University of Stavanger Faculty of Science and Technology MASTER'S THESIS				
Study program/ Specialization: OFFSHORE SYSTEMER / MARIN- OG UNDERVANNSTEKNOLOGI	Spring semester, 2010			
INSTITUTT FOR KONSTRUKSJONSTEK- NIKK OG MATERIALTEKNOLOGI	Open access			
Writer: KJETIL ØKSNEVAD	Kjetil Øksnead (<u>W</u> riter's signature)			
Faculty supervisor: OLE ANDREAS SONGE-MØLLER External supervisor(s): CARSTEN EHRHORN Titel of thesis: ESTIMERING AV VARMEVEKSLER				
Key words: Varmeveksler, "Skall og rør" / "Shell and tube", Regneark, HTFS, trykkfall, nødvendig varmeoverførende areal, varmeovergangskoeffisienter, TEMA.	Pages: 114 + enclosure: 53 Stavanger, 13.06.2010 Date/year			

Frontpage for master thesis Faculty of Science and Technology Decision made by the Dean October 30th 2009

SAMMENDRAG

Det har i oppgaven blitt utviklet et regneark for estimering av "skall og rør"-varmevekslere, av type E-skall med innhold av rette rør og tversgående ledeplater. Det har vært et gjennomgående fokus på å gjøre regnearket så brukervennlig som mulig, i den forstand at det skal være tidseffektivt å gjennomføre en estimeringsprosess samtidig som det gir et best mulig estimat for de forskjellige situasjoner og er gjennomførbart for brukere uten førstehåndskunnskap til varmevekslere, deres geometri og design. Det er i sistnevntes henseende gitt veiledning og anbefalinger hvor det finnes valg som skal spesifiseres av bruker. Det er også utarbeidet en parameteranalyse for lettere å kunne "designe" en varmeveksler i den retning som er ønskelig med tanke på varmeovergangstall, nødvendig areal og trykkfall.

Det er ved utarbeidelse av regnearket og dets beregninger blitt anvendt forskjellig tidligere publisert litteratur om temaet. Det er i deler av beregninger tatt utgangspunkt i metoder av Bell og Bell-Delaware, samt brukt standard av TEMA (Tubular Exchanger Manufacturers Association).

I oppgaven er det gjennomført 4 forskjellige studier, hver med to forskjellige rørmønster. Felles for alle studiene er kjøling av varm gass, ved bruk av vann på skallside. Gassene er av varierende temperatur, trykk, strømningsmengde og fysiske egenskaper. Resultater fra samme studier er videre sammenlignet med resultater ved bruk av varmevekslerprogrammet HTFS, utviklet av AspenTech. Konklusjoner er gjort på grunnlag av sammenligning med HTFS for de situasjoner som inngår i studiene, og bør ikke overføres til andre situasjoner uten videre testing og verifisering.

Det er konkludert med at regnearket i estimeringsøyemed generelt gir tilfredsstillende resultater. Det gir ved bruk av regnearket en god pekepinne på omtrentlige varmeovergangskoeffisienter, nødvendig areal og rørlengde, samt trykkfall i gassen som kjøles på rørside. Beregninger av trykkfallet på skallsiden er forbundet med usikkerhet og resultatene er varierende. Avvik, i form av underestimering, gjør seg særlig gjeldende ved inngangstrykk over 2 bar og i geometrier med liten skalldiameter og stor åpning i ledeplatevinduer. Det rettes en stor takk til:

Ole Andreas Songe-Møller, Intern veileder, Universitet i Stavanger

Carsten Ehrhorn, Ekstern veileder, Aker Solutions

Per Haugland, Veiledning i bruk av HTFS, Spesialistingeniør Aker Solutions

Kjetil Øksnevad, Universitet i Stavanger, juni 2010

INNHOLDSFORTEGNELSE

FORKORTELSER OG SYMBOL	7
INNLEDNING	10
1. GENERELT OM VARMEOVERFØRING	12
1.1 INTRODUKSJON	12
1.2 KONDUKSJON	12
1.3 KONVEKSJON, TVUNGEN	14
1.4 KOMBINASJON AV EGENKONVEKSJON OG TVUNGEN KONVEKSJO	N 19
1.5 FORHOLD AV VARMELÆRE RELATERT UTSIDE AV RØR OG	
KRYSSENDE RØRSTRØMNING	20
2. "SKALL OG RØR"-VARMEVEKSLERE	25
2.1 INTRODUKSJON	25
2.2 KOMPONENTER OG OPPBYGNING AV "SKALL OG RØR"-	
VARMEVEKSLERE	25
2.2.1 RØR	25
2.2.2 SKALL	27
2.2.3 LEDEPLATER	29
2.2.4 KLASSIFISERING AV "SKALL OG RØR"–VARMEVEKSLER	29
2.3 OVERSLAG AV VARMEVEKSLERENS STØRRELSE, KARAKTERISTIK	KK
OG TRYKKFALL	30
2.3.1 OVERSLAG AV STØRRELSE	31
2.3.2 ESTIMERNG AV VARMEVEKSLERENS TRYKKFALL	41
3. PROSEDYRE, RESTRIKSJONER OG ANTAKELSER FOR REGNEARKET	46
3.1 INTRODUKSJON	46
3.2 PROSEDYRE	46
3.3 RESTRIKSJONER TIL BRUK AV REGNEARKET OG BEREGNINGER	50
3.4 ANTAKELSER	50

4. PARAMETERANALYSE	53
4.1 INTRODUKSJON	53
4.2 BETYDNINGER VED VALG AV RØRDIAMETER	53
4.3 BETYDNINGER VED VALG AV SKALLDIAMETER OG AVSTAND	
MELLOM LEDEPLATER	61
4.4 BETYDNINGER VED VALG AV GJENNOMSNITTLIG HASTIGHET I RØ)R 66
4.5 BETYDNINGER VED VALG AV RØRMØNSTER	70
4.6 BETYDNINGER VED VALG AV KOMBINASJON AV	
UTGANGSTEMPERATUR OG MASSESTRØMNING PÅ SKALLSIDE	71
4.7 OPPSUMMERING AV PARAMETERANALYSE	74
5. STUDIER, RESULTATER OG SAMMENLIGNING MED HTFS	76
5.1 INTRODUKSJON	76
5.2 STUDIE 1	78
5.3 STUDIE 2	82
5.4 STUDIE 3	85
5.5 STUDIE 4	88
5.6 SAMMENLIGNING AV RESULTATER PÅ TVERS AV STUDIER	92
6. KONKLUSJON	112
7. REFERANSER	114
VEDLEGG A – TEMA-SPESIFIKASJONER	115
VEDLEGG B – NORSOK RØRDIMENSJONER	123
VEDLEGG C – DATAEKSPORT FRA HYSYS	125
VEDLEGG D - BRUKERVEILEDNING REGNEARK	131
VEDLEGG E - BEREGNINGER AV STUDIER UTFØRT I HTFS	144

