Universitetet i Stavanger DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE		
Studieprogram/spesialisering:		
Konstruksjoner og Materialer,	Vårsemesteret, 2012	
Byggkonstruksjoner	Åpen	
Forfatter:		
Elin Olsen		
Fagansvarlig: Jasna B. Jakobsen Veileder(e): Jasna B. Jakobsen, Alfred Skartveit (Multiconsult)		
Tittel på masteroppgaven: Utmattingsberegning for vindturbinfundament på løsmasser Engelsk tittel: Fatigue calculations for a windmill's foundation placed on soil		
Studiepoeng: 30		
Emneord: -Utmatting -DNV-OS-C502 -NS-EN 1992-1-1:2004 -Vindturbin -Fundament	Sidetall: 100 + vedlegg: 51 Stavanger, 12.06.2012	

Elin Olsen

UTMATTINGSBEREGNING FOR VINDTURBINFUNDAMENT PÅ LØSMASSER

Masteroppgave av Elin Olsen, våren 2012

Sammendrag

Denne oppgaven omhandler en sammenligning av utmattingsberegninger for vindturbinfundament ut fra standardene DNV-OS-C502 og NS-EN 1992-1-1:2004. Oppgaven baseres på vindturbinene i Høg-Jæren Energipark. Før selve utmattingsberegningene gjennomføres er et innledende kapittel der vindenergiens bruk og utvikling beskrives. Også vindens påvirkning på vindturbinen er beskrevet i dette kapittelet. Utmattingsfenomenet i seg selv, og historiske hendelser på området blir omtalt.

Når en konstruksjon utsettes for sykliske laster over tid vil disse påvirke levetiden til konstruksjonen. Da må konstruksjonens utmattingskapasitet kontrolleres. Når anlegget Høg-Jæren Energipark ble dimensjonert ble DNV-OS-C502 brukt for utmattingsberegningene. I ettertid har NS-EN 1992-1-1:2004 kommet på banen, og beregningsmetoden brukt her er en del annerledes enn for DNV-OS-C502. Det interessante ligger i å finne forskjellene i beregningsmetodene og resultatene for disse standardene.

Dimensjoner og armeringsmengden til fundamentet finnes fra en statisk analyse, før spenninger og skjærkrefter som påvirker utmattingen blir beregnet. Disse beregnes ut fra sykliske momenter som virker på konstruksjonen. De sykliske momentene er hentet fra eksempel på lastdokument fra vindturbinleverandør.

Beregningsmetodikken benyttet for armeringsstål er lignende for de to standardene. Her brukes Palmgren-Miners-regel for å summere delskader fra ulike spenningsvidder. DNV-OS-C502 bruker samme regel for å beregne betongens utmattingskapasitet for både trykkbrudd og strekkbrudd. NS-EN 1992-1-1:2004 setter krav om maks utnyttelse for et tverrsnitt når betongens utmattingskapasitet beregnes.

En får tilstrekkelig utmattingskapasitet for begge standardene både for trykkbrudd i betongen og armeringsstålet. Betongens utmattingskapasitet for strekkbrudd derimot, som skyldes virkningen av vekslende skjærkraft, blir ikke godkjent for noen av standardene. NS-EN 1992-1-1:2004 virker likevel å være strengere her enn DNV-OS-C502. Beregningsmetodikken for betongens uarmerte skjærkapasitet har blitt endret etter NS-EN 1992-1-1:2004. Dette kan tenkes å være årsaken til at tverrsnittet ikke ble godkjent ut fra DNV-OS-C502.

Forord

Arbeidet med denne oppgaven har vært interessant, da utmatting er et såpass nytt felt innen bruddmekanikken. Gjennom arbeidet har jeg fått en bredere forståelse av både nytteverdien av vindenergi, vindens virkning på konstruksjoner og sykliske lasters påvirkning på en konstruksjons levetid. Viktigheten med å videreutvikle fagområdet for utmatting av betong kommer tydelig frem.

Under gjennomføringen av oppgaven har jeg fått god hjelp fra både veileder på Universitetet i Stavanger og hos Multiconsult, avd. Stavanger. Jeg vil takke Arne Øvstebø ved Multiconsult for at jeg fikk skrive oppgave og låne kontor hos dem. Jeg vil også takke veilederen min ved Multiconsult, Alfred Skartveit, for svært god hjelp og veiledning underveis. Også veilederen min ved Universitetet i Stavanger, Jasna B. Jakobsen, har vært til god hjelp gjennom hele gjennomføringen.

I tillegg vil jeg takke Livar Sæland ved Kruse Smith for omvisning i Høg-Jæren Energipark, og for å sette meg i kontakt med Multiconsult før oppgaveskrivingen begynte. Jeg vil også takke DNV for hjelp med søk etter bakgrunnslitteratur i oppstartfasen.

Innholdsfortegnelse

Sc	ammen	drag	5
Fo	orord		6
1	Орр	gavebeskrivelse	9
	1.1	Problemstilling	9
	1.2	Innledning	. 10
	1.3	Metode	. 11
2	Vind	lenerai	12
-	• • • •	с. с. у.	
	2.1	Historisk utvikling av vindturbiner	. 12
	2.2	Oppbygning og lastpåvirkninger for dagens vindturbiner	. 14
	2.3	Vindparker i Norge med hovedfokus på Rogaland	. 18
	2.4	Høg-Jæren Energipark	. 23
3	Stat	isk analyse	25
	3.1	Grunnforhold og fundamenteringsprinsipp	. 25
	3.2	Modellering i G-prog Geoteknikk	. 26
	3.3	Modellering i BT-snitt	. 27
	2 /		20
	J. 4		. 25
4	Utm	atting	30
	4.1	Utmatting som fenomen	. 30
	4.1.1	Utmattingsfenomenet	30
	4.1.2	Historiske hendelser	33
	4.2	Standarder	. 35
	421	DNV-0S-C502 Offshore Concrete Structures	35
	4.2.2	NS-EN 1992-1-1:2004+NA:2008, Prosjektering av betongkonstruksjoner	40
	4.3	Beregning av spenningsblokker	. 46
	4.3.1	Utmattingslaster	46
	4.3.2	Valg av beregningssnitt/punkt for utmatting	48
	4.3.3	Beregning av grunntrykk, egenvekt av fundamentet og egenvekt av løsmasser	48
	4.3.4	Forklaring av inputs i G-prog Betongbjelke	52
	4.3.5	Spenningsberegning i BT-snitt	53
	4.3.6	Beregnede spenninger og skjærkrefter for snitt A-A og B-B	54
	4.4	Levetidsberegning DNV-OS-C502	. 58
	4.4.1	Levetidsberegning for armering	59
	4.4.2	Levetidsberegning for betong	62
	4.4.3	Levetidsberegning for strekkbrudd i betong grunnet skjærkrefter	65

	4.5	Levetidsberegning NS-EN 1992-1-1:2004	69
	4.5.1	Levetidsberegning armering	. 69
	4.5.2	Påvisning av utmatting for betong under trykk	. 72
	4.5.3	Påvisning av utmatting for betong grunnet vekslende skjærkrefter	. 74
5	Sam	menligning av beregningsmetoder og resultater	76
	5.1	Utmatting av armering	77
	5.1.1	Utmattingskapasitet for armeringsstål i snitt A-A	. 77
	5.1.2	Utmattingskapasitet for armeringsstål i snitt B-B	. 79
	5.2	Utmatting av betong grunnet sykliske spenninger	81
	5.2.1	Betongens utmattingskapasitet for trykkbrudd i snitt A-A	. 81
	5.2.2	Betongens utmattingskapasitet for trykkbrudd i snitt B-B	82
	5.3	Betongens kapasitet for strekkbrudd grunnet vekslende skjærkrefter	84
	5.3.1	Utmattingskapasitet for vekslende skjærkraft i snitt A-A	. 84
	5.3.2	Utmattingskapasitet for vekslende skjærkraft i snitt B-B	86
6	Disk	usjon	87
	6.1	Armeringsstålets utmattingskapasitet	87
	6.2	Betongens utmattingskapasitet for trykkbrudd	90
	6.3	Vekslende skjærkrafts påvirkning på utmattingskapasiteten	92
7	Kon	klusjon	94
Т	abeller		95
Fi	gurlist	2	96
Fo	ormelli	ste	97
Li	tteratu	rliste	97
V	edlegg	sliste1	.00

1 Oppgavebeskrivelse

1.1 Problemstilling

Oppgaven skal i hovedsak gå ut på å finne ut hvor store forskjeller det er, og hva disse kommer av, ved utmattingsberegninger av vindturbinfundament ut fra DNV-OS-C502 og NS-EN 1992-1-1:2004. For å utføre oppgaven skal først vindturbinens virkemåte og hvilke krefter en må ta hensyn til ved dimensjonering, forklares. Viktigheten med oppgaven vises ved en oversikt av vindparker i Norge, både ferdigstilte og de som er under utvikling.

For å utføre utmattingsberegningene utføres først en statisk analyse, der en innføring i programmene BT-snitt og G-prog blir en viktig del. Det skal gjennomføres en forenklet dimensjonering av fundamentet for å finne fornuftig størrelse, armeringsmengde og korrekt grunntrykk. Etter dette skal utmattingsberegningene utføres ut fra eksempel på lastdokument fra vindturbinleverandør.

Skisser i oppgaven skal i hovedsak lages i AutoCAD.

1.2 Innledning

Denne oppgaven er utarbeidet i samarbeid med Jasna B. Jakobsen ved Universitetet i Stavanger og Arne Øvstebø og Alfred Skartveit ved Multiconsult, avd. Stavanger. Formålet er å finne ut om det er store forskjeller ved utmattingsberegninger basert på DNV-OS-C502 og NS-EN 1992-1-1:2004. I tillegg oppnås en større forståelse for sykliske lasters påvirkning på konstruksjoner, oppbygning av vindturbiner og vindens påvirkning på disse. Hvordan utmatting oppstår, og kriterier som må være tilstede for at utmatting skal oppstå, forklares.

Vindenergi er en fornybar energikilde, der vindturbiner brukes for å generere elektrisk effekt fra vinden som driver rotoren rundt. Vindenergi har vært brukt i århundrer til forskjellige formål, og dagens vindturbiner er en videreutvikling av eldre vindmølletyper. Området er under stadig utvikling

Oppgaven tar for seg hvordan de sykliske lastene som virker på et fundament fra en vindturbin påvirker konstruksjonens levetid. Når en konstruksjon utsettes for sykliske påkjenninger, kan konstruksjonen gå til brudd, til tross for at belastningen er mindre enn den konstruksjonen i utgangspunktet er dimensjonert for. Konstruksjonen blir "trøtt" på grunn av de stadig svingende påkjenningene. Dette er kjent som utmatting, eller tretthetsbrudd.

Oppgaven er basert på vindenergianlegget Høg-Jæren Energipark, der flere vindturbiner er oppført på samme type fundament. Når fundamentene ble dimensjonert ble DNV-OS-C502 lagt til grunn for utmattingsberegningene. Alternativt kunne Eurokode 2; NS-EN 1992-1-1:2004 blitt brukt, der utmattingsberegningene er forandret fra tidligere utgaver. Hovedessensen i oppgaven vil være å sjekke utmattingskapasiteten for vindturbinfundamentene ut fra begge disse standardene, og se om beregningsmetodene og resultatene stemmer overens med hverandre.

Før utmattingskapasiteten kan beregnes, utføres en statisk analyse av fundamentet for å finne passende størrelse og armeringsmengde.

Følgende dataverktøy vil bli brukt for beregninger og figurer i oppgaven:

- G-prog Geoteknikk, versjon 6.20.1
- G-prog Betongbjelke, versjon 6.20.2
- BT-snitt, versjon 6.2.1
- AutoCAD, versjon MAP 3D 2011
- Microsoft Office Excel 2007
- Microsoft Office Word 2007

1.3 Metode

Planlegging er en viktig del av et stort prosjekt. Før oppgaven påbegynnes, lages en fremdriftsplan som viser hva som må gjøres, når og hvordan. Dette legger grunnlaget for gjennomføringen av oppgaven.

Før hoveddelen av oppgaven kan påbegynnes, brukes en del tid på å lære seg hvordan en vindturbin fungerer og hvilke laster som virker på et fundament fra vindturbinen. Også bakgrunnshistorien for vindturbinen, slik den fungerer i dag, blir gjennomgått.

For å finne fundamentets størrelse og armeringsmengde brukes to programmer, G-prog Geoteknikk og BT-snitt. Det fokuseres på beregningene som har med grunnbrudd å gjøre. Begge programmene gjør samme oppgaven, men begge blir brukt for å lære mest mulig innen databruk. Når den statiske analysen er gjennomført, og godkjent, kan fundamentets dimensjoner brukes videre for å komme i gang med utmattingsberegningene.

Selve lastene som virker på vindturbinfundamentet blir hentet fra et lastdokument, og legges videre inn i G-prog Geoteknikk for å finne grunntrykket som virker fra disse. Lastene som virker på fundamentet blir så lagt inn i G-prog Betongbjelke. Da beregnes momenter og skjærkrefter som virker i valgte snitt på fundamentet. Disse igjen kan brukes i en snittberegning i BT-snitt, som beregner betongspenninger og armeringstøyninger som fører til utmatting.

Når spenningene er funnet kan selve utmattingsberegningene påbegynnes. Armeringsstålets utmattingskapasitet og betongens utmattingskapasitet for både trykk- og strekkbrudd beregnes for begge standardene. Beregningene gjøres ved regneark i Excel. Resultatene må deretter tolkes.

Når oppgaven skrives er andre byggetrinn i Høg-Jæren Energipark i gang. For å få innblikk i fundamentene og vindturbinenes størrelse og parkens utbredelse, blir det en ekskursjon til parken. I tillegg tas egne illustrasjonsfoto for bruk i oppgaven på omvisningen. Figurer i oppgaven skal modelleres i AutoCAD.

2 Vindenergi

Vindenergi har vært utnyttet i flere århundrer. Først som direkte energikilde til å drive maskiner eller som vindseil for store skip. I det 19. århundret begynte man å utnytte vinden til å generere elektrisk effekt. Det har vært en lang utvikling frem mot de vindturbinene vi har i dag.

Som en fornybar energikilde er utbygging av vindkraft en viktig del for at Norge skal nå egne mål og forpliktelser i pågående EU direktiv forhandlinger (Vindkraft i Norge, [11]). Med mye vind spredt over store arealer har Norge noen av Europas beste forutsetninger for vindkraftproduksjon [12]. Oversikten i kapittel 2.3 viser hvor mange vindparker som er i drift i Norge i dag, og hvor mange parker som er planlagt i Rogaland fremover.

Ulempen med vindenergi, foruten det estetiske, er at det ikke alltid kan produseres kraft når det trengs. Vindturbinene står i ro både når det er vindstille, og når vindhastigheten er for høy.

2.1 Historisk utvikling av vindturbiner

Når vindmøller først ble tatt i bruk er noe uklart iflg. ulike kilder. En form for vindmøller skal ha vært i bruk i Japan og Kina for ca 3000 år siden (side 7, [3]). Maskiner til å utnytte vind skal ha vært i bruk i Østen så tidlig som 1700 f.Kr. i følge historikere (side 17 [2]). Første kjente historiske referansen til en vindmølle er fra Hero av Alexandrias verk, Pneumatics. Dette stammer fra århundret før/etter Kr. Det er usikkert om denne vindmøllen noen gang ble bygd (side 11, [1]).

Første sikre referanse til bruk av vindmøller stammer fra det 9. århundret e. Kr. (947 e.Kr. [side 7, [3]). Da ble vindmøller brukt i Persia (Iran). Vindmøllene her hadde vertikal akse. Disse vindmøllene er fortsatt i bruk. (side 11, [1]).

Figur 1: Vindmølle med vertikal akse, fra [39]

I Nord-Europa (England) er ikke bruk av vindmøller datert før i det 12. århundre, men de kom mest sannsynlig i 10. eller 11. århundre. Her var vindmøller med horisontal rotasjonsakse i bruk. Det spekuleres i om Vikingene brakte vindmøllene til Europa fra reisene sine mellom Midt-Østen og Europa (side 12, [1]). For å ta i bruk vindmøller med horisontal rotasjonsakse måtte bruken av tannhjul overføres fra vannmøller. Dette var relativt enkelt. Det var større utfordringer knyttet til hvordan man skulle få snudd vindmøllen slik at den stod mot vinden. I Nord-Europa, og da spesielt Frankrike, Nederland og Storbritannia ble det i hovedsak bygd vindmøller som fortsatt preger

landskapet i dag. Hele vindmøllen var bygget av tre, og stod på et sterkt fundament som hele tårnet kunne roteres om (side8, [3]). Vindmøllene ble brukt til vannpumping, maling av korn og sagbruk (side 12, [1]).

Figur 2: Vindmølle fra Storbritannia, fra [40]

Bruk av vindmøller i Europa var på topp på midten av det 19. århundre. Da fantes det 58 000 vindmøller bare i Nederland, Tyskland, Danmark, England og Frankrike (side 9, [3]). Vindenergi var en av de viktigste energikildene i Europa, frem til den industrielle revolusjonen. Etter dette ble i hovedsak vindenergi erstattet med kull (side12, [1]).

Elektriske generatorer ble utviklet på slutten av det 19. århundret. Man prøvde å drive disse ved hjelp av vindturbiner. Små vindgeneratorer ble utbredt. Hovedutvikler av disse var Marcellus Jacobs. De små vindturbinene som ble utviklet lignet de vindturbinene som brukes i dag. De hadde tre rotorblad som var formet som flyvinger. Jacobs turbin var i seg selv et komplett kraftsystem for private hjem, med innebygd batterilagring. Den blir sett på som forløperen til moderne vindturbiner. Bruk av små vindgeneratorer stagnerte i 1930-årene, da det sentrale strømnettet ble utvidet. (side 15, [1])

Figur 3: Jacobs turbin, fra [1]

Utviklingen av dagens vindturbiner er sterkt preget av vindturbinene fra første halvdel av det 20. århundret (side 15, [1]). Danmark var tidlig ute med å utvikle vindturbiner for produksjon av elektrisk effekt. Første vindturbin for elektrisitetsproduksjon ble bygget allerede i 1892 av professor Paul La Cour, der staten var med og finansierte prosjektet (side 15, [3]). Frem til 1918 hadde La Cour bygget over 100 vindturbiner som genererte mellom 20-35kW elektrisk kraft (side 15, [1]).

I 1957 ble en 200kW turbin satt i drift i Gedser, Danmark (side 15, [3]). Den ble utviklet av Johannes Juul, og var spesiell da vindturbinen var bygget med en annen generator som var mulig å koble til vekselstrømnettet (side 16, [1]). I 1940 ble det bygget en svær prototype til å levere kraft til strømnettet i Vermont, USA. Den hadde en diameter på 53.3m, og leverte 1250kW. Den var bare i drift frem til 1945, da bladene sviktet (side 16, [1]).

2.2 Oppbygning og lastpåvirkninger for dagens vindturbiner

I det 18. århundret kom John Smeaton frem til tre basis regler for testing og evaluering av vindturbiner som fortsatt er gjeldende i dag:

- Farten ved rotorbladspissen er ideelt sett proporsjonal med vindhastigheten [m/s].
- Maksimalt dreiemoment er proporsjonalt med kvadratet av vindhastigheten [m/s]².
- Maksimal effekt er proporsjonal med kubisk verdi av vindhastigheten [m/s]³.

(side 14, [1])

Figur 4: Vindturbin fra Høg-Jæren Energipark

Dagens vindturbiner bør designes slik at lastvirkningene fra turbinen er så minimale som mulig. Geometrisk og aerodynamisk usymmetriske vindturbiner gir store alternerende krefter og momenter, selv ved jevn vindhastighet. Ved å bygge vindturbiner med flere enn to rotorblad vil

denne effekten jevnes ut. Dette vil også påvirke den dynamiske responsen fra vindturbinen. For en vindturbin med to rotorblad vil treghetsmomentet være som for en roterende stang. Ved å øke antall rotorblad til tre eller flere vil treghetsmomentet være mer som for en roterende disk. (Side 200, [29])

Figur 5: Momentvirkning fra rotorblad, fra [29]

Bladene på en vindturbin er under drift vendt slik at de fanger opp mest mulig vind. Ved sterk vind vendes disse bladene slik at vinden passerer uten å hefte vindturbinen. Vindhastigheten som vindturbinen settes ut av drift for avhenger av type vindturbin.

En vindturbin utsettes for både statiske og variable laster. Lastpåvirkningene kommer fra aerodynamikk, gravitasjon og treghetskrefter. Disse klassifiseres som statiske eller variable laster etter lastens virkning med tiden på rotoren. Aerodynamiske krefter med jevn vindhastighet og sentrifugalkrefter vil virke som jevnt fordelte laster på rotoren, så lenge den roterer med jevn hastighet. (Side 162, [29])

De variable lastene klassifiseres som sykliske og ikke-sykliske. Ikke-sykliske laster skyldes turbulens i vinden. De sykliske lastene skyldes både vind, gravitasjon og gyroskopisk effekt av rotoren. Vinden skaper sykliske lastvariasjoner på rotoren siden vindhastigheten øker med høyden. Den skaper også en tverrvind som påvirker rotoren, og lastvariasjoner oppstår der vinden treffer tårnet. De roterende rotorbladenes egenvekt vil skape en varierende treghetskraft. Når rotoren dreier om den vertikale aksen skapes gyroskopiske krefter som må tas hensyn til etter som rotoren dreier.(Side 162, [29]) En oversikt over de statiske og variable lastene som virker på en vindturbin er vist i figur 6.

Figur 6: Laster som virker på en vindturbin, fra [29]

Som vist i figur 7 på neste side, ser en at vinden øker i intensitet med høyden. Turbulens derimot reduseres med høyden. Vindturbiner bør plasseres der det er mest mulig jevn vind, derfor er det en fordel å få de opp i høyden. Vinden nær bakken er turbulent fordi energi flyttes fra det geostropiske laget med høy energi til lavereliggende lag (side 114, [2]).

Figur 7: Vindprofil, fra [2]

Grenselaget fra området med høy turbulens til nesten ingen turbulens er området vindturbiner normalt blir plassert i. Dette laget varierer i høyde fra ti til hundrevis av meter. (side 113, [2]). Vindturbiner plasseres gjerne på et høyt punkt, med store turbiner på høye tårn. Da får en maksimal utnyttelsesgrad av vindturbinen.

Klassisk analyse av vindturbiner ble først utviklet av Betz og Glauert på 1930-tallet. Dette har senere blitt videreutviklet og tilpasset for løsning med datamaskiner (side 91, [1]). En metode for å regne ut effekten fra en ideell turbin er endimensjonal momentteori. Metoden er tilskrevet Betz. Den er basert på lineær momentteori utviklet for å forutsi effekten av skipspropeller (side 92 [1]). Betz metode tar kun hensyn til aksiale nedstrøms tap ved design (side 135, [2]).

Figur 8: Betz metode, fra [1]

En ser på et bestemt kontrollvolum, der vinden har en gitt fart, U_1 på vei inn. I teorien er volumet avgrenset av overflaten til et strømningsrør, med en plate/turbin inni. Turbinen skaper en diskontinuitet i trykket når luften strømmer forbi den. Rett før/etter turbinen vil vinden ha hastighet

 $U_2=U_3$. Der vinden strømmer ut av røret vil farten være redusert til hastighet U_4 . For at antakelsen skal være gjeldene er følgende antakelser brukt:

- Homogen, inkompressibel, steady state væskestrøm.
- Ingen friksjonskrefter.
- Et uendelig antall blad.
- Jevn last over hele platen/rotoren.
- Ikke roterende vake.
- det statiske trykket langt oppstrøms og nedstrøms av rotoren, er lik det statiske trykket i et uforstyrret luftrom.

(side 92-93, [1])

2.3 Vindparker i Norge med hovedfokus på Rogaland

Vindenergi anses som den mest energieffektive og minst belastende energikilden for totalmiljøet iflg. studier utført av Stanford University. I gjennomsnitt vil en vindmølle dekke strømforbruket til 500 norske husstander årlig. Dette tilsvarer utslipp fra fossil kraft tilsvarende 4000 tonn CO₂/år. [11]

Markedsandelen av vindenergi i Norge er på kun 1,2TWh av et årlig forbruk på 320TWh. Dette er veldig lavt med tanke på vindressursene vi har i Norge. Aller best forhold for vindkraft finner vi i Rogaland. Både vindens stabilitet, nettets kapasitet og nærhet til innlands- og eksportmarkedet gir gode forhold. [11]

Utnyttelsesgraden til vindturbiner er ikke veldig stor, den ligger på 25-35 prosent. Dette finnes ut fra å sjekke mulig produksjon fra de installerte vindturbinene opp mot den forventede eller målte produksjonen.

$$Q_{mulig} = P_{innstallert} \times h$$

Formel 1

$$\eta = \frac{Q_{målt}}{Q_{mulig}}$$

Formel 2

Der:

Q_{mulig} er mulig produksjon dersom vindturbinene er i drift til enhver tid.

Q_{målt} er målt produksjon per år.

P_{installert} er den installerte effekten for vindparken.

h er antall timer vindturbinene er i drift, dersom en antar full drift vil dette tilsi 365 dager x 24 timer.

η er utnyttelsesgraden.

Elin Olsen

Grunnen til at utnyttelsesgraden er relativt lav har med ytre påvirkninger å gjøre. Til tider er det vindstille, hvilket tilsier ingen vindkraft. Også når det blåser for mye må vindturbinene stanses grunnet lastpåkjenninger for konstruksjonen. Tabell 1 viser en oversikt over vindparker som skal være i drift i Norge i 2012.

				Pinstallert	Q _{målt}
Sak	Fylke	Kommune	l drift	[MW]	[GWh]
Tysvær	Rogaland	Tysvær	2012	39,00	97,50
Andmyran	Nordland	Andøy	2012	160,00	453,00
Nygårdsfjellet trinn 2	Nordland	Narvik	2012	40,00	100,00
Lista	Vest-Agder	Farsund	2012	102,00	290,00
Fakken	Troms	Karlsøy	2012	60,00	200,00
Midtfjellet	Hordaland	Fitjar	2012	150,00	450,00
Høg-Jæren	Rogaland	Hå; Time	2011	73,60	184,00
Mehuken II	Sogn og Fjordane	Vågsøy	2010	18,40	46,00
Mehuken I	Sogn og Fjordane	Vågsøy	2009	4,25	10,60
Fjeldskår	Vest-Agder	Lindesnes	2009	3,75	12,00
Hitra	Sør-Trøndelag	Hitra	2009	55,20	138,00
Hywind (offshore)	Rogaland	Karmøy	2009	2,30	7,90
Hundhammerfjellet	Nord-Trøndelag	Nærøy	2008	45,00	112,50
Nygårdsfjellet trinn 1	Nordland	Narvik	2008	6,90	25,00
Smøla - trinn I og II	Møre og Romsdal	Smøla	2008	150,00	375,00
Kjøllefjord	Finnmark	Lebesby	2008	39,10	120,00
Bessakerfjellet	Sør-Trøndelag	Roan	2008	57,50	144,00
Valsneset	Sør-Trøndelag	Bjugn	2006	9,20	23,00
Hundhammerfjellet - demo II	Nord-Trøndelag	Nærøy	2004	3,00	7,50
Harøy	Møre og Romsdal	Sandøy	1999	3,75	11,00
Hundhammerfjellet - demo I	Nord-Trøndelag	Nærøy	1998	1,65	4,00
Sum				1 024,60	2 811,00

Tabell 1: Vindparker i drift i Norge

Total utnyttelsesgrad fra vindparkene i drift i Norge finnes til å være på 31,3 %.

 $Q_{mulig} = 1,0246GW \times (365 \times 24)h = 8\,975,496GWh/år$

Formel 1

$$\eta = \frac{2\,811 GWh/\text{å}r}{8\,975,496 GWh/\text{å}r} = 0,313$$

Tabell 2 viser hvor mange vindparker som er gitt konsesjon i Rogaland per januar 2012. Dette er parker som myndighetene har godkjent for oppføring.

Tabell 2	: Vindparker	gitt konsesjon	i Rogaland
----------	--------------	----------------	------------

Sak	Kommune	l drift	P _{installert} [MW]	Q _{målt} [GWh]
Tysvær	Tysvær	2012	39,00	97,50
Høg-Jæren	Hå; Time	2011	73,60	184,00
Hywind (offshore)	Karmøy	2009	2,30	7,90
Gravdal	Bjerkreim		90,00	270,00
Eikeland-Steinsland (Bjerkreim)	Bjerkreim		150,00	450,00
Royrmyrå	Hå		2,40	7,50
Skinansfjellet	Hå		90,00	270,00
Åsen 2	Time		1,60	4,80
Sway (offshore)	Karmøy		10,00	15,00
Moi-/Laksesvelafjellet	Bjerkreim		150,00	450,00
Stigafjellet - med ny løsning for nettilknytning	Bjerkreim		30,00	88,00
Utsira (overføring av konsesjon)	Utsira		1,20	4,00
Egersund	Eigersund		110,00	305,00
Måkaknuten	Bjerkreim; Gjesdal		66,00	229,00
Svåheia	Eigersund		24,00	65,00
Kvitsøy	Kvitsøy		10,00	
Friestad	Hå		2,40	6,00
Karmøy demo	Karmøy		10,00	
Rennesøy	Rennesøy		10,00	
Sum			872,50	2453,7

Totalt, for vindparkene som er godkjent for oppføring i Rogaland, beregnes utnyttelsesgraden til å være på 32,1 %.

$$Q_{mulig} = 0,8725GW \times (365 \times 24)h = 7.643,1GWh/år$$

Formel 1

$$\eta = \frac{2\,453,7GWh/\text{a}r}{7\,643,1GWh/\text{a}r} = 0,321$$

Formel 2

På landsbasis er det gitt konsesjon til 57 parker. Ny effekt på landsbasis vil være 3946,95 MW, som vil gi en ventet produksjon på 10145,3 GWh årlig [14]. Dette vil gi en utnyttelsesgrad på 29,3 %.

 $Q_{mulig} = 3,946\,95 GW \times (365 \times 24)h = 34\,575,3 GWh/år$

Formel 1

$$\eta = \frac{10\,145,3GWh/\text{å}r}{34\,575,3GWh/\text{å}r} = 0,293$$

Det er også flere søknader til behandling både i Rogaland og på landsbasis per dags dato. Tabell 3 viser en oversikt over disse i Rogaland.

Sak	Kommune	Stadium	P _{installert} [MW]	Q _{målt} [GWh]
Holmafjellet	Bjerkreim; Gjesdal	Konsesjon søkt	78,00	273,00
Tellenes	Sokndal	Konsesjon søkt	156,00	470,00
Gismarvik	Tysvær	Konsesjon søkt	15,00	40,00
Faurefjellet	Bjerkreim	Konsesjon søkt	60,00	181,00
Karmøy	Karmøy	Konsesjon søkt	75,00	210,00
Karmøy Metcentre offshore	Karmøy	Konsesjon søkt	10,00	0,00
Njåfjell	Time	Konsesjon søkt	10,00	35,00
Siragrunnen (offshore)	Flekkefjord; Sokndal	Konsesjon søkt	200,00	700,00
Gilja	Gjesdal	Konsesjon søkt	135,00	0,00
Helleheia	Sokndal	Konsesjon søkt	60,00	165,00
Kvitsøy vindkraftverk	Kvitsøy	Konsesjon søkt	4,00	12,60
Utsira pilot (offshore)	Utsira	Melding mottatt	25,00	100,00
Dalbygda	Tysvær	Melding mottatt	42,00	100,00
Risavika	Sola	Melding mottatt	24,00	68,00
Utsira vindkraftverk (pilot)	Utsira	Melding mottatt	36,00	130,00
Vardafjellet	Sandnes	Melding mottatt	30,00	90,00
Sandnes	Sandnes	Melding mottatt	100,00	300,00
Bukkanibba	Vindafjord	Melding mottatt	30,00	65,00
Nevlandsheia	Gjesdal	Melding mottatt	21,00	60,00
Døldarheia	Vindafjord	Melding mottatt	100,00	320,00
Arafjellet	Karmøy	Melding mottatt		
Fruknuten	Sokndal	Melding mottatt	90,00	270,00
Dufjellet	Sokndal; Lund	Melding mottatt	60,00	160,00
Sum			1 361,00	3 749,60

Tabell 3: Vindparker med søknader under behandling i Rogaland

Vindparkene med søknader til behandling i Rogaland har en utnyttelsesgrad på 31,5 %.

 $Q_{mulig} = 0,1361 GW \times (365 \times 24)h = 11\,922,36 GWh/år$

Formel 1

$$\eta = \frac{3\,749,6GWh/\aa r}{11\,922,36GWh/\aa r} = 0,315$$

Formel 2

Totalt i Norge er det 116 nye parker til behandling. Disse vil ha en ny effekt på 21925,5 MW, med en ventet produksjon på 65589,6 GWh årlig [14]. Disse vindparkene har en samlet utnyttelsesgrad på 34,2 %.

$$Q_{mulig} = 21,9255 GW \times (365 \times 24)h = 192\ 067,38 GWh/\text{å}r$$

 $\eta = \frac{65\ 589,6GWh/\text{å}r}{192\ 067,38GWh/\text{å}r} = 0,342$

2.4 Høg-Jæren Energipark

Figur 9: Bilde fra Høg-Jæren Energipark

Denne oppgaven baserer seg på anlegget Høg-Jæren Energipark. Vindparken er lokalisert på Høg-Jæren, delvis i både Hå og Time kommune. [14] Vindparken består av trettito vindturbiner av typen SWT-1.3-93 fra Siemens, der hver turbin har en installert effekt på 2.3MW. Vindparken har en årlig produksjon på ca 184GWh. Vindturbinene er 80m høye til navet, med en rotordiameter på 93m. [24] Turbinene settes i drift ved vindhastighet på 4m/s, og stanses dersom vindhastigheten når 25m/s. Selve rotoren, som består av navet og vingene, [38] har en egenvekt på 60 tonn og nacellens egenvekt er på 82 tonn. [36] Nacellen til en vindturbin er hodet der nøkkelkomponentene til vindturbinen er plassert. [38]

Inkludert adkomstvei, internt veinett, vindturbiner med fundament, oppstillingsplasser, transformatorstasjon og servicebygg med parkeringsplass legger parken beslag på et område på 132 mål [28]. Tiltakshaver av anlegget, som har vært i drift siden 2011, er Jæren Energi AS. [24]

Figur 10: Kart over vindturbinenes plassering

Når vindturbiner skal plasseres i en vindpark bør de plasseres slik at hver vindturbin får optimale vindforhold til enhver tid. Dette oppnås ved å ha tilstrekkelig avstand mellom vindturbinene slik at virkningene fra vindturbinene ikke påvirker hverandre.

Totalt er det bygget 25km med anleggsveier i vindparken, og 400 000m³ masse er forflyttet på området. I tillegg er det blitt tilkjørt 100 000m³ fjell- og grusmasse. Ved utbygging av anlegget måtte det tas hensyn til fugleliv i hekkesesongen og ferskvannsmuslinger i bekker på området [24].

Tjueseks vindturbiner er per dags dato i drift og seks er under oppføring. De oppførte vindturbinfundamentene er rektangulære med en grunnflate på 17,5mx17,5m og er 4m høye [24]. De resterende seks vindturbinfundamentene som er under oppføring er 18,1mx18,1m i grunnflate. Etter de første tjueseks vindturbinene ble satt opp har Siemens forbedret vindturbinene. I tillegg er det kommet endringer i IECs standard, IEC 61400-1 [6], som lastdokumentet baseres på. Dette har ført til at kreftene som virker på fundamentet under normal drift har økt. [37] Fundamentstørrelsen måtte da økes for å tilfredsstille krav for løft av fundament under normal drift.

Figur 11: Fundament under oppføring i andre byggetrinn

Når anlegget ble dimensjonert ble DNV-OS-C502 lagt til grunn for utmattingsberegningene. Anlegget kunne også vært dimensjonert etter Eurokode 2; NS-EN 1992-1-1:2004.

3 Statisk analyse

Statisk analyse er utført i G-prog Geoteknikk og BT-snitt. Geoteknisk analyse er hentet fra geotekniske rapporter utarbeidet for Høg-Jæren vindpark, og er ikke en del av denne oppgaven. Lastdata brukt i analysen er hentet fra eksempel på lastdokument, se vedlegg A. Programmene skal i dette kapittelet brukes for å beregne sjekke at fundamentet er stabilt, og finne passende størrelse og armeringsmengde før det brukes i videre analyser. Generelt er det fokusert på korrekt beregning av grunntrykk i den statiske analysen.

