg and observed the velocity field for an oil and water
mixture of 10% water and 90% oil. Studying different length/diameter (L/D) ratios at a
constant velocity of 1m/s. They found that the upper section of the dead leg was charac-
terized by a circulating flow zone up to approximately 3D from the inlet of the dead leg.
Their study also implied that the middle zone in the dead leg was characterized by several
counter-rotating vortices, while the lower part of the dead leg was occupied by stagnant
flow. In addition Habib et al. [2005b] conducted a similar study on the characteristic flow
field and water concentration in a horizontal dead leg. In this study they performed flow
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CHAPTER 1. INTRODUCTION

visualization experiments to verify their calculation procedure. They investigated the flow
field for different dead leg geometries and different inlet flow velocities. From the results
they concluded that the flow in the horizontal dead legs experienced no circulation beyond
3−5D. The two latter studies was then published in a third study [Habib et al., 2005a] to
present the development of a dead leg criterion. The general criterion stated that for the
vertical dead leg the circulation ceased to exist for L > 3D while for the horizontal dead
leg, the circulation ceased to exist for L > 3− 5D. Also, they discovered that the water
concentration increased in the stagnant area of the dead leg, which indicated that a larger
L/D increased the water concentration.

Edwards and Catton [1969] studied the effect of closed cylinders heated from below. They
investigated vertical pipes which was closed by a hot plate on the bottom and a cold plate
on the top. The natural convection was observed as the heated fluid drifted upwards due to
the change in density and the cooled fluid fell downwards due to the effect of gravitation.
Their study concluded that to discover the true values of Rayleigh number (Ra) for large
values of conductivity, k. Extremely careful investigations had to be performed. Their
study only investigated the convective part, neglecting the effect of heat conductivity, thus,
they implied that this had to be taken into consideration when analysing their results.

Mme [2010] studied how subsea dead legs were affected by cold spots due to lack of
possibilities to insulate. The occurrence of convection between the hot and cold fluid was
studied, and both experimental and computational studies were performed. The results
concluded that the heat transfer from a localized cold spot was more efficient when sub-
jected to a horizontal pipe, and as the pipe was more and more inclined the flow became
more unstable and the heat transfer got reduced. He tested both the Reynolds Average
Navier–Stokes (RANS) and Large Eddy Simulation (LES) models to compare the results
with the experimental measurements. His conclusion stated that the LES-model provided
a better agreement than the RANS-model.

Andersen [2007] investigated the formation of hydrates in subsea dead legs, by perform-
ing a Computational Fluid Dynamics (CFD) analysis in Fluent, ANSYS. The paper in-
vestigated the formation of hydrates in a hydrocarbon production system, and the results
are presented for temperature and velocity. Andersens results implied that the hydrate
formation and heat loss was strongly dependent on the heat transfer coefficient, and that
a temperature difference induced small fluid velocities in the dead leg.

An investigation report by the Investigation board US [2007] presents the results of an
incident which happened due to a dead leg. The investigation report [Investigation board
US, 2007] describes the dangers of dead legs. Poor maintenance and lack of freezing
protection resulted in a fire which came out of control. The reason for the incident was that
the process got redirected to another piping route, creating a dead leg. As a consequence
the freezing protection in this area was no longer under the same investigation routine.
Therefore, when the winter approached and the liquid started to freeze it resulted in a
fracture. The fracture was maintained during the sufficiently cold winter days. However,
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as the summer came the ice melted and the fraction in the pipe resulted in leakage which
under high pressure resulted in an explosion. Kaszniak [2010] investigated the Valero
incident report [Investigation board US, 2007] and several other LPG incidents. Kaszniak
discuses the results of the report which has been established for the incidents. Further,
he propose several recommendations for handling Process Hazards. One is to avoid dead
legs when ever possible.

1.1. Problem de�nition

The problem under consideration is the temperature profile in a dead leg exposed to a
harsh external environment. Today the approach is based upon reference documents and
previous experience. There is no detailed knowledge on how the temperature distribution
is behaving in the dead leg. Therefore, it is desirable to obtain a computational model
based on empirical data.
This thesis addresses dead legs in the produced water system on the Draugen field in the
North Sea. In Figure 1.1 it can be observed that there are many types of dead legs. Those
marked with red are constant dead legs, while those marked with blue may become dead
legs. The internal flow cycle of the produced water system goes through hydro cyclones to

Figure 1.1: Process Flow Diagram of a general produced water system.

degassing drum before the produced water can be used in the water injection system. The
produced water system is located on low points which are where dead legs are the most
critical. Also, the produced water system is regularly shut down to perform maintenance
and water wash of the hydro cyclones and drums. The shut down period depends on the
criteria of the operational design. However, from discussion with the operation team at
Shell AS [2012], it is implied that the shut down generally is performed once a month for
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approximately 24 hours. When the system is shut down, the water temperature will start
to decrease.

Under normal operating conditions the main pipe acts as a constant heat source at the
inlet of the dead leg and as long as the fluid is continuously flowing over the dead leg inlet
there will be a circulation as Habib et al. [2005c] states in his report. Consequently, there
will be some exchange of fluid which means that the hazard of freezing will depend on
the flow field.

To be able to approach the problem some simplifications and assumptions are made to
create a simple but realistic picture of the heat transfer. The industry normally assumes
that the dead leg can be regarded as a fin, and then conduct a fin analysis to find the
temperature profile. However, as the literature search has brought to light the report by
Habib et al. [2005a], which investigate the flow effect in the dead leg, this challenges the
existing approach.

Furthermore, the development of this model may ease the investigations of different op-
erating cases. The effect of wall thickness, length scales and different kinds of fluids can
be investigated by doing small changes in the model. Therefore, develop a simple model
should be a goal in itself. In fact, the idea behind this thesis is to develop a model that
may be used by engineers subjected to these kinds of issues in daily life.

Dead legs may occur in many different shapes and sizes as shown in Figure 1.1. The
rule of thumb says that a dead leg of L < 0.5m and De = 2” does not need insulation
[Osenbroch, 2012]. Hence, this will be used as the base case for this thesis. The T-
junction is illustrated in Figure 1.2. It shows how it is expected that the velocity and
temperature will evolve in the main pipe. Also the circulation of fluid in the dead leg is
presented.

Figure 1.2: Sketch of base case.
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1.2. Background and Motivation

The top-side process system is structured from pipes which stretches over the entire plat-
form and is exposed to harsh weather conditions. If any formation of ice-plugs in a pro-
duced water line or wax in an oil line should occur, it may lead to production stop, damage
of equipment, decrease of the system integrity or personnel injuries [Investigation board
US, 2007]. Dead legs are important to enable the possibility to develop the system in the
future, to have sampling and measurement points as well as drains.

The issue of formation of ice-plugs and wax occur as a consequence of the temperature
going below the liquids threshold value (TV) for freezing and wax formation. For dead
legs this is especially critical as the fluid in some parts is stagnant. However, under normal
working conditions there will be a constant flow in the main pipe and the dead leg inlet
will experience a circulation [Habib et al., 2005c] that may induce some temperature
exchange in the fluid.

Today’s approach, when designing dead legs and pipes, is to use standard reference doc-
uments. For the offshore industry in Norway, standards such as NORSOK, ASME and
ISO are used. For the given problem, relevant procedures are NORSOK P-001 [2006],
NORSOK L-002 [2009] and ISO 12241 [2008].

The topic of dead legs often creates discussions between the operation personnel and
the operating company[Shell AS, 2012]. The operation personnel are concerned when
the temperature is around design temperature and the wind velocity is high. A normal
procedure is then to either install a wind shield to protect the pipes and equipment that are
exposed, or perform a shut down if there is a danger of the fluid reaching TV. A CFD study
of the temperature development may result in an increased safety for the personnel and a
reduction of cost from shut down. Another issue is the subject of insulation. Insulation
is a costly business for the operating companies, and it also decreases the lifetime of the
pipe due to corrosion issues. A CFD study may provide a recommendation for how to
increase the integrity of the system under different scenarios which may occur, and by
incorporate effects such as wind and internal flow, the existing industrial approach can be
questioned or justified by comparing the results obtained.

1.3. Objectives

This thesis aims to develop a numerical model which will show how the fluid temperature
evolves in the dead leg. The aim is to use the results obtained from the simulation to better
understand how to manage the dead leg and the danger of reaching the threshold value.
The objectives are,
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• Examine existing scientific literature regarding the subject.

• Establish a CFD model in OpenFOAM.

• Investigate today’s industrial approach, simulate the same approach in OpenFOAM
and compare the results with an existing empirical model developed in Aker Solu-
tions.

• Create a more realistic and complex simulation introducing both flow, turbulence
and heat transfer to see the how the temperature evolve when the process is working
under normal conditions.

• Evaluate the temperature loss that occurs when the system is shut down after run-
ning under normal conditions. Give a recommendation on how to operate the sys-
tem to avoid the temperature going below threshold value (TV).

• Compare the realistic approach with the procedure from reference documents.

• Give a recommendation on the operating procedure to avoid the critical scenario of
liquid going below its threshold value.

• Include a simple procedure to run the developed CFD-model.

1.4. Thesis Layout

The thesis is presented in nine chapters. The first chapter introduces the problem and
existing literature, motivation and objectives. Chapter two presents the general heat trans-
fer theory and the most important properties to establish the needed coefficients. Chap-
ter three gives an overview of turbulence modelling. Chapter four is a presentation of
Computational Fluid Dynamics (CFD) and OpenFOAM. It presents the basics of how
the structure of OpenFOAM is. Chapter five presents the industrial approach retrieved
from reference documents. Chapter six presents the analytical solution of the fin analy-
sis. Chapter seven includes the simulation set up with details of geometry development,
boundary conditions, numerical accuracy and case description. Finally, chapter eight
presents the result and discussion and chapter nine presents the conclusion and further
work.

6



2. Heat transfer theory

A heat transfer study may in general be divided into two groups, steady state models and
transient models . A steady state model has a solution that only varies with the spatial
coordinates but not with time. This makes the equations simpler as the time-derivative
terms in the energy equations are equal to zero. Transient models are used to investigate
the time dependency of heat transfer problems [LeVeque, 2007].

2.1. General heat transfer theory

In general, the solution of a heat transfer problem depends upon the thermal properties of
the system, and any thermal loads which act upon it.

There are two main properties, namely heat conduction and heat convection. A brief
explanation and formulation is described in this section and it is mostly retrieved from
Cengel et al. [2001] and Incropera and DeWitt [2005].

Heat transfer always involves conduction, which is the transfer of energy from an area
of high energy to an area of low energy. It can occur in solids, liquids or gases. The
conduction is due to collision of molecules. The rate of heat conduction through a medium
depends strongly on the geometry, i.e. thickness, material properties and the temperature
difference between the two surfaces.
Steady state heat conduction is the definition of Fourier’s law of heat conduction,

Q̇cond =−kA
dT
dx

(2.1)

where k is the thermal conductivity, namely a measure of the ability a substance have to
conduct heat, A is the cross sectional area of the object and dT

dx is the temperature gradient.

In the offshore industry the most commonly used material are alloys such as carbon steel
or stainless steel, which has a thermal conductivity, k, between 10-60 [W/mK]. The con-
ductivity of a substance is found from property tables online or in heat transfer and fluid
mechanics books. It is important to note that the conductivity depends on the temperature,
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but is often assumed to be constant.
The mechanism of heat conduction in a liquid is more complicated as the molecules in
liquids are closer together. As the temperature increase the conductivity of the liquid in-
creases as the internal bonds of the molecules are released. This is called diffusion. The
diffusion through a substance is described by another thermal property, namely the heat
capacity, h f = ρcp, where ρ is density of the liquid and cp is the specific heat capacity.
The heat capacity describes how much heat that can be stored in a substance. The dif-
fusion process, on the other hand, is an indication of how fast the heat diffuses through
the material and it only appears in the transient heat conduction, expressed from equation
(2.2),

α =
k

ρcp
[m2/s] (2.2)

As the thermal diffusivity increases, the propagation of heat into the medium becomes
more rapid [Cengel et al., 2001]. Water is calculated from equation (2.2) and has a typical
thermal diffusivity of,

α = 0.15×10−6m2/s

The heat convection is the transport of heat due to fluid motion. The faster the fluid
motion is, the greater the convection of heat transfer. There are two types of convection,
forced- and natural convection. Heat transfer processes that involve change of phase of
a fluid are also considered to be convection. Despite the complexity of convection, the
rate of heat transfer is observed to be proportional to the temperature difference. This is
expressed by Newton’s law of cooling,

Q̇conv = hAs(Ts−Tinf) [W] (2.3)

where h is the heat transfer coefficient [W/m2K], Ts is the surface temperature [K], Tinf
= Ta = Te is the temperature far from the surface [K] and As is the surface area of which
the flow is exposed to.

2.2. Heat transfer equation

This section is retrieved from Incropera and DeWitt [2005] and it present the general heat
transfer equations for a cylinder. As the pipe is exposed to an internal hot fluid flow and
a cold cross flow of air on the outside. The heat equation for a steady state heat transfer
with no heat generation becomes,

1
r

d
dr

(kr
dT
dr

) = 0 (2.4)

When integrating equation(2.4) two constants appear, and the ODE is solved by imple-
menting the boundary conditions for temperature at the two surfaces. The thermal re-
sistance is then expressed by combining the temperature distribution with Fourier’s law,
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equation (2.1), resulting in equation (2.5),

Rcond =
ln(r2/r1)

2πLk
(2.5)

where L is the length, k is the thermal conductivity, r1 and r2 is the internal and external
diameter respectively, Figure 2.1 illustrate the parameters.

Figure 2.1: Cylinder containing hot fluid flow exposed to convective surface conditions [Incr-
opera and DeWitt, 2005]

For the heat transfer in the fluid and air the law of cooling is expressed, and the equation
yield the resistance as,

Rconv =
q̇

∆T
= 2πr1,2Lh1,2 (2.6)

where 1 and 2 implies the internal and external variable respectively. Recalling the rule
of series circuits from electronics, the overall heat resistance, Rtot , is expressed as,

Rtot = Rconv,1 +Rcond +Rconv,2 =
1

2πr1Lh1
+

ln(r2/r1)

2πLk
+

1
2πr2Lh2

[K/W] (2.7)

2.3. External Flow region

This section explains external flow, the theory is retrieved from Incropera and DeWitt
[2005]. The external flow over a cylindrical pipe is of significant importance in respect to
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heat transfer as it is a product of the Reynolds number. Normally the external flow behaves
as a cross-flow over the cylinder, involving a fluid motion normal to the axis. The cross
flow is characterized by three main stream movements. In Figure 2.2, V is the upstream
velocity brought to rest at the forward stagnation point, and then due to a favourable
pressure gradient a boundary layer develops. At this point the pressure decrease and a
boundary layer develops from the stagnation point with an increase in x, which is the
stream line coordinate indicated in Figure 2.2. u∞ is the free stream velocity and as the air
moves toward the rear end the pressure eventually reaches a minimum and the boundary
layer develops further in the presence of an adverse pressure gradient. Because of the
adverse pressure gradient, the velocity starts to decelerate and when the velocity gradient
∂u
∂y |y=0 eventually reaches zero, flow separation occur and the boundary layer detaches
from the surface of the cylinder creating a wake downstream as shown in Figure 2.2.

Figure 2.2: Boundary layer formation on a cylindrical cross section exposed to cross flow. [Incr-
opera and DeWitt, 2005]

The angle, θ , indicates the separation point of boundary layer as an angle from stagnation
point to separation, this point is called boundary layer transition. This is dependent on the
Reynolds number.

ReD =
Inertinal force
Viscous force

=
uDh

ν
(2.8)

where ReD refers to the use of a hydraulic diameter, Dh. However, for a cylinder this is
the outer diameter.
Different Reynolds regime will change the separation angle. This can be investigated
closer in Figure E.1 in Appendix E.

From experiments it is shown that also the Nusselt number is dependent on the separa-
tion angle, θ . This can be explained as the Nusselt number increase with an increase in
Reynolds number which is due to a decrease in boundary layer thickness. This relation
has developed several correlations for the Nusselt number. In general Nusselt number can
be said to be a function of,

Nu = f (Pr,Re)
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where Prandtl number is the ratio of viscous diffusion and thermal diffusion,

Pr =
Viscous diffusion
Thermal diffusion

=
µcp

k
(2.9)

This implies that the Nusselt number is a correlation between convection and conduction.
Investigations of the two most common correlation, "Hilpert" approach and "Churchill
and Bernstein" approach shows that there is about 3% difference between the two ap-
proaches [Incropera and DeWitt, 2005]. As the Churchill correlation, equation (2.10),
is valid for all ranges of Reynolds number, as well as a wide range of Prandtl numbers,
ReDPr ≥ 0.2. It is assumed that this will be the best approximation.

Nu = 0.3+
0.62Re1/2

D Pr1/3[
1+(0.4/Pr)2/3

]1/4

[
1+
(

ReD

282,000

)5/8
]
=

hDe

k
(2.10)

From equation (2.10) the correlation between convection and conduction may be seen,
and as the only unknown variable is the local heat transfer coefficient. This leads to the
possibility of defining the overall heat transfer coefficient, htot ,

htot =
1

1
h1
+ WT

ksteel
+ 1

h2

[W/m2K] (2.11)

where WT is the wall thickness and h1 and h2 stands for internal and external heat transfer
coefficient respectively.

2.4. Internal Flow Region

The internal flow is considered nearly fully developed. This means that there is only a
non-zero velocity in the x-direction [Daugherty et al., 1985]. The mean velocity in the
main pipe is defined from the static equilibrium of Bernoulli’s equation (2.12),

P1 +
1
2

ρu2
1 +ρgh1 = P2 +

1
2

ρu2
2 +ρgh2 +∆Pf riction (2.12)

Assuming the velocity may be calculated from the principle of liquid column as shown
in Figure 2.3. Where u1 = h2 = 0, P2 = Patm and friction is neglected. Rearranging the
velocity can be expressed as equation (2.13),

u2 =

√
2
ρ
(P1−P2 +ρgh1) (2.13)

It is assumed that the dead leg is exposed to stagnant flow, except for some circulation
which occurs as an effect of the fluid flow over the inlet. Depending on the velocity of the
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Figure 2.3: General presentation of the Bernoulli principle of liquid column.

flow in the main pipe, the degree of circulation will vary. This is what both Hong [1977]
and Habib et al. [2005b] studied in their reports. Hong [1977] concluded from his studies
of natural circulation that as the non-dimensional wall parameter became larger than ten,
the heat transfer coefficient would become uniform, and therefore the result would lead to
the exact analytical solution for a Fin. Habib et al. [2005b] performed experimental and
CFD-analysis to see the flow pattern for horizontal and vertical dead legs.

2.5. Pipe and Fluid Properties

The study is performed with standard pipe dimensions. A rule of thumb in regards to dead
legs is that if shorter than 0.5m and at least a 2" diameter there is no need for insulation
[Osenbroch, 2012].
In addition to pipe size the pipe schedule has to be defined. A pipe schedule refers to the
wall thickness and is set so that the pipe wall may resist the internal pressure, with tol-
erances for corrosion, erosion and mechanical allowances such as treads [Sinnott, 2009].
The schedule number is based on a thin cylinder formula and is defined as,

Schedule no. =
Ps×1000

σs
(2.14)

where Ps is the safe working pressure and σs is the safe working stress. For straight
low pressure pipes the general approach is to use schedule 40 for carbon steel pipes and
40S for stainless steel if the pipe dimension is below DN200. Table 2.1 shows the general
approach on deciding a pipe schedule for straight pipes [Shell AS, 2011].

The internal fluid consists of produced water and it is assumed to have constant fluid
properties. Also pipe material and air is assumed to be independent of the temperature
change. The thermal properties at the initial temperatures is presented in Table 2.2
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Table 2.1: Pipe Schedule

Pipe size Pipe SCH

Pipe DN50-DN150 SCH. ≥ 40
Pipe DN200-DN750 SCH. ≥ 30

Table 2.2: Properties of the applicable substances

Properties Water at 323K Carbon Steel Air at 266K

ρ [kg/m3] 998.5 1.3200
cp [J/kgK] 4181.2 1006.3
k [W/mK] 0.64 36.9 0.0236
α×10−6 [m2/s] 0.154 - 18.01
µ×10−7[mPa·s] 5476 - 167.6
ν×10−6[m2/s] 0.54 - 12.86
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3. Turbulence modelling

The turbulent flow is another important area to investigate as most pipe flows are turbu-
lent. To develop a realistic simulation a turbulence model must be incorporated. For most
engineering simulations the available turbulence models are either Reynolds-Averaged
Navier-Stokes (RANS) simulations or Large-Eddy Simulations (LES). The LES model
demands a significantly better processor capacity. However, it may be more accurate
[Mme, 2010]. For this study, the RANS model is considered to be sufficient. The fol-
lowing sections are mostly retrieved from Versteeg and Malalasekera [2007] and Voigt
[2001].

