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Abstract 
 
Structures made of glass reinforced plastic (GRP), often abbreviated GRP cover, are used to protect 
subsea equipment in the oil and gas industry. These structures need to be lifted during fabrication, 
transportation and during the installation. The present work investigates the lifting capacity of the 
GRP covers. The aim is to achieve a more accurate analytical estimate of the lifting capacity, with a 
desire to replace the simplified hand calculations used today. In order to investigate the lifting 
capacity, a lifting point (reinforced lifting holes made of GRP) is studied with both finite element 
analysis and experimental tests in a hydraulic tensile bench.  
 
Three different test setups, Case 1, Case 2 and Case 3 are investigated. Case 1 is a representation of a 
lift through the splash zone during installation, where the GRP cover is in an upright vertical position. 
Case 2 is an approximation of a horizontal lift with the lifting point located on top of the cover, 
causing the lifting point to encounter out-of-plane loads. Case 3 is a representation of a horizontal 
four-point lift, with the lifting point placed on the side walls. The experimental tests were performed in 
collaboration with Highcomp AS at Westcon Løfteteknikk in Haugesund.  
 
The finite element analysis represents the test setup in the hydraulic tensile bench in order to achieve 
comparable data. Finite element analysis can reduce cost and time compared with physical 
experiments. For Case 1, with in-plane loads representing the lifting through the splash zone, the 
results achieved were within a 2% error margin. For the out-of-plane situation (Case 2) with solid 
elements, the results were within a 20% error margin. The results from the in-plane and out-of-plane 
scenarios were used in a capacity evaluation to create a graph which represents all results and takes 
into account the out-of-plane angle from the lifting slings. This graph is easy to use in design and 
provides good results. Based on the comparison of the results, it was concluded that the Puck criterion 
with gradual degradation provides the most accurate estimate for the capacity and that use of this 
criterion can replace simplified hand calculation and reduce the number of physical experiments in the 
future. 
 
Based on these findings, an improvement study was conducted for a 30 mm laminate with Puck 
criterion and gradual degradation with a new lay-up consisting of fibers at [0, 90, +45, -45] degrees, 
compared to the one used today [0, 90]. The results of the new study showed an increase of over 28% 
for the capacity in Case 1 and an increase of over 16% compared with Case 2. These are interesting 
results, leading to the conclusion that by introducing the fiber directions + 45 degrees, one can 
enhance the capacity of the material by about 20%, and it is easy and efficient to implement in a new 
design of the lifting point used in GRP covers.  
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Nomenclature  
 
Abbreviations 

GRP Glass reinforced plastic 
FRP Fiber reinforced plastic 
DNV Det Norske Veritas 
Te Tons 
3D Three dimensional  
2D Two dimensional 
UiS University of Stavanger 
FE Finite Element 
FEA Finite Element Analysis 
FEM Finite Element Method 
CLT Classical Laminate Theory 

 

Symbols 
In the following list the most used symbols are presented. If the symbols are not mentioned in this list 
they are explained in the present with the relevant equations. 
 

𝜀1 Strain in principle direction 1  
𝜀2 Strain in principle direction 2  
𝜀3 Strain in principle direction 3  
𝛾12 Strain associated with 12 plane  
𝛾13 Strain associated with 13 plane   
𝛾23 Strain associated with 23 plane  
σ1 Stress in principle direction 1   N/mm2 (MPa) 
σ2 Stress in principle direction 2   N/mm2 (MPa) 
σ3 Stress in principle direction 3    N/mm2 (MPa) 
𝜏12 Stress associated with 12 plane   N/mm2 (MPa) 
𝜏13 Stress associated with 13 plane    N/mm2 (MPa) 
𝜏23 Stress associated with 23 plane   N/mm2 (MPa) 
E1 Young modulus in principle direction 1  GPa 
E2 Young Modulus in principle direction 2  GPa 
E3 Young Modulus in principle direction 3  GPa 
ν12 Poisson`s ratio associated with 12 plane  
ν13 Poisson`s ratio associated with 13 plane  
ν23 Poisson`s ratio associated with 23 plane  
G12 Shear modulus associated with the 12 plane GPa 
G31 Shear modulus associated with the 13 plane GPa 
G23 Shear modulus associated with the 23 plane GPa 
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Terms overview 
 
Composites 
The definition of the composite material is that it needs to be a combination of two or more materials, 
and yielding properties have to be better than for the individual material. This report is limited to 
the composite called Fiber Reinforced Polymer (FRP). FRP composite consists of the two materials, 
fiber and matrix. 

 
Fiber 
The fiber is also called reinforcement and can be made of Glass, Carbon, Kevlar and other 
materials and provides strength and stiffness. The fiber is strong parallel, but weak transverse to the 
fiber. 

 
Matrix 
The fibres are then combined with resin called the matrix. The matrix provides the transverse 
strength.  

 
Lamina or Ply 
The combination of fiber with matrix is often called lamina or ply. Unidirectional ply is when the fibres 
are placed in one direction. 

 
Layer 
A layer consists of ply in arbitrary directions. For instance, one layer may consist of 50% 
unidirectional ply in 0 degree direction, and 50% in 90 degree direction. 
 
Laminate 
Layer bonded together to form the laminate which is the finished material product. 
 
Stacking sequence or Lay-up 
The stacking sequence is an overview of the laminate with plies in arbitrary directions. For example 
[+45 degree, -45 degree] laminate. 
 

 
  



viii 
 

 
 
 



ix 
 

 
 
Table of contents 
 
 
1  Introduction ....................................................................................................................................... 1 
 
2  Background ........................................................................................................................................ 3 

2.1 Description of load scenario for Case 1 .................................................................................. 4 
2.2 Description of load scenario for Case 2 .................................................................................. 5 
2.3 Description of load scenario for Case 3 .................................................................................. 5 
2.4 Lifting point used in GRP cover design .................................................................................. 6 

 
3  Theory ................................................................................................................................................ 9 

3.1 Mechanics of orthotropic materials ......................................................................................... 9 
3.2 Cartesian coordinate system .................................................................................................. 10 

3.2.1  Stress ............................................................................................................................ 10 
3.2.2  Strain ............................................................................................................................ 10 
3.2.3  Hooke’s law ................................................................................................................. 11 
3.2.4  Engineering constants .................................................................................................. 11 
3.2.5  Plane stress ................................................................................................................... 14 

3.3 Failure analysis ...................................................................................................................... 15 
3.3.1  Failure criteria .............................................................................................................. 15 
3.3.2  Puck failure criterion .................................................................................................... 16 
3.3.3  Hashin failure criterion ................................................................................................ 19 

3.4 First ply failure ...................................................................................................................... 20 
3.5 Progressive ply failure ........................................................................................................... 21 

3.5.1  Degradation material models ....................................................................................... 23 
3.6 Finite element analysis software ........................................................................................... 24 

 
4  Experimental Tests .......................................................................................................................... 25 

4.1 Experimental test setup.......................................................................................................... 25 
4.2 Recommended improvements ............................................................................................... 26 
4.3 Results from experimental tests............................................................................................. 26 

 
5  Analysis ............................................................................................................................................ 29 

5.1 Finite element analysis of Case 1 .......................................................................................... 30 
5.1.1  Finite element model and boundary conditions for Case 1 .......................................... 30 
5.1.2  Result of Case 1 ........................................................................................................... 31 
5.1.3  Damage propagation in Case 1..................................................................................... 33 
5.1.4  General discussion of the result for Case 1 .................................................................. 34 
5.1.5  Comparing finite element analysis and test results for Case 1 ..................................... 34 

5.2 Finite element analysis of Case 2 .......................................................................................... 35 
5.2.1  Finite element model and boundary conditions ........................................................... 36 
5.2.2  Result of Case 2 ........................................................................................................... 37 



x 
 

5.2.3  Damage propagation of Case 2 .................................................................................... 39 
5.2.4  General discussion of the results .................................................................................. 39 
5.2.5  Comparing finite element analysis and test results for Case 2 ..................................... 40 

5.3 Geometric approach in Case 3 ............................................................................................... 41 
5.3.1  Out-of-plane angle in Case 3 ........................................................................................ 42 
5.3.2  Results from geometric approach for Case 3 ............................................................... 42 

5.4 Improvement study ................................................................................................................ 44 
5.4.1  Results from improvement study ................................................................................. 45 

 
6  Conclusion ........................................................................................................................................ 47 

6.1 Future work ........................................................................................................................... 49 
 
    References ........................................................................................................................................ 51 
 
 
    Appendix A: Test Report 

    Appendix B: Finite element results for Case 1  

    Appendix C: Finite element results for Case 2 

    Appendix D: Result from Geomtric Approach for Case 3 

 
  



xi 
 

 
 
List of Figures 
 
Figure 2.1 : Field layout with subsea template and GRP covers, (Highcomp, 2013). ............................ 3 
Figure 2.2 : Lift setup through splash zone. ............................................................................................ 4 
Figure 2.3 : Test setup for Case 1. ........................................................................................................... 4 
Figure 2.4 : Lift point on top of cover. .................................................................................................... 5 
Figure 2.5 : Out-of-plane test arrangement. ............................................................................................ 5 
Figure 2.6 : Lift point on side of the cover. ............................................................................................. 5 
Figure 2.7 : Case 3 test arrangement. ...................................................................................................... 5 
Figure 2.8 : Size of lifting point. ............................................................................................................. 6 
 
Figure 3.1 : 3D stress illustration (Wikipedia, 2013). ........................................................................... 10 
Figure 3.2 : Simple states of stress used to define lamina engineering constants (Gibson, 1994). ....... 11 
Figure 3.3 : Matrix cracking failure modes (Lauterbach et al., 2009). .................................................. 16 
Figure 3.4 : Finite element results of first ply failure for GRP cover during a four-point lift. .............. 20 
Figure 3.5 : Progressive failure analysis scheme (Perillo et al., 2011). ................................................. 21 
Figure 3.6 : Principle for progressive failure analysis with finite element method (Milligan, 2012). .. 22 
 
Figure 4.1 : Hydraulic tensile bench with the Case 3 test setup. ........................................................... 26 
Figure 4.2 : All the test results presented in a graph. ............................................................................ 27 
Figure 4.3 : Ultimate failure mechanism for the lifting point in the three test setups. .......................... 27 
 
Figure 5.1 : Finite element model of Case 1. ........................................................................................ 30 
Figure 5.2 : Puck failure criterion with gradual degradation for 30mm laminate. ................................ 31 
Figure 5.3 : Finite element results of Case 1. ........................................................................................ 32 
Figure 5.4 : Damage propagation in the FE analysis for Case 1. .......................................................... 33 
Figure 5.5 : Overview over the mid-section in the lifting point. ........................................................... 35 
Figure 5.6 : Finite element analysis model for mid-section. ................................................................. 36 
Figure 5.7 : Hashin failure criterion with gradual degradation for 30mm laminate. ............................. 37 
Figure 5.8 : Finite element analysis results of Case 2. .......................................................................... 38 
Figure 5.9 : Damage propagation in FE analysis of Case 2. ................................................................. 39 
Figure 5.10 : Tested failure of Case 2. .................................................................................................. 40 
Figure 5.11 : Analysed failure of Case 2. .............................................................................................. 40 
Figure 5.12 : An overview of the geometric approach in Case 3. ......................................................... 41 
Figure 5.13 : Capacity function for 20mm lifting point as a function of out-of-plane angle. ............... 43 
Figure 5.14 : Capacity function for 30mm lifting point as a function of out-of-plane angle. ............... 43 
Figure 5.15 : Capacity function for 40mm lifting point as a function of out-of-plane angle. ............... 44 
Figure 5.16 : Puck gradual 30mm with new lay-up. ............................................................................. 45 
Figure 5.17 : Puck gradual 30mm out-of-plane with new lay-up. ......................................................... 46 

  



xii 
 

 
 
List of Tables 
 
Table 2.14: Fiber dominated ply properties ............................................................................................ 6 
Table 2.24: Matrix dominated ply properties .......................................................................................... 6 
Table 2.34: Through thickness ply properties ......................................................................................... 7 
 
Table 3.14: Puck recommended parameters (Perillo et al., 2011). ........................................................ 19 
 
Table 4.14: Tested break load for all cases. .......................................................................................... 26 
 
Table 5.14: Finite element analysis settings for Case 2. ....................................................................... 31 
Table 5.24: Finite element analysis results of break load for Case 1. ................................................... 32 
Table 5.34: Finite element analysis settings for Case 2. ....................................................................... 37 
Table 5.44: Finite element analysis results of break load for Case 2. ................................................... 38 
Table 5.54: Calculated angle from the experimental tests. .................................................................... 42 
Table 5.64: Results for a representation of angles in the range of 35 to 45 degrees. ............................ 42 
Table 5.74: Finite element analysis settings for improvement study. ................................................... 45 

 
 



1 
 

 
 
Chapter 1 
 
Introduction 
 
The increase in the development of fields in the oil and gas industry on the Norwegian Continental 
Shelf has led to a large increase in subsea installations in recent decades. Many of the underwater 
structures that process and transport oil, need protection from dropped objects and from being hit by 
fishing gear. In order to protect this equipment, a shell structure made of glass-reinforced plastic 
(GRP) has been developed, often abbreviated to GRP cover. Typical design criteria for GRP covers 
are the installation loads, trawler load, dropped objects and forces from currents and waves. 
Installation loads are associated with lifting. The covers will be lifted during fabrication, transportation 
and reposition prior to the installation. Installation includes offshore lift, deployment through the 
splash zone, wet storing and final installation on the seabed. The covers have reinforced lifting holes, 
(also made of GRP). The soft sling used in the lifting operation is attached through the holes, forming 
an anchor point. The local reinforced holes are often called lifting points, and are a central part of the 
GRP cover in terms of installation.  
 
To this day, simplified hand calculations based on experimental failure values have been used to verify 
the lifting capacity of the lifting points. The simplified hand calculations do not take account for 
bending moments which occurs in some lifting scenarios. In order to take account for the uncertainty 
in the simplified method, a material factor of 2.0 is used (meaning the capacity is reduced by 50%). 
The purpose of this thesis is to use finite element method (FEM) to analyze the behavior of the 
material during lifting and to ensure lifting capacities, in addition, seek to obtain more accurate results. 
In the present work, a full-sized lifting point is studied with FEM software called MSC Nastran. The 
results have been compared with experimental tests. The tests have been performed in collaboration 
with Highcomp (GRP cover manufacturer) at Westcon Løfteteknikks hydraulic tensile bench in 
Haugesund. Based on the results, opportunities for improving the lifting points used in GRP cover 
design have also been investigated. 
 
The benefits of the GRP cover are that it is lightweight, strong and corrosion-resistant. All these 
features make it suitable for use as protection for underwater equipment. It has led to an increase in the 
number of GRP covers. Subsea 7 alone designed over 100 covers in 2012. At the same time, virtually 
all new projects include GRP cover design. There is thus a clear desire and need to analyze the lifting 
points with more accuracy and understand the behavior of the material to a greater extent. 
 
The thesis is divided into chapters. Chapter 2 provides a background of the GRP cover and the lifting 
scenarios. Chapter 3 consists of relevant theory for the analysis. Chapter 4 addresses the experimental 
tests performed, while Chapter 5 includes analyses of the lifting point. The conclusion is presented in 
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Chapter 6. All the results from the analyses are presented in Appendixes B, C and D along with the 
test report in Appendix A.  
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Chapter 2 
 
Background 
 
In the offshore subsea market, protection covers made of GRP are interesting because of their 
advantages over conventional steel covers. The main advantages are the low weight and the 
possibility to stack covers on top of each other. Because of the stacking, it is possible to transport a 
higher number of covers on each trip. Further, because of the low weight, the protection covers are 
easier to handle, and it is possible to use smaller vessels for installation (Highcomp, 2013). In 
addition, the glass reinforced plastic is corrosion proof, which is a great advantage when the covers 
are designed to stay on the seabed for many years under harsh conditions .GRP covers are used to 
protect small templates with subsea equipment, spools, pipelines and flowlines.  
 

 
Figure 2.1: Field layout with subsea template and GRP covers, (Highcomp, 2013). 

 

The general requirements for GRP covers on the Norwegian Continental Shelf are: 
 

• Withstand permanent loads such as self- weight, on land and submerged. General 
structural design should be according to NORSOK N-001 Structural design. 