VEDLEGG SOM KUN FØLGER ELEKTRONISK UTGAVE AV OPPGAVEN:

VEDLEGG F – RESULTATER AV PARAMETERANALYSE I REGNEARK

VEDLEGG G – BEREGNINGER AV STUDIER UTFØRT I REGNEARK

VEDLEGG H – REGNEARK, MAL

VEDLEGG I – REGNEARK, FORMLER

FORKORTELSER OG SYMBOL

 $\mathbf{B} = Avstand mellom ledeplater [m]$ $\mathbf{B}_{c} = Forhold mellom kutt i ledeplater og skalldiameter$

 $c = Spesifikk varmekapasitet [kJ/kg \cdot K]$ $c_h = Spesifikk varmekapasitet av varmt medium [kJ/kg \cdot K]$ $c_c = Spesifikk varmekapasitet av varmt medium [kJ/kg \cdot K]$

 $\mathbf{f} = \mathbf{f}_t$ = Friksjonskoeffisient i rør \mathbf{f}_{ideal} = Ideell friksjonskoeffisient i skall \mathbf{F}_w = Andel av rør som er i ledeplatevindu

 $\begin{array}{l} \textbf{g}_{c} = Tyngeakselerasjon \left[(kg \cdot m/s^{2})/N\right]\\ \textbf{G}_{s} = Massestrømning per areal i skall [kg/m^{2}s]\\ \textbf{G}_{t} = Massestrømning per areal i rør [kg/m^{2}s]\\ \textbf{G}_{w} = Massestrømning per areal i ledeplatevinduer [kg/m^{2}s] \end{array}$

 $\mathbf{h} = \text{Varmeovergangskoeffisient } [\text{W/m}^2 \cdot K]$ $\mathbf{h}_i = \text{Innvendig varmeovergangskoeffisient for rør } [\text{W/m}^2 \cdot K]$ $\mathbf{h}_o = \text{Utvendig varmeovergangskoeffisient for rørbunt } [\text{W/m}^2 \cdot K]$ $\mathbf{h}_s = \text{Varmeovergangskoeffisient relatert begroing og korrosjon } [\text{W/m}^2 \cdot K]$ $\mathbf{h}_w = \text{Varmeovergangskoeffisient gjennom rørvegg } [\text{W/m}^2 \cdot K]$

 $\mathbf{k} =$ Varmeledningskoeffisient for material eller medium [W/m \cdot *K*]

 $\begin{array}{l} \mathbf{L} = \text{Lengde av rør [m]} \\ \mathbf{L}_{bb} = \text{Minimum avstand mellom skall og rørbunt [m]} \\ \mathbf{L}_{pn} = \text{Røravstand ved beregning av trykkfall på skallside [m]} \\ \mathbf{L}_{pp} = \text{Røravstand ved beregning av trykkfall på skallside [m]} \\ \mathbf{L}_{ta} = \text{Varmeoverførende lengde av rør [m]} \\ \mathbf{L}_{tp} = \text{Ordinær senteravstand mellom rør [m]} \\ \mathbf{L}_{tp,eff} = \text{Effektiv senteravstand mellom rør [m]} \end{array}$

m_c= Massestrøm av kaldt medium [kg/s]
m_h= Massestrøm av varmt medium [kg/s]

$$\begin{split} N_b &= \text{Antall ledeplater} \\ N_t &= \text{Antall rør} \\ N_{tcc} &= \text{Antall rekker rør i kryssende strømning} \\ N_{tcw} &= \text{Antall effektive rør som krysses i ett ledeplatevindu} \end{split}$$

 $\mathbf{q} = Varmerate [W] (kW)$

 \mathbf{R}_1 = koeffisient for termisk motstand relatert begroing og korrosjon på varmside [W/m²·K]

 \mathbf{R}_2 = koeffisient for termisk motstand relatert begroing og korrosjon på kald side [W/m²·K]

 $\mathbf{R}_{\mathbf{c}}$ = koeffisient av filmkonveksjon på kald side [W/m²·K]

 $\mathbf{R}_{\mathbf{h}} = \text{koeffisient av filmkonveksjon på varm side}[W/m^2 \cdot K]$

 $\mathbf{R}_{\mathbf{w}}$ = koeffisient av termisk motstand i rørveggen [W/m²· K]

 $S_n = R \phi ray stand ved beregning av Nusselts tall [m]$

 $S_p = R \phi ray stand ved beregning av Nusselts tall [m]$

 $S_w = Strømningsareal i ledeplatevindu [m²]$

 S_{wg} = Totalt areal av ledeplatevindu [m²]

 $T_{c,i} =$ Inngangstemperatur av kaldt medium [°C]

 $\mathbf{T}_{c,o} = \text{Utgangstemperatur av kaldt medium [°C]}$

 $T_{h,i}$ = Inngangstemperatur av varmt medium [°C]

 $T_{h,o} = Utgangstemperatur av varmt medium [°C]$

 $\mathbf{T}_{s,i}$ = Inngangstemperatur av medium på skallside [°C]

 $\mathbf{T}_{s,o}$ = Utgangstemperatur på medium på skallside [°C]

 $\mathbf{T}_{t,i}$ = Inngangstemperatur på medium på rørside [°C]

 $\mathbf{T}_{t,o} = \text{Utgangstemperatur på medium på rørside [°C]}$

 $\mathbf{T}_{\mathbf{w}} = \text{Temperatur i veggflate [°C]}$

 $\mathbf{T}_{\infty} = \text{Temperatur i medium [°C]}$

 $\mathbf{u}_{\mathbf{m}} = \mathbf{M}$ iddelhastighet av medium i rør [m/s]

 \mathbf{u}_t = Middelhastighet i rør [m/s]

 \mathbf{u}_{s} = Middelhastighet i skall [m/s]

 $\mathbf{U} = \text{Total varmeovergangskoeffisient av varmeveksler } [W/m^2 \cdot K]$

 $W_t = m_t = Massestrømning i rør (total i alle rør) [kg/s]$ $W_s = m_s = Massestrømning i skall [kg/s]$

Konstanter

 \mathbf{a} = Konstant for beregning av varmeovergangskoeffisient for utside av rør. Velges med hensyn på rørmønster og Reynolds tall i skall

C = Konstant for beregning av Nusselts tall for utside av rør. Velges med hensyn på rørmønster og avstander.