3.1. Governing Equation in Turbulent pipe �ow

For the Reynolds Average Navier-Stokes Simulation (RANS) the flow is decomposed
into an averaged part and a fluctuating part, u(t) = u(t) + u′(t). The fluctuations are
always behaving in a 3D motion, and particles far apart may be brought together by the
eddy motions which occur in the turbulent flow. This results in an effective mixing of
fluid particles, which leads to high values of diffusion coefficients for mass, momentum
and heat [White, 2006]. In a turbulent flow the governing equations are the continuity
and Navier-Stokes equations combined with the transport equation for the two quantities
turbulent kinetic energy, k , and dissipation of kinetic energy, ε [Voigt, 2001].

The continuity and Navier-Stokes equations for turbulence are then expressed from the
governing equation of incompressible flow. Decomposing and performing an ensem-
ble averaging of the turbulent governing equations, the Reynolds-Average Navier Stokes
(RANS) equation can be expressed as,

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ

∂ p
∂xi

+
∂

∂x j
(ν

∂ui

∂x j
−u′iu

′
j) (3.1)

If the process of decomposing and ensemble is desired to be further investigated, this can
be studied in Voigt [2001].

From equation (3.1) the term, u′iu
′
j, defines the Reynolds stresses, where i and j denotes

the direction. The full Reynolds stress tensor is symetric, and contains 6 additional un-
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knowns. Consequently, there are more unknowns than equations, this is known as the
closure problem. This is resolved by applying the Boussinesq approximation, which as-
sumes proportionality between the deviatoric part and the Reynolds stress tensor [Voigt,
2001],

−u′iu
′
j = νt

(
∂ui

∂x j
+

∂u j

∂xi

)
− 2

3
δi jk (3.2)

where νt defines the eddy viscosity, modelled from equation (3.3),

νt =Cµ

k2

ε
(3.3)

where the model constant Cµ=0.09.

Taking the divergence of the Reynolds stress tensor, equation (3.2), it is inserted equation
(3.1) and equation (3.4) is obtained,

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ

∂
(

p+ 2
3ρk
)

∂xi
+

∂

∂x j

(
(ν +νt)

∂ui

∂x j

)
(3.4)

where
ν +νt = νe f f

3.2. The k-ε model equations

The k-ε model is well established and widely used. It is derived for high Reynolds number
flow and the coefficients are empirically derived. From experimental evidence Versteeg
and Malalasekera [2007] indicate that Boussinesq’s proposal in 1877 ensures that the
formula gives the correct result when subjected to normal Reynolds stresses. For this
model the transport equations are kinetic turbulent energy, k, which is defined as,

k =
1
2

(
u′iu
′
j

)
and the dissipation of turbulent kinetic energy, ε , which is defined as,

ε = ν
∂u′i
∂x j

u′i
∂x j

The final equation for these two transport properties, k and ε , takes the following final
form as expressed in equation (3.5) and equation (3.6) respectively. The entire derivation
can be investigated further in Voigt [2001].

∂k
∂ t

+u j
∂k
∂x j

= νt

(
∂ui

∂x j
+

∂u j

∂xi

)
∂ui

∂x j
+

∂

∂x j

[
(ν +

νt

σk
)

∂k
∂x j

]
− ε (3.5)
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Dε

Dt
=Cε1

ε

k

(
−u′iu

′
j

)
∂ui

∂x j
+

∂

∂x j

[(
ν +

νt

σε

)
∂ε

∂x j

]
−Cε2

ε2

k
(3.6)

The eddy viscosity is expressed in equation (3.3) and the model constants are

Cε1 = 1.44, Cε2 = 1.92,
σk = 1.0, σε = 1.3

Furthermore, Versteeg and Malalasekera [2007] states that model equations for k and ε

requires similar boundary conditions as other elliptic flow equations. As these transport
properties are based on measurements and as there rarely is any measurements available,
the parameters are often found from the literature. If no literature of similar cases are
available, the inlet distributions for k and ε can be obtained from a correlation with tur-
bulence intensity, Ti = 6%, and a characteristic mixing length, ` = 0.07L, where L is the
diameter in a cylindrical pipe [Versteeg and Malalasekera, 2007].

k =
2
3
(Ure f Ti)

2 (3.7)

ε =C
3
4
µ

k
3
2

`
(3.8)

where Ure f is the reference internal velocity.

In the k-ε model the transport equations are not integrated at the walls. Instead the pro-
duction and dissipation of the kinetic energy is specified in the near wall cell, using the
logarithmic law-of-the-wall [Voigt, 2001]. The logarithmic law-of-the-wall is of less con-
straint then the inner law. A more detailed description of the wall laws is explained below,
or it can be found in White [2006].

The wall coordinate, y+, is a dimensionless parameter and it is an accurate way of de-
termining the distance from the wall to the nearest data-point in the mesh. As the flow
solution is computed on the cell center, this means that the first data-point from the wall
will be in the middle of the first cell as Figure 3.1 indicates.

There is three flow regions concerning the wall coordinates,

The viscous sub-layer, y+ ≤ 5 , this is the region very close to the wall and it is as-
sumed that the boundary layer is linear and that the inner-law of the wall is appli-
cable[White, 2006].

The bu�er layer, 5≤ y+ ≤ 30 , is a region where the profile is neither linear nor loga-
rithmic but a smooth merge between the two [White, 2006].

The log layer, y+ ≥ 30 , apply the outer law, also called the logarithmic law of the
wall[White, 2006].
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Figure 3.1: Control volume indicating the first data-point from the wall [Mme, 2010]

The y+ regions serves as an indicator on how fine the mesh has to be to achieve accurate
calculations.

The wall coordinates of y+ is then calculated from equation (3.9),

y+ =
yv∗

ν
(3.9)

where y is the distance from the wall to the first data-point, see Figure 3.1, v∗ is the wall
friction expressed by the kinetic turbulent energy, k and the constant, Cµ = 0.09.

v∗ = k
1
2C

1
4
µ

Calculating the wall coordinate will provide the operator the necessary knowledge to
decide if the grid model is fine enough for the simulated case.
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Computational Fluid Dynamics, CFD, is a collective term for the analysis of systems
involving fluid flow, heat transfer and associated phenomena using computer simulations.
The CFD codes are structured around the numerical algorithm which can handle the fluid
flow problem. In CFD codes there are three main elements [Versteeg and Malalasekera,
2007], namely

Pre-processor, defines the geometry of interest, the grid generation and the physical
problem to be solved.

Solver, solves the fluid equations on the given grid using either a finite difference, finite
element or finite volume method.

Post-processor, visualize the results in the form of 3D/2D surface contours, graphs and
tables.

The CFD code is an interpretation of a complex physical problem. Prior to developing
the CFD code an understanding of the physical problem and the algorithms is necessary.

Another complex part when working with CFD is that the validity of the model might
look sufficient, however, there might be errors which occur from the complexity of the
code. To actually validate the results achieved from the simulation, experimental data and
research reports should be used for comparison. However, there is not always extensive
experimental work available, so then the verification must be done by the use of analytical
solutions of similar simplified problems. Another source to compare the results is by
high-quality data from closly related problems found in literature or journals. [Versteeg
and Malalasekera, 2007]

4.1. Finite Volume Method

The Finite Volume Method (FVM) is a numerical method which discretizes a volume.
There are 3 basic steps which should be understood [Versteeg and Malalasekera, 2007].
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Step 1 - Grid generation, the domain is divided into control volumes of which the
governing equations can be integrated over. The finer the grid distribution the more
accurate solution is obtained. This step will be of great importance for the overall
result.

Step 2 - Discretization, is the key of this method. After dividing the structure into
smaller control volumes, the governing equations are integrated over each one of
them. The process of discretizing is fairly comprehensive. This is the reason why
the CFD programs are so attractive.

Step 3 - Solution of equation, the result of the above disretization is a system of
equations which must be solved. The typical equations apply to either direct or
indirect methods. One example is the TDMA which is a direct method for one
dimensional problems, but when applied iteratively it may also be applied for multi-
dimensional problems.

4.2. OpenFOAM

Open Source Field Operation and Manipulation (OpenFOAM) is a C++ library which is
developed by OpenCFD.ltd. It is released under the GNU general public license. This is
an advantage as the program is freely distributed and works as an open source. The user
guide is satisfactory, and OpenFOAM is a program with a great range of application. The
user can develop his/her own codes and solvers, which creates a range of possibilities.

The environments in OpenFOAM is divided into three parts as explained in the introduc-
tion of this chapter, Figure 4.1 indicates this,

Figure 4.1: Overview of the environments in OpenFOAM [Foundation, 2011]
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Figure 4.2: The file structure in the directories in OpenFOAM [Foundation, 2011]

The OpenFOAM dictionary files are used to define a specified case. They also define the
necessary, physical and numerical, conditions to solve the problem. The file structure is
presented in Figure 4.2 [Foundation, 2011].

The initial case file includes three basic directories. The time directories are folders cre-
ated for each time step the solver is executed. Before the execution only the boundary
conditions and initial conditions are specified, with the folder notation 0. For a steady
state solvers only the initial and the converged final results are of interest, while for tran-
sient solvers animations are created over all time directories.

The constant folder contains the physical properties and grid distribution. The mesh prop-
erties are defined in the sub-folder called polyMesh. In this folder, OpenFOAM saves the
files which include the mesh properties, i.e. boundaries, points, cells and faces. The
physical properties which are defined are dependent on the solver. However, most solvers
include the transport properties. For other solvers, additional properties such as turbu-
lence and gravity may be defined.

The final folder in the initial solver is the system folder. This folder is associated with the
solution procedure. Containing a minimum of 3 files [Foundation, 2011].
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fvSchemes, includes the finite volume schemes that are used. The numerical schemes
are comprehensive, however, a brief explanation will be given.

fvSolution, includes the solver and equations which are to be solved. Also the tolerances
and relaxation factors are stated in this file.

controlDict, contains the time set-up. All parameters which are time dependent are
stated here. It is in this file the decision of steady-state or transient study is decided
on.

The two following sections will give an introduction to the fvSchemes and fvSolution files
in OpenFOAM. Then the solvers adapted for the present cases will be explained.

4.3. Numerical schemes

The numerical schemes must be set in the fvSchemes file. OpenFOAM provides a range
of numerical schemes [Foundation, 2011]. To intialize the fvSchemes file the operator
may decide on the discretization practice of desire. However, the Gaussian finite volume
method is the most common. Gauss-method is based on summing the values on cell faces,
which is interpolated from cell centres [Foundation, 2011]. Furthermore, the interpola-
tion scheme, divergence scheme, Laplacian scheme and gradient scheme must be chosen.
OpenFOAM is again providing a range of possibilities to meet the operator’s requirement.

The fvSchemes file is divided into sub dictionaries for each numerical scheme. Table 4.1
indicates how they are set for the cases investigated in this thesis.

Table 4.1: Numerical Schemes in OpenFOAM

Case no. Time scheme(
∂

∂ t

) Grad
scheme (O)

Laplacian
scheme

(
O2) Divergence

Scheme (O ·)
Interpol.
scheme

01 Steady State/
Euler

GaussLinear GaussLinear
Corrected

none linear

02a Steady State GaussLinear GaussLinear
Corrected

none linear

02b Steady State GaussLinear GaussLinear
Corrected

GaussUpwind/
GaussLinear

linear

03 Euler GaussLinear Gauss Linear
Corrected

none linear
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The time scheme in fvSchemes defines the method of time dependency. Table 4.1 implies
that two time schemes are used. That is steady-state and the Euler method. If desired,
OpenFOAM also provide other time schemes. The Euler method is a first order numer-
ical procedure. There are two types of Euler methods, one explicit called forward Euler
and one implicit method called backwards Euler. It is the backwards Euler which is in-
corporated into OpenFOAM. The backward Euler is more CPU costly as a system of
equation must be solved at each step. However, it eliminates the stability problems which
can occur in the explicit method. [Foundation, 2011]

In OpenFOAM the general expression of the gradient term involves the discretized method,
hence Gauss, and the chosen interpolation scheme. In the dictionary it is expressed as be-
low.

GradientScheme → Gauss <interpolationScheme>

From Table 4.1 it can be seen that the Gradient scheme is set to Gauss Linear in all
cases, where Gauss is the discretizing method and Linear is the interpolationScheme. The
interpolation scheme contains terms that are used to interpolate values typically from cell
center to face center. This is commonly called the Central Difference Scheme (CDS)
and is a second order method. It is expressed as a part in the other schemes, but it may
also stand alone [Foundation, 2011]. From Table 4.1 it can be seen that the interpolation
scheme is set to default linear;.

In OpenFOAM the general expression of the Laplacian scheme involves the discretized
method, the interpolation scheme and the surface normal gradient scheme.

Laplacian Scheme → Gauss <interpolationScheme> <snGradScheme>

The surface normal gradient is required to evaluate the Laplacian term, but it can also
be specified on its own right. However, in the cases studied in this thesis it does not
stand alone. In Table 4.1 under the Laplacian scheme it may be observed that the normal
surface gradient is the corrected scheme which is an explicit non-orthogonal correction
unbounded, following a second order and conservative numerical behaviour [Foundation,
2011].

The divergence scheme is defined in OpenFOAM by the discretizing method and the
interpolation scheme.

Divergence Scheme → Gauss <interpolationScheme>

From Table 4.1 it can be observed that only Case 03 has a defined divergence scheme. In
addition it can be observed that there are two types of interpolation schemes. The reason
for this is that the most stable upwind scheme does not work for one of the terms in Case
03, the ∇νe f f devT ∇U . Therefore, an unbounded, second order scheme of Gauss Linear
is used. However, trying to use the Gauss Linear scheme on all fields creates divergence
and the solver will not be executed.
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4.4. Solution algorithms

In regards to solvers there is a range of alternatives. Even if the solvers are specified to
suit certain problems, they may still be modified to suit the problem of interest.
As a suitable solver is chosen the fvSolution file must be updated to fit the specified prob-
lem. The file contains a directory for every variable that requires an equation solver.
Furthermore, the global iteration scheme is stated together with relaxation factors.

4.4.1. Linear solver control

The type of solver used depends upon the matrix symmetry. In Foundation [2011] the
available linear solvers are presented. However, in the simulations in this thesis, only the
preconditioned (bi-) conjugate gradient (PBiCG) is used. The difference between the PCG
and PBICG is that PCG is applicable for symmetric matrices, while PBiCG is applicable
for non-symmetric matrices.

4.4.2. Tolerance and residuals

All variables are given its own directory in the fvSolutions file, and each one need to have
a defined tolerance and relative tolerance. The tolerance given for the specified variable
acts as a place holder. Thus, the residuals of the solution needs to be below a given value.
Consequently, the initial residuals are evaluated by the current field values before solving
the equation, if the residuals go above the field tolerance the solver will stop. Therefore,
the tolerance level should be set to a limit which maintains a reasonable accuracy of the
solution. The relative tolerance will act as a place-holder for the ratio of the current
residuals to the initial residuals. [Foundation, 2011]

4.4.3. Relaxation Factors

The effect of relaxation factors determines how fast the steady solution converges. The
steady case with the SIMPLE algorithm requires under-relaxation factors. The relaxation
factors imply how much of the old initial and the new iterated value that should be used in
the next iteration cycle. For the dependent variable field the relaxation equation will be,

Xnew = (1− r)×Xold + r×Xcalculated (4.1)

where X is the applicable variable and r is a given relaxation factor.
The applicable variables for X will be velocity, pressure, temperature and turbulence pa-
rameters. A relaxation factor close to 1 indicates that a larger fraction of the new value
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is used in the iteration. This can be seen from equation (4.1) as r = 1 will make the Xold
equal to zero. This might lead to divergence [Versteeg and Malalasekera, 2007].

4.4.4. Semi-Implicit method for Pressure-Linked Equation (SIMPLE) algorithm

This algorithm is a steady state algorithm, which follow an iterative procedure for solving
the pressure and velocity coupling. In the SIMPLE algorithm the solver only makes
1 correction, indicating that it is a steady state solver algorithm. There is however an
additional correction, the non Orthogonal Corrector. This is a corrector which takes into
account the non-orthogonality of the mesh. An orthogonal mesh is when the face normal
in the mesh is parallel to the vector between the centre of the cells that the face connects
to. Depending on the mesh the keyword nNonOrthogonalityCorrectors in fvSolution is
set to 0 for an orthogonal mesh upto max 20 for a non-orthogonal, unstructured, mesh
[Foundation, 2011].

In addition to the corrector the SIMPLE algorithm is essentially a guess-and-correct pro-
cedure for the calculation of pressure. To initiate it, boundary conditions are set, initial-
izing a guessed pressure field, p∗. The discretized momentum equation is solved so that
the intermediate velocity field is computed. Thereafter, the correctors, p′, are defined, so
that the correct pressure becomes,

p = p∗+ p′

This procedure is performed in a similar matter for the velocity fields. Then again the cor-
rected pressure field and velocity field is inserted into the discretized momentum equation.
Then continue by solving the pressure correction equation and apply the under-relaxation,
equation (4.1). Thereafter, all other discretized transport equations may be solved. This
cycle continues until convergence is reached and the cycle stops[Versteeg and Malalasek-
era, 2007]. A flow chart from Versteeg and Malalasekera [2007] is attached in Appendix
D.

4.5. OpenFOAM Solver

This thesis will present different cases and to do so more than one solver is adapted. Im-
plementing realistic assumptions to simplify the problem, the solution may be presented
as a Fin analysis. This assumes that the water is stagnant and there is no circulation in
the dead leg. The fin analysis is easy to validate to existing theory. Subsequently, a re-
alistic simulation will be developed. In the following sections the adapted OpenFOAM
solvers are presented, and it is based on information retrieved from Foundation [2011]
and WikiFOAM [2012].
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To fully understand the solver libraries it is worth noting how OpenFOAM writes the
equations. Table 4.2 express the commonly terms which is used in the C++ language
when writing equations.

Table 4.2: Equation discretizion in OpenFOAM

Term Description Implicit/ Explicit Mathematical expression C++ language
( f vm :: / f vc ::)

Laplacian Implicit/ Explicit ∇ ·Dt∇T laplacian(DT,T)
Time derivate Implicit/ Explicit ∂T

∂ t ddt(T)
Divergent Implicit/ Explicit ∇ · (φT ) div(phi, T)
Source Implicit T ∇φ Sp( f vc ::

div(phi),T )

For the cases developed in this thesis the following solvers were adapted,

LaplacianFoam, is used to solve steady and transient thermal diffusion in a solid [Foun-
dation, 2011].

PotentialFoam, is a potential flow solver which is used to generate starting fields for
full Navier–Stokes (NS) codes [Foundation, 2011].

BuoyantBoussinesqSimpleFoam, is a steady state solver for buoyant, turbulence flow
of incompressible fluid [Foundation, 2011].

The solver libraries are listed in Appendix G and the developed case files are included in
Appendix I which is a CD-hard drive.

4.5.1. LaplacianFoam

The LaplacianFoam is a steady state and transient solver for pure diffusion. The equations
concern only one variable, the temperature. It is expressed in terms of the diffusion rate,
Dt . The time derivative shown in equation (4.2) is neglected when executing a steady
state simulation.

∂T
∂ t

+∇(Dt∇T ) = 0 (4.2)

where T is the temperature and Dt is the diffusion. As the source code is executed, the
code calls the files one by one. First it sets the correct path, then it creates the time
directory and mesh, before it creates the temperature field and sets the thermal diffusivity.
When this is completed, the time loop is set, and the calculation start on the first time step.
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The LaplacianFoam code uses the non-Orthogonal corrector from SIMPLE. The result is
then written out for each time step, and the results are then available for post-processing.

4.5.2. PotentialFoam

The potentialFoam solver use the potential flow theory to develop an internal velocity
field. The potential flow model assumes in-viscid fluid and an irrotational velocity field,
u.

rot (u) = 0

From the irrotational velocity field the velocity potential φ is introduced, and the velocity
vector becomes,

u = ∇Φ (4.3)

The continuity equation for incompressible flow, ∇ ·u = 0, creates the Laplace equation
for the velocity potential, Φ,

∇
2
Φ = 0 (4.4)

The potentialFoam solver does not execute any time loop. It rewrites the initial velocity
field by integrating the momentum equation to give Bernoulli’s equation (4.5),

p
ρ
+

1
2

V 2 +gz+
∂Φ

∂ t
= constant through flow field, V = |u| (4.5)

The above correlation is why the potential flow is described by the scalar Laplace equa-
tion. In addition, the potential flow solver produces the corresponding stream functions,
ψ . The potential flow theory is not realistic. However, it increases the stability of the flow
field when adapted to more advanced solver.