 
• Covers shall sustain installation loads in accordance with DNV Rules for Planning and 

Execution of Marine Operations. It involves being able to withstand lifting during 
fabrication, transfer and installation. Installation includes offshore lift, deployment trough 
splash zone and the final position on the seabed. 
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• Covers shall withstand trawling load in accordance with NORSOK U-001.  In addition, try 
to design the covers to be snag-free, which will reduce the forces from trawling loads 
significantly. 

 
• Protection covers shall be stable in a one-year-return-period storm prior to rock-dump 

stabilization. During operation, the rock dumped covers shall be stable in a 100- year return 
period storm. (Rock dumping to provide on bottom stability check against trawling load and 
severe weather condition.) 

 
• Covers shall withstand dropped objects (Impact load) in accordance with NORSOK U-

001 
 
 
In order to obtain the lifting capacities for the lifting points used in the GRP cover, the tests and 
analyses need to represent reality in a satisfactory manner. Concentration is on the most common 
lifting situations, four-point lift and two-point lift. The locations of the lifting points are either on the 
sidewalls or on top of the cover, leading to a total of three different lifting situations regarding the 
lifting points, i.e. Case 1, Case 2 and Case 3.  
 

2.1 Description of load scenario for Case 1 

Prior to installation through the splash zone, the GRP cover is lifted off the ground from a horizontal 
to an upright position. This is done in order to reduce the hydrodynamic loads and the risk of slack in 
the slings. Two of the lifting points in the highest position will take the entire load. For this upright 
lifting position, the lifting point has to take the force horizontally in the local point in the test 
arrangement (see Figure 2.3). The test setup is basically a lift point that has been placed in a steel test 
arrangement fixed to a point. Further, a sling is attached through the holes and the load is applied to 
the sling gradually. The lifting points used in the tests are full-size models of the reinforced lift points 
used in GRP covers.  

 

  
 

 
 

Figure 2.2: Lift setup through splash zone.         Figure 2.3: Test setup for Case 1. 
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2.2 Description of load scenario for Case 2 

A horizontal lift is performed when the covers are weighed, loaded on to the vessel and placed into the 
final position on the seabed. In some instances for light covers, the lifting points are placed on top of 
the cover, as shown in Figure 2.4. The lifting force is applied directly out-of-plane in relation to the 
lifting point, which is expected to be the weakest direction of the laminate based on the material 
properties. The out-of-plane loads will cause the lifting points to encounter bending moment. Since the 
load is acting in the weakest direction compared to the other lifting situations, it is only applicable to 
light and relatively small covers. The test setup for the out-of-plane test is shown in Figure 2.5. The 
steel arrangement holds the lifting point in place while being fixed to a point. A sling is attached 
through the holes and is connected to the hydraulic tensile bench, which gradually applies the load 
through the sling. With this specific test setup, the lifting point will encounter pure out-of-plane loads. 
 

 

 

 
Figure 2.4: Lift point on top of cover.  Figure 2.5: Out-of-plane test arrangement. 

2.3 Description of load scenario for Case 3 

The most common lifting situation for horizontal lifting is a four-point lift situation. A horizontal lift is 
performed when the covers are weighed, loaded on to the vessel and placed into the final position on 
the seabed. The total weight of the GRP cover acts on the lifting points (see Figure 2.6). The load is 
working slightly out-of-plane in relation to the material plane. To represent the same situation, the test 
setup for Case 3 is arranged in a similar way, meaning that the lifting point will encounter some out-
of-plane load. Theoretically, the setup will cause an angle of around 45 degrees with the material 
plane. This setup is shown in Figure 2.7. 
 

 

 

 
Figure 2.6: Lift point on side of the cover.  Figure 2.7: Case 3 test arrangement. 
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2.4 Lifting point used in GRP cover design 

The lifting point is designed with two holes that form the basis for attaching a sling. The lifting point 
is made of the same material as the rest of the cover and appears as a local increase in thickness. The 
fabrication of the GRP cover starts with creating a mold, and then the main thickness is achieved by 
adding layers on the mold. Finally, the areas surrounding the lifting holes are reinforced with 
additional layers. The size of the lifting point is shown in Figure 2.8. 

 

 
Figure 2.8: Size of lifting point. 

 
The laminate lay-up used in the GRP covers is based on the global forces from the corresponding load 
cases. The occurring force moves the stiffest route across a structure, and for GRP cover the transverse 
direction is the most critical (shortest direction). Based on this, a layer consists of 70% of fibers in 
transverse direction (0 degree), 25% of fibers in the longitudinal direction (90 degrees), with the last 
5% consisting of chopped strand material (small fibers in random positions), which provides better 
adhesion between the layers. Both the main body thickness and the reinforced lifting holes consist of 
this specific lay-up sequence. 
 
The material laminates were prepared at Highcomp AS and sent to Reichhold AS for testing.  The 
material consists of fiber reinforcement of Formax FGE 394; 0 / 90 degree, with density 1902g/m2, 
and polyester type PLT 480-622. The conducted material properties from the material tests are given 
in Tables 2.1, 2.2 and 2.3. 
 

Table 2.1: Fiber dominated ply properties 

Parameter Value Unit Explanation 
E1 28.7 GPa Modulus of elasticity in the main fiber direction 
Xt 660 MPa Tension stress at break in the main fiber direction 
Xc 460 MPa Compressive stress at break in the main fiber direction 

 
 

Table 2.2: Matrix dominated ply properties 

Parameter Value Unit Explanation 
E2 9.00 GPa Modulus of elasticity transverse to the main fiber direction 
G12 3.00 GPa Shear modulus in the ply plane 
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ν12 0.26  Ply major Poisson’s ratio 
Yt 34.0 MPa Tension stress at break normal to the main fiber direction 
Yc 50.0 MPa Compressive stress at break normal to the main fiber direction 
S12 26.0 MPa Shear stress in ply plane at failure 

 
 

Table 2.3: Through thickness ply properties 

Parameter Value Unit Explanation 
E3 9.00 GPa Modulus of elasticity normal to the fiber plane 
G13 3.00 GPa Shear modulus normal to the fiber plane, incl. fiber direction. 
G23 2.00 GPa Shear modulus normal to fiber plane, normal to the fiber direction 
ν13 0.26  Poisson’s ratio normal to fiber plane, incl. fiber direction 
ν23 0.48  Poisson’s ratio normal to fiber plane, normal to the fiber direction 
Zt 13.0 MPa Tension stress at break normal to fiber plane 
Zc 61.0 MPa Compression stress at break normal to fiber plane 
S13 14.0 MPa Shear stress at failure normal to fiber plane, incl. fiber direction 
S23 14.0 MPa Shear stress at failure normal to fiber plane, normal to fiber direction 
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Chapter 3 
 
Theory 
 
There are three different ways perform analysis of fiber reinforced plastic (FRP) materials: the micro-
scale, meso-scale and macro-scale approaches. Each method has its own area of application and 
complexity. The micro-scale approach provides the most detailed information describing the micro 
structure of the composite. It involves the size, geometry and location of the fibers within the layer. It 
is possible to use the micro-scale approach to calculate the mechanical properties of the material. 
However, the material properties can also be obtained by testing (ANSYS, 2012). 
 
The meso-scale approach is used to analyze strains and stresses. In this method the composite material 
is regarded as many layers with specified material properties. Stresses and strains can be checked 
against chosen failure criteria, and it is possible to estimate the strength of the material. This method is 
essential for this thesis, forming the foundation for stress analysis.  
 
The last method is the macro-scale, in which the composite material is regarded as one big layer with 
given material properties. It is not possible to perform stress analysis for this method; however, it can 
be used to examine the deflection, buckling loads and vibration (ANSYS, 2012). 
 
This chapter is divided into two main parts. The first section consists of the mechanics of orthotropic 
materials, which explains how the lamina material stiffness is obtained. The second part is about the 
failure analysis, including the development and theory behind the failure. 
 
 

3.1 Mechanics of orthotropic materials 

In reality the fiber reinforced material has different properties at any given point and is called 
heterogeneous material. Heterogeneous materials are difficult to analyze because of all the differences 
in the material, but we can simplify this and say that the material properties are the average value at all 
points, and then the material characteristic becomes the same as homogenous material (the same 
properties at any given point). 

 
Fibers have different properties parallel with the fibers compared to the transverse direction (normal to 
the fibers). The result of this is that the material has different properties in two main directions and is 
called an orthotropic material. 
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3.2 Cartesian coordinate system 

In the coordinate system there are three planes that define the three main directions, X1, X2 and X3. In 
addition, at each plane there are three stresses, σij. The first number in the stress notation (i) 
corresponds to the direction; normal of the plane it is working on. The second notation for the stress (j) 
corresponds to the direction of the stress. An overview of the coordinate system in a 3D stress 
situation is shown in Figure 3.1. 
 

 
Figure 3.1: 3D stress illustration (Wikipedia, 2013). 

 

3.2.1 Stress 

The stress is defined as the force per unit area acting on the plane passing the point. Stress has the 
designation N/mm2 or MPa. The stress tensor can be expressed as a matrix (Barbero, 2008). An 
alternative notation, which is often used in the mechanics of the material, is also shown in Equation 
(3.1): 
 
 

[𝜎] = �
𝜎11 𝜎12 𝜎13
𝜎12 𝜎22 𝜎23
𝜎13 𝜎23 𝜎33

� = �
𝜎1 𝜏12 𝜏31
𝜏12 𝜎2 𝜏23
𝜏31 𝜏23 𝜎3

� 
 

(3.1) 

 
3.2.2 Strain 

The engineering strain is defined as a ratio of total deformation to the initial dimension of the material 
body in which the forces are applied (Wikipedia, 2013). When the material body is stretched, the strain 
is positive, and during compression the notation is negative. In other words, the strain is a change of 
length divided by the original length in the material direction.  The strain tensor can be expressed as a 
matrix, as in Equation (3.2) (Barbero, 2008). In the mechanics of the material, the alternative 
expression is also shown in this equation, which is used further in the thesis.  
 

 
[𝜀] = �

𝜀11 𝜀12 𝜀13
𝜀12 𝜀22 𝜀23
𝜀13 𝜀23 𝜀33

� = �
𝜀1 𝛾12 𝛾31
𝛾12 𝜀2 𝛾23
𝛾31 𝛾23 𝜀3

� 

 

 
(3.2) 
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3.2.3 Hooke’s law 

One of the key assumptions for the material mechanics is that it follows Hooke’s Law. Hooke’s law 
describes the relationship between strain and stress in linear elasticity. For small strain, the law states 
that the stress is proportional to the strain. In the simplest form, Hooke’s law can be expressed as in 
Equation (3.3) for the case of a stress applied unidirectional to an isotropic solid (Chawla, 1987). 
 
 𝜎 = 𝜀 ∙ 𝐸 (3.3) 
 
For an orthotropic material in 3D, Hooke’s law is more complex. The relationship between the strain 
and stress is expressed in Equations (3.4) and (3.5).For the 3D state for an orthotropic material, there 
are nine constants that need to be described. A compliance matrix gives the relationship between the 
strain and stress and is expressed as (Barbero, 2008): 
 
 

⎩
⎪
⎨

⎪
⎧
𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡
 𝑆11 𝑆12 𝑆13
 𝑆12 𝑆22 𝑆23
 𝑆13 𝑆23 𝑆33

066 066 066
066 066 066
066 066 066

  06 06 066
  06 06 066
06 06  066

𝑆44 066 066
066 𝑆55 066
066 066 𝑆66⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12⎭

⎪
⎬

⎪
⎫

 

 
 

(3.4) 

 
 

  

The inverted compliance matrix [S] = [C]-1 is called the stiffness matrix for the lamina and is 
expressed as: 
 
 

⎩
⎪
⎨

⎪
⎧
𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡
 𝐶11 𝐶12 𝐶13
 𝐶12 𝐶22 𝐶23
 𝐶13 𝐶23 𝐶33

066 066 066
066 066 066
066 066 066

  06 06 066
  06 06 066
06 06   066

𝐶44 066 066
066 𝐶55 066
066 066 𝐶66⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12⎭

⎪
⎬

⎪
⎫

 

 

 
 

(3.5) 

3.2.4 Engineering constants 

In order to describe the orthotropic material, the nine constants need to be described as the engineering 
constants E1, E2, E3, ν12, ν13, ν23, G12, G13, and G23. Both Young’s modulus E and Poisson’s ratio ν are 
results from tensile testing, while the shear modulus G is measured from a shear test.  Young’s 
modulus is the ratio between applied stress and strain in the same direction, while Poisson’s ratio is the 
ratio between longitudinal and transverse strain (Chawla, 1987). 
 

 
   a)       b)                c) 

 
Figure 3.2: Simple states of stress used to define lamina engineering constants (Gibson, 1994). 
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Simple states of stress are used to define lamina engineering constants. The definition of the 
engineering constants is based on Hooke’s Law described in the previous section. By considering a 
uniaxial tensile test with an applied normal stress σ1 along the fiber direction (see Figure 3.2 a) and 
assuming all other stresses to be equal to zero (Equation (3.9)), it has been experimentally observed 
that the engineering constants associated with 123 can be expressed empirically (Gibson, 1994). These 
connections are expressed in Equations (3.6), (3.7) and (3.8). 
 

 
 𝜀1 =

𝜎1
𝐸1

 (3.6) 

 
 𝜀2 = −𝜈21𝜀1 =  −𝜈21

𝜎1
𝐸1

 (3.7) 

 
 𝜀3 = −𝜈13𝜀1 =  −𝜈13

𝜎1
𝐸1

 (3.8) 

 

 𝛾12 = 𝛾23 = 𝛾13 = 0 (3.9) 
 

 
 
Considering a similar experiment with a normal stress σ2acting normal to the fiber direction (Figure 
3.2 b) and assuming all other stresses are equal to zero (Equation 3.13), the experimental observation 
states that the resulting strain normal to the fiber can be expressed as in Equations (3.10), (3.11) and 
(3.12) (Gibson, 1994). 
 
 
 𝜀2 =

𝜎2
𝐸2

 (3.10) 

 
 𝜀1 = −𝜈21𝜀2 =  −𝜈21

𝜎2
𝐸2

 (3.11) 

 
 𝜀3 = −𝜈23𝜀1 =  −𝜈23

𝜎2
𝐸2

 (3.12) 

 
 𝛾12 = 𝛾23 = 𝛾13 = 0 (3.13) 
 
 
In addition, considering a pure shear test, where σ12=𝜏12 is applied in the 12-plane of the material 
(Figure 3.2 c), the experimental observation shows that the resulting strain can be expressed as in 
Equation (3.14),and assuming all other stresses are equal to zero (Equation 3.15) (Gibson, 1994). 
 
 
 𝛾12 =

𝜏12
𝐺12

 (3.14) 

 
 𝜀1 = 𝜀2 = 𝜀3 = 𝛾13 = 𝛾23 = 0 (3.15) 
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Based on the previous equations for the general 3D state of stress, consisting of all normal and shear 
stresses that are associated with the three axes as shown in Figure 3.1, the resulting set of equations 
can be expressed in the compliance matrix [S] (Eq.(3.16)). The compliance matrix gives the 
relationship between the strain and stress for a 3D orthotropic material.  
 
Compliance matrix [S] which gives the relationship between stress and strain 𝜀 = [S]σ 
 
 
 

[𝑆] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸1

−
𝜈21
𝐸2

−
𝜈31
𝐸3

−
𝜈12
𝐸1

1
𝐸2

−
𝜈31
𝐸3

−
𝜈31
𝐸1

−
𝜈23
𝐸2

1
𝐸3

0    0    0

0    0    0

0    0    0

0       0       0

0       0       0

0       0       0

1
𝐺23

    0    0

0
1
𝐺31

   0

0    0
1
𝐺12⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 
 
 
 

(3.16) 

 
 
To compute the failure analysis, the stiffness of the material is of great importance. The stiffness of the 
orthotropic material can be computed as the inverted compliance matrix as shown in Equation (3.17). 
The stiffness matrix [C] is known as the lamina stiffness matrix and is expressed in Equation (3.18) 
(Barbero, 2008).  
 