 C_l = Konstant for beregning av buntdiameter. Velges med hensyn på rørmønster n = Konstant for beregning av Nusselts tall for utside av rør. Velges med hensyn på rørmønster og avstander.

 \mathbf{m} = Konstant for beregning av varmeovergangskoeffisient for utside av rør. Velges med hensyn på rørmønster og Reynolds tall i skall

 \mathbf{F}_1 = Konstant for beregning av varmeovergangskoeffisient for utside av rør. Velges med hensyn på lekkasje og forbipassering av medium

 $\mathbf{F}_{\mathbf{r}}$ = Konstant for beregning av varmeovergangskoeffisient for utside av rør. Velges med hensyn på strømningsmønster i skall.

 $\mathbf{R}_{\mathbf{L}}$ = Korreksjonsfaktor relatert lekkasje av medium, for beregning av trykkfall på skallside, typisk [0,4-0,6]

 $\mathbf{R}_{\mathbf{B}}$ = Korreksjonsfaktor relatert forbipasserende medium, for beregning av trykkfall på skallside, typisk [0,4-0,7]

 \mathbf{R}_{S} = Korreksjonsfaktor relatert variabel avstand mellom ledeplater i innløps og utløpsseksjon. 0,8 for fastlås rørdesign

Dimensjonsløse forholdstall

 $C^* =$ Forhold mellom varmekapasitetsrate: $NTU_t =$ forhold mellom total konduktivitet og varmekapasitetsrate på medium i rørside: Nu = Nusselts tall Pr = Prandlts tall R = Varmekapasitetsforhold: Re = Reynolds tall St = Stantons tall $\epsilon =$ Effektivitet av varmeveksler, forhold mellom virkelig varmeoverføringsrate og maksimal overføringsrate.

Gresk symbolbruk

 α = Termisk spredningsevne [m^2/s]

 ρ = Massetetthet [kg/m³]

 \mathbf{v} = Kinematisk viskositet [m^2/s]

 μ = Viskositet (dynamisk) [kg/m ·s] = [Pa·s] = [10³ cP]

 μ_b = Viskositet ved bulktemperatur [kg/m ·s] = [Pa·s] = [10³₂cP]

 μ_{w} = Viskositet ved veggtemperatur [kg/m ·s] = [Pa·s] = [10³cP]

 $\Delta P_{ideal} = \text{Ideelt trykkfall mellom rørbunten [Pa]}$ $\Delta P_{w,ideal} = \text{Ukorrigert trykkfall i ledeplatevinduer [Pa]}$ $\Delta P_c = \text{Trykkfall i kryssende strømning mellom ledeplater [Pa]}$ $\Delta P_e = \text{Trykkfall i inngangs- og utgangsområder [Pa]}$ $\Delta P_s = \text{Totalt trykkfall på skallside [Pa]}$ $\Delta P_t = \text{Det totale trykkfallet for rørside av varmeveksleren [Pa]}$ $\Delta P_w = \text{Trykkfall i alle ledeplatevinduer [Pa]}$

INNLEDNING

"Skall og rør"-varmevekslere er svært utstrakt i bruk i olje-, gass- og prosessindustrien. I kombinasjon med bransjens tøffe kriterier til sikkerhet og pålitelighet, skal en varmeveksler være designet for best mulig ytelser med hensyn på varmeoverføring, samtidig som den ikke skal oppta mer plass eller skape større trykkfall enn nødvendig.

Det finnes i dag flere metoder og elektroniske hjelpemidler for å gjøre forskjellige estimater av varmevekslere. Aker Solutions benytter HTFS utviklet av AspenTech, for estimering av varmevekslere. HTFS brukes gjerne i kombinasjon med prosessprogrammet HYSYS, som blant annet angir nødvendig effekt, strømningsdata og fysiske egenskaper for prosessen og dens medier. Å gjøre estimeringer av varmevekslere ved hjelp av HTFS er en relativt tidkrevende operasjon, samtidig som programmet har en høy brukerterskel. Det er ønskelig for prosessavdelinger i Aker Solutions å kunne gjøre enkle estimat av en varmevekslers ytelser, varmeovergangstall, størrelse og resulterende trykkfall, uten å måtte kontakte mekaniske avdelinger for å få et estimat gjennomført i HTFS.

Det vil i oppgaven bli utarbeidet et regneark som ved hjelp av innsetting av temperaturer, massestrømninger og fysiske egenskaper, i hovedsak estimerer en "skall og rør"varmevekslers varmeovergangstall, nødvendig varmeoverførende areal med tilhørende dimensjoner av skalldiameter og rørlengder, i tillegg til forskjellige trykkfall. Det vil underveis i beregningene følge noen manuelle valg med anbefalinger til veiledning for å ha mulighet til å påvirke varmevekslerens design og ytelser i den retning som er ønskelig for hver enkelt situasjon. Det vil i den forbindelse bli utarbeidet en parameteranalyse, for bruk til rettledning.

Rapporten starter med en introduksjon i varmelære for en generell forståelse og bakgrunnskunnskap til prinsippene i varmeoverføring. Etter det er gitt en generell beskrivelse av varmelære, blant annet med innhold relatert material, dimensjonsløse forholdstall, strømning i rør og på tvers av rørbunter, er det fremlagt teori om hvordan "skall og rør"varmevekslere er bygd opp og klassifiseres. Det er her også utredet videre teori for hvordan gjøre de forskjellige beregninger spesifikt rettet mot denne type varmeveksler. Teorien som er beskrevet ligger videre til grunn for utviklingen av regnearket. Etter at regnearket er utviklet, er det først gjennomført og beskrevet resultater av forskjellige parameteranalyser, før det er gjennomført flere forskjellige studier hvor gass kjøles ved bruk av vann på skallsiden. Resultatene for regnearket vil videre bli sammenlignet med beregninger utført i HTFS, før konklusjoner basert på studier og sammenligning med HTFS, blir sluttet.

1. GENERELT OM VARMEOVERFØRING

1.1 INTRODUKSJON

Det vil i dette kapitlet bli gitt en introduksjon av de forskjellige typer av og prinsipper om varmeoverføring som kan relateres varmeveksling. Det vil også bli en innføring i koeffisienter og dimensjonsløse tall som inngår i varmeoverføring.