4.5.3. BuoyantBoussinesqSimpleFoam

This solver is a more advanced solver which is time independent, this imply that it is a
steady-state solver. This solver is for buoyant, turbulent flow of incompressible fluids.
For the cases studied in this thesis the process medium is liquid, so no buoyancy is occur-
ring. Inserting β to zero, the buoyancy term is neglected, and the solver solves pressure,
velocity and temperature equations respectively. The complete library of buoyantBoussi-
nesqSimpleFoam is attached in Appendix G.3.
The overall implementation is that while the simple loop is running, the code includes
the velocity equation, temperature equation and pressure equation. Thereafter, the turbu-
lence variables are corrected, and the solver is executed over the set execution time. Note
that the equations are expressed in terms of the mean quantity and turbulence terms. The
velocity, temperature and pressure equations are expressed below,
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Velocity equation:
As the simple loop solves the momentum equation it first predicts the velocity by imple-
menting the library file called Ueqn.H. The velocity is predicted by an implicit method,
which means that a set of linear equations are solved in matrix-vector form, Ax = b. Ac-
cordingly, the implicit left hand side is set up as equation (4.6),

∇ · (φU)+ turbulence−> divDevReff(U) (4.6)

where the term ”turbulence−> ” imply that the term ”divDevReff(U)” is retrieved from
the turbulence library, Appendix G.3.5. The term is rewritten from C++ and will be
expressed as equation (4.7),

divDevReff(u) =−∇
2
νe f f ·u−∇ ·

{
νe f f dev [T ∇u]

}
(4.7)

where dev = A− 1
3trace(A)I. The notation A indicate the matrix to be solved and I is the

identity matrix.

Further study of the velocity library, G.3.1, imply that the velocity equation is then under-
relaxed before it is solved for the momentum predictor.

Temperature equation:
As the velocity predictor, the temperature predictor is implicit. It is approached by first
solving equation (4.8) which is the turbulent diffusivity, κt .

κt =
νt

Prt
(4.8)

Then the efficient diffusivity is calculated from equation (4.9),

κe f f = κt +
ν

Pr
(4.9)

Thereafter, equation (4.10) is solved, before equation (4.11) solves the boussinesq ap-
proximation for the effective kinematic density, ρk, based on the new temperature value.

∇ · (φT )−T ∇ ·φ −∇
(
κe f f ∇T

)
= 0 (4.10)

In the equation which is written out the implicit source term, T ∇ ·φ , is neglected as it is
purely related to numerics [?].

ρk = 1.0−β
(
T −TRe f

)
(4.11)

where β is the coefficient of the thermal expansion. As mentioned previously the effect
of buoyancy is neglected in all simulations as the process only deals with liquid. When
β = 0 the effective kinematic density becomes,

ρk = 1.0
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Pressure equation:
The pressure library is attached in Appendix G.3.3 and it is in the pressure equation library
that the corrector step takes place. Equation 4.12 is solved and iterated over the number
of NonOrthogonalCorrectors defined.

∇ ·(rAU f )∇prgh = ∇ ·φ (4.12)

where rAU f is a stored variable equal to the inverse A matrix. Further, A−1| f is multiplied
by vector H.

U = HA−1| f
this correlation is named U, as this term contributes to the corrected velocity in the correc-
tor loop in the SIMPLE algorithm. The complete derivation can be seen in an article by
WikiFOAM [2012]. Note that the article investigates the PISO loop so the full implemen-
tation of the SIMPLE algortihm may not be retrieved from here. However, the governing
equations will be the same, but following the SIMPLE loop.

4.6. Sampling

The result from the simulations will be presented by contour and plots. The results will
be sampled in the length direction of the dead leg. That implies the negative z-direction.
In addition, probes are installed at certain areas in the domain. They are set at locations in
the dead leg with ∆z equal to the diameter distance. This implies that the probe locations
are found in the z-direction at 0.5D, D, 1.5D, 2D, 2.5D, 3D until the end of dead leg is
reached. The distribution is shown in Table 4.3.

Table 4.3: Diameter segments in the vertical deadleg, z-axis

Item Segment 0 0.5D D 1.5D 2D 2.5D 3D

T-junction -z 0.051 0.0771 0.1031 0.1291 0.1552 0.1812 0.2072
Fin -z 0.0 0.026 0.052 0.78 0.104 0.128 0.150

Item Segment 4D 5D 6D 7D 8D 9D end

T-junction -z 0.2591 0.3112 0.3631 0.4152 0.4671 0.5192 0.552
Fin -z 0.202 0.254 0.306 0.358 0.410 0.462 0.5

Figure 4.3 illustrate the probe locations.
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Figure 4.3: Probes located in the dead leg.
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5. Industrial approach

The industrial approach is not so different from the typical theoretical cases. The differ-
ence is the use of standards and specifications. For a process engineer the first approach to
a problem usually goes through an operator company which raises an issue. With known
specifications, such as mass flow or pressure, the process engineer uses reference docu-
ments to decide on pipe dimensions and class. Every operating company has their own
piping classes. As this thesis regards the Draugen field, which is operated by Shell AS, it
is their piping classes which are used.
As the process engineer has decided on piping class, dimensions and flow properties, the
next approach is for the piping - and mechanical engineers to perform stress calculations
and make the layout, as well as defining equipment such as pump and valves from the
process data.

A standard is a reference document and it is one of the most important tools when ap-
proaching an engineering problem. It provides the engineers a basis of choice in regards
to dimensions and parameters which will hold the assigned integrity of the system. For
drain points and pipes, standard such as NORSOK L-002 and P-001 [L-002, 2009, P-
001, 2006], as well as ISO 12241 [2008] provides reference points to deciding on the
design criteria. Since this thesis is a collaboration with Aker Solutions the results which
are retrieved in the CFD analysis should be compared to the result from the mentioned
standards. This will imply whether the procedure provided by these standards is too con-
servative or if a more detailed investigation should be performed in respect to dead legs.
The next sections will present the most relevant reference points and procedures in these
standards.

5.1. NORSOK P-001 & L-002

These two NORSOK standards [L-002, 2009, P-001, 2006] contain general information
regarding piping details and design criteria. From NORSOK L-002 [2009] the design
condition for the ambient temperature is provided,

• Minimum design ambient temperature -7 ◦C (266K)
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• Maximum design ambient temperature 22◦C (295K)

However, in NORSOK P-001 [2006] it is stated that the ambient temperature should be
set from historical weather data. This implies that the values given in NORSOK L-002
[2009] only provides a reference point, and should not be used without precautions.

NORSOK P-001 [2006] provides reference limits on line sizing, the pipe roughness, pres-
sure drop and maximum velocity. For liquid filled pipes the maximum velocity is,

• Maximum velocity carbon steel pipe, 6 m/s

• Maximum velocity stainless steel pipe, 7m/s

As Table 2.1 in section 2.5 implies, carbon steel pipes below DN150 are defined by piping
schedule 40. The velocity is calculated from equation (2.13) and it may be observed that
it is well below the maximum allowed velocity.

u = 2.86

This will give a Reynolds number of,

Re =
Diu
ν

= 534 190

which is far into the turbulent regime.

5.2. BS EN ISO 12241:2008

ISO 12241 [2008] provides the calculation rules of heat transfer related properties of
building equipment and industrial installations. It presents the equations and procedure
for calculating general heat transfer in steady state. In addition the standard provides
equations for calculating the time to reach threshold value (TV) and freezing time. Note
that in this international standard the design values for the mean temperature are used. The
calculations performed from this procedure will provide results which may be compared
to the CFD simulations.

5.2.1. Procedure

The governing equations in this procedure are the same as those expressed in section
2.1. Namely, Fourier’s law, equation (2.1), the law of cooling, equation (2.3) and the
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thermal resistance, equation (2.5). Figure 5.1 illustrate the different variables used in
the equations. Where q is the heat flux, De and Di is the external and internal diameter
respectively, and θsi and θse is the internal and external surface temperature respectively.

Figure 5.1: Temperature distribution in a hollow cylinder [ISO 12241, 2008]

The law of cooling, equation (2.3) needs a defined convective heat transfer coefficient,
hcv. In this standard it has been developed a correlation for this variable. It is defined for
both turbulent and laminar flow. As it is assumed that the internal surface coefficient is
equal to the medium inside the pipe, it may be neglected. Accordingly, only the external
surface coefficient is found from the following correlation,

hcv,L =
8.1×10−3

De
+π×

√
ua

De
[W/m2K] (5.1)

hcv,T = 8.9× u0.9
a

D0.1
e

[W/m2K] (5.2)

where De is the external insulation diameter [m], ua is the air velocity [m/s], cv stands
for convection and T and L is turbulent and laminar respectively. If the flow condition
is laminar or turbulent, equation (5.1) or equation (5.2) is calculated respectively. The
defined turbulence criteria are

hcv,L : ua×De ≤ 8.55×10−3

hcv,T : ua×De ≥ 8.55×10−3

Furthermore, the reciprocal of the external surface coefficient, hcv, gives the linear surface
resistance, Rls,

Rls =
1

hcvπDe
[mK/W] (5.3)

From the above procedure the linear thermal transmittance, Ul , for pipes is calculated,

Ul =
1

RT,l
[W/mK] (5.4)
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where
RT,l = Rs,i +R+Rs,e =

1
hiπDi

+R+
1

heπDi
[mK/W]

Using the thermal transmittance, the total heat flow rate,Φ, of the pipe can be found from
equation (5.5),

ΦT =UlL(θi−θa) [W] (5.5)

where Ul is the linear thermal transmittance, L is the length in meters and θi,a is the
internal medium and ambient temperature respectively expressed in degree Celsius.

As the temperature change which actually is tolerated in a pipe is relatively small the
change in temperature can be found approximately from the following equation,

∆θ =
ΦT ×3.6

ṁcp
(5.6)

where ∆θ is the longitude temperature change, ṁ is the mass-flow and cp is the heat
capacity of the medium.

If a more accurate value is desired, the following equation can be used,

∆θ = |θi−θa|e−αL (5.7)

where α = UT×3.6
ṁcp

.

Another section of this international standard investigates the cooling and freezing time
of liquids, both for flowing liquid and for stagnant liquid. The cooling time for flowing
liquid is calculated from equation (5.8),

t f =
(θim−θa)mwcpw ln

(
θim−θa
θ f m−θa

)
ΦT ×3.6

[h] (5.8)

When subjected to stagnated liquid it is almost impossible to keep the liquid from freezing
over time unless actions are taken. The process of cooling will start as soon as there is no
longer an efficient circulation of the fluid. The time until freezing starts is expressed from
equation(5.9),

t f =
(θi−θa)(mwcpw +mpcpp)ln

(θim−θa)
(θ f m−θa)

ΦT ×3.6
[h] (5.9)

where
ΦT is the total heat flow rate [W] from equation (5.5).
θa is the ambient temperature [◦C].
θim is the initial medium temperature [deg◦C].
θ f m is the final medium temperature [◦C].
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mp and mw is the mass of the pipe and water respectively [kg].
cpw and cpp is the specific heat capacity for water and pipe respectively [kJ/kgK]

Note that the total heat flow rate, ΦT , will be different if the pipe is uninsulated. This
is because the external surface coefficient must be taken into consideration. Then ΦT
becomes,

ΦT = hse (θim−θa)πDeL [W] (5.10)

After the freezing is started it is also of interest to see how fast the whole pipe freeze. The
freezing time depends on the density of heat flow and the diameter of the pipe. It is found
from equation (5.11),

t f r =
f

100
×

ρiceπD2
i ∆h f r

ΦT, f r×3.6×4
[h] (5.11)

where
f is mass fraction of frozen water in percent
∆h f r is the latent heat of ice formation, 334 [kJ/kg]
ρice is the density of ice, 920 [kg/m3]
and the heat flow rate of freezing is found from,

ΦT, f r =
π(−θa)

1
2λ

ln
(

De
Di

)` [W ] (5.12)

As this section imply, ISO 12241 [2008] provides a stringent procedure on how to find the
important factors regarding heat loss in pipes. However, it does not say anything on how
the cooling behaves, or where the first sign of cooled water will be located. A numerical
scheme has been implemented in an Aker Solutions [2011] summer intern project . A
finite difference method was defined so that the steady state temperature through the dead
leg could be observed. The approach is based on the analytical fin-analysis. Hence the
calculations only show the averaged temperature loss in the pipe. Investigations of the
code imply that the numerical set up is valid and it will be a good comparison to the
results obtained from a steady heat transfer simulation in OpenFOAM, assuming that the
dead leg can be regarded as a Fin.

5.3. Operating procedures for o�shore installations

This section is developed from discussions with the operation team at Shell AS [2012]
and from an operating procedure for operating Nyhamna field in cold weather [Shell AS,
2010]. As one aspects in this thesis is to investigate the existing approach and methods on
how to handle situations which could decrease the system integrity. A discussion with the
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operation team in Shell AS was arranged. This served as a purpose of understanding the
many opinions regarding the topic. One special issue which created disagreement was the
effect of wind. In the existing operating procedures for cold weather it is stated that the
chill effect from the wind is not relevant for equipment. However, the operation team has
experienced differently. Consequently, the operation team indicate that when the wind
velocity is strong, measures such as wind shielding is performed.

In addition to wind, the design temperature is also important for the operation person-
nel. As mentioned before, NORSOK L-002 [2009] will provide a design criterion, but in
addition NORSOK P-001 [2006] state that historical data should be investigated before
determining environmental design criteria. From investigations of several oil fields which
Shell AS operates this seems to be the overall aproach. At Draugen the ambient design
temperature is set to -9◦C and on Nyhamna the ambient design temperature is as low as
-14◦C, while the standard NORSOK says that -7◦C is sufficient. It is important that the
design temperature is conservative. If the ambient temperature goes below the design
temperature the operating procedure states that the process system must be shut down.
Should this occur, it would be a costly affair and it may decrease the integrity severely as
the danger of cooling increases with a stagnant process.
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To verify the obtained results in OpenFOAM they should be compared with existing the-
ory, theoretic numerical models or similar experiments. The summer intern project in
Aker Solution is not validated. Therefore, to validate the calculation sheet it is assumed
that the dead leg may be regarded as a Fin and simulate the Fin-analysis in OpenFOAM.
Another way to validate the result is to compare it to the analytical Fin-analysis. The
mathematical approach given in Cengel [2006] for the Fin-analysis is for convenience
presented here.

6.1. Fin-analysis, mathematical formulation

This section is cited from Cengel [2006]. The fin analysis is a steady one-dimensional
problem, and it is usually presented similar to Figure 6.1, divided into several control
volumes.

Figure 6.1: Layout of Fin-geometry

The energy balance can be expressed as,

Q̇cond,x = Q̇cond,x+dx + Q̇conv (6.1)
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where

Q̇cond =−kA
dT
dx

(6.2)

Q̇conv = hP∆x(T −Tinf) (6.3)

Inserting equation (6.3) into equation (6.1) and divide by ∆x, the equation yield,

Q̇cond,x+dx− Q̇cond,x

∆x
+hP(T −Tinf) = 0 (6.4)

Taking the limit ∆x→ 0 gives,

dQ̇cond

dx
+hp(T −Tinf) = 0

and inserting Fourier’s law, equation (6.2), the equation becomes,

d
dx

(kA
dT
dx

)−hP(T −Tinf) = 0 (6.5)

Equation (6.5) is the final differential equation for the Fin. As the dead leg is of uniform
perimeter and area, equation (6.5) may be rewritten to equation (6.6),

d2θ

dx2 −m2
θ = 0 (6.6)

where
m2 =

hP
kA

and
θ = T −Tinf

The general solution is then derived from equation (6.6) resulting in equation (6.7),

θ(x) =C1emx +C2e−mx (6.7)

where C1 and C2 are arbitrary constants determined from the boundary conditions. As the
end of the dead leg usually is connected to a valve, it is assumed that it can be perceived
as insulated. Accordingly the boundary condition at the end is expressed as,

dθ

dx
|x=L = 0

The connection between the boundary conditions at the tip and the base may then be used
to determine the relation for the temperature distribution. The analytical solution is then
found from equation (6.8),

T (x)−Tinf

Tb−Tinf
=

cosh(m(L− x))
cosh(mL)

(6.8)
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where T (x) relates to the temperature at location x, T∞ is the ambient temperature, Tb is
the bulk temperature in the medium, m is the square root of hP

kA and L is the length of the
fin.
If the fin tip is not assumed isolated the approach is to change the parameter L in equa-
tion(6.8) with a corrected fin length which is expressed as,

Lc = L+
D
4

The summer intern project in Aker Solutions developed a mathemathical script for solv-
ing this Fin problem numerically [Aker Solutions, 2011]. The solution strategy was to
discretize equation (6.6) and create a tri-diagonal system so that the Thomas algorithm
(TDMA) could be applied. After investigating there code, their result seems to be valid.
The results also coincide with the exact solution retrieved from equation (6.8).
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7. Simulation set-up

7.1. Development of the geometry

In OpenFOAM there is integrated a separate program called Salome. Salome is a 3D CAD
program where both structure and mesh can be created. As described in the introduction,
the first part of this thesis is to set up a simulation similar to the fin-analysis. Subsequently,
a second model based on the rule of thumb is to be created. The industry addresses dead
legs on whether they should be insulated or not. The rule of thumb implies that if the
dead leg is at least 2” in diameter and no longer than 0.5 m, then no insulation is needed
[Osenbroch, 2012]. The base geometry is therefore made in schedule (SCH.) 40, with a
2" dead leg and 4" main pipe, see table 7.1.

Table 7.1: Pipe size and wall thickness

Pipe Nominal size [in] De [mm] Di [mm] WT [mm] SCH.

Main pipe (DN200) 4 114.3 102.26 6.02 40
Deadleg (DN100) 2 60.33 52.51 3.91 40

The geometry is shown in Figure 7.1, the length of the dead leg is set to 0.5m, which
is about 9Di. To create the geometry in Figure 7.1(a), two vertexes and a vector line
is created so that a solid cylinder could be developed. The geometry in Figure 7.1(b)
and Figure 7.1(c) are created in the same manner. However, instead of one cylinder, two
cylinders had to be created and then fused together. The geometry is then divided into
groups which will define the patches, such as inlet, wall, outlet, dead leg wall and dead
end.

In addition to enable the geometry development, Salome provides several mesh possibil-
ities. In this case a mesh of type, Netgen 1D-2D-3D is used and the cell distribution is
determined from a grid independence test. The Netgen 1D-2D-3D is an unstructured trian-
gular mesh. Therefore, the numerical stability must be maintained by the non-orthogonal
corrector in OpenFOAM [Foundation, 2011]. Further the mesh is divided into groups
which separates the boundary patches, see Table 7.2.
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(a) Fin Layout

(b) T-junction vertical (c) T-junction horizontal

Figure 7.1: Layout of the dead leg geometries are presented in (a)-(c)

Table 7.2: Defined boundaries on the 3D models

ITEM DEFINED BOUNDARY PATCHES

Part 1: FIN Internal field Inlet Wall Deadend
Part 2: T-junction Internal field Inlet WallsM WallsD Outlet Deadend

7.2. Boundary Conditions

The most important feature to run a CFD simulation is the initial boundary conditions.
It is important to understand how they affect the whole simulation. In OpenFOAM the
boundary conditions are separated into patches of different types [Foundation, 2011].

Base type, defines the type of patch in terms of the geometry.

Primitive type, defines a numerical condition for the assigned field variable.

Derived type, defines a complex patch condition, derived from the primitive type, and
assigned to a field variable.
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Two base type boundaries are used in this thesis; patch and wall. The patch type contains
no geometric or topological information about the mesh, e.g. the inlet and outlet. The
wall base is defined to account for the wall boundaries and is used by turbulence models
to compute normal wall distance [Hjertager, 2009]. The primitive types of boundary
specifications are set for different variables and the derived boundary type is set on the
wall and derived from the primitive boundary type [Foundation, 2011].

In the initial boundary condition file there is defined one internal field in addition to the
defined boundary patches in Table 7.2. For convenience the two simulations are referred
to as part 1, Fin-analysis, and part 2, the T-junction. For every boundary there is defined
a boundary condition of primitive or derived type. In OpenFOAM there is a range of
boundary conditions [Foundation, 2011]. Table 7.3, 7.4 and 7.5 summarize the boundary
conditions for the Fin, the T-junction and the turbulence variables respectively.