 σ = [S]-1𝜀equals σ = [C]𝜀 (3.17) 
 
 
The stiffness matrix [C] gives the relationship between stress and strain σ = [C] 
 
 
 

[𝐶] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 − 𝜈23𝜈32
𝐸2𝐸3𝛥

𝜈12 + 𝜈32𝜈13
𝐸1𝐸3𝛥

𝜈13 + 𝜈12𝜈23
𝐸1𝐸2𝛥

𝜈12 + 𝜈32𝜈13
𝐸1𝐸3𝛥

1 − 𝜈13𝜈31
𝐸1𝐸3𝛥

𝜈23 + 𝜈21𝜈13
𝐸1𝐸2𝛥

𝜈13 + 𝜈12𝜈23
𝐸1𝐸2𝛥

𝜈23 + 𝜈21𝜈13
𝐸1𝐸2𝛥

1 − 𝜈12𝜈21
𝐸1𝐸2𝛥

0       0       0 

0     0     0 

0       0       0 

0                    0                   0

0       0       0

0       0       0

𝐺23     0    0

0 𝐺31    0

0    0 𝐺12 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 
 
 
 
 

(3.18) 

Where: 
 
 𝛥 =  

1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈31𝜈13 − 2𝜈21𝜈32𝜈13
𝐸1𝐸3𝐸3

 
(3.19) 
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3.2.5 Plane stress 

Often it is assumed that the 3rd direction is equal to zero. This assumption is valid when the length and 
width of a structure is a lot greater than the thickness and the load is not applied in the thickness 
direction, which is often the case for most composite structures. These structures can often be 
characterized as a shell, (Okutan, 2001). 
 
In this thesis both situations occur. If there is a load applied in the thickness direction it cannot be 
assumed to be plane stress. However, if the load is acting in-plane of the material and the thickness is 
relatively small compared to the width and length of the structure, this assumption is valid. When the 
3rd direction is assumed to be equal to zero, the stresses in Equation (3.20) are equal to zero. 
 
 
 𝜎3 = 𝜏23 = 𝜏31 = 0 

 
 

(3.20) 

Hence the compliance matrix [S] is reduced as shown in Equation (3.21). 
 
 
 

[𝑆]𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸1

−
𝜈21
𝐸2

0

−
𝜈12
𝐸1

1
𝐸2

0

0 0
1
𝐺12⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 

(3.21) 
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3.3 Failure analysis 

By examining failure, one can estimate how much the material can withstand and how the failure 
occurs. A very important aspect of composite material used in structural applications is to understand 
the failure mode. The analysis models should be able to predict where the failure takes place and how 
it evolves. For fiber reinforced composites, the main failure modes are described below based on 
Pinho et al. (2005): 
 
Fiber tensile failure can release large amounts of energy and can act as more explosive, which 
typically leads to a catastrophic failure. 
 
Fiber compression failure is a complex failure mode which is affected by matrix shear behavior and 
material imperfection such as voids and fiber misalignment, which can cause fiber micro-buckling. 
 
From the matrix tensile failure mode, normally some fiber splitting at the fracture surface can be 
observed, and is typically normal to the load direction.  
 
Matrix compression failure occurs at an angle with the applied load; this is more accurately a shear 
matrix failure and can be seen from the shear nature of the failure process. 
 
Composite materials are made of lamina stacked together to create a laminate. Delamination failure 
mode is when the lamina tends to split from the laminate. 
 

3.3.1 Failure criteria 

Failure criteria are used to explain whether a layer (ply) has failed due to the applied loads. In 
composite material design, there are numerous failure criteria available. In this thesis, two failure 
criteria were selected: the Puck failure criterion and the Hashin failure criterion. Both criteria have the 
ability to take into account the 3Delement, which includes the out-of-plane components of stress. In 
addition, a major feature of both these criteria is that they can distinguish between fiber and matrix 
failure. With this feature, it is possible to know the failure mode of the structure, and it is easier to 
have control over the failure propagation, including more control over the degradation of the material 
after the first ply failure (discussed later in Section 3.4.1). 
 
For composite structures, failure criteria based on strength are commonly used to predict failure. Many 
criteria have been derived based on stresses and measurements from experiments to predict failure 
(semi-empirical formulas). Hashin and Puck have been credited for creating failure criteria based on 
the failure mechanism (Mohite, 2012). 
 
The difference between Hashin and Puck in the matrix cracking is that Hashin only distinguishes 
between transverse tension (Mode A) and compression (Mode B), while Puck additionally checks the 
possibility of an inclined fracture plane (Mode C) (Mohite, 2012). All three modes are shown in 
Figure 3.3. 
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Figure 3.3: Matrix cracking failure modes (Lauterbach et al., 2009). 

 
The allowable strength for the lamina is defined as X, Y, and Z, respectively in the three main 
directions 1, 2 and 3. There are limits both for tensile and compression denoted by t, and c. In addition, 
the allowable shear strength is denoted by S12, S13, and S23. 
 

Xt,Xc Respectively allowable tensile and compression strength in 1st direction N/mm2 
Yt,Yc Respectively allowable tensile and compression strength in 2nd direction N/mm2 
Zt,Zc Respectively allowable tensile and compression strength in 3rd direction N/mm2 
S12 Allowable shear strength in the 12-plane N/mm2 
S13 Allowable shear strength in the 13 -plane N/mm2 
S23 Allowable shear strength in the 23-plane N/mm2 

 

3.3.2 Puck failure criterion 

One of the reasons for the choice of the puck criteria is that it can distinguish between fiber failures 
(FF) and inter-fiber failure (IFF). The inter-fiber failure is essentially matrix cracking. The criteria are 
divided into two parts for the situation with 3D problems and for that withn2D plane stress problems. 
For plane stress there are three modes of fracture. Mode A is a check for transverse tension, Mode B a 
test for compression and the last Mode C is a check for the possibility of an inclined fracture plane. 
For 3D problems, the criterion is divided into fiber failure (FF) and inter-fiber failure (IFF) (Barbero, 
2008). 
 
 
The fiber fracture criterion for 2D and 3D failure analysis is described in Equation (3.22); refer to 
Knops (2008). 
 
 

𝑓𝐸,𝐹𝐹 =
1

±𝑋𝑡,𝑐
1 �𝜎1 − �𝜈21 − 𝜈21𝑚𝑜𝑓

𝐸1
𝐸1𝑓

� (𝜎2 + 𝜎3)�  𝑤𝑖𝑡ℎ �+𝑋𝑡
𝑡  𝑓𝑜𝑟  𝑣𝑎𝑙𝑢𝑒 ≥ 0

−𝑋𝑐𝑐  𝑓𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 < 0 
(3.22) 

 
 
where: 

Mof Stress magnification factor, typically 1.3 for glass fiber (Perillo et al., 2011) 
E1 Longitudinal Young’s Modulus of the lamina parallel to the fibers N/mm2 
E1f Longitudinal Young’s Modulus of the fibers N/mm2 
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2D Puck inter-fiber criterion  
 
The failure criterion for Mode A is active when there is positive transverse stress, and this is defined 
as in Equation (3.23); refer to Barbero (2008). 
 
 

𝑓𝐼𝐹𝐹,𝐴 = ��
𝜎12
𝑆12

�
2

+ �1 − 𝑝6𝑡
𝑌𝑡
𝑆12

�
2
�
𝜎2
𝑌𝑡
�
2

+ 𝑝6𝑡
𝜎2
𝑆12

        𝑖𝑓 𝜎2 ≥ 0 
 

(3.23) 

 
where: 

p6t Fitting parameter, 0.3 for glass fiber (Barbero, 2008)  
p6c Fitting parameter, 0.2 for glass fiber (Barbero, 2008)  
 

 
The failure criteria for Mode B and Mode C are both active under negative transverse stress. What 
determines the choice of mode depends on the relationship between the in-plane shear stress and the 
transversal shear stress, S1A/S2A (Barbero, 2008). 
 

 𝑆1𝐴
𝑆2𝐴

 (3.24) 

 
 
The relationship in Equation (3.24) is further described by Equations (3.25), (3.26) and (3.27). 
 
 

𝑆1𝐴 =
𝑆12

2𝑝6𝑐
��1 + 2𝑝6𝑐

𝑌𝑐
𝑆12

− 1� 
 

(3.25) 

 
 𝑆2𝐴 = 𝑆12�1 + 2𝑝2𝑐 

(3.26) 

 
 𝑝2𝑐 = 𝑝6𝑐

𝑆1𝐴
𝑆12

 (3.27) 

 
 
The failure criterion for Mode B is defined in Equation (3.28); refer to Barbero (2008). 
 
 

𝑓𝐼𝐹𝐹,𝐵 =
1
𝑆12

��𝜎122 + (𝑝6𝑐𝜎2)2 + 𝑝6𝑐𝜎2�      𝑖𝑓 �
𝜎2 < 0
𝜎2
𝜎12

≤
𝑆1𝐴
𝑆2𝐴

 
 

(3.28) 

 
The failure criterion for Mode C is defined in Equation (3.29); refer to Barbero (2008). 
 
 

𝑓𝐼𝐹𝐹,𝐶 =
𝑌𝐶
𝜎2
��

𝜎12
2(1 + 𝑝2𝑐)𝑆12

�
2

+ �
𝜎2
𝑌𝐶
�
2
�      𝑖𝑓 �

𝜎2 < 0
𝜎2
𝜎12

≥
𝑆1𝐴
𝑆2𝐴

 
 

(3.29) 
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3D Puck Failure Criterion 
 
It is assumed that fracture is only created by the stresses acting on the fracture plane. The working 
normal and shear stress on the fracture plane can be described by tensor transformation given in 
Equations (3.30)-(3.32); refer to Deuschle (2010). 
 
 𝜎𝑛(𝜃) =  𝜎2𝑐𝑜𝑠2(𝜃) + 𝜎3𝑠𝑖𝑛2(𝜃) + 2𝜏23𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃) (3.30) 
 
 𝜏𝑛𝑡(𝜃) =  (𝜎3 − 𝜎2)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃) + 𝜏23�𝑐𝑜𝑠2(𝜃) − 𝑠𝑖𝑛2(𝜃)� (3.31) 
 
 𝜏𝑛𝑙(𝜃) = 𝜏31 𝑠𝑖𝑛(𝜃) + 𝜏21 𝑐𝑜𝑠(𝜃) (3.32) 
 
where: 

θ Angle between the fracture plane and the material plane Degree 
σn(θ) Stress normal to the fracture plane N/mm2 
𝜏nl (θ) Shear stresses in the fracture plane, parallel to the fiber direction N/mm2 

𝜏nt (θ) Shear stresses in the fracture plane, perpendicular to the fiber direction N/mm2 
 
 
The inter-fiber failure criterion is only a function of the stresses acting on the fracture plane (Perillo et 
al., 2011): 
 
 
 

𝑓𝐼𝐹𝐹 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧���

1
𝑌𝑡,𝑐

−
𝑃⊥𝜓+

𝑆23
�𝜎𝑛(𝜃)�

2

+ �
𝜏𝑛𝑡(𝜃)
𝑆12

�
2

+ �
𝜏𝑛𝑙(𝜃)
𝑆13

�
2

+
𝑃⊥𝜓+

𝑆23
𝜎𝑛(𝜃)  𝑓𝑜𝑟 𝜎𝑛  ≥ 0 

��
𝜏𝑛𝑡(𝜃)
𝑆12

�
2

+ �
𝜏𝑛𝑙(𝜃)
𝑆13

�
2

��
𝑃⊥𝜓−

𝑆23
�𝜎𝑛(𝜃)�

2

+
𝑃⊥𝜓−

𝑆23
𝜎𝑛(𝜃)                  𝑓𝑜𝑟 𝜎𝑛  ≤ 0

 

 
 
 

(3.33) 

 
 
where: 

𝑃⊥𝜓+  slope parameter representing internal friction effects for tension  
𝑃⊥𝜓−  slope parameter representing internal friction effects for compression  

 
 
The connection between the slope parameters and the allowable stresses is given in Equations (3.34) 
and (3.35), and the angle connection in Equations (3.36) and (3.37). 
 
 𝑃⊥𝜓+

𝑆23
=
𝑃⊥⊥+

𝑆22
(𝑐𝑜𝑠 𝛼)2 +

𝑃⊥∥+

𝑆21
(𝑠𝑖𝑛 𝛼)2 

(3.34) 

 
 𝑃⊥𝜓−

𝑆23
=
𝑃⊥⊥−

𝑆22
(𝑐𝑜𝑠 𝛼)2 +

𝑃⊥∥−

𝑆21
(𝑠𝑖𝑛 𝛼)2 

(3.35) 
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(𝑐𝑜𝑠 𝛼)2 =

𝜏𝑛𝑡2(𝜃)
𝜏𝑛𝑡2(𝜃) + 𝜏𝑛𝑙2(𝜃) 

(3.36) 

 
 

(𝑠𝑖𝑛 𝛼)2 =
𝜏𝑛𝑙2(𝜃)

𝜏𝑛𝑡2(𝜃) + 𝜏𝑛𝑙2(𝜃) 
(3.37) 

 
 𝑆22 =

𝑌𝑐
2(1 + 𝑃⊥⊥− )

 (3.38) 

 
 
To be able to describe the equations above, additional parameters are needed to describe the failure 
criterion. Puck recommended some parameters, which are given in Table 3.1. 
 

Table 3.14: Puck recommended parameters (Perillo et al., 2011). 

Puck parameters for 
glass fiber  

𝑃⊥∥+  𝑃⊥∥−  𝑃⊥⊥+  𝑃⊥⊥−  
0.30 0.25 0.2-0.25 0.2-0.25 

 

3.3.3 Hashin failure criterion 

Hashin proposed a criterion based on experimental observations of tensile failure specimens in 1973.It 
implies that the criterion is created on a logical basis, rather than on micromechanics. The Hashin 
failure criterion also distinguishes between fiber failure and matrix cracking, and, following an 
improvement in 1998, the criterion could distinguish between tension and compression. The equation 
below is based on Pinho et al. (2005). 
 
Fiber failure 
Tensile fiber failure for σ1 ≥ 0 
 
 

�
𝜎1
𝑋𝑡
�
2

+
𝜏122 + 𝜏132

𝑆122
= �

≥ 1  𝑓𝑎𝑖𝑙𝑢𝑟𝑒      
< 1 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  

(3.39) 

 
Compressive fiber failure for σ1 < 0 
 
 

�
𝜎1
𝑋𝑐
�
2

= �
≥ 1  𝑓𝑎𝑖𝑙𝑢𝑟𝑒      
< 1 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  

(3.40) 

 
Matrix failure  
Tensile matrix failure for σ2 + σ3 > 0 
 
 (𝜎2 + 𝜎3)2

𝑌𝑡2
+
𝜏232 + 𝜎2𝜎3

𝑆232
+
𝜏122 + 𝜏132

𝑆122
= �

≥ 1  𝑓𝑎𝑖𝑙𝑢𝑟𝑒      
< 1 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  

(3.41) 

 
Compressive matrix failure for σ2 + σ3 < 0 
 
 

��
𝑌𝑐

2𝑆23
�
2
− 1�

𝜎2 + 𝜎3
𝑌𝑐

+
(𝜎2 + 𝜎3)2

4𝑆232
+
𝜏232 − 𝜎2𝜎3

𝑆232
+
𝜏122 + 𝜏132

𝑆122
= �

≥ 1  𝑓𝑎𝑖𝑙𝑢𝑟𝑒      
< 1 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  

(3.42) 
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Interlaminar failure 
Tensile interlaminar failure for σ3 > 0 

 
 

�
𝜎3
𝑍𝑡
�
2

= �
≥ 1  𝑓𝑎𝑖𝑙𝑢𝑟𝑒      
< 1 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  

(3.43) 

 
Compression interlaminar failure for σ3 < 0 
  
 

�
𝜎3
𝑍𝑐
�
2

= �
≥ 1  𝑓𝑎𝑖𝑙𝑢𝑟𝑒      
< 1 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  

(3.44) 

 

3.4 First ply failure 

A common method to predict strength of a laminate is first ply failure, which states that when the first 
ply failure occurs, then the structure has failed. It is a rather simple approach to laminate design. 
Firstly, the stresses in each lamina are determined by using FEM or Classical Laminate Theory (CLT). 
Secondly, the stresses in the lamina are checked against a failure criterion. There are many failure 
criteria available, such as Maximum Stress/Strain Criterion, Tsai-Hill, Tsai-Wu, Puck, Hashin, Cutze 
and many more. However, there is still to this day no universal agreement on which of the failure 
criteria is the best (Gibson, 1994).  
 