NS-EN 1990-1-1:2004 sier at ved valg av lastkombinasjoner skal alle de lastkombinasjoner som kan være dimensjonerende i ethvert snitt, innenfor konstruksjonen eller konstruksjonsdelen som betraktes, undersøkes. (pkt 5.1.3, [5]) For vindturbinfundamentet blir lasttilfelle 1.2; "Ultimate normal operation loads" og lasttilfelle 1.6, "Ultimate operation gust loads with 50 years return period incl. partial safety factor 1.35", se vedlegg A, brukt for dimensjonering. Lasttilfelle 1.2 ble valgt da dette er lastvirkningene på fundamentet ved normal drift. Normal drift vil være dimensjonerende ved sjekk av rissvidde på fundamentet. Her er verdier uten sikkerhetsfaktor brukt som dimensjonerende. Lasttilfelle 1.6 er det mest ekstreme tilfellet av lastvirkninger. Inkludert sikkerhetsfaktor gir dette lasttilfellet et moment på 67 000kNm.

3.1 Grunnforhold og fundamenteringsprinsipp

Vindmøllen i denne oppgaven skal direktefundamenteres på betongfundament. Grunnen består generelt av faste, sterkt overkonsoliderte morenemasser, med jordtype varierende fra steinet morene og fast siltig, sandig leire. Grunnvannsnivå på noen få centimeters dybde, med vanninnhold i ulike typer jord varierende fra 15-18%. [27] Følgende verdier er brukt som dimensjonerende i programvaren.

Grunnforhold	
Friksjonsvinkel φ	28°
tan φ	0,53
Attraksjon	5kN/m ²
Tetthet jord $oldsymbol{\gamma}$	18kN/m ³
Sikkerhetsnivå	1,6

Tabell 4: Jordparametre brukt i den statiske analysen

Fundamentet har to funksjoner for en vindturbin. Den skal bære vekten av turbinen slik at denne ikke synker, og fungere som en motvekt slik at vindturbinen ikke tipper. (side 97, [3]) For denne vindturbinen er det tenkt et såkalt søylefundament. Et søylefundament er et enkeltfundament, som utvider en søyle slik at lasten fra konstruksjonen spres over et større areal av jorden. Det er direkte fundamentert, slik at fundamentets dybde er funnet ut fra nødvendig dybde for konstruksjonens funksjon. (side 160-161, [4]) Normalt vil et vindturbinfundament ligge 2-3m under bakken, og ha kvadratisk form på 7-12m, avhengig av vindturbinens størrelse. Dersom fundamentet oppføres på vannmettet jord vil fundamentet bli noe større grunnet oppdriften fra grunnvannet. (side 97, [3]) Fundamentet i denne oppgaven har ytre dimensjoner på 17,5mx17,5m, og ligger på 4m dybde. [27]

3.2 Modellering i G-prog Geoteknikk

Ved modellering i G-prog ble programmodul "Geoteknikk for Eurocode versjon 6.20.1" brukt. Programmet legger Norsk Standard NS-EN 1997 og NS-EN 1992 med nasjonale tillegg NA:2008 til grunn for beregningene. G-prog er et verktøy utarbeidet av Norconsult Informasjonssystemer as. Programvaren er delt inn i to hoveddeler; G-prog Teknikk og G-prog PA. Geoteknikk hører inn under G-prog Betong som er en del av G-prog Teknikk. G-prog Teknikk kan brukes til det meste av beregningsarbeid ved prosjektering. Geoteknikk er en programpakke brukt til å beregne stabilitet for konstruksjoner på mark. Det kan brukes til beregning av både støttemur, stripefundament og rektangulært fundament. [20]

For denne oppgaven egnet det seg å bruke modellen "Rektangulært Fundament" ved dimensjonering. For å bruke programmet må en legge inn materialdata for betong og jord, geometri av fundamentet, armering, lasttilfeller og lastkombinasjoner. Man kan enten velge armering selv eller bruke forslag fra programmet etter man har lagt inn valgt betongkvalitet. Etter alle relevante data er gitt kan programmet foreta beregninger av fundamentet. Da blir snitt på begge sider av søylen dimensjonert, og for rektangulære fundamenter blir også søylen og gjennomlokkingen kontrollert. [20]

Programmet er brukervennlig, og enkelt å forstå seg på. Det viser til enhver tid skisser av fundamentet, som justeres etter hvert som en inndata endres. Likevel finnes det utfordringer ved modellering av et såpass stort fundament. Ved innmating av data, ble det brukt samme dimensjoner som for de oppførte fundamentene brukt ved Høg-Jæren Energipark, se vedlegg B. Øvre grenser på dimensjoner måtte økes i programmet for å få lagt inn geometrien av fundamentet. Det var heller ikke mulig å få lagt inn skråkant på overflaten av fundamentplaten. Tykkelsen av platen ble derfor lagt inn som maks tykkelse på platen. Dette fører til økt egenvekt av fundamentet.

Figur 12: Tverrsnittsgeometri av fundament i G-prog

Lastene som legges inn i G-prog Geoteknikk, hentes fra vedlegg A, der de mest relevante tilfellene velges for kontroll. Fundamentets kapasitet kontrolleres ut fra disse. Lasttilfelle 1.2; Ultimate normal operation loads, er lastvirkninger på vindturbinen under normal drift. Dette tilfellet brukes for beregning av rissvidde, som beregnes ut fra tilnærmet permanent lastkombinasjon, (SLS). Lasttilfelle 1.6, "Ultimate operation gust loads with 50 years return period incl. partial safety factor 1.35", er det mest ekstreme tilfellet av lastvirkninger konstruksjonen kan utsettes for. Lasttilfellet brukes for å beregne bruddgrense (STR), stabilitetsberegning (EQU) og grunnbruddsberegning (GEO).

3.3 Modellering i BT-snitt

BT-snitt er også brukt for å dimensjonere betongfundamentet. Programmet er en del av en programpakke kalt OS-prog, der BT-snitt versjon 6.2 er det benyttede programmet. Beregningene er basert på NS-EN 1992-1-1 og NS-EN 1990:2002 + NA:2008. Programmet er utviklet av sivilingeniør Ove Sletten. Programmet brukes til tverrsnittkontroll av betongtverrsnitt. Det er mulig å velge mellom åtte typiske tverrsnittsformer i programmet, eller konstruere et vilkårlig tverrsnitt for kontroll. Det er mulig å bruke slakkarmering, spennarmering eller begge deler i tverrsnittet. Søyletverrsnitt kan kontrolleres for bøyning om både Y- og Z-aksen. Sirkulære tverrsnitt kan bare kontrolleres om Y-aksen. I programmet finner man spesialprogrammer for konsollberegning, veggbankett, vegg, gjennomlokkingskontroll, støttemur, søyle fra 1-3 etasjer, søylefundament og kjellervegg. [21]

Spesialprogrammet for søylefundament ble brukt for å utføre tverrsnittskontroll av vindmøllefundamentet. Som i G-prog Geoteknikk legges det inn relevant informasjon om geometri, armering, materialer, jord og lasttilfeller. Når all denne informasjonen er lagt inn velger programmet ut det mest ugunstige lasttilfellet og kontrollerer tverrsnittet ut i fra dette. [21]

Figur 13: Tverrsnittsgeometri av fundament i OS-prog

Dimensjonene fra Høg-Jæren Energipark, vedlegg B, blir brukt ved innmating av data her òg. Det blir valgt bort å ta med data for betongsøylen, da det er kapasiteten til platefundamentet som er aktuelt. Geotekniske verdier er hentet fra geoteknisk rapport utarbeidet for vindparken på Høg-Jæren[27]. Programmet gir en mer korrekt fremstilling av geometrien til fundamentet enn G-prog Geoteknikk da en har mulighet for skrå overflater på fundamentet.

Generelt sett er BT-snitt et enklere program enn G-prog Geoteknikk. Det er for eksempel ikke mulig å velge alle eksponeringsklasser for betongen. Korrekt eksponeringsklasse for fundamentet er XF3; høy vannmetning, uten avisingsmidler; horisontale betongoverflater utsatt for regn og frost. Dette er ikke et alternativ å velge i BT-snitt. Derfor ble det valgt å bruke eksponeringsklasse XD3; vekselvis vått og tørt; brudeler utsatt for sprut som inneholder klorider, vegdekker, parkeringsdekker (tabell 4.1, [5]).

Det ble lagt inn samme lasttilfeller som for G-prog Geoteknikk ut i fra vedlegg A. Lasttilfelle 1.6, det mest ekstreme tilfellet blir lagt inn som lasttilfelle 1. Lastfaktorene måtte overstyres til å være lik 1,0 for lasttilfelle 1.6, da innlagte laster er medregnet sikkerhetsfaktor 1,35. Også lasttilfellet for normal drift, lasttilfelle 1.2, ble lagt inn i programmet. Programmet valgte å bruke lasttilfelle 1 (tilfelle 1.6 i produktblad) for tverrsnittskontroll.

3.4 Resultater

I begge programmene er det lagt inn informasjon om materialer, geometri og jordparametre. Ut i fra disse dataene kan programmene brukes som dimensjoneringsverktøy for sjekk av konstruksjoner i brudd- og bruksgrensetilstander.

Bruddgrensetilstander (ULS) er en betegnelse for tilstander som kan føre til sammenbrudd eller konstruksjonssvikt. Av beregningene utført i G-prog og BT-snitt er det bare risskontrollen som ikke er beregnet for bruddgrense. Rissvidden kontrolleres ut i fra bruksgrensetilstanden (SLS).

G-prog foretar beregninger for både stabilitet, grunnbrudd, minimumsarmering, kapasitetsutnyttelse og risskontroll av fundamentet. For denne oppgaven er det aktuelle grunnbruddsberegningene. Fra vedlagte beregningsdokument (vedlegg C) finnes det overførte fundamenttrykket, også kalt grunntrykk, q_v til å være på 112,7kN/m². Dette er langt under bæreevnen i både lengde- og bredderetningen på hhv. 358kN/m² og 401,8kN/m²

Beregningsdokumentet fra BT-snitt viser at også her blir stabilitet, kapasitet og risskontroll sjekket i tillegg til kontroll av grunntrykket. Sjekk av minimumsarmering blir ikke utført. Fra beregningsdokument (vedlegg D) finnes det overførte grunntrykket, q_v, til å være på 121kN/m². Bæreevnen ut fra OS-prog er beregnet til å være 242 kN/m², så også her er grunntrykket godt innenfor bæreevnen.

Det er noe avvik på beregningene fra BT-snitt og G-prog. For grunntrykksberegningene er ikke disse så store. Årsaker til avvikene kan skyldes at geometrien til fundamentet avviker i de ulike programmene, der BT-snitt gir den mest korrekte geometrien. Ellers er det mulig å legge inn flere jordparametre i G-prog, noe som kan gi utslag på beregningene. Det blir også observert avvik i beregningene fra de to programmene for de andre kontrollene. Da dette ikke er relevant for denne oppgaven spekuleres det ikke videre i disse forskjellene.

4 Utmatting

Utmatting er brudd av konstruksjoner utsatt for svingende, sykliske spenninger, der spenningsnivået er relativt lavt (G4, [31]). Materialet blir degradert grunnet syklisk belastning (Sec.1, C230, [7]). En konstruksjons levetid for utmattingsskader måles i antall lastsykler som konstruksjonen tåler ved en gitt amplitude (G4, (31)).

4.1 Utmatting som fenomen

Utmattingsbrudd er brudd i konstruksjoner grunnet sprekkvekst over tid. En sprekk utvikler seg over tid der konstruksjoner utsettes for spenninger med varierende amplitude. Bruddmekanikk i seg selv ble ikke ansett som et relevant fagområde for ingeniører før etter år 1943, når et Libertyskip knakk i to (side 9, [22]).

4.1.1 Utmattingsfenomenet

Når en konstruksjon utsettes for dynamisk og svingende belastning, kan det oppstå brudd ved spenninger betydelig lavere enn materialets strekkfasthet og flytegrense for statisk belastning. Brudd kommer vanligvis etter en lengre periode der konstruksjonen er utsatt for gjentakende spenningseller tøyningssykler. Utmatting er estimert til å være årsaken for rundt 90 prosent av alle brudd i metaller. (Side 227, [31])

Region of rapid failure

Elin Olsen

Utmatting utvikler seg gjennom tre steg. Først kommer sprekkinitieringen, hvor en sprekk begynner å utvikle seg i et punkt med høy spenningskonsentrasjon. Etter dette vil sprekken utvikle seg gradvis etter som konstruksjonen utsettes for spenningssykler. Til slutt vil konstruksjonen gå til brudd. Dette vil skje plutselig, som for et sprøtt brudd (side 228, [31]), når sprekken har nådd en kritisk størrelse. (Side 232, [31]). Materialets styrke og elastisitetsmodul reduseres hurtig etter bare noen få lastsykler, før styrken holder seg nærmest konstant frem til 80 prosent av materialets levetid. Etter dette vil styrken og elastisitetsmodulen reduseres ytterligere frem til brudd. (Side 280, [22]).

Når det designes en konstruksjon er det ønskelig å redusere påvirkningen fra faktorer som reduserer utmattingslevetiden. Utmattingslevetiden påvirkes av gjennomsnittsspenning, design av konstruksjonen, overflatebehandlinger og konstruksjonens omgivelser. (Side 234-238, [31])

Levetiden reduseres dersom gjennomsnittsspenningen øker. Dette vises best ved hjelp av en S-Nkurve. σ_{m1} i figur 16 er den laveste gjennomsnittsspenningen et materiale utsettes for. Materialet tåler flere spenningsamplituder før brudd for σ_{m1} enn for σ_{m3} , som er den høyeste gjennomsnittsspenningen samme materiale utsettes for. Figuren viser altså at antall spenningssykler før brudd reduseres dersom gjennomsnittsspenningen øker. (side 235, [31]).

Figur 16: Økt gjennomsnittsspennings påvirkning på levetiden, fra [31]

Ved design av konstruksjoner kan en øke levetiden ved å unngå geometrisk diskontinuitet. Diskontinuitet skaper spenningskonsentrasjoner, som vil være ekstra utsatt for sprekkinitiering. Alt fra riller, hull, kilespor, gjenger (i bolter) og skarpe kanter kan gi spenningskonsentrasjoner. Disse spenningskonsentrasjonene kan reduseres ved å forsøke å unngå uregelmessigheter i konstruksjonen, og forbedre designet der det er mulig. Det bør være avrundede hjørner med stor krumningsradius, i stedet for skarpe kanter. (side 235, [31]).

Under arbeid med materialer kan riper og riller oppstå. Disse uregelmessighetene kan også påvirke levetiden. Ved å påføre trykkspenninger i et tynt lag på overflaten av materialet vil sannsynligheten for sprekkdannelse reduseres. Derav reduseres faren for tretthetsbrudd. Levetiden kan også økes ved å øke en stållegerings overflatehardhet. Hardheten økes ved å påføre en karbon- eller nitrogenholdig hardere overflate til komponenten det ønskes økt levetid for. Levetiden økes da grunnet den økte styrken til stålet. I tillegg oppstår trykkspenninger i overflaten grunnet prosessen med å øke styrken. (Side 236, [31])

Også ytre påkjenninger påvirker utmattingslevetiden. Utmatting grunnet termiske påkjenninger kan påvirke konstruksjonen, ved at tverrsnittet utvider seg eller trekker seg sammen etter som temperaturen svinger. Termisk utmatting kan forekomme uten at spenninger grunnet andre eksterne påkjenninger er tilstede. Korrosive omgivelser reduserer også levetiden. Utmatting grunnet korrosjon opptrer som en kombinasjon av sykliske spenninger og kjemisk påvirkning fra omgivelsene. Små groper kan oppstå (groptæring), og skape spenningskonsentrasjoner, der sprekker lettere vil utvikle seg ved spenningssvingninger. (Side 237, [31]).

4.1.2 Historiske hendelser

Under andre verdenskrig senket den tyske marinen britiske skip tre ganger raskere enn britene klarte å erstatte skipene med daværende teknologi. Amerikanerne utviklet på denne tiden en ny teknologi der skroget ble sveist sammen i stedet for klinket. Produksjonstiden kunne da reduseres fra 230 til 42 dager [34]. Disse skipene ble kjent som Libertyskip, og det ble bygget rundt 2700 Libertyskip under andre verdenskrig. 400 av disse skipene fikk bruddskader, hvorav 90 ble ansett som alvorlige. [35]. Amerikanerne utstyrte britene med Libertyskip som ble brukt som lasteskip for å frakte forsyninger. Dette var britenes største behov på den tiden. (Side 9, [22])

Den nye produksjonsteknikken var svært suksessfull, frem til en dag i 1943 da et skip knakk i to da det seilte mellom Sibir og Alaska. Etter dette oppstod det brudd i flere Libertyskip, der flere knakk helt i to ([22], [34]). Bruddene skyldtes en kombinasjon av flere faktorer. Sveisesømmene inneholdt sprekklignende defekter, bruddene så ut til og starte på dekk i forbindelse med kvadratiske hjørner og Charpy-tester viste at stålet skipene var bygget av hadde lav styrke. Samme stål var brukt i klinkede skip tidligere, men da forplantet ikke brudd seg gjennom platene på samme måte som når skroget ble sveiset sammen. I de sveiste skrogene ble stålet som et stykke metall, slik at sprekker kunne forplante seg uhindret gjennom hele skroget. (Side 9, [22])

Figur 17: Libertyskip som knakk i to, fra [34]

Statistisk var bruddraten for Libertyskip som befant seg nord i Atlanterhavet astronomisk, og ikkeeksisterende sør i Stillehavet. Man var derfor klar over at noe måtte være galt med skipene. [35]. For å unngå brudd i de gjenværende Libertyskipene ble forbedringer utført. Skarpe kanter ble avrundet og forsterkende stålplater med høy styrke ble klinket fast til dekk der det var strategisk. (Side 9, [22]).

"Alexander L. Kielland"-plattformen var stasjonert som boligplattform ved Ekofisk-feltet i Nordsjøen
[33] fra sommeren 1979. Den 27. mars 1980 førte et tretthetsbrudd i et av stagene til at en
bæresøyle ble revet bort, og plattformen veltet. 123 mennesker mistet livet i ulykken, og 89
overlevde i det som betegnes som den verste arbeidsulykken i norsk historie. Bølgehøyden var på

seks til åtte meter ulykkesdagen, og det ble fort mørkt da ulykken inntraff på kvelden. NOU-rapport nr. 11, 1981 sier at ulykken skyldtes et brudd i en sveisesøm i et av stagene som bandt søyleføttene sammen. Det var i forbindelse med et lytteinstrument som var sveiset fast til plattformbeinet at tretthetsbruddet utviklet seg. D-søylen falt til slutt av, og plattformen krenget over. Søyleføtter og dekk tok inn vann, og etter 20 minutt hadde hele plattformen tippet rundt. [32]

Figur 18: "Alexander L. Kielland"-ulykken, D-staget der tretthetsbruddet oppstod, fra [32] Foto: Norsk Oljemuseum

Etter ulykken ble det innført nye sikkerhetstiltak. Sjøfartsdirektoratet kom umiddelbart med krav om at samtlige flytende installasjoner skulle til land for sprekkontroll. Det kom også forskrifter om at enhver plattform skulle beholde oppdriften selv om et av plattformbeina skulle falle bort. I tillegg ble det høsten 1980 bestemt at samtlige ombordværende skulle utstyres med redningsdrakter, også for faste installasjoner. [32]

4.2 Standarder

DNV-OS-C502, Det Norske Veritas standard for betongkonstruksjoner [7], ble brukt da vindturbinfundamentene på Høg-Jæren ble kontrollert for utmatting. Det kunne også blitt benyttet NS-EN 1992-1-1:2004+NA:2008, Eurokode 2: Prosjektering av betongkonstruksjoner [5] i dimensjoneringen. Seksjon 6, M: Utmatting [7] og seksjon 6.8 Utmatting [5] er de relevante seksjonene å sammenligne i denne oppgaven.

For denne oppgaven er utmattingslastene hentet fra et lastdokument som er basert på IEC 61400-1 [6]. Lastdokumentet finnes i vedlegg A.

4.2.1 DNV-OS-C502, Offshore Concrete Structures

For å kontrollere en konstruksjon mot utmatting sier DNV-OS-C502 at alle spenningssvingninger som kan påvirke utmattingslevetiden til en konstruksjon, i hele dens levetid, skal tas med i beregningene. De svingende lastene som virker på konstruksjonen finnes fra statistiske oversikter. Det skal tas hensyn til systemets dynamiske respons. (Sec. 6, M101-M103, [7])

Videre sier DNV-OS-C502 at konstruksjonens geometri og armeringens plassering optimaliseres for å forhindre utmattingsbrudd. (Sec. 6, M104, [7])

Design for utmatting kan baseres på metoder for utmattingsprøver og skadeanalyser dersom metoden er tilstrekkelig dokumentert og passende for situasjonen. Det skal i alle tilfeller påvises at strukturen som utsettes for flere spenningssykler, tåler de forventede spenningene i levetiden. Spenningene fra de sykliske lastene arrangeres i spenningsblokker, med konstant amplitude og tilhørende antall spenningssykler, n_i. (Sec.6, M105-M107, [7])

Levetiden beregnes ut fra dimensjoneringskriteriet;

$$\sum_{i=1}^k \frac{n_i}{N_i} < \eta$$

Formel 3

k	Antall spenningsblokker
N	Antan speringsblokker

η Utnyttelsesgrad for utmatting, hentes fra Sec.6, tabell M1, [7]

n Antall lastsykler i aktuell spenningsblokk

N Antall lastsykler som gir utmattingsbrudd ved konstant svingeamplitude

Det anbefales å kontrollere minimum åtte spenningsblokker for levetidsberegningene.

(Sec.6, M107, [7])

4.2.1.1 Levetidsberegning for betong

Levetiden for betong utsatt for sykliske laster beregnes ut fra formelen

$$\log_{10} N = C_1 \times \frac{1 - \frac{\sigma_{max}}{f_{rd}}}{1 - \frac{\sigma_{min}}{f_{rd}}}$$

Formel 4

- σ_{max} Maksimal betongspenning i spenningsblokk
- σ_{min} Minste betongspenning i spenningsblokk. Når σ_{min} er strekkspenning settes spenningen lik 0 for beregning av betongens levetid, $log_{10}N$. Dette er fordi betong ikke har evne til å ta opp strekkspenninger.
- f_{rd} Betongens trykkfasthet i aktuell bruddform. f_{rd} beregnes etter formelen

 $f_{rd} = \alpha f_{cd}$

Formel 5

der:

f_{cd} dimensjonerende betongtrykkfasthet

$$\alpha=1.3-0.3\beta>1.0$$

Formel 6

β forholdet mellom minste og største spenning som opptrer samtidig i betongens trykksone. Avstanden mellom punktene som brukes for å beregne β skal ikke overskride 300mm (0 < β < 1.0).

(Sec. 6, M302, [7])

- Faktor som varierer med konstruksjonens omgivelser, og om σ_{max} og σ_{min} varierer mellom trykk/trykk eller strekk/trykk.
 - 12,0 for konstruksjoner i luft
 - 10,0 for konstruksjoner i vann, der spenningsblokkene varierer innenfor trykk/trykk
 - 8,0 for konstruksjoner i vann der spenningsblokkene varierer innenfor strekk/trykk

Betongens levetid \log_{10} N kan økes med en faktor C₂ dersom $\log_{10} N > X$.

 C_1

$$X = \frac{C_1}{1 - \frac{\sigma_{min}}{f_{rd}} + 0.1C_1}$$

Formel 7

$C_2 = 1 + 0.2(\log_{10} N - X) > 1.0$

Formel 8

(Sec. 6, M201, [7])

4.2.1.2 Levetidsberegning for armering Levetiden for armering utsatt for sykliske laster beregnes ut fra formelen

$$\log_{10} N = C_3 - C_4 \log_{10} \Delta \sigma$$

Formel 9

Δσ Spenningsvidde i armeringen

C₃ Faktor som avhenger av armeringstype, bøyeradius og korrosjon

C₄ Faktor som avhenger av armeringstype, bøyeradius og korrosjon

Maksimal spenning σ_{max} skal ikke overskride f_{sk}/γ_s . γ_s hentes fra Sec. 6, tabell B1 [7].

(Sec. 6, M202, [7])

Verdier for C_3 og C_4 hentes normalt fra avsnitt M203. Dersom konstruksjonen befinner seg i spesielt eller alvorlig aggressive omgivelser (SA) eller (MA) hentes verdier i avsnitt M204.

4.2.1.3 Levetidsberegning for strekkbrudd i betong grunnet skjærkrefter

Beregning av levetid for strekkbrudd i betong uten skjærarmering beregnes som for betongens levetid grunnet sykliske laster (Sec.6, M200, [7]), med gjeldende uttrykk for skjærkrefter innsatt.

 $rac{\sigma_{min}}{f_{rd}}$ erstattes med $rac{V_{min}}{V_{cd}}$

(Sec. 6, M401, [7])

Uttrykket for å beregne betongens levetid blir da:

$$\log_{10} N = C_1 \times \frac{1 - \frac{V_{maks}}{V_{cd}}}{1 - \frac{V_{min}}{V_{cd}}}$$

Formel 10

Dersom skjærkraften endrer fortegn endres nevneren i formelen slik at vi får formelen:

$$\log_{10} N = C_1 \times \frac{1 - \frac{V_{maks}}{V_{cd}}}{1 + \frac{V_{min}}{V_{cd}}}$$

kraft som virker samtidig med den største trykkspenningen i spenningsblokken						
erkraft som virker samtidig som den minste trykkspenningen, eventuelt «kspenning i spenningsblokken						
Dimensjonerende skjærkapasitet for betongtverrsnitt (Sec.1, D100, [7]). Beregnes etter Sec. 6, F200 for DNV (Sec.6, M402, [7]).						
Faktor som varierer med konstruksjonens omgivelser, og om skjærkraften skifter fortegn eller ikke.						
 12,0 for konstruksjoner i luft 10,0 for konstruksjoner i vann, der skjærkraften ikke skifter fortegn 8,0 for konstruksjoner i vann der skjærkraften skifter fortegn 						

Dersom skjærkraften skifter fortegn skal beregningen utføres for både den positive og negative skjærkraften som V_{maks} og V_{min} om nødvendig.

(Sec.6, M401-M402, [7])

Ellers kan betongens levetid \log_{10} N økes, som for betong utsatt for sykliske laster, med en faktor C₂ dersom $\log_{10} N > X$ etter følgende uttrykk (M201, innsatt M401)

$$X = \frac{C_1}{1 - \frac{|V_{\min}|}{V_{cd}} + 0.1C_1}$$

Formel 12

$$C_2 = 1 + 0.2(\log_{10} N - X) > 1.0$$

4.2.2 NS-EN 1992-1-1:2004+NA:2008, Prosjektering av betongkonstruksjoner NS-EN 1992-1-1:2004 sier at kapasitet mot utmatting skal påvises i spesielle tilfeller. Både for konstruksjoner og konstruksjonsdeler som utsettes for regelmessige lastsykler, bør utmatting påvises. Utmattingen påvises separat for betong og stål. (6.8.1 [5])

4.2.2.1 Beregning av spenninger og spenningsvidder

For å beregne utmatting må konstruksjonens spenninger beregnes. Disse skal beregnes ut fra forutsetningen om rissede tverrsnitt, der det blir sett bort fra betongens strekkfasthet, mens kravet om kompatibilitet i tøyninger blir oppfylt. Videre skal hefteegenskaper mellom spennstål og armeringsstål tas hensyn til, og for eventuell dimensjonering av skjærarmering skal trykkstavenes helning beregnes. (6.8.2 [5])

Hefteegenskapene tas hensyn til ved å øke spenningsvidden til armeringsstålet beregnet under forutsetning av fullstendig heft med faktoren n:

$$\eta = \frac{A_s + A_p}{A_s + A_p \sqrt{\xi \left(\phi_s / \phi_p \right)}}$$

Formel 14

Helning for trykkstavene kan beregnes ut fra en trykk- og strekkstavmodell eller etter uttrykket:

$$\tan \theta_{fat} = \sqrt{\tan \theta} \le 1,0$$

Formel 15

For beregning av spenningsvidder deles konstruksjonens påvirkninger inn i statiske og sykliske påvirkninger som kan føre til utmatting. Ofte forekommende kombinasjon for bruksgrensetilstanden, også kalt grunnleggende kombinasjon for statisk last finnes fra formel (6.66 og 6.67 [5]). Deretter skal den sykliske lasten kombineres med den ugunstige grunnleggende kombinasjonen etter formel (6.68 og 6.69 [5]). (6.8.3 [5]). I denne oppgaven hentes utmattingslastene fra vedlegg A, derfor er ikke disse kombinasjonene videre betraktet i oppgaven.

4.2.2.2 Påvisning av utmatting for armering

Armeringen kan dimensjoneres ut fra to prosedyrer for utmatting. I standardtilfeller med kjente laster, som jernbane- og vegbruer kan utmatting påvises ved bruk av skadeekvivalent spenningsvidde. Da beskrives den faktiske lasthistorien ved hjelp av en enkelt spenningsvidde. Den ekvivalente spenningsvidden $\Delta \sigma_{s,equ}$ beregnes da etter NS-EN 1992-2. Utmattingskapasiteten vil forutsettes å være tilstrekkelig dersom følgende uttrykk er oppfylt. (6.8.5, [5])

$$\gamma_{F,fat} \times \Delta \sigma_{S,equ}(N^*) \leq \frac{\Delta \sigma_{Rsk}(N^*)}{\gamma_{S,fat}}$$

Formel 16

I denne oppgaven brukes metoden for sum av delskader etter Palmgren Miners-regel (6.8.4 (2), [5]).

$$D_{Ed} = \sum_{i} \frac{n(\Delta \sigma_i)}{N(\Delta \sigma_i)} < 1$$

Formel 17

 $n(\Delta\sigma_i)$ antall opptredende vekslinger for et spenningsområde $\Delta\sigma_i$

 $N(\Delta \sigma_i)$ antall vekslinger som kan opptas for et spenningsområde $\Delta \sigma_i$

(6.8.4, [5])

Levetiden til armering utsatt for sykliske laster finnes ved å bruke en S-N-kurve for armeringsstål. Referanseverdier for $\Delta\sigma_{Rsk}$ og N* hentes fra tabell 6.3N [5]. Før armeringsstålets levetid, log N kan beregnes, må det tas hensyn til utmattingslaster både for den påførte lasten og referansespenningen. Den påførte lasten, $\Delta\sigma$, skal multipliseres med en partialfaktor for utmattingspåvirkninger, $\gamma_{F,fat}$. Referanseverdien, $\Delta\sigma_{Rsk,}$ skal divideres med partialfaktoren, $\gamma_{S,fat}$, for armeringsstål ved utmattingsbelastning etter tabell NA.2.1N, [5]. (6.8.4 (1), [5])

$\Delta \sigma_{Rsk}$

γs,fat

Formel 18

$\Delta \sigma \times \gamma_{F,fat}$

Figur 19: S-N-kurve for armeringsstål og spennstål, fra [5]

Levetiden til armeringen beregnes etter følgende metode (6.8.4 [5])

For $\log \Delta \sigma \times \gamma_{F,fat} > \log \frac{\sigma_{Rsk}}{\gamma_{S,fat}}$

$$\log N = \log N^* - \frac{\log \Delta \sigma - \log \frac{\Delta \sigma_{Rsk}}{\gamma_{s,fat}}}{\frac{1}{k_1}}$$

Formel 20

For $\log \Delta \sigma \times \gamma_{F,fat} < \log \frac{\sigma_{Rsk}}{\gamma_{S,fat}}$

$$\log N = \log N^* - \frac{\log \Delta \sigma - \log \frac{\Delta \sigma_{RSK}}{\gamma_{S,fat}}}{\frac{1}{k_2}}$$

Δσ	$\sigma_{maks} - \sigma_{min}$
σ_{maks}	Maksimal armeringsspenning i spenningsblokk
σ_{min}	Laveste armeringsspenning i spenningsblokk
$\Delta\sigma_{\text{Rsk}}$	Beregnet spenningsvidde for N* lastvekslinger. Hentes fra tabell NA.6.3N (NA.6.8.4, [5])
N*	Antall lastvekslinger den beregnede spenningsvidden Δσ _{Rsk} kan oppta. Hentes fra tabell NA.6.3N (NA.6.8.4, [5])
k ₁	Spenningseksponent der log $\Delta \sigma > \log(\Delta \sigma_{Rsk}/\gamma_{S,fat})$; N < N [*] . Hentes fra tabell NA.6.3N (NA.6.8.4, [5])
k ₂	Spenningseksponent der log $\Delta \sigma < \log(\Delta \sigma_{Rsk}/\gamma_{S,fat})$; N > N [*] . Hentes fra tabell NA.6.3N (NA.6.8.4, [5])
(6.8.4, [5])	

I tillegg til kravet for utnyttelsesfaktoren skal de beregnede spenningene fra utmattingslastene ikke overstige stålets dimensjonerende flytegrense. Flytegrensen bør påvises ved hjelp av strekkprøving av armeringsstålet. Dersom målet med utmattingsberegningen er å finne en eksisterendes konstruksjons gjenlevende levetid eller behov for forsterkning, og det har oppstått korrosjon, kan spenningsvidden bestemmes ved å redusere spenningskomponenten k₂ for rette og bøyde stenger. Spenningsvidden for sveiste stenger skal aldri overstige spenningsvidden for rette og bøyde stenger. (6.8.4 [5])

Dersom spenningsvidden for den ofte forekommende verdien av vekslende last kombinert med den grunnleggende kombinasjonen for armeringsstenger uten sveis med strekkpåkjenning, $\Delta\sigma_{s} \leq k_{1}$, anses utmattingskapasiteten som tilfredsstillende. Samme for sveiste armeringsstenger med strekkpåkjenning, bare $\Delta\sigma_{s} \leq k_{2}$. Forenklet kan påvisningen utføres ved bruk av den ofte forekommende lastkombinasjonen. Ytterligere påvisning for utmatting er ikke nødvendig dersom disse kravene er oppfylt. I forspent betong, der det er brukt sveiste skjøter eller skjøteanordninger, bør det ikke være strekkspenninger i betongtverrsnittet innenfor et område 200mm fra spennkablene eller armeringsstålet for den ofte forekommende lastkombinasjonen sammen med en reduksjonsfaktor k₃ for middelverdien av forspenningskraften P_m. (6.8.6, [5])

4.2.2.3 Påvisning av utmatting for betong

Tilfredsstillende utmattingskapasitet for betong kan påvises ved bruk av to ulike metoder. Den første metoden, (6.8.7 (1), [5]), baserer seg på teorien om skadeekvivalent spenningsvidde (Appendiks NN, [30]). Denne metoden er ikke aktuell for vindturbinfundamentene i denne oppgaven.

Metode 1:

$$E_{cd,max,equ} + 0.43\sqrt{1 - R_{equ}} \le 1$$

I tilfellet for vindturbinfundament brukes metoden beskrevet i (6.8.7 (2), [5]).

Metode 2:

$$\frac{\sigma_{c,max}}{f_{cd,fat}} \le 0.5 + 0.45 \frac{\sigma_{c,min}}{f_{cd,fat}} \le \begin{cases} 0.9 \ for \ f_{ck} \le 50 MPa \\ 0.8 \ for \ f_{ck} > 50 MPa \end{cases}$$

Formel 23

 σ_{c,max} største trykkspenning i en fiber for den ofte forekommende lastkombinasjonen (trykk målt positivt)

 $\sigma_{c,min} \qquad \qquad \text{minste trykkspenning i samme fiber som } \sigma_{c,max} \text{ opptrer der } \sigma_{c,min} \geq 0.$

f_{cd,fat} dimensjonerende utmattingskapasitet

(6.8.7, [5])

Elin Olsen

$$f_{cd,fat} = k_1 \beta_{cc}(t_0) f_{cd} \left(1 - \frac{f_{ck}}{250} \right)$$

Formel 24

k ₁	faktor som settes lik:
	0,85 der hele tverrsnittet er i trykk
	1,0 der deler av tverrsnittet er i strekk
	(NA.6.8.7, [5])
βcc(t ₀)	koeffisient for betongfasthet ved første lastpåføring (etter 3.1.2 (6), [5])
t _o	starttidspunkt for vekslende påkjenning for betongen i dager
f_{cd}	betongens dimensjonerende trykkfasthet
f _{ck}	betongens sylinderfasthet
(6.8.7 (1), [5])	

$$f_{cd} = \alpha_{cc} \frac{f_{ck}}{\gamma_c}$$

Formel 25

α_{cc} koeffisient som tar hensyn til langtidslast på trykkfastheten samt ugunstige virkninger som følge av måten lasten påføres. Verdi finnes i NA.3.1.6, [5].