Table 7.3: Defined boundaries in the Fin-analysis

Boundary Boundary type, T Explanation

Internal field uniform value Sets a uniform value in the internal field
Inlet fixedValue A specific value is given
Wall GroovyBC Based on mixed BC, and an algorithm is set to

solve for the surface temperature.
Outlet zeroGradient Sets the normal gradient to zero, assuming that

the end is isulated.

Table 7.4: Defined boundaries in the T-junction

Boundary Boundary type
T U p prgh κt

Inlet fixedValue fixedValue zeroGradient buoyantPressure fixedValue
wallsM groovyBC fixedValue zeroGradient buoyantPressure kappaJaya

WallFunction
Outlet inletOutlet inletOutlet fixedValue fixedValue inletOutlet
wallsD groovyBC fixedValue zeroGradient buoyantPressure kappaJaya

WallFunction
Deadend zeroGradient fixedValue zeroGradient buoyantPressure kappaJaya

WallFunction

Part 1, Fin-analysis is purely related to the temperature. Hence only temperature bound-
aries are defined. The boundary types are presented shortly in Table 7.3. The initial
conditions are presented in Table B.7 in Appendix B. In part 2, T-junction the tempera-
ture conditions will be the same as the latter case. However, additional boundary patches
will be introduced. Additionally, Part 2 introduces flow and turbulence into the process.
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Table 7.5: Defined boundaries for the turbulence variables

Boundary Boundaries for the Turbulence Variables
k ε νt

Inlet turbulentIntensity-
KineticEnergyInlet

turbulentMixingLength-
DissipationRateInlet

nutkWallFunction

Outlet inletOutlet inletOutlet inletOutlet
wallsM kqRWallFunction epsilonWallFunction nutkWallFunction
WallsD kqRWallFunction epsilonWallFunction nutkWallFunction
Deadend kqRWallFunction epsilonWallFunction nutkWallFunction

Hence the amount of variables is increased as implied in Table 7.4 and Table 7.5. All
inlet conditions are defined in Appendix B and they are calculated from the attached Mat-
lab script in Appendix F. In the next sections the defined boundary conditions will be
explained in more detail for each boundary.

7.2.1. Inlet boundary conditions

For part 1 Table 7.3 indicates that the inlet boundary condition is defined as a fixed value.
Assuming that the fluid in the dead leg is stagnant, holding a constant inlet temperature.
This is due to an assumption that the inlet is connected to a main pipe holding a constant
medium temperature.

Tinlet = 50◦C

Part 2 is influenced by several other variables as Table 7.4 imply. The inlet is now located
in the main pipe not in the dead leg inlet. However, the temperature at the inlet is set
similar to part 1.
The velocity is calculated from equation (2.13), assuming a liquid column of 0.418 m. As
the velocity is assumed constant the boundary condition is set to fixedValue.

U = uniform(2.86 0 0)

The way the velocity is presented indicates that there is no velocity gradient in y- and
z-direction as it is assumed a nearly fully developed flow.
Hjertager [2009] imply that when the velocity is fixed at the inlet the boundary condition
for pressure may be set to zeroGradient, which allows the actual value on the boundary
to float.

Furthermore, the inlet boundary conditions for turbulence are set as in Table 7.5. To
obtain the most accurate simulation the values of turbulent energy, k, dissipation rate, ε ,
and eddy viscosity, νt , should be applied from measured data. As there exist no such
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measurements, the values are obtained from approximated correlations, such as equation
(3.7), (3.8) and (3.3).

k = 0.0197 ε = 0.0634 νt = 5.5×10−4

The boundary conditions assigned to these variables are; turbulentIntensityKineticEner-
gyInlet for k which needs a defined turbulent intensity, Ti, in addition to the initial value,

Ti = 0.06 = 6%

turbulentMixingLengthDissipationRateInlet for ε which needs a defined mixing length in
addition to the initial value,

`= 0.07L = 0.00714−−where L is the internal pipe diameter

and the turbulence viscosity, νt , is defined by the calculated boundary condition which
means that the boundary value will be calculated from other fields [Hjertager, 2009].
In addition to these variables, there are two more. That is the dynamic pressure, prgh, and
the heat transfer diffusivity, κe f f , which is defined by boundary condition buoyantPres-
sure and fixedValue respectively. The buoyant pressure boundary condition sets a fixed
gradient pressure based on the atmospheric pressure gradient [Hjertager, 2009], which is
similar to the zeroGradient boundary condition. However, it needs a defined density field,
which is the effective density from equation (4.11).

ρk = 1.0

7.2.2. Outlet boundary conditions

For part 1 the temperature condition at the outlet is only set to zeroGradient, as this is an
insulated end with no heat loss.

In part 2, nearly all outlet boundary conditions are set to inletOutlet. The inletOutlet
boundary condition behave as a fixedValue if subjected to an inwards flow and similar to
zeroGradient when subjected to an outwards flow [Hjertager, 2009]. The only variables
which are not defined by this boundary condition are the pressure and dynamic pressure.
Both of these are given the fixedValue boundary condition at a value of uniform zero.

7.2.3. Wall boundary conditions

The wall boundaries are the most common boundary, and it appear as a fixed boundary,
initializing the fluid from the environment. For temperature on the walls the boundary of
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part 1 and 2 is defined by a boundary condition called GroovyBC. This boundary con-
dition develops a mixed-BC condition. The fields are defined by value, variables, value-
Expression and fractionExpression. It is the fractionExpression that specify the boundary
expression to be solved. It can be used to set non-uniform boundary-conditions with-
out programming [Gschaider, 2012]. The approach for expressing the heat transfer came
from the CFD discussion forum [Hjertager et al., 2012].

wall
{
type groovyBC
variables ”htot = 48.39; Tin f = 266; ρ = 998.5; cp = 4185.0; k = DT ∗ρ ∗ cp; ”
valueExpression ”Tin f ”
value uniform323
fractionExpression ”1.0/(1.0+ k/(mag(Delta())∗htot))”
}

Note that for part 2, DT is exchanged by κe f f .

The theory states that heat transfer from a cylinder is expressed by conduction and con-
vection. Therefore, the overall heat transfer coefficient, htot , is calculated in accordance
to equation (2.11) for the main pipe (M) and the dead leg (D) respectively,

htot,M = 25.43W/m2K htot,D = 48.39W/m2K→ ua = 9m/s

htot,M = 13.36W/m2K htot,D = 25.43W/m2K→ ua = 3m/s

The fraction expression is actually solving the face temperature of the cell, developed
from the standard heat balance equation (7.1) in accordance to the CFD discussion forum
[Hjertager et al., 2012],

k
dT
dn

+h∆T = 0 (7.1)

When expressing the wall boundary for temperature in the latter method an assumption
is that the effect of wall conduction is relatively small compared to the heat loss in the
medium, which also is stated by [Hong, 1977].

For the other variables such as velocity and pressure, more standard boundary conditions
such asfixedValue and zeroGradient are used respectively. In accordance to the given rule
when combining velocity and pressure boundaries, it is stated that as the velocity is fixed,
the pressure should be zeroGradient [Hjertager, 2009]. It is assumed no slip on the walls,
hence the velocity is fixed to zero.
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For the turbulence parameters such a k, ε and νt specified wall functions are more suitable.
The turbulent dissipation rate, ε is assigned the epsilonWallFunction, the turbulent kinetic
energy, k, is assigned the kqRWallFunction and the eddy viscosity, νt , is assigned the
nutkWallFunction as implied in Table 7.5 [Hjertager, 2009]. The boundary condition for
turbulent kinetic energy solves equation (7.2) for each iteration step,

k ≡ 1
2

u′i ·u′i =
1
2
(
U ′2x +U ′2y +U ′2z

)
(7.2)

where u′i = U ′i is the fluctuating velocity in the x, y and z direction respectively. The
defined boundary condition for ε solves equation 7.3 for each iteration step,

ε =
C0.75

µ k1.5

`
(7.3)

while the turbulent viscosity, νt , is derived from equation (3.3). The wall functions are
derived in Voigt [2001] if a further investigation is desired.

All initial conditions are calculated from the Matlab script in Appendix F and the values
are presented in Table B.1-B.7 in the appendix B.

7.3. External environment

From NORSOK standard L-002 [2009] the external design temperature of pipes is given
as -7oC (266K). The external temperature influence the heat transfer in the pipe, however,
the wind is not mentioned in this standard. Therefore, in addition to the temperature a
wind velocity is set and as this influences the local heat transfer coefficient on the outside
it is of interest to see how much it influences the cooling rate.

The following outside environment conditions are set,

Table 7.6: Environmental conditions

Ambient temperature [K] Wind velocity [m/s]

266 9
266 3

7.4. Numerical Accuracy

The numerical accuracy in a CFD simulation is the basis to obtain high quality results.
In general it should always be performed a grid independence test when using a discrete
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method, the closer to zero the cell size becomes, the better accuracy will be achieved.
Furthermore, residuals may be investigated to make sure that the target quantity is inde-
pendent on the convergence criterion and mesh [Versteeg and Malalasekera, 2007].
OpenFOAM provides the tools to create the grid distribution and it enables the possibility
to easily change the grid density. The grid independence test is performed with several
grid sizes, from coarse to very fine as may be seen in Table 7.7.

Table 7.7: Number of cells (N)

Grid no. 1 2 3 4

N 170 000 240 000 280 000 310 000
Number of
iterations

1306 1417 1610 1503

The results from the grid independence test should follow the same tendency. From the
converged result, the coarsest grid distribution which follows the result tendency should
be chosen. This is because of the high cost of computer space and the time it takes to
obtain convergence in very fine grid distributions [Versteeg and Malalasekera, 2007].

In Figure 7.2 the grid distribution is presented for the main pipe inlet and along the x-
plane of the geometry. As can be seen it is unstructured and much finer at the dead leg
than the larger main pipe.

From the four mesh refinement the converged temperature, velocity and turbulent kinetic
energy are plotted in Figure 7.3, 7.4 and 7.5 from the center of the main pipe through the
end of the dead leg in the z-axis.

The results show that the three variables follow the same tendency for the three finest grid
distributions. As the temperature is the key quantity, the result here is the most important.
Figure 7.3 implies that there is some changes in the end of the plot. However, the two
finest grid distributions seems to follow the same tendency at a sufficient manner. Hence
it is assumed that a grid with N≈ 280 000 cell is sufficient to hold the accuracy of the
solution.

As the simulation is introduced to turbulence, a wall refinement test is performed due to
the dependencies between the wall coordinates and the results obtained from a turbulence
model. The wall coordinate, y+, has been explained in section 3.2. Figure 7.6 show
that the wall coordinates is well below the limit of 50 which is the constraint of the k-ε
model. In addition the values are within the buffer-layer which is sufficient in regards to
the logarithmic law of the wall and the inner law.
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The sufficient mesh distribution should then be tested individually to see that the residuals
of the key quantity converge within the given tolerance. Residuals are explained in section
4.4.2. For the temperature and velocity the tolerance is set to 1×10−5 with a given relative
tolerance of 0.1. Plotting the residuals in xmgrace for the key quantity, temperature, the
result imply that the residuals converge just slightly below the given tolerance as shown
in Figure 7.7.

As mentioned previously there is an additional corrector which must be set. That is the
non-orthogonal corrector in the fvSolution file in OpenFOAM. As the grid is highly un-
structured this corrector is set to a maximum value of 20 [Foundation, 2011]. The effect
of this corrector has been investigated in the potential flow case, and the result showed
that the stability of the velocity became much better after increasing the corrector to 20.
This contributes to increase the overall accuracy of the solution.

If a transient solver of flow is executed there is another important parameter which enables
stability. Namely the Courant number, expressed in equation (7.4). The Courant number
should always be kept below 1. In the beginning of a transient simulation it may be
efficient to hold the Courant number even lower to ensure stability.

Co =
U∆t
∆x

< 1 (7.4)

where U is the velocity magnitude, ∆t is the time step and ∆x is the size of the cell. As the
Courant number is greatly influenced by the time step, OpenFOAM provides a function
of adjustable time step. So if a transient analysis is desired this makes it easy to obtain
the stability needed.
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(a) Mesh 1, inlet, N ≈ 170 000 (b) Mesh 1, grid distribution cross sec-
tion, N ≈ 170 000

(c) Mesh 2, inlet, N ≈ 240 000 (d) Mesh 2, grid distribution cross sec-
tion, N ≈ 240 000

(e) Mesh 3, inlet, N ≈ 280 000 (f) Mesh 3, grid distribution cross sec-
tion, N ≈ 280 000

(g) Mesh 4, inlet, N ≈ 310 000 (h) Mesh 4, grid distribution cross sec-
tion, N ≈ 310 000

Figure 7.2: Unstructured triangular mesh - Netgen 1D-2D-3D presented for main pipe
inlet and along the x-axis for the four mesh distributions
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Figure 7.3: Comparison of final temperature profile for mesh 1-4

Figure 7.4: Comparison of final velocity distribution for mesh 1-4

Figure 7.5: Comparison of final turbulent kinetic energy distribution for mesh 1-4
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(a) y+ at main top wall (b) y+ at main lower wall

Figure 7.6: Plot of the wall coordinate, y+, for the main pipe

Figure 7.7: Residuals of Mesh 3, N ≈ 280 000
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7.5. Case description

Several separated cases of the problem are investigated. The first case adapt the indus-
trial Fin-analysis, the second case introduces the flow field in the heat transfer study and
obtain a converged temperature field under normal working conditions and the third case
simulate a shut down from the converged temperature field obtained from normal working
conditions.

The cases which are investigated in this report are presented in Table 7.8 and a more
detailed description is given in the following text.

Table 7.8: Simulated Cases

Case no. Case description Solver Time Scheme

01 Fin-analysis LaplacianFoam Steady&Transient

a) Wind 9m/s
b) Wind 3m/s

02 Normal working conditions Steady

a) Develop a potential flow field PotentialFoam
b) Heat transfer&flow analysis BuoyantBoussinesq-

SimpleFoam

03 Shut down after normal work-
ing conditions

LaplacianFoam Steady&Transient

Case 01 – Fin analysis, use the base geometry of the Fin, Figure 7.1(a), and adapt a
solver called LaplacianFoam to solve the diffusion problem for stagnant water. The initial
boundary conditions for temperature are implemented such as in Table B.7. To adapt the
Fin-analysis several assumptions are implemented.

• The initial temperature is 50oC for the whole inlet area and held constant.

• Natural convection inside the pipe is negligible.

• The liquid in the dead leg is stagnated.

• The pipe is exposed to air temperature at -7oC with a wind speed of 9m/s and
3m/s, resulting in a turbulent airflow around the cylinder.
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• The cylinder is exposed to mixed boundary conditions.

The total heat transfer coefficient is dependent on the wind velocity. Thus two cases of
wind velocities, case 01 a) and b), are simulated to see how much the wind influences the
temperature profile. Both steady and transient simulations are executed.

Case 02 – Normal working conditions, introduces flow and turbulence into the main pipe
during the heat transfer study. It is the base model in Figure 7.1(b) that is used. However,
to create a stable model the execution is set in two steps. As Table 7.8 implies the first
part is Case 02a. This is a potential flow solver which creates the potential flow field
over the domain. The flow field which is developed is almost fully developed, and this
increase the stability of the more advanced solver which is set in case 02 b). Transferring
the velocity field from a) to the initial velocity file in b) and incorporate turbulence, the
buoyantBoussinesqSimpleFoam solver may be executed. This simulation will eventually
converge at the steady solution, which means that there will be no change in time after this
point. Hence the results implies how the heat transfer will behave under normal working
conditions.

Case 03 - Shut down after normal working conditions, simulate a shut down by inserting
the developed temperature field from Case 02 b). This case adapt the same solutions
strategy as Case 01, but the geometry is the same as in Case 02, Figure 7.1(b). This
simulation creates a more realistic picture of the dead leg connection and how it behaves
when it is exposed to a shut down after working under normal conditions.
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8. Result and Discussion

The main objective of this thesis is to investigate the method used in the industry today,
and to then simulate a "real life" situation for a process system. The model which is devel-
oped is easy to adapt for different fluids on topside dead legs. Even different geometries
other than base model is easy to implement.
The case set up is presented in Table 7.8 and all the case files are included in Appendix I.
A procedure on how to run the simulation cases are attached in Appendix H.

In this chapter the result of the different cases will be presented. The result will further be
compared to existing theory and experimental research to verify the results obtained from
the simulation. In addition, discussions regarding the results will be performed along the
way.

8.1. Case 01.a � Fin-analysis, wind velocity 9m/s

Contour of the temperature profile is presented in Figure 8.1(a) and Figure 8.1(b). The
heat transfer coefficient in this case is,

htot = 48.39 [W/m2K]

To better see the temperature distribution, a center and wall line, in z-direction, through

(a) Contour of the intial tempetature distri-
bution

(b) Contour of the Final tempetature distri-
bution

Figure 8.1: Contour of the steady state fin analysis
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(a) Schematic illustration of the initial temperature distribution

(b) Schematic illustration of the Final temperature distribution

Figure 8.2: Initial and final plot of the temperature distribution in Case 01a

the dead leg is plotted in Figure 8.2. The initial temperature is uniform at 50◦C. However,
as the cooling process proceeds, the temperature reaches a converged state.

The steady-state results in Figure 8.2(b) shows the converged state of the temperature, for
both wall and center. It may be seen that the threshold value (TV) is reached as close as
0.03m and 0.04m from the inlet, for the wall and center line respectively. A steady state
only shows the final state if left unattended. Therefore, the transient analysis is important
to understand when the TV occurs. In OpenFOAM, the transient simulation will not only
tell how long it takes for the liquid to go below threshold value (TV), it also gives the
temperature contour of the cooled liquid which is observed. This may be seen in Figure
8.3.

The first sign of water below TV is observed after 2800s ≈ 46min 39s. The contour and
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(a) First sign of water reaching TV at 2800s.

(b) Schematic illustration of water reaching TV at 2800s.

Figure 8.3: First sign of water below zero degrees with wind velocity 9m/s

plot over dead leg wall and center line is presented in Figure 8.3. The contour in Figure
8.3(a) show that water is cooled evenly at the wall.

From the standard cooling time calculations given in ISO 12241 [2008] and equation (5.9)
the pipe should reach TV after

t ≈ 45min42s

This is in accordance with the results observed in OpenFOAM. However, from the plot in
Figure 8.3(b) it is observed that only the wall is below the TV. The temperature change in
the centreline is consequently obtained from probe installations as mentioned in section
4.6. The simulation shows the temperature with respect to time for different locations, the
results are plotted in Figure 8.4.
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The measurements show that the temperature reaches the TV after 4120s ≈ 1h 40min,
at 1.5Di ≈ 0.078m from the dead leg inlet. This is consistent to the contour in Figure
8.5 as it can be seen that the temperature is uniformly decreasing on the wall towards the
centreline. Note that the temperature scale has been reduced to account for the differences
in the low temperatures.

Figure 8.4: Probes measurements for Case 01.a

(a) Temperature contour after 4000 s

(b) Temperature contour after 4120 s

Figure 8.5: Temperature contour when reaching TV at center line at ≈ 4000s
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8.1.1. Case 01.b � Fin analysis, wind velocity 3m/s

In this case the heat transfer coefficient is calculated to be,

htot = 25.44 [W/m2K]

which is lower than for case 01a. This is expected due to the lower wind velocity. The
contour of the temperature and the schematic plot along the center-line and wall are given
in Figure 8.6 and Figure 8.7 at time 2800s and 5000s respectively.

(a) Temperature contour after 2800s.

(b) Schematic illustration of the temperature distribution after 2800s.

Figure 8.6: Temperature profile with wind velocity 3m/s after 2800 s
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Figure 8.6 shows that there is no signs of freezing within the 2800s as opposed to case
with wind velocity at 9 m/s. The temperature stays above TV until it reaches around
5000s as Figure 8.7, and it is only the walls that have reached TV during this time. The
center line of the pipe is not cooled below the TV during the execution time when the
wind velocity is 3m/s. This is illustrated by the probe measurements in Figure 8.8.

(a) Temperature contour after 5000s

(b) Schematic illustration of the first sign of TV after 5000s.