1.2 KONDUKSJON

Konduksjon, også kjent som varmeledning, foregår hvor gjenstander med temperaturdifferanser er i direkte kontakt med hverandre. Man kan tenke seg en vegg med en gitt materialkvalitet hvor molekyler strømmer fra en varm side til en kaldere side. Fouriers lov for varmeledning er gitt ved[1]:

$$q = -kA \frac{\partial T}{\partial x}$$
 (Ligning 1.1)

Hvor,

q = Varmerate [W]

A= Veggflate vinkelrett på varmestrømmen $[m^2]$

 $\frac{\partial T}{\partial r}$ = Temperaturgradient [°C/m]

k = Varmeledningskoeffisient for material eller medium [W/m \cdot *K*]

Merk: Dersom ikke annet er spesifisert, er betydninger av notasjoner i ligning de samme i uttrykk som følger senere i oppgaven. Dette gjelder også øvrige notasjoner som presenteres. Det er i oppgaven forsøkt å holde en gjennomgående lik standard for notasjoner som har felles betydning i ulike uttrykk. Nye notasjoner vil derfor kun bli spesifisert med betydning etter første uttrykk hvor dem inngår, med mindre det er variasjon av betydning i benevning eller fare for andre misforståelser. Ved konstant varmeledningskoeffisient, k, brukes ofte en ny konstant, kalt termisk spredningsevne:

 $\alpha = k/\rho c = \text{Termisk spredningsevne } [m^2/s]$

Hvor,

 ρ = Massetetthet [kg/m³] c = Spesifikk varmekapasitet [kJ/kg · K]

Varmeledningskoeffisienten, k

Varmeledningskoeffisienten er en betegnelse for å angi hvor god evne et material eller medium har til å lede varmeenergi. Varmeledningskoeffisienten har benevning W/m · K, hvor varmeledningen også er forbundet med temperatur og avstand varmen skal ledes gjennom. Under følger figur med noen mediers varmeledningskoeffisient ved romtemperatur.

	Thermal conductivity			
Material	W/m ·°C	Btu/h · ft · °F		
Metals:				
Silver (pure)	410	007		
Copper (pure)	385	237		
Aluminum (pure)	202	223		
Nickel (pure)	93	117		
Iron (pure)	73	54		
Carbon steel, 1% C	43	42		
Lead (pure)	35	25		
Chrome-nickel steel (18% Cr. 8% Ni)	16.3	20.3		
Nonmetallic solids:	10.5	9.4		
Diamond	2300	1000		
Quartz, parallel to axis	41.6	1329		
Magnesite	41.0	24		
Marble	2 08 2 04	2.4		
Sandstone	1 92	1.2-1.7		
Glass, window	0.70	1.06		
Maple or oak	0.78	0.45		
Hard rubber	0.17	0.096		
Polyvinyl chloride	0.15	0.087		
Styrofoam	0.09	0.052		
Sawdust	0.033	0.019		
Glass wool	0.059	0.034		
Ice	0.038	0.022		
Liquids:	2.22	1.28		
Mercury	0.01	252000000000000000		
Water	8.21	4.74		
Ammonia	0.556	0.327		
Lubricating oil, SAF 50	0.540	0.312		
Freon 12, CCI2Fa	0.147	0.085		
Gases:	0.073	0.042		
Hydrogen	0.475			
Helium	0.175	0.101		
Air	0.141	0.081		
Water vapor (saturated)	0.024	0.0139		
Carbon dioxide	0.0206	0.0119		
	0.0146	0.00844		

Figur 1.1 Varmeledningskoeffisienten, k[1]

I figur 1.1 over kan man se en oversikt over varmeledningskoeffisienten, k, i forskjellige typer materialer og medier ved romtemperatur. I varmevekslere, hvor god varmeoverføring er ønskelig, er det av betydning å velge liten veggtykkelse og rørmaterial med god ledningsevne, for minst mulig varmemotstand gjennom rørveggen.

Termisk spredningsevne, a

Konstanten for termisk spredningsevne er tidligere definert under ligning 1.1. Jo høyere verdi man har av α, jo raskere vil varmen bli spredd i materialet. En høy verdi i termisk spredningsevne kan enten oppnås ved høy varmeledningskoeffisient eller ved lav massetetthet og/eller varmekapasitet. I et material med liten varmekapasitet vil en mindre andel av varmen bli "fanget opp" og brukt til å varme opp materialet, og i så måte vil en større andel av varmen kunne bli benyttet til videre overføring. Ved lavere massetetthet vil molekylene raskere kunne bevege seg og overføre varme.

1.3 KONVEKSJON, TVUNGEN

Overføring av varme fra en fast gjenstad til en omkringliggende væske eller gass blir kalt varmeoverføring ved konveksjon eller varmeovergang. Tvungen konveksjon forekommer dersom det omkringliggende mediet er satt i tvungen bevegelse, og er altså den mest aktuelle formen for varmeovergang i en "skall og rør"-varmeveksler.

For å uttrykke den generelle effekten av konveksjon benyttes Newtons lov om kjøling [1]:

$$q = hA(T_w - T_\infty) \text{ (Ligning 1.2)}$$

Hvor,

h = Varmeovergangskoeffisient $[W/m^2 \cdot K]$ A= Overflateareal $[m^2]$ T_w = Temperatur i veggflate [°C] T_∞ = Temperatur i medium [°C]

Varmeovergangskoeffisienten, h

Varmeovergangskoeffisienten, h, er avhengig av en rekke faktorer; spesifikk varmekapasitet, viskositet, termisk varmeledningsevne og strømningsmønster. Det vil senere i oppgaven bli gitt en detaljert utgreining om hvordan man bestemmer de forskjellige varmeovergangskoeffisienter og den totale varmeovergangskoeffisienten i en "skall og rør"-varmeveksler. Å bestemme den totale varmeovergangskoeffisienten er ofte forbundet med den prosessen som innebærer en av de største usikkerhetene ved estimering av varmevekslere. Dette da det gjerne er knyttet noe usikkerhet både til fysiske egenskaper av medier, de forskjellige definerte temperaturer samt de to dimensjonsløse forholdstallene som inngår i beregningene.

Dimensjonsløse forholdstall

En rekke dimensjonsløse forholdstall inngår i og kan relateres varmeoverføring, hvor de mest sentrale er:

- Reynolds tall
- Prandtls tall
- Nusselts tall
- Stantons tall

Reynolds tall

Det dimensjonsløse Reynolds tall blir brukt til å angi hvilket strømningsmønster mediet følger. Ved varmeovergang skilles det mellom tvungen og fri (egenkonveksjon) strømning. For hver av disse formene skilles det videre mellom laminær og turbulent strømning, avhengig av Reynolds tall. Etter hvilket strømningsmønster det opereres med, varierer også tykkelse og lengde på grensesjiktet i mediet, som igjen påvirker varmeovergangskoeffisientene, noe det ikke skal gås videre i detalj om her. I varmevekslere er turbulent strømning ønskelig for bedre varmeovergangskoeffisienter[1].