γ_c materialfaktor for betong. Verdi finnes i tabell NA.2.1N, [5].

(3.1.6 (1), [5])

$$\beta_{cc}(t) = e^{\left\{s\left[1 - \frac{28}{t}\right]^{1/2}\right\}}$$

Formel 26

- s koeffisient avhengig av sementtype
 - 0,20 for sement i klasse R

0,25 for sement i klasse N

0,38 for sement i klasse S

t betongens alder i døgn

(3.1.2 (6), [5])

4.2.2.4 Påvisning av utmatting for betong grunnet skjærkrefter

Metode 2 kan også benyttes for konstruksjonsdeler utsatt for skjærkraft, men da må betongfastheten f_{cd,fat} reduseres med en fasthetsreduksjonsfaktor etter (6.2.2 (6) [5]). (6.8.7(3), [5]) Da vindturbinfundamentene ikke har behov for skjærarmering ved dimensjonering i bruddgrensetilstanden sjekkes betongens kapasitet etter 6.8.7 (4), [5]. Utmattingskapasiteten sjekkes etter to uttrykk, avhengig av om skjærkraften skifter fortegn eller ikke.

Beregningsmetoden for utmattingskapasiteten for utmatting grunnet vekslende skjærkraft i henhold til NS-EN 1992-1-1:2004, der konstruksjonsdelen ikke har behov for skjærarmering ved dimensjonering i bruddgrensetilstanden er som følger:

For
$$\frac{V_{Ed,min}}{V_{Ed,max}} \ge 0$$
:

$$\frac{\left|V_{Ed,max}\right|}{\left|V_{Rd,c}\right|} \le 0.5 + 0.45 \frac{\left|V_{Ed,min}\right|}{\left|V_{Rd,c}\right|} \le \begin{cases} 0.9 \ for \ f_{ck} \le 50 MPa \\ 0.8 \ for \ f_{ck} > 50 MPa \end{cases}$$

Formel 27

For $\frac{V_{Ed,min}}{V_{Ed,max}} < 0$:

$$\frac{\left|V_{Ed,max}\right|}{\left|V_{Rd,c}\right|} \le 0.5 - \frac{\left|V_{Ed,min}\right|}{\left|V_{Rd,c}\right|}$$

Formel 28

- V_{Ed,max} dimensjonerende verdi av største opptredende skjærkraft for ofte forekommende lastkombinasjon.
- V_{Ed,min} dimensjonerende verdi av minste opptredende skjærkraft for ofte forekommende lastkombinasjon i samme tverrsnitt som V_{Ed,max} opptrer.
- V_{Rd,c} dimensjonerende verdi for skjærkapasitet etter uttrykk (6.2.a). Hentes i denne oppgaven fra beregningsprogrammer.

(6.8.7 (4), [5])

4.3 Beregning av spenningsblokker

Før selve utmattingsberegningene kan påbegynnes må det foretas en spenningsanalyse ut fra de sykliske lastene som kan føre til utmatting. Utmattingslastene brukt i spenningsanalysen er hentet fra vedlegg A, tabell 4: "Fatigue load spectrum for overturning moment".

Lastdokumentet gir verdier for momentsvingningene som virker på fundamentet. For å finne spenningssyklene tas en spenningsanalyse i de antatt kritiske snittene for en spenningsblokk. Spenningene som virker på fundamentet varierer lineært med momentet. De resterende spenningssyklene beregnes derfor lineært for de resterende spenningsblokkene.

Armeringsmengden som ble beregnet i kapittel 3 økes for at konstruksjonens kapasitet for utmatting skal bli bedre.

4.3.1 Utmattingslaster

Utmattingsspenninger kommer som sagt fra de sykliske lastene som virker på fundamentet. Momenter hentes fra tabell 4 i vedlegg A. Tabellen gir informasjon om antall svingninger, gjennomsnittsmoment og hvor mye momentet svinger. I denne oppgaven sjekkes 8 spenningsblokker. DNV-OS-C502 anbefaler å sjekke minimum 8 spenningsblokker ved en utmattingsanalyse (M107, [7]). I hovedsak er det valgt å sjekke spenningsblokker der momentsvingningen, ΔM, er større og antall lastsykler, n, færre. Disse ses på som de mest kritiske spenningsblokkene da de vil gi en større spenningsvidde enn spenningsblokkene med lavere moment. Både spenningsblokker der spenningene veksler mellom strekk og trykk, samt spenningsblokker der fundamentet er utsatt for kun trykk sjekkes.

Momentet fra tabellen regnes ut ved formelen, som er skrevet etter formel 8.14 og 8.16 i [31]:

$$M_{maks/min} = \frac{M_{bunn} + M_{topp}}{2} \pm \frac{\Delta M}{2}$$

Formel 29

Da finnes gjennomsnittsmomentet som det sykliske momentet svinger rundt, og maksimums/minimumsverdien av det sykliske momentet som virker på fundamentet.

Tabell 5: Maksimum/minimumsmomenter i spenningsblokker

Spenningsblokk	1	2	3	4	5	6	7	8
Maksmoment [kNm]	51250	40550	46450	41000	43200	7800	31850	29200
Minimumsmoment [kNm]	-2150	23150	-11950	-21100	5900	-17100	-26550	-9300
Lastsykler, n	1000	1000	1000	1000	2000	1000	1000	2000

Figur 20: Momentsvingninger med tiden

Momentet svinger med en svingeamplitude med tiden. Spenningene varierer med momentet. Der momentet gir strekkspenninger i konstruksjonen settes disse settes lik null for betongen. Dette fordi betong ikke har evne til å ta opp strekkspenninger.

4.3.2 Valg av beregningssnitt/punkt for utmatting

Utmatting av konstruksjoner antas å være mest kritisk i spenningsutsatte snitt. Det blir derfor antatt enkelte kritiske snitt der spenningene som virker på vindturbinfundamentet blir kontrollert. Antatte kritiske snitt som blir kontrollert er snitt A-A og B-B, hhv. 6,25m og 11,25m fra kanten av fundamentet. De valgte beregningssnittene er vist i figur 21.

4.3.3 Beregning av grunntrykk, egenvekt av fundamentet og egenvekt av løsmasser Utmatting skyldes spenninger under flytegrensen, derfor vil spenningene variere lineært med momentet for de ulike spenningsblokkene. Derav brukes maksimumsmomentet i spenningsblokk 1 videre i grunnbruddsberegningene for å finne overført grunntrykk (q_v) og effektiv fundamentlengde (L₀). Når spenningene i valgte beregningssnitt for momentet M = 51250kNm er funnet kan de resterende spenningene finnes ut fra lineær betraktning.

Beregningene utføres i G-prog Geoteknikk da dette programmet beregner både overført grunntrykk og effektiv fundamentlengde. BT-snitt gir kun overført grunntrykk. Grunntrykket og den effektive fundamentlengden brukes videre for å finne det overførte grunntrykket som en trapeslast. Dette fordi det i programmet brukes forenklinger for grunntrykkets virkning på fundamentet i forhold til faktisk virkning.

I programmet legges tverrsnittet inn med en gjennomsnittstykkelse på 1300mm. Dette for å få et mest mulig korrekt grunntrykk da skrå overflater ikke er et alternativ i G-prog Geoteknikk. Beregningsdokument fra G-prog Geoteknikk er lagt ved oppgaven, merket vedlegg E.

Figur 22: Grunntrykkets virkning fra G-prog

Grunntrykket varierer både i lengde- og tverretningen. I tverretningen vil grunntrykket være mer intenst nær senter av fundamentet enn ytterst ved kanten [26]. For å få mest mulig realistisk grunntrykk som virker midt på fundamentet beregnes en korreksjonsfaktor.

Figur 23: Variasjon i grunntrykk i tverretningen

Tabell 6: Tverrsnittsgeometri og beregnede verdier

b	I	С	x	у	x/b=y/b	c/b	m _x /b ² p	р	m _x	m	m _x /m
17,5m	17,5m	5m	2,5m	2,5m	0,143	0,3	0,077	р	23,58kNm	19,53kNm	1,21

b/ I	fundamentbredde/-lengde [m]			
с	søylebredde [m]			
x/y	avstand fra senter til søylekant i lengde- og bredderetning [m]			
$\frac{x}{b} / \frac{y}{b} / \frac{c}{b}$	faktorer for avlesning av $\frac{m_x}{b^2 p}$ fra graf (side 219, [26])			
р	last som virker på fundamentet			
m _x	$0,077 \times b^2 p$			
m	$\frac{pl_{flens}^2}{2}$			
$\frac{m_x}{m}$	korreksjonsfaktor			
Beregning av korreksjonsfaktor hentet fra (side 219, [26]).				

Faktisk grunntrykk fra tverretningen blir da

 $q = 1,21 \times q_v$

Formel 30

Tabell 7:	Beregning	av faktisk	grunntrykk
-----------	-----------	------------	------------

	Verdi
L ₀ (G-prog)	12,188m
v2xL₀ (Trapeslast)	17,236m
q _v (G-prog)	96,3kN/m ²
q=1,21xq _v	116,52kN/m ²
√2xq	164,78kN/m ²

Videre brukes det faktiske grunntrykket fra tverretningen til å beregne grunntrykket om som en trapeslast i lengderetningen. Totaltrykket på fundamentet skal være den samme for trapeslasten som for den jevnt fordelte lasten. Derfor multipliseres L₀ og q med V2. Interessante verdier for videre beregninger vil da være ved snitt ansett som kritisk. Det ses på en 1m bred stripe av fundamentet, slik at alle krefter som virker vil beregnes for en fundamentbredde, b = 1m. De aktuelle verdiene finnes ved enkel trigonometri.

$$q_{(x)} = \frac{\sqrt{2} \times q}{\sqrt{2} \times L_0} \ x \ L_{(x)}$$

Formel 31

Der:

- q_(x) grunntrykk i punktet x m. fra fundamentets kant.
- q qv multiplisert med korreksjonsfaktor for grunntrykkets intensitet i bredderetningen.
- $L_0 \qquad \ \ effektiv \ fundament bredde \ hentet \ fra \ beregninger \ i \ G-prog.$
- L_(x) Avstand fra fundamentets kant til der grunntrykket q_(x) beregnes.

Figur 24: Grunntrykket som trapeslast

Egenvekten blir også beregnet for fundamentet. Den beregnes for en 1m bred platestripe midt på fundamentet. Dette blir gjort for å få en mer korrekt egenvekt ved beregning av spenningsblokkene. Midt på fundamentet vil egenvekten fungere som en trapeslast, med lavere intensitet ute ved kanten enn inne ved søylen. Betongens tyngdetetthet settes til γ =(2400kg/m³x9,81m/s²x10⁻³)=23,544kN/m³. Da fundamentet befinner seg under grunnvannsnivået må tyngdetettheten reduseres for betongen. Oppdriften vil være lik tyngden av den fortrengte væskemengden (Arkimedes' lov). (side 60,[4])

Egenvekten til løsmassene over fundamentet blir beregnet på samme måte som egenvekten av fundamentet. Også egenvekten av løsmassene vil fungere som en trapeslast, der intensiteten er høyest ved kanten, og noe lavere ved søylen. Tyngdetettheten til løsmassene, γ=18kN/m³, hentes fra tabell 4.

Neddykket tyngdetetthet finnes fra formelen

$$\gamma' = \gamma_{mettet} - \gamma_w$$

Formel 32

 γ' neddykket tyngdetetthet

 $\gamma_{mettet} \quad tyngdetetthet av materialet$

 γ_w oppdrift av 1m³materiale lik 10kN/m³ for vann

Tabell 8: Beregnede verdier av egenvekt og grunntrykk brukt i 4.3.4

			A-A	B-B	
Avstand fra x((q=0) [m]	x=17,236	x=10,986	x=5,986	x=-0,264
q(x)	[kN/m]	-167,8	-105	-57,2	0
gfundament	[kN/m]	8,1	27,1	27,1	8,1
gløsmasse	[kN/m]	27,2	16	16	27,2

4.3.4 Forklaring av inputs i G-prog Betongbjelke

G-prog Betongbjelke for dimensjonering av betongdekke brukes for å finne moment og skjærkrefter i hhv. snitt A-A og B-B. Platestripen av fundamentet modelleres som et utkraget plateelement, fritt opplagt i andre enden, med geometri som følger.

Bredde, b	1m
Tykkelse, t	2m
Lengde, l	6,25m

Den valgte tykkelsen, t, er fundamentets høyde i snitt A-A og B-B. Lengden er avstanden fra hhv snitt A-A og B-B til kanten av fundamentet. Det legges inn strekk og trykkarmering i fundamentet. Beregnede trapeslaster fra kapittel 4.3.3 legges inn i programmet.

Figur 25: Tverrsnittsgeometri av utkraget bjelke

Figur 26: Utkragede bjelker med beregnede trapeslaster

De beregnede lastene fra kapittel 4.3.3 legges inn som variable laster. Vind er en kortidslast som plutselig oppstår, og kortidslaster påvirker ikke en konstruksjons kryptøyning. Derav settes $\gamma_{min} = 0$ og $\gamma_{maks} = 1$. $\gamma_{min} = 0$ tilsier at det ikke er noen kryptøyning.

Beregningsdokumentene for snitt A-A og B-B finnes i vedlegg F og vedlegg G. Fra disse hentes verdier for maks moment og skjærkraft for de to respektive snittene. Disse brukes videre for å beregne spenninger i BT-snitt.

4.3.5 Spenningsberegning i BT-snitt

Moment/skjærkraft fra G-prog Betongbjelke brukes i en snittberegning i BT-snitt for både snitt A-A og snitt B-B. Da beregnes spenningen i betongen og tøyningen i armeringen. Disse verdiene brukes så videre for beregning av spenningsblokker i Excel. Snittet som beregnes i BT-snitt har samme tverrsnittsgeometri som for den utkragede bjelken i G-prog Betongbjelke, 1mx2m. Spenningene beregnet i BT-snitt er for spenningsblokk 1, med M_{maks} = 51250kNm. De resterende spenningene som virker på konstruksjonen, beregnes i Excel ut fra lineær betraktning etter formelen:

$$\sigma_i = \frac{\sigma_{BT-snitt}}{51250} \ x \ M_i$$

Formel 33

Fra BT-snitt hentes betongtrykkspenningene direkte fra beregningene. Trykkspenningene gis som negative spenninger. Armeringsspenningene må beregnes ut fra Hookes lov:

 $\sigma = \epsilon \times E$

Formel 34

Skjærkreftene utover verdier hentet fra beregninger i G-prog Betongbjelke finnes ved lineær betraktning, på samme måte som for spenningene:

$$V_i = \frac{V_{BT-snitt}}{51250} \ x \ M_i$$

Formel 35

Beregningsdokumentene fra BT-snitt for snitt A-A og snitt B-B er vedlagt oppgaven, merket vedlegg H og vedlegg I.

4.3.6 Beregnede spenninger og skjærkrefter for snitt A-A og B-B Tabell 9 og tabell 10 viser de beregnede verdiene for spenningsblokkene. Armeringsspenningene, betongspenningene og skjærkreftene er også fremstilt grafisk for snittene i figur 27-figur 32.

Laststav 6 8 Mmaks [kNm] 51250 40550 46450 41000 43200 7800 31850 29200 Mmin [kNm] -2150 23150 -11950 -21100 5900 -17100 -26550 -9300 Lastsykler, n 1000 1000 1000 1000 2000 1000 1000 2000 σmaks armering [MPa] 228,00 180,40 206,65 182,40 192,19 34,70 141,69 129,90 -9,56 102,99 -53,16 26,25 -76,07 -118,12 -41,37 σmin armering [MPa] -93,87 5,03 0,77 σmaks betong [MPa] 3,98 4,56 4,02 4,24 3,13 2,87 σmin betong [MPa] -0,21 -1,17 -2,07 0,58 -1,68 -2,61 -0,91 2,27 Vmaks [kN] 483,80 382,79 438,49 387,04 407,81 73,63 300,66 275,65 Vmin [kN] -20,30 218,54 -112,81 -199,18 55,70 -161,42 -250,63 -87,79 Vcd [kN] 708,00 708,00 708,00 708,00 708,00 708,00 708,00 708,00

Tabell 9: Beregnede verdier i snitt A-A

Tabell 10: Beregnede verdier i snitt B-B

Laststav	1	2	3	4	5	6	7	8
Mmaks [kNm]	51250	40550	46450	41000	43200	7800	31850	29200
Mmin [kNm]	-2150	23150	-11950	-21100	5900	-17100	-26550	-9300
Lastsykler, n	1000	1000	1000	1000	2000	1000	1000	2000
σmaks armering [MPa]	46,00	36,40	41,69	36,80	38,77	7,00	28,59	26,21
σmin armering [MPa]	-1,93	20,78	-10,73	-18,94	5,30	-15,35	-23,83	-8,35
σmaks betong [MPa]	1,05	0,83	0,95	0,84	0,89	0,16	0,65	0,60
σmin betong [MPa]	-0,04	0,47	-0,24	-0,43	0,12	-0,35	-0,54	-0,19
Vmaks [kN]	73,80	58,39	66,89	59,04	62,21	11,23	45,86	42,05
Vmin [kN]	-3,10	33,34	-17,21	-30,38	8,50	-24,62	-38,23	-13,39
Vcd [kN]	701,10	701,10	701,10	701,10	701,10	701,10	701,10	701,10

Figur 27: Armeringsspenninger og momenter i snitt A-A

Figur 28: Armeringsspenninger og momenter i snitt B-B

Elin Olsen

Figur 29: Betongspenninger og momenter i snitt A-A

Figur 30: Betongspenninger og momenter i snitt B-B

Figur 31: Skjærkrefter og momenter i snitt A-A

Figur 32: Skjærkrefter og momenter i snitt B-B

4.4 Levetidsberegning DNV-OS-C502

For å kontrollere tilstrekkelig utmattingskapasitet i henhold til DNV-OS-C502 [5] må det følgende dimensjoneringskriteriet oppfylles. Det kontrolleres at kapasiteten er tilstrekkelig for spenninger som virker på armeringsstålet, trykkspenninger som virker på betongen og skjærkrefter som påvirker betongens kapasitet for strekkbrudd.

I tilfellet med vindturbinfundamentet settes η = 1.0; over skvalpesonen. Skvalpesonen er området der en konstruksjon kan komme i kontakt med havvann.

Figuren nedenfor viser fundamentets strekk og trykksoner. Armeringens levetid beregnes i strekksoner, og betongens levetid i trykksoner. Konstruksjonens levetid grunnet vekslende skjærkrefter beregnes for skjærkapasiteten i fundamentets strekksoner. Dette gjelder også for levetidsberegningene etter NS-EN-1992-1-1:2004.

4.4.1 Levetidsberegning for armering

Følgende formler, beskrevet i kapittel 4.2 og kapittel 4.3, er brukt i levetidsberegningene for armeringen i vindturbinfundamentet. Beregningsresultatene er vist i tabell 11 og tabell 12.

 $\log_{10} N = C_3 - C_4 \log_{10} \Delta \sigma$ Formel 9 $N = 10^{\log_{10} N}$ Formel 36 $\sigma_i = \frac{\sigma_{BT-snitt}}{51250} \times M_i$ Formel 33 $\Delta \sigma = \sigma_{maks} - \sigma_{min}$ Formel 37

Før armeringens levetid kan beregnes må nødvendige faktorer fastsettes. Faktorene C_3 og C_4 avhenger, som nevnt i kapittel 4.2.1.2, av konstruksjonens ytre omgivelser, armeringstype og armeringens bøyeradius. Da omgivelsene ikke anses som spesielle eller alvorlig aggressive for armeringen, og armeringsstengene er tilnærmet rette, settes C_3 =19.6 og C_4 =6.0. (Sec.6, M203, [7])

Kravet til maksimal spenning som må oppfylles avhenger av armeringens flytegrense, f_{sk} , og materialkoeffisienten for armeringsstål ved utmattingspåkjenning, γ_s . Materialkoeffisienten bestemmes ut fra Sec.6, tabell B1, [7].

$$\sigma_{max} < \frac{f_{sk}}{\gamma_s} = \frac{500}{1.0} = 500 MPa$$

Formel 38

Levetidsberegningen for armeringsstålet i snitt A-A og snitt B-B er vist i tabell 11 og tabell 12.

Tabell 11: Levetidsberegning for armeri	ng etter DNV-OS-C502 i snitt A-A
---	----------------------------------

	M [kNm]	σ [MPa]	n	Δσ	C ₃	C4	logN	N	n/N
Spenningsblokk 1	51250	228,00	1000	237,56	19,6	6	5,35	221 466	0,004 515 37
	-2150	-9,56							
Spenningsblokk 2	40550	180,40	1000	77,41	19,6	6	8,27	185 037 029	0,000 005 40
	23150	102,99							
Spenningsblokk 3	46450	206,65	1000	259,81	19,6	6	5,11	129 443	0,007 725 44
	-11950	-53,16							
Spenningsblokk 4	41000	182,40	1000	276,27	19,6	6	4,95	89 537	0,011 168 52
	-21100	-93,87							
Spenningsblokk 5	43200	192,19	2000	165,94	19,6	6	6,28	1906 782	0,001 048 89
	5900	26,25							
Spenningsblokk 6	7800	34,70	1000	110,77	19,6	6	7,33	21 545 573	0,000 046 41
	-17100	-76,07							
Spenningsblokk 7	31850	141,69	1000	259,81	19,6	6	5,11	129 443	0,007 725 44
	-26550	-118,12							
Spenningsblokk 8	29200	129,90	2000	171,28	19,6	6	6,20	1576 848	0,001 268 35
	-9300	-41,37							
Σn/N									0,033 503 81

Tilstrekkelig kapasitet kan antas for armeringen i snitt A-A etter:

$$\sum_{i=1}^{8} \frac{n_i}{N_i} = 0,03350381 < \eta = 1.0$$

	M [kNm]	σ [MPa]	n	Δσ	C ₃	C4	logN	N	n/N
Spenningsblokk 1	51250	46,00	1000	47,93	19,6	6	9,52	3283 739 417	0,000 000 30
	-2150	-1,93							
Spenningsblokk 2	40550	36,40	1000	15,62	19,6	6	12,44	2743 599 648 724	0,000 000 00
	23150	20,78							
Spenningsblokk 3	46450	41,69	1000	52,42	19,6	6	9,28	1919 283 570	0,000 000 52
	-11950	-10,73							
Spenningsblokk 4	41000	36,80	1000	55,74	19,6	6	9,12	1327 598 115	0,000 000 75
	-21100	-18,94							
Spenningsblokk 5	43200	38,77	2000	33,48	19,6	6	10,45	28 272 436 507	0,000 000 07
	5900	5,30							
Spenningsblokk 6	7800	7,00	1000	22,35	19,6	6	11,50	319 462 691 055	0,000 000 00
	-17100	-15,35							
Spenningsblokk 7	31850	28,59	1000	52,42	19,6	6	9,28	1919 283 570	0,000 000 52
	-26550	-23,83							
Spenningsblokk 8	29200	26,21	2000	34,56	19,6	6	10,37	23 380 395 385	0,000 000 09
	-9300	-8,35							
Σn/N									0,000 002 26

Tilstrekkelig kapasitet kan antas for armeringen i snitt B-B etter:

$$\sum_{i=1}^{8} \frac{n_i}{N_i} = 0,00000226 < \eta = 1.0$$

4.4.2 Levetidsberegning for betong

Følgende formler er brukt for å beregne betongens levetid i tabell 13 og tabell 14. Formlene er nærmere beskrevet i kapittel 4.2 og kapittel 4.3.

$$\log_{10} N = C_1 \times \frac{1 - \frac{\sigma_{max}}{f_{rd}}}{1 - \frac{\sigma_{min}}{f_{rd}}}$$

Formel 4

$$N = 10^{\log_{10} N}$$

Formel 36

$$\sigma_i = \frac{\sigma_{BT-snitt}}{51250} \ x \ M_i$$

Formel 33

$$X = \frac{C_1}{1 - \frac{\sigma_{min}}{f_{rd}} + 0.1C_1}$$

Formel 7

$$C_2 = 1 + 0.2(\log_{10} N - X) > 1.0$$

Formel 8

$$f_{rd} = \alpha f_{cd}$$

Formel 5

Faktoren C₁ settes lik 8.0 der spenningen varierer mellom trykk/strekk, og 10.0 der spenningen varierer innenfor trykk/trykk området. Dersom σ_{min} er strekkspenning settes σ_{min} = 0 ved beregning av logN. For beregning av X brukes σ_{min} som beregnet i kapittel 4.3. Faktoren C₂ brukes til å forlenge betongens levetid i de tilfeller der $\log_{10} N > X$. Dersom dette ikke er tilfelle vil tallet i kolonnen for C₂logN = logN.

For å beregne f_{rd} hentes f_{cn} = 28MPa fra Sec.6, tabell C1, [7]. For å beregne f_{cd} hentes γ_c = 1.10 for utmattingsgrensetilstanden fra Sec.6, tabell B1, [7].

$$f_{cd} = \frac{f_{cn}}{\gamma_c} = \frac{28MPa}{1.10} = 25.46MPa$$

Formel 39

Videre settes $\beta = 1.0$, da en avstand på 300mm for å beregne β er svært mye mindre enn fundamentets lengde på 17 500mm. Spenningsforholdet innenfor trykksonen anses altså til å være tilnærmet lik 1.0. Dette gir videre:

$\alpha=1.3-0.3\beta=1.0$

Formel 6

slik at

 $f_{rd} = 1.0 \times f_{cd} = 25.46 MPa$

Formel 5

Tabell 13: Levetidsberegning for trykkbrudd i betong etter DNV-OS-C502 i snitt A-A

	M [kNm]	σ [Mpa]	n	σ _{maks} [MPa]	σ _{min} [MPa]	C ₁	f _{rd} [MPa]	logN	x	C ₂	C ₂ logN	N	n/N
Spenningsblokk 1	51250	5,03	1000	5,03	0,00	8	25,46	6,42	4,42	1,40	8,98	958 027 830	0,000 001 04
	-2150	-0,21											
Spenningsblokk 2	40550	3,98	1000	3,98	2,27	10	25,46	9,26	5,23	1,81	16,73	53 691 509 115 731 000	0,000 000 00
	23150	2,27											
Spenningsblokk 3	46450	4,56	1000	4,56	0,00	8	25,46	6,57	4,33	1,45	9,50	3175 684 189	0,000 000 31
	-11950	-1,17											
Spenningsblokk 4	41000	4,02	1000	4,02	0,00	8	25,46	6,74	4,25	1,50	10,08	12 046 849 651	0,000 000 08
	-21100	-2,07											
Spenningsblokk 5	43200	4,24	2000	4,24	0,58	10	25,46	8,53	5,06	1,69	14,45	281 493 183 654 637	0,000 000 00
	5900	0,58											
Spenningsblokk 6	7800	0,77	1000	0,77	0,00	8	25,46	7,76	4,29	1,69	13,15	14 049 163 046 268	0,000 000 00
	-17100	-1,68											
Spenningsblokk 7	31850	3,13	1000	3,13	0,00	8	25,46	7,02	4,21	1,56	10,97	92 293 226 765	0,000 000 01
	-26550	-2,61											
Spenningsblokk 8	29200	2,87	1000	2,87	0,00	8	25,46	7,10	4,36	1,55	10,99	98 314 892 460	0,000 000 01
	-9300	-0,91											
Σn/N													0,000 001 46

Tilstrekkelig kapasitet kan antas for den trykkpåkjente betongen i snitt A-A etter:

$$\sum_{i=1}^{8} \frac{n_i}{N_i} = 0,00000146 < \eta = 1.0$$

Tabell 14: Levetidsberegning for trykkbrudd i betong etter DNV-OS-C502 i snitt B-B

	M [kNm]	σ [Mpa]	n	σ _{maks} [MPa]	σ _{min} [MPa]	C ₁	f _{rd} [MPa]	logN	x	C ₂	C ₂ logN	N	n/N
Spenningsblokk 1	51250	1,05	1000	1,05	0,00	8	25,46	7,67	4,44	1,65	12,62	4214 769 578 583	0,000 000 0002
	-2150	-0,04											
Spenningsblokk 2	40550	0,83	1000	0,83	0,47	10	25,46	9,86	5,05	1,96	19,34	21 912 180 168 463 000 000	0,000 000 0000
	23150	0,47											
Spenningsblokk 3	46450	0,95	1000	0,95	0,00	8	25,46	7,70	4,42	1,66	12,75	5662 800 727 893	0,000 000 0002
	-11950	-0,24											
Spenningsblokk 4	41000	0,84	1000	0,84	0,00	8	25,46	7,74	4,40	1,67	12,89	7818 716 228 690	0,000 000 0001
	-21100	-0,43											
Spenningsblokk 5	43200	0,89	2000	0,89	0,12	10	25,46	9,70	5,01	1,94	18,79	6148 441 635 776 620 000	0,000 000 0000
	5900	0,12											
Spenningsblokk 6	7800	0,16	1000	0,16	0,00	8	25,46	7,95	4,41	1,71	13,58	37 734 755 286 731	0,000 000 0000
	-17100	-0,35											
Spenningsblokk 7	31850	0,65	1000	0,65	0,00	8	25,46	7,79	4,39	1,68	13,10	12 579 601 939 204	0,000 000 0001
	-26550	-0,54											
Spenningsblokk 8	29200	0,60	1000	0,60	0,00	8	25,46	7,81	4,43	1,68	13,10	12 655 731 073 011	0,000 000 0001
	-9300	-0,19											
Σn/N													0,000 000 0007

Tilstrekkelig kapasitet kan antas for den trykkpåkjente betongen i snitt B-B etter:

$$\sum_{i=1}^{8} \frac{n_i}{N_i} = 0,0000000007 < \eta = 1.0$$

4.4.3 Levetidsberegning for strekkbrudd i betong grunnet skjærkrefter

Levetidsberegning av betong uten skjærarmering beregnes på samme måte som for betong utsatt for sykliske laster, utenom at $\frac{\sigma_{maks}}{f_{rd}}$ byttes ut med $\frac{V_{maks}}{V_{cd}}$ og $\frac{\sigma_{min}}{f_{rd}}$ byttes ut med $\frac{V_{min}}{V_{cd}}$. I tillegg endres nevneren for beregning av log₁₀N dersom skjærkraften bytter fortegn, slik at følgende formler blir brukt for å beregne levetiden. Dersom skjærkraften har samme fortegn benyttes formelen:

$$\log_{10} N = C_1 \times \frac{1 - \frac{V_{maks}}{V_{cd}}}{1 - \frac{V_{min}}{V_{cd}}}$$

Formel 10

Dersom skjærkraften bytter fortegn brukes formelen:

$$\log_{10} N = C_1 \times \frac{1 - \frac{V_{maks}}{V_{cd}}}{1 + \frac{V_{min}}{V_{cd}}}$$

Formel 11

Når skjærkraften bytter fortegn må spenningsblokken sjekkes med begge verdier som V_{maks} og V_{min} . Tilfellet som gir størst utnyttelse brukes i de videre beregningene. (M402, [7]) Dette er vist i tabell 17 og tabell 18. Ellers er følgende formler nyttet i levetidsberegningene. Resultatene er vist i tabell 15 og tabell 16.

$$N = 10^{\log_{10} N}$$

Formel 36

$$V_i = \frac{V_{BT-snitt}}{51250} \ x \ M_i$$

Formel 35

$$X = \frac{C_1}{1 - \frac{|V_{\min}|}{V_{cd}} + 0.1C_1}$$

Formel 12

$$C_2 = 1 + 0.2(\log_{10} N - X) > 1.0$$

Formel 13

Faktoren C₁ fastsettes på samme måte som for betong utsatt for sykliske spenninger (se 4.4.2). V_{cd} hentes fra snittberegningen i BT-snitt. For snitt A-A er V_{cd} = 708kN, og for snitt B-B er V_{cd} = 701,1kN. Skjærkapasiteten V_{cd} varierer for snitt A-A og B-B etter om armeringens trykksone er i overkant eller underkant på fundamentet.

Tabell 15: Levetidsberegning for strekkbrudd grunnet skjærkrefter etter DNV-OS-C502 i snitt A-A

	M	V		V _{maks}	V _{min}		V _{cd}	logN	~	6	CologN	N	m/N
Cooppingsblokk 1	[KNIII]		1000			0			^ 4 F 2	0.62	2.61	106	1/N
Spenningsblokk I	51250	483,80	1000	485,8	-20,3	0	708	2,01	4,52	0,62	2,01	400	2,405 478 20
	-2150	-20,30											
Spenningsblokk 2	40550	382,79	1000	382,8	218,5	10	708	6,64	5,91	1,15	7,62	41 346 074	0,000 024 19
	23150	218,54											
Spenningsblokk 3	46450	438,49	1000	438,5	-112,8	8	708	3,62	4,88	0,75	3,62	4193	0,238 494 40
	-11950	-112,81											
Spenningsblokk 4	41000	387,04	1000	387,0	-199,2	8	708	5,05	5,27	0,96	5,05	111 271	0,008 987 06
	-21100	-199,18											
Spenningsblokk 5	43200	407,81	2000	407,8	55,7	10	708	4,60	5,20	0,88	4,60	39 997	0,050 003 91
	5900	55,70											
Spenningsblokk 6	7800	73,63	1000	161,4	-73,6	8	708	6,89	4,72	1,44	9,89	7806 522 997	0,000 000 13
	-17100	-161,42											
Spenningsblokk 7	31850	300,66	1000	300,7	-250,6	8	708	7,12	5,53	1,32	9,39	2477 157 768	0,000 000 40
	-26550	-250,63											
Spenningsblokk 8	29200	275,65	1000	275,6	-87,8	8	708	5,58	4,77	1,16	6,47	2972 846	0,000 336 38
	-9300	-87,79											
Σn/N													2,763 324 67

Tilstrekkelig kapasitet kan ikke antas for strekkbrudd i betong grunnet vekslende skjærkrefter i snitt A-A etter formel:

$$\sum_{i=1}^{8} \frac{n_i}{N_i} = 2,754619247 > \eta = 1.0$$

Tabell 16: Levetidsberegning for strekkbrudd grunnet skjærkrefter etter DNV-OS-C502 i snitt B-B

	M [kNm]	V [kN]	n	V _{maks} [kN]	V _{min} [kN]	C ₁	V _{cd} [kN]	logN	x	C ₂	C ₂ logN	N	n/N
Spenningsblokk 1	51250	73,80	1000	73,80	-3,10	8	701,1	7,19	4,46	1,55	11,12	132 229 187 511	0,000 000 0076
	-2150	-3,10											
Spenningsblokk 2	40550	58,39	1000	58,39	33,34	10	701,1	9,62	5,12	1,90	18,29	1962 800 841 962 140 000	0,000 000 0000
	23150	33,34											
Spenningsblokk 3	46450	66,89	1000	66,89	-17,21	8	701,1	7,42	4,51	1,58	11,74	550 854 194 344	0,000 000 0018
	-11950	-17,21											
Spenningsblokk 4	41000	59,04	1000	59,04	-30,38	8	701,1	7,66	4,55	1,62	12,41	2585 774 551 372	0,000 000 0004
	-21100	-30,38											
Spenningsblokk 5	43200	62,21	2000	62,21	8,50	10	701,1	9,22	5,03	1,84	16,96	91 625 815 693 134 200	0,000 000 0000
	5900	8,50											
Spenningsblokk 6	7800	11,23	1000	24,62	-11,23	8	701,1	7,84	4,48	1,67	13,12	13 088 189 850 306	0,000 000 0001
	-17100	-24,62											
Spenningsblokk 7	31850	45,86	1000	45,86	-38,23	8	701,1	7,91	4,58	1,66	13,17	14 655 398 109 621	0,000 000 0001
	-26550	-38,23											
Spenningsblokk 8	29200	42,05	1000	42,05	-13,39	8	701,1	7,67	4,49	1,63	12,53	3421 829 430 115	0,000 000 0003
	-9300	-13,39											
Σn/N													0,000 000 0102

Tilstrekkelig kapasitet kan antas for strekkbrudd i betong grunnet vekslende skjærkrefter i snitt B-B etter formel:

$$\sum_{i=1}^{8} \frac{n_i}{N_i} = 0,000000009 < \eta = 1.0$$

Spenningsblokk 6 gir størst delskade dersom V_{maks} tilhører σ_{min} for både snitt A-A og B-B. Uttrykket er derfor snudd om i beregningen etter M402, [7]. Delskaden fra spenningsblokk 6 er i alle tilfeller så minimal at det har liten betydning. Tabellene nedenfor viser beregningen for spenningsblokk 6 i snitt A-A og B-B før og etter uttrykket snus om.