Like the Von Mises criterion for steel, the first ply failure is numerically easy to find because the 
criterion determine whether or not the lamina fails for any given situation. One of the assumptions is 
that the lamina is assumed to be a homogenized material; in other words, the matrix and fiber 
properties are often melted together. This can lead to inaccurate analytical results compared to actual 
response. However, recently there have been determined new failure criteria that address this problem 
by dividing the failure criteria into failure mode of fibers and failure mode of matrix. Such criteria are 
Hashin, Puck, and LARC02 (Milligan, 2012). 
 
For the lifting analysis, a global check is often performed with first ply failure; the advantage is fast 
and efficient analysis, and, in addition, it is considered to be conservative. With GRP covers, the 
structures are often relatively large and demand computer time to perform analysis. First ply failure 
tells something about when the failure starts, but it cannot provide any information on whether the 
whole structure will fail, or whether it can handle more load after the first ply failure occurs. In this 
thesis the focus is on how the material behaves after the first ply failure occurs; this will be discussed 
in the next section. 

 
Figure 3.4: Finite element results of first ply failure for GRP cover during a four-point lift. 
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3.5 Progressive ply failure 

Progressive failure analysis is basically an analysis of what happens to the material after first ply 
failure. In many situations the composite material can withstand further load after first ply failure. To 
be able to more accurately determine the strength estimates for the material, knowledge about what 
happens after first ply failure is of great importance (Milligan, 2012). 
 
The progressive analysis can be described in a few main steps (Perillo et al., 2011). 
 

1. Define material properties and boundary condition for the composite model. 
2. Calculate stresses and strains at every integration point for each element with FEA. 
3. Check the calculated stresses and strain against a specified failure criterion. 
4. In the case of failure at the integration points, the local material properties need to be 

degraded.  
 
The applied load/displacement is divided into small increments, and, step by step, the stress and strain 
are calculated for the increment and then checked against a failure criterion. In the case where a failure 
has occurred, then the local material properties will be degraded before the same increment is checked 
again, with the new local degraded material properties. This process will go on in a loop till the total 
load/displacement is achieved. The process is shown in a progressive failure analysis scheme in Figure 
3.5. 
 

 
Figure 3.5: Progressive failure analysis scheme (Perillo et al., 2011). 

 
For progressive damage modeling, the finite element analysis has shown great potential (Okutan, 
2001).In finite element analysis, the composite structure is meshed in appropriate elements. Then the 
material properties are assigned to the elements. Additionally, the applied loads cause the occurrence 
of stress and strains in the model. Both the material properties and the stress and strain values are 
divided into integration points of an element in the model.  
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Within an element, the integration point is a point at which the integrals are evaluated numerically. An 
important note is that displacements are most accurate at the nodes, while stresses and strains tend to 
be most accurate at the integration points (www.eng-tips.com, 2013). 
 
As mentioned, at each increment there is an FE stress analysis. The combination of stresses that causes 
the highest values will be identified and checked against the failure criterion. The element with the 
highest value will be the first to fail, and the material properties of the failed element will be reduced. 
The failed element with reduced stiffness will not be able to carry the same amount of load as the 
surrounding elements. In the finite element model, the internal loads will be redistributed into the full 
stiffness element surrounding the failed element. With an increase of load, this will cause new 
elements to fail, and the process continues until the structure cannot carry more loads. This will cause 
the complete model to fail, and thus we have ultimate failure. The progressive failure process is 
inherently non-linear because of the stiffness degradation, and the linear elasticity ends, (Milligan, 
2012). This principle is shown in Figure 3.6, demonstrating the progressive failure analysis for a 
composite cantilever beam. 
 

 
Figure 3.6: Principle for progressive failure analysis with finite element method (Milligan, 2012). 

 
In comparison, the first failed element that occurs in a progressive analysis is equal to the first ply 
failure. Often the surrounding elements can support more load before they fail, and thus the structure 
can withstand more load before ultimate failure. Therefore, in many instances, the first ply failure may 
be very conservative approximation of the actual strength in the composite structure. 
 
Important information in a progressive failure analysis is how the failure will propagate through the 
structure and figure out the highest load the structure can support before ultimate failure. This 

http://www.eng-tips.com/
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information would help to create better design, and to be able to optimize and create safe and secure 
structures in composite.  

3.5.1 Degradation material models 

An important part of the progressive analysis is how the material properties are reduced after a local 
failure. In recent years many degradation models have been proposed (Perillo et al., 2011). In this 
thesis two normal degradation models, gradual and immediate degradation are examined. The two 
models have a different approach to reducing the material properties of the composite material.  
Choice of the degradation should be dictated by material behavior. 
 
Puck and Hashin failure criteria can distinguish between fiber and matrix failure, with either tensile 
and compression failure, leading to a truly selective degradation. This means that if the matrix fails, 
the fiber properties do not change and it is the same if fiber failure occurs, the matrix properties do no 
change. According to the failure mode, the selective local material properties are reduced. The specific 
degradation is similar for both Hashin and Puck, since them both distinguish between matrix and fiber 
failure. If fiber failure is found, the Young’s Modulus E1 and E3 are reduced. If matrix failure is found, 
the Young’s Modulus E2 and the shear modulus G12, G23, G31 are reduced.  
 
In the FEA software MSC Nastran, additional factors are introduced to give further control. For 
instance, it can be selected to attain less degradation of matrix properties in compression than in 
tension. It is important to be aware that in FEA software the material properties cannot be set equal to 
zero for numerical reasons (convergence problems). Because of this issue, a reduction factor has been 
introduced. By multiplying the original value with the reduction factor, the material properties would 
degrade. 
 
 
Immediate stiffness degradation  
 
For the immediate degradation model, the material properties are instantaneously degraded 
approximate to zero after local failure. This model would fit the behavior of brittle materials (Perillo et 
al., 2011). When failure occurs, the respective material properties are degraded to a fraction of the 
original value. In MSC Nastran, the residual stiffness factor is defaulted to 1%. This means that the 
reduction is set to 1% of the original value.  
 
 
Gradual stiffness degradation  
 
For the gradual stiffness degradation, the material properties are reduced to the state when the highest 
failure index is just below one. The failure index is basically applied stress in the elements divided by 
the allowable stress. If the failure index is below one, the element is fine, while in the situation when 
the failure index is above one, the element is said to have failed. After a failure, the material properties 
are reduced so that the largest failure index is equal to one, which means that the properties will be 
reduced by a small amount each increment, and would therefore experience the properties gradually 
being degraded close to zero. The stiffness cannot be reduced to less than 1% because of numerical 
problems. 
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3.6 Finite element analysis software 

According to Offshore Standard DNV Composite components, the selection of finite elements 
software package shall be based on the following: 
 

1. Software availability 
2. Necessary model size 
3. Analysis option required 
4. Validated software for intended analysis. 

 
In addition important options should be available in the chosen FE analysis software for this thesis: 
 

1. Layered solid elements for orthotropic materials behavior 
2. Layered shell elements 
3. Options characterizing large displacements and large strain (for geometrically non-linear 

analysis) 
4. Material models describing the behavior of laminates beyond first ply failure. 
5. Robust incremental procedures for non-linear analysis 
 

 
MSC Nastran supports the entire list of requirements that the DNV standard for composite 
components demands, especially the key components for composite design, such as layered solid 
elements with orthotropic behavior, layered shell elements, large displacement/strain, and the ability to 
describe the behavior of laminates beyond first ply failure.   
 
In other words, the FEA software MSC Nastran is a complete tool for composite design. One of the 
key features for complex analysis is to handle 3D problems and progressive failure analysis. These 
features have recently been implemented in much of the commercial FEA software. MSC Nastran first 
supported progressive analysis in 2010, while ANSYS had that option in the latest version (14.5, 
2012). In other words, the implemented analysis tool is very new in the commercial analysis software. 
In addition, MSC Nastran allows the use of the latest failure criteria such as Hashin and Puck, which 
can also divide the failure between fiber and matrix cracking. The latest version of MSC Nastran also 
exists in a student version that is free for non-commercial use. Therefore, MSC Nastran a natural 
choice for the basis of finite element analysis in this thesis. 
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Chapter 4 
 
Experimental Tests 
4. Experimental Tests 
 
The DNV standard for composite components states that all test specimens shall represent the actual 
structure and that the production methods and materials shall be exactly the same. In addition, the load 
cases shall be tested in a realistic manner. The purpose of the load test of the glass reinforced plastic 
(GRP) lift point is to establish the breaking capacity. The lift points are tested to represent the reality 
in the best way possible, as described in chapter 2. The tests will help to document the lifting capacity 
of the local lift points. This will lead to lifting points being designed with less uncertainty than before. 
It will affect the design of lifting points for all new projects in Subsea 7. The different tests performed 
look at the normal lifting setups used for GRP cover during onshore, transport and installation. The 
full test report is presented in Appendix A. 
 
The goal of the tests is to have documentation of the tested ultimate failure capacity representing the 
real lifting situation. The result can confirm that the lift point is strong enough. In addition, the test 
data can be used for comparison of analytical solutions, such as finite element analysis results.  
 
The testing is divided into three test setups, representing the three most common lifting situations. The 
main situations are four-point and two-point lift. The four-point lift is used when lifting onshore, and 
the transfer of various means of transport. While the two-point lift is common when installing through 
the splash zone. Additionally, you have a situation where the lifting point is located on top of the 
cover, which in some cases are used for relative small and light covers. 
 
 

4.1 Experimental test setup 

The test arrangement is located in a hydraulic tensile bench at Westcon Løfteteknikk AS in 
Haugesund. The tensile bench has a maximum pull value of 60 tons. The test arrangement is fixed at 
one end, and the lift point is connected to the hydraulic pulling device with a sling, to represent the 
same situation it would expect during the actual lifting. The hydraulic pulling device is connected to 
measurement instrument. This instrument shows how much load is applied to the lift point at any 
given time during the test. In addition, the instrument has a separate marker which represents the 
maximum load the GRP point encountered during the test. The maximum load is the break load for the 
lift point involving ultimate failure. This maximum load is the key parameter attained from the 
different test setups.  
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Figure 4.1: Hydraulic tensile bench with the Case 3 test setup. 

 

4.2 Recommended improvements 

Firstly, it is recommended to carry out more tests of each individual thickness of each test setup. By 
doing several tests, it would be possible to see whether the results are consistent and collect 
characteristic values for each laminate thickness for each test performed. It would make the results 
more valuable for strength estimate and when comparing the result with analytical solutions. 
 
Secondly, the test setup worked well, but in some cases the sharp edges from the steel arrangement 
affected the sling. This was improved by using rubber between the steel and the strap. On another 
occasion it may be possible to improve the test setup so that the sling is not affected by the steel. 
 
The final recommended improvement is to perform the test in a hydraulic tensile bench with a higher 
maximum cap for tensile load. The 60-ton hydraulic bench did not cause ultimate failure in the 40mm 
laminate during testing for Case 1.  
 

4.3 Results from experimental tests 

Three tests were conducted with different setups, Case 1, Case 2 and Case 3. Case 1 is a representation 
of a lift through the splash zone, where GRP cover is in an upright vertical position. Case 2 is an 
approximation of a horizontal lift with the lifting point located on top of the cover, causing the lifting 
point to encounter out-of-plane loads. Case 3 is a representation of a horizontal four-point lift where 
the lifting point is placed on the side walls. 

 
Table 4.1: Tested break load for all cases. 

Test setup Break load [Te] for 
20mm laminate  

Break load [Te] for  
30mm laminate  

Break load [Te] for  
40mm laminate  

Case 1 45.0 56.0 N/A 
Case 2 12.0 19.0 22.0 
Case 3 20.0 28.0 38.0 

 
 
The results are presented in Table 4.1 and in Figure 4.2. The only value that was not found was for 
40mm laminate in Case 1. Given that the hydraulic tensile bench had a maximum pulling capacity of 
60 tons, the bench was unable to cause ultimate failure on the lifting in the Case 1 setup. 
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Figure 4.2: All the test results presented in a graph. 

 
The ultimate failure that occurred for Case 1 is shown in Figure 4.3a. The sling caused the mid-section 
of the GRP lift point (Section between the two holes) to break free in the in the in-plane direction. The 
failure began developing on the edges of the sling, progressing to ultimate failure from the initial 
failure at the edges. 
 
The ultimate failure that occurred for Case 2 is shown in Figure 4.3b. The sling caused the whole mid-
section of the GRP lift point (section between the two holes) to be ripped out in the out-of-plane 
direction. Ultimate failure through thickness started on the edges of the sling that was attached around 
the holes. 
 
The ultimate failure that occurred for Case 3 is shown in Figure 4.3c. The sling caused ultimate failure 
at the centre of the mid-section. The failure seems to be caused by out-of-plane failure, since the fibers 
are pointing out of the plane of the material.  
 

   
a) Case 1 ultimate failure b) Case 2 ultimate failure c) Case 3 ultimate failure 

Figure 4.3: Ultimate failure mechanism for the lifting point in the three test setups.  
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Chapter 5 
 
Analysis 
5. Analysis 
In the coming section, several finite element analyses of the problems discussed in the previous 
sections (Case 1 and Case 2) are performed. The aim is to virtually model the tested situation in the 
best way possible, in order to achieve comparable results.  According to DNV, the recommended way 
to perform analysis of composite structures is to use the finite element method, which is considered 
the most accurate. The challenge is to make a model that represents the situations of reality in an 
optimal way. For instance, in FE models the supports are idealized as hinged, or completely rigid, 
whereas the actual supports are often somewhere in between. Thus, the supports must be treated with 
care. There are several requirements for finite element analysis of composite structures used in the 
offshore industry. The requirements help to give an indication of how the analysis should be carried 
out. The purpose is to obtain better results and reduce the risk of errors. 
 
Overview of requirements according to DNV composite components C501: 
 

1. Element types shall be chosen on the basis of the physics of the problem. 
2. The choice of mesh should be based on a systematic iterative process, which includes 

mesh refinements in areas with large stress/strain gradients. 
 
Model behavior shall be checked against behavior of the structure. The following modeling aspects 
shall be treated carefully: 
 

3. Loads 
4. Boundary conditions 
5. Important and unimportant actions 
6. Isotropic, orthotropic or anisotropic material 
7. Non-linearity (due to geometrical and material properties) 

 
For non-linear problems, the following special considerations shall be taken into account:  
 

8. The analyst shall make several trial runs in order to discover and remove any mistake. 
9. The analyst shall start with a simple model, possibly the linear form of the problem, and 

then add non-linarites one by one.  
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5.1 Finite element analysis of Case 1 

The model is designed to represent the real test setup for Case 1. The dimensions of the lifting points 
are exactly the same size as in the tests. The lifting point is placed in a steel arrangement, which is 
attached to a fixed point on the bench. During the test, a sling was attached through the lifting holes 
and connected to the hydraulic tensile hook where the load is applied. In the finite element model, the 
support for the lift point is fixed at one end, with additional constraints in the out-of-plane direction at 
the opposite corners. The supports represent the inside of the steel arrangement.  The load is applied to 
the material by the attached sling. This is modeled with multi-point constraints, connecting several 
points at the mid-section to a single point. A load or displacement is then applied to the single point, 
representing the load applied from the tensile bench. The width of the real sling is modeled as the total 
width of the multi-point constraint. The entire finite element model of the lifting point, with supports 
and attached loads, is shown in Figure 5.1. 
 
In Chapter 3 there is a full description of the theory of progressive failure. A short summary of 
procedure is given here. The progressive analysis works by dividing the total load into smaller 
increments. An increment is then checked, by finding the stresses and strains acting in the model, and 
these values are checked against a given failure criterion. In the case of failure, the local material 
properties will be degraded and the lifting point is checked again. If no new failure occurs, then the 
load is increased incrementally and the same procedure can continue. This goes on until it reaches a 
point where the material achieves the total load, or becomes too weak to withstand higher load.  
 

 
Figure 5.1: Finite element model of Case 1. 

 

5.1.1 Finite element model and boundary conditions for Case 1 

The lifting point is modeled with shell elements for the analysis of Case 1. Shell elements provide a 
good assumption when the thickness is small compared to the length and width, and the loads act in 
the material plane (Chawla, 1987). DNV composite C501 states that shell elements can be chosen in 
finite element analysis when the stresses in the out-of-plane direction can be neglected. 
 