Den klassiske måten å uttrykke Reynolds tall for strømning i rør er gitt ved:

$$Re = \frac{u_{\rm m} \cdot D_i}{v}$$
 (Ligning 1.3)

Hvor,

u_m = Middelhastighet av medium i rør [m/s] D_i = Innerdiameter rør [m] $v = \frac{\mu}{\rho}$ = Kinematisk viskositet [m²/s]

I forbindelse med estimering av "skall og rør"-varmevekslere brukes ofte Reynolds tall i stedet å være uttrykt ved hjelp av massestrømning per areal, G, og viskositet, μ :[7]

$$Re = \frac{D_i G_t}{\mu}$$
 (Ligning 1.4)

Hvor,

 $D_{i} = \text{Innerdiameter rør [m]}$ $\mu = \text{Viskositet (dynamisk) [kg/m \cdot s]=[Pa \cdot s]= [10^{3}\text{cP}]}$ $G_{t} = \frac{W_{t}}{N_{t}a_{t}} = \text{Massestrømning per areal i rør [kg/m^{2}s]}$ $W_{t} = \text{Strømningsrate i rør (total i alle rør) [kg/s]}$ $N_{t} = \text{Antall rør}$

$$a_t = \frac{\pi D_i^2}{4} = \text{Strømningsareal i hvert enkelt rør } [m^2]$$

Generelt defineres turbulent strømning i rør ved Reynolds tall høyere enn 2300 og i så måte laminær strømning ved Reynolds tall lavere enn 2300[1]. For Reynolds tall mellom 2100 og 8000 opererer man derimot med et ustabilt strømningsmønster og beregning av varmeovergangskoeffisienter i dette intervallet utgjør et større usikkerhetsmoment[7].

Prandtls tall

Prandtls tall er definert ved [1]:

$$\Pr = \frac{\nu}{\alpha} = \frac{\mu/\rho}{k/\rho c} = \frac{c\mu}{k} (\text{Ligning 1.5})$$

Prandtls tall er altså en parameter som uttrykker forholdet mellom kinematisk viskositet og tidligere utredet termisk spredningsevne. Ved lave Prandtls tall vil varme spre seg fort i forhold til hastigheten i mediet. Prandtls tall for gasser ligger gjerne i området rundt 0,7 mens samme dimensjonsløse forholdstall for vann er rundt 10 ganger større, mye avhengig viskositeten. Det er senere i oppgaven vist at Prandtls tall inngår i varmeovergangskoeffisienter og er av betydning ved estimering av varmevekslere.

Nusselts tall

Nusselts tall uttrykker forholdet mellom konvektiv og konduktiv varmeoverføring. Ved høye verdier av Nusselts tall vil den konvektive varmeoverføringen være dominant, mens det ved lave Nusselts tall vil foregå en varmeoverføring dominert av varmeledning. Det generelle uttrykket for Nusselts tall ved rørstrømning kan uttrykkes som følgende [1]:

$$Nu = \frac{hD_i}{k}$$
 (Ligning 1.6)

Det er i tillegg til det tradisjonelle uttrykket for Nusselts tall utarbeidet flere empiriske korrelasjoner mellom bl.a. Nusselts tall, Reynolds tall og Prandtls tall. For et mer nøyaktig uttrykk av Nusselts tall ved fullt utviklet turbulent strømning i glatte rør kan følgende uttrykk brukes[1]:

$$Nu = \frac{f_{8 RePr}}{1.07 + 12.7(f_{8})^{\frac{1}{2}}(Pr^{\frac{2}{3}} - 1)} (\frac{\mu_{b}}{\mu_{w}})^{n} \text{ for } \begin{cases} 10^{4} < Re < 5 \cdot 10^{6} \\ 0.8 < \frac{\mu_{b}}{\mu_{w}} < 40 \end{cases} \text{ (Ligning 1.7)}$$

Hvor,

 $n = 0.11 \text{ for } T_w > T_b$ $n = 0.25 \text{ for } T_w < T_b$ n = 0 for konstant varmefluks og for gasser f = Friksjonskoeffisient i rør $\mu_b = \text{Viskositet ved bulktemperatur [kg/m \cdot s] = [Pa \cdot s] = [10^3 \text{cP}]$ $\mu_w = \text{Viskositet ved veggtemperatur [kg/m \cdot s] = [Pa \cdot s] = [10^3 \text{cP}]$

For Prandtls tall mellom 0.5 til 200 angir ligningen Nusselts tall innenfor avvik på 6%, mens det for Prandtls tall mellom 0.5 til 2000 er innenfor avvik på 10% [1].

Friksjonskoeffisienten, f, i glatte rør kan enten bestemmes ved bruk av Moody diagram, figur 1.2, eller ved tilfeller av turbulent strømning ved hjelp av Blasius empiriske formel [3]:

$$f = \frac{0,3164}{\text{Re}^{0,25}}$$
 (ligning 1.8)

Figur 1.2 Friksjonskoeffisient i rør[1]

Figur 1.2 viser Moody-diagram for bestemmelse av friksjonskoeffisienten i rør. Merk at friksjonskoeffisienten reduseres betraktelig ved høye verdier av Reynolds tall.

Stantons tall

Stantons tall er enda et av de dimensjonsløse forholdstallene som er relevante for varmeoverføring. Stantons tall angir forholdet mellom varmen som er overført til et medium mot den termiske kapasiteten til mediet. Stantons tall kan i relasjon til tvungen konveksjon uttrykket etter følgende[1]:

$$St = \frac{h}{\rho u_m c}$$
 (Ligning 1.9)

Stantons tall kan også uttrykkes ved tidligere beskrevet dimensjonsløse faktorer. Enten ved[1]:

$$St = \frac{Nu}{RePr}$$
 (Ligning 1.10)

eller ved hjelp av Reynolds modifiserte analogi for rørstrømning[1]:

$$StPr^{\frac{2}{3}} = \frac{f}{8}$$
 (Ligning 1.11)

1.4 KOMBINASJON AV EGENKONVEKSJON OG TVUNGEN KONVEKSJON

Konveksjon har til nå i oppgaven blitt beskrevet av tvungen karakter, hvor konveksjon pågår som et resultat av et medium som er tvunget i kontakt med en overflate med temperaturforskjell. Egenkonveksjon oppstår ved bevegelse i mediet grunnet endring i massetetthet som følge av temperaturforskjeller. Da varmevekslere ofte er designet med hastigheter som gir turbulent strømning, er egenkonveksjon ofte lite representert i varmeoverføringen. Egenkonveksjon kan derimot oppstå, i tilfeller med lave hastigheter og i enkelte stagnasjonsområder på skallsiden i en "skall og rør"-varmeveksler.