	M [kNm]	V [kN]	n	V _{maks} [kN]	V _{min} [kN]	C ₁	V _{cd} [kN]	logN	x	C ₂	C ₂ logN	N	n/N
Spenningsblokk 6	7800	73,63	1000	73,6	-161,4	8	708	9,28	5,09	1,84	17,08	1,19E+17	8,38E-15
	-17100	-161,42											
Spenningsblokk 6	7800	73,63	1000	161,4	-73,6	8	708	6,89	4,72	1,44	9,89	7,81E+09	1,28E-07
	-17100	-161,42											

Tabell 17: Spenningsblokk 6 for snitt A-A

Tabell 18: Spenningsblokk 6 for snitt B-B

	M [kNm]	V [kN]	n	V _{maks} [kN]	V _{min} [kN]	C ₁	V _{cd} [kN]	logN	x	C ₂	C ₂ logN	N	n/N
Spenningsblokk 6	7800	11,23	1000	11,23	-24,62	8	701	8,16	4,53	1,73	14,07	1,19E+14	8,43E-12
	-17100	-24,62											
Spenningsblokk 6	7800	11,23	1000	24,62	-11,23	8	701	7,84	4,48	1,67	13,12	1,31E+13	7,64E-11
	-17100	-24,62											

4.5 Levetidsberegning NS-EN 1992-1-1:2004

Metoden for levetidsberegninger for armering og betong avviker fra hverandre i NS-EN 1992-1-1:2004. For armering brukes delskadeberegninger, men for betongen antas tilstrekkelig kapasitet dersom gitte krav er oppfylt for hver enkelt spenningsblokk.

4.5.1 Levetidsberegning armering

I denne oppgaven brukes metoden for sum av delskader etter Palmgren Miners-regel (6.8.4 (2), [5]).

$$D_{Ed} = \sum_{i} \frac{n(\Delta \sigma_i)}{N(\Delta \sigma_i)} < 1$$

Formel 17

Beregningsmetoden for å finne armeringens levetid er nærmere beskrevet i kapittel 4.2.2.

Dersom $\log \Delta \sigma > \log \frac{\sigma_{Rsk}}{\gamma_{S,fat}}$ beregnes armeringens levetid etter:

$$\log N = \log N^* - \frac{\log \Delta \sigma - \log \frac{\Delta \sigma_{Rsk}}{\gamma_{s,fat}}}{\frac{1}{k_1}}$$

Formel 20

Dersom $\log \Delta \sigma < \log \frac{\sigma_{Rsk}}{\gamma_{S,fat}}$ beregnes armeringens levetid etter:

$$\log N = \log N^* - \frac{\log \Delta \sigma - \log \frac{\Delta \sigma_{Rsk}}{\gamma_{s,fat}}}{\frac{1}{k_2}}$$

Formel 21

 $N = 10^{\log N}$

Formel 36

$$\sigma_i = \frac{\sigma_{BT-snitt}}{51250} \ x \ M_i$$

Formel 33

Beregnede spenninger i armeringsstålet skal ikke overskride stålets flytespenning $f_y = 500 MPa$

$$\sigma < f_v = 500 MPa$$

Elin Olsen

$$\frac{\Delta\sigma_{Rsk}}{\gamma_{s,fat}} = \frac{162,5MPa}{1,15} = 141,3MPa$$

Formel 18

$$\Delta \sigma \times \gamma_{F,fat} = \Delta \sigma \times 1, 0 = \Delta \sigma$$

Formel 19

Spenninger i armeringsstålet ble beregnet i kapittel 4.3. Resterende verdier hentes fra tabell NA.6.3N (NA.6.8.4, [5]). $\Delta\sigma_{Rsk}$ etter N* lastvekslinger lik 162,5MPa. N* er for rette armeringsstenger satt til 10⁶ lastvekslinger. Spenningseksponentene k₁ og k₂ skal settes til k₁=5 og k₂=9. Partialfaktoren $\gamma_{S,fat}$ hentes fra tabell NA.2.1N (NA.2.4.2.4, [5]) og skal for utmatting være lik 1,15. Faktoren $\gamma_{F,fat}$ settes lik 1,0 etter NA.6.8.4 (1), [5]. Beregningsresultatene for snitt A-A og snitt B-B er vist i tabell 19 og tabell 20.

	M [kNm]	σ [Mpa]	n	Δσ [MPa]	N*	σ _{Rsk} [MPa]	k1	k2	log ∆σ	logN*	log σ _{Rsk}	logN	N	n/N
Spenningsblokk 1	51250	228,00	1000	237,56	10 ⁶	141,3	5	9	2,38	6	2,15	4,87	74450	0,013 431 78
	-2150	-9,56												
Spenningsblokk 2	40550	180,40	1000	77,41	10 ⁶	141,3	5	9	1,89	6	2,15	8,35	2E+08	0,000 004 44
	23150	102,99												
Spenningsblokk 3	46450	206,65	1000	259,81	10 ⁶	141,3	5	9	2,41	6	2,15	4,68	47589	0,021 013 17
	-11950	-53,16												
Spenningsblokk 4	41000	182,40	1000	276,27	10 ⁶	141,3	5	9	2,44	6	2,15	4,54	35004	0,028 568 36
	-21100	-93,87												
Spenningsblokk 5	43200	192,19	2000	165,94	10 ⁶	141,3	5	9	2,22	6	2,15	5,65	447743	0,004 466 85
	5900	26,25												
Spenningsblokk 6	7800	34,70	1000	110,77	10 ⁶	141,3	5	9	2,04	6	2,15	6,95	9E+06	0,000 111 83
	-17100	-76,07												
Spenningsblokk 7	31850	141,69	1000	259,81	10 ⁶	141,3	5	9	2,41	6	2,15	4,68	47589	0,021 013 17
	-26550	-118,12												
Spenningsblokk 8	29200	129,90	2000	171,28	10 ⁶	141,3	5	9	2,23	6	2,15	5,58	382181	0,005 233 12
	-9300	-41,37												
Σn/N														0,093 842 72

Tabell 19: Levetidsberegning for armering etter NS-EN 1992-1-1:2004 i snitt A-A

Tilstrekkelig kapasitet kan antas for armeringen i snitt A-A etter:

$$D_{Ed} = 0,09384272 < 1,0$$

	M [kNm]	σ [Mpa]	n	Δσ [MPa]	N*	σ _{Rsk} [MPa]	k 1	k ₂	log ∆σ	logN*	log σ _{Rsk}	logN	N	n/N
Spenningsblokk 1	51250	46,00	1000	47,93	10 ⁶	141,3	5	9	1,68	6	2,15	10,23	2E+10	0,000 000 06
	-2150	-1,93												
Spenningsblokk 2	40550	36,40	1000	15,62	10 ⁶	141,3	5	9	1,19	6	2,15	14,61	4E+14	0,000 000 00
	23150	20,78												
Spenningsblokk 3	46450	41,69	1000	52,42	10 ⁶	141,3	5	9	1,72	6	2,15	9,88	8E+09	0,000 000 13
	-11950	-10,73												
Spenningsblokk 4	41000	36,80	1000	55,74	10 ⁶	141,3	5	9	1,75	6	2,15	9,64	4E+09	0,000 000 23
	-21100	-18,94												
Spenningsblokk 5	43200	38,77	2000	33,48	10 ⁶	141,3	5	9	1,52	6	2,15	11,63	4E+11	0,000 000 00
	5900	5,30												
Spenningsblokk 6	7800	7,00	1000	22,35	10 ⁶	141,3	5	9	1,35	6	2,15	13,21	2E+13	0,000 000 00
	-17100	-15,35												
Spenningsblokk 7	31850	28,59	1000	52,42	10 ⁶	141,3	5	9	1,72	6	2,15	9,88	8E+09	0,000 000 13
	-26550	-23,83												
Spenningsblokk 8	29200	26,21	2000	34,56	10 ⁶	141,3	5	9	1,54	6	2,15	11,50	3E+11	0,000 000 01
	-9300	-8,35												
Σn/N														0,000 000 57

Tilstrekkelig kapasitet kan antas for armeringen i snitt B-B etter:

$$D_{Ed} = 0,00000057 < 1,0$$

4.5.2 Påvisning av utmatting for betong under trykk I tilfellet for vindturbinfundament brukes metoden beskrevet i (6.8.7 (2), [5]).

$$\frac{\sigma_{c,max}}{f_{cd,fat}} \le 0.5 + 0.45 \frac{\sigma_{c,min}}{f_{cd,fat}} \le \begin{cases} 0.9 \text{ for } f_{ck} \le 50 MPa \\ 0.8 \text{ for } f_{ck} > 50 MPa \end{cases}$$

Formel 23

$$f_{cd,fat} = k_1 \times 1,0 \times 25,5 MPa \times \left(1 - \frac{45}{250}\right)$$

Formel 24

$$\beta_{cc}(t) = e^{\left\{0,20\left[1-\frac{28}{28}\right]^{1/2}\right\}} = 1,0$$

Formel 26

$$f_{cd} = 0.85 \times \frac{45MPa}{1.5} = 25.5MPa$$

Formel 25

$$\sigma_i = \frac{\sigma_{BT-snitt}}{51250} \ x \ M_i$$

Formel 33

Faktoren α_{cc} settes til 0,85 etter NA.3.1.6, [5]. Faktoren k₁ varierer etter om tverrsnittet er kun i trykk eller i trykk og strekk, som beskrevet i kapittel 4.2.2. Materialfaktoren for betong utsatt for utmatting settes til 1,5 etter tabell NA.2.1N, [5]. Betongens sylinderfasthet f_{ck} for betongklasse B45 er 45MPa. Resultatene for betongens trykkbruddkapasitet er vist i tabell 21 og tabell 22.

	84 ft 81 1	- [5.6]	-	-	Ŀ	4	Formel	Formel	
		σ[ινιρα]	omaks	o _{min}	к1	^I cd,fat	6.77 [5], VS	6.77 [5], HS	Kapasitet
Spenningsblokk 1	51250	5,03	5,03	0,00	1	20,91	0,24	0,50	ok
	-2150	-0,21							
Spenningsblokk 2	40550	3,98	3,98	2,27	0,85	17,77	0,22	0,56	ok
	23150	2,27							
Spenningsblokk 3	46450	4,56	4,56	0,00	1	20,91	0,22	0,50	ok
	-11950	-1,17							
Spenningsblokk 4	41000	4,02	4,02	0,00	1	20,91	0,19	0,50	ok
	-21100	-2,07							
Spenningsblokk 5	43200	4,24	4,24	0,58	0,85	17,77	0,24	0,51	ok
	5900	0,58							
Spenningsblokk 6	7800	0,77	0,77	0,00	1	20,91	0,04	0,50	ok
	-17100	-1,68							
Spenningsblokk 7	31850	3,13	3,13	0,00	1	20,91	0,15	0,50	ok
	-26550	-2,61							
Spenningsblokk 8	29200	2,87	2,87	0,00	1	20,91	0,14	0,50	ok
	-9300	-0,91							

Tabell 21: Utmattingskapasitet for betong etter NS-EN 1992-1-1:2004 i snitt A-A

Trykkbruddkapasiteten er tilstrekkelig for alle de kontrollerte spenningsblokkene i snitt A-A.

							Formel	Formel	
	M [kNm]	σ[Mpa]	σ _{maks}	σ _{min}	К <u>1</u>	[†] cd,fat	6.77 [5], VS	6.77 [5], HS	Kapasitet
Spenningsblokk 1	51250	1,05	1,05	0,00	1	20,91	0,05	0,50	ok
	-2150	-0,04							
Spenningsblokk 2	40550	0,83	0,83	0,47	0,85	17,77	0,05	0,51	ok
	23150	0,47							
Spenningsblokk 3	46450	0,95	0,95	0,00	1	20,91	0,05	0,50	ok
	-11950	-0,24							
Spenningsblokk 4	41000	0,84	0,84	0,00	1	20,91	0,04	0,50	ok
	-21100	-0,43							
Spenningsblokk 5	43200	0,89	0,89	0,12	0,85	17,77	0,05	0,50	ok
	5900	0,12							
Spenningsblokk 6	7800	0,16	0,16	0,00	1	20,91	0,01	0,50	ok
	-17100	-0,35							
Spenningsblokk 7	31850	0,65	0,65	0,00	1	20,91	0,03	0,50	ok
	-26550	-0,54							
Spenningsblokk 8	29200	0,60	0,60	0,00	1	20,91	0,03	0,50	ok
	-9300	-0,19							

Tabell 22: Utmattingskapasitet for betong etter NS-EN 1992-1-1:2004 i snitt B-B

Trykkbruddkapasiteten er tilstrekkelig for alle de kontrollerte spenningsblokkene også i snitt B-B.

4.5.3 Påvisning av utmatting for betong grunnet vekslende skjærkrefter

Betongfundamentet, som i bruddgrensetilstand ikke hadde behov for skjærarmering, sjekkes for tilstrekkelig utmattingskapasitet etter punkt 6.8.7 (4), i NS-EN 1992-1-1:2004. Beregningsmetoden er beskrevet i kapittel 4.2 og 4.3.

For $\frac{V_{Ed,min}}{V_{Ed,max}} \ge 0$ beregnes utmattingskapasiteten etter:

$$\frac{|V_{Ed,max}|}{|V_{Rd,c}|} \le 0.5 + 0.45 \frac{|V_{Ed,min}|}{|V_{Rd,c}|} \le \begin{cases} 0.9 \text{ for } f_{ck} \le 50MPa \\ 0.8 \text{ for } f_{ck} > 50MPa \end{cases}$$

Formel 27

For $\frac{V_{Ed,min}}{V_{Ed,max}} < 0$ beregnes utmattingskapasiteten etter

$$\frac{\left|V_{Ed,max}\right|}{\left|V_{Rd,c}\right|} \le 0.5 - \frac{\left|V_{Ed,min}\right|}{\left|V_{Rd,c}\right|}$$

Formel 28

$$V_i = \frac{V_{BT-snitt}}{51250} \ x \ M_i$$

Formel 35

Skjærkapasiteten V_{Rd,c} er hentet fra snittberegningen for snitt A-A og snitt B-B, se vedlegg H og vedlegg I. For snitt A-A er V_{Rd,c} = 708kN og for B-B er V_{Rd,c} = 701,1kN. Beregningsresultatene er vist i tabell 23 og tabell 24.

	M [kNm]	V [kN]	V _{Ed,max} [kN]	V _{Ed,min} [kN]	V _{Rd,c} [kN]	V _{Ed,max} / V _{Rd,c}	Formel 6.78 / 6.79	Kapasitet
Spenningsblokk 1	51250	483,80	483,80	20,30	708,00	0,68	0,47	ikke ok
	-2150	-20,30						
Spenningsblokk 2	40550	382,79	382,79	218,54	708,00	0,54	0,64	ok
	23150	218,54						
Spenningsblokk 3	46450	438,49	438,49	112,81	708,00	0,62	0,34	ikke ok
	-11950	-112,81						
Spenningsblokk 4	41000	387,04	387,04	199,18	708,00	0,55	0,22	ikke ok
	-21100	-199,18						
Spenningsblokk 5	43200	407,81	407,81	55,70	708,00	0,58	0,54	ikke ok
	5900	55,70						
Spenningsblokk 6	7800	73,63	161,42	73,63	708,00	0,23	0,40	ok
	-17100	-161,42						
Spenningsblokk 7	31850	300,66	300,66	250,63	708,00	0,42	0,15	ikke ok
	-26550	-250,63						
Spenningsblokk 8	29200	275,65	275,65	87,79	708,00	0,39	0,38	ikke ok
	-9300	-87,79						

Tabell 23: Utmattingskapasitet for betong grunnet skjærkraft etter NS-EN 1992-1-1:2004 i snitt A-A

Skjærkapasiteten i snitt A-A er kun tilstrekkelig for spenningsblokk 2 og spenningsblokk 6.

	M [kNm]	V [kN]	V _{Ed,max} [kN]	V _{Ed,min} [kN]	V _{Rd,c} [kN]	V _{Ed,max} / V _{Rd,c}	Formel 6.78 / 6.79	Kapasitet
Spenningsblokk 1	51250	73,80	73,80	3,10	701,10	0,11	0,50	ok
	-2150	-3,10						
Spenningsblokk 2	40550	58,39	58,39	33,34	701,10	0,08	0,52	ok
	23150	33,34						
Spenningsblokk 3	46450	66,89	66,89	17,21	701,10	0,10	0,48	ok
	-11950	-17,21						
Spenningsblokk 4	41000	59,04	59,04	30,38	701,10	0,08	0,46	ok
	-21100	-30,38						
Spenningsblokk 5	43200	62,21	62,21	8,50	701,10	0,09	0,51	ok
	5900	8,50						
Spenningsblokk 6	7800	11,23	24,62	11,23	701,10	0,04	0,48	ok
	-17100	-24,62						
Spenningsblokk 7	31850	45,86	45,86	38,23	701,10	0,07	0,45	ok
	-26550	-38,23						
Spenningsblokk 8	29200	42,05	42,05	13,39	701,10	0,06	0,48	ok
	-9300	-13,39						

Tabell 24: Utmattingskapasitet for betong grunnet skjærkraft etter NS-EN 1992-1-1:2004 i snitt B-B

I snitt B-B er skjærkapasiteten tilstrekkelig for alle de kontrollerte spenningsblokkene.

5 Sammenligning av beregningsmetoder og resultater

Beregningsmetodene for utmatting etter NS-EN 1992-1-1:2004 og DNV-OS-C502 har likhetstrekk for beregning av armeringens levetid. Beregning av betongens utmattingskapasitet for trykkbrudd og vekslende skjærkraft, har ulike beregningsmetoder for de to standardene. Formler kommentert i kapittel 5 er beskrevet i kapittel 4.2.

I DNV-OS-C502 beregnes en konstruksjons levetid ved summering av delskader.

Dimensjoneringskriteriet, Palmgren-Miners-regel, er gjeldende for kapasitetskontroll av alle konstruksjonsdeler. Standarden anbefaler å sjekke minimum åtte spenningsblokker ved kontroll. Faktoren for tillatt utnyttelse, η, varierer med tilgjengelighet for inspeksjon og reparasjon etter tabell M1, Sec. 6, [7].

$$\sum_{i=1}^k \frac{n_i}{N_i} < \eta$$

Formel 3

Armeringsstålets levetid beregnes etter en egen metode, der faktorer som avhenger av armeringstype, bøyeradius og korrosjon spiller inn på resultatet.

Beregning av betongens trykkbruddslevetid grunnet sykliske spenninger, og levetid for strekkbrudd grunnet vekslende skjærkrefter følger samme oppsett. Beregningsresultatene påvirkes av en faktor som endres etter hvilke omgivelser konstruksjonen befinner seg i, og om spenningsviddene befinner seg i området strekk/trykk eller trykk/trykk. Eneste forskjell i beregningene er at der betongspenninger (σ_{max} og σ_{min}) og trykkfasthet for den aktuelle bruddformen (f_{rd}) er brukt for betongens trykkbruddslevetid, brukes skjærkrefter (V_{max} og V_{min}) og dimensjonerende skjærkapasitet (V_{cd}) for strekkbruddlevetidsberegningene. Minimumsspenningen, σ_{min} , settes lik null dersom den opptrer som strekkspenning på konstruksjonen. Dersom skjærspenningen skifter fortegn endres nevneren i uttrykket, se formler (kapittel 4.2.1.3). I tillegg kan det være nødvendig å bruke V_{max} som V_{min} , alt etter hvilken kombinasjon som gir kortest levetid for konstruksjonen. (M200 og M400, [7])

NS-EN 1992-1-1:2004 beregningsmetode der utmatting påvises ved bruk av skadeekvivalent spenningsvidde er en beregningsmetode som kan brukes for påvisning av utmatting for standardtilfeller med kjente laster. Det er en metode der den faktiske lasthistorien beskrives ved hjelp av N* lastvekslinger med en enkelt spenningsvidde. Dette er en metode som kan nyttes for jernbane- og vegbroer for skadeekvivalente spenningsvidder for stål og skadeekvivalente trykkspenninger for betong. (6.8.5, [5])

Der konstruksjoner utsettes for vekslende last med varierende amplitude gjelder Palmgren-Minersregel for dimensjonering av armeringsstål. NS-EN 1992-1-1:2004 sier ingenting om antall spenningsblokker som bør kontrolleres. Utnyttelsesfaktoren for utmattingsskade, D_{Ed}, får ikke overskride 1,0 etter formel 6.70, [7]. (6.8.4, [5])

$$D_{Ed} = \sum_{i} \frac{n(\Delta \sigma_i)}{N(\Delta \sigma_i)} < 1$$

Formel 17

Også i NS-EN 1992-1-1:2004 sjekkes trykkpåkjent betong og konstruksjonsdeler utsatt for vekslende skjærkrefter for tilfredsstillende utmattingskapasitet. Beregningsmetoden som benyttes er helt annerledes enn for DNV-OS-C502. Her sjekkes kapasiteten opp mot gitte uttrykk for tilstrekkelig utmattingskapasitet for de to tilfellene. Hver spenningsblokk kontrolleres opp mot et uttrykk, der resultatet blir godkjent eller ikke godkjent utmattingskapasitet. Uttrykkene varierer for skjærpåkjenning, alt etter om skjærkraften skifter fortegn eller ikke. For trykkpåkjenning for betong settes σ_{min} lik null dersom denne er strekkspenning. (6.8.7 [5])

5.1 Utmatting av armering

Summering av delskader er brukt i levetidsberegninger for armeringsstål for både DNV-OS-C502 og NS-EN 1992-1-1:2004. Ved å sammenligne resultatene fra kapittel 4.4 og 4.5 kommer det frem at NS-EN 1992-1-1:2004 gir et mer konservativt resultat enn DNV-OS-C502 i snitt A-A. I snitt B-B, der spenningsviddene er lavere enn i snitt A-A, er DNV-OS-C502 mer konservativ enn NS-EN 1992-1-1:2004.

5.1.1 Utmattingskapasitet for armeringsstål i snitt A-A

I tabellen nedenfor er resultatene for armeringens levetid etter både NS-EN 1992-1-1:2004 og DNV-OS-C502 samlet, og sortert fra laveste til høyeste spenningsvidde for å få bedre oversikt. For snitt A-A ligger alle spenningsvidder innenfor området 77,41MPa $\leq \Delta \sigma \leq$ 276,27MPa. Tabellen viser at for de åtte kontrollerte spenningsblokkene, er NS-EN 1992-1-1:2004 mer konservativ for alle spenningsvidder med unntak av den laveste spenningsvidden, $\Delta \sigma$ =77,41MPa. Totalt sett er summen av delskader lik 0,0938 i følge NS-EN 1992-1-1:2004, og 0,0335 i følge DNV-OS-C502 i snitt A-A. Dette er lavere enn den tillatte utnyttelsesfaktoren lik 1,0 i begge tilfeller.

log ∆σ	n	logN NS-EN 1992-1-1:2004	logN DNV-OS-C502	Δσ [MPa]	N NS-EN 1992-1- 1:2004	N DNV-OS-C502	n/N NS-EN 1992-1-1:2004	n/N DNV-OS-C502
1,89	1000	8,35	8,27	77,41	225 054 497	185 037 029	0,000 004 44	0,000 005 40
2,04	1000	6,95	7,33	110,77	8942 044	21 545 573	0,000 111 83	0,000 046 41
2,22	2000	5,65	6,28	165,94	447 743	1 906 782	0,004 466 85	0,001 048 89
2,23	2000	5,58	6,20	171,28	382 181	1 576 848	0,005 233 12	0,001 268 35
2,38	1000	4,87	5,35	237,56	74 450	221 466	0,013 431 78	0,004 515 37
2,41	1000	4,68	5,11	259,81	47 589	129 443	0,021 013 17	0,007 725 44
2,41	1000	4,68	5,11	259,81	47 589	129 443	0,021 013 17	0,007 725 44
2,44	1000	4,54	4,95	276,27	35 004	89 537	0,028 568 36	0,011 168 52
						Σn/N	0,093 842 72	0,033 503 81

Tabell 25: Sammenligning av beregninger for armeringsstål i snitt A-A

Utregningene er generelt ganske jevne for tverrsnittet. Dette vises i en grafisk fremstilling av S-Nkurvene for både NS-EN 1992-1-1:2004 og DNV-OS-C502. Grafene viser tydelig at armeringsstålets levetid følger noenlunde samme kurve for begge standardene.

Figur 34: S-N-kurver for armeringsstål i snitt A-A

Konstruksjonens levetid er også fremstilt grafisk for spenningsvidden og levetiden. Her kommer det tydelig frem at DNV-OS-C502 går over til å være mer konservativ enn NS-EN 1992-1-1:2004 når spenningsvidden $\Delta\sigma$ ligger rundt 80MPa.

Figur 35: Kurver for spenning/levetid for armeringsstål i snitt A-A

5.1.2 Utmattingskapasitet for armeringsstål i snitt B-B

Som for snitt A-A er også konstruksjonens levetid i snitt B-B fremstilt i en tabell der resultatene er sortert fra laveste til høyeste spenningsvidde. I snitt B-B, der de kontrollerte spenningsblokkene ligger i området 15,62MPa $\leq \Delta \sigma \leq 55,74$ MPa, er DNV-OS-C502 mer konservativ enn NS-EN 1992-1-1:2004 for alle spenningsblokker. For de minste spenningsviddene er forskjellen så liten at utnyttelsen er tilnærmet lik null i følge begge standardene. Totalt for tverrsnittet er summen av delskader lik 0,000 000 57 i følge NS-EN 1992-1-1:2004, og 0,000 002 26 i følge DNV-OS-C502. Tillatt utnyttelsesfaktor er, som for snitt A-A, lik 1,0.

log ∆σ	n	logN NS-EN 1992-1-1:2004	logN DNV-OS-C502	Δσ [MPa]	N NS-EN 1992-1- 1:2004	N DNV-OS-C502	n/N NS-EN 1992-1-1:2004	n/N DNV-OS-C502
1,19	1000	14,61	12,44	15,62	406 331 819 157 222	2743 599 648 724	0,000 000 00	0,000 000 00
1,35	1000	13,21	11,50	22,35	16 144 698 654 870	319 462 691 055	0,000 000 00	0,000 000 00
1,52	2000	11,63	10,45	33,48	425 054 463 228	28 272 436 507	0,000 000 00	0,000 000 07
1,54	2000	11,50	10,37	34,56	319 652 055 509	23 380 395 385	0,000 000 01	0,000 000 09
1,68	1000	10,23	9,52	47,93	16 824 910 157	3283 739 417	0,000 000 06	0,000 000 30
1,72	1000	9,88	9,28	52,42	7518 105 972	1919 283 570	0,000 000 13	0,000 000 52
1,72	1000	9,88	9,28	52,42	7518 105 972	1919 283 570	0,000 000 13	0,000 000 52
1,75	1000	9,64	9,12	55,74	4325 134 979	1327 598 115	0,000 000 23	0,000 000 75
						Σn/N	0,000 000 57	0,000 002 26

Tabell 26: Sammenligning av beregninger for armeringsstål i snitt B-B

S-N-kurvene for snitt B-B viser tydelig at DNV-OS-C502 er mer konservativ enn NS-EN 1992-1-1:2004 for de lave spenningsviddene. Kurven gir også et inntrykk av at forskjellen i beregnet levetid fra DNV-OS-C502 og NS-EN 1992-1-1:2004 øker ettersom spenningsvidden reduseres.

Når konstruksjonens levetid fremstilles grafisk for spenningsvidde viser det at antall lastsykler for NS-EN 1992-1-1:2004 er langt flere enn for DNV-OS-C502. DNV-OS-C502 er langt mer konservativ enn NS-EN 1992-1-1:2004 for alle spenningsvidder. Dette er ikke like tydelig for de største spenningsviddene for snitt B-B, men tabell 26 underbygger dette.

Figur 37: Kurver for spenning/levetid for armeringsstål i snitt B-B

5.2 Utmatting av betong grunnet sykliske spenninger

Det er ikke lett å sammenligne resultatene for betongen da beregningsmetodene er helt ulike fra NS-EN 1992-1-1:2004 og DNV-OS-C502. Der DNV-OS-C502 sjekker tilstrekkelig kapasitet ut fra prinsippet om summering av delskader, baserer NS-EN 1992-1-1:2004 seg på en metode der hver enkelt spenningsblokk sjekkes for tilstrekkelig kapasitet eller ikke. For og enklere kunne sammenligne de to beregningsmetodene beregnes en utnyttelsesfaktor for NS-EN 1992-1-1:2004 som følger:

$$Utnyttelsesfaktor = \left[\frac{\sigma_{c,max}}{f_{cd,fat}}\right] / \left[0,5 + 0,45\frac{\sigma_{c,min}}{f_{cd,fat}}\right]$$

Fo	rm	el	41
		<u> </u>	

Utnyttelsesfaktoren beregnet fra uttrykket over er ikke tallmessig sammenlignbart med utnyttelsesfaktoren fra DNV-OS-C502, men kan gi et inntrykk av hvilke spenningsblokker som er mer utnyttet for beregningsmetoden i NS-EN 1992-1-1:2004.

Metoden benyttet i NS-EN 1992-1-1:2004 tilsier at dersom tverrsnittet utsettes for spenningssykler som varierer i området mellom trykk og strekkspenninger, så vil tverrsnittet aldri kunne utnyttes mer enn femti prosent. Dersom spenningsvidden befinner seg i området trykk/trykk vil tverrsnittet kunne utnyttes noe mer, avhengig av hvor høy minimumsspenningen, σ_{min} , er. Tverrsnittets kapasitet vil da øke ettersom minimumsspenningen øker.

Kapasiteten for trykkbrudd vil være tilstrekkelig i begge snitt både for DNV-OS-C502 og NS-EN 1992-1-1:2004.

5.2.1 Betongens utmattingskapasitet for trykkbrudd i snitt A-A

Kapasiteten for trykkbrudd vil være tilstrekkelig i snitt A-A både for NS-EN 1992-1-1:2004 og DNV-OS-C502. Spenningsblokk 1 er den mest utnyttede spenningsblokken for begge beregningsmetodene. I følge DNV-OS-C502 er det spenningsblokk 2 og spenningsblokk 5 som er minst utnyttet. Spenningsblokk 6 er minst utnyttet i følge NS-EN 1992-1-1:2004.

Tabell 27: Sammenligning av beregninger for betongens trykkbruddkapasitet i snitt A-A

	σ [Mpa]	n/N DNV-OS-C502	Kapasitet NS-EN 1992-1-1:2004	η NS-EN 1992-1-1:2004
Spenningsblokk 1	5,03	0,000 001 0438	ok	0,481
	-0,21			
Spenningsblokk 2	3,98	0,000 000 0000	ok	0,402
	2,27			
Spenningsblokk 3	4,56	0,000 000 3149	ok	0,436
	-1,17			
Spenningsblokk 4	4,02	0,000 000 0830	ok	0,385
	-2,07			
Spenningsblokk 5	4,24	0,000 000 0000	ok	0,464
	0,58			
Spenningsblokk 6	0,77	0,000 000 0001	ok	0,073
	-1,68			
Spenningsblokk 7	3,13	0,000 000 0108	ok	0,299
	-2,61			
Spenningsblokk 8	2,87	0,000 000 0102	ok	0,274
	-0,91			
		0,000 001 4628		

5.2.2 Betongens utmattingskapasitet for trykkbrudd i snitt B-B

Også i snitt B-B vil utmattingskapasiteten for trykkbrudd være tilstrekkelig for begge standardene. Mest utnyttet i følge NS-EN 1992-1-1:2004 er spenningsblokk 1, og spenningsblokk 6 er minst utnyttet. Beregningsmetoden i DNV-OS-C502 tilsier at, som for NS-EN 1992-1-1:2004, er spenningsblokk 1 mest utnyttet. Minst utnyttet derimot er spenningsblokk 2 og spenningsblokk 5. Ingen av spenningsblokkene er særlig utnyttet for noen av beregningsmetodene i snitt B-B.

Tabell 28: Sammenligning av beregninger for betongens trykkbruddkapasitet i snitt B-B

	σ [Mpa]	n/N DNV-OS-C502	Kapasitet NS-EN 1992-1-1:2004	η NS-EN 1992-1-1:2004
Spenningsblokk 1	1,05	0,000 000 000 24	ok	0,100
	-0,04			
Spenningsblokk 2	0,83	0,000 000 000 00	ok	0,091
	0,47			
Spenningsblokk 3	0,95	0,000 000 000 18	ok	0,091
	-0,24			
Spenningsblokk 4	0,84	0,000 000 000 13	ok	0,080
	-0,43			
Spenningsblokk 5	0,89	0,000 000 000 00	ok	0,099
	0,12			
Spenningsblokk 6	0,16	0,000 000 000 03	ok	0,015
	-0,35			
Spenningsblokk 7	0,65	0,000 000 000 08	ok	0,062
	-0,54			
Spenningsblokk 8	0,60	0,000 000 000 08	ok	0,057
	-0,19			
		0,000 000 000 73		

5.3 Betongens kapasitet for strekkbrudd grunnet vekslende skjærkrefter

Betongens kapasitet for strekkbrudd er heller ikke lett å sammenligne. Beregningsmetoden benyttet i DNV-OS-C502 baseres på sum av delskader, mens NS-EN 1992-1-1:2004 sjekker hver enkelt spenningsblokk for tilstrekkelig kapasitet eller ikke.

Som for betongens trykkbruddkapasitet beregnes en utnyttelsesfaktor for betongens kapasitet for strekkbrudd grunnet vekslende skjærkrefter fra beregnede verdier etter NS-EN 1992-1-1:2004. Her er det et uttrykk for utnyttelsesfaktoren når skjærkraften skifter fortegn, og et uttrykk for utnyttelsesfaktoren når skjærkraften skifter skifter svinger.

Der skjærkraften har samme fortegn beregnes utnyttelsesfaktoren, η , etter uttrykket:

$$\eta = \left[\frac{\left|V_{Ed,max}\right|}{\left|V_{Rd,c}\right|}\right] / \left[0.5 + 0.45 \frac{\left|V_{Ed,min}\right|}{\left|V_{Rd,c}\right|}\right]$$

Formel 42

Der skjærkraften bytter fortegn benyttes følgende uttrykk for å beregne utnyttelsesfaktoren, n:

Formel 43

5.3.1 Utmattingskapasitet for vekslende skjærkraft i snitt A-A

I snitt A-A er ikke den uarmerte skjærkapasiteten på 708kN tilstrekkelig for betongens utmattingskapasitet for strekkbrudd, verken for DNV-OS-C502 eller NS-EN 1992-1-1:2004. Tabell 29 viser at NS-EN 1992-1-1:2004 er mer kritisk enn DNV-OS-C502. I følge NS-EN 1992-1-1:2004 er det bare spenningsblokk 2 og spenningsblokk 6 som har tilstrekkelig kapasitet. Foruten spenningsblokk 7, som omtales senere, er det spenningsblokk 2 og spenningsblokk 6 som er lavest utnyttet også i følge DNV-OS-C502.

Ut fra beregninger etter DNV-OS-C502 er det bare spenningsblokk 1, med en utnyttelse på 2,47, som overskrider tverrsnittets kapasitet alene. Tabell 29 viser at også spenningsblokk 3 og spenningsblokk 5 gir høy utnyttelse i forhold til de resterende spenningsblokkene. Spenningsblokk 7 er den minst utnyttede spenningsblokken i følge DNV-OS-C502.

Spenningsblokk 7, som er den minst utnyttede spenningsblokken i følge DNV-OS-C502, er mest utnyttet i følge NS-EN 1992-1-1:2004. Formel 43 gir en utnyttelse på 2,909 i dette tilfellet. Spenningsblokken som er minst utnyttet i følge NS-EN 1992-1-1:2004 er spenningsblokk 6.