Figure 8.7: Temperature profile with wind velocity 3m/s after 5000s.
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Figure 8.8: Probe measurements for Case 01.b

8.2. E�ect of wind velocity

The effect of the wind velocity is observed by comparing the temperature profiles through
the dead leg after 3600s for Case 01.a and 01.b. Figure 8.9 and Figure 8.10 shows the
temperature profiles at the centre and wall, respectively. Additionally, the probe measure-
ments in Figure 8.11 show that the time to reach TV is increased by a decrease in wind
velocity. More specifically, when the wind velocity is reduced by a factor of 3, the time
for the water to reach the TV is increased by approximately 34min. Hence, this result
implies that the temperature development is dependent on the heat transfer coefficient.
Note that since the temperature loss is constant from the probes at 2Di to 9Di only one
probe location needs to be presented. Hence probe 5D.

Figure 8.9: Effect of wind velocity in the center of dead leg after ≈ 1 h
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Figure 8.10: Effect of wind velocity at the wall of dead leg after ≈ 1 h

Figure 8.11: Probe measurements at 5Di for case 01a and 01b

8.3. Veri�cation and discussion of Case 01

To verify the latter case method, the result is compared to both the exact analytical solution
for a Fin with neglected end [Cengel, 2006], and the numerical solution developed with
the TDMA [Aker Solutions, 2011]. Figure 8.12(a) and Figure 8.12(b) present the center-
and wall-line with the analytical solution respectively. The results are consistent.
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8.3. VERIFICATION AND DISCUSSION OF CASE 01

(a) Comparison of the analytical solution, numerical and the center line of the Laplace
simulation (Case 01)

(b) Comparison of the analytical solution, numerical and at the wall of the Laplace simu-
lation (Case 01)

Figure 8.12: Comparison of the analytical solution, numerical and the Laplace simulation

However, in Figure 8.12(a) it seems like the temperature does not reach the TV at the
same length as the analytical solution, this indicates the 3D effect of the CFD simulation.
In addition, Figure 8.12(b) shows that the temperature at the wall starts at 45 ◦C and not
50◦C. This may be due to the interface between the wall and the inlet. Subsequently, the
wall boundary conditions initiate a temperature loss also at the interface. Figure 8.13 is a
schematic explanation of this phenomenon.
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CHAPTER 8. RESULT AND DISCUSSION

Figure 8.13: Schematic explanation of the interface boundary conditions

8.4. Case 02 � Normal working conditions

When creating a realistic model it is important to make it as stable as possible to ensure
reasonable results. Therefore, the case is divided into two parts, 02a and 02b. The first
part will create a fully developed velocity field to increase the quality of the initial velocity
conditions. The second part will execute the case file and investigate the circulation and
heat transfer in the dead leg.

8.4.1. Case 02.a � Develop a potential �ow �eld

This 1st part uses the potential flow solver to create a fully developed flow field. The
simulation was executed for several values of the NonOrthogonalCorrector. The result
showed that the flow did not get fully developed until the corrector was set to the maxi-
mum number of 20. The velocity field is presented in Figure 8.14 and Figure 8.15. The
result shows a fully developed flow.

Figure 8.14: Contour of the velocity field from potential flow theory
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8.4. CASE 02 – NORMAL WORKING CONDITIONS

Figure 8.15: Velocity profile developed from potential flow theory

8.4.2. Case 02.b - Heat transfer&�ow analysis

The 2nd part of this case executes the buoyantBoussinesqSimpleFoam solver. The results
show the temperature in the pipe structure, in addition to the flow through the main pipe
and the circulation of fluid in the dead leg. As the solver is a steady-state solver it will
converge to a final solution. This implies that the converged state will be stable as long
as normal working conditions are preserved. Figure 8.16 shows the contour of the final
temperature field.

Figure 8.16: Contour of the temperature distribution for the converged solution
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CHAPTER 8. RESULT AND DISCUSSION

Figure 8.17: The temperature distribution at wall and center line of dead leg

Figure 8.17 illustrates a schematic temperature curve through the dead leg, in the z-
direction. It shows an interesting trend which may be related to the circulation effect.
It is observed that the temperature profile in the dead leg is stable with minor temperature
loss until it reach a distance of 0.36m≈ 6.8Di from the inlet. At this instance the temper-
ature drops rapidly before it again stabilises at around 35◦C. The results imply that there
is no danger of temperature reaching TV when working under normal conditions.

The velocity field in Figure 8.18 shows the trend of the circulation. Figure 8.18(b) shows
the vertical velocity and describes the magnitude of the circulation. Where the blue color
indicate the downward flow in the dead leg, having a maximum speed of |0.84| m/s
while the red color indication show the upward velocity of the circulation which reach a
maximum velocity of |0.52| m/s. The circulation magnitude shown in the contours do not
seem to go as far as 6.8Di. Consequently, a closer investigation of the vertical velocity is
shown in Figure 8.18(c) and Figure 8.19. The vertical velocity for each diameter segment
is plotted through the dead leg and the circulation is indicated with velocity vectors in the
two figures respectively. Figure 8.18(c) shows that the vertical velocity decrease for each
segment until it reach 6Di where the water is almost stagnant. Thus investigating Figure
8.19 it is observed some circulation lines all the way up to 6.8 Di. This is consistent to
Figure 8.17 and it implies that the temperature is maintained due to the circulation, even
if it is just small vortex motions.
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8.4. CASE 02 – NORMAL WORKING CONDITIONS

(a) The magnitude of the velocity field

(b) The velocity field developed in z-direction

(c) The vertical velocity plotted for diameter segments

Figure 8.18: The velocity field in the T-junction for the final converged state
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Figure 8.19: The circulation presented by velocity vectors

8.5. Veri�cation and discussions of Case 02

As described briefly in the introduction Habib et al. [2005a] studied the circulation effect
in the dead leg for several length/diameter (L/D) ratios for an oil/water mixture at an inlet
velocity of 1 m/s. They obtained their results from both simulations in Fluent and exper-
iments in a flow loop. This is the closest to a realistic case available today. Therefore, a
simulation is performed in OpenFOAM with increased similarity to the experiment done
in Habib et al. [2005a]. The fluid properties for viscosity should be changed and the
velocity decreased. However, as Habib et al. [2005a] do not state any value for their vis-
cosity it is chosen to perform a qualitative investigation. This is done by changing the
inlet velocity to 1 m/s in Case 02. The results which are obtained are compared with the
velocity profiles in Habib et al. [2005c].

(a) Circulation obtained
from the CFD-simulation

(b) Circulation from
Habib et al. [2005a]

Figure 8.20: Velocity magnitude of circulation in the dead leg
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8.5. VERIFICATION AND DISCUSSIONS OF CASE 02

(a) Vertical velocity plotted from result retrieved in OpenFOAM

(b) Vertcal velocity from Habib et al. [2005c] report
on effect of geometry in vertical dead legs

Figure 8.21: The vertical velocity in the dead leg for each diameter segment

Figure 8.20 shows a comparison of the circulating water in the dead leg. Habib et al.
concluded that the circulation would cease to exist as the distance from the dead leg inlet
increases above ≈ 3Di. This is also seen in the results obtained in OpenFOAM, Figure
8.20(a). In addition, Habib et al. states that up to 5Di they observed vortex motion, this
vortex effect is not as clear from the result obtained in OpenFOAM. This may be due to
the difference in viscosity and the two phase mixture in Habib et al.’s experiment.

Figure 8.21 also implies a good qualitative agreement between the results in OpenFOAM
and the results by Habib et al. Note that the velocity profiles are mirrored due to the
orientation of the coordinate axis. The results coincide with Habib et al.’s conclusion
that after 3Di the vertical velocity is approximately zero. As the velocity is decreased
from Case 02 it is observed that the circulation field is decreased. The effect this has on
the temperature is illustrated in Figure 8.22, comparing the result with Figure 8.17 it is
observed that the temperature falls rapidly much closer to the dead leg inlet.
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Figure 8.22: Schematic presentation of the temperature through the dead leg when the internal
velocity is 1m/s

8.6. Case 03 � Shut down after normal working

conditions

This case simulates a process shut down. The initial temperature field is implemented
from Case 02 and it is the developed steady state temperature which is obtained under
normal working conditions. The results are found from probe measurements in both main
pipe and dead leg. These illustrate the temperature loss over the executed time interval.
Figure 8.23 shows how the temperature develops in the main pipe. The probes are located
in the center and at the wall of the main pipe. The results show that the temperature starts
to fall at the wall shortly after execution. During the execution time the temperature in
the center experiences a temperature loss of 26◦C.

Figure 8.23: Measurement taken at probes located in the main pipe
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8.6. CASE 03 – SHUT DOWN AFTER NORMAL WORKING CONDITIONS

Figure 8.24 shows the probe measurement of temperature in the center of the dead leg.
The first half and the second half of the probes is presented in the top and bottom sub
figure respectively. The result implies that all probes located more than 1Di from the inlet
eventually goes below TV. The probes located in the lower most part of the dead leg, from
≈ 7Di, goes below TV after approximately 3500 s. The probes located between 1Di and
6Di goes below TV simultaneously after approximately 4100 s. At this time only the
inlet is above TV. Figure 8.25 shows the temperature contour 2800s after shut down was
proceeded. The contour shows that the temperature has reached the TV in the dead leg,
and the main pipe has lost some of its initial temperature. The plot in Figure 8.26 shows
that the temperature has reached the threshold value close to the wall. It may also be
observed that the part of the dead leg where L/Di > 6 the temperature is approximately
3◦C lower that the rest of the deadleg wall. This is due to the effect of circulation which
was observed in Case 02, and then transferred to this case through the initial temperature
field.

Figure 8.24: Measurement taken at probes located in the dead leg
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Figure 8.25: Temperature contour 2800s after shut down

Figure 8.26: Temperature distribution in the dead leg 2800s after shut down

8.7. Industrial vs. realistic approach

As this thesis was in collaboration with Aker Solutions, one of the objectives was to com-
pare the industrial approach against a realistic case. The industrial approach was similar
to Case 01, and the realistic shut down was Case 03. Case 03 has been developed from the
second case as the initial temperature field was obtained. This implies that the initial tem-
perature field did not have the uniform initial temperature as Case 01. Figure 8.27 shows
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8.7. INDUSTRIAL VS. REALISTIC APPROACH

the temperature over time at a distance of 5Di, 7Di from the inlet and at end respectively.
It may be observed in Figure 8.27(b) and Figure 8.27(c) that the initial temperature for
the T-junction start at 37◦C and 32◦C respectively. This effect is a consequence of the
stagnant fluid located for distances, L > 6Di, from the dead leg inlet. The result obtained
shows a good agreement as it only is about 10% difference in the time which the water
reaches TV. The reason why it is said to be a good agreement is the complexity of the
OpenFOAM simulation. If such a complex process reach the approximate result as can
be obtained by the Fin-analysis. Then the cost of running a complex system is unneces-
sary and the uncertainty of hidden errors will be decisive compared to the difference of
the two solutions. However, the use of CFD-studies may be useful to provide a detailed
knowledge of temperature behaviour during working hours.
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CHAPTER 8. RESULT AND DISCUSSION

(a) [Measurement of temperature over time at a location of 5Di from the dead
leg inlet

(b) Measurement of temperature over time at a location of 7Di from the dead
leg inlet

(c) Measurement of temperature over time at the end of dead leg

Figure 8.27: Measurement of the temperature over time for 5Di, 7Di and end for Case
01a and Case 03
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9. Conclusion

This thesis investigates the temperature development in dead leg for several approaches.
The conclusion of the result can however be summarized as follows,

• The CFD model of the Fin-analysis is verified with the analytical solution and it is
a 3D model of the existing industrial approach.

• The wind velocity has a significant effect on the temperature development in the
pipe. This implies that it is important to take measures to prevent the wind effect
when a shut down is conducted.

• The circulation effect prevents the fluid in the dead leg to reach TV. Furthermore,
this indicates that the water in the dead leg only is stagnant at the very end. The
design and length of the dead leg may be decided on from the calculated velocity to
ensure a minimum of stagnant water.

– u = 2.86 m/s→ water is stagnant when LD/Di > 6 from dead leg inlet.

– u = 2.0 m/s→ water is stagnant when LD/Di > 5 from dead leg inlet.

– u = 1.0 m/s→ water is stagnant when LD/Di > 4 from dead leg inlet.

• The shut down occurring after a normal operation shows that the temperature loss
not only occurs in the dead leg, but also the main pipe.

• The comparison of the industrial approach and the realistic simulation seem to be in
accordance, as there is only about 10% different in the time to reach TV. This imply
that the existing industrial approach is sufficient when accounting for the ALARP
principle. However, the overall conclusion is that the temperature loss when a shut
down is conducted lead to rapid heat loss, and care must be taken.

• It is recommended that when conducting a planned shut down, the weather condi-
tions must be taken into considerations. If an unexpected shut down should occur
during periods of cold weather and high wind velocities. Measures such as wind
shielding must be performed as long as the temperature is above design tempera-
ture. Also the design temperature should be set from weather data at the current
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CHAPTER 9. CONCLUSION

location.

9.1. Further work

This CFD model is created so that similar problems may be investigated, however, some
important aspects should be taken into account,

• The CFD-model has been developed from NORSOK-standard design criteria, this
might not be adequate. To actually be sure that the design temperature is appropri-
ate, historic weather data from the current platform location should be used.

• As the grid independence test shows some deviations for temperature, this should
be investigated more thoroughly, making sure that the results do not depend on the
grid distribution.

• To fully validate the model experiments with similar parameters should be per-
formed to see that the circulation and temperature measurements are in agreement
with the result from this simulation.

• A parameter study of wall thickness and material effect should be investigated. This
can be performed by the use of this developed model.

• Further studies of the velocity and circulation field should be investigated to define
a design criterion for dead leg lengths.

• Tests for different mediums should also be investigated to determine the tempera-
ture development and velocity field.

• As the model is exposed to the external overall heat transfer coefficient this might
lead to inadequate cooling rates for different wind velocities. Consequently a model
with multiphase flow could be created and compared to the existing model.
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A. Project Plan

Project title:
Numerical and Analytical Study of Steady State and Transient Heat Transfer in Liquid
Filled Dead legs.

Background:
Why look into this? What is the reason for asking questions regarding this topic? How
can this be solved in a good manner? How do different scenarios change the temperature
profile? Is the difference in result rather large? What kind of standards and information
exists today?

Background of this project is that the knowledge of how the temperature distribution in a
dead leg is not sufficient. The formal way of preceding the questions of dead leg is today
based on experiences. If a proper framework of simulating the temperature distribution
this would increase the integrity of the whole pipe system.

The objective of the thesis is to develop a framework for estimating the heat transfer
between liquid filled main line and dead legs such as drain points, vacuum breakers, tie in
points etc. Establish an empirical model to verify against CFD simulations.

Problem formulation:
How does the heat transfer distribution evolve in a dead leg when subjected to both steady
and transient flow scenario? What limits does this give the dead leg design/parameters?

Main objectives and sub-objectives:

Create a framework for estimating the heat transfer / temperature distribution

1 Make a literature review

2 Establish an empirical model for verification

3 Create a CFD model for different scenarios and parameters

Make this model a usable tool for people working with similar cases.
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Project activities:

1 Find relevant literature regarding general heat transfer, both steady state and tran-
sient. Do some research on what research already done on the subject.

2 Establish the empirical model both for steady state and transient flow to find the
temperature profile.

3 Use CFD simulating program, OpenFOAM to create geometry of the deadleg and
finding the temperature distribution for different scenarios.

4 Do an analysis on how the CFD simulation is compared to the analytical empirical
model. See if new results can be seen in respect with old research.

5 Make a short procedure on how to use the model in real work situations

Research methods:
The report perform both a theoretical and experimental studies. When saying experimen-
tal this is to be understood as a computational study, using simulation tools to create an
understanding of the physical problem. Then the simulated results should be compared
to either old articles regarding a similar problem or to a new empirical model created for
this purpose.

Work organization and resources:
As the author is employed in the external company, Aker Solutions, therefore an office
and computer is provided from them. The most important resource for this master thesis
is a computer that is able to run the software for simulation, namely OpenFOAM. The
writer also intends to use the text editing program called LaTex if this is okay by the
supervisor. The text editing program, Word, might be used in writing status reports and
for adding ideas that are not yet to be implemented in the final report template.

Supervisor and advisor (UiS and Industrial company):
The representative supervisor from UIS is Mr. Bjørn H. Hjertager and the representative
from Aker Solutions is Mr. Jørgen Osenbroch.

Reporting
Meeting with the supervisor is to be held every second week, and drafts 2 drafts to be
handed in before the final report is issued.

Time schedule of activities:
19. Jan. – meeting with supervisor 01. Feb. – Hand in a formal contract and problem
definition
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Week 4 – Meeting with external advisor to discuss problem definition and tentative plan.
Monthly status meeting between the author of the thesis and external advisor,

Discussion concerning progress and developed result should be performed every second
week between the author and supervisor. If it at times is regarded as not necessary the
discussion can be postponed until the next scheduled meeting. If the supervisor wants to
have a status report before each meeting, this should be agreed on.

Since the master thesis is a 30 ECTS. This equals about 900 working hours. Since the
thesis takes place from the 01.02.12 until the 15.06.12 this would equal working days of
9.5 hours a day. However, as there is also some work being executed before the official
start, this can be subtracted from the 900 hours. As the normal week is 5 days an 7.5 hour
a day this leads to a total amount of 712.5 hours. Including some work in the weekend
this will eventually be fulfilled. Therefore the working plan for this thesis will be about
7.5 hours a day including 7.5 hours during the two days in the weekend. This gives a total
of 855 hours.

The restoring 55 hours is been used before the official start date. They have been used
for literature research regarding the subject, development of report template, planning the
thesis, defining the objectives and problem definition. Figure A.1 shows the Gantt chart
created to plan the activities during the project execution.

References:
References will be kept updated at all times and referenced to as needed.
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Figure A.1: Gant chart of the planned activities and time schedule
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B. Initial Conditions

Velocity, U:

Table B.1: Initial conditions for velocity

Inlet Outlet WallsM WallsD Dead end

Boundary
Condition

FixedValue InletOutlet FixedValue FixedValue FixedValue

Inletvalue $internal
Field

Value Uniform
(2.86 0 0)

Uniform
(2.86 0 0)

Uniform (0
0 0)

Uniform (0
0 0)

Uniform (0
0 0)

Internal
field

uniform (0 0 0)

Pressure, p:

Table B.2: Initial conditions for pressure, p

Inlet Outlet WallsM WallsD Deadend

Boundary
Condition

zeroGradient FixedValue zeroGradient zeroGradient zeroGradient

Value Uniform 0
Internal
field

uniform 0
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Turbulent kinetic Energy, k:

Table B.3: Initial conditions for turbulent kinetic energy, k

Inlet Outlet WallsM WallsD Deadend

Boundary
Condition

turbulent
Intensity
Kinetic
Enery Inlet

InletOutlet kqRWall
Function

kqRWall
Function

kqRWall
Function

Intensity/
Inletvalue

0.06 uniform
0.0197

Value uniform
0.0197

$internalField uniform
0.0197

uniform 0 uniform 0

Internal
field

uniform 0.0197

Turbulent dissipation, ε :

Table B.4: Initial conditions for turbulent dissipation, ε

Inlet Outlet WallsM WallsD Deadend

Boundary
Condition

turbulent
Mixing
Length
Dissipation
RateInlet

InletOutlet epsilonWall
Function

epsilonWall
Function

epsilonWall
Function

MixingLength/
Inletvalue

0.00714 uniform
0.0634

Value uniform
0.0634

$internalField uniform
0.0634

uniform 0 uniform 0

Internal field uniform 0.0634
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Turbulent viscosity, νt:

Table B.5: Initial conditions for νt

Inlet Outlet WallsM WallsD Deadend

Boundary
Condition

calculated calculated nutWall
Function

nutWall
Function

nutWall
Function

Value Uniform
0.00055

Uniform
0.00055

Uniform
0.00055

Uniform
0.0

Uniform
0.0

Internal
field

uniform 0.00055

Turbulent diffusion, αt:

Table B.6: Initial conditions for αt

Inlet Outlet WallsM WallsD Deadend

Boundary
Condition

calculated calculated alphatWall
Function

alphatWall
Function

alphatWall
Function

Value Uniform 0 Uniform 0 Uniform 0 Uniform 0 Uniform 0
Internal
field

uniform 0
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Temperature, T :

Table B.7: Initial conditions for Temperature, T

Inlet Outlet WallsM WallsD Deadend

Boundary
Condition

FixedValue InletOutlet/
zeroGradient

groovyBC groovyBC zeroGradient

Inletvalue $internalField
Value uniform

323
$internalField uniform 323 uniform 323

Internal
field

uniform 323

Table B.8: Variables for GroovyBC

GroovyBC - variables
Parameter Main pipe Dead leg

htot [W/m2 K] at 9 m/s 25.53 48.39
htot [W/m2 K] at 3 m/s 13.36 25.44

ρ [kg/m3] 998.5
cp [J/kgK] 4185

k = DTρcp [W/mK]
kt = κEFFρcp [W/mK]

Tinf [K] 266

NOTE that in groovyBC mixed boundaries, the fractionExpression is expressed as,

1
1+ k

mag(Delta())

×htot → k
dT
dn

+h∆T = 0 (B.1)
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C. Governing Equations

From fluid mechanics the governing equations for incompressible flow and constant trans-
port properties are yielding. These are here presented in Cartesian coordinates as this is
the approach used in OpenFOAM. The equations and information in this chapter are re-
trieved from White [2006].