Attaining a square mesh with IsoMesh setting is advised for non-linear progressive analysis, according 
to the MSC Nastran manual (MSC, 2012). It is desirable to achieve a uniform mesh with sufficient 
elements in the middle-section of the lifting point to ensure efficient finite element results.  
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The material model is based on the values attained from the material tests at Reinhold AS. The ply 
material properties are 2D orthotropic with the same lay-up as the lifting points used in the tests. One 
layer is based on 70% fibers parallel in the 0 degree direction, 25% fibers in the 90 degree direction, 
and finally, 5% chopped strand material (CSM) to obtain improved adhesion between the layers. One 
layer is 1.5mm, and to obtain 20, 30 and 40mm laminates, there are respectively 14, 20, and 27 layers.  
 
Four different progressive analyses are performed: 

• Puck failure criterion with gradual stiffness degradation 
• Puck failure criterion with immediate stiffness degradation 
• Hashin failure criterion with gradual stiffness degradation 
• Hashin failure criterion with immediate stiffness degradation 

 
The analysis is based on the implicit non-linearity because of the degradation of the material 
properties. The maximum time step is set to 0.05 (of a total time 1.0),meaning that the material is 
checked at maximum 5% of the total load at each step, before increasing another maximum 5%.  An 
overview of the finite element settings used in the analysis is given in Table 5.1.  

 
Table 5.1: Finite element analysis settings for Case 2. 

Parameter Setting 
Version MCS Nastran 2012.2 
Number of elements 493 
Number of nodes 559 
Mesh type IsoMesh 
Element property Shell 2D 
Ply material properties 2D orthotropic 
Increment type Adaptive 
Total time 1.0 
Max time step 0.05 
Solver parameter Implicit non-linear 
Non-linear formulation Large strain 

 

5.1.2 Result of Case 1 

All results from all the analysis of Case 1 are collected in Appendix B; a list of results for Case 1 are 
presented in Table 5.2.The result is the peak value for the graph from Figure 5.2, which indicates the 
maximum load the GRP lift point can withstand before ultimate failure.  
 

 
Figure 5.2: Puck failure criterion with gradual degradation for 30mm laminate. 
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A constraint force is the total force the laminate can withstand and is given in Newton [N]; 590 000N 
is approximately the same as 59 tons (simplified with gravity equal to 10m/s2). The displacement is 
given in millimeters [mm], representing the applied load. From Figure 5.2, one can see that the local 
degradation of the material causes the material to be weaker. The peak value of the graph indicates the 
maximum load the GRP lift point can withstand before ultimate failure. In the tested situation, the load 
applied is always being increased, causing ultimate failure. However, in the analytical solution, after 
the peak value has been accomplished, the material can still withstand a reduced load but would fail 
with an increase of load, as in the tests.  
 

Table 5.2: Finite element analysis results of break load for Case 1. 

Failure criteria and 
degradation model 

Break load [Te] for 
20mm laminate 

Break load [Te] for 
30mm laminate 

Break load [Te] for 
30mm laminate 

Hashin with Gradual 36.0 51.0 68.0 

Hashin with Immediate 27.0 36.0 48.0 

Puck with Gradual 45.0 59.0 77.0 

Puck with Immediate 28.0 39.0 51.0 

 
The result from the finite element results for Case 1, summarized in Table 5.2, is presented in Figure 
5.3. The graph includes the breaking capacity for the three laminate thicknesses, 20, 30 and 40mm.  
 

 
Figure 5.3: Finite element results of Case 1. 
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5.1.3 Damage propagation in Case 1 

Figure 5.4 below shows when and how the material begins to develop a failure. It entails both the 
matrix and fiber failure, in other words, the total progressive damage model. By increasing the load, 
the failure begins to develop locally on the edges of the sling at the hole. It thereafter progresses 
further into the material, until ultimate failure occurs. Total failure through the thickness is shown as a 
red color. An overall red presentation between the lifting holes indicates that the material properties 
are fully degraded and cannot take on higher loads. 
 
The current analysis presented below is Puck failure criterion together with the gradual stiffness 
degradation for 30mm laminate. This criterion and degradation model was best suited when compared 
to the tested values (all results are presented in Appendix B). 
 

  

 
 

a) 0% of total displacement b) 26% of total displacement 

  
c) 30% of total displacement d) 40% of total displacement 

  

e) 51% of total displacement f) 61% of total displacement g) 
 

                         Figure 5.4: Damage propagation in the FE analysis for Case 1. 
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5.1.4 General discussion of the result for Case 1 

Consistently, the results of the Puck failure criterion give a higher estimate of the maximum capacity 
compared to those of the Hashin failure criterion. This applies to both the immediate and gradual 
stiffness degradations. Both criteria follow the same linear increase with increasing thickness of the 
laminate, respectively, 20, 30 and 40mm laminate thicknesses. 
 
As expected, the immediate has a steeper curve than the gradual degradation. This was anticipated 
because the stiffness is reduced to nearly zero for immediate, whereas gradual stiffness is reduced to 
the last functional stiffness, prior to any failure (the process is described in further detail in Section 
3.4.1, Degradation models).In every case, the results from immediate degradation provide a smaller 
maximum capacity.  
 

5.1.5 Comparing finite element analysis and test results for Case 1 

When comparing the test results and the analytical results, the Puck failure criterion with gradual 
stiffness degradation stands out from the rest. This criterion is within 2% error margin, which is a very 
good result. However, the hydraulic tensile bench was not strong enough to cause ultimate failure in 
the 40mm laminate lifting point, entailing that only two values are compared, which makes the results 
slightly weaker. Regardless, based on the two remaining results that were compared, the finite element 
model seems to give very accurate results.  
 
For both the criteria and both degradation models, an increase in laminate thickness provides a fairly 
linear increase of capacity. It appeared in all the analysis that was performed. One benefit of having a 
linear increase in capacity with an increase/decrease of laminate thickness is that it is possible to 
expect an ultimate failure value. This will be beneficial for tests that are undertaken in the future. For 
instance, if a test result is very different from the expected result, it may help to indicate whether there 
is a problem with the test or the materials involved. 
 
Due to the linear increase based on the two laminate thicknesses, 20 and 30mm, it is possible to 
assume that the capacity for 40mm would be around 65 to 75 tons, according to the test results. Based 
on the analytical results, the Puck failure criterion estimates an ultimate failure value of 77 tons. Both 
the estimated value from the test and the analytical results are within the same range of values for the 
ultimate failure load for the 40mm lifting point. 
 
The comparison of the results shows that gradual provides a much better approximation to the actual 
maximum capacity than the immediate degradation. Based on the results, it appears that immediate is 
a conservative degradation model for this situation with the specific material properties. Immediate is 
a model that will fit well when the material is very brittle and thus breaks suddenly, while a gradual 
development behaves more like a ductile material. During the increase of load in the hydraulic tensile 
bench, it was possible to hear sounds of the material deforming before the ultimate failure occurred, 
which indicates that the material in reality has a more gradual degradation model. This observation 
corresponds well with the analytical results, which indicate that the gradual approach should give 
better results compared to immediate degradation. 
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Another exciting result concerns how the ultimate failure developed during the test. The central 
section between the two holes in the lifting point was torn out as a whole piece. Interestingly, the same 
type of failure developed in the finite element analysis, where the material fails on either side of the 
sling, thus showing that a central section is being torn out of the lifting point. These findings support 
the obtained finite element results being consistent with reality. The same failure development appears 
for both Puck and Hashin failure criteria. The only difference between them is that the ultimate failure 
occurs at different maximum loads. 
 

5.2 Finite element analysis of Case 2 

Case 2 is the setup with pure out-of-plane loads applied to the lifting point. It entails that a sling is 
attached through the holes, around the mid-section and pointing directly out of the plane in relation to 
the material. For the finite element analysis, the lifting point is simplified by looking at the mid-
section of the lifting point. This is shown as the dark area in Figure 5.5. The strength to withhold the 
applied out-of-plane forces will mainly be shouldered by the mid-section. Therefore, one can assume 
that the simplification can provide relatively similar results. The advantage of the simplification is in 
saving a lot of computer time. Due to major stresses acting in an out-of-plane direction in this 
situation, the lifting point must be modeled with solid elements (to take account of the stresses in 
the3rddirection). Use of solid elements increases the number of nodes in the analysis, which 
simultaneously increases the complexity and time required to carry out an analysis. 
 

 
Figure 5.5: Overview over the mid-section in the lifting point. 

 
The model is designed to represent the real test setup for Case 2. The dimensions of the lifting points 
are exactly the same size as in the tests but, for the analysis, are simplified to represent the mid-
section. The lifting point is placed in a steel arrangement, which is attached to a fixed point on the 
bench. During the test, a sling was attached through the lifting holes and connected to the hydraulic 
tensile hook where the load is applied in the out-of-plane direction. In the finite element model, the 
support for the lift point is fixed at the edge of the steel arrangement in the out-of-plane direction.  The 
load is applied to the material by the attached sling through the holes. This is modeled with multi-point 
constraints, connecting several points to a single point, representing the sling with corresponding 
sling-size. A load or displacement is then applied to the single point, representing the load applied 
from the tensile bench. The entire finite element model of the mid-section of the lifting point, with 
supports and attached loads, is shown in Figure 5.6. 
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Figure 5.6: Finite element analysis model for mid-section. 

 

5.2.1 Finite element model and boundary conditions 

For Case 2 the load is applied in the out-of-plane direction, and thus the plane stress with shell 
elements fails. Solid elements take account of stresses in all directions and thus provide better results. 
The disadvantage of solid elements is that the finite element analysis is time-consuming because of 
more elements and nodes. In order to reduce the computer time, the model is slightly simplified as 
described in the previous section. 
 
The mesh is completely square and, according to DNV composite design, at least two elements in the 
thickness direction must be obtained. For the laminate thicknesses of 20 and 30mm, there are three 
elements in the thickness direction and for the 40mm laminate, four elements.  
 
The laminate properties are of the same order as in the previous analysis (Case 1). The difference 
between the shell and solid element is that there are several parameters describing the additional out-
of-plane direction. It involves both the engineering constants as well as the attained failure values in 
that direction. The ply material properties are 3D orthotropic with the same lay-up as the lifting points 
used in the tests and the finite element analysis for Case 1,meaning that one layer of 1.5mm is based 
on 70% fibers parallel in the 0 degree direction, 25% fibers in the 90 degree direction, and finally, 5% 
chopped strand material (CSM).  
 
Four different progressive analyses are performed: 

• Puck failure criterion with gradual stiffness degradation 
• Puck failure criterion with immediate stiffness degradation 
• Hashin failure criterion with gradual stiffness degradation 
• Hashin failure criterion with immediate stiffness degradation 

 
The analysis is based on the implicit non-linearity because of the degradation of the material 
properties. The maximum time step is set to 0.05 (of a total time 1.0),meaning the material is checked 
at a maximum 5% of the total load at each step, before increasing another maximum 5%.  An 
overview of the finite element settings used in the analysis is given in Table 5.3.  
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Table 5.3: Finite element analysis settings for Case 2. 

Parameter Setting 
Version MSC Nastran 2012.2 
Number of elements 2400 (3200 for 40mm) 
Number of nodes 3446 (4307 for 40mm) 
Mesh type IsoMesh 
Element property Solid 3D 
Ply material properties 3D orthotropic 
Increment type Adaptive  
Total time 1.0 
Max time step 0.05 
Solver parameter Implicit non-linear 
Non-linear formulation Large strain 

 

5.2.2 Result of Case 2 

The results of all the analysis of Case 2 are collected in Appendix C; a list of results for Case 1 are 
presented in Table 5.4.The result is the peak value for the graph from Figure 5.7, which indicates the 
maximum load the GRP lift point can withstand before ultimate failure.  
 

      
Figure 5.7: Hashin failure criterion with gradual degradation for 30mm laminate. 

 
A constraint force is the total force the laminate can withstand and is given in Newton [N]; 210 000N 
is approximately the same as 21 tons (simplified with gravity equal to 10m/s2). The displacement is 
given in millimeters [mm], representing the applied load. From Figure 5.7 one can see that the local 
degradation of the material causes the material to be weaker. The peak value of the graph indicates the 
maximum load the GRP lift point can withstand before ultimate failure. In the tested situation, the load 
applied is always being increased, causing ultimate failure. However, in the analytical solution, after 
the peak value has been accomplished, the material can still withstand a reduced load but would fail 
with an increase of load, as in the tests.  
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Table 5.4: Finite element results of break load for Case 2. 

Failure criteria and 
degradation model 

Break load [Te] for 
20mm laminate 

Break load [Te] for 
30mm laminate 

Break load [Te] for 
30mm laminate 

Hashin and Gradual 9.5  19.3  26.1  

Hashin and Immediate 5.4  11.0  17.4  

Puck and Gradual 8.3  18.9  26.0  

Puck and Immediate 4.8  12.0  16.8  

 
 
The result from the finite element results for Case 2, summarized in Table 5.4 is presented in Figure 
5.8. The graph includes the breaking capacity for the three laminate thicknesses, 20, 30 and 40mm.  
 

 
Figure 5.8: Finite element analysis results of Case 2. 
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5.2.3 Damage propagation of Case 2 

Figure 5.9 below shows when and how the material begins to develop a failure. It entails both the 
matrix and fiber failure, in other words, the total progressive damage model. By increasing the load, 
the failure begins to develop locally on the top of the mid-section. It thereafter progresses further into 
the thickness of the material at each side of the sling model (multi-point constraint), until the ultimate 
failure occurs. Total failure through the thickness is shown as a red color. An overall red presentation 
through the thickness indicates that the material properties are fully degraded and cannot take on 
higher loads. 
 
The current analysis presented below is the Hashin failure criterion together with the gradual stiffness 
degradation for 30mm laminate. This criterion and degradation model was best suited, when compared 
to the tested values (all results are presented in Appendix C). 
 

  

 

a) 0% of total displacement b) 26% of total displacement 

  
c) 41% of total displacement d) 50% of total displacement 

  
e) 65% of total displacement f) 100% of total displacement g) 

 
Figure 5.9: Damage propagation in FE analysis of Case 2. 

 

 

5.2.4 General discussion of the results 

The finite element result from Case 2 shows very little deviation between the Hashin and Puck criteria, 
for both the immediate and gradual degradation. Both the criteria increase approximately linearly with 
increase in the laminate thickness. As expected, also for Case 2, the immediate has a steeper curve 
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than the gradual degradation. This was anticipated because the stiffness is reduced to nearly zero for 
immediate, whereas gradual stiffness is reduced to the last functional stiffness, prior to any failure. For 
each analysis, compared to the tested result the immediate degradation provides smaller maximum 
capacity. 
 

5.2.5 Comparing finite element analysis and test results for Case 2 

The result of the tests compared with the finite element analyses show an error margin of 21%. This is 
a higher error margin than that achieved for Case 1. A possible explanation is that there is more 
uncertainty in the finite element analysis for Case 2. The analysis is slightly simplified. In addition, the 
solid element used for Case 2 could cause more uncertainty. However, even with an error rate of 
around 20%, the finite element result provides a good indication of the maximum breaking load in the 
out-of-plane direction. As expected, the results from Case 2 show that the gradual degradation gives 
the best assumption of material breaking capacity. It is consistent with the results of Case 1, which 
also described the most similar analytical result compared to the tested result as the gradual 
degradation model. 
 
As noted in the Test Report (Appendix A), the results of the tested 40mm laminate thickness are lower 
than expected. All the other tests, as well as the analytical results, show an approximately linear 
increase in capacity in accordance with the increase of the thickness. In addition, the analytical result 
provided a higher estimate of ultimate failure, which reinforces the suspicions that the tested capacity 
for the 40mm laminate is lower than projected. It is possible that it may have been an error source of 
some kind, causing inaccuracies in the test result. For the laminate thickness of 20mm, the finite 
element results are underestimated compared to the tests, while the results for 30mm had only one 
error rate of 2%. However, overall there is greater uncertainty among the results compared to Case 2. 
 
The failure propagation begins locally on the top layers of the laminate, before it progresses further 
into the thickness of the material at each side of the constraints. For the Hashin failure criterion with 
gradual stiffness degradation, the ultimate failure occurred through the thickness at one end only, 
while, as for the other three combinations (Puck gradual, Puck immediate, and Hashin immediate), the 
ultimate failure through thickness occurred on both sides at the supports of the steel arrangement. The 
same type of failure also developed on the lifting point during the tests, where a middle section is torn 
out, and total failure occurs on both sides at the edge of the steel arrangement. The ultimate failure for 
the test of Case 2 is shown in Figure 5.10, and the Puck criterion with gradual degradation is shown in 
Figure 5.11. 
 