Tabell 29: Sammenligning av betongens strekkbruddkapasitet grunnet skjærkrefter i snitt A-A

	V [kN]	n/N DNV-OS-C502	Kapasitet NS-EN 1992-1-1:2004	η NS-EN 1992-1-1:2004
Spenningsblokk 1	483,80	2,4654782	ikke ok	1,450
	-20,30			
Spenningsblokk 2	382,79	2,41861E-05	ok	0,846
	218,54			
Spenningsblokk 3	438,49	0,238494403	ikke ok	1,818
	-112,81			
Spenningsblokk 4	387,04	0,008987064	ikke ok	2,500
	-199,18			
Spenningsblokk 5	407,81	0,050003908	ikke ok	1,076
	55,70			
Spenningsblokk 6	73,63	1,28056E-07	ok	0,576
	-161,42			
Spenningsblokk 7	300,66	4,03688E-07	ikke ok	2,909
	-250,63			
Spenningsblokk 8	275,65	0,000336378	ikke ok	1,035
	-87,79			
Σn/N		2,76332467		

5.3.2 Utmattingskapasitet for vekslende skjærkraft i snitt B-B

Snitt B-B er lite utnyttet for strekkbrudd i betongen både for DNV-OS-C502 og NS-EN 1992-1-1:2004. Tverrsnittet har godkjent kapasitet for alle spenningsblokker for begge standardene. Spenningsblokk 1 er den mest utnyttede spenningsblokken for begge standardene. For NS-EN 1992-1-1:2004 er det spenningsblokk 6 som er minst utnyttet. For DNV-OS-C502 er det spenningsblokk 2 som har lengst levetid. Generelt er tverrsnittet lite utnyttet for alle spenningsblokker i snitt B-B.

Tabell 30: Sammenligning av betongens strekkbruddkapasitet grunnet skjærkrefter i snitt B-B

	V [kN]	n/N DNV-OS-C502	Kapasitet NS-EN 1992-1-1:2004	η NS-EN 1992-1-1:2004
Spenningsblokk 1	73,80	7,56263E-09	ok	0,212
	-3,10			
Spenningsblokk 2	58,39	5,09476E-16	ok	0,160
	33,34			
Spenningsblokk 3	66,89	1,81536E-09	ok	0,201
	-17,21			
Spenningsblokk 4	59,04	3,86731E-10	ok	0,184
	-30,38			
Spenningsblokk 5	62,21	2,18279E-14	ok	0,176
	8,50			
Spenningsblokk 6	11,23	7,64048E-11	ok	0,073
	-24,62			
Spenningsblokk 7	45,86	6,82342E-11	ok	0,147
	-38,23			
Spenningsblokk 8	42,05	2,92241E-10	ok	0,125
	-13,39			
Σn/N		1,02016E-08		

6 Diskusjon

Å sette seg inn i beregningsmetoden for utmatting i NS-EN 1992-1-1:2004 kan være krevende, grunnet referering til nasjonale tillegg og andre standarder. Etter alle verdier og referanser er funnet, er standarden desto enklere å bruke. DNV-OS-C502 har stort sett samlet alt som trengs for utmattingsberegningen i samme kapittel. Hva som ligger til grunn for de valgte beregningsmetodene i standardene står det ingenting om. Ytringer om disse er oppfatninger som er oppgjort gjennom arbeidet med standardene, og bakgrunnshistorien for utmattingsteorien.

6.1 Armeringsstålets utmattingskapasitet

Beregningsmetodene for de to standardene minner om hverandre når armeringsstålets utmattingskapasitet skal beregnes. Sammenligningen av armeringsstålets utmattingskapasitet etter NS-EN1992-1-1:2004 og DNV-OS-C502 i kapittel 5.1 viser at beregningene ikke gir helt de samme resultatene likevel. NS-EN 1992-1-1:2004 er mest utnyttet i snitt A-A. DNV-OS-C502 er mest utnyttet i snitt B-B. Generelt er spenningsvidden lavere i snitt B-B enn i snitt A-A.

For å vise når og hvorfor utnyttelsen varierer for de to standardene ble utmattingen beregnet for spenningsvidder mellom 10MPa $\leq \Delta \sigma \leq 510$ MPa. Øvre grense er valgt ut fra at øvre grense for spenningsvidder i følge både NS-EN 1992-1-1:2004 og DNV-OS-C502 ikke får overskride stålets flytegrense. Flytegrensen for armeringsstålet brukt i denne oppgaven er f_Y=f_{sk}=500MPa. Antall lastsykler for hver spenningsvidde velges til n=1000 sykler. Beregningene følger samme oppsett som i kapittel 4.4.1 og 4.5.1. Nødvendige faktorer for beregningene settes til samme verdi som i øvrige beregninger.

NS-EN	1992-1-1:2004	

- N*
- Δσ_{Rsk} 162,5MPa

10⁶

- γ_{S,fat} 1,15
- γ_{F,fat} 1,0
- k₁ 5
- k₂ 9
- log∆σ_{Rsk} 2,15

DNV-OS-C502

•	C ₃	19,6
•	C_4	6,0

Resultatene fra beregningen for både NS-EN 1992-1-1:2004 og DNV-OS-C502 er fremstilt i tabell 31.

Tabell 31: Levetidsberegning for armeringsstål med spenningsvidde fra 10MPa til 510MPa

Δσ [MPa]	log∆σ	n	logN NS-EN 1992-1-1:2004	logN DNV-OS-C502	N NS-EN 1992-1-1:2004	N DNV-OS-C502	n/N NS-EN 1992-1-1:2004	n/N DNV-OS-C502
10	1,00	1000	16,35	13,60	22 459 481 434 875 700	39 810 717 055 350	0,000 000 0000	0,000 000 0000
30	1,48	1000	12,06	10,74	1141 059 870 694	54 610 037 113	0,000 000 0009	0,000 000 0183
50	1,70	1000	10,06	9,41	11 499 254 495	2547 885 892	0,000 000 0870	0,000 000 3925
70	1,85	1000	8,75	8,53	556 566 887	338 385 512	0,000 001 7967	0,000 002 9552
90	1,95	1000	7,76	7,87	57 971 847	74 910 888	0,000 017 2498	0,000 013 3492
110	2,04	1000	6,98	7,35	9525 013	22 472 112	0,000 104 9867	0,000 044 4996
130	2,11	1000	6,33	6,92	2117 920	8247 834	0,000 472 1614	0,000 121 2440
150	2,18	1000	5,87	6,54	741 859	3495 042	0,001 347 9652	0,000 286 1196
170	2,23	1000	5,60	6,22	396 765	1649 326	0,002 520 3856	0,000 606 3083
190	2,28	1000	5,36	5,93	227 515	846 210	0,004 395 3188	0,001 181 7391
210	2,32	1000	5,14	5,67	137 937	464 178	0,007 249 6802	0,002 154 3476
230	2,36	1000	4,94	5,43	87 526	268 926	0,011 425 1407	0,003 718 4934
250	2,40	1000	4,76	5,21	57 687	163 065	0,017 334 9430	0,006 132 5352
270	2,43	1000	4,59	5,01	39 261	102 758	0,025 470 7185	0,009 731 5627
290	2,46	1000	4,44	4,83	27 466	66 929	0,036 409 3030	0,014 941 2863
310	2,49	1000	4,29	4,65	19 677	44 857	0,050 819 5534	0,022 293 0845
330	2,52	1000	4,16	4,49	14 395	30 826	0,069 469 1643	0,032 440 2087
350	2,54	1000	4,03	4,34	10 726	21 657	0,093 231 4840	0,046 175 1448
370	2,57	1000	3,91	4,19	8 124	15 516	0,123 092 3309	0,064 448 1335
390	2,59	1000	3,80	4,05	6244	11 314	0,160 156 8101	0,088 386 8471
410	2,61	1000	3,69	3,92	4862	8381	0,205 656 1299	0,119 317 2239
430	2,63	1000	3,58	3,80	3832	6298	0,260 954 4175	0,158 785 4607
450	2,65	1000	3,48	3,68	3053	4794	0,327 555 5362	0,208 581 1620
470	2,67	1000	3,39	3,57	2456	3693	0,407 109 9012	0,270 761 6473
490	2,69	1000	3,30	3,46	1994	2876	0,501 421 2963	0,347 677 4151
510	2,71	1000	3,21	3,35	1633	2262	0,612 453 6901	0,441 998 7657

Resultatet er også fremstilt i en S-N kurve i figur 38. NS-EN 1992-1-1:2004 endrer stigningstall der $\log\Delta\sigma=2,15$ og $\log N=6$. Stigningstallet er lavere for $\log N > 6$. Dette er punktet der en bytter beregningsformel fra formel 20 til formel 21. Kurven for DNV-OS-C502 har konstant stigningstall.

Fra kurven vises det at spenningsviddene opp mot armeringsstålets flytegrense er kurvene ganske like for begge standardene, men NS-EN 1992-1-1:2004 er mer konservativ. Der kurven for NS-EN 1992-1-1:2004 endrer stigningstall, er standarden på sitt strengeste i forhold til DNV-OS-C502. Etter dette blir kurvene jevnere frem mot punktet der standardene bytter om på hvilken som er den strengeste. Dette skjer når $\Delta \sigma$ er ca. 83MPa, vist i tabell 32. Etter dette øker forskjellen på den beregnede levetiden fra de to standardene betydelig.

Figur 38: S-N kurve for armeringsstål med 10MPa $\leq \Delta \sigma \leq$ 510MPa

Figur 39 viser grafisk hvor mange lastsykler armeringsstålet tåler for de ulike spenningsviddene. For de minste spenningsviddene er forskjellen så stor at kurven er begrenset til å vise spenningsvidder fra 70MPa $\leq \Delta \sigma \leq 510$ MPa.

Figur 39: Kurve for spenning/levetid med 70MPa $\leq \Delta \sigma \leq 510 MPa$

DNV-OS-C502 blir mer konservativ enn NS-EN 1992-1-1:2004 når spenningsvidden ligger mellom 70MPa < $\Delta\sigma$ < 90MPa. Tabell 32 viser et spenningsintervall mellom 80MPa < $\Delta\sigma$ < 85MPa, og resultatene viser at byttet skjer når $\Delta\sigma$ er ca. 83MPa.

Δσ [MPa]	log∆σ	logN NS-EN 1992-1-1:2004	logN DNV-OS-C502	N NS-EN 1992-1-1:2004	N DNV-OS-C502	n/N NS-EN 1992-1-1:2004	n/N DNV-OS-C502
80	1,9	8,22	8,18	167 336 177	151 865 833	0,000 005 9800	0,000 006 5800
81	1,91	8,18	8,15	149 635 471	140 958 051	0,000 006 6800	0,000 007 0900
82	1,91	8,13	8,12	133 990 823	130 953 432	0,000 007 4600	0,000 007 6400
83	1,92	8,08	8,09	120 142 563	121 767 516	0,000 008 3200	0,000 008 2100
84	1,92	8,03	8,05	107 866 391	113 324 623	0,000 009 2700	0,000 008 8200
85	1,93	7,99	8,02	96 968 213	105 556 856	0,000 010 3100	0,000 009 4700

Tabell 32: Levetidsberegning for armeringsstål med spenningsvidde fra 80MPa til 85MPa

Grunnen for de ulike resultatene for standardene ser ut til å ha sammenheng med at spenningseksponentene varierer for NS-EN1992-1-1:2004. Når spenningsvidden $\Delta\sigma$ er større enn $\Delta\sigma_{Rsk}$ brukes spenningseksponenten k₁ i beregningene. For spenningsvidder mindre enn $\Delta\sigma_{Rsk}$ brukes k₂. For DNV-OS-C502 brukes samme verdi for faktorene C₃ og C₄ for alle spenningsviddene.

Hvorfor NS-EN 1992-1-1:2004 endrer faktor sier standarden ingenting om. Det kan tenkes at påvirkningen av sykliske laster for lavere spenningsvidder ikke vil være like skadelig som for større spenningsvidder.

6.2 Betongens utmattingskapasitet for trykkbrudd

Beregningsmetodene for betongens utmattingskapasitet for trykkbrudd er totalt ulike for de to standardene. Diskusjonen baserer seg på tabell 27 og tabell 28 i kapittel 5.2. Eneste likhetstrekk for beregningene er at for begge beregningssnitt er det spenningsblokk 1 som er mest utnyttet for både DNV-OS-C502 og NS-EN 1992-1-1:2004.

DNV-OS-C502 benytter samme beregningsmetodikk som for armeringsstålets utmattingskapasitet for å beregne utmattingskapasiteten for trykkbrudd. Delskaden finnes fra en enkelt spenningsvidde, og deretter summeres alle delskadene for å sjekke at kapasiteten er tilfredsstillende. Beregningsmetoden i NS-EN 1992-1-1:2004 sier at hver spenningsblokk må tilfredsstille et krav om maksimal tillatt utnyttelse. Resultatet blir da at utmattingskapasiteten enten ses på som godkjent eller ikke godkjent.

Når utmattingskapasiteten for DNV-OS-C502 studeres nærmere kommer det frem at resultatene er like for begge beregningssnitt, dersom det ses på hvilke spenningsblokker som er mer eller mindre utnyttet. De minst utnyttede spenningsblokkene, spenningsblokk 2 og spenningsblokk 5, befinner seg i området der både σ_{maks} og for σ_{min} opptrer som trykkspenninger. Generelt vil spenningsblokker der spenningsvidden befinner seg kun i trykksonen, ha lenger levetid enn spenningsblokker der spenningene veksler mellom strekk og trykk, etter formel 4.

Strekkspenninger vil, der de opptrer, settes lik null for beregning av en konstruksjons trykkbruddkapasitet. Også faktoren C₁ reduseres der spenningsvidden varierer mellom strekk og trykk. Spenningsvidden i spenningsblokk 1, som er den mest utnyttede spenningsblokken, varierer mellom strekk og trykk. Den største trykkspenningen som virker på konstruksjonen, i de kontrollerte spenningsblokkene, er trykkspenningen fra spenningsblokk 1.

Også beregningsresultatene for NS-EN 1992-1-1:2004 er like for begge beregningssnittene. Spenningsblokk 6 er den minst utnyttede spenningsblokken. Av de kontrollerte spenningsblokkene der spenningsvidden varierer mellom strekk og trykk, er det spenningsblokk 6 som utsettes for den laveste trykkspenningen. Spenningsblokk 5 er spenningsblokken som utsettes for den absolutt laveste trykkspenningen, men spenningsvidden her befinner seg kun i trykksonen. Når en konstruksjon påvirkes av spenninger som veksler mellom strekk- og trykkpåkjenning, vil det aldri kunne utnyttes mer enn femti prosent etter formel 23. Dette er fordi σ_{min} settes lik null dersom spenningen opptrer som strekkspenning. Hvor mye et tverrsnitt kan utnyttes der hele spenningsvidden befinner seg i trykksonen, vil øke ettersom verdien av σ_{min} øker.

Også verdien av betongens dimensjonerende utmattingskapasitet, $f_{cd,fat}$, varierer med spenningene for NS-EN 1992-1-1:2004. Der spenningen varierer mellom strekk og trykk er $f_{cd,fat}$ =20,91MPa. Der konstruksjonen kun utsettes for trykkspenninger er $f_{cd,fat}$ =17,77MPa. Denne kapasiteten er langt lavere enn for DNV-OS-C502, der den dimensjonerende betongtrykkfastheten for den aktuelle bruddformen er f_{rd} =25,46MPa. Denne reduksjonen alene vil redusere utmattingskapasiteten betraktelig.

Beregningsmetodene for betongens utmattingskapasitet for trykkbrudd er veldig forskjellige for de to standardene. Det gir et inntrykk av at området er lite utviklet enda. For eksempel er materialfaktoren for armeringsstål i utmattingsbruddgrensetilstand γ_s =1,15. For betong er materialfaktoren γ_c =1,5. (Tabell NA.2.1.N, [5]) Når materialfaktoren er såpass mye større for betong enn armeringsstål tyder dette på at området er mindre utviklet. I DNV-OS-C502 benyttes teorien for utmatting av armeringsstål for betongens utmattingskapasitet for trykkbrudd. For NS-EN 1992-1-1:2004 blir det bestemt hvor stor utnyttelse som er tillatt. Utover dette sier standarden ingenting om hvor mange lastsykler konstruksjonen faktisk tåler fra de ulike spenningsviddene.

6.3 Vekslende skjærkrafts påvirkning på utmattingskapasiteten

Betongens utmattingskapasitet for strekkbrudd avhenger av påvirkningen fra vekslende skjærkrefter. I beregningene i kapittel 4.4 og 4.5 er det kun utmattingskapasiteten for strekkbrudd i snitt A-A som ikke er tilstrekkelig. Hvilke spenningsblokker som overskrider kapasiteten varierer fra DNV-OS-C502 og NS-EN 1992-1-1:2004. Også hvilke spenningsblokker som er mer eller mindre utnyttet, i følge de to standardene, varierer for utmattingskapasiteten for strekkbrudd. Dette er vist i tabell 29 og tabell 30 i kapittel 5.3.

Generelt minner beregningsmetodene for betongens utmattingskapasitet grunnet vekslende skjærkrefter om beregningene av betongens utmattingskapasitet for trykkbrudd. Forskjellen er at i formlene byttes maksimums- og minimumsspenninger ut med henholdsvis maksimums- og minimumsskjærkrefter. Betongens trykkfasthet erstattes med betongens dimensjonerende skjærkapasitet. For NS-EN 1992-1-1:2004 er det absoluttverdier av skjærkreftene som benyttes i beregningene. Det observeres at det i grunnen er absoluttverdier av skjærkrefter som benyttes for DNV-OS-C502 og i beregningene, men at standarden velger å endre formlene i stedet for å benytte absoluttverdier. Når skjærkraften har samme fortegn for maksimums- og minimumsverdien vil beregningene, foruten endringene nevnt ovenfor, være helt like. Dette er vist i formel 4 og formel 10 for DNV-OS-C502. For NS-EN 1992-1-1:2004 vises dette i formel 23 og formel 27.

Der skjærkraften bytter fortegn endres beregningsformlene litt i fra trykkbruddsberegningene. Skjærkraften vil påvirke utmattingskapasiteten uansett hvilken retning den virker. Formlene er derfor noe justert for å ta hensyn til dette. I tillegg til disse justeringene må det sjekkes hvilken skjærkraft som vil gi kortest levetid når den benyttes som positiv V_{maks} i beregningene etter DNV-OS-C502. Endringene i formlene vises med formel 4 og formel 11 for DNV-OS-C502, og formel 23 og formel 28 for NS-EN 1992-1-1:2004.

Både for armeringsstålets utmattingskapasitet og betongens utmattingskapasitet for trykkbrudd, er det samhørighet for hvilke spenningsblokker som er mest og minst utnyttet for begge snittene. Når utmattingskapasiteten for strekkbrudd ble kontrollert var ikke resultatene like samstemte. Dette er vist i kapittel 5.3.

Det mest påfallende fra beregningene i snitt A-A, er at spenningsblokk 7 som er minst utnyttet i følge beregningsmetoden i DNV-OS-C502, er mest utnyttet etter NS-EN 1992-1-1:2004. Spenningsblokken har den høyeste absoluttverdien for V_{min} = |-250,63|kN. For DNV-OS-C502 øker levetiden når skjærkraftens absolutte minimumsverdi øker (formel 10 og formel 11). Beregningene i NS-EN 1992-1-1:2004 tilsier at der skjærkraften skifter fortegn vil utmattingskapasiteten reduseres ettersom den absolutte minimumsverdi øker (formel 28). Der skjærkraften har samme fortegn vil kapasiteten øke med økt minimumsverdi (formel 27). Hvor utnyttet tverrsnittet blir avhenger i tillegg av hvor stor absoluttverdien for den maksimale skjærkraften er.

Spenningsblokk 1 er den mest utnyttede spenningsblokken for strekkbrudd i følge DNV-OS-C502 i begge snitt. Samme spenningsblokk er mest utnyttet for utmattingskapasiteten for trykkbrudd. Dette er som forventet i og med at beregningene er veldig like. Av de kontrollerte spenningsblokkene er spenningsblokk 1 den eneste som overskrider tverrsnittets kapasitet alene i snitt A-A. Da metoden baserer seg på sum av delskader, vil også bidrag fra de andre spenningsblokkene påvirke resultatet.

Det at resultatene fra DNV-OS-C502 og NS-EN 1992-1-1:2004 stemmer såpass lite overens med hverandre gir et inntrykk av at utmattingskapasitet for strekkbrudd i betong er et område som er lite utviklet. For DNV-OS-C502 ser det ut til at teorien benyttet for armeringsstålets levetid bare er skrevet om for å passe inn for betong. NS-EN 1992-1-1:2004 sin beregningsmetode for betongens utmattingskapasitet kan ikke sammenlignes med DNV-OS-C502. Den setter bare krav til hvor mye tverrsnittet kan utnyttes. I tillegg kan det se ut som NS-EN 1992-1-1:2004 tar mer hensyn til virkningen av vekslende skjærkraft, ved at kapasiteten reduseres i større grad enn for DNV-OS-C502 der dette skjer.

For å få tilstrekkelig utmattingskapasitet for strekkbrudd bør mer armeringsstål, og eventuelt skjærarmering i tillegg, benyttes i konstruksjonen.

7 Konklusjon

Beregningsmetoden for armeringsstålets levetid er ganske lik for begge standardene. De baseres begge på teorien der delskader summeres og sjekkes opp mot et krav om maks utnyttelse. Alle faktorer er konstante, foruten spenningsvidden, når levetiden beregnes etter DNV-OS-C502. For NS-EN 1992-1-1:2004 veksles det mellom konstantene k_1 og k_2 etter om spenningsvidden befinner seg over eller under referansespenningen, σ_{Rsk} . Dette fører til økt levetid for de små spenningsviddene etter NS-EN 1992-1-1:2004. Det at beregningsmetodene for armeringsstålets levetid er så like for begge standardene, tyder på at teorien bak dette er ganske sikker. Dette kan stemme bra overens ut i fra at all bakgrunnsteori og -historie som ble funnet om utmatting (se kapittel 4.1), omhandler metaller og stålkonstruksjoner.

E-poster skrevet med DNV gav inntrykk av at NS-EN 1992-1-1:2004 ville gi et mer konservativt beregningsresultat enn DNV-OS-C502. Dette ble begrunnet med at NS-EN 1992-1-1:2004 gir en drastisk styrkereduksjon av designstyrken til betongen i utmattingsgrensetilstanden. Utmattingskapasiteten for trykkbrudd i betongen, der designstyrken benyttes, var tilstrekkelig for alle tilfeller og ikke lett å sammenligne. For begge standardene er utmattingskapasiteten for trykkbrudd mest utnyttet for spenningsblokken der den høyeste trykkspenningen opptrer. Denne spenningsblokken varierer mellom strekk og trykk.

Utmattingskapasiteten for strekkbrudd i betongen er ikke tilstrekkelig i snitt A-A verken for NS-EN 1992-1-1:2004 eller DNV-OS-C502. Beregningsmetodikken for beregning av betongens uarmerte skjærkapasitet er endret siden fundamentene i Høg-Jæren Energipark ble dimensjonert. Den uarmerte skjærkapasiteten til betongen ble hentet direkte ut fra beregningsdokumentene fra BT-snitt, et program som baserer seg på dagens gjeldende standard. Dette kan tenkes å påvirke resultatet for DNV-OS-C502.

Resultatene er ikke direkte sammenlignbare siden beregningsmetodene er like forskjellige her som for betongens utmattingskapasitet for trykkbrudd. I utgangspunktet var det likevel forventet samhørighet for hvilke spenningsblokker som var mer eller mindre utnyttet for den enkelte standard i de respektive snittene. Dette stemte bra for de øvrige beregningene, men ikke for utmattingskapasiteten for strekkbrudd.

Det var heller ikke samhørighet mellom de to standardene for hvilke spenningsblokker som var mest utnyttet i samme grad som for armeringsstålet og betongens utmattingskapasitet for trykkbrudd. Dette skyldes at for NS-EN 1992-1-1:2004 vil utmattingskapasiteten reduseres betraktelig, alt etter hvor stor absoluttverdien av minimumsskjærkraften er der skjærkraften bytter fortegn.

Utmattingskapasitet for betongen, både for strekkbrudd og trykkbrudd, later til å være et område med lite bakgrunnsteori. Der det tidligere ble anvendt samme teori som benyttes armeringsstål, har NS-EN 1992-1-1:2004 i stedet kommet med et krav om maks tillatt utnyttelse. Armeringsstål er som kjent et duktilt materiale, der store deformasjoner tåles før brudd. Betong er et mer sprøtt materiale, så teorien for armering kan være vanskelig å overføre til betongen.

Tabeller

Tabell 1: Vindparker i drift i Norge, [14]	19
Tabell 2: Vindparker gitt konsesjon i Rogaland, [14]	20
Tabell 3: Vindparker med søknader under behandling i Rogaland, [14]	21
Tabell 4: Jordparametre brukt i den statiske analysen, [27]	25
Tabell 5: Maksimum/minimumsmomenter i spenningsblokker	47
Tabell 6: Tverrsnittsgeometri og beregnede verdier, side 219, [26]	50
Tabell 7: Beregning av faktisk grunntrykk	50
Tabell 8: Beregnede verdier av egenvekt og grunntrykk brukt i 4.3.4	52
Tabell 9: Beregnede verdier i snitt A-A	54
Tabell 10: Beregnede verdier i snitt B-B	54
Tabell 11: Levetidsberegning for armering etter DNV-OS-C502 i snitt A-A	60
Tabell 12: Levetidsberegning for armering etter DNV-OS-C502 i snitt B-B	61
Tabell 13: Levetidsberegning for trykkbrudd i betong etter DNV-OS-C502 i snitt A-A	63
Tabell 14: Levetidsberegning for trykkbrudd i betong etter DNV-OS-C502 i snitt B-B	64
Tabell 15: Levetidsberegning for strekkbrudd grunnet skjærkrefter etter DNV-OS-C502 i snitt A-/	A 66
Tabell 16: Levetidsberegning for strekkbrudd grunnet skjærkrefter etter DNV-OS-C502 i snitt B-I	B 67
Tabell 17: Spenningsblokk 6 for snitt A-A	68
Tabell 18: Spenningsblokk 6 for snitt B-B	68
Tabell 19: Levetidsberegning for armering etter NS-EN 1992-1-1:2004 i snitt A-A	70
Tabell 20: Levetidsberegning for armering etter NS-EN 1992-1-1:2004 i snitt B-B	71
Tabell 21: Utmattingskapasitet for betong etter NS-EN 1992-1-1:2004 i snitt A-A	73
Tabell 22: Utmattingskapasitet for betong etter NS-EN 1992-1-1:2004 i snitt B-B	73
Tabell 23: Utmattingskapasitet for betong grunnet skjærkraft etter NS-EN 1992-1-1:2004 i snitt	A-A75
Tabell 24: Utmattingskapasitet for betong grunnet skjærkraft etter NS-EN 1992-1-1:2004 i snitt	B-B75
Tabell 25: Sammenligning av beregninger for armeringsstål i snitt A-A	77
Tabell 26: Sammenligning av beregninger for armeringsstål i snitt B-B	79
Tabell 27: Sammenligning av beregninger for betongens trykkbruddkapasitet i snitt A-A	82
Tabell 28: Sammenligning av beregninger for betongens trykkbruddkapasitet i snitt B-B	83
Tabell 29: Sammenligning av betongens strekkbruddkapasitet grunnet skjærkrefter i snitt A-A	85
Tabell 30: Sammenligning av betongens strekkbruddkapasitet grunnet skjærkrefter i snitt B-B	86
Tabell 31: Levetidsberegning for armeringsstål med spenningsvidde fra 10MPa til 510MPa	88
Tabell 32: Levetidsberegning for armeringsstål med spenningsvidde fra 80MPa til 85MPa	90

Figurliste

0	
Figur 1: Vindmølle med vertikal akse, [39]	12
Figur 2: Vindmølle fra Storbritannia, [40]	13
Figur 3: Jacobs turbin, side 16, [1]	13
Figur 4: Vindturbin fra Høg-Jæren Energipark, foto: Elin Olsen	. 14
Figur 5: Momentvirkning fra rotorblad, side 201, [29]	15
Figur 6: Laster som virker på en vindturbin, side 163, [29]	16
Figur 7: Vindprofil, side 114, [2]	17
Figur 8: Betz metode, side 93, [1]	17
Figur 9: Bilde fra Høg-Jæren Energipark, foto Elin Olsen	23
Figur 10: Kart over vindturbinenes plassering, fra Multiconsult	23
Figur 11: Fundament under oppføring i andre byggetrinn, foto: Elin Olsen	24
Figur 12: Tverrsnittsgeometri av fundament i G-prog, figur: Elin Olsen, AutoCAD	26
Figur 13: Tverrsnittsgeometri av fundament i OS-prog, figur: Elin Olsen, AutoCAD	27
Figur 14: Utmattingsbrudd, side 234, [31]	30
Figur 15: Styrkereduksjon med levetid, side 281, [22]	31
Figur 16: Økt gjennomsnittsspennings påvirkning på levetiden, side 235, [31]	32
Figur 17: Libertyskip som knakk i to, [34]	33
Figur 18: "Alexander L. Kielland"-ulykken, D-staget der tretthetsbruddet oppstod, [32]	34
Figur 19: S-N-kurve for armeringsstål og spennstål, figur 6.30, [5]	42
Figur 20: Momentsvingninger med tiden, figur: Elin Olsen, AutoCAD	47
Figur 21: Kritiske snitt, figur: Elin Olsen, AutoCAD	48
Figur 22: Grunntrykkets virkning fra G-prog, figur: Elin Olsen, AutoCAD	49
Figur 23: Variasjon i grunntrykk i tverretningen, figur: Elin Olsen, AutoCAD	49
Figur 24: Grunntrykket som trapeslast, figur: Elin Olsen, AutoCAD	51
Figur 25: Tverrsnittsgeometri av utkraget bjelke, figur: Elin Olsen, AutoCAD	52
Figur 26: Utkragede bjelker med beregnede trapeslaster, figur: Elin Olsen, AutoCAD	53
Figur 27: Armeringsspenninger og momenter i snitt A-A, figur: Elin Olsen, Excel	55
Figur 28: Armeringsspenninger og momenter i snitt B-B, figur: Elin Olsen, Excel	55
Figur 29: Betongspenninger og momenter i snitt A-A, figur: Elin Olsen, Excel	56
Figur 30: Betongspenninger og momenter i snitt B-B, figur: Elin Olsen, Excel	56
Figur 31: Skjærkrefter og momenter i snitt A-A, figur: Elin Olsen, Excel	57
Figur 32: Skjærkrefter og momenter i snitt B-B, figur: Elin Olsen, Excel	57
Figur 33: Fundamentets strekk- og trykksoner, figur: Elin Olsen, AutoCAD	58
Figur 34: S-N-kurver for armeringsstål i snitt A-A, figur: Elin Olsen, Excel	.78
Figur 35: Kurver for spenning/levetid for armeringsstål i snitt A-A, figur: Elin Olsen, Excel	.78
Figur 36: S-N kurver for armeringsstål i snitt B-B, figur: Elin Olsen, Excel	. 79
Figur 37: Kurver for spenning/levetid for armeringsstål i snitt B-B, figur: Elin Olsen, Excel	80
Figur 38: S-N kurve for armeringsstål med 10MPa $\leq \Delta \sigma \leq$ 510MPa, figur: Elin Olsen, Excel	89
Figur 39: Kurve for spenning/levetid med 70MPa $\leq \Delta \sigma \leq 510$ MPa, figur: Elin Olsen, Excel	89

Formelliste

Formel 1 Skrevet fra tabell 1-3, [14]	. 18
Formel 2 Skrevet fra tabell 1-3, [14]	. 18
Formel 3 Kilde: Sec. 6, M107, [7]	. 35
Formel 4 Kilde: Sec. 6, M201, [7]	. 36
Formel 5 Kilde: Sec. 6, M302, [7]	. 36
Formel 6 Kilde: Sec. 6, M302, [7]	. 36
Formel 7 Kilde: Sec. 6, M201, [7]	. 37
Formel 8 Kilde: Sec. 6, M201, [7]	. 37
Formel 9 Kilde: Sec. 6, M202, [7]	. 37
Formel 10 Kilde: Sec. 6, M201 og M401, [7]	. 38
Formel 11 Kilde: Sec. 6, M201, M401 og M402, [7]	. 38
Formel 12 Kilde: Sec. 6, M201, M401 og M402, [7]	. 39
Formel 13 Kilde: Sec. 6, M201, [7]	. 39
Formel 14 Kilde: Formel 6.64, [5]	. 40
Formel 15 Kilde: Formel 6.65, [5]	. 40
Formel 16 Kilde: Formel 6.71, [5]	. 41
Formel 17 Kilde: Formel 6.70, [5]	. 41
Formel 18 Kilde: Skrevet fra tekst, 6.8.4 (1), [5]	. 41
Formel 19 Kilde: Skrevet fra tekst, 6.8.4 (1), [5]	. 41
Formel 20 Kilde: Skrevet fra S-N-kurve, figur 6.30, [5]	. 42
Formel 21 Kilde: Skrevet fra S-N-kurve, figur 6.30, [5]	. 42
Formel 22 Kilde: Formel 6.72, [5]	. 43
Formel 23 Kilde: Formel 6.77, [5]	. 43
Formel 24 Kilde: Formel 6.76, [5]	. 44
Formel 25 Kilde: Formel 3.15, [5]	. 44
Formel 26 Kilde: Formel 3.2, [5]	. 44
Formel 27 Kilde: Formel 6.78, [5]	. 45
Formel 28 Kilde: Formel 6.79, [5]	. 45
Formel 29 Kilde: Skrevet etter formel 8.14 og 8.16, [31]	. 46
Formel 30 Kilde: Skrevet etter beregning av korreksjonsfaktor, [26]	. 50
Formel 31 Kilde: Skrevet etter enkel trigonomitr	. 51
Formel 32 Kilde: Formel side 60, [4]	. 52
Formel 33 Kilde: Skrevet ut fra prinsipp om lineær betraktning	. 53
Formel 34 Hookes lov	. 54
Formel 35 Kilde: Skrevet ut fra prinsipp om lineær betraktning	. 54
Formel 36	. 59
Formel 37	. 59
Formel 38 Formel: Sec.6, tabell B1, [7]	. 59
Formel 39 Kilde: Sec 6, B605, [7]	. 62
Formel 40 Formel: Skrevet fra tekst, 6.8.4 (3), [5]	. 69
Formel 41 Formel: Skrevet etter formel 23	. 81
Formel 42 Formel: Skrevet etter formel 27	. 84
Formel 43 Formel: Skrevet etter formel 28	. 84

Litteraturliste

- Wind Energy Explained, *Theory, Design and Application*, Second Edition J.F. Manwell, J.G.
 McGowan, A.L. Rogers John Wiley & Sons Ltd., 2009
- [2] Wind Power Plants, *Fundamentals, Design, Construction and Operation* R. Gasch, J. Twele Solapraxis AG Berlin, James & James London
- [3] Developing Wind Power Projects, *Theory & Practice* Tore Wizelius Earthscan, 2007
- [4] Geoteknikk Olav R. Aarhaug NKI Forlaget, 2006
- [5] NS-EN 1992-1-1:2004+NA:2008, Eurokode 2: Prosjektering av betongkonstruksjoner, Del 1-1: Allmenne regler og regler for bygninger
- [6] IEC 61400-1, Wind Turbines Part 1: Design Requirements, Third edition 2005-08
- [7] Offshore Standard DNV-OS-C502, Offshore Concrete Structures, April 2007
- [8] NS 3473, Prosjektering av betongkonstruksjoner, Beregnings- og konstruksjonsregler, 3.utg.-1989
- [9] Reference List, *Wind Power* Multiconsult
- [10] <u>http://vindenergi.no/our-projects</u> Januar -12
- [11] <u>http://vindenergi.no/vindkraft</u> Januar -12
- [12] <u>http://www.nve.no/no/Energi1/Fornybar-energi/Vindkraft/</u> Januar -12
- [13] <u>http://www.nve.no/PageFiles/12033/Vindkraftproduksjon_2010.pdf</u> Januar -12
- [14] <u>http://www.nve.no/no/Konsesjoner/Konsesjonssaker/Vindkraft/</u> 20.01.12
- [15] <u>http://www.nve.no/PageFiles/12033/Vindkraftproduksjon_2010.pdf</u> Januar -12
- [16] Wind Power Extraction Jasna B. Jacobsen
- [17] Improved design criteria and forecast for energy yield from offshore wind turbines C.Obhrai
- [18] Forelesningsnoteter (2011) Naturlaster Jasna B. Jacobsen, Universitetet i Stavanger
- [19] NS 3472, Prosjektering av stålkonstruksjoner, Beregning og dimensjonering, 2.utg-1984
- [20] G-PROG BETONG Geoteknikk, Brukerveiledning Geoteknikk (Ver. 6.1.5 Januar 2004)
- [21] BT-snitt, Brukerhåndbok (Versjon 6.1.9 August 2011)
- [22] Fracture Mechanics, *Fundamentals and Applications*, Third edition (2005) T. L. Anderson CRC Taylor & Francis Group, 2005