C.1. Vector notation and Indicial notation

The indicial i = j = k = [1,2,3] = [x,y,z]. The usual vector differential operation are ex-
pressed as,

Gradient operator,O, (C.1)

O=
∂

∂xi
=

[
∂

∂x1
,

∂

∂x2
,

∂

∂x3

]
=

[
∂

∂x
,

∂

∂y
,

∂

∂ z

]
(C.2)

Divergence operator,O · , (C.3)

O · =
∂

∂xi
=

∂

∂x1
+

∂

∂x2
+

∂

∂x3
=

∂

∂x
+

∂

∂y
+

∂

∂ z
(C.4)

Laplacian operator,O2, (C.5)

O2 =
∂ 2

∂x2
i
=

∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

∂ 2

∂x2
3
=

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 (C.6)

Note that ∂x2
i = ∂xi∂xi and O2 = O ·O
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C.2. Equation from the laws of conservation

Continuity equation:

O ·V = 0 (C.7)

where
V = u,v,w

Navier-Stokes:

DV
Dt

=− 1
ρ

∇g+
1
ρ

∇ ·τi j (C.8)

Energy eguation:

ρcp
DT
Dt

= kO2T +Φ (C.9)

where

φ = µ(
∂ui

∂x j
+

∂u j

∂xi
)

∂ui

∂x j

C.3. Turbulence equation

Reynolds anverage equation
This section is retrieved from Versteeg and Malalasekera [2007] The transport properties
is assumed constant for incompressible turbulent flow however, there is some possible
significant fluctuation, therefore, the properties is divided into a fluctuating and an average
part,

u = u+u′ p = p+ p′ (C.10)

v = v+ v′ T = T +T ′ (C.11)
w = w+w′ (C.12)

Then if considering the incompressible continuity equation (C.7), substituting u, v and w
from equation (C.12) and taking the time average, the continuity becomes satisfied for the
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mean velocities,

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (C.13)

then substituting equation (C.13) from equation (C.7) without taking the time average this
gives the continuity satisfied for the fluctuating velocities.

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂ z
= 0 (C.14)

This gives two seperate continuity equations for the mean and fluctuating velocities.

Now looking at the Navier-Stokes equation (C.8) and preceding the same procedure to
present it for the turbulent properties.

ρ
DV
Dt

+ρ
∂

∂x j
(u′iu

′
j) = ρg−∇p+µ∇

2V (C.15)

In this the new term u′iu
′
j is expressed presenting 6 new unknowns to account for. u′iu

′
j this

is the turbulent inertia tensor, also called the Boussinesq hypotesis,

u′iu
′
j = τ

R
i j = νt

(
∂ui

∂x j
+

∂u j

∂xi
+

∂uk

∂xk
δi j

)
− 2

3
kδi j

where τi j is the Reynolds stress, νt is the turbulent eddy viscosity, k is the turbulent kinetic
energy an δi j is the Kronecker delta function.

The turbulent momentum equation yield,

∂ui

∂ t
++

∂

∂x j

(
uiu j

)
=− ∂

∂xi

(
p

ρ0

)
+

∂

∂x j

{
ν0

[(
∂ui

∂x j
+

∂u j

∂xi

)
− 2

3

(
∂uk

∂xk

)
δi j

))
}

(C.16)

The turbulent energy equation (C.17) is obtained by taking the time average of the energy
equation (C.9),

ρcp
DT
Dt

=− ∂

∂xi
(qi)+Φ (C.17)

where Φ is the total dissipation term and qi is the total heat flux vector expressed by
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equation (C.18) and (C.19) respectively.

Φ =
µ

2
(

∂ui

∂x j
+

∂u′i
∂x j

+
∂u j

∂xi
+

∂u′j
∂xi

)2 (C.18)

qi =−k
∂T
∂xi︸ ︷︷ ︸

Laminar

+ρcpu′iT ′︸ ︷︷ ︸
Turbulent

(C.19)
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D. Flow chart SIMPLE-algorithm

Figure D.1: Flow chart for the SIMPLE algorithm [Versteeg and Malalasekera, 2007].
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E. Flow regime

Figure E.1: Boundary layer formation on a cylindrical cross section exposed to cross flow [Sumer
and Fredsøe, 2006].
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F. Matlab calculations

1 %% Calculation using standard theory
2

3 clear all;
4 close all;
5 clc
6

7 %% Parameters
8

9 % Pipe parameters
10 L= 0.5; %[m]
11 % Parameters for a 2" XS schedule pipe in stainless steel
12 Di = 0.052; %[m]
13 De = 0.060; %[m]
14 tw = 0.00391;
15 ks = 36.9; %[W/m*C]
16 Ae = 2*3.14*De/2 * L;
17 Ai = 2*3.14*Di/2 * L;
18 V = 3.14*Di^2 /4 * L;
19

20 % Properties of Water
21 Tiw = 50+273; %[K]
22 RHO_w = 998.5; %[kg/m^3]
23 cp = 4185; %[J/kgK]
24 m =RHO_w*V; %[kg]
25 kw = 0.6; % conductivity of water [W/mK]
26

27 % Properties of Ice
28 RHO_i = 920; %[kg/m^3]
29 hfr = 334000; %[J/kg]
30 Tfr = 0+273; %[K]
31 mi =RHO_i*V;
32

33 % Properties of outside environment
34 Te = −7+273; %[K]
35 rhoa = (1.3947+(1.1614−1.3947)*((266−250)/(300−250)));%[kg/m^3]
36 Ua = 9;
37 nua = (11.44 + (15.89−11.44)*((266−250)/(300−250)))*10^(−6); %[m^2/s]
38 mua = (159.6 + (184.6−159.6)*((266−250)/(300−250)))*10^(−7); %[kg/ms] kg
39 ka = (22.3 + (26.3−22.3)*((266−250)/(300−250)))*10^(−3); %[W/mK]
40 DTa = (15.9+(22.5−15.9)*((266−250)/(300−250)))*10^(−6);%[m^2/s]
41 cpa = (1006+(1007−1006)*((266−250)/(300−250)));%[J/kgK];
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42 Pra = 0.720+(0.707−0.720)*((266−250)/(300−250)); %dimensionless
43

44 %% External flow
45 % 2" cylinder in cross section − deadleg
46

47 Rea =Ua*De / nua
48

49 if Rea ≤ 40000;
50 Ca = 0.193;%0.027; % From table 7.44 p 402
51 ma = 0.618;%0.805; % From table 7.44 p 402
52 else
53 Ca = 0.027; % From table 7.44 p 402
54 ma = 0.805; % From table 7.44 p 402
55 end
56 n = 1/3;
57 if Rea*Pra ≥ 0.2;
58 Nua = 0.3 + (0.62*Rea^0.5*Pra^(1/3))/(1+ (0.4/Pra)^(2/3))^(1/4) ...
59 * (1 + (Rea/282000)^(5/8))^(4/5);
60 else
61 Nua = Ca*Rea^(ma)*Pra^(n);
62 end
63 Nua
64

65 % Or since turbulent flow
66 Nusselt = 0.023*Rea^0.8*Pra^n
67

68 % For prandtl number > 0.7
69 ha = Nua*ka / De
70

71

72 % 4"cylinder in cross section
73 Lm = 2;
74 Dm = 0.1143
75 Dim = 0.1023
76 twm = 0.006;
77 Rem = Ua*Dm / nua
78

79

80

81

82 if Rem ≤ 40000;
83 Cam = 0.193;%0.027; % From table 7.44 p 402
84 mam = 0.618;%0.805; % From table 7.44 p 402
85 else
86 Cam = 0.027; % From table 7.44 p 402
87 mam = 0.805; % From table 7.44 p 402
88 end
89 n = 1/3;
90 if Rem*Pra ≥ 0.2;
91 Num = 0.3 + (0.62*Rea^0.5*Pra^(1/3))/(1+ (0.4/Pra)^(2/3))^(1/4)...
92 * (1 + (Rea/282000)^(5/8))^(4/5);
93 else
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94 Num = Cam*Rea^(mam)*Pra^(n);
95 end
96 Num
97

98 hm = Num*ka / Dm
99

100 A1 = 2*3.14*De/2*L;
101 A2 = 2*3.14*Dm/2*Lm;
102 %Overall Heat transfer
103 %deadleg'
104 htot = 1/(tw/ks + 1/ha)
105 % main pipe
106 htotm = 1/(twm/ks + 1/hm)
107

108 Rc = log((De)/(Di))/(2*3.14*ks)
109 h2 = 1/(ha*3.14*De)
110 Rtot = (Rc + h2) % [mK/W]
111

112 Rcm = log((Dm)/(Dim))/(2*3.14*ks) % [mK/W]
113 h2m = 1/(hm*3.14*(Dm))
114 Rtotm = (Rcm + h2m)
115 Utot = 1/Rtot %[w/mK]
116 Utotm = 1/Rtotm % [W/mK]
117

118 % Elbow
119 A3 = 2*3.14*De/2*0.9;
120

121

122 %% Internal flow
123 U = sqrt((2*998.5*9.81*0.418)/998.5); % Bernoullie, slope at a height 0.418moh.
124 Lm = 2; %[m]
125 mui = (577 + (528−577)*((323−320)/(325−320)))*10^(−6); %[kg/ms]
126 ki = 0.640 + (0.645−0.640)*((323−320)/(325−320)); %[W/mK]
127 cpi = (4180+(4182−4180)*((323−320)/(325−320)));%[J/kgK];
128 Pri = 3.77+(3.42−3.77)*((323−320)/(325−320)); %dimensionless
129 nui = mui/RHO_w
130 Rei = U*Dm / nui
131 pi = 3.14;
132 Aei = 2*3.14*Dm/2 * Lm;
133 Aii = 2*3.14*Dim/2 * Lm;
134 V = 3.14*Dim^2 /4 * Lm;
135 massF = Aii*U ;
136 Dtw = ki/(RHO_w*cpi)
137 % Assuming the flow is fully developed in the main pipe
138

139

140

141

142 %% Turbulence parameters
143

144 %kinetic turbulent energy,
145 kt = 2/3*(U*0.06)^2
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146 %epsilon,
147 cmu = 0.09;
148 lel = 0.07*Dim;
149 epsilon = cmu^(3/4)*(kt^(3/2))/lel
150 nut = cmu*kt^2/epsilon
151

152 % Deadleg
153 Ud = 0;
154 %kinetic turbulent energy,
155 ktd = 2/3*(Ud*0.06)^2
156 %epsilon,
157 leld = 0.07*Di;
158 epsilond = cmu^(3/4)*(ktd^(3/2))/lel
159 nutd = cmu*ktd^2/epsilond
160

161

162

163 %% Time to freez following standard BS ISO:12241
164 PHIT = Utot*De*(50 − (−7)) %W =J/s
165 PHI = Utot*L*(50 − (−7))*3.14*De %W/mK *m*K*m =Wm = m*J/s
166

167 % Time before it start to freez
168 Tf = 0;
169 mp = 7978*V;
170 cpp = 480;
171 theta = log((50−(−7))/(0−(−7)));
172 %t = (cp*m*(50−0))/(PHI)
173

174 t=((50−(−7))*(m*cp+mp*cpp)*theta)/(PHI*3600) % Ws/Wm
175

176 % Time to freez
177 f = 100;
178 tfr = f/100 * (RHO_i*3.14*Di^2*hfr)/(PHIT*3600*4)
179

180

181 %% RESULT OPENFOAM AND EXCEL SHEET
182

183 OF=xlsread('fin9c.xls','A2:A102'); %temperature from OF
184 ex=xlsread('Ctabell.xls','D2:D102'); %teperature from excel spreadsheet
185 OFw=xlsread('fin9w.xls','A2:A102'); %temperature from OF
186

187 x=xlsread('Ctabell.xls','F2:F102'); %length scale
188 L = 0*x;
189

190 % Exact results
191 P = pi*De ;
192 le = 0.5;
193 Ac = pi*(De^2/4);
194 % Ni = 1−zeta.^2;
195 m2 = (ha*P)/(kw*Ac);
196 mu2 = m2*le^2;
197 m=sqrt(m2);
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198

199 Ti = 323;
200 Theta(1) = Ti−Te;
201 %IF END IS INSULATED
202 for i= 1:length(x)
203 T(i) = cosh(m*(le−x(i))) / (cosh(m*le)) * (Ti−Te) + Te;
204 i=i+1;
205 end
206 TC=T−273;
207

208

209 figure(1)
210 plot(x,OF,'rx','LineWidth',2);
211 hold on;
212 plot(x,ex,'b+','LineWidth',2);
213 hold on;
214 plot(x,TC,'g','LineWidth',2);
215 hold on;
216 plot(x,L,'−−k','LineWidth',0.5);
217 hold off;
218 legend('LaplacianFOAM temp. at pipe center','TDMA−algorithm', ...
219 'Analytical solution','TV');
220 xlabel('Length [m]');ylabel('Temperature [^oC]');
221

222 figure(2)
223 plot(x,OFw,'rx','LineWidth',2);
224 hold on;
225 plot(x,ex,'b+','LineWidth',2);
226 hold on;
227 plot(x,TC,'g','LineWidth',2);
228 hold on;
229 plot(x,L,'−−k','LineWidth',0.5);
230 hold off;
231 legend('LaplacianFOAM temp. at pipe wall','TDMA−algorithm', ...
232 'Analytical solution','TV');
233 xlabel('Length [m]');ylabel('Temperature [^oC]');
234

235 %% Comparison with wind velocity at time 3600s.
236

237 % Center line
238 T1=xlsread('3600c9ms.xls','A2:A102'); %temperature from 9m/s
239 T2=xlsread('3600c3ms.xls','A2:A102'); %teperature from 3m/s
240 xg=xlsread('fin3.xls','C2:C102'); %length scale
241

242 % Wall
243 T3=xlsread('3600w9ms.xls','A2:A102'); %temperature from 9m/s
244 T4=xlsread('3600w3ms.xls','A2:A102'); %teperature from 3m/s
245

246 % Center
247

248 figure(3)
249 plot(xg,T1,'b','LineWidth',2);
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250 hold on;
251 plot(xg,T2,'r','LineWidth',2);
252 hold on;
253 plot(xg,L,'−−k')
254 hold off;
255 %AXIS([0 0.5 −10 50]);
256 legend('Temperature distribution, U_w = 9m/s',...
257 'Temperature distribution, U_w = 3m/s','TV');
258 xlabel('Length [m]');ylabel('Temperature [^oC]');
259

260 % Wall
261

262 figure(4)
263 plot(xg,T3,'b','LineWidth',2);
264 hold on;
265 plot(xg,T4,'r','LineWidth',2);
266 hold on;
267 plot(xg,L,'−−k')
268 hold off;
269 %AXIS([0 0.5 −10 50]);
270 legend('Temperature distribution, U_w = 9m/s',...
271 'Temperature distribution, U_w = 3m/s','TV');
272 xlabel('Length [m]');ylabel('Temperature [^oC]');
273

274

275

276

277 %% Grid independence
278

279 %temperature
280 M1=xlsread('Ny170.xls','A2:A101'); %temperature from 170 000 cells
281 M2=xlsread('NY240.xls','A2:A101'); %teperature from 240 000 cells
282 M3=xlsread('Ny280.xls','A2:A101'); %temperature from 280 000 cells
283 M7=xlsread('Ny310.xls','A2:A101'); %temperature from 310 000 cells
284

285

286 % kinetic energy
287 M4=xlsread('Ny170.xls','C2:C101'); %temperature from 170 000 cells
288 M5=xlsread('NY240.xls','B2:B101'); %temperature from 240 000 cells
289 M6=xlsread('Ny280.xls','B2:B101'); %temperature from 280 000 cells
290 M8=xlsread('Ny310.xls','C2:C101'); %temperature from 310 000 cells
291

292 xg=xlsread('Ny280.xls','I2:I101'); %length scale
293

294

295 %velocity
296 M1u=xlsread('Ny170.xls','F2:F101'); %temperature from 170 000 cells
297 M2u=xlsread('NY240.xls','E2:E101'); %teperature from 238 000 cells
298 M3u=xlsread('Ny280.xls','E2:E101'); %temperature from 283 000 cells
299 M4u=xlsread('Ny310.xls','F2:F101'); %temperature from 310 000 cells
300

301 xg=xlsread('Ny280.xls','I2:I101'); %length scale
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302

303

304

305

306 figure(5)
307 plot(xg,M1,'r','LineWidth',2);
308 hold on;
309 plot(xg,M2,'b','LineWidth',2);
310 hold on;
311 plot(xg,M3,'g','LineWidth',2);
312 hold on;
313 plot(xg,M7,'k','LineWidth',2);
314 hold off;
315 legend('N=170 000','N=238 000','N=283 000','N=310 000');
316 xlabel('Length [m]');ylabel('Temperature [^oC]');
317

318 figure(6)
319 plot(xg,M4,'r','LineWidth',2);
320 hold on;
321 plot(xg,M5,'b','LineWidth',2);
322 hold on;
323 plot(xg,M6,'g','LineWidth',2);
324 hold on;
325 plot(xg,M8,'k','LineWidth',2);
326 hold off;
327 legend('N=170 000','N=238 000','N=283 000','N=310 000');
328 xlabel('Length [m]');ylabel('Turbulent Kinetic energy [m^2/s^2]');
329

330 figure(7)
331 plot(xg,M1u,'r','LineWidth',2);
332 hold on;
333 plot(xg,M2u,'b','LineWidth',2);
334 hold on;
335 plot(xg,M3u,'g','LineWidth',2);
336 hold on;
337 plot(xg,M4u,'k','LineWidth',2);
338 hold off;
339 legend('N=170 000','N=238 000','N=283 000','N=310 000');
340 xlabel('Length [m]');ylabel('Velocity [m/s]');
341

342

343

344

345 %% Probe measurement
346

347 %DAEDLEG − fin 9m/s
348 D1 = xlsread('FIN9ms.xls','D5:D6004'); %probe (0 0 0) 0
349 D2=xlsread('FIN9ms.xls','F5:F6004'); %probe (0 0 −0.026) 0.5D
350 D3=xlsread('FIN9ms.xls','H5:H6004'); %probe (0 0 −0.078) 1.5D
351 D4=xlsread('FIN9ms.xls','J5:J6004'); %probe (0 0 −0.104) 2D
352 D5=xlsread('FIN9ms.xls','L5:L6004'); %probe (0 0 −0.13) 2.5D
353 D6=xlsread('FIN9ms.xls','N5:N6004'); %probe (0 0 −0.156) 3D
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354 D7=xlsread('FIN9ms.xls','P5:P6004'); %probe (0 0 −0.2085) 4D
355 D8=xlsread('FIN9ms.xls','R5:R6004'); %probe (0 0 −0.261) 5D
356 D9=xlsread('FIN9ms.xls','T5:T6004'); %probe (0 0 −0.3135) 6D
357 D10=xlsread('FIN9ms.xls','V5:V6004'); %probe (0 0 −0.366) 7D
358 D11=xlsread('FIN9ms.xls','X5:X6004'); %probe (0 0 −0.4186) 8D
359 D12=xlsread('FIN9ms.xls','Z5:Z6004'); %probe (0 0 −0.4711) 9D
360 D13=xlsread('FIN9ms.xls','AB5:AB6004'); %probe (0 0 −0.5) end
361