Enkelte beregninger som anvendes senere i oppgaven er gjort med antakelse om varmeoverføring ved tvungen konveksjon. Nusselts tall angir som tidligere beskrevet forholdet mellom varmeoverføring ved konveksjon og konduksjon. Ved høye verdier av Nusselts tall (typisk 100-1000) og i tilfeller med turbulent strømning vil konveksjonen være preget av tvungen karakter. Det vil derfor bli beregnet Nusselts tall for både skallside og rørside i regnearket for å bekrefte/avkrefte antakelsen om varmeoverføring dominert ved tvungen konveksjon. Ut over dette vil det ikke bli gått noe nærmere inn på ren egenkonveksjon, på grunn av dets manglende relevans til "skall og rør"-varmevekslere. Under er det, som en kuriositet, vist figur som fremstiller typer konveksjon i horisontal sylinder, med innhold av nevnte dimensjonsløse forholdstall.

Figur 1.3 Typer konveksjon i horisontal sylinder[1]

Det er i figur 1.3 over, illustrert en oversikt over når det i horisontal sylinder, opereres med tvungen konveksjon, egenkonveksjon eller en kombinasjon. Dette basert på Reynolds tall, Grashofs tall, Prandtls tall og forhold mellom diameter og lengde. Det ses at det ved Reynolds tall over 10^4 - 10^5 utelukkende er egenkonveksjon som er den dominante form for konveksjon i horisontal sylinder.

1.5 FORHOLD AV VARMELÆRE RELATERT UTSIDE AV RØR OG KRYSSENDE RØRSTRØMNING

Teori av varmelære som er blitt fremlagt til nå har begrenset seg til forhold for innside av rør. Like sentralt for "skall og rør"-varmevekslere er forholdene på utside av rør og mellom rørbunten.

Det tidligere definerte Reynolds tall, kan for strømning på utside av rør og i skall av "skall og rør"-varmevekslere bestemmes etter følgende[7]:

$$Re = \frac{D_o G_s}{\mu}$$
 (Ligning 1.12)

Hvor,

$$\begin{split} & D_o = \text{Ytterdiameter rør [m]} \\ & G_s = \frac{W_s}{a_s} = \text{Massestrømning per areal i skall [kg/m^2s]} \\ & W_s = \text{Strømningsrate i skall [kg/s]} \\ & a_s = B \left[(D_s - D_{ctl} - D_o) + \frac{D_{ctl}}{L_{tp,eff}} (L_{tp} - D_o) \right] = \text{Strømningsareal i skall [m^2] [3]} \\ & B = \text{Avstand mellom ledeplater [m]} \\ & D_s = \text{Skalldiameter [m]} \\ & D_{ctl} = \text{Korresponderende buntdiameter [m]} \\ & L_{tp,eff} = \begin{cases} L_{tp} \text{ for } 30^\circ \text{ og } 90^\circ \text{ rørmønster} \\ 0,707L_{tp} \text{ for } 45^\circ \text{ rørmønster} \\ L_{tp} = \text{Senteravstand mellom rør [m]} \end{cases} \end{split}$$

For strømning i skall defineres turbulent strømning ved verdier av Reynolds tall større eller lik 100, som altså er betraktelig mye mindre enn hva definisjonen for turbulent rørstrømning er.

Nusselts tall, begrenset til væskestrøm, for utside av rør kan videre uttrykkes ved[1]:

$$Nu_f = \frac{hd}{k_f} = C(\frac{u_{\infty d}}{v_f})^n Pr_f^{1/3} \text{ (Ligning 1.13)}$$

Hvor,

C og n er variable konstanter avhengig av Reynolds tall, listet i figur 1.4 under. Notasjonen f angir parametre definert ved filmtemperatur, som finnes av gjennomsnittet mellom bulk- og veggtemperatur. Ved store temperaturforskjeller mellom medier på rørside og skallside i en varmeveksler vil betydningen av å spesifisere fysiske egenskaper ved filmtemperatur være størst.

Redf	C	n.
0.4–4	0.989	0.330
4-40	0.911	0.385
40-4000	0.683	0.466
4000-40,000	0.193	0.618
40,000-400,000	0.0266	0.805

Figur 1.4 Konstanter for bruk i ligning 1.13[1]

For beregning av Nusselts tall for utside av rørbunter tas det utgangspunkt i ligning 1.13, men konstantene C og n er her avhengig av rørmønster og avstand mellom rørene, som avleses figur 1.5.

				<u>Sn</u>				
S.		25		a 1.5	2	.0	3.	0
đ	C	<u> </u>	C	n	C	n	C	л
. <u> </u>				In lin e				
1.25	0.386	0.592	0.305	0.608	0.111	0.704	0.0703	0.752
1.5	0.407	0.586	0.278	0.620	0.112	0.702	0.0753	0.744
2.0	0.464	0.570	0.332	0.602	0.254	0.632	0.220	0.648
3.0	0.322	0.601	0.396	0.584	0.415	0.581	0.317	0.608
				Staggered				
0.6					11 <u>2 - 2</u>		0.236	0.636
0.9					0.495	0.571	0.445	0.581
1.0			0.552	0.558				
1.125					0.531	0.565	0.575	0.560
1.25	0.575	0.556	0.561	0.554	0.576	0.556	0.579	0.562
1.5	0.501	0.568	0.511	0.562	0.502	0.568	0.542	0.568
2.0	0.448	0.572	0.462	0.568	0.535	0.556	0.498	0.570
3.0	0.344	0.592	0.395	0.580	0.488	0.562	0.467	0.574

Figur 1.5 Konstanter for bruk i ligning 1.13 ved beregning av Nusselts tall for utside av rørbunter[1]

Valg av konstanter i figur 1.5 ovenfor er avhengig rørmønsteret. Det vil senere bli gitt en utdypet forklaring av de forskjellige rørmønstrene og fortrinn ved forskjellige valg. I figur 1.5 skilles det mellom ordnet og forskjøvet rørmønster, som vist i figur under.