- [23] Structural Reliability Analysis and Prediction, Second Edition (2002) Robert E. Melchers John Wiley & Sons Ltd., 2002
- [24] Oppdragsbeskrivelse Høgjæren Windfarm
- [25] Betongkonstruksjoner, kompendium Eilert Mariero, 2005
- [26] Vorlesungen über Massivbau, Dritter Teil, Grundlagen zum Bewehren im Stahlbetonbau F.
 Leonhardt und E. Mönnig Springer Verlag 1974
- [27] Geoteknisk rapport, Høgjæren Vindmøllepark Multiconsult 2010
- [28] <u>http://www.vindenergi.no/f/296_sknad-om-konsesjons-og-reguleringsendring.pdf</u> 28.02.12
- [29] Wind Turbines, *Fundamentals, Technologies, Application, Economics,* Second Edition Erich Hau – Springer-Verlag Berlin Heidelberg, 2006
- [30] NS-EN 1992-2:2005+NA:2010, Eurokode 2: Prosjektering av betongkonstruksjoner, Del 2: Bruer
- [31] Materials Science and Engineering, *An Introduction,* Seventh Edition William D. Callister, Jr. – Forlag
- [32] <u>http://www.kulturminne-</u> ekofisk.no/modules/module_123/templates/ekofisk_publisher_template_category_2.asp?str Params=8%233%23894I775I746l956l1052%23857&iCategoryId=418&iInfoId=0&iContentMen uRootId=1011&strMenuRootName=&iSelectedMenuItemId=1221&iMin=363&iMax=364 07.05.12 – "Alexander L. Kielland"-ulykken – Kristin Øye Gjerde
- [33] <u>http://snl.no/Alexander_L_Kielland-ulykken 07.05.12</u>
- [34] lastet ned 08.05.12 <u>http://www.uio.no/studier/emner/matnat/math/MEK4520/h06/undervisningsmateriale/kap</u> <u>ittel%201%20-%20historie%20og%20oversikt.pdf</u>
- [35] Forelesningsnotater Fracture Mechanics (2010) Kenneth Macdonald, Universitetet i Stavanger
- [36] <u>http://www.energy.siemens.com/mx/pool/hq/power-generation/wind-power/E50001-</u> W310-A102-V6-4A00 WS SWT-2.3-93 US.pdf 08.05.12
- [37] Høg-Jæren I & II Explanation of Load Difference in Foundation Load Document
- [38] <u>http://home.hit.no/~trondc/Vind-teknikk.pdf 15.05.12</u>
- [39] <u>http://www.ivt.ntnu.no/offshore2/?page_id=266</u> Januar, 2012
- [40] <u>http://en.wikipedia.org/wiki/Post_mill</u> Januar, 2012

Vedleggsliste

Vedlegg A:	Lastdokument for masteroppgave, [Multiconsult]
Vedlegg B:	Tegninger av fundament på Høg-Jæren, [Multiconsult]
Vedlegg C:	Beregningsdokument fra G-prog Geoteknikk, kapittel 3.2
Vedlegg D:	Beregningsdokument fra BT-snitt, kapittel 3.3
Vedlegg E:	Beregningsdokument fra G-prog Geoteknikk, kapittel 4.3
Vedlegg F:	Beregningsdokument fra G-prog Betongbjelke, snitt A-A, kapittel 4.3
Vedlegg G:	Beregningsdokument fra G-prog Betongbjelke, snitt B-B, kapittel 4.3
Vedlegg H:	Beregningsdokument fra BT-snitt, snitt A-A, kapittel 4.3
Vedlegg I:	Beregningsdokument fra BT-snitt, snitt B-B, kapittel 4.3

Lastdokument for masteroppgave

Overturning moment. Peak-to-peak fatigue load bins [kNm]													
					M	ean valu	ue [kNm]		_			
		-23,000	-15,600	-8,300	-1,000	6,300	13,600	20,900	28,200	35,500	42,800		All
		to	to	to	to	to	to	to	to	to	to		
		-15,600	-8,300	-1,000	6,300	13,600	20,900	28,200	35,500	42,800	50,100		
	1.00E+09	0	0	0	0	0	0	0	0	0	0		0
	5.00E+08	0	0	0	0	0	0	0	0	0	0		1,300
	2.00E+08	0	0	0	0	0	0	0	0	0	0		2,500
	1.00E+08	0	0	0	0	1,300	1,300	1,300	0	0	0		3,800
	5.00E+07	0	0	0	3,800	2,500	3,800	2,500	0	0	0		6,300
	2.00E+07	0	0	0	5,000	2,500	5,000	3,800	0	0	0		8,700
les	1.00E+07	0	0	0	7,500	5,000	8,700	5,000	0	0	0		11,200
λ C	5.00E+06	0	0	0	10,000	8,700	11,200	7,500	0	0	0		14,900
ر د	2.00E+06	0	0	0	11,200	12,500	13,700	10,000	0	0	0		17,400
Ö	1.00E+06	0	0	0	13,700	14,900	17,400	13,700	1,300	0	0		19,900
Der	5.00E+05	0	0	0	14,900	18,700	21,200	14,900	1,300	0	0		22,400
ă l	2.00E+05	0	0	1,300	16,200	21,200	22,400	17,400	2,500	0	0		23,600
	1.00E+05	0	0	2,500	18,700	23,600	23,600	18,700	2,500	0	0		26,100
~	5.00E+04	0	0	3,800	19,900	26,100	26,100	21,200	3,800	0	0		28,600
	2.00E+04	0	0	3,800	19,900	28,600	28,600	21,200	3,800	0	0		31,100
	1.00E+04	0	0	3,800	19,900	32,300	29,800	22,400	3,800	0	0		33,600
	5.00E+03	0	0	3,800	19,900	34,800	32,300	23,600	3,800	0	0		37,300
	2.00E+03	0	0	6,300	19,900	38,500	37,300	24,900	3,800	0	0		42,300
	1.00E+03	0	1,300	24,900	58,400	62,100	58,400	53,400	17,400	3,800	0		62,100

Table 4: Fatigue load spectrum for overturning moment.

Ultimate normal operation loads incl. partial safety factor 1.35 (IEC 61400-1:2005)

Design load case: 1.2		Partial safety factor	Unfactored Load	Design Load
Hub height	H [m]	N/A	80.0	80.0
Normal force	N [kN]	1.00	2,900	2,900
Shear force	Q [kN]	1.35	600	810
Overturning moment	M [kNm]	1.35	40,500	54,700
Torsion moment	T [kNm]	1.35	5,300	7,200

Table 8: Ultimate loads from DLC1.2.

Ultimate operation gust loads with 50 years return period incl. partial safety factor 1.35 (EN 61400-1:2004)

Design load case: 1.6		Partial safety factor	Unfactored Load	Design Load
Hub height	H [m]	N/A	80.0	80.0
Normal force	N [kN]	1.00	2,900	2,900
Shear force	Q [kN]	1.35	700	820
Overturning moment	M [kNm]	1.35	49,700	67,000
Torsion moment	T [kNm]	1.35	3,200	4,300

Table 10: Ultimate loads from DLC1.6.

Rektangulært fundament Programmodul: Geoteknikk for Eurocode versjon 6.20.1	09.02.2012 13:35:58	Side: 1
Dato: 9. februar 2012 Tid: 13:35:58 Signatur: Programmet er utviklet av Norconsult Informasjonssyster Programsystem: G-PROG Betong Programmodul: Geoteknikk for Eurocode versj Norm: Norsk Standard NS-EN 1997 of Kontroll av stabilitet og armering for støttemur og fundan Programlisensen eies av: Multiconsult AS	emer as. sjon 6.20.1 og NS-EN1992 med nasjonale tillegg NA:2008 nent	
Dokument: \\SVGDC1\felles\FAG\Anleggskonstr\Elin\Ma	asteroppgave kap 3\Fundament2.gwp	
	÷	

Rektangulært fundament Programmodul: Geoteknikk for Eurocode versjon 6.20.1 1. MATERIALDATA

.

,

Side: 2

1. MATERIALDATA

Betongklasse etter EN1992	С	B35	MPa
Materialfaktor for betong	GammaC	1,50	
Største tilslag etter NS-EN 12620	D	22	mm
Betongkvalitet	С	35,0	MPa
Betongens kubehållfasthet	fck,cube	45,0	MPa
Betongens trykktøyning ved maks. spenning, kurve 2	Eps.c2	-2,00	promille
Betongens bruddtøyning, kurve 2	Eps.cu2	-3,50	promille
Betongens trykktøyning ved maks. spenning, kurve 1	Eps.c1	-2,25	promille
Betongens bruddtøyning, kruve 1	Eps.cu1	-3,50	Promille
Exponent n i arbeidsdiagrammet. Tabell 3.1	n	2,00	
Betongens midlere E-modul	Ecm	34 077	MPa
Betongens midlere trykkfasthet	fcm	43,0	MPa
Betongens dimensjonerende trykkfasthet	fcd	19,8	MPa
Betongens midlere strekkfasthet	fctm	3,21	MPa
Betongens dimensjonerende strekkfasthet	fctd	1,27	MPa
Sementklasse	Sement	N	
Relativ fuktighet	RH	70	%
Alder ved pålastning	tO	28	døgn
Eksponeringsklasse	х	XF3	
Dimensjonerende levetid	Lvt	50	år
Tillegg / fradrag i nominell verdi for Cdur. 4.4.1.2 (6) - (11)	DeltaC	0	mm
Grenseverdi for karakterisitsk rissvidde	wd	0,30	mm
Minimum overdekning etter tabell 15.b i NS3473	Minc	40	mm
Nødvendig fasthetsklasse etter appendix J.	Cind	B35	MPa
Bestandighetsklasse	М	MF45	
Ståltype	Stål	В	
Materialfaktor for stål	GammaS	1,15	
Strekkarmeringens flytegrense	fsk	500	MPa
Bøylenes flytegrense	fskb	500	MPa
Toleranse for plassering av jern vertikalt	Toleranse	15,0	mm
Forhold mellom flytespenning og bruddspenning	k	1,02	
Armeringens bruddtøyning	Eps.uk	50,00	promille
Egendefinert øvre grense for armeringstøyningen	Eps.lim	100,0	promille
Armeringens E-modul	Es	200 000	MPa
Armeringens bruddgrense	ftks	510	MPa
Største armeringstøyning i beregningen etter EN1992	Eps.ud	20,0	promille

2. GEOMETRI

2.1 Geometri for rektangulært fundament

Fundamentbredde	В	17 500	mm
Fundamentlengde	L	17 500	mm
Avstand til søyle i X-retn	bx	8 750	mm
Avstand til søyle i Z-retn	bz	8 750	mm
Søyletype	Søyle	Rektangulær	
Søylebredde	b	5 000	mm
Søyletykkelse	1	5 000	mm
Knekklengde for søylen	Lk	0	mm
Fundamentdybde under marknivå	D	4 000	mm
Fundamenttykkelse	t	2 000	mm
Grunnvannivå over UK. fundament	Dw	4 000	mm

2.2 Figur over geometrien

Vedlegg C

ektangulært fundament Programmodul: Geoteknikk for Eurocode versic	್ರ 09.02.2012 13:35:58 on 6.20.1	Side:
.5 Søylearmering på venstre og høyre side		
Ønc		
mm stk mm		
20,0 81 165	,	
20,0 81 215		
20,0 74 265		
<u>6 Søylearmering på øvre og nedre side</u>		
Ønc		
mm stk mm		
20.0 81 65		
20.0 81 115		
20.0 81 165		
20,0 81 215		
20,0 74 265		
: Diameter for jern		
: Overdekning for jern		
. LASTER		
4 1 4216-11		
.1 Lasttilfeller		
1.1 Design Load Case: 1,6		
lormalkraft på fundamentet N 2 900 kN		
Noment om X-aksen MX 67 000 kNr	m	
Aorisontalkraft i X-rotningon Hy 820 kN		
Iorisontalkraft i Z-retningen Hz 0 kN		
.1.2 Design Load Case 1,2		
Jormalkraft nå fundamentet N 2 900 kN		
Moment om X-aksen Mx 40 500 kN	m	
Moment om Z-aksen Mz 5 300 kNr	m	
Horisontalkraft i X-retningen Hx 600 kN		
lorisontalkraft i Z-retningen Hz 0 kN		
2 Beregnete lasttilfeller		
<u>Deregnete lastanener</u>		
.2.1 Egenvekt fundament		
[:] elt Ltype Retn x1 q	1/P/M x2 q2	
mm_kN/m, kN	, kNm mm kN/m	
/enstre del Jevn last Y 0	-50,0 0 0,0	
Høyre del Jevn last Y 0	-50,0 0 0,0	
ovre del Jevn last Y 0	-50,0 0 0,0	
Nedre del Jevn last Y 0	-50,0 0 0,0 175 0 2 000 175 0	
שיוים ודמאפטוסגנד 2 000 -	113,0 2 000 - 113,0	
.2.2 Egenvekt jord		
elt Ltype Retn x1 q1/P	/M x2 q2	
mm kN/m, kN, kN	Nm mm kN/m	
venstre del Jevniast Y U -36		
davro dol lovn loot V 0		
Høyre del Jevn last Y 0 -36	J,U U U,U	
Høyre del Jevn last Y 0 -36 Øvre del Jevn last Y 0 -36 Jedre del Jevn last Y 0 -36	30 0 00	
Høyre del Jevn last Y 0 -36 Øvre del Jevn last Y 0 -36 Nedre del Jevn last Y 0 -36 (enstre del Jevn last Y 0 -36		
Høyre del Jevn last Y 0 -36 Øvre del Jevn last Y 0 -36 Nedre del Jevn last Y 0 -36 Vedre del Jevn last Y 0 -36 /enstre del Jevn last Y 0 -40	6,0 0 0,0 2,0 0 0,0 2,0 0 0,0	
Høyre del Jevn last Y 0 -36 Øvre del Jevn last Y 0 -36 Nedre del Jevn last Y 0 -36 Vensre del Jevn last Y 0 -36 Vensre del Jevn last Y 0 40 Høyre del Jevn last Y 0 40	6,0 0 0,0 D,0 0 0,0 D,0 0 0,0 D,0 0 0,0	
Høyre del Jevn last Y 0 -36 Øvre del Jevn last Y 0 -36 Vedre del Jevn last Y 0 -36 /enstre del Jevn last Y 0 -36 /øyre del Jevn last Y 0 40 /øyre del Jevn last Y 0 40 /øvre del Jevn last Y 0 40 /øvre del Jevn last Y 0 40	6,0 0 0,0 9,0 0 0,0 9,0 0 0,0 9,0 0 0,0 9,0 0 0,0 9,0 0 0,0 9,0 0,0	

Rektangulært fundament09.02.201213:35:58Programmodul: Geoteknikk for Eurocode versjon 6.20.1.4.2.2 Egenvekt jord	Side: 5
Felt : Feltnummer for lasten Ltype : Type last Retn : Retning for lasten x1 : Avstand fra venstre ende i felt q1/P/M : Intensitet (venstre lastkant) x2 : Lastutbredelse q2 : Intensitet høyre lastkant	
4.3 Lastkombinasjoner	
4.3.1 LK 1,6 Brudd (STR) (Bruddgrense (STR))	
LTnavn Ltype Max gamma Min gamma Psi Design Load Case: 1,6 Permanent 1,00 1,00 1,00	
Beregnete lasttilfeller	
LTnavnLtypeMax gamma Min gammaPsiEgenvekt fundament1,351,001,00Egenvekt jordPermanent1,351,00Grunntrykk fra komb:Permanent1,001,00	
Grunntrykk fra komb:	
Feit Ltype Retn x1 q1/P/M x2 q2 mm kN/m, kN, kNm mm kN/m Venstre del Trapeslast Y 0 113,9 8 750 112,1 Høyre del Trapeslast Y 0 112,1 8 750 110,4 Nedre del Trapeslast Y 0 74,9 8 750 150,3 Øvre del Trapeslast Y 58 0,0 8 692 74,9	
LTnavn Ltype Max gamma Min gamma Psi Design Load Case: 1,6 Permanent 1,00 1,00 1,00	
Beregnete lasttilfeller	
LTnavnLtypeMax gammaMin gammaPsiEgenvekt fundamentPermanent1,200,901,00Egenvekt jordPermanent1,200,901,00	
4.3.3 LK 1,6 Geo (Grunnbruddsberegning (GEO))	
LTnavn Ltype Max gamma Min gamma Psi Design Load Case: 1,6 Permanent 1,00 1,00 1,00	
Beregnete lasttilfeller	
LTnavnLtypeMax gammaMin gammaPsiEgenvekt fundament1,351,001,00Egenvekt jordPermanent1,351,001,00	
4.3.4 LK 1,2 SLS (Tilnærmet permanent (SLS))	
LTnavnLtypeMax gamma Min gammaPsiDesign Load Case 1,2Permanent1,001,001,00	
Beregnete lasttilfeller	
LTnavnLtypeMax gammaMin gammaPsiEgenvekt fundamentPermanent1,001,00Egenvekt jordPermanent1,001,00Grunntrykk fra komb:Permanent1,001,00	
Vedlegg C

Rektangulært fundament	09.02.2012 13:35:58	Side:	6
Programmodul: Geoteknikk for Eurocode versjon 6.20.1 4.3.4 LK 1,2 SLS (Tilnærmet permanent (SLS))			

LTnavn : Navn på lasttilfelle Ltype : Kombinasjonskriterium for lasttilfellet Max gamma : Største lastfaktor for lasttilfellet Min gamma : Minste lastfaktor for lasttilfellet

Psi : Reduksjonsfaktor ved kombinasjon av flere variable laster

Grunntrykk fra komb:

Felt	Ltype	Retn	x1 mm	kN/m.	q1/P/M kN. kNm	x2 mm	q2 kN/m
Venstre del Høyre del Nedre del Øvre del	Trapeslast Trapeslast Trapeslast Trapeslast	Y Y Y Y	0 0 0 0		81,7 77,2 57,7 11,5	8 750 8 750 8 750 8 750 8 750	77,2 72,8 103,9 57,7
Felt : Feltr Ltype : Type Retn : Retn x1 : Avst q1/P/M : Inter x2 : Lastr q2 : Inter	ummer for las a last ing for lasten and fra vensti nsitet (venstre utbredelse isitet høyre la	sten re ende lastka stkant	e i felt int)				

5. JORDPARAMETRE FOR FUNDAMENT

Materiale under fundamentet	Mat_u	Sand etter Janbu	
Egenvekt for materiale under	gu	18,0	kN/m3
Friksjonsvinkel for materiale under	tg(fi)u	0,53	
Attraksjon for materiale under	au	5,0	kN/m2
Største mobiliserte ruhet for materiale under	ru	0,90	
Materialkoeffisient for egenvekt	GamGam	1,00	
Materialkoeffisient for friksjonskoeffisient	GamFi	1,60	
Materialkoeffisient for kohesjon	Gam.c'	1,25	
Sikkerhetsfaktor for uderenert skjærfasthet	Gam.cud	1,40	
Sikkerhetsfaktor for maksimalt grunntrykk	Gam.qu	1,40	
Sikkerhetsfaktor for attraksjon	Gam.a	1,60	

6. STABILITET

Komb	В0	L0	qv	Sm	SmX	MvZ	MsZ	МvХ	MsX
	mm	mm	kN/m2			kNm	kNm	kNm	kNm
LK 1,6 EQU	17 369	8 869	100,8	0,50	0,74	132 925,0	-267 759,7	195 625,0	-264 479,7

Komb: Kombinasjon data gjelder forB0: Effektiv fundamentbreddeL0: Effektiv fundamentlengde

qv : Overført fundamenttrykk

 qv
 : Overforf fundamentityski

 Sm
 <td: Utnyttelsesgrad for velting</td>

 SmX
 <td: Utnyttelsesgrad for velting om X-aksen</td>

 MvZ
 <td: Veltende moment om Z-aksen</td>

 MsZ
 <td: Stabiliserende moment om Z-aksen</td>

MvX : Veltende moment om X-aksen

MsX : Stabiliserende moment om X-aksen

7. GRUNNBRUDD

Kom	b	B0		L0	EksX	EksZ	qv	Svb	Svl	Sg	Sh	
LK 1	,6 Geo	mm 17 411	11	mm 628	mm 45	mm -2 936	kN/m2 112,7	kN/m2 401,8	kN/m2 358,0	0,31	****	
Komb B0 L0 EksX EksZ qv Svb Svl	: Kombin : Effektiv : Effektiv : Eksent : Eksent : Overfø : Bæree : Bæree	nasjon d v fundar trisitet la trisitet la ort funda ovne i bro ovne i ler	ata neni ngs ngs mer edde	gjelde tbrede tlenge X-ak Z-ak Ttrykl eretni eretni	er for de de sen sen k ngen ngen							

Rektangulært fundament 09.02.2012 13:35:58 Programmodul: Geoteknikk for Eurocode versjon 6.20.1 . 7. GRUNNBRUDD .	Side: 7
Sg : Utnyttelsesgrad for grunnbrudd Sh : Utnyttelsesgrad for glidning	
8. MINIMUMSARMERING	
Retning As As,max ccs cca cct ccta Asw,min Aswb,min mm2 mm2 mm mm mm mm2 mm2 X 3 005 80 000 250 400 450 1 183 1 183	
Z 3 005 80 000 250 400 400 450 1 183 1 183 om Z om X	•
Retning : Armeringsretning. X= Bredderetn, Z= Lengderetn As : Minste areal for hovedarmering As,max : Største areal for summen av all langsgående armering ccs : Maksimal tillatt senteravstand i strekksone cca : Maksimal tillatt senteravstand for avtrappet armering cct : Maksimal tillatt senteravstand for fordelingsarmering på tvers ccta : Største senteravstand for avtrappet fordelingsarmering Asw,min : Minste tillatte skjærarmering Aswb,min : Minste tillatte skjærarmering med bøyler	
9. KAPASITETSUTNYTTELSE	
9.1 Kapasitetsutnyttelse for moment	
Retning Snitt M+ Md.u Uu Eps.cu Eps.su M- Md.o Uo Eps.co Eps.so kNm/m kNm/m prom. prom. kNm/m kNm/m prom. knm/m knm/m prom. knm/m knm/m knm/m prom. knm/m knm/m	
Retning : Armeringsretning. X= Bredderetn, Z= Lengderetn Snitt : Avstand til snittt M+ : Største moment i snittet Md.u : Momentkapasitet i UK Uu : Utnyttelsesgrad for strekk i UK Eps.cu : Trykktøyning pga. Md.u Eps.su : Strekktøyning pga. Md.u Md.o : Momentkapasitet i OK Uo : Utnyttelsesgrad for strekk i OK Eps.co : Trykktøyning pga. Md.o Eps.co : Trykktøyning pga. Md.o Eps.so : Strekktøyning pga. Md.o	
9.2 Kapasitetsutnyttelse for skjærkraft	
Retning Snitt T Tred Ab Tred/Vd T/Vdt Vc Vs Vdt kN/m kN/m mm2/m kN/m kN/m kN/m kN/m X 6 250 360,3 249,8 0 0,42 0,04 597,5 0,0 9 888,6 X 11 250 -343,5 -236,5 0 0,40 0,03 597,5 0,0 9 888,6 Z 6 250 -233,6 -183,7 0 0,38 0,02 478,0 0,0 9 799,1 Z 11 250 -383,8 -300,0 0 0,51 0,04 593,3 0,0 9 760,7	
Retning : Armeringsretning. X= Bredderetn, Z= Lengderetn Snitt : Avstand til snitt T : Største skjærkraft i snittet Tred : Største redusert skjærkraft i snittet Ab : Statisk nødvendig skjærarmering Tred/Vd : Kapasitetsutnyttelse for strekkbrudd uten skjærarm. T/Vdt : Kapasitet uten skjærarmering Vc : Kapasitet uten skjærarmering Vs : Strekkbruddkapasitet inkl. skjærarmering	
Vdt : Trykkbruddkapasitet	

Vedlegg C

Rektangula Programm 9.4.2 Strel	ært fund odul: G kkbrudd	lament eotekr Ikontro	i likk fo ll	r Euro	code	versjon 6	6.20.1	09.02	.2012 1	3:35:58					Side: 9
vEd,t : vRd,c : vRd,cmax : vRd,s : sr : Asw / sr : sr : Asw : nt : nr : nt,m : nr,m : nr,m : SR : SR : As.x : As.z :	Skjærst Maxima Maxima Udekke Totalt n Største Nødver Antall je Antall je Antall je Lengde Avstand Største Største	benning I skjærs I skjærs ødvend avstand dig skja m i hve m i hve m i hve for ytte I fra søy tillatte I tillatte I	ved st spennir spennir spennir ig skjæ d radie er ardie er ardie er ardie er omkr ste or rste or rste br ylesent angsga angsga	rrekkbrung i bet ng i bet ng, som erarmen It mello I for hv rets, ute ent linje rets, me mkrets, uddlinje ter til yt ående a ående a	uddkon ongen ongen n må de ring m skjæ er omk er omk er omk er omk er omk er omk er omk er omk med hen: med hen: terste s armerir	ttroll med innla med stør ekkes av erarmerin rets syn til stø syn også iensyn til må dekke skjær-jerr ng i X-retn ng i Z-retn	agt arme ste mulig skjærarr g til største avs største a s inn n ningen ningen	ring ge arme nering tander. e avstar avstande	nder. er	•					
														-	
<u>10. RIS</u>	SKON	TROL	<u>.L</u>												
Retning	Snitt	MEdG	MEd	Q srk	wk mm	wk/wtil	Eps.c	Eps.s	Eps.cc Prom	SigmaS MPa	SigmaS,Li	n SigmaC a MPa	SigmaC,Lim	As,min	
Х	6 250	675,9	0	,0 362	2 0,10	0,33	-0,46	0,45	-0,08	91	40	0 -1,9	-21,0	1 662	
X 7	11 250 6 250	544,1 -459.0	0	,0 362 0 600	2 0,08	0,26	-0,43	0,37	-0,06	73 120	40	0 -1,6	-21,0 -21.0	1 662 1 676	
Z	11 250	916,7	. 0	,0 512	2 0,19	0,49	-0,51	0,63	-0,10	125	40	0 -2,6	-21,0	1 662	
Retning Snitt MEdG	: Arme : Avsta	ringsret and til si	tning.) nitt	K= Bred	deretr	n, Z= Leng	gderetn								
MEdO	: Mom	ent fra I	corttide	slast											
	: Kara	vidde (7	к rissa .3.4)	vstand											
srk wk	: RISS														
srk wk wk/wtil	: Utny	telsesg	rad												
srk wk wk/wtil Eps.c Eps.s	: Utny : Tøyr : Tøyr	telsesg ing i be ing i str	rad tonger ekkarr	n neringe	n										
srk wk wk/wtil Eps.c Eps.s Eps.cc	: Utny : Tøyr : Tøyr : Tøyr	telsesg ing i be ing i str øyning	rad tonger ekkarn på tryk	n neringe (ksiden	n										
srk wk wk/wtil Eps.c Eps.s Eps.cc SigmaS SigmaS,Lin	: Riss : Utny : Tøyr : Tøyr : Kryp : Ståls n : Størs	telsesg ing i be ing i str øyning penning ste ståls	rad tonger ekkarr på tryk g i tver pennir	n neringe kksiden rsnittet ng ettte	n r 7.2 (5	5)									

- m : Største betongtrykkspenning etter 7.2. (2) : Minimumsarmering på grunn av riss
- As,min

Vedlegg C

Rektangulært fundament Programmodul: Geoteknikk for Eurocode versjon 6.20.1 Innholdsfortegnelse	09.02.2012 13:35:58	Side: i-1
Innholdsfortegnelse		
<u>1. MATERIALDATA</u>	, , , , , , , , , , , , , , , , , , ,	2
2.GEOMETRI2.1Geometri for rektangulært fundament2.2Figur over geometrien	· · ·	2 2 2
3.ARMERING3.1Armering i underkant bredderetningen3.2Armering i overkant bredderetningen3.3Armering i underkant lengderetningen3.4Armering i overkant lengderetningen3.5Søylearmering på venstre og høyre side3.6Søylearmering på øvre og nedre side		3 3 3 3 3 3 3 4
4. LASTER 4.1 Lasttilfeller 4.1.1 Design Load Case: 1,6 4.1.2 Design Load Case 1,2 4.2 Beregnete lasttilfeller 4.2.1 Egenvekt fundament 4.2.2 Egenvekt inrd		4 4 4 4
 4.2.2 Egenvert Jud 4.3 Lastkombinasjoner 4.3.1 LK 1,6 Brudd (STR) (Bruddgrense (STR)) 4.3.2 LK 1,6 EQU (Stabilitetsberegning (EQU)) 4.3.3 LK 1,6 Geo (Grunnbruddsberegning (GEO)) 4.3.4 LK 1,2 SLS (Tilnærmet permanent (SLS)) 		5 5 5 5 5
5. JORDPARAMETRE FOR FUNDAMENT		6
<u>6. STABILITET</u>		6
7. <u>GRUNNBRUDD</u>		6
8. <u>MINIMUMSARMERING</u>		7
9. KAPASITETSUTNYTTELSE 9.1 Kapasitetsutnyttelse for moment 9.2 Kapasitetsutnyttelse for skjærkraft 9.3 Kapasitetsutnyttelser for søylen 9.4 Kapasitetsutnyttelse for gjennomlokking 9.4.1 Geometri og trykkbruddkontroll 9.4.2 Strekkbruddkontroll		7 7 8 8 8 8
10. RISSKONTROLL		9
		· .

Teade Vedlegg D							
Masteroppgave Elin Olsen	Ordre	Sign	Dato				
	Prosjektering av fundament	EO	09-02-2012				

Data er lagret på fil: \\SVGDC1\felles\FAG\Anleggskonstr\Elin\Masteroppgave kap 3\Fundament.bts Dataprogram: BTSNITT versjon 6.2.1 Laget av sivilingeniør Ove Sletten Beregningene er basert på NS-EN 1992-1-1 og NS-EN 1990:2002 + NA:2008

Materialdata og jord-data							
Korreksjonsfakt, for Emodul pga tilslag	1,00	Fundamentnivå under marknivå	4000	mm			
Materialfaktor betong	1,50	Grunnvannsnivå over uk fundament	4000	mm			
Materialfaktor stål	1,15	Egenvekt av jord	18,0	kN/m3			
Betongkvalitet	B35 (C 35/45) Jordtype: Silt (Naturlig - Bløt)					
Densitet kg/m3	2400	Materialkoeffisient (effektivsp.)	1.60				
Sement i fasthetsklasse	N	Friksjonsvinkel	28,0	grader			
Armering flytegrense	500	Attraksion	5.0	kN/m2			
Skjærarmering flytegrense	500	Maks, mobiliserbar ruhet	0.90				
Eksponeringsklasse	XD3	Minimum overdeknino:	-12-				
Lite korrosjonsømfintlig armering		$(\min \text{kray} + \text{toleranse}) = (40 + 15) = 55 \text{ mm}$	m				
Levetid 50 år		(1111.414) + (0.6141.50) = (10 + 10) = 00 111					
Relativ fuktighet	70%						
NA.6.2.2(1)Følgende krav til tilslag er oppfyllt (1.Største tilslag etter NS-EN 12620 D>=16mm. 2.Det grove tilslaget>=50% av total tilslagsmengde. 3.Grovt tilslag skal ikke være av kalkslein eller stein med tilsvarende lav fasthet)							

Vedlegg D			side 2
Prosekt	Ordre	EO	Date 09-02-2012
Masteroppgave Elin Olsen	Prosjektering av fundament	EO	

Pålitelighetsklasse: 3 (brukervalgte lastfaktorer)										
Lastfaktorer	Bruksgrense	Grunnbrudd	Bruddgrense B1	Bruddgrense B2	PSI-Faktor:					
Permanent last (G)	1,00	1,00	1,00	1,00	Kray maks nedhavnine:					
Variabel last (P)	0,20	1,00	1,00	1,00	Bruk/utstyr stiller krav til nedbøyning					

Belastni	Belastning i overkant av fundament, Lasttilfelle nr 1						
Permanent last Variabel last		oel last	Kontroll av likevekt (velting) Lastfaktorer				
Mg_y	0,0 kNm	Mp_y	67000,0 kNm	z-retning: Mvelt/Mstabil=0,89 fg=1,2 fp=1,5			
Mg_z	0,0 kNm	Mp_z	4300,0 kNm	y-retning: Mvelt/Mstabil =0,08 fg=1,2 fp=1,5			
Vg_y	0,0 kN	Vp_y	820,0 kN	Vekt av fundament: lastfaktor = 0.9			
Vg_z	0,0 kN	Vp_z	0,0 kN	Vekt av overliggende jord er ikke medregnet			
Ng	0,0 kN	Np	-2900,0 kN				

Belastn	Belastning i overkant av fundament, Lasttilfelle nr 2						
Perman	nent last	Variabe	last	Kontroll av likevekt (velting)	Lastfaktorer		
Mg_y	40500,0 kNm	Mp_y	0,0 kNm	z-retning: Mvelt/Mstabil =0,46	fg=1,2 fp=1,5		
Mg_z	5300,0 kNm	Mp_z	0,0 kNm	y-retning: Mvelt/Mstabil =0,07	fg=1,2 fp=1,5		
Vg_y	600,0 kN	Vp_y	0,0 kN	Vekt av fundament: lastfaktor = 0.9			
Vg_z	0,0 kN	Vp_z	0,0 kN	Vekt av overliggende jord er ikke m	edregnet		
Ng	-2900,0 kN	Np	0,0 kN	1			

Positiv moment-og kraftvektorer i Y og Z-retning. Positiv Ng og Np peker oppover.

Moment -og skjærkontroll i bruddgrensetilstar	d	Kontroll av grunntrykk			
Y-retning: Mz = -4118,5 kNm Mz/Md_z =	: 0,18	Ugunstigste lasttilfelle:	1		
Z-retning: My = -25636,3 kNm My/Md_y =	- 0,87	Bæreevne	242	kN/m2	
Z-retn.OK: My = 10579,0 kNm My/Md_y =	: 0,63	Overført grunntrykk	121	kN/m2	
Kontroll av gjennomlokking i avstand d fra søylek	ant	Risskontroll			
Skjærkraftkapasitet uten skjæramering Vrd,c=0,54	N/mm2	Y-retning: w/wd =0,00			
Største skjærspenning Ved=0,21 N/mm2		Z-retning: w/wd =0,00			
Det trengs ikke skjærarmering.		Z-retn.OK: w/wd =0,00			

Kontrollsnitt er lagt ved kant av søyle.