362 %DAEDLEG − fin 3m/s
363 F1 = xlsread('FIN3ms.xls','D5:D6004'); %probe (0 0 0)
364 F2=xlsread('FIN3ms.xls','F5:F6004'); %probe (0 0 −0.026)
365 F3=xlsread('FIN3ms.xls','H5:H6004'); %probe (0 0 −0.078)
366 F4=xlsread('FIN3ms.xls','J5:J6004'); %probe (0 0 −0.104)
367 F5=xlsread('FIN3ms.xls','L5:L6004'); %probe (0 0 −0.13)
368 F6=xlsread('FIN3ms.xls','N5:N6004'); %probe (0 0 −0.156)
369 F7=xlsread('FIN3ms.xls','P5:P6004'); %probe (0 0 −0.2085)
370 F8=xlsread('FIN3ms.xls','R5:R6004'); %probe (0 0 −0.261)
371 F9=xlsread('FIN3ms.xls','T5:T6004'); %probe (0 0 −0.3135)
372 F10=xlsread('FIN3ms.xls','V5:V6004'); %probe (0 0 −0.366)
373 F11=xlsread('FIN3ms.xls','X5:X6004'); %probe (0 0 −0.4186)
374 F12=xlsread('FIN3ms.xls','Z5:Z6004'); %probe (0 0 −0.4711)
375 F13=xlsread('FIN3ms.xls','AB5:AB6004'); %probe (0 0 −0.5)
376

377

378 % wall
379 % D4=xlsread('PROBE−DL.xls','L5:L6004'); %probe −0.027 0 −0.25
380 % D5=xlsread('PROBE−DL.xls','N5:N6004'); %probe −0.027 0 −0.5
381

382 %Tee−junction pipe
383 P0=xlsread('Tprobetee.xls','H5:H6004'); %probe main after dead leg
384 P01=xlsread('Tprobetee.xls','J5:J6004'); %probe main wall
385 P02=xlsread('Tprobetee.xls','D5:D6004'); %probe main before dead leg
386 P03=xlsread('Tprobetee.xls','F5:F6004'); %probe main wall
387

388 P1=xlsread('Tprobetee.xls','T5:T6004'); %probe (0 0 −0.051) 0
389 P2=xlsread('Tprobetee.xls','V5:V6004'); %probe (0 0 −0.077) 0.5D
390 P3=xlsread('Tprobetee.xls','X5:X6004'); %probe (0 0 −0.103) 1D
391 P4=xlsread('Tprobetee.xls','Z5:Z6004'); %probe (0 0 −0.13) 1.5D
392 P5=xlsread('Tprobetee.xls','AB5:AB6004'); %probe (0 0 −0.155) 2D
393 P6=xlsread('Tprobetee.xls','AD5:AD6004'); %probe (0 0 −0.181) 2.5D
394 P7=xlsread('Tprobetee.xls','AF5:AF6004'); %probe (0 0 −0.207) 3D
395 P8=xlsread('Tprobetee.xls','AH5:AH6004'); %probe (0 0 −0.259) 4D
396 P9=xlsread('Tprobetee.xls','AJ5:AJ6004'); %probe (0 0 −0.311) 5D
397 P10=xlsread('Tprobetee.xls','AL5:AL6004'); %probe (0 0 −0.363)6D
398 P11=xlsread('Tprobetee.xls','AN5:AN6004'); %probe (0 0 −0.415)7D
399 P12=xlsread('Tprobetee.xls','AP5:AP6004'); %probe (0 0 −0.467)8D
400 P13=xlsread('Tprobetee.xls','AR5:AR6004'); %probe (0 0 −0.5196)9D
401 P14=xlsread('Tprobetee.xls','AT5:AT6004'); %probe (0 0 −0.55)end
402 %wall
403 P16 = xlsread('Tprobetee.xls','L5:L6004'); %probe 0.974 0 0
404 P17 = xlsread('Tprobetee.xls','N5:N6004'); %probe 0.974 0 −0.5
405 P18 = xlsread('Tprobetee.xls','P5:P6004'); %probe 1.026 0 0
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406 P19 = xlsread('Tprobetee.xls','R5:R6004'); %probe 1.026 0 −0.5
407 Tid=xlsread('Tprobetee.xls','B5:B6004'); %time
408 L1 = 0*Tid;
409

410 % Main pipe
411 figure
412 plot(Tid,P02,'r','LineWidth',2);
413 hold on;
414 plot(Tid,P03,'b','LineWidth',2);
415 hold off;
416 legend('Probe center','Probe wall');
417 xlabel('Time [s]');ylabel('Temperature [^oC]');
418

419 % Tee−junction DAEDLEG PIPE PLOT
420 figure(8)
421 subplot(211);
422 plot(Tid,P1,'b','LineWidth',1);
423 hold on;
424 plot(Tid,P3,'m','LineWidth',1);
425 hold on;
426 plot(Tid,P6,'g−−','LineWidth',1);
427 hold on;
428 plot(Tid,P7,'r−−','LineWidth',1);
429 hold on;
430 plot(Tid,P8,'k−−','LineWidth',1);
431 hold on;
432 plot(Tid,L1,'k−−')
433 hold off;
434 legend('z=0','z=D','z=2D','z=3D','z=4D','TV');
435 xlabel('Time [s]');ylabel('Temperature [^oC]');
436

437 subplot(212);
438 plot(Tid,P9,'b','LineWidth',1);
439 hold on;
440 plot(Tid,P10,'m','LineWidth',1);
441 hold on;
442 plot(Tid,P11,'g−−','LineWidth',1);
443 hold on;
444 plot(Tid,P12,'r−−','LineWidth',1);
445 hold on;
446 plot(Tid,P13,'k−−','LineWidth',1);
447 hold on;
448 plot(Tid,L1,'k−−')
449 hold off;
450 legend('z=5D','z=6D','z=7D','z=8D','z=9D','TV');
451 xlabel('Time [s]');ylabel('Temperature [^oC]');
452

453 %Fin analysis − deadleg plot 9m/s
454 figure(9)
455 plot(Tid,D1,'b','LineWidth',1);
456 hold on;
457 plot(Tid,D3,'m','LineWidth',1);
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458 hold on;
459 plot(Tid,D4,'g−−','LineWidth',1);
460 hold on;
461 plot(Tid,D6,'r−−','LineWidth',1);
462 hold on;
463 plot(Tid,D7,'k−−','LineWidth',1);
464 hold on;
465 plot(Tid,D8,'b−−','LineWidth',1);
466 hold on;
467 plot(Tid,D9,'m−−','LineWidth',1);
468 hold on;
469 plot(Tid,D10,'g','LineWidth',1);
470 hold on;
471 plot(Tid,D11,'r','LineWidth',1);
472 hold on;
473 plot(Tid,D12,'k','LineWidth',1);
474 hold on;
475 plot(Tid,L1,'k−−')
476 hold off;
477 legend('z=0','z=1.5D','z=2D','z=3D','z=4D','z=5D',...
478 'z=6D','z=7D','z=8D','z=9D','TV');
479 xlabel('Time [s]');ylabel('Temperature [^oC]');
480

481 %fin−analysis − 3m/s
482 figure(10)
483 plot(Tid,F1,'b','LineWidth',1);
484 hold on;
485 plot(Tid,F3,'m','LineWidth',1);
486 hold on;
487 plot(Tid,F4,'g−−','LineWidth',1);
488 hold on;
489 plot(Tid,F6,'r−−','LineWidth',1);
490 hold on;
491 plot(Tid,F7,'k−−','LineWidth',1);
492 hold on;
493 plot(Tid,F8,'b−−','LineWidth',1);
494 hold on;
495 plot(Tid,F9,'m−−','LineWidth',1);
496 hold on;
497 plot(Tid,F10,'g','LineWidth',1);
498 hold on;
499 plot(Tid,F11,'r','LineWidth',1);
500 hold on;
501 plot(Tid,F12,'k','LineWidth',1);
502 hold on;
503 hold off;
504 legend('z=0','z=1.5D','z=2D','z=3D','z=4D','z=5D',...
505 'z=6D','z=7D','z=8D','z=9D','TV');
506 xlabel('Time [s]');ylabel('Temperature [^oC]');
507

508

509
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510

511 % Comparison of wind velocity at probe 5D
512 figure(11)
513 plot(Tid,D8,'b','LineWidth',2);
514 hold on;
515 plot(Tid,F8,'r','LineWidth',2);
516 hold on;
517 plot(Tid,L1,'−−g')
518 hold off;
519 legend('z=4D, with U_w = 9 m/s','z=4D, with U_w = 3 m/s','TV');
520 xlabel('Time [s]');ylabel('Temperature [^oC]');
521

522 %Comparison of probe 5D in Fin−analysis and tee−junction
523 figure(12)
524 plot(Tid,D8,'r','LineWidth',2);
525 hold on;
526 plot(Tid,P9,'k','LineWidth',2);
527 hold on;
528 plot(Tid,L1,'−−g')
529 hold off;
530 legend('z=5D, Fin−analysis','z=5D, Tee−junction','TV');
531 xlabel('Time [s]');ylabel('Temperature [^oC]');
532

533 % probe 7D
534 figure(14)
535 plot(Tid,D10,'r','LineWidth',2);
536 hold on;
537 plot(Tid,P11,'k','LineWidth',2);
538 hold on;
539 plot(Tid,L1,'−−g')
540 hold off;
541 legend('z=7D, Fin−analysis','z=7D, Tee−junction','TV');
542 xlabel('Time [s]');ylabel('Temperature [^oC]');
543

544 %probe end
545 figure(15)
546 plot(Tid,D13,'r','LineWidth',2);
547 hold on;
548 plot(Tid,P14,'k','LineWidth',2);
549 hold on;
550 plot(Tid,L1,'−−g')
551 hold off;
552 legend('Deadend, Fin−analysis','Deadend, Tee−junction','TV');
553 xlabel('Time [s]');ylabel('Temperature [^oC]');
554

555

556 % Comparison wall
557 figure
558 plot(Tid,P17,'r','LineWidth',2);
559 hold on;
560 plot(Tid,L1,'−−k')
561 hold off;

109



562 legend('Probe (0.974 0 −0.5)− Tee−junction','TV');
563 xlabel('Time [s]');ylabel('Temperature [^oC]');
564

565 %% Result
566 y0 = Dim/2;
567 y1 = 0.5*Di+y0
568 y = Di+y0
569 y2 = 1.5*Di+y0
570 y3 = 2*Di+y0
571 y4 = 2.5*Di+y0
572 y5 = 3*Di+y0
573 y6 = 4*Di+y0
574 y7 = 5*Di+y0
575 y8 = 6*Di+y0
576 y9 = 7*Di+y0
577 y10= 8*Di+y0
578 y11= 9*Di+y0
579

580 %vertical velocity
581 D05=xlsread('zvel.xls','A2:A102'); %y1
582 D1=xlsread('zvel.xls','B2:B102'); %y2
583 D15=xlsread('zvel.xls','C2:C102'); %y3
584 D2=xlsread('zvel.xls','D2:D102'); %y4
585 D25=xlsread('zvel.xls','E2:E102'); %y5
586 D3=xlsread('zvel.xls','F2:F102'); %y6
587 D4=xlsread('zvel.xls','G2:G102'); %y7
588 D5=xlsread('zvel.xls','H2:H102'); %y8
589 D6=xlsread('zvel.xls','I2:I102'); %y9
590 D7=xlsread('zvel.xls','J2:J102'); %y10
591 D8=xlsread('zvel.xls','K2:K102'); %y10
592 D9=xlsread('zvel.xls','L2:L102'); %y10
593

594

595 xd=xlsread('zvel.xls','M2:M102')/Di; %x/D
596

597

598 % vertical velocity
599 figure(13)
600 plot(xd,D05,'r.','LineWidth',2);
601 hold on;
602 plot(xd,D15,'b−−','LineWidth',2);
603 hold on;
604 plot(xd,D2,'gx','LineWidth',2);
605 hold on;
606 plot(xd,D25,'m+','LineWidth',2);
607 hold on;
608 plot(xd,D3,'c−.','LineWidth',2);
609 hold on;
610 plot(xd,D4,'k','LineWidth',2);
611 hold on;
612 plot(xd,D5,'g','LineWidth',2);
613 hold on;
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614 plot(xd,D6,'b','LineWidth',2);
615 hold on;
616 plot(xd,D7,'k','LineWidth',2);
617 hold on;
618 plot(xd,D8,'r−−','LineWidth',2);
619 hold on;
620 plot(xd,D9,'b−−','LineWidth',2);
621 hold off;
622 legend('z=0.5D','z=1.5D','z=2D','z=2.5D','z=3D',...
623 'z=4D','z=5D','z=6D','z=7D','z=8D','z=9D');
624 xlabel('x/D_i');ylabel('Vertical Velocity [m/s]');
625

626 %% U1
627 %vertical velocity
628 D05=xlsread('U1/zvel.xls','A2:A102'); %y1
629 D1=xlsread('U1/zvel.xls','B2:B102'); %y2
630 D2=xlsread('U1/zvel.xls','C2:C102'); %y3
631 D3=xlsread('U1/zvel.xls','D2:D102'); %y4
632 D4=xlsread('U1/zvel.xls','E2:E102'); %y5
633 D5=xlsread('U1/zvel.xls','F2:F102'); %y6
634 D6=xlsread('U1/zvel.xls','G2:G102'); %y7
635 D7=xlsread('U1/zvel.xls','H2:H102'); %y8
636 D8=xlsread('U1/zvel.xls','I2:I102'); %y9
637 D9=xlsread('U1/zvel.xls','J2:J102'); %y10
638

639

640

641 xd=xlsread('zvel.xls','M2:M102')/Di; %x/D
642

643

644 % vertical velocity
645 figure(13)
646 plot(xd,D05,'r.','LineWidth',2);
647 hold on;
648 plot(xd,D1,'b−−','LineWidth',2);
649 hold on;
650 plot(xd,D2,'gx','LineWidth',2);
651 hold on;
652 plot(xd,D3,'c−.','LineWidth',2);
653 hold on;
654 plot(xd,D4,'k','LineWidth',2);
655 hold on;
656 plot(xd,D5,'g','LineWidth',2);
657 hold on;
658 plot(xd,D6,'b','LineWidth',2);
659 hold on;
660 plot(xd,D7,'k','LineWidth',2);
661 hold on;
662 plot(xd,D8,'r−−','LineWidth',2);
663 hold on;
664 plot(xd,D9,'b−−','LineWidth',2);
665 hold off;
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666 legend('z=0.5D','z=1D','z=2D','z=3D',...
667 'z=4D','z=5D','z=6D','z=7D','z=8D','z=9D');
668 xlabel('x/D_i');ylabel('Vertical Velocity [m/s]');
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G. Solver Library

G.1. LaplacianFoam

1 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
6 \\/ M anipulation |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License
9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15

16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23

24 Application
25 laplacianFoam
26

27 Description
28 Solves a simple Laplace equation, e.g. for thermal diffusion in a solid.
29

30 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
31

32 #include "fvCFD.H"
33 #include "simpleControl.H"
34

35 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
36

37 int main(int argc, char *argv[])
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38 {
39 #include "setRootCase.H"
40

41 #include "createTime.H"
42 #include "createMesh.H"
43 #include "createFields.H"
44

45 simpleControl simple(mesh);
46

47 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
48

49 Info<< "\nCalculating temperature distribution\n" << endl;
50

51 while (simple.loop())
52 {
53 Info<< "Time = " << runTime.timeName() << nl << endl;
54

55 while (simple.correctNonOrthogonal())
56 {
57 solve
58 (
59 fvm::ddt(T) − fvm::laplacian(DT, T)
60 );
61 }
62

63 #include "write.H"
64

65 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
66 << " ClockTime = " << runTime.elapsedClockTime() << " s"
67 << nl << endl;
68 }
69

70 Info<< "End\n" << endl;
71

72 return 0;
73 }
74

75

76 // ************************************************************************* //

G.2. PotentialFoam

1 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
6 \\/ M anipulation |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

114



8 License
9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15

16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23

24 Application
25 potentialFoam
26

27 Description
28 Simple potential flow solver which can be used to generate starting fields
29 for full Navier−Stokes codes.
30

31 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
32

33 #include "fvCFD.H"
34

35

36 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
37

38 int main(int argc, char *argv[])
39 {
40 argList::addBoolOption("writep", "write the final pressure field");
41 argList::addBoolOption
42 (
43 "initialiseUBCs",
44 "initialise U boundary conditions"
45 );
46

47 #include "setRootCase.H"
48 #include "createTime.H"
49 #include "createMesh.H"
50 #include "readControls.H"
51 #include "createFields.H"
52

53 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
54

55 Info<< nl << "Calculating potential flow" << endl;
56

57 // Since solver contains no time loop it would never execute
58 // function objects so do it ourselves.
59 runTime.functionObjects().start();
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60

61 adjustPhi(phi, U, p);
62

63 for (int nonOrth=0; nonOrth≤nNonOrthCorr; nonOrth++)
64 {
65 fvScalarMatrix pEqn
66 (
67 fvm::laplacian
68 (
69 dimensionedScalar
70 (
71 "1",
72 dimTime/p.dimensions()*dimensionSet(0, 2, −2, 0, 0),
73 1
74 ),
75 p
76 )
77 ==
78 fvc::div(phi)
79 );
80

81 pEqn.setReference(pRefCell, pRefValue);
82 pEqn.solve();
83

84 if (nonOrth == nNonOrthCorr)
85 {
86 phi −= pEqn.flux();
87 }
88 }
89

90 Info<< "continuity error = "
91 << mag(fvc::div(phi))().weightedAverage(mesh.V()).value()
92 << endl;
93

94 U = fvc::reconstruct(phi);
95 U.correctBoundaryConditions();
96

97 Info<< "Interpolated U error = "
98 << (sqrt(sum(sqr((fvc::interpolate(U) & mesh.Sf()) − phi)))
99 /sum(mesh.magSf())).value()

100 << endl;
101

102 // Force the write
103 U.write();
104 phi.write();
105

106 if (args.optionFound("writep"))
107 {
108 p.write();
109 }
110

111 runTime.functionObjects().end();
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112

113 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
114 << " ClockTime = " << runTime.elapsedClockTime() << " s"
115 << nl << endl;
116

117 Info<< "End\n" << endl;
118

119 return 0;
120 }
121

122

123 // ************************************************************************* //

G.3. BuoyantBoussinesqSimpleFoam

1 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
6 \\/ M anipulation |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License
9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15

16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23

24 Application
25 buoyantBoussinesqSimpleFoam
26

27 Description
28 Steady−state solver for buoyant, turbulent flow of incompressible fluids
29

30 Uses the Boussinesq approximation:
31 \f[
32 rho_{eff} = 1 − beta(T − T_{ref})
33 \f]
34
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35 where:
36 \f$ rho_{eff} \f$ = the effective (driving) density
37 beta = thermal expansion coefficient [1/K]
38 T = temperature [K]
39 \f$ T_{ref} \f$ = reference temperature [K]
40

41 Valid when:
42 \f[
43 rho_{eff} << 1
44 \f]
45

46 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
47

48 #include "fvCFD.H"
49 #include "singlePhaseTransportModel.H"
50 #include "RASModel.H"
51 #include "simpleControl.H"
52

53 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
54

55 int main(int argc, char *argv[])
56 {
57 #include "setRootCase.H"
58 #include "createTime.H"
59 #include "createMesh.H"
60 #include "readGravitationalAcceleration.H"
61 #include "createFields.H"
62 #include "initContinuityErrs.H"
63

64 simpleControl simple(mesh);
65

66 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
67

68 Info<< "\nStarting time loop\n" << endl;
69

70 while (simple.loop())
71 {
72 Info<< "Time = " << runTime.timeName() << nl << endl;
73

74 // Pressure−velocity SIMPLE corrector
75 {
76 #include "UEqn.H"
77 #include "TEqn.H"
78 #include "pEqn.H"
79 }
80

81 turbulence−>correct();
82

83 runTime.write();
84

85 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
86 << " ClockTime = " << runTime.elapsedClockTime() << " s"
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87 << nl << endl;
88 }
89

90 Info<< "End\n" << endl;
91

92 return 0;
93 }
94

95

96 // ************************************************************************* //

G.3.1. Velocity equation

1 // Solve the momentum equation
2

3 tmp<fvVectorMatrix> UEqn
4 (
5 fvm::div(phi, U)
6 + turbulence−>divDevReff(U)
7 );
8

9 UEqn().relax();
10

11 if (simple.momentumPredictor())
12 {
13 solve
14 (
15 UEqn()
16 ==
17 fvc::reconstruct
18 (
19 (
20 − ghf*fvc::snGrad(rhok)
21 − fvc::snGrad(p_rgh)
22 )*mesh.magSf()
23 )
24 );
25 }

G.3.2. Temperature equation

1 {
2 kappat = turbulence−>nut()/Prt;
3 kappat.correctBoundaryConditions();
4

5 volScalarField kappaEff("kappaEff", turbulence−>nu()/Pr + kappat);
6

7 fvScalarMatrix TEqn

119



8 (
9 fvm::div(phi, T)