Figur 1.6 Strømningsretning og avstand mellom rør[1]

Figur 1.6 over viser orientering og avstander for rør i ordnet og forskjøvet mønster. For strømning som krysser rørbunter beregnes ny hastighet, u_{max} , for bruk i ligning 1.13. Den maksimale hastigheten mellom rørbunter defineres ved middelhastighet og avstander mellom rør, avhengig av rørmønster.

$$u_{max} = u_{\infty} \frac{s_n}{s_n - d}$$
 for rør i ordnet mønster (ligning 1.14)

$$u_{max} = \frac{u_{\infty}({}^{sn}/_2)}{\left[({}^{sn}/_2)^2 + s_p^2\right]^{1/2} - d}$$
 for rør i forskjøvet mønster (ligning 1.15)

Senteravstand mellom rør er tidligere angitt med notasjonen L_{tp} . Avstandene som benyttes ved beregning av trykkfall og maksimumshastigheter vil imidlertid variere med rørmønster. I forbindelse med trykkberegninger brukes lengder L_{pp} og L_{pn} . Følgende sammenhenger gjelder[3]:

For rør i 90° mønster: S_n=L_{pn}=L_{tp} og S_p=L_{pp}=L_{tp}

For rør i 30° mønster: $L_{pn}=sin(30^\circ) \cdot L_{tp} \text{ og } L_{pp}=cos(30^\circ) \cdot L_{tp}$ og $S_n=2\cdot L_{pn}$ og $S_p=L_{pp}$

For rør i 45' mønster:

$$\begin{split} & L_{pn} = L_{pp} = cos(45^{\circ}) \cdot L_{tp} \\ & og \\ & S_n = S_p = L_{tp} \end{split}$$

2. "SKALL OG RØR"-VARMEVEKSLERE

2.1 INTRODUKSJON

Varmevekslere av type "skall og rør" har i en årrekke, og er fremdeles i dag, av den mest brukte typen varmevekslere i prosessindustrien. Disse varmevekslere er utbredt i bruk av mange grunner; dens kapasitet til å tåle store trykk og volummengder, forholdsvis billige fabrikasjonskostnad, enkle vedlikehold og robuste design med mindre ømfintlighet for begroing sammenlignet med andre typer varmevekslere.

2.2 KOMPONENTER OG OPPBYGNING AV "SKALL OG RØR"–VARMEVEKSLERE

Hovedkomponentene i denne type varmevekslere er en bunt med rør, et ytterskall med tilhørende forhode og bakhode, ledeplater og koblinger for inntak og uttak av medier. Det finnes mange forskjellige kombinasjoner og varianter i hvordan geometrien inni varmeveksleren er, det være seg rørmønster, antall rør, rørdiameter, bend i rør, hvordan ledeplater er plassert, avstand mellom ledeplater, kuttstørrelse i ledeplater og ikke minst strømningsarrangement og antall tilkoblingspunkt med plassering. Nevnte variasjoner i geometri vil ha betydning for strømningsmønster, strømningshastighet, varmeovergangskoeffisienter og trykkfall. Det er ved design av varmevekslere selvfølgelig ønskelig med best mulig varmeovergangstall og minst mulig areal, men det må også tas hensyn til produksjonskostnad, vedlikeholdsbehov, sikkerhet i dimensjoner og trykkfall.

2.2.1 RØR

Valg av rørdiameter og veggtykkelse er ofte det første som spesifiseres i forbindelse med design av varmevekslere. Det velges material avhengig av fare for korrosjon, varmeledningskoeffisient og økonomi, hvor det videre spesifiseres diameter og tilhørende nødvendig veggtykkelse etter operasjonstrykk og temperatur både med hensyn på mediet på skallside og rørside. Videre defineres gjerne antall rør, ved å spesifisere ønsket hastighet for den gitte massestrømning. Rørdiameter vil som vist tidligere, inngå i Reynolds tall både for skallside og rørside, og følgelig påvirkes varmeovergangskoeffisientene som vil bli beskrevet senere. Det overflatearealet som må til for å tilfredsstille en gitt varmerate finnes etter beregning av blant annet varmeovergangskoeffisientene, og med utgangspunkt i dette og valgt diameter med tilhørende antall rør, defineres minimum rørlengde. Dersom det ikke er noen restriksjoner til flateareal hvor varmeveksleren skal være stasjonært velges ofte liten rørdiameter, færre antall rør og lengre rørlengder. Dette med grunn i fabrikasjonskostnader, som vil reduseres ved heller å velge færre og lengre rør, enn flere og kortere rør. Flere rør og liten rørdiameter vil dog, som senere vist i parameterstudie, føre til høyere varmeovergangskoeffisienter. Større rørdiameter har derimot fordel av å være lettere å rengjøre, mer motstandstandsdyktige mot korrosjon og vil medføre lavere trykkfall i mediet på rørsiden.

Det er anbefales gjerne å velge antall rør slik at hastigheten for væsker ligger i intervallet 0.9-2.4m/s i rør og 0.6-1.5m/s i skall, mens det for gasser i rør er anbefalt en hastighet i intervallet 15-30m/s[3]. Den nedre grensen i intervallene er satt for å begrense begroing og ansamlinger, mens øvre grense er satt for å begrense erosjon, korrosjon og virvelinduserte vibrasjoner.

Mest brukt er rør i dimensjoner ¹/₂" og ³/₄" og de er ofte omtalt som de beste "allround" størrelsene. Det er i vedlegg A vedlagt standard rørdiametre, tilhørende veggtykkelser og mest brukte rørlengder spesifisert i standard av "Tubular Exchanger Manufacturers Association", heretter omtalt som TEMA[4]. I forbindelse med parameteranalysen og betydninger ved valg av diameter er det tatt utgangspunkt i standard fra Norsk Sokkel, heretter NORSOK, vedlagt i vedlegg B.

Figur 2.1 Standard rørmønstre

Det er figur 2.1 vist de 4 standard måtene å ordne rørene på i forhold til hverandre (pilen på figuren angir strømningsretningen på skallmediet når det krysser opp og ned mellom ledeplatene). Det skilles mellom i hovedsak mellom rørmønster i rektangulær og triangulær

utførelse, som begge forekommer i både ordinær og rotert variant (tidligere henvist til som ordnet og forskjøvet mønster). "Ved valg av triangulært mønster vil man få en mer kompakt varmeveksler med bedre varmeovergangskoeffisienter på skallsiden, sammenlignet med rektangulært mønster. Et rektangulært mønster vil derimot ha fordel av mindre trykkfall på skallsiden og være tilrettelagt for mekanisk rengjøring, noe som ved operasjon med medier inneholdende forskjellige urenheter, kan være nødvendig". Disse påstandene er sitert fra [3] og er senere bekreftet i parameteranalysen som er utført.