 

  
Figure 5.10: Tested failure of Case 2. Figure 5.11: Analysed failure of Case 2. 
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5.3 Geometric approach in Case 3 

The layout of Case 3 involves a sling that goes through the lifting holes and is connected to the 
hydraulic tensile bench. At the same time, the lifting point is kept inside a steel arrangement which is 
fixed to the bench. The sling forms an angle of approximately 45 degrees through the lifting holes, 
(see Figure 5.12). The angle of approximately 45 degrees implies that the lifting point will encounter 
load both in the out-of-plane and in-plane direction. From the previous tests, we have seen that the 
material is much stronger in-plane, than out-of-plane. On this basis it has been decided to take into 
account the out-of-plane capacity in a geometric consideration. The angle which is formed between the 
sling and the plane of the material is essential. The total load (F.pull) which is applied to the sling will 
be decomposed to provide a load in the out-of-plane direction, and a load in the in-plane direction. By 
taking into account the known out-of-plane capacity and the angle, one can find the maximum sling 
load (F.pull) the material can withstand before ultimate failure.  The out-of-plane capacity is taken 
from the finite element results in Case 2. 
 

 
Figure 5.12: An overview of the geometric approach in Case 3. 

 
The total force applied to the sling F.pull, is decomposed into the force F.z-out-of-plane, and F.x- in plane. From 
the finite element results in Case 2, a maximum capacity has been established in the out-of-plane 
direction. In addition to the angle, these results will determine the maximum capacity in relation to the 
load applied to the sling, F.pull. 
 
The advantage of using a geometric approach is that it is possible to find the maximum capacity of the 
lifting point at different sling angles. It helps to make the results very applicable for design. The lifting 
points can be placed at different angles on the GRP cover wall,depending on the requirements and 
design of GRP covers, in addition to different rigging design (lift design).This means that the angle the 
slings create can differ in many covers. By making a capacity function based on this angle, one can 
very easily determine the breaking capacity of any cover. The capacity function is based on the most 
accurate analytical results from Case 1 and Case 2. All calculations are presented in Appendix D. 
 
Maximum in-plane capacity:  F.p  
Maximum out-of-plane capacity:  F.z 
Lift point capacity function:  𝐹(𝜃) = min ( 𝐹.𝑧

𝑆𝑖𝑛(𝜃) , 𝐹.𝑝
𝐶𝑜𝑠(𝜃) ) 
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5.3.1 Out-of-plane angle in Case 3 

Looking at the test setup, the angle the sling formed was approximately 45 degrees. In addition to 
visually measuring the angle, it is also possible to calculate the angle based on the result of the tests. 
The angle calculation is based on the tested capacity for Case 3, against the tested capacity in Case 2. 
The angle is found by using geometrical considerations: 
 
 

𝑆𝑖𝑛 (𝜃) =  
𝑇𝑒𝑠𝑡𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡 𝐶𝑎𝑠𝑒 2
𝑇𝑒𝑠𝑡𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡 𝐶𝑎𝑠𝑒 3

 

 

 
Table 5.5: Calculated angle from the experimental tests. 

Laminate 
thickness [mm] 

Tested result 
[Te] from Case2 

Tested result 
[Te] from Case3 

Corresponding angleθ 
[°] from tests 

20.0 12.0 20.0 37 ° 
30.0 19.0 28.0 43 ° 
40.0 22.0 38.0 36 ° 

 
The angle that emerges from the tests is between 36 and 43 degrees, close to the expected value of 
approximately 45 degrees. These results indicate that using a geometric method for achieving the 
ultimate failure when the sling forms an angle is applicable, but with a slightly higher degree of 
uncertainty. 
 
 

5.3.2 Results from geometric approach for Case 3 

All the results are presented in Appendix D. A summary of the results for some specific angles is 
presented in Table 5.6.  The result from the capacity function appears in the form of a graph based on 
the angle, in-plane and out-of-plane capacity, and shows the ultimate break load for any given angle. 
The beauty of the graph is that it contains a lot of information but is able to present it in a very delicate 
way. By using this graph for a specific laminate thickness, one can find the capacity for any given 
angle and for any situation. It leads to a fast and effective way to find the capacity. 
 
 

Table 5.6: Results for a representation of angles in the range of 35 to 45 degrees. 

Laminate thickness 
[mm] 

Break load [Te] 
 at angle θ = 35° 

Break load [Te] 
at angle θ = 40 ° 

Break load [Te]  
at angle θ = 45 ° 

20.0 16.6 14.8 13.4 
30.0 33.6 30.0 27.3 
40.0 45.5 40.6 36.9 

 
 
The graph in Figure 5.13 of the laminate with 20mm thickness provides a slightly lower assumption of 
the analytical load in relation to the tested value. The reason for this is some inaccuracy in the finite 
element results of Case 2. It is important to be aware that if there are any inaccuracies in the results 
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from Case1 and Case 2, they will be passed onto the results of Case 3. The graph shows smaller 
estimates of capacity than in the test. This is displayed in this graph and allows the results to be 
conservative. Based on the graph, we get a value in the range of 13 to 17 tons for Case 3, which is 
slightly lower than the tested value of 20tons. 
 
The dotted line is a correction that takes away the unrealistic increase in capacity at low angles. The 
problem is solved by a linear increase in capacity at the lowest angles. 
 

 
Figure 5.13: Capacity function for 20mm lifting point as a function of out-of-plane angle. 

 
Figure 5.14 shows the 30mm results are almost identical to the actual tested results, which is very 
good considering they are based on the finite element method. The analytical value of the angle 45 
degrees is 28 tons, which is also the tested value for Case 3. 
 

 
Figure 5.14: Capacity function for 30mm lifting point as a function of out-of-plane angle. 

 
The results from 40mm laminate are interesting. As described earlier, inaccuracy from the finite 
element results of Cases 1 and 2 will influence the results for Case 3.For the 40 mm lifting point, the 
out-of-plane capacity achieved in finite element analysis for Case 2 was higher than the tested 
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capacity. However, the results for the 40mm provide a very good approximation for the result for Case 
3 (based on Case 2) with an analytical value of 38 tons compared with 38 tons in the test. This helps to 
reinforce the suspicion that the tested result of the tested capacity of the 40mm laminate was not as 
high as it should have been.  
 

 
Figure 5.15: Capacity function for 40mm lifting point as a function of out-of-plane angle. 

 
 

5.4 Improvement study 

In the previous sections the experimental tests have been compared with the finite element results. 
From this, it has been found that the Puck failure criterion with gradual degradation has consistently 
provided good results compared to the tests. Based on these findings, it was decided to explore the 
possibility to enhance the capacity of the lifting point in an improvement study. The desire is to look at 
a new type of laminate lay-up. The current lay-up is based on the forces acting globally on the cover, 
where the transverse forces are most critical (hence the 70% fibers in the direction 0). Due to the 
lifting points being essentially extra layers contributing to a local increase in the thickness, it is 
possible to use a more specified lay-up for the additional layers for the lifting point. 
 
As previously mentioned, the fibers are very strong in the parallel fiber direction. This forms the basis 
for the new fiber lay-up. The proposal for another lay-up is selected from a setup of fibers in multiple 
angles. In order to withstand the forces acting locally in the lifting point, multiple angles will help 
withstand all acting forces such as compression, tension, and shear forces. Therefore the + 45 degree 
direction ply is introduced. This includes maintaining fibers in these fiber directions: 
 

[0, 90, 45, -45] 
The new layer contains: 

• 30% fibers in 0 degree direction 
• 30% fibers in 90 degree direction 
• 20% fibers in +45degree direction 
• 20% fibers in -45 degree direction 
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The new analysis is based on the Puck failure criterion with gradual stiffness degradation of 30mm 
laminate (respectively 20 layers). An analysis is performed for Case 1 and Case 2, with the same 
parameters as before, the only differencebeingthe new fiber lay-up. 
 
 

Table 5.7: Finite element analysis settings for improvement study. 

Parameter Setting for Case 1 Setting for Case 2 
Version MCS Nastran 2012.2 MSC Nastran 2012.2 
Laminate thickness 30 mm 30mm 
Number of elements 493 2400  
Number of nodes 559 3446  
Mesh type IsoMesh IsoMesh 
Element property Shell 2D Solid 3D 
Ply material properties 2D orthotropic 3D orthotropic 
Increment type Adaptive Adaptive  
Total time 1.0 1.0 
Max time step 0.05 0.05 
Solver parameter Implicit non-linear Implicit non-linear 
Non-linear formulation Large strain Large strain 

 
 

5.4.1 Results from improvement study 

Case 1 
 
The result from the finite element analysis for Case 1 with the new layout is given in Figure 5.16. The 
graph gives a peak value at 77 tons. This is an increase of over 28% compared to the same test with 
the initial setup, (initial peak value of 60 tons). Looking at the graph, it appears that even with gradual 
stiffness degradation, the graph shows a more “immediate” development by having a steeper curve 
than in the previous case. It may indicate a slightly different behavior of the material with the new lay-
up. Regardless, the new lay-up with layers involving the additional angles of 45-degree laminates 
seems to improve the results for Case 1 convincingly. 
 

 
 

Figure 5.16: Puck gradual 30mm with new lay-up. 
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Case 2 
 
The result from finite element analysis for Case 2 with the new layout is given in Figure 5.17. The 
graph gives a peak value at 22 tons. This is an increase of over 16% compared to the same test with 
the initial setup (initial peak value of 18.9 tons). The curve is similar to the original analysis, but with 
a higher peak value.  
 

 
 

Figure 5.17: Puck gradual 30mm out-of-plane with new lay-up. 
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Chapter 6 
 
Conclusion 
6. Conclusion 
Three normal lifting situations (Case 1, Case 2 and Case 3) have been studied in order to verify the 
lifting capabilities for the GRP cover with the finite element method, with a desire to replace the 
simplified hand calculations used today. This involves the ability to analyze the lifting point with 
greater accuracy and to understand to a greater extent the behavior of the material.  
 
Case 1 is based on the lifting situation through the splash zone with the cover in an upright position. In 
the test setup, load is applied to act in-plane of the lifting point. By comparing the test results with the 
analytical results, the Puck failure criterion with gradual stiffness degradation is within 2% error 
margin, which is considered to be very accurate. However, it is to be noted that the hydraulic tensile 
bench failed to cause ultimate failure for the 40mm laminate because of a load limitation of 60 tons. 
For all the failure criteria with different material degradation models, the result consistently showed a 
linear increase in capacity with an increase of thickness. Interestingly, the damage propagation and 
failure mode attained in the finite element analysis matched very well with the test for Case 1, 
meaning that both results showed that the central section of the lifting point was torn out as a separate 
piece, helping to support the analytical results obtained.  
 
Case 2 is based on the situation with a lift point on top of a cover in a horizontal lift, causing the force 
to act directly in the out-of-plane direction of the material. The finite element model was slightly 
simplified by only looking at the mid-section of the lifting point. The solid element is used to take into 
account the stresses acting in the out-of-plane direction. The result from Case 2 shows practically no 
deviation between the Hashin and Puck failure criteria, but the Hashin failure criterion with gradual 
material degradation is a few percent more accurate. Compared to the tests, an error margin of 21% is 
obtained. As noted in the Test Report (Appendix A), the tested ultimate failure capacity of the 40mm 
laminate in Case 2 was lower than expected, based on an approximately linear increase of capacity 
compared to an increase of thickness (from the analytical results). The tested failure propagation 
showed that the sling caused the whole mid-section of the GRP lift point (section between the two 
holes) to be ripped out in the out-of-plane direction. Ultimate failure through thickness occurred on the 
edges of the sling surrounding the holes, causing the mid-section to be ripped out of the lifting point. 
Regardless, the Hashin failure criterion with gradual degradation anticipated failure to only occur on 
one side of the lifting holes. Interestingly, the Puck failure criterion predicted the same failure 
propagation that occurred during the tests. 
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The result with the immediate stiffness degradation model consistently showed a lower capacity 
estimate than the tested results, leading to the conclusion that this model is seen as conservative in 
each analysis. The cause for the inaccuracy in the results for 40mm laminate in Case 2 may be caused 
by the simplification, or the fact that there is more uncertainty with the use of solid elements to take 
account of the stresses acting in the out-of-plane direction of the lifting point. In order to arrive at a 
conclusion, further tests must be carried out to achieve characteristic tested values. 
 
Case 3 is based on the situation with a lift point on the sidewall of a GRP cover in a horizontal lift, 
causing the sling to form an angle to the material plane. Based on the angle, the forces acting on the 
lift point can be decomposed to act in the material plane and out-of-plane. The results from Cases 1 
and 2 conclude that the out-of-plane direction is considered to be the weakest. Therefore, the 
decomposed force acting in the out-of-plane direction is checked against the finite element result from 
Case 2. A capacity function was made in order to show the capacity based on the angle the slings 
forms in relation the material plane. The function can be viewed in a graph, containing all the 
information needed to be able to predict the capacity for any situation given the laminate thickness. 
Regardless, it is important to be aware that, if there are any inaccuracies in the finite element results 
for Cases 1 and 2, they will be passed onto the graph.  
 
An interesting discovery was made for the 40mm laminate in Case 3. The capacity function predicted 
a very accurate ultimate failure load compared to the tested result. The analytical result is a product of 
the finite element result from Case 2, which provided a higher estimate than the test in the specific 
case. However, for Case 3, the result was accurate, even though in Case 2 the analytical result was 
20% higher than for the test. This contributes to a suspicion that the 40mm laminate in the test for 
Case 2 did not reach its full potential. There may have been a defect in the material or another error 
source. Regardless, more testing of each laminate thickness should be conducted in order to achieve 
characteristic values, which will reduce the speculation of the tested capacity.  
 
The purpose of the analysis is to see whether one can estimate the capacity of the lifting points 
analytically, leading to a reduction of tests that need to be performed and a replacement of the 
simplified hand calculation method used today. Based on the results in this thesis, it is concluded that 
the Puck failure criterion with gradual stiffness is considered to be the most accurate. The finite 
element results provide a good estimate in the strength, but with slightly more uncertainty in the out-
of-plane situations. The capacity function provides a graph representing all the results in a simple and 
efficient matter, with good results. The error margin of 20% would represent a material factor of 1.2, 
however, a material factor of 1.5 would be reasonable to ensure the lifting capacity (compared to the 
material factor of 2.0 used in the hand calculation). One can conclude that the obtained method in this 
thesis provides sufficient results, and could replace the simplified hand calculation used today.  
 
Based on the findings in this thesis, the possibility to improve the laminate lay-up sequence was 
investigated. An improvement study was conducted using the Puck failure criterion with gradual 
stiffness degradation with the same settings as used in the previous finite element analysis.  The new 
laminate lay-up included the fiber direction [0, 90, +45, - 45] (compared to the standard lay-up of [0, 
90]). The analysis was performed for a 30mm laminate. The result for the new study showed an 
increase of over 28% in the capacity in Case 1 and an increase of over 16% compared with Case 2. 
These are great results, leading to the conclusion that by introducing the fiber directions + 45 degrees, 
one can enhance the capacity of the material by about 20%. This new finding is easy and efficient to 
implement in new designs of lifting points in GRP covers. It entails ordering a separate fiber 
composition for the layers used to locally reinforce the lifting points.  
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6.1 Future work 

 
Firstly, a recommended improvement of the tested result is to carry out more tests in order to achieve 
characteristic values. It would be possible to see whether the results are consistent and it would make 
the results more valuable for strength estimate and when comparing the result with analytical 
solutions. 
 
Secondly it would be interesting to look into snap-load (dynamic load) during the lifting through the 
splash zone. During the installation the cover is tilted and is fitted with ballast in order to reduce the 
hydrodynamic loads, in addition, reduce the possibility to encounter snap-load. Regardless, if it in 
some unlikely scenario should occur slack in the sling causing a snap-load, it would be interesting to 
look at the effect it has on the lifting point.   
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1. General Information 
 

1.1 Purpose 
 
The purpose of the load test of the glass reinforced plastic (GRP) lift point is to establish the breaking 
capacity. The lifting points are tested to represent the reality in the best way possible. 
 