10 − fvm::Sp(fvc::div(phi), T)
11 − fvm::laplacian(kappaEff, T)
12 );
13

14 TEqn.relax();
15 TEqn.solve();
16

17 rhok = 1.0 − beta*(T − TRef);
18 }

G.3.3. Pressure equation

1 {
2 volScalarField rAU("rAU", 1.0/UEqn().A());
3 surfaceScalarField rAUf("(1|A(U))", fvc::interpolate(rAU));
4

5 U = rAU*UEqn().H();
6 UEqn.clear();
7

8 phi = fvc::interpolate(U) & mesh.Sf();
9 adjustPhi(phi, U, p_rgh);

10

11 surfaceScalarField buoyancyPhi(rAUf*ghf*fvc::snGrad(rhok)*mesh.magSf());
12 phi −= buoyancyPhi;
13

14 while (simple.correctNonOrthogonal())
15 {
16 fvScalarMatrix p_rghEqn
17 (
18 fvm::laplacian(rAUf, p_rgh) == fvc::div(phi)
19 );
20

21 p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
22

23 p_rghEqn.solve();
24

25 if (simple.finalNonOrthogonalIter())
26 {
27 // Calculate the conservative fluxes
28 phi −= p_rghEqn.flux();
29

30 // Explicitly relax pressure for momentum corrector
31 p_rgh.relax();
32

33 // Correct the momentum source with the pressure gradient flux
34 // calculated from the relaxed pressure
35 U −= rAU*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rAUf);
36 U.correctBoundaryConditions();
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37 }
38 }
39

40 #include "continuityErrs.H"
41

42 p = p_rgh + rhok*gh;
43

44 if (p_rgh.needReference())
45 {
46 p += dimensionedScalar
47 (
48 "p",
49 p.dimensions(),
50 pRefValue − getRefCellValue(p, pRefCell)
51 );
52 p_rgh = p − rhok*gh;
53 }
54 }

G.3.4. Transport Properties

1 singlePhaseTransportModel laminarTransport(U, phi);
2

3 // Thermal expansion coefficient [1/K]
4 dimensionedScalar beta(laminarTransport.lookup("beta"));
5

6 // Reference temperature [K]
7 dimensionedScalar TRef(laminarTransport.lookup("TRef"));
8

9 // Laminar Prandtl number
10 dimensionedScalar Pr(laminarTransport.lookup("Pr"));
11

12 // Turbulent Prandtl number
13 dimensionedScalar Prt(laminarTransport.lookup("Prt"));

G.3.5. Turbulence Library

1 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
6 \\/ M anipulation |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License
9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it
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12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15

16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23

24 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
25

26 #include "turbulenceModel.H"
27 #include "volFields.H"
28 #include "surfaceFields.H"
29

30 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
31

32 namespace Foam
33 {
34 namespace incompressible
35 {
36

37 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
38

39 defineTypeNameAndDebug(turbulenceModel, 0);
40 defineRunTimeSelectionTable(turbulenceModel, turbulenceModel);
41

42 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
43

44 turbulenceModel::turbulenceModel
45 (
46 const volVectorField& U,
47 const surfaceScalarField& phi,
48 transportModel& transport,
49 const word& turbulenceModelName
50 )
51 :
52 regIOobject
53 (
54 IOobject
55 (
56 turbulenceModelName,
57 U.time().constant(),
58 U.db(),
59 IOobject::NO_READ,
60 IOobject::NO_WRITE
61 )
62 ),
63 runTime_(U.time()),
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64 mesh_(U.mesh()),
65

66 U_(U),
67 phi_(phi),
68 transportModel_(transport)
69 {}
70

71

72 // * * * * * * * * * * * * * * * * * Selectors * * * * * * * * * * * * * * * //
73

74 autoPtr<turbulenceModel> turbulenceModel::New
75 (
76 const volVectorField& U,
77 const surfaceScalarField& phi,
78 transportModel& transport,
79 const word& turbulenceModelName
80 )
81 {
82 // get model name, but do not register the dictionary
83 // otherwise it is registered in the database twice
84 const word modelType
85 (
86 IOdictionary
87 (
88 IOobject
89 (
90 "turbulenceProperties",
91 U.time().constant(),
92 U.db(),
93 IOobject::MUST_READ_IF_MODIFIED,
94 IOobject::NO_WRITE,
95 false
96 )
97 ).lookup("simulationType")
98 );
99

100 Info<< "Selecting turbulence model type " << modelType << endl;
101

102 turbulenceModelConstructorTable::iterator cstrIter =
103 turbulenceModelConstructorTablePtr_−>find(modelType);
104

105 if (cstrIter == turbulenceModelConstructorTablePtr_−>end())
106 {
107 FatalErrorIn
108 (
109 "turbulenceModel::New(const volVectorField&, "
110 "const surfaceScalarField&, transportModel&, const word&)"
111 ) << "Unknown turbulenceModel type "
112 << modelType << nl << nl
113 << "Valid turbulenceModel types:" << endl
114 << turbulenceModelConstructorTablePtr_−>sortedToc()
115 << exit(FatalError);
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116 }
117

118 return autoPtr<turbulenceModel>
119 (
120 cstrIter()(U, phi, transport, turbulenceModelName)
121 );
122 }
123

124

125 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
126

127 void turbulenceModel::correct()
128 {
129 transportModel_.correct();
130 }
131

132

133 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
134

135 } // End namespace incompressible
136 } // End namespace Foam
137

138 // ************************************************************************* //

1 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
6 \\/ M anipulation |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License
9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15

16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23

24 Namespace
25 Foam::incompressible::turbulenceModels
26

27 Description
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28 Namespace for incompressible turbulence turbulence models.
29

30 Class
31 Foam::incompressible::turbulenceModel
32

33 Description
34 Abstract base class for incompressible turbulence models
35 (RAS, LES and laminar).
36

37 SourceFiles
38 turbulenceModel.C
39 newTurbulenceModel.C
40

41 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
42

43 #ifndef turbulenceModel_H
44 #define turbulenceModel_H
45

46 #include "primitiveFieldsFwd.H"
47 #include "volFieldsFwd.H"
48 #include "surfaceFieldsFwd.H"
49 #include "fvMatricesFwd.H"
50 #include "incompressible/transportModel/transportModel.H"
51 #include "autoPtr.H"
52 #include "runTimeSelectionTables.H"
53

54 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
55

56 namespace Foam
57 {
58

59 // Forward declarations
60 class fvMesh;
61

62 namespace incompressible
63 {
64

65 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
66 Class turbulenceModel Declaration
67 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
68

69 class turbulenceModel
70 :
71 public regIOobject
72 {
73

74 protected:
75

76 // Protected data
77

78 const Time& runTime_;
79 const fvMesh& mesh_;
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80

81 const volVectorField& U_;
82 const surfaceScalarField& phi_;
83

84 transportModel& transportModel_;
85

86

87 private:
88

89 // Private Member Functions
90

91 //− Disallow default bitwise copy construct
92 turbulenceModel(const turbulenceModel&);
93

94 //− Disallow default bitwise assignment
95 void operator=(const turbulenceModel&);
96

97

98 public:
99

100 //− Runtime type information
101 TypeName("turbulenceModel");
102

103

104 // Declare run−time New selection table
105

106 declareRunTimeNewSelectionTable
107 (
108 autoPtr,
109 turbulenceModel,
110 turbulenceModel,
111 (
112 const volVectorField& U,
113 const surfaceScalarField& phi,
114 transportModel& transport,
115 const word& turbulenceModelName
116 ),
117 (U, phi, transport, turbulenceModelName)
118 );
119

120

121 // Constructors
122

123 //− Construct from components
124 turbulenceModel
125 (
126 const volVectorField& U,
127 const surfaceScalarField& phi,
128 transportModel& transport,
129 const word& turbulenceModelName = typeName
130 );
131
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132

133 // Selectors
134

135 //− Return a reference to the selected turbulence model
136 static autoPtr<turbulenceModel> New
137 (
138 const volVectorField& U,
139 const surfaceScalarField& phi,
140 transportModel& transport,
141 const word& turbulenceModelName = typeName
142 );
143

144

145 //− Destructor
146 virtual ¬turbulenceModel()
147 {}
148

149

150 // Member Functions
151

152 //− Access function to velocity field
153 inline const volVectorField& U() const
154 {
155 return U_;
156 }
157

158 //− Access function to flux field
159 inline const surfaceScalarField& phi() const
160 {
161 return phi_;
162 }
163

164 //− Access function to incompressible transport model
165 inline transportModel& transport() const
166 {
167 return transportModel_;
168 }
169

170 //− Return the laminar viscosity
171 inline tmp<volScalarField> nu() const
172 {
173 return transportModel_.nu();
174 }
175

176 //− Return the turbulence viscosity
177 virtual tmp<volScalarField> nut() const = 0;
178

179 //− Return the effective viscosity
180 virtual tmp<volScalarField> nuEff() const = 0;
181

182 //− Return the turbulence kinetic energy
183 virtual tmp<volScalarField> k() const = 0;
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184

185 //− Return the turbulence kinetic energy dissipation rate
186 virtual tmp<volScalarField> epsilon() const = 0;
187

188 //− Return the Reynolds stress tensor
189 virtual tmp<volSymmTensorField> R() const = 0;
190

191 //− Return the effective stress tensor including the laminar stress
192 virtual tmp<volSymmTensorField> devReff() const = 0;
193

194 //− Return the source term for the momentum equation
195 virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const = 0;
196

197 //− Solve the turbulence equations and correct the turbulence viscosity
198 virtual void correct() = 0;
199

200 //− Read LESProperties or RASProperties dictionary
201 virtual bool read() = 0;
202

203 //− Default dummy write function
204 virtual bool writeData(Ostream&) const
205 {
206 return true;
207 }
208 };
209

210

211 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
212

213 } // End namespace incompressible
214 } // End namespace Foam
215

216 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
217

218 #endif
219

220 // ************************************************************************* //

K-ε model

1 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
6 \\/ M anipulation |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License
9 This file is part of OpenFOAM.

10
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11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15

16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23

24 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
25

26 #include "kEpsilon.H"
27 #include "addToRunTimeSelectionTable.H"
28

29 #include "backwardsCompatibilityWallFunctions.H"
30

31 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
32

33 namespace Foam
34 {
35 namespace incompressible
36 {
37 namespace RASModels
38 {
39

40 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
41

42 defineTypeNameAndDebug(kEpsilon, 0);
43 addToRunTimeSelectionTable(RASModel, kEpsilon, dictionary);
44

45 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
46

47 kEpsilon::kEpsilon
48 (
49 const volVectorField& U,
50 const surfaceScalarField& phi,
51 transportModel& transport,
52 const word& turbulenceModelName,
53 const word& modelName
54 )
55 :
56 RASModel(modelName, U, phi, transport, turbulenceModelName),
57

58 Cmu_
59 (
60 dimensioned<scalar>::lookupOrAddToDict
61 (
62 "Cmu",
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63 coeffDict_,
64 0.09
65 )
66 ),
67 C1_
68 (
69 dimensioned<scalar>::lookupOrAddToDict
70 (
71 "C1",
72 coeffDict_,
73 1.44
74 )
75 ),
76 C2_
77 (
78 dimensioned<scalar>::lookupOrAddToDict
79 (
80 "C2",
81 coeffDict_,
82 1.92
83 )
84 ),
85 sigmaEps_
86 (
87 dimensioned<scalar>::lookupOrAddToDict
88 (
89 "sigmaEps",
90 coeffDict_,
91 1.3
92 )
93 ),
94

95 k_
96 (
97 IOobject
98 (
99 "k",

100 runTime_.timeName(),
101 mesh_,
102 IOobject::NO_READ,
103 IOobject::AUTO_WRITE
104 ),
105 autoCreateK("k", mesh_)
106 ),
107 epsilon_
108 (
109 IOobject
110 (
111 "epsilon",
112 runTime_.timeName(),
113 mesh_,
114 IOobject::NO_READ,
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115 IOobject::AUTO_WRITE
116 ),
117 autoCreateEpsilon("epsilon", mesh_)
118 ),
119 nut_
120 (
121 IOobject
122 (
123 "nut",
124 runTime_.timeName(),
125 mesh_,
126 IOobject::NO_READ,
127 IOobject::AUTO_WRITE
128 ),
129 autoCreateNut("nut", mesh_)
130 )
131 {
132 bound(k_, kMin_);
133 bound(epsilon_, epsilonMin_);
134

135 nut_ = Cmu_*sqr(k_)/epsilon_;
136 nut_.correctBoundaryConditions();
137

138 printCoeffs();
139 }
140

141

142 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
143

144 tmp<volSymmTensorField> kEpsilon::R() const
145 {
146 return tmp<volSymmTensorField>
147 (
148 new volSymmTensorField
149 (
150 IOobject
151 (
152 "R",
153 runTime_.timeName(),
154 mesh_,
155 IOobject::NO_READ,
156 IOobject::NO_WRITE
157 ),
158 ((2.0/3.0)*I)*k_ − nut_*twoSymm(fvc::grad(U_)),
159 k_.boundaryField().types()
160 )
161 );
162 }
163

164

165 tmp<volSymmTensorField> kEpsilon::devReff() const
166 {
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167 return tmp<volSymmTensorField>
168 (
169 new volSymmTensorField
170 (
171 IOobject
172 (
173 "devRhoReff",
174 runTime_.timeName(),
175 mesh_,
176 IOobject::NO_READ,
177 IOobject::NO_WRITE
178 ),
179 −nuEff()*dev(twoSymm(fvc::grad(U_)))
180 )
181 );
182 }
183

184

185 tmp<fvVectorMatrix> kEpsilon::divDevReff(volVectorField& U) const
186 {
187 return
188 (
189 − fvm::laplacian(nuEff(), U)
190 − fvc::div(nuEff()*dev(T(fvc::grad(U))))
191 );
192 }
193

194

195 bool kEpsilon::read()
196 {
197 if (RASModel::read())
198 {
199 Cmu_.readIfPresent(coeffDict());
200 C1_.readIfPresent(coeffDict());
201 C2_.readIfPresent(coeffDict());
202 sigmaEps_.readIfPresent(coeffDict());
203

204 return true;
205 }
206 else
207 {
208 return false;
209 }
210 }
211

212

213 void kEpsilon::correct()
214 {
215 RASModel::correct();
216

217 if (!turbulence_)
218 {
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219 return;
220 }
221

222 volScalarField G("RASModel::G", nut_*2*magSqr(symm(fvc::grad(U_))));
223

224 // Update epsilon and G at the wall
225 epsilon_.boundaryField().updateCoeffs();
226

227 // Dissipation equation
228 tmp<fvScalarMatrix> epsEqn
229 (
230 fvm::ddt(epsilon_)
231 + fvm::div(phi_, epsilon_)
232 − fvm::Sp(fvc::div(phi_), epsilon_)
233 − fvm::laplacian(DepsilonEff(), epsilon_)
234 ==
235 C1_*G*epsilon_/k_
236 − fvm::Sp(C2_*epsilon_/k_, epsilon_)
237 );
238

239 epsEqn().relax();
240

241 epsEqn().boundaryManipulate(epsilon_.boundaryField());
242

243 solve(epsEqn);
244 bound(epsilon_, epsilonMin_);
245

246

247 // Turbulent kinetic energy equation
248 tmp<fvScalarMatrix> kEqn
249 (
250 fvm::ddt(k_)
251 + fvm::div(phi_, k_)
252 − fvm::Sp(fvc::div(phi_), k_)
253 − fvm::laplacian(DkEff(), k_)
254 ==
255 G
256 − fvm::Sp(epsilon_/k_, k_)
257 );
258

259 kEqn().relax();
260 solve(kEqn);
261 bound(k_, kMin_);
262

263

264 // Re−calculate viscosity
265 nut_ = Cmu_*sqr(k_)/epsilon_;
266 nut_.correctBoundaryConditions();
267 }
268

269

270 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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271

272 } // End namespace RASModels
273 } // End namespace incompressible
274 } // End namespace Foam
275

276 // ************************************************************************* //

1 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
6 \\/ M anipulation |
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License
9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15

16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23

24 Class
25 Foam::incompressible::RASModels::kEpsilon
26

27 Description
28 Standard k−epsilon turbulence model for incompressible flows.
29

30 The default model coefficients correspond to the following:
31 \verbatim
32 kEpsilonCoeffs
33 {
34 Cmu 0.09;
35 C1 1.44;
36 C2 1.92;
37 sigmaEps 1.3;
38 }
39 \endverbatim
40

41 SourceFiles
42 kEpsilon.C
43

44 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
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45

46 #ifndef kEpsilon_H
47 #define kEpsilon_H
48

49 #include "RASModel.H"
50

51 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
52

53 namespace Foam
54 {
55 namespace incompressible
56 {
57 namespace RASModels
58 {
59

60 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
61 Class kEpsilon Declaration
62 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
63

64 class kEpsilon
65 :
66 public RASModel
67 {
68

69 protected:
70

71 // Protected data
72

73 // Model coefficients
74

75 dimensionedScalar Cmu_;
76 dimensionedScalar C1_;
77 dimensionedScalar C2_;
78 dimensionedScalar sigmaEps_;
79

80

81 // Fields
82

83 volScalarField k_;
84 volScalarField epsilon_;
85 volScalarField nut_;
86

87

88 public:
89

90 //− Runtime type information
91 TypeName("kEpsilon");
92

93 // Constructors
94

95 //− Construct from components
96 kEpsilon
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97 (
98 const volVectorField& U,
99 const surfaceScalarField& phi,

100 transportModel& transport,
101 const word& turbulenceModelName = turbulenceModel::typeName,
102 const word& modelName = typeName
103 );
104

105

106 //− Destructor
107 virtual ¬kEpsilon()
108 {}
109

110

111 // Member Functions
112

113 //− Return the turbulence viscosity
114 virtual tmp<volScalarField> nut() const
115 {
116 return nut_;
117 }
118

119 //− Return the effective diffusivity for k
120 tmp<volScalarField> DkEff() const
121 {
122 return tmp<volScalarField>
123 (
124 new volScalarField("DkEff", nut_ + nu())
125 );
126 }
127

128 //− Return the effective diffusivity for epsilon
129 tmp<volScalarField> DepsilonEff() const
130 {
131 return tmp<volScalarField>
132 (
133 new volScalarField("DepsilonEff", nut_/sigmaEps_ + nu())
134 );
135 }
136

137 //− Return the turbulence kinetic energy
138 virtual tmp<volScalarField> k() const
139 {
140 return k_;
141 }
142

143 //− Return the turbulence kinetic energy dissipation rate
144 virtual tmp<volScalarField> epsilon() const
145 {
146 return epsilon_;
147 }
148
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149 //− Return the Reynolds stress tensor
150 virtual tmp<volSymmTensorField> R() const;
151

152 //− Return the effective stress tensor including the laminar stress
153 virtual tmp<volSymmTensorField> devReff() const;
154

155 //− Return the source term for the momentum equation
156 virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const;
157

158 //− Solve the turbulence equations and correct the turbulence viscosity
159 virtual void correct();
160

161 //− Read RASProperties dictionary
162 virtual bool read();
163 };
164

165

166 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
167

168 } // End namespace RASModels
169 } // End namespace incompressible
170 } // End namespace Foam
171

172 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
173

174 #endif
175

176 // ************************************************************************* //

137





H. Procedure to run the case �les

in OpenFOAM

1 Open Appendix I. There are one folder for each case.

2 Case 01, there are again two folders, a and b. These indicate the two wind velocity
cases. Further there are two folders within each folder. They are named pipe1 and
pipe2 which is the steady-state and transient simulation respectively.

3 Case 02, there are two folders, one to initialize the potential flow field and one to
execute the heat transfer and fluid flow simulation.

4 Case 03, contains the simulation files directly.

5 To calculate the initial values set in the 0-folder, the Matlab script in Appendix F
should be executed. In the script all needed fluid variables are stated, this creates
the possibility to change medium. Additionally, the velocities of the external and
internal flow may be set as desired. Consequently, the parameters dependent will
change automatically when executing the script.

6 Insert the initial values to the 0-folder in the case folders. If the same grid is used
no change in the other files are necessary before an execution may be performed.

7 Wait for OpenFOAM to finish.

8 Open paraView and post-process the results as desired.

If a new geometry is desired, this may be made in Salome. To make it simple to adapt the
developed solver make sure you name the boundaries, inlet, outlet, wallsM, wallsD and
deadend. If you do so, then the only thing you have to do is to run the .unv file and change
the base patches for the wall boundaries and update the intial values if desired.
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