Grenseverdi for maks strekkspenning i overkant uten armering : 0,80 ftd

Rektangulært fundament 15.02.2012 13:21:00 Programmodul: Geoteknikk for Eurocode versjon 6.20.1	Side: 1
Dato: 15. februar 2012 Tid: 13:21:00 Signatur: Programmet er utviklet av Norconsult Informasjonssystemer as. Programsystem: G-PROG Betong Programmodul: Geoteknikk for Eurocode versjon 6.20.1 Norm: Norsk Standard NS-EN 1997 og NS-EN1992 med nasjonale tillegg NA:2008	
Programlisensen eies av: Multiconsult AS	
Dokument: \\SVGDC1\felles\FAG\Anleggskonstr\Elin\Masteroppgave kap 3\Fundament3.gwp	
· · · · · · · · · · · · · · · · · · ·	

Rektangulært fundament Programmodul: Geoteknikk for Eurocode versjon 6.20.1 1. MATERIALDATA

,

1. MATERIALDATA

Betongklasse etter EN1992	С	B35	MPa
Materialfaktor for betong	GammaC	1,50	
Største tilslag etter NS-EN 12620	D	22	mm
Betongkvalitet	С	35,0	MPa
Betongens kubehållfasthet	fck,cube	45,0	MPa
Betongens trykktøyning ved maks. spenning, kurve 2	Eps.c2	-2,00	promille
Betongens bruddtøyning, kurve 2	Eps.cu2	-3,50	promille
Betongens trykktøyning ved maks. spenning, kurve 1	Eps.c1	-2,25	promille
Betongens bruddtøyning, kruve 1	Eps.cu1	-3,50	Promille
Exponent n i arbeidsdiagrammet. Tabell 3.1	n	2,00	
Betongens midlere E-modul	Ecm	34 077	MPa
Betongens midlere trykkfasthet	fcm	43,0	MPa
Betongens dimensjonerende trykkfasthet	fcd	19,8	MPa
Betongens midlere strekkfasthet	fctm	3,21	MPa
Betongens dimensjonerende strekkfasthet	fctd	1,27	MPa
Sementklasse	Sement	N	
Relativ fuktighet	RH	70	%
Alder ved pålastning	t0	28	døgn
Eksponeringsklasse	Х	XF3	
Dimensjonerende levetid	Lvt	50	år
Tillegg / fradrag i nominell verdi for Cdur. 4.4.1.2 (6) - (11)	DeltaC	0	mm
Grenseverdi for karakterisitsk rissvidde	wd	0,30	mm
Minimum overdekning etter tabell 15.b i NS3473	Minc	40	mm
Nødvendig fasthetsklasse etter appendix J.	Cind	B35	MPa
Bestandighetsklasse	M	MF45	
Ståltype	Stål	В	
Materialfaktor for stål	GammaS	1,15	
Strekkarmeringens flytegrense	fsk	500	MPa
Bøylenes flytegrense	fskb	500	MPa
Toleranse for plassering av jern vertikalt	Toleranse	15,0	mm
Forhold mellom flytespenning og bruddspenning	k	1,02	
Armeringens bruddtøyning	Eps.uk	50,00	promille
Egendefinert øvre grense for armeringstøyningen	Eps.lim	100,0	promille
Armeringens E-modul	Es	200 000	MPa
Armeringens bruddgrense	ftks	510	MPa
Største armeringstøyning i beregningen etter EN1992	Eps.ud	20,0	promille

2. GEOMETRI

2.1 Geometri for rektangulært fundament

Fundamentbredde	В	17 500	mm
Fundamentlengde	L	17 500	mm
Avstand til søyle i X-retn	bx	8 750	mm
Avstand til søyle i Z-retn	bz	8 750	mm
Søyletype	Søyle	Rektangulær	
Søylebredde	b	5 000	mm
Søyletykkelse	L	5 000	mm
Knekklengde for søylen	Lk	0	mm
Fundamentdybde under marknivå	D	4 000	mm
Fundamenttykkelse	t	1 300	mm
Grunnvannivå over UK. fundament	Dw	4 000	mm

2.2 Figur over geometrien

20,0 81 115

Rektangulært fundament	15.02.20 [,]
Programmodul: Geoteknikk for Eurocode versjon 6.20.1	
3.5 Søvlearmering på venstre og høvre side	

12 13:21:00

,

Side: 4

Ønc mm stk mm 20,0 81 165 20,08121520,074265

3.6 Søylearmering på øvre og nedre side

Ønc mm stk mm 20,0 81 65
 20,0
 81
 65

 20,0
 81
 115

 20,0
 81
 165

 20,0
 81
 215

 20,0
 74
 265

Ø : Diameter for jern

n : Antall jern c : Overdekning for jern

4. LASTER

4.1 Lasttilfeller

4.1.1 Design Load Case: 1,6

Normalkraft på fundamentet	Ν	2 900	kN
Moment om X-aksen	Мx	51 250	kNm
Moment om Z-aksen	Mz	0	kNm
Horisontalkraft i X-retningen	Hx	0	kΝ
Horisontalkraft i Z-retningen	Hz	820	kN

4.1.2 Design Load Case 1,2

Normalkraft på fundamentet	Ν	2 900	kN
Moment om X-aksen	Мx	40 500	kNm
Moment om Z-aksen	Mz	5 300	kNm
Horisontalkraft i X-retningen	Нx	600	kN
Horisontalkraft i Z-retningen	Hz	0	kN

4.2 Beregnete lasttilfeller

4.2.1 Egenvekt fundament

Felt	Ltype	Retn	x1		q1/P/M	x2	q2
			mm	kN/m,	kN, kNm	mm	kN/m
Venstre del	Jevn last	Υ	0		-32,5	0	0,0
Høyre del	Jevn last	Υ	0		-32,5	0	0,0
Øvre del	Jevn last	Υ	0		-32,5	0	0,0
Nedre del	Jevn last	Y	0		-32,5	0	0,0
Søyle	Trapeslast	Y	1 300		-175,0	2 700	-175,0

4.2.2 Egenvekt jord

Felt	Ltype	Retn	x1	q1/P/M	x2	q2
			mm	kN/m, kN, kNm	mm	kN/m
Venstre del	Jevn last	Υ	0	-48,6	0	0,0
Høyre del	Jevn last	Υ	0	-48,6	0	0,0
Øvre del	Jevn last	Υ	0	-48,6	0	0,0
Nedre del	Jevn last	Υ	0	-48,6	0	0,0
Venstre del	Jevn last	Υ	0	40,0	0	0,0
Høyre del	Jevn last	Υ	0	40,0	0	0,0
Øvre del	Jevn last	Y	0	40,0	0	0,0
Nedre del	Jevn last	Υ	0	40,0	0	0,0

Rektangulært fundament 15.02.2012 Programmodul: Geoteknikk for Eurocode versjon 6.20.1 4.2.2 Egenvekt jord	13:21:00	Side: 5
Felt : Feltnummer for lasten Ltype : Type last Retn : Retning for lasten x1 : Avstand fra venstre ende i felt q1/P/M : Intensitet (venstre lastkant) x2 : Lastutbredelse q2 : Intensitet høyre lastkant	•	
4.3 Lastkombinasjoner		
4.3.1 LK 1,6 Brudd (STR) (Bruddgrense (STR))	м	
LTnavn Ltype Max gamma Min gamma Psi Design Load Case: 1,6 Permanent 1,00 1,00 1,00		
Beregnete lasttilfeller		
LTnavnLtypeMax gammaMin gammaPsiEgenvekt fundamentPermanent1,351,001,00Egenvekt jordPermanent1,351,001,00Grunntrykk fra komb:Permanent1,001,001,00		
<u>Grunntrykk fra komb:</u>		
Felt Ltype Retn x1 q1/P/M x2 q2 mm kN/m, kN, kNm mm kN/m Høyre del Trapeslast Y 0 96,3 8750 96,3 Venstre del Trapeslast Y 0 96,3 8750 96,3 Nedre del Trapeslast Y 0 67,0 8750 128,1 Øvre del Trapeslast Y 0 6,0 8750 67,0		
4.3.2 LK 1,6 EQU (Stabilitetsberegning (EQU))		
LTnavnLtypeMax gammaMin gammaPsiDesign Load Case: 1,6Permanent1,001,001,00		
Beregnete lasttilfeller		
LTnavnLtypeMax gammaMin gammaPsiEgenvekt fundamentPermanent1,200,901,00Egenvekt jordPermanent1,200,901,00		
4.3.3 LK 1,6 Geo (Grunnbruddsberegning (GEO))		
LTnavnLtypeMax gammaMin gammaPsiDesign Load Case: 1,6Permanent1,001,001,00		
Beregnete lasttilfeller		
LTnavnLtypeMax gammaMin gammaPsiEgenvekt fundamentPermanent1,351,001,00Egenvekt jordPermanent1,351,001,00	、	
4.3.4 LK 1,2 SLS (Tilnærmet permanent (SLS))		
LTnavn Ltype Max gamma Min gamma Psi Design Load Case 1,2 Permanent 1,00 1,00 1,00		
Beregnete lasttilfeller		
LTnavnLtypeMax gammaMin gammaPsiEgenvekt fundamentPermanent1,001,001,00Egenvekt jordPermanent1,001,001,00Grunntrykk fra komb:Permanent1,001,001,00		

Side: 6

Rektangulært fundament	15.02.2012 13:21:00	
Programmodul: Geoteknikk for Eurocode versjon 6.20.1		
4.3.4 LK 1,2 SLS (Tilnærmet permanent (SLS))		

: Navn på lasttilfelle : Kombinasjonskriterium for lasttilfellet LTnavn Ltype : Kombinasjonskriterium for lasttil Max gamma : Største lastfaktor for lasttilfellet Min gamma : Minste lastfaktor for lasttilfellet Psi : Reduksjonsfaktor ved kombinasjon av flere variable laster

Grunntrykk fra komb:

Felt	Ltype	Retn	x1	q1/P/M	x2	q2
			mm	kN/m, kN, kNm	mm	kN/m
Venstre del	Trapeslast	Y	0	78,0	8 750	73,4
Høyre del	Trapeslast	Y	0	73,4	8 750	68,8
Nedre del	Trapeslast	Υ	0	53,2	8 750	99,5
Øvre del	Trapeslast	Y	0	6,9	8 750	53,2
Felt : Feltr Ltype : Type Retn : Retn x1 : Avst q1/P/M : Inter	nummer for la e last ing for lasten and fra venstr nsitet (venstre	sten re ende lastka	e i felt nt)			

x2 q2 : Lastutbredelse : Intensitet høyre lastkant

5. JORDPARAMETRE FOR FUNDAMENT

Materiale under fundamentet	Mat_u	Sand etter Janbu	
Egenvekt for materiale under	gu	18,0	kN/m3
Friksjonsvinkel for materiale under	tg(fi)u	0,53	
Attraksjon for materiale under	au	5,0	kN/m2
Største mobiliserte ruhet for materiale under	ru	0,70	
Materialkoeffisient for egenvekt	GamGam	1,00	
Materialkoeffisient for friksjonskoeffisient	GamFi	1,60	
Materialkoeffisient for kohesjon	Gam.c'	1,25	
Sikkerhetsfaktor for uderenert skjærfasthet	Gam.cud	1,40	
Sikkerhetsfaktor for maksimalt grunntrykk	Gam.qu	1,40	
Sikkerhetsfaktor for attraksjon	Gam.a	1,60	

6. STABILITET

Komb	B0	L0	qv	Sm	SmX	MvZ	MsZ	ΜvX	MsX
	mm	mm	kN/m2			kNm	kNm	kNm	kNm
LK 1,6 EQU 1	17 500	10 438	84,5	0,49	0,69	128 625,0	-263 756,2	183 155,0	-263 756,2

Komb: Kombinasjon data gjelder forB0: Effektiv fundamentbreddeL0: Effektiv fundamentlengde

 qv
 : Overført fundamentengde

 qv
 : Overført fundamenttrykk

 Sm
 : Utnyttelsesgrad for velting

 SmX
 : Utnyttelsesgrad for velting om X-aksen

 MvZ
 : Veltende moment om Z-aksen

 MsZ
 : Stabiliserende moment om Z-aksen

MvX : Veltende moment om X-aksen

MsX : Stabiliserende moment om X-aksen

7. GRUNNBRUDD

Komb	B0	L0	EksX	EksZ	qv	Svb	Svl	Sg	Sh	
	mm	mm	mm	mm	kN/m2	kN/m2	kN/m2	0.00	****	
LK 1,0 G	eo 17 500	12 100	0	-2 000	90,3	439,9	334, I	0,29		
Komb : Ko B0 : Eff L0 : Eff EksX : Ek EksZ : Ek qv : Ov Svb : Ba Svl : Ba	mbinasjon d ektiv fundan ektiv fundan sentrisitet la sentrisitet la erført funda ereevne i bre ereevne i ler	ata gjelde nentbrede ngs X-ak ngs Z-ak menttrykl edderetni ngderetni	er for de le sen sen k ngen ngen							

Rektangulært fundament Programmodul: Geoteknikk for Eurocode versjon 6.20.1 7. GRUNNBRUDD	15.02.2012 13:21:00	Side: 7
Sg : Utnyttelsesgrad for grunnbrudd Sh : Utnyttelsesgrad for glidning	,	
8. MINIMUMSARMERING		
Retning As As,max ccs cca cct ccta Asw,min As mm2 mm2 mm mm mm mm mm2 X 1 953 52 000 250 400 400 450 1 183 Z 1 953 52 000 250 400 400 450 1 183 om Z om X <	swb,min mm2 1 183 1 183	
Retning : Armeringsretning. X= Bredderetn, Z= Lengderetn As : Minste areal for hovedarmering As,max : Største areal for summen av all langsgående armerin ccs : Maksimal tillatt senteravstand i strekksone cca : Maksimal tillatt senteravstand for avtrappet armering cct : Maksimal tillatt senteravstand for fordelingsarmering cct : Største senteravstand for avtrappet fordelingsarmerin Asw,min : Minste tillatte skjærarmering med bøyler	ng på tvers ng	
9.1 Kapasitetsutnyttelse for moment		
Retning Snitt M+ Md.u Uu Eps.cu Eps.su	M- Md.o Uo Eps.co Eps.so	
kNm/m prom. prom. <th< td=""><td>kNm/m kNm/m prom. prom. 796,3 0,0 0,00 0,00 0,00 796,3 0,0 0,00 0,00 0,00 796,3 0,0 0,00 0,00 0,00 -686,0 -1 0.87,8 0,63 -1,58 20,00 1 127,7 0,0 0,00 0,00 0,00</td><td></td></th<>	kNm/m kNm/m prom. prom. 796,3 0,0 0,00 0,00 0,00 796,3 0,0 0,00 0,00 0,00 796,3 0,0 0,00 0,00 0,00 -686,0 -1 0.87,8 0,63 -1,58 20,00 1 127,7 0,0 0,00 0,00 0,00	
Retning : Armeringsretning. X= Bredderetn, Z= Lengderetn Snitt : Avstand til snitt M+ : Største moment i snittet Md.u : Momentkapasitet i UK Uu : Utnyttelsesgrad for strekk i UK Eps.cu : Trykktøyning pga. Md.u Eps.su : Strekktøyning pga. Md.u Md.o : Momentkapasitet i OK Uo : Utnyttelsesgrad for strekk i OK Eps.su : Strekktøyning pga. Md.u M- : Minste moment i snittet Md.o : Utnyttelsesgrad for strekk i OK Eps.co : Trykktøyning pga. Md.o Eps.so : Strekktøyning pga. Md.o		
9.2 Kapasitetsutnyttelse for skjærkraft		
Retning Snitt T Tred Ab Tred/Vd T/Vdt kN/m kN/m mm2/m <t< td=""><td>Vc Vs Vdt kN/m kN/m kN/m 469,9 0,0 6 306,7 469,9 0,0 6 306,7 373,1 0,0 6 217,2 464,9 0,0 6 178,8</td><td></td></t<>	Vc Vs Vdt kN/m kN/m kN/m 469,9 0,0 6 306,7 469,9 0,0 6 306,7 373,1 0,0 6 217,2 464,9 0,0 6 178,8	
Retning : Armeringsretning. X= Bredderetn, Z= Lengderetn Snitt : Avstand til snitt T : Største skjærkraft i snittet Tred : Største redusert skjærkraft i snittet Ab : Største redusert skjærkraft i snittet Ab : Statisk nødvendig skjærarmering Tred/Vd : Kapasitesutnyttelse for strekkbrudd uten skjærarm. T/Vdt : Kapasitet uten skjærarmering Vc : Strekkbruddkapasitet inkl. skjærarmering Vst : Trykkbruddkapasitet		

Vedlegg E

Rektangul Programm 9.4.2 Stre	lært fund nodul: G ekkbrudd	dament Geotekni dkontrol	ikk for E I	Euroc	ode v	ersjon 6	.20.1	15.02	.2012	13:21:00		2					Side: 9
vEd,t vRd,c vRd,cmax vRd,s Asw / sr sr Asw nt nr, nr,n uout.ef SR As.x As.z	: Skjærsi : Maxima : Maxima : Udekke : Totalt n : Største : Antall je : Største : Største	penning I skjærsj I skjærsj ødvendig avstand dig skjæ ern i hver ern i hver ern i hver for ytter for ytter d fra søy tillatte la tillatte la	ved strel penning penning, g skjæra radielt r rareal fo omkret: r adiell I omkret: ste omk ste brud lesenter ungsgåei	kkbrud i beto i beto , som armerin nellon or hve s, uter inje s, med s, med s, med rets, r dlinje til ytte nde an	ddkon ngen må de ng n skjæ r omk n hens d hens med h som r erste s merin merin	troll med innla med størs kkes av s kkes av s krarmering rets syn også syn også ensyn til stø syn også ensyn til stø ensyn til s ensyn til s an dekke kjær-jern g i Z-retn g i Z-retn	igt arme ste mulig skjærarr g rste avs til største a s inn ingen ingen	ring ge armen nering tander. e avstar avstande	ring nder. er	ň	s x						
									-								
<u>10. RIS</u>	SKON	TROL	Ŀ														
Retning X X Z Z	Snitt 6 250 11 250 6 250 11 250	MEdG kNm 698,9 562,8 -452,4 925,7	MEdQ kNm 0,0 0,0 0,0 0,0	srk mm 362 362 600 512	wk mm 0,16 0,13 0,34 0,32	wk/wtil 0,54 0,44 0,87 0,81	Eps.c prom. -0,61 -0,56 -0,57 -0,72	Eps.s prom. 0,75 0,60 0,95 1,02	Eps.co Prom -0,10 -0,10 -0,10 -0,10	Sigmas MPa 5 150 3 121 3 189 1 20 ²	i Sigm	MPa 400 400 400 400 400	SigmaC MPa -3,9 -3,2 -3,2 -5,2	Sigma	C,Lim MPa -21,0 -21,0 -21,0 -21,0 -21,0	As,min mm 1 078 1 078 1 092 1 078	

Retning : Armeringsretning. X= Bredderetn, Z= Lengderetn

Snitt	: Avstand til snitt
MEdG	: Moment fra langtidslast
MEdQ	: Moment fra korttidslast
srk	: Karakteristisk rissavstand
wk	: Rissvidde (7.3.4)
wk/wtil	: Utnyttelsesgrad
Eps.c	: Tøyning i betongen
Eps.s	: Tøyning i strekkarmeringen
Eps.cc	: Kryptøyning på trykksiden
SigmaS	: Stålspenning i tverrsnittet
SigmaS,Lim	: Største stålspenning ettter 7.2 (5)
SigmaC	: Betongtrykkspenning i tverrsnittet
SigmaC,Lim	: Største betongtrykkspenning etter 7.2. (2)
As,min	: Minimumsarmering på grunn av riss

Vedlegg E

Rekta Progra Innhol	ngulært fundament ammodul: Geoteknikk for Eurocode versjon 6.20.1 dsfortegnelse	15.02.2012 13:21:00	Side: i-1
Innh	oldsfortegnelse		
1.	MATERIALDATA	,	2
<mark>2.</mark> 2.1 2.2	GEOMETRI Geometri for rektangulært fundament Figur over geometrien		2 2 2
3.1 3.2 3.3 3.4 3.5 3.6	Armering i underkant bredderetningen Armering i overkant bredderetningen Armering i underkant lengderetningen Armering i overkant lengderetningen Søylearmering på venstre og høyre side Søylearmering på øvre og nedre side		3 3 3 3 3 3 3 4
4. 4.1 4.1.1 4.1.2 4.2 4.2	LASTER Lasttilfeller Design Load Case: 1,6 Design Load Case 1,2 Beregnete lasttilfeller Econyckt fundament		4 4 4 4
4.2.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4	Egenvekt indanient Egenvekt jord Lastkombinasjoner LK 1,6 Brudd (STR) (Bruddgrense (STR)) LK 1,6 EQU (Stabilitetsberegning (EQU)) LK 1,6 Geo (Grunnbruddsberegning (GEO)) LK 1,2 SLS (Tilnærmet permanent (SLS))		4 5 5 5 5 5 5
<u>5.</u>	JORDPARAMETRE FOR FUNDAMENT		6
<u>6.</u>	STABILITET		6
<u>7.</u>	GRUNNBRUDD		6
<u>8.</u>	MINIMUMSARMERING		7
9.1 9.2 9.3 9.4 9.4.1 9.4.2	KAPASITETSUTNYTTELSE Kapasitetsutnyttelse for moment Kapasitetsutnyttelse for skjærkraft Kapasitetsutnyttelser for søylen Kapasitetsutnyttelse for gjennomlokking Geometri og trykkbruddkontroll Strekkbruddkontroll		7 7 8 8 8
<u>10.</u>	RISSKONTROLL		9

Dimensjonering av beton Programmodul: Betongb	gdekke 18.04.201 jelke etter Eurocode versjon 6.20.2	2 11:26:10	Side: 1
Dato: 18. april 2012 Tid: 11:26:10 Signatur: Programmet er utviklet a Programsystem: Programmodul: Norm: Beregning og dimensjon Programlisensen eies av	v Norconsult Informasjonssystemer as. G-PROG Betong Betongbjelke etter Eurocode versjon 6.20.2 Norsk Standard NS-EN 1992 og NS-EN199 ering av kontinuerlig betongbjelke etter Euroc : Multiconsult AS	2 90 med nasjonale tillegg NA:2008 code	
Dokument: \\SVGDC1\fe	elles\FAG\Anleggskonstr\Elin\Masteroppgave	e kap 4\Utmatting, plate A-A.gwk	
			•

Dimensjonering av betongdekke Programmodul: Betongbjelke etter Eurocode versjon 6.20. 1. Grafisk presentasjon av inndata	18.04.2012 2	11:26:10						Side:
· ·								
1. Grafisk presentasjon av inndata								
1.1 Lasttilfeller								
1.1.1 Utmatting								
<u>·····</u>			· · · · · · · · · · · · · · · · · · ·	<u>۲</u>	1	1	1	<u> </u>
- 105.0			,	ļ				
<u> </u>	(1)	¥x.	X					
	(1)							
	Så	le						
<u>/</u>	625	0						*
1.2 Lastkombinasjoner								
1 2 1 Navn nå lastkombinasion (Brudd)								,
Utmatting eksklusive lastfaktor 1,00	xx							
							V	
	(1))						
	Så	le						
¥	625	0						*
· · · · · · · · · · · · · · · · · · ·								
2. Materialdata								
Betongklasse etter EN1992	С	B45	MPa					
Materialfaktor for betong	GammaC	1,50						
Bjelkens massetetthet	Rho	2 400	kg/m3					
Største tilslag etter INS-EN 12020 Betongens svinderfasthet	fck	20 45.0	MPa					
Betongens kubehållfasthet	fck,cube	55,0	MPa					
Betongens trykktøyning ved maks. spenning, kurve 2	Eps.c2	-2,00	promille					
Betongens bruddtøyning, kurve 2	Eps.cu2	-3,50	promille					
Betongens trykktøyning ved maks. spenning, kurve 1	Eps.c1	-2,40	promille					
Betongens bruddtøyning, kruve 1	Eps.cu1	-3,50	MPa					
Betongens midlere trykkfasthet	fcm	53.0	MPa					
Betongens dimensionerende trykkfasthet	fcd	25,5	MPa					
Betongens midlere strekkfasthet	fctm	3,80	MPa					
Betongens dimensjonerende strekkfasthet		1 5 1	MPa					
Sementklasse	fctd	1,51						
Polotiv fuktionot	fctd Sement	N	%					
Relativ fuktighet Alder ved pålastning	fctd Sement RH t0	N 40 28	% døan					
Relativ fuktighet Alder ved pålastning Eksponeringsklasse	fctd Sement RH t0 X	N 40 28 XC3	% døgn					
Relativ fuktighet Alder ved pålastning Eksponeringsklasse Dimensjonerende levetid	fctd Sement RH t0 X Lvt	N 40 28 XC3 50	% døgn år					
Relativ fuktighet Alder ved pålastning Eksponeringsklasse Dimensjonerende levetid Tillegg / fradrag i nominell verdi for Cdur. 4.4.1.2 (6) - (11)	fctd Sement RH t0 X Lvt DeltaC	N 40 28 XC3 50 0	% døgn år mm					
Relativ fuktighet Alder ved pålastning Eksponeringsklasse Dimensjonerende levetid Tillegg / fradrag i nominell verdi for Cdur. 4.4.1.2 (6) - (11) Grenseverdi for karakterisitsk rissvidde	fctd Sement RH t0 X Lvt DeltaC wd	N 40 28 XC3 50 0 0,30	% døgn år mm mm					
Relativ fuktighet Alder ved pålastning Eksponeringsklasse Dimensjonerende levetid Tillegg / fradrag i nominell verdi for Cdur. 4.4.1.2 (6) - (11) Grenseverdi for karakterisitsk rissvidde Minimum overdekning etter EN1992 Nadvendig fostbøtsklasse etter appendix l	fctd Sement RH t0 X Lvt DeltaC wd Minc Cind	1,31 N 40 28 XC3 50 0 0,30 25 B25	% døgn år mm mm MPa					
Relativ fuktighet Alder ved pålastning Eksponeringsklasse Dimensjonerende levetid Tillegg / fradrag i nomineli verdi for Cdur. 4.4.1.2 (6) - (11) Grenseverdi for karakterisitsk rissvidde Minimum overdekning etter EN1992 Nødvendig fasthetsklasse etter appendix J. Bestandichetsklasse	fctd Sement RH t0 X Lvt DeltaC wd Minc Cind M	N 40 28 XC3 50 0,30 25 B25 M60	% døgn år mm mm MPa					
Relativ fuktighet Alder ved pålastning Eksponeringsklasse Dimensjonerende levetid Tillegg / fradrag i nomineli verdi for Cdur. 4.4.1.2 (6) - (11) Grenseverdi for karakterisitsk rissvidde Minimum overdekning etter EN1992 Nødvendig fasthetsklasse etter appendix J. Bestandighetsklasse Ståltype	fctd Sement RH t0 X Lvt DeltaC wd Minc Cind M Stål	N 40 28 XC3 50 0 0,30 25 B25 M60 A	% døgn år mm mm MPa					
Relativ fuktighet Alder ved pålastning Eksponeringsklasse Dimensjonerende levetid Tillegg / fradrag i nominell verdi for Cdur. 4.4.1.2 (6) - (11) Grenseverdi for karakterisitsk rissvidde Minimum overdekning etter EN1992 Nødvendig fasthetsklasse etter appendix J. Bestandighetsklasse Ståltype Materialfaktor for stål	fctd Sement RH t0 X Lvt DeltaC wd Minc Cind M Stål GammaS	N 40 28 XC3 50 0,30 25 B25 M60 A 1,15	% døgn år mm mm MPa					

Dimensjonering av betongdekke18.04.2Programmodul: Betongbjelke etter Eurocode versjon 6.20.23.2 Tverrsnittsgeometrier	2012 11:26:10	Side: 4
Dekketykkelse t 2000 mm Effektiv tverrsnittstykkelse = 2 * Ac / U h0 2000 mm		
4. Laster		
4.1 Lasttilfeller		
4.1.1 Utmatting		(
Felt Ltype x1 q1/P/M x2 q2 mm kN/m, kN, kNm mm kN/m 1 Trapeslast 0 -105,0 6 250 -164,8 1 Trapeslast 0 16,0 6 250 27,2 1 Trapeslast 0 27,1 6 250 8,1		
Felt : Feltnummer for lasten Ltype : Type last x1 : Avstand fra venstre ende i felt q1/P/M : Intensitet (venstre lastkant) x2 : Lastutbredelse q2 : Intensitet høyre lastkant		
4.2 Lastkombinasjoner		
4.2.1 Navn på lastkombinasjon (Brudd)		
LTnavn Ltype Max gamma Min gamma Psi Utmatting Permanent 1,00 1,00 1,00		
LTnavn : Navn på lasttilfelle Ltype : Kombinasjonskriterium for lasttilfellet Max gamma : Største lastfaktor for lasttilfellet Min gamma : Minste lastfaktor Psi : Reduksjonsfaktor ved kombinasjon av flere variable laster		C

Dimensjonering av betongdekke 18.04.2012 11:26:10 Side: Programmodul: Betongbjelke etter Eurocode versjon 6.20.2 5. Grafisk presentasjon av snittkrefter og nedbøyninger Side:	5
5. Grafisk presentasjon av snittkrefter og nedbøyninger	
5.1 Armering	
Hovedarmering	
ø25 c340	
ø25 c125	
ø25 c125	
Bøylearmering	
5.2 Presentasjon av alle snitt	
5.3 Kapasitetskontroll	
Momentutnyttelse UK	
0,00_0,0000,000,0000,0000,0000,0000,0000,0000	0
0,66	
Momentutnyttelse OK	
0,00_0,0000,0000,0000,0000,0000,0000,0000,0000	o
Skiærutnyttelse	
0,76	
0,00	1
Rissutnyttelse	
0,00) 10
	0
5.4 Statikkresultater	

Dimensjonering av betongdekke 18.04.2012 11:26:10 Statikkresultater	Side: 6
Moment fra bruddgrensekombinasjoner	
0,0	0,2
Skjær fra bruddgrensekombinasjoner	
-598,2	-7,7
<u>6. Armering</u>	
6.1 Armering i underkant	
Ø cc c X1 X2 X3 F1 F2 mm mm mm mm mm 25,0 125 1 913 0 6 250 6 250 1,00 1,00	(
6.2 Armering i overkant	
Ø cc c X1 X2 X3 F1 F2 mm mm mm mm mm mm 25,0 125 88 0 6 250 1,00 1,00 25,0 340 213 0 3 000 0,00 0,00	
Ø : Diameter for armering cc : Senteravstand c : Avstand til akse X1 : Startpunkt for armering X2 : Sluttpunkt for armering X3 : Armeringslengde F1 : Forankringsfaktor i startpunktet F2 : Forankringsfaktor i sluttpunktet	
6.3 Nødvendig armeringsareal	
Feltnummer: 1	C
x ASUe ASOe ASUn ASOn ASU ASO Abe Abn Ab mm mm2 mm2 mm2 mm2 mm2 mm2/m mm2/m mm2/m 0 3 927 3 927 2 584 1 987 1 887 0 0 1 342 1 563 3 927 4 783 3 776 0 3 775 0 0 1 342 3 125 3 927 3 776 0 3 775 0 0 1 342 4 688 3 927 3 776 0 3 775 0 0 1 342 6 190 3 927 3 927 1 963 1 887 1 887 0 0 1 342	
x : Snittavstand til venstre opplegg i felt ASUe : Innlagt effektiv armering i underkant ASOe : Innlagt effektiv armering i overkant ASUn : Nødvendig armering i underkant ASOn : Nødvendig armering i overkant ASU : Minste areal for underkant ASU : Minste areal for underkantarmering ASO : Minste areal for overkantarmering ASO : Minste areal for overkantarmering Abe : Innlagt bøylearmering Abn : Nødvendig bøylearmering Ab : Minste areal for bøylearmering	
6.4 Minimumsarmering, lengderetning	
Felt As As,max ccs cca cct ccta Asw,min Aswb,min mm2 mm2 mm mm mm mm mm2 mm2 1 3 553 80 000 250 400 450 1 342 1 342	

Dimensjo Programr 6.4 Minin	nering av betongd nodul: Betongbjel numsarmering, lei	lekke ke etter Eu ngderetnin	ırocode ver g	18 sjon 6.20.2	3.04.2012	11:26:10)			Side: 7
As As,max ccs cca cct ccta Asw,min Aswb,min	: Minste areal for ho : Største areal for si : Maksimal tillatt ser : Maksimal tillatt ser : Maksimal tillatt ser : Største senteravst : Minste tillatte skjæ : Minste tillatte skjæ	ovedarmerin ummen av a nteravstand nteravstand nteravstand and for avtr erarmering ararmering r	g all langsgåen i strekksone for avtrappe for fordeling appet fordeli ned bøyler	de armering t armering sarmering på ti ngsarmering	vers					
<u>7. Kapa</u>	asitetskontroll									
<u>7.1 Sam</u>	nmendrag av kaj	pasitetsk	ontroll		-					
Felt xL mm 1 (J MEdmax/ xO I n MRduk mm D 0,66 0	MEdmin/ N MRdok 0,00	/Edred/fm VRd n 0,76	axl wk/wktil nm 0,0 0,00						
xU MEdmax/ xO MEdmin/ VEdred/ fmaxl wk/wktil	: Avstand fra venstr : Største kapasitets : Avstand fra venstr : Største kapasitets : Største kapasitets : Maksimal nedbøyr : Maksimal utnyttels	e opplegg ti utnyttelse i e opplegg ti utnyttelse i utnyttelse fo ning æ for riss	I snitt for stø bruddgrense I snitt for stø bruddgrense or skjærkraft	rste kapasitets for strekk i UK rste kapasitets for strekk i OK	sutnyttelse K sutnyttelse K					
<u>7.2 Sam</u>	nmendrag av ka	pasitetsk	ontroll, ut	videt						
<u>Feltnumr</u>	<u>mer: 1</u>									
x № mm 0 1 563 3 125 4 688 6 190	IEdmax/ MRduk kNm 0,66 3 167,3 0,65 3 173,3 0,37 3 167,3 0,15 3 167,3 0,00 3 167,3	MEdmin/ MRdok 0,00 0,00 0,00 0,00 0,00	MRdok VE kNm 0,0 0,0 0,0 0,0 0,0 0,0	dred/ VEd/ f VRd VRdt 0,76 0,00 0,71 0,00 0,55 0,00 0,30 0,00 0,00 0,01 0,00	fmaxl wk mm 0,0 0,0 0,0 0,0 0,0	/wktil 0,00 0,00 0,00 0,00 0,00				
x MEdmax/ MRduk MEdmin/ MRdok VEdred/ VEd/ fmaxl wk/wktil	: Avstand fra venstri : Kapasitetsutnyttel : Momentkapasitet : Kapasitetsutnyttel : Momentkapasitet : Kapasitetsutnyttel : Utnyttelse for trykl : Maksimal forskyvr : Maksimal utnyttels	re opplegg t se for det si for strekk i l se for det m for strekk i l se for skjæl kbrudd hing etter la se for riss	il snitt ørste momer JK inste momer DK kraft hg tid	ntet i bruddgrei	nse (strekl	(i UK) (i OK)				
<u>7.3 Kap</u>	asitetskontroll	for mome	ent i under	<u>kant</u>						
<u>Feltnum</u>	<u>mer: 1</u>									
x mm 0 2 1 563 1 3 125 4 688 6 190 x MEdG	mEdG MEdQ kNm kNm 2089,1 0,0 2 237,0 0,0 2 577,3 0,0 1 151,2 0,0 4 0,2 0,0 : Avstand fra venst : Moment fra langtidi	Mt+ MEd kNm 189,3 177,3 82,9 176,7 13,6 re opplegg dslast	max/ MF MRd kN 0,66 3 167 0,65 3 173 0,37 3 167 0,15 3 167 0,00 3 167 ill snitt	Rd Epss Im promille 7,3 10,00 8,3 10,00 7,3 10,00 7,3 10,00 7,3 10,00 7,3 10,00 7,3 10,00 7,3 10,00	Epsc promille -0,90 -0,91 -0,90 -0,90 -0,90	Eps.c promille -0,73 -0,71 -0,56 -0,36 -0,01	Eps.s promille 1,47 1,46 0,82 0,33 0,01	Eps.cc Promille -0,14 -0,13 -0,07 0,00 0,00		
MEdQ Mf+ MEdmax/ MRd Epss Epsc Eps.c Eps.s	: Moment fra korttic : Dimensjonerende : Kapasitetsutnyttel : Momentkapasitet : Strekktøyning pga : Strekktøyning pga : Trykktøyning i betonge : Tøyning i betonge	dslast moment et lse for det s a. Md . Md en rmeringen	ter pkt 6.2.3(tørste mome	7) ntet i bruddgre	ense		ų			

Dimensjonering av betongdekke18.04.201211:26:10Programmodul:Betongbjelke etter Eurocode versjon 6.20.27.3Kapasitetskontroll for moment i underkant

Eps.cc : Kryptøyning på trykksiden

7.4 Kapasitetskontroll for moment i overkant

Feltnummer: 1

х	MEdG	MEdQ	Mf+	MEdmax/	MRd	Epss	Epsc	Eps.c	Eps.s	Eps.cc
mm	kNm	kNm	kNm	MRd	kNm	promille	promille	promille	promille	Promille
0	0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00
1 563	0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00
3 125	0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00
4 688	0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00
6 190	0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00

7.5 Kapasitetskontroll for skjærkraft

Feltnummer: 1

x	VEd	VEdred	VEd/	Vc	VEdred/	Ab	VRd,s	VRd,max
mm	kN	kN	VRdt	kN	VRd	mm2/m	kN	kN
0	-598,2	-483,8	0,05	637,3	0,76	0	0,0	11 997,1
1 563	-488,2	-455,2	0,04	637,3	0,71	0	0,0	11 997,1
3 125	-351,9	-351,9	0,03	637,3	0,55	0	0,0	11 997,1
4 688	-189,1	-189,1	0,02	637,3	0,30	0	0,0	11 997,1
6 190	-7,7	-7,7	0,00	637,3	0,01	0	0,0	11 997,1

х	: Avstand fra venstre opplegg til snitt
VEd	: Maksimal skjærkraft
VEdred	: Redusert skjærkraft
VEd/	: Utnyttelse for trykkbrudd
Vc	: Kapasitet uten skjærarmering
VEdred/	: Kapasitetsutnyttelse for strekkbrudd
Ab	: Statisk nødvendig skjærarmering
VRd,s	: Skjærkraftskapasitet med skjærarmering
VRd,max	: Skjærkapasitet for trykkbrudd

8. Mengder

BetongvolumBvolum12,5m3Vekt hovedarmeringHarmer419kg

9. Sammendrag av snittkrefter fra alle bruddkombinasjoner

Felt	x	Mf	Vv	Μv	Vh	Mh
	mm	kNm	kN	kNm	kN	kNm
1	0	2 089,1	-598,2	2 089,1	-7,7	0,2

10. Snittkrefter fra alle bruddkombinasjoner

Feltnummer: 1

	Mmax		Mmin		Vmax		Vmin	
x	V1	M1	V2	M2	V3	M3	V4	M4
mm	kN	kNm	kN	kNm	kN	kNm	kN	kNm
. 0	-598,2	2 089,1	-598,2	2 089,1	-598,2	2 089,1	-598,2	2 089,1
1 563	-488,2	1 237,0	-488,2	1 237,0	-488,2	1 237,0	-488,2	1 237,0
3 125	-351,9	577,3	-351,9	577,3	-351,9	577,3	-351,9	577,3
4 688	-189,1	151,2	-189,1	151,2	-189,1	151,2	-189,1	151,2
6 190	-7,7	0,2	-7,7	0,2	-7,7	0,2	-7,7	0,2

11. Oppleggskrefter

Side: 8

(

(

Dimensjonering av betongdekke 18.04.2012 11:26:10 Programmodul: Betongbjelke etter Eurocode versjon 6.20.2 11.1 Ekstremverdier fra alle bruddkombinasjoner	Side: 9	
Nmax Mmin Nmax Mmin Oppl N1 N10 N2 M20 N3 M30 N4 M40 Nmax Mmin Oppl N1 M10 N2 M20 N3 M30 N4 M4U M4O kin kin kin kin kin kin kin kin N Min M40 M40 M40 <th cols<="" td=""><td></td></th>	<td></td>	
12. Resultater for kombinasjon: Navn på lastkombinasjon (Brudd)		
12.1 Grafisk presentasjon av snittkrefter Kurver for momenter		
0.0	0.2	
2089,1 Kurver for skjærkrefter	-,-	
0.0	-7.7	
-598,2	.,.	
12.2 Sammendrag snittkrefter Felt x Mf Vv Mv Mh mm kNm kN kNm 1 0 2 0.89,1 -598,2 2 0.89,1 -7,7 0,2		
12.3 Snittkrefter		
Feltnummer: 1 Mmax Mmin Vmax Vmin x V1 M1 V2 M2 V3 M3 V4 M4 mm kN kNm kN kNm kN kNm kN kNm 0 -598,2 2089,1 -598,2 2089,1 -598,2 2089,1 1 1 563 -488,2 1 237,0 -488,2 1 237,0 -488,2 1 237,0 3 125 -351,9 577,3 -351,9 577,3 -351,9 577,3 -351,9 577,3 -351,9 577,3 -351,9 577,3 -351,9 577,3 -351,9 577,3 -351,9 577,3 -351,9 577,3 -351,9 577,3 -351,9 577,3 -488,2 1 151,2 -189,1 151,2 -189,1 151,2 6 190 -7,7 0,2 -7,7 0,2 -7,7 0,2 -7,7 0,2		
12.4 Oppleggskrefter		
Nmax Nmin Mmax Mmin Oppl N1 M1U M1O N2 M2U M2O N3 M3U M3O N4 M4U M4O kN kNm kN kNm kN kNm kN kNm kNm kN 1 -598,2 2 089,1 0,0 -598,2 2 089,1 0,0 -598,2 2 089,1 0,0 2 0,0		
<u>13. Fortegnsregler</u>		
Positiv last (jevnt fordelt, punktlast og trapeslast) peker nedover. Positiv momentlast dreier mot urviseren. Positivt moment gir strekk i underkant. Positiv skjærkraft vil dreie et bjelkeelement med urviseren.		