1.2 Scope 
 
The tests will help to document the lifting capacity of the local lift points. This will lead to lifting 
points being designed with less uncertainty than before. It will affect the design of lifting points for all 
new projects in Subsea 7. The different tests performed look at the normal lifting setups used for GRP 
cover during onshore, transport and installation. 
 
The goal of the tests is to have documentation of the tested ultimate failure capacity representing the 
real lifting situation. The result can confirm that the lift point is strong enough. In addition, the test 
data can be used for comparison of analytical solutions, such as finite element analysis results.  
 
The testing is divided into three test setups, representing the three most common lifting situations. The 
main situations are four-point and two-point lift. The four-point lift is used when lifting onshore, and 
the transfer of various means of transport. While the two-point lift is common when installing through 
the splash zone. Additionally, you have a situation where the lifting point is located on top of the 
cover, as an alternative used in some projects for light covers. 
 

1.3 System Overview 
 
A brief system overview, including the main persons involved: 

• Responsible organization Subsea 7  

• System name or title  Tensile tests of GRP lifting points 

• Location   Westcon Løfteteknikk AS at Haugesund  

• Report    Endre Ulversøy 

• Subsea 7   Arne Skeie 

• Subsea 7    Karl Erik Suphellen 

• Westcon Løfteteknikk AS Svein-Terje Warvik 

• Westcon Løfteteknikk AS Roar Røssehaug 

• Highcomp AS   Fredrik Faye 
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1.4 Error sources 
 
When performing a test, it is important to be aware of the potential error sources that could influence 
the test results. To reduce the effect of potential error, the fabrication of the material need to be done 
with care, with the same environmental condition for all test specimens. In addition, the load cells 
need to be calibrating to be able to show the correct break capacity.   
 
Possible error sources: 
• Calibrating the test equipment properly. 

• Differences in environment during fabrication of the lifting points, causing different material 
properties. 

• Misalignment in test setup.  
 

1.5 Security Considerations 
 
During testing it is important with proper safety equipment. When performing tensile test of GRP 
lifting point both safety glasses and helmet was mandatory. There is a possibility for a rather sudden 
failure when applying load. When failure occurs, parts of the specimen can be accelerated and can 
cause damage. In addition, during the test a safety cover on the hydraulic tensile bench had to stay 
open because of the size of the test arrangement, causing the participants to be extra cautious with the 
safety equipment and keeping a reasonable distance during the testing.   
 

1.6 Acronyms and Abbreviations 
 
Provide a list of the acronyms and abbreviations used in this document and the meaning of each. 
 
 CSM Chopped Strand Material 
 GRP Glass Reinforced Plastic 
 WCL Westcon Løfteteknikk AS 
 Te  Tons 
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2. Experimental Tests 

2.1 Lift point 
 
Test of lift point 

• 3 off 20mm thick lift points 
• 3 off 30mm thick lift points 
• 3 off 40mm thick lift points 

 
Material lay-up: 

• 70% fibres in 0-direction 
• 25% fibres in 90-direction 
• 5% CSM 

Figure A.1: Size of lift point 
 
The size of the lift point is based on a full scaled representation of the actual lifting points used in GRP 
cover design. 

2.2 Material properties 
 
The material laminates were prepared at Highcomp AS and sent to Reichhold AS for testing.  The 
material consists of fiber reinforcement of Formax FGE 394; 0 / 90 degree, with density 1902g/m2, 
and polyester type PLT. 480-622.  The conducted material properties from the material tests are given 
in the tables A.1, A.2 and A3. 
 
Table A.1: Fiber dominated ply properties. 
 

Parameter Value Unit Explanation 
E1 28.7 GPa Modulus of elasticity in main fiber direction 
Xt 660 MPa Tension stress at break in the main fiber direction 
Xc 460 MPa Compressive stress at break in the main fiber direction 

 
Table A.2: Matrix dominated ply properties. 
 
Parameter Value Unit Explanation 

E2 9.00 GPa Modulus of elasticity transverse to main fiber direction 
G12 3.00 GPa Shear modulus in the ply plane 
ν12 0.26  Ply major Poisson`s ratio 
Yt 34.0 MPa Tension stress at break normal to the main fiber direction 
Yc 50.0 MPa Compressive stress at break normal to the main fiber direction 
S12 26.0 MPa Shear stress in ply plane at failure 
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TableA.3: Through thickness ply properties. 
 
Parameter Value Unit Explanation 

E3 9.00 GPa Modulus of elasticity normal to the fiber plane 
G13 3.00 GPa Shear modulus normal to the fiber plane, incl. fiber direction. 
G23 2.00 GPa Shear modulus normal to fiber plane, normal to the fiber 

direction. 
ν13 0.26  Poisson`s ratio normal to fiber plane, incl. fiber direction. 
ν23 0.48  Poisson`s ratio normal to fiber plane, normal to the fiber 

direction. 
Zt 13.0 MPa Tension stress at break normal to fiber plane 
Zc 61.0 MPa Compression stress at break normal to fiber plane 
S13 14.0 MPa Shear stress at failure normal to fiber plane, incl. fiber direction. 
S23 14.0 MPa Shear stress at failure normal to fiber plane, normal to fiber 

direction. 
 
 

2.3 Experimental test setup 
 
The test arrangement is located in a hydraulic tensile bench at Westcon Løfteteknikk AS in 
Haugesund. The tensile bench has a maximum pull value of 60 tons. The test arrangement is fixed at 
one end, and the lift point is connected to the hydraulic pulling device with a sling (size of 
approximately 70mm width), to represent the same situation it would expect during the actual lifting. 
The hydraulic pulling device is connected to measurement instrument. This instrument shows how 
much load is applied to the lift point at any given time during the test. In addition, the instrument has a 
separate marker which represents the maximum load the GRP point encountered during the test. The 
maximum load is the break load for the lift point involving ultimate failure. This maximum load is the 
key parameter attained from the different test setups.  
 

 
 

Figure A.2:  Hydraulic tensile bench with the Case 3 test setup. 
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2.4 Test setup for Case 1 
 
The test of Case 1 is an approximation of the lift situation when installing through splash zone, where 
the cover is upraised in a vertically position. The lifting point is placed inside and supported by a steel 
arrangement specially made for the testing. This steel arrangement is attached to a fixed point on the 
bench. A normal sling was attached through the lifting holes and connected to the hydraulic tensile 
hook where the load is applied gradually. The sling transmits the forces in the plane of the material. 
Figure A.3 gives an overview of the test setup during the testing of Case 1. Three laminate thicknesses 
of the lifting point were tested, (20, 30 and 40mm). The load was applied gradually with increments of 
4-5 tons, after each increment the material was checked for any local failure. 
 

 
 

Figure A.3: Test setup for Case 1 

2.4.1 Expected Outcome 
 
It is expected that the lift point should be relative strong in this setup, since the load is applied in plane 
of the material (Strong compared to out-of-plane direction). In addition, it is expected that the results 
increases linearly when with the increase of the thickness of the tested laminates.  

2.4.2 Practical Functionality 
 
The test setup for Case 1 is a good representation of the operational environment the lifting point 
would encounter during actual lifting, meaning the sling is attached in the same manner, and in the 
same direction relative to the lifting point. 

2.4.3 Results of Case 1 
 
The results of the tests for Case 1 can be found in Table A.4 and in Figure A.4. Results are consistent 
with the expected outcome. This entails that the GRP material is relatively strong when load is applied 
in-plane. In addition, the GRP material has an approximately linear increase of capacity by increasing 
the thickness. Given that the hydraulic tensile bench had a maximum pulling capacity of 60 tons, the 
bench was unable to cause ultimate failure on the lifting point with 40mm laminate thickness. An 
expected break load for the 40mm laminate lifting point based on the other results from the tests 
would be of approximately 70 tons.  
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Table A.4: Tested result of break load for Case 1 
 

Thickness of lift point 
[mm] 

Break load 
[Te] 

20.0 45.0 
30.0 56.0 
40.0 N/A 

 
Comments to the test results for Case 1:  

• For the 30 mm laminate thickness test, the lift point started to make cracking sounds at 52 
tons. 

• The lift point with 40mm laminate thickness was pulled to 60 tons (maximum pulling capacity 
of hydraulic tensile bench), with no visual damage on the material. 
 

 
Figure A.4: Tested Break load results presented in a graph for Case 1 

 
The ultimate failure that occurred is shown in the Figure A.5. The sling caused the mid-section of the 
GRP lift point (Section between the two holes) to break free in the in the in-plane direction. Meaning 
the failure developed on the edges of the sling, causing the mid-section to be ripped out of the lifting 
point. 
   

 
Figure A.5: Case 1 ultimate failure 
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2.5 Test setup for Case 2 
 
Horizontal lift is performed when the covers are weighed, loaded on to the vessel and placed into final 
position on the seabed. In some instances for light covers the lifting points are placed on top of the 
cover. The lifting force is applied directly out-of-plane locally for the lifting points, which is seen as 
the weakest direction of the laminate. Since the load is acting in the weakest direction compared to the 
other lifting situations it is only applicable to light and relative small covers. The test setup for Case 2 
is shown in Figure A.6. The lifting point is supported by steel arrangement which is fixed to the bench, 
while the load is applied through a sling that goes around the lifting holes. The load will apply directly 
out-of-plane of the material. Three laminate thicknesses of the lifting point were tested, (20, 30 and 
40mm). The load was applied gradually with increments of 4-5 tons, after each increment the material 
was checked for any local failure. 

 
 

Figure A.6: Test setup for Case 2 

2.5.1 Expected Outcome 
 
It is expected to encounter the lowest break load for Case 2, due to pure out-of-plane load. In addition, 
it is expected that the results will increase linearly with the increase of the thickness of the laminates.  

2.5.2 Practical Functionality 
 
In the lifting situation with a horizontal lift and the lifting point placed on top of the GRP cover would 
the setup for Case 2 be a good representation. Meaning the sling is attached in the same manner, and 
in the same direction relative to the lifting point as it would encounter during the actual lifting, (out-of- 
plane). 

2.5.3 Results of Case 2 
 
The results of the tests for Case 2 can be found in Table A.5 and in Figure A.7. Most of the results are 
according to the expected outcome. The GRP material is weak when load is acting in the out-of-plane 
direction. However, the test results did not show a linear development. The result for the 40mm 
laminate did not increased as much as expected.   
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Table A.5: Tested result of break load for Case 2. 

 
Thickness of lift point 

[mm] 
Break load  

[Te] 
20.0 12.0 
30.0 19.0 
40.0 22.0 

 
Comments to the test result for Case 2: 

• The 30mm laminate started to make cracking sounds at around 18 tons. 
 

 
Figure A.7: Tested result of Case 2 represented in a graph. 

 
The ultimate failure that occurred in the test setup for Case 2 is shown in the Figure A.8. The sling 
caused the whole mid-section of the GRP lift point (section between the two holes) to be ripped out in 
the out-of-plane direction. Ultimate failure through thickness occurred on the edges of the sling 
surround the holes, causing the mid-section to be ripped out of the lifting point. 
 

 
Figure A.8: Ultimate failure mode of Case 2. 
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2.6 Test setup for Case 3 
 
The most common lifting situation for horizontal lifting is a four-point lift situation. As with the Case 
2, horizontal lift is performed when the covers are weighed, loaded on to the vessel and placed into 
final position on the seabed. The load is working slightly out-of-plane regarding the local lifting point 
plane. For case 3 the test setup is arranged so that the lift point is placed within the steel arrangement 
that is fixed to the bench. The sling is fitted around the holes and fastened to the hydraulic pulling 
device. The sling forms an angle when going through the holes, causing the lifting point to encounter 
some out-of-plane load. This setup is shown in Figure A.6.Three laminate thicknesses of the lifting 
point were tested, (20, 30 and 40mm). The load was applied gradually with increments of 4-5 tons, 
after each increment the material was checked for any local failure. 

 
Figure A.9: Test setup for Case 3. 

2.6.1 Expected Outcome 
 
Since the sling forms an angle in relation the plane of the material, it is expected that this setup should 
be weaker than the result for Case 1. In addition, it is expected that the results will increases linearly 
with the increase of the thickness of the tested laminates.  

2.6.2 Practical Functionality 
 
The Case 3 test setup is a good representation for the lifting situation with a horizontal lift and the 
lifting point placed on the side wall of the GRP. Meaning the sling is attached in the same manner, and 
in the same direction relative to the lifting point as it would encounter during the actual lifting. 
 
One issue with the test setup used for Case 3 is that the steel arrangement supporting the lifting point 
featured a relative sharp edge where the sling passes going through the holes. The sharp edge could 
cause he strop to fail prematurely. During the testing it was solved temporary by installing a protection 
rubber, reducing the sharp edge.  

2.6.3 Results of Case 3 
 
The results of the tests for Case 1 can be found in Table A.6 and in Figure A.10. Results are consistent 
with the expected outcome. This entails that the GRP material is weaker compared to the result for 
Case 1, and at the same time is higher than the result for Case 2. It supports the intuition that the sling 
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forms an angle relative to the material plane, causing the lifting point to encounter both in-plane and 
out-of-plane load. In addition, as expected the GRP material has an approximately linear increase of 
capacity with an increase in the thickness. 
 

Table A.6: Tested result of break load for Case 3. 
 

Thickness of lift point 
[mm] 

Break load  
[Te] 

20.0 20.0 
30.0 28.0 
40.0 38.0 

 
Comments to the test result for Case 3: 

• The 30mm laminate started to make cracking sounds at around 25 tons. 

 
Figure A.10: Tested result of Case 3 presented in a graph. 

 
The ultimate failure that occurred in the test setup for Case 3 is shown in the Figure A.11. The sling 
caused through thickness failure in the middle of the mid-section. The failure seems to be caused by 
out-of-plane failure, since the fibres are pointing out of the plane of the material.  
  

 
Figure A.11: Case 3 ultimate failure 
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3. Summary and Conclusion 

3.1 Summary 
 
Three tests were conducted with different setups, Case 1, Case 2 and Case 3. Case 1 is a representation 
of a lift through the splash zone, where GRP cover is in an upright vertical position. Case 2 is an 
approximation of a horizontal lift with the lifting point located on top of the cover, causing the lifting 
point to encounter out-of-plane loads. Case 3 is a representation of a horizontal four-point lift where 
the lifting point is placed on the side walls. 

 
Table A.7: Tested break load for all cases. 

 
Test Setup Break load [Te] for 

20 mm laminate  
Break load [Te] for  

30 mm laminate  
Break load [Te] for  

40 mm laminate  
Case 1 45.0 56.0 N/A 
Case 2 12.0 19.0 22.0 
Case 3 20.0 28.0 38.0 

 
The results are presented in Table A.7 and in Figure A.12. The only value that was not found was for 
40mm laminate in Case 1. Given that the hydraulic tensile bench had a maximum pulling capacity of 
60 tons, the bench was unable to cause ultimate failure on the lifting in the Case 1 setup. 

 
Figure A.12: All the result from test presented in a graph. 
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3.2 Conclusion 
 
The tests were performed as planned without any changes, and have generally been as expected. The 
results showed an approximately linear increase in capacity of the lifting point by increasing the 
laminate thicknesses, respectively, 20, 30 and 40mm. There was only one result that was not as 
expected, the break load for the 40mm laminate in Case 3 resulted in a capacity of 22Tons, which was 
a relatively small increase compared with the results from the other tests (30mm laminate break load 
of 19 Tons). It is possible that there may have been a defect in materials or another error source 
described in Section 1.4. 

3.3 Recommended Improvements 
 
Firstly, it is recommended to carry out more tests of each individual thickness of each test setup. By 
doing several tests, it would be possible to see whether the results are consistent and collect 
characteristic values for each laminate thickness for each test performed. It would make the results 
more valuable for strength estimate and when comparing the result with analytical solutions. 
 
Secondly, the test setup worked well, but in some cases the sharp edges from the steel arrangement 
affected the sling. This was improved by using rubber between the steel and the strap. On another 
occasion it may be possible to improve the test setup so that the sling is not affected by the steel. 
 