Dimensjonering av betongdekke 18.04.2012 11:26:10 Programmodul: Betongbjelke etter Eurocode versjon 6.20.2 13. Fortegnsregler Side: 10

(

(

Positiv oppleggskraft er oppover. Positivt oppleggsmoment vil dreie et oppleggspunkt med urviseren. Positiv forskyvning er nedover.

Dimer Progra	nsjonering av betongdekke 18.04.2012 11:26:10 ammodul: Betongbjelke etter Eurocode versjon 6.20.2	Side: i-1
Innhol	dsfortegnelse	
Innh	oldsfortegnelse	
1	Grafick presentation av inndata	0
1.1	Lastifieller	2
1.1.1 1.2	Lastkombinasjoner	2
1.2.1	Navn på lastkombinasjon (Brudd)	2
<u>2.</u>	Materialdata	2
<u>3.</u> 3.1	<u>Geometri</u> Hovedgeometri	3 3
3.2	Tverrsnittsgeometrier	3
<u>4.</u> 4 1	Laster Lastilfeller	4
4.1.1	Utmatting	4
4.2	Navn på lastkombinasjon (Brudd)	4
<u>5.</u>	Grafisk presentasjon av snittkrefter og nedbøyninger	5
5.1 5.2	Armering Presentasjon av alle snitt	5 5
5.3 5.4	Kapasitetskontroll Statikkresultater	5
6	Armering	6
6.1	Armering i underkant	6
6.2 6.3	Armering i overkant Nødvendig armeringsareal	6
6.4	Minimumsarmering, lengderetning	6
<u>7.</u> 71	Kapasitetskontroll Sammendrag av kapasitetskontroll	7
7.2	Sammendrag av kapasitetskontroll, utvidet	7
7.3	Kapasitetskontroll for moment i overkant	7 8
7.5	Kapasitetskontroll for skjærkraft	8
<u>8.</u>	Mengder	8
<u>9.</u>	Sammendrag av snittkrefter fra alle bruddkombinasjoner	8
<u>10.</u>	Snittkrefter fra alle bruddkombinasjoner	8
<u>11.</u> 11.1	<u>Oppleggskrefter</u> Ekstremverdier fra alle bruddkombinasioner	8
10		ů
12.1	Grafisk presentasjon av snittkrefter	9
12.2 12.3	Sammendrag snittkrefter Snittkrefter	9 9
12.4	Oppleggskrefter	9
<u>13.</u>	Fortegnsregler	9

Vedlegg G

Dimensjonering av betongdekke Programmodul: Betongbielke etter Fu	18.04.2012 11:24:30	Side: 1
Dato: 18. april 2012 Tid: 11:24:30		
Signatur:		
Programmet er utviklet av Norconsult I Programsystem: G-PROG Be	nformasjonssystemer as. etong	
Programmodul: Betongbjelko Norm: Norsk Stand	e etter Eurocode versjon 6.20.2 Jard NS-EN 1992 og NS-EN1990 med nasjonale tillegg NA:2008	
Programlisensen eies av: Multiconsult	AS	
Dokument: \\SVGDC1\felles\FAG\Anle	eggskonstr\Elin\Masteroppgave kap 4\Utmatting, plate B-B.gwk	
)	· · · · · · · · · · · · · · · · · · ·
,		
5		
*i		

Vedlegg G

Vedlegg G 18.04.2012 11:24:30 Dimensjonering av betongdekke Programmodul: Betongbjelke etter Eurocode versjon 6.20.2 3.2 Tverrsnittsgeometrier Dekketykkelse t 2 000 mm Effektiv tverrsnittstykkelse = 2 * Ac / U h0 2 000 mm t = 2000 4. Laster 4.1 Lasttilfeller 4.1.1 Utmatting q1/P/M x2 q2 Felt Ltype x1 mm kN/m, kN, kNm mm kN/m -57,2 5 986 0,0 16,0 6 250 27,2 1 Trapeslast 0 1 Trapeslast 0 1 Trapeslast 0 27,1 6 250 8,1 Felt : Feltnummer for lasten Ltype : Type last x1 : Avstand fra venstre ende i felt

Side: 4

(

q1/P/M : Intensitet (venstre lastkant)

x2 : Lastutbredelse

q2 : Intensitet høyre lastkant

4.2 Lastkombinasjoner

4.2.1 Navn på lastkombinasjon (Brudd)

LTnavnLtypeMax gammaMin gammaPsiUtmattingPermanent1,001,001,00

LTnavn : Navn på lasttilfelle

Ltype : Kombinasjonskriterium for lasttilfellet

Max gamma : Største lastfaktor for lasttilfellet

Min gamma : Minste lastfaktor

Psi : Reduksjonsfaktor ved kombinasjon av flere variable laster

Dimensjonering av betongdek Programmodul: Betongbjelke . Grafisk presentasjon av sr	ke 18.04.2012 11:24:30 etter Eurocode versjon 6.20.2 nittkrefter og nedbøyninger	Side: 5
Grafiek procontacion	av snittkrefter og nedbøvninger	
. Gransk presentasjor	r av smukrenter og nedbøyninger	
1 Armering		
Hovedormering		
novedarmening	r25 c240	
and the second state of the sta	#25 c3+0	
	023 6123	4
	ø25 c125	
Baylearmering		
boyleamening		
5.2 Presentasjon av alle s	snitt	
5.3 Kapasitetskontroll		
Momentutnyttelse UK		
0, <u>00</u>		0,00
Mamontutouttalag OK		
Momentutnyttelse OK	0,09	
0,00		0,00
Skjærutnyttelse		
0 00	0,12	0.00
Rissutnyttelse		
0, <u>00</u>		0,00
		1
5.4 Statikkresultater	· ·	

Vedlegg G

Imensjonering av betongdekke rogrammodul: Betongbjelke et .4 Statikkresultater	18. ter Eurocode versjon 6.20.2	.04.2012 11:24:30		Side.	
					_
Moment fra bruddgrensekom	binasjoner				
0.0				-0,1	
Skjær fra bruddgrensekombi	nasjoner				
	85,7			0 1	
0.0				2,1	
Armering					
. Amering					
.1 Armering i underkant	VA 54				
Ø cc c X1 X2 mm mm mm mm m 25,0 125 1 913 0 6 250 6 2	X3 F1 F2 nm 250 1,00 1,00				
.2 Armering i overkant					
Ø cc c X1 X2 X	3 F1 F2				
mm mm mm mm mm m 25,0 125 88 0 6 250 6 25 25,0 340 213 0 3 000 3 00	n 0 1,00 1,00 0 1,00 1,00				
 Diameter for armering Senteravstand 					
: Avstand til akse 1 : Startpunkt for armering 2 : Sluttpunkt for armering					
 Armeringslengde Forankringsfaktor i startpunkte Forankringsfaktor i sluttpunkte 		,			
.3 Nødvendig armeringsar	eal				
eltnummer: 1					
x ASUe ASOe ASUn AS mm mm2 mm2 mm2 mm2 mm	On ASU ASO Abe A	bn Ab //m mm2/m	·	e	
0 3 927 5 371 1 963 1 9 1 563 3 927 5 371 1 963 1 9	53 1 887 1 887 0 53 1 887 1 887 0	0 1 342 0 1 342			
3 125 3 927 3 927 1 963 1 9 4 688 3 927 3 927 1 963 1 9	63 1 887 1 887 0 63 1 887 1 887 0	0 1 342 0 1 342			
6 190 3 927 3 927 1 963 1 9	63 1 887 1 887 0	0 1 342			
: Snittavstand til venstre opp SUe : Innlagt effektiv armering i u	egg i felt nderkant				
SOe : Inniagt effektiv armering i o SUn : Nødvendig armering i unde	rkant ant				
SOU : Minste areal for underkanta	rmering				
be : Innlagt bøylearmering bn : Nødvendig bøylearmering					
b : Minste areal for bøylearme	ing				
3.4 Minimumsarmering, len	gderetning				
elt As As,max ccs cca mm2 mm2 mm mm ı	cct ccta Asw,min Aswb,min nm mm mm2 mm2				
3 553 80 000 250 400 4	400 450 1 342 1 342				

Dimensjo Program	onering a modul: E	v beto Betong	ngdel bjelke	kke e etter Eu	rocode	versjon 6	18 .20.2	.04.20′	12 1 [.]	1:24:30				Side: 7
6.4 Minii	mumsarr	nering	, leng	deretning	1								 	
As	: Minste	areal fo	or hove	edarmering	I									
As,max ccs	: Største : Maksim	areal f al tillat	or sun t sente	nmen av al eravstand i	i langsga strekksø	aende arm one	ering							
cca	: Maksim	al tillat	t sente	eravstand f	or avtra	opet armer	ing							
ccta	: Største	senter	avstar	nd for avtra	or tordel appet for	ingsarmer delingsarm	ing pa tv iering	ers						
Asw,min Aswh.min	: Minste	tillatte s	skjæra	rmering	od bayla	-								
A5WD,11111	. Ministe	unatte :	skjærd	umenng m	eu bøyle	1								
<u>7. Kap</u>	asitets	konti	roll											
7.1 San	nmendr	ad av	kana	sitetsko	ntroll									
Folt vi	MEdm	<u>ay/ y</u>	0 ME	Edmin/ V	Edrod/	fmaxl wi	/wk+il							
mr	n MRc	luk m	mI	MRdok	VRd	mm	WKUI							
1	0 0	,00	0	0,09	0,12	0,0	0,00							
хU	: Avstand	d fra ve	enstre	oppleaa til	snitt for	største ka	pasitetsı	utnyttels	se					
MEdmax/	: Største	kapasi	itetsut	nyttelse i b	ruddgrer	nse for stre	ekk i UK							
xO MEdmin/	: Avstand : Største	a fra ve kapasi	enstre itetsut	opplegg til nyttelse i b	snitt for ruddgrei	største ka ise for stre	pasitetsi ekk i OK	utnyttels	se					
VEdred/	: Største	kapas	itetsut	nyttelse for	skjærkr	aft								
wk/wktil	: Maksim	al utny	ttelse	ig for riss										
					·									
7.2 Sar	nmendr	ag av	kapa	sitetsko	ntroll,	<u>utvidet</u>								
Feltnum	mer: 1													
хI	/IEdmax/	MRd	uk M	Edmin/	MRdok	VEdred/	VEd/ f	maxl v	wk/w	ktil				
mm	MRduk	kN	lm	MRdok	kNm	VRd	VRdt	mm						
0 1.563	0,00),0) 0	0,09 -4	1 227,5 1 227 5	0,11	0,00	0,0	0	,00				
3 125	0,00	0),0	0,09 -3	3 167,3	0,12	0,00	0,0	0	,00				
4 688	0,00	0	0,0	0,04 -3	3 167,3	0,08	0,00	0,0	0	,00				
6 190	0,00),0	0,00 -3	3 167,3	0,00	0,00	0,0	0	,00				
X	: Avstan	d fra ve	enstre	opplegg til	snitt									
MEdmax/ MRduk	: Kapası : Momen	tkapas	yttelse sitet foi	for det stø r strekk i U	vrste mo K	mentet i br	uddgren	ise (stre	ekk i l	JK)				
MEdmin/	: Kapasi	etsutn	yttelse	for det mi	nste mor	nentet i br	uddgren	se (stre	kk i C)K)				
VEdred/	: Kapasi	tetsutn	yttelse	for skjærk	raft									
VEd/	: Utnytte	lse for	trykkb	rudd	a tid									
wk/wktil	: Maksin	nal utny	/ttelse	for riss	gua									
7.3 Ka	pasitets	kontr	oll fo	r mome	nt i uno	<u>lerkant</u>								
Feltnum	mer: 1								,					
x	MEdG M	EdQ	Mf+	MEdmax/	MRd	Epss	Eps	c E	ps.c	Eps.s	Eps.cc			
mm	kNm	kNm l	kNm	MRd	kNm p	oromille	promill	e pron	nille	promille	Promille			
0 1 563	0,0	0,0	0,0	0,00	0,0	0,00	0,0	0 (0,00	0,00	0,00			
3 125	0,0	0,0	0,0	0,00	0,0	0,00	0,0	0 (0,00	0,00	0,00			
4 688	0,0	0,0	0,0	0,00	0,0	0,00	0,0	0 (0,00	0,00	0,00			
6 190	0,0	0,0	0,0	0,00	0,0	0,00	0,0	0 (0,00	0,00	0,00			
x	: Avstan	d fra v	enstre	opplegg ti	l snitt									
MEdG MEdO	: Momer : Momer	nt fra la ht fra ku	ngtids	last ast										
Mf+	: Dimens	sjonere	ende m	ioment ette	er pkt 6.2	2.3(7)								
MEdmax MRd	/ : Kapasi : Momer	tetsutn htkanas	yttelse sitet	e for det ste	ørste mo	mentet i b	ruddgrer	nse						
Epss	: Strekkt	øyning	pga.	Md										
Epsc Eps.c	: Trykktø : Tøvnin	øyning a i betø	pga. N	Лd										
Eps.s	: Tøynin	g i stre	kkarm	eringen										

Dimensjonering av betongdekke 18.04.2012 11:24:30 Programmodul: Betongbjelke etter Eurocode versjon 6.20.2 7.3 Kapasitetskontroll for moment i underkant

Eps.cc : Kryptøyning på trykksiden

7.4 Kapasitetskontroll for moment i overkant

Feltnummer: 1

х	MEdG	MEdQ	Mf+	MEdmax/	MRd	Epss	Epsc	Eps.c	Eps.s	Eps.cc
mm	kNm	kNm	kNm	MRd	kNm	promille	promille	promille	promille	Promille
0	-398,6	0,0	-398,6	0,09	-4 227,5	10,00	-1,04	-0,31	0,22	0,00
1 563	-271,4	0,0	-398,6	0,09	-4 227,5	10,00	-1,04	-0,31	0,22	0,00
3 125	-141,4	0,0	-274,4	0,09	-3 167,3	10,00	-0,90	-0,21	0,19	0,00
4 688	-40,4	0,0	-124,1	0,04	-3 167,3	10,00	-0,90	-0,09	0,09	0,00
6 190	-0,1	0,0	-3,7	0,00	-3 167,3	10,00	-0,90	-0,00	0,00	0,00

7.5 Kapasitetskontroll for skjærkraft

Feltnummer: 1

x	VEd	VEdred	VEd/	Vc	VEdred/	Ab	VRd,s	VRd,max
mm	kN	kN	VRdt	kN	VRd	mm2/m	kN	kN
0	73,8	73,8	0,01	700,6	0,11	0	0,0	11 785,5
1 563	85,7	84,4	0,01	700,6	0,12	0	0,0	11 785,5
3 125	77,3	77,3	0,01	637,3	0,12	0	0,0	11 997,1
4 688	48,6	48,6	0,00	637,3	0,08	0	0,0	11 997,1
6 190	2,1	2,1	0,00	637,3	0,00	0	0,0	11 997,1

х	: Avstand fra venstre opplegg til snitt
VEd	: Maksimal skjærkraft
VEdred	: Redusert skjærkraft
VEd/	: Utnyttelse for trykkbrudd
Vc	: Kapasitet uten skjærarmering
VEdred/	: Kapasitetsutnyttelse for strekkbrudd
Ab	: Statisk nødvendig skjærarmering
VRd,s	: Skjærkraftskapasitet med skjærarmering
VRd,max	: Skjærkapasitet for trykkbrudd

8. Mengder

Betongvolum	Bvolum	12,5	m3
Vekt hovedarmering	Harmer	419	kg

9. Sammendrag av snittkrefter fra alle bruddkombinasjoner

Felt	x	Mf	٧v	Μv	Vh	Mh
	mm	kNm	kŅ	kNm	kΝ	kNm
1	6 190	-0,1	73,8	-398,6	2,1	-0,1

10. Snittkrefter fra alle bruddkombinasjoner

Feltnummer: 1

	Mmax		Mmin		Vmax		Vmin	
x	V1	M1	V2	M2	V3	M3	V4	M4
mm	kN	kNm	kN	kNm	kN	kNm	kN	kNm
0	73,8	-398,6	73,8	-398,6	73,8	-398,6	73,8	-398,6
1 563	85,7	-271,4	85,7	-271,4	85,7	-271,4	85,7	-271,4
3 125	77,3	-141,4	77,3	-141,4	77,3	-141,4	77,3	-141,4
4 688	48,6	-40,4	48,6	-40,4	48,6	-40,4	48,6	-40,4
6 190	2,1	-0,1	2,1	-0,1	2,1	-0,1	2,1	-0,1

11. Oppleggskrefter

Side: 8

(

(
Vedlegg G

1

Dimensjonering av betongdekke 18.04.2012 11:24:30 Programmodul: Betongbjelke etter Eurocode versjon 6.20.2 11.1 Ekstremverdier fra alle bruddkombinasjoner	Side: 9
11.1 Ekstremverdier fra alle bruddkombinasjoner	
Nmax Nmin Mmax Mmin	
Oppi N1 M1U M1O N2 M2U M2O N3 M3U M3O N4 M4U M4O kN kNm kNm kN kNm kNm kN kNm kNm kNm kN kNm kNm	
1 73,8 -398,6 0,0 73,8 -398,6 0,0 2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	
12. Booultstar for kombinacion, Nova på lastkombinacion (Brudd)	
12. Resultater for kombinasjon. Navn på lastkombinasjon (Brudu)	
Kurver for momenter	
	-0,1
Kurver for skjærkrefter	
85,7	
	2,1
12.2 Sammendrag snittkrefter	
Felt x Mf Vv Mv Vh Mh mm kNm kN kNm kN kNm	
1 6 190 -0,1 73,8 -398,6 2,1 -0,1	
12.3 Snittkrefter	
Feltnummer: 1	
Mmax Mmin Vmax Vmin	
mm kN kNm kN kNm kN kNm kN kNm 0 73.8 -398.6 73.8 -398.6 73.8 -398.6 73.8 -398.6	
1 563 85,7 -271,4 85,7 -271,4 85,7 -271,4 85,7 -271,4 3 125 77,3 -141,4 77,3 -141,4 77,3 -141,4 77,3 -141,4	
4 688 48,6 -40,4 48,6 -40,4 48,6 -40,4 48,6 -40,4 6 190 2,1 -0,1 2,1 -0,1 2,1 -0,1 2,1 -0,1	
12.4. Opplaggskrafter	
Nmax Nmin Mmax Mmin	
Oppi N1 M1U M1O N2 M2U M2O N3 M3U M3O N4 M4U M4O kN kNm kNm kN kNm kNm kN kNm kNm kNm kNm	
1 73,8 -398,6 0,0 73,8 -398,6 0,0 73,8 -398,6 0,0 2 0,0 0	
13. Fortegnsregler	
Positiv last (jevnt fordelt, punktlast og trapeslast) peker nedover. Positiv momentlast dreier mot urviseren.	
Positiv moment gir strekk i underkant. Positiv skjærkraft vil dreie et bjelkeelement med urviseren.	

Dimensjonering av betongdekke 1 Programmodul: Betongbjelke etter Eurocode versjon 6.20.2 13. Fortegnsregler Side: 10 18.04.2012 11:24:30 Positiv oppleggskraft er oppover. Positivt oppleggsmoment vil dreie et oppleggspunkt med urviseren. Positiv forskyvning er nedover. ((

Vedlegg G

Dimen Progra Innhol	sjonering av betongdekke 18.04.2012 11:24:30 immodul: Betongbjelke etter Eurocode versjon 6.20.2 dsfortegnelse	Side: i-1
Innho	<u>oldsfortegnelse</u>	
1. 1.1 1.1.1 1.2 1.2.1	<u>Grafisk presentasjon av inndata</u> Lasttilfeller Utmatting Lastkombinasjoner Navn på lastkombinasjon (Brudd)	2 2 2 2 2 2
<u>2.</u>	Materialdata	2
<u>3.</u> 3.1 3.2	<u>Geometri</u> Hovedgeometri Tverrsnittsgeometrier	3 3 3
<u>4.</u> 4.1 4.1.1 4.2 4.2.1	Laster Lasttilfeller Utmatting Lastkombinasjoner Navn på lastkombinasjon (Brudd)	4 4 4 4 4
<u>5.</u> 5.1 5.2 5.3 5.4	Grafisk presentasjon av snittkrefter og nedbøyninger Armering Presentasjon av alle snitt Kapasitetskontroll Statikkresultater	5 5 5 5 5
<u>6.</u> 6.1 6.2 6.3 6.4	Armering Armering i underkant Armering i overkant Nødvendig armeringsareal Minimumsarmering, lengderetning	6 6 6 6
<u>7.</u> 7.1 7.2 7.3 7.4 7.5	Kapasitetskontroll Sammendrag av kapasitetskontroll Sammendrag av kapasitetskontroll, utvidet Kapasitetskontroll for moment i underkant Kapasitetskontroll for moment i overkant Kapasitetskontroll for skjærkraft	7 7 7 8 8
<u>8.</u>	Mengder	8
<u>9.</u>	Sammendrag av snittkrefter fra alle bruddkombinasjoner	8
<u>10.</u>	Snittkrefter fra alle bruddkombinasjoner	8
<u>11.</u> 11.1	Oppleggskrefter Ekstremverdier fra alle bruddkombinasjoner	8 9
<u>12.</u> 12.1 12.2 12.3 12.4	Resultater for kombinasjon: Navn på lastkombinasjon (Brudd) Grafisk presentasjon av snittkrefter Sammendrag snittkrefter Snittkrefter Oppleggskrefter	9 9 9 9 9
<u>13.</u>	Fortegnsregler	9

Vedlegg H			side 1
Prosekt	Ordre	Sign	Dato
Masteroppgave Elin Olsen	Snitt A-A	EO	18-04-2012

Data er lagret på fil: \\SVGDC1\felles\FAG\Anleggskonstr\Elin\Masteroppgave kap 4\Plate A-A, versjon 3.bts Dataprogram: BTSNITT versjon 6.2.1 Laget av sivilingeniør Ove Sletten Beregningene er basert på NS-EN 1992-1-1 og NS-EN 1990:2002 + NA:2008

Tverrsnitt				
		b	1000	mm
	Z	h	2000	mm
	• • • • • • • •	-		
	· · · ·			
		Zt	0	mm
		Yt	0	mm
		Areal	2.00E+06	mm2
		Iv	6.67E+11	mm4
	N N	ĹŻ	1,67E+11	mm4
	— - — - x n			
		Mala had		
	•••••	Maks, Døyk	avstand: 3/5 n	im In calemick
		Spesielle Ki	002 1 1 0 5 3 /	og Seisinisk
	L	bøylearmeri	no d0	ig IAA.9.3.3(3)

Armeri	ngsdata				
Kant	Lag nr	Kantavst.	Slakkarmering	Spennarmering	
ok	1	88	8d 25		
ok	2	213	3d 25		
uk	1	91	11d 25		

Materialdata			
Korreksjonsfakt, for Emodul pga tilslag	1,00	Eksponeringsklasse	XC3
Materialfaktor betong	1,50	Lite korrosjonsømfintlig armering	
Materialfaktor stål	1,15	Dimensjonerende levetid 50 år	
Betongkvalitet	B45 (C 45/55)		
Densitet kg/m3	2400	Minimum overdekning	
Sement i fasthetsklasse	N	Min, krav	25
Armering flytegrense	500	Toleranse	25
Skjærarmering flytegrense	500	Min, nominell overdekning	50
Relativ fuktighet	80%		
Betongens alder ved pålastning (døgn)	28		
Effektiv høyde, h0 (NS-EN 1992-1-1 (B.6))	667		
NA.6.2.2(1)Følgende krav til tilslag er oppfyllt (1.Største tilslag etter NS-EN 12620 D>= 16mm. 2.Det grov 3.Grovt tilslag skal ikke være av kalkstein eller stein med tils	e tilslaget>=50% av tol warende lav fasthet)	al tilslagsmengde.	
Korttids Emodul, Ecm	36300	Kryptall, FI 0_28	0,72
Trykkfasthet, fcd	25,5	Kryptall, FI 28_5000	1,14
Middelverdi av strekkfasthet, fctm	3,80	Svinntøyning, 0_28	-,00006
Strekkfasthet, fctd	1,51	Svinntøyning, 28_25000	-,00017

Pålitelighetsklass	e: 3				
Lastfaktorer	Bruksgrense	Risskontroll	Bruddgrense B1	Bruddgrense B2	PSI-Faktor:
Permanent last (G)	1,00	1,00	1,00	1,00	Kalegon H2 Krav maks.nedbøvnine:
Variabel last (P)	1,00	1,00	1,00	1,00	Bruk/utstyr stiller krav til nedbøyning

Tatel		Side	
Vedlegg H		2	
Prosekt	Ordæ	Sign	Dato
Masteroppgave Elin Olsen	Snitt A-A	EO	18-04-2012

Snittkrefter, Lasttilfe	elle nr 1	
Permanent last	Variabel last	
Mg_Y 0,0 kNm	Mp_Y 2089,1 kNm	
Ng 0,0 kN	Np 0,0 kN	

Positiv moment-og kraftvektorer i Y og Z-retning. Positiv Mg_Y,Mp_Y gir strekk i ok

Dimensjonerende snittkrefter

Momentkontroll: Programmet regner ikke med ekstra momentbidrag fra skjærkraften (NS-EN 1992 6.2.3(7))

Momentkontroll, Lasttilfelle nr 1		Skjærkontroll, Lasttilfelle nr 1		Risskontroll, Lasttilfelle	Risskontroll, Lasttilfelle nr 1		
N+Nsp+tap	0,0	Vgamma (kN)	0,0	N (kN)	0,0		
M+Msp+tap	-2089,1	Vredusert (kN)	483,8	M (kNm)	-2089,1		
M/Md	0,48	Vccd Trykkbr,	10542,1	Min. overdekning	50		
tøyning i ok	-,00024	Vcd (uarmert).	708,0	Overdekning (mm)	75		
tøyning i uk	,00114	Stat,nødv(mm2/m)	0	Største rissavstand (mm)	435		
SigmaC i ok	-5,03	Min.arm, (mm2/m)	1342	Beregnet rissvidde(mm)	0,309		
SigmaC i uk	0,00	Maks bøyleavstand	500	tillatt rissvidde	0,390		
SigmaS i ok							

Merk! Bjelkehøyde > 1000 mm. Krav til langsgående overflatearmering (NS-EN 1992.1.1 NA.9.7(1)). Merk! Bred bjelke. Maks, tillatt avstand mellom bøyleben i tverretning (NS-EN 1992-1-1 NA.9.2.2(8))

Vedlegg I			Side 1
Prosekt	Ordre	Sign	Dato
Masteroppgave Elin Olsen	Snitt B-B	EO	18-04-2012

Data er lagret på fil: \\SVGDC1\felles\FAG\Anleggskonstr\Elin\Masteroppgave kap 4\Plate B-B, versjon 3.bts Dataprogram: BTSNITT versjon 6.2.1 Laget av sivilingeniør Ove Sletten Beregningene er basert på NS-EN 1992-1-1 og NS-EN 1990:2002 + NA:2008

verrsnitt				
		b	1000	mm
	Z	h	2000	mm
	• • • • • • • •			
	· · · ·			
		Zt	0	mm
		Yt	0	mm
		Areal	2.00E+06	mm2
		Iv	6.67E+11	mm4
		Ĭz	1.67E+11	mm4
	Y n		,	
	*****	Maks. bøyle	avstand: 375 m	m
		Spesielle Kr	av: endesoner o	g seismisk
		Se NS-EN I	992-1-1 9.5.3 (og NA.9.5.3(3)

Armeringsdata							
Kant	Lag nr	Kantavst.	Slakkarmering	Spennarmering			
ok	1	88	8d 25				
ok	2	213	3d 25				
uk	1	91	11d 25				

Materialdata							
Korreksjonsfakt, for Emodul pga tilslag	1,00	Eksponeringsklasse	XC3				
Materialfaktor betong	1,50	Lite korrosjonsømfintlig armering					
Materialfaktor stål	1,15	Dimensjonerende levetid 50 år					
Betongkvalitet	B45 (C 45/55)	B45 (C 45/55)					
Densitet kg/m3	2400	2400 Minimum overdekning					
Sement i fasthetsklasse	N	Min. krav	25				
Armering flytegrense	500	Toleranse	25				
Skjærarmering flytegrense	500	Min. nominell overdekning	50				
Relativ fuktighet	80%	-					
Betongens alder ved pålastning (døgn)	28						
Effektiv høyde, h0 (NS-EN 1992-1-1 (B.6))	667						
NA.6.2.2(1)Følgende krav til tilslag er oppfyllt (1.Største tilslag etter NS-EN 12620 D= 16mm. 2.Det grove tilslaget>=50% av total tilslagsmengde. 3.Grovt tilslag skal ikke være av kalkstein eller stein med tilsvarende lav fasthet)							
Korttids Emodul, Ecm	36300	Kryptall, FI 0_28	0,72				
Trykkfasthet, fcd	25,5	Kryptall, FI 28_5000	1,14				
Middelverdi av strekkfasthet, fctm	3,80	Svinntøyning, 0_28	-,00006				
Strekkfasthet, fctd	1,51	Svinntøyning, 28_25000	-,00017				

Pälitelighetsklasse: 3									
Lastfaktorer	Bruksgrense	Risskontroll	Bruddgrense B1	Bruddgrense B2	PSI-Faktor:				
Permanent last (G)	1,00	1,00	1,00	1,00	Kalegori H2 Krav maks.nedbøvnine:				
Variabel last (P)	1,00	1,00	1,00	1,00	Bruk/utstyr stiller krav til nedbøyning				

Tatel Vedlegg I					
Prosekt	Ordre	Sign	Dato		
Masteroppgave Elin Olsen	Snitt B-B	EO	18-04-2012		

Snittkrefter, Lasttilfelle nr 1					
Permanent last Variabel last			last		
Mg	g_Y	0,0 kNm		Mp_Y	398,6 kNm
Ng		0,0 kN		Np	0,0 kN

Positiv moment-og kraftvektorer i Y og Z-retning. Positiv Mg_Y,Mp_Y gir strekk i ok

Dimensjonerende snittkrefter

Momentkontroll: Programmet regner ikke med ekstra momentbidrag fra skjærkraften (NS-EN 1992 6.2.3(7))

Momentkontroll.	Lasttilfelle nr 1	Skjærkontroll. Lasttilf	elle nr 1	Risskontroll. Lasttilfelle	Risskontroll, Lasttilfelle nr 1		
N+Nsp+tap	0,0	Vgamma (kN)	0,0	N (kN)	0,0		
M+Msp+tap	398,6	Vredusert (kN)	-73,8	M (kNm)	398,6		
M/Md	0,09	Vccd Trykkbr.	10353,2	Min. overdekning	50		
tøyning i ok	,00023	Vcd (uarmert).	701,1	Overdekning (mm)	72		
tøyning i uk	-,00005	Stat.nødv(mm2/m)	0	Største rissavstand (mm)			
SigmaC i ok	0,00	Min.arm. (mm2/m)	1342	Beregnet rissvidde(mm)	0,000		
SigmaC i uk	-1,05	Maks bøyleavstand	500	tillatt rissvidde	0,390		
SigmaS i ok							

Merk! Bjelkehøyde > 1000 mm. Krav til langsgående overflatearmering (NS-EN 1992.1.1 NA.9.7(1)). Merk! Bred bjelke. Maks. tillatt avstand mellom bøyleben i tverretning (NS-EN 1992-1-1 NA.9.2.2(8))