The final recommended improvement is to perform the test in a hydraulic tensile bench with a higher 
maximum cap for tensile load. The 60-ton hydraulic bench did not cause ultimate failure in the 40mm 
laminate during testing for Case 1.  
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Appendix B 

 

 
Case 1 

 
Finite element analysis 

 
 

Failure criterion and degradation model: 
 

 Hashin failure criterion with gradual degradation 
 Hashin failure criterion with immediate degradation 
 Puck failure criterion with gradual degradation 
 Puck failure criterion with immediate degradation 
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20mm laminate 
 

Hashin failure criterion 
 

Gradual degradation 
 

  
Figure B.1: Constraint force verses displacement for 

Hashin failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 25% of total displacement 

  
c) 30 % of total displacement 

 
d) 35% of total displacement 

  
e) 40% of total displacement 

 
f) 45% of total displacement 

Figure B.2: Damage propagation for Hashin failure criterion with gradual stiffness degradation. 
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20mm laminate 
 

Hashin failure criterion 
 

Immediate degradation 
 

  
Figure B.3: Constraint force verses displacement for 
Hashin failure criterion with immediate degradation. 

 
 

  
a) 0 % of total displacement 

 
b) 10 % of total displacement 

  
c) 13 % of total displacement 

 
d) 17 % of total displacement 

  
e) 20 % of total displacement 

 
f) 26 % of total displacement 

Figure B.4: Damage propagation for Hashin failure criterion with immediate stiffness degradation. 
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20mm laminate 
 

Puck failure criterion 
 

Gradual degradation 
 

  
Figure B.5: Constraint force verses displacement for 

Puck failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 30 % of total displacement 

  
c) 35 % of total displacement 

 
d) 45 % of total displacement 

  
e) 55 % of total displacement 

 
f) 65 % of total displacement 

Figure B.6: Damage propagation for Puck failure criterion with gradual stiffness degradation. 
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20mm laminate 
 

Puck failure criterion 
 

Immediate degradation 
 

  
Figure B.7: Constraint force verses displacement for 
Puck failure criterion with immediate degradation. 

 
 

  
a) 0 % of total displacement 

 
b) 13 % of total displacement 

  
c) 16 % of total displacement 

 
d) 20 % of total displacement 

  
e) 26 % of total displacement 

 
f) 31 % of total displacement 

Figure B.8: Damage propagation for Puck failure criterion with immediate stiffness degradation. 
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30mm laminate 
 

Hashin failure criterion 
 

Gradual degradation 
 

  
Figure B.9: Constraint force verses displacement for 

Hashin failure criterion with gradual degradation. 
 

  
a) 0 % of total displacement 

 
b) 20 % of total displacement 

  
c) 30 % of total displacement 

 
d) 35 % of total displacement 

  
e) 40 % of total displacement 

 
f) 45 % of total displacement 

Figure B.10: Damage propagation for Hashin failure criterion with gradual stiffness degradation. 
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30mm laminate 
 

Hashin failure criterion 
 

Immediate degradation 
 

  
Figure B.11: Constraint force verses displacement for 
Hashin failure criterion with immediate degradation. 

 
 

  
a) 0 % of total displacement 

 
b) 10 % of total displacement 

  
c) 13 % of total displacement 

 
d) 16 % of total displacement 

  
e) 21 % of total displacement 

 
f) 26 % of total displacement 

Figure B.12: Damage propagation for Hashin failure criterion with immediate stiffness degradation. 
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30mm laminate 
 

Puck failure criterion 
 

Gradual degradation 
 

  
Figure B.13: Constraint force verses displacement for 

Puck failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 26 % of total displacement 

  
c) 30 % of total displacement 

 
d) 40 % of total displacement 

  
e) 51 % of total displacement 

 
f) 61 % of total displacement 

Figure B.14: Damage propagation for Puck failure criterion with gradual stiffness degradation. 
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30mm laminate 
 

Puck failure criterion 
 

Immediate degradation 
 

  
Figure B.15: Constraint force verses displacement for 

Puck failure criterion with immediate degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 17 % of total displacement 

  
c) 20 % of total displacement 

 
d) 26 % of total displacement 

  
e) 30 % of total displacement 

 
f) 36 % of total displacement 

Figure B.16: Damage propagation for Puck failure criterion with immediate stiffness degradation. 
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40mm laminate 
 

Hashin failure criterion 
 

Gradual degradation 
 

  
Figure B.17: Constraint force verses displacement for 

Hashin failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 30 % of total displacement 

  
c) 35 % of total displacement 

 
d) 45 % of total displacement 

  
e) 55 % of total displacement 

 
f) 65 % of total displacement 

Figure B.18: Damage propagation for Hashin failure criterion with gradual stiffness degradation. 
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40mm laminate 
 

Hashin failure criterion 
 

Immediate degradation 
 

  
Figure B.19: Constraint force verses displacement for 
Hashin failure criterion with immediate degradation. 

 
 

  
a) 0 % of total displacement 

 
b) 10 % of total displacement 

  
c) 13 % of total displacement 

 
d) 17 % of total displacement 

  
e) 21 % of total displacement 

 
f) 26 % of total displacement 

Figure B.20: Damage propagation for Hashin failure criterion with immediate stiffness degradation. 
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40mm laminate 
 

Puck failure criterion 
 

Gradual degradation 
 

  
Figure B.21: Constraint force verses displacement for 

Puck failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 26 % of total displacement 

  
c) 30 % of total displacement 

 
d) 40 % of total displacement 

  
e) 50 % of total displacement 

 
f) 60 % of total displacement 

Figure B.22: Damage propagation for Puck failure criterion with gradual stiffness degradation. 
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40mm laminate 
 

Puck failure criterion 
 

Immediate degradation 
 

  
Figure B.23: Constraint force verses displacement for 

Puck failure criterion with immediate degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 13 % of total displacement 

  
c) 17 % of total displacement 

 
d) 21 % of total displacement 

  
e) 26 % of total displacement 

 
f) 31 % of total displacement 

Figure B.24: Damage propagation for Puck failure criterion with immediate stiffness degradation. 
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Summary for Case 1 
 
The result from the FE analysis is gathered in Table B.1 and shown in Figure B.25. The result is the  
peak value of the graph, which indicates the maximum load the GRP lift point can withstand before  
ultimate failure.  
 

Table B.1: Finite element analysis results of break load of lift point for Case 1. 
Failure Criteria and 
degradation model 

Break Load [Te] for 
20mm laminate 

Break Load [Te] for 
30mm laminate 

Break Load [Te] for 
30mm laminate 

Hashin with Gradual 36.0 51.0 68.0 

Hashin with Immediate 27.0 36.0 48.0 

Puck with Gradual 45.0 59.0 77.0 

Puck with Immediate 28.0 39.0 51.0 

 
The result from the finite element results for Case 1, summarized in table B.1 is presented in figure  
B.25. The graph includes the breaking capacity for the three laminate thicknesses, 20, 30 and 40mm.  

 

 
Figure B.25: Finite element results of Case 1. 
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Case 2 

 
Finite element analysis 

 
 

Failure criterion and degradation model: 
 

 Hashin failure criterion with gradual degradation 
 Hashin failure criterion with immediate degradation 
 Puck failure criterion with gradual degradation 
 Puck failure criterion with immediate degradation 
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20mm laminate 
 

Hashin failure criterion 
 

Gradual degradation 
 

  
Figure C.1: Constraint force verses displacement for 

Hashin failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 16 % of total displacement 

  
c) 26 % of total displacement 

 
d) 35 % of total displacement 

  
e) 55 % of total displacement 

 
f) 100 % of total displacement 

Figure C.2: Damage propagation for Hashin failure criterion with gradual stiffness degradation. 
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20mm laminate 
 

Hashin failure criterion 
 

Immediate degradation 
 

  
Figure C.3: Constraint force verses displacement for 
Hashin failure criterion with immediate degradation. 

 
 

  
a) 0 % of total displacement 

 
b) 16 % of total displacement 

  
c) 20 % of total displacement 

 
d) 35 % of total displacement 

  
e) 45 % of total displacement 

 
f) 100 % of total displacement 

Figure C.4: Damage propagation for Hashin failure criterion with immediate stiffness degradation. 
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20mm laminate 
 

Puck failure criterion 
 

Gradual degradation 
 

  
Figure C.5: Constraint force verses displacement for 

Puck failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 06 % of total displacement 

  
c) 12 % of total displacement 

 
d) 20 % of total displacement 

  
e) 45 % of total displacement 

 
f) 83 % of total displacement 

Figure C.6: Damage propagation for Puck failure criterion with gradual stiffness degradation. 
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20mm laminate 

 
Puck failure criterion 

 
Immediate degradation 

 
  

Figure C.7: Constraint force verses displacement for 
Puck failure criterion with immediate degradation. 

 
 

  
a) 0 % of total displacement 

 
b) 07 % of total displacement 

  
c) 20 % of total displacement 

 
d) 25 % of total displacement 

  
e) 30 % of total displacement 

 
f) 80 % of total displacement 

Figure C.8: Damage propagation for Puck failure criterion with immediate stiffness degradation. 
 
    



 
 

Appendix C: Case 2    C6 
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Figure C.9: Constraint force verses displacement for 

Hashin failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 12 % of total displacement 

  
c) 16 % of total displacement 

 
d) 25 % of total displacement 

  
e) 35 % of total displacement 

 
f) 55 % of total displacement 

Figure C.10: Damage propagation for Hashin failure criterion with gradual stiffness degradation. 
 
    



 
 

Appendix C: Case 2    C7 
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Figure C.11: Constraint force verses displacement for 
Hashin failure criterion with immediate degradation. 

 
 

  
a) 0 % of total displacement 

 
b) 16 % of total displacement 

  
c) 20 % of total displacement 

 
d) 30 % of total displacement 

  
e) 35 % of total displacement 

 
f) 45 % of total displacement 

Figure C.12: Damage propagation for Hashin failure criterion with immediate stiffness degradation. 
 



 
 

Appendix C: Case 2    C8 
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Figure C.13: Constraint force verses displacement for 

Puck failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 03 % of total displacement 

  
c) 05 % of total displacement 

 
d) 12 % of total displacement 

  
e) 35 % of total displacement 

 
f) 90 % of total displacement 

Figure C.14: Damage propagation for Puck failure criterion with gradual stiffness degradation. 
 
 



 
 

Appendix C: Case 2    C9 
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Figure C.15: Constraint force verses displacement for 

Puck failure criterion with immediate degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 03 % of total displacement 

  
c) 07 % of total displacement 

 
d) 10 % of total displacement 

  
e) 12 % of total displacement 

 
f) 60 % of total displacement 

Figure C.16: Damage propagation for Puck failure criterion with immediate stiffness degradation. 
 

 



 
 

Appendix C: Case 2    C10 
 

    
 

40mm laminate 
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Gradual degradation 
 

  
Figure C.17: Constraint force verses displacement for 

Hashin failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 16 % of total displacement 

  
c) 26 % of total displacement 

 
d) 50 % of total displacement 

  
e) 65 % of total displacement 

 
f) 100 % of total displacement 

Figure C.18: Damage propagation for Hashin failure criterion with gradual stiffness degradation. 
 

 



 
 

Appendix C: Case 2    C11 
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Figure C.19: Constraint force verses displacement for 
Hashin failure criterion with immediate degradation. 

 
 

  
a) 0 % of total displacement 

 
b) 13 % of total displacement 

  
c) 26 % of total displacement 

 
d) 30 % of total displacement 

  
e) 35 % of total displacement 

 
f) 100 % of total displacement 

Figure C.20: Damage propagation for Hashin failure criterion with immediate stiffness degradation. 
 

 



 
 

Appendix C: Case 2    C12 
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Figure C.21: Constraint force verses displacement for 

Puck failure criterion with gradual degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 03 % of total displacement 

  
c) 10 % of total displacement 

 
d) 16 % of total displacement 

  
e) 25 % of total displacement 

 
f) 100 % of total displacement 

Figure C.22: Damage propagation for Puck failure criterion with gradual stiffness degradation. 
 

 



 
 

Appendix C: Case 2    C13 
 

    
 

40mm laminate 
 

Puck failure criterion 
 

Immediate degradation 
 

  
Figure C.23: Constraint force verses displacement for 

Puck failure criterion with immediate degradation. 
 

 

  
a) 0 % of total displacement 

 
b) 05 % of total displacement 

  
c) 07 % of total displacement 

 
d) 16 % of total displacement 

  
e) 20 % of total displacement 

 
f) 100 % of total displacement 

Figure C.24: Damage propagation for Puck failure criterion with immediate stiffness degradation. 
 

 



 
 

Appendix C: Case 2    C14 
 

Summary for Case 2 
 
The result from the finite element results for Case 2, summarized in table C.1 is presented in figure 
 C.25. The graph includes the breaking capacity for the three laminate thicknesses, 20, 30 and 40mm.  
 

Table C.1: Finite element results of break load for lift point for Case 2. 
 

Failure Criteria and 
degradation model 

Break Load [Te] for 
20mm laminate 

Break Load [Te] for 
30mm laminate 

Break Load [Te] for 
30mm laminate 

Hashin and Gradual 9.5  19.3  26.1  

Hashin and Immediate 5.4  11.0  17.4  

Puck and Gradual 8.3  18.9  26.0  

Puck and Immediate 4.8  12.0  16.8  

 
 
 

 
Figure C.25: Finite element analysis results of Case 2 
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Case 3 

 
Geometric Approach 

 
 

Lifting point capacity as a function of out-of-plane angle 
 

 
  



Mathcad Sheet 
Lift point capacity as a function of out-of-plane angle

Calculation of lift point capacity for 20mm

The maximum values chosen below represent the best analytical results compared to 
the testing.

Te 1000kg

Maximum out-of-plane-load :
(Hashin - Gradual from Test 2)

Fz.20 9.5Te

Maximum in-plane load :
(Puck - Gradual from Test 1)

Fp.20 45Te

Lift point capacity function: f20 θ( ) min
Fz.20

sin θ( )

Fp.20

cos θ( )

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Lift point capacity for 20mm as a function of out-of-plane angle
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

Lift point out-of-plane angle: θ20 45deg

Lift point capacity: f20 θ20  13.4 Te

Appendix D D2 



Mathcad Sheet 
Lift point capacity as a function of out-of-plane angle

Calculation of lift point capacity for 30mm

The maximum values chosen below represent the best analytical results compared to 
the testing.

Maximum out-of-plane-load :
(Hashin - Gradual from Test 2)

Fz.30 19.3Te

Maximum in-plane load :
(Puck - Gradual from Test 1)

Fp.30 58Te

Lift point capacity function: f30 θ( ) min
Fz.30

sin θ( )

Fp.30

cos θ( )

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Lift point capacity for 30mm as a function of out-of-plane angle
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Lift point out-of-plane angle: θ30 45deg

Lift point capacity: f30 θ30  27.3 Te
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Mathcad Sheet 
Lift point capacity as a function of out-of-plane angle

Calculation of lift point capacity for 40mm

The maximum values chosen below represent the best analytical results compared to 
the testing.

Maximum out-of-plane-load :
(Hashin - Gradual from Test 2)

Fz.40 26.1Te

Maximum in-plane load :
(Puck - Gradual from Test 1)

Fp.40 77Te

Lift point capacity function: f40 θ( ) min
Fz.40

sin θ( )

Fp.40

cos θ( )
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Lift point capacity for 40mm as a function of out-of-plane angle
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Lift point out-of-plane angle: θ40 45deg

Lift point capacity: f40 θ40  36.9 Te
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Appendix D     D5 
 

Summary for Case 3 
The result from the Mathcad Sheet is gathered in Table D.1 .The result the value at the approximate 45 degree 
range, which indicates the maximum load the GRP lift point can withstand before ultimate failure at Test 3.  

 
 

The result from the capacity function appears in form of a graph based on the out of plane angle, and shows the 
ultimate break load for any given angle. The beauty of the graph is that it contains a lot of information, but is able 
to present them in a very delicate way. By using this graph for a specific laminate thickness one can find the 
capacity for any given angle and for any situation. It leads to a fast and effective way to fin the capacity. 
 

Table D.1: Result for a representative of angles in the range of 35 to 45 degree. 

Laminate Thickness 
[mm] 

Break Load [Te] 
 at angle θ = 35° 

Break Load [Te] 
at angle θ = 40 ° 

Break Load [Te]  
at angle θ = 45 ° 

20.0 16.6 14.8 13.4 
30.0 33.6 30.0 27.3 
40.0 45.5 40.6 36.9 
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