Minimum ordinær senteravstand mellom rør skal i alle tilfeller være 1,25 ganger ytre diameter av rør. Dersom mekanisk rengjøring er nødvendig skal kun rektangulært mønster velges, hvor det for skalldiameter på 305mm eller mindre, skal være minimum avstand mellom rørene (vegg til vegg) på 4.8mm mens det for skalldiametre større enn 305mm skal være minimum avstand mellom rørene på 6.4mm[4].

2.2.2 SKALL

TEMA har utarbeidet 7 forskjellige standardiserte skalltyper. Valg av skalltype avhenger i hovedsak av tillatt trykkfall, kostnad, fase i medier, vedlikehold og plassbegrensninger.

Figur 2.2 Klassifisering av skall- og hodetyper [4]

Av figur 2.2 ses det at E-skallet er den simpleste skalltypen. Dette er også den vanligste skalltypen grunnet dens enkle fabrikasjon og lave kostnad. I tilfeller hvor det opereres med kun en fase i mediet i skall og hvor det ikke er noen begrensninger til trykkfall på skallsiden er E-skallet et vanlig valg. E-skallet kan arrangeres både til parallell og motstrøms varmeveksler. Tykkelse i skallet er angitt basert på nominell skalldiameter i vedlegg A.

2.2.3 LEDEPLATER

Det er inni skallet montert ledeplater med funksjon for å støtte rør ved virvelinduserte vibrasjoner, opprettholde avstand mellom rør og lede skallmediet på kryss eller langs rørbunten. Det skilles mellom ledeplater som er plassert på tvers og langs rørene. Tversgående ledeplater er det vanligste valget i kombinasjon med E-skallet og vil, med vekslende åpning oppe og nede, lede skallmediet i et "sikksakk"-mønster. Trykkfallet i mediet på skallsiden avhenger størrelsen på kuttet/vinduet i ledeplatene og med dette også antall ledeplater. Generelt er det optimale kuttet på luken 20 % av skalldiameteren[4]. Mindre enn 20 % åpning kan resultere i betydelig trykkfall, mens større åpning kan resultere i et stagnerende strømningsmønster i deler av skallet. Det er i studiene i oppgaven gjort beregninger for forskjellige varmevekslere, hvor lukeåpning og avstand mellom ledeplater er forskjellig fra studie til studie. Avstand mellom ledeplatene er ofte 1/5 til 1 ganger skalldiameter, men bør sjekkes opp mot maksimale spennlengder av rør. Det er senere i parameteranalyse sett utfall som følger valg av avstand mellom ledeplater. Platetykkelse for tversgående ledeplater er angitt i vedlegg A.

2.2.4 KLASSIFISERING AV "SKALL OG RØR"-VARMEVEKSLER

Det finnes 3 hovedtyper av "skall og rør"-varmevekslere; "U-rør design", "Bevegelig hode design" og "Fastlåst rørdesign". Klassifiseringene skiller mellom hvordan rørene går gjennom skallet og hvorvidt og hvordan rørene kan bevege seg inne i skallet grunnet temperaturforskjeller i rørmaterial og skallmaterial. Veksleren av type "Fastlåst rørdesign" er den enkleste og billigste typen, men dersom temperaturforskjellene i rørmaterial og skallmaterial blir store, omtrent 50°C for karbonstål[4], vil problemer med termiske ekspansjoner gjøre seg gjeldene og ekspansjonsanretninger må implementeres i designet.

Det er i oppgaven blitt utarbeidet et regneark for en "skall og rør"-varmeveksler bestående av E-skall med innhold av rette rør i et "fastlåst rørdesign" med tversgående ledeplater for guiding av skallmediet. Regnearket er utarbeidet for væskestrøm på skallside og gass uten faseendring eller væske på rørside. Det er også tatt utgangspunkt i varmeveksling av motstrøms karakter. Det er under vist illustrasjon av en slik type varmeveksler.

Figur 2.3 E-skall med "fastlåst rør"-design og tversgående ledeplater [3]

Figur 2.3 viser skisse av den type "skall og rør"-varmeveksler regnearket er utviklet for. Det viser på skissen hvordan varmeveksleren kan arrangeres både i medstrøms og motstrøms veksling. I relasjon til beregning av Logaritmisk gjennomsnittlig Temperaturdifferanse er regnearket som nevnt kun gyldig i tilfeller med varmeveksling i motstrøms arrangement. Det illustreres også på figuren hvordan de tversgående ledeplatene, med åpning oppe og nede, guider skallmediet i "sikksakk"-mønster.

2.3 OVERSLAG AV VARMEVEKSLERENS STØRRELSE, KARAKTERISTIKK OG TRYKKFALL

Den komplette designprosedyren av en "skall og rør"-varmeveksler er en omfattende prosess og det er i tilgjengelig litteratur om emnet utarbeidet en mengde forskjellige metoder. Det er i denne oppgaven tatt utgangspunkt i noe av Bell's og Bell-Delaware`s metode for overslag av varmevekslerens størrelse, karakteristikk og trykkfall. Metodene er spesielt utviklet for design av varmevekslere med E-skall innholdende rette rør. Bell-Delaware`s metode er den mest nøyaktige, men også den mest omfattende metoden. Det er innledningsvis nevnt at det har vært en målsetning å utvikle et mest mulig brukervennlig regneark, og det er med grunn i dette forsøkt unngått å overlate flere enn nødvendig geometriske spesifiseringer og detaljer til bruker, men heller gjennom antakelser og forenklinger utvikle et regneark med automatikk i estimeringsprosedyren.

Før uttrykk for beregninger er utredet, må det blant annet bestemmes hvilke medier man ska ha på rørside og skallside av varmeveksleren. Følgende retningslinjer er til veiledning[5]:

Skallside:

- Medium med høyest viskositet, for generell økning av total varmeoverføringskoeffisient
- Medium med lavest volumstrømning
- Kondenserende eller kokende medium (Ikke aktuelt for regneark)

Rørside:

- Etsende eller helseskadelig medium, i tilfellet lekkasje
- Korrosivt medium
- Medium relatert begroing og erosjon
- Medium med høy temperatur
- Medium med høyt trykk, for å unngå høy kostnad med større skalltykkelse
- Medium som er mest eksponert for trykkfall

2.3.1 OVERSLAG AV STØRRELSE

Det finnes flere etablerte metoder for "skall og rør"-varmevekslere. Ved estimering av størrelse er det en vanlig problemstilling knyttet til ukjent rørdiameter, veggtykkelse og lengde, som alle inngår i varmeovergangskoeffisienter for varmeveksleren, som videre er av avgjørelse for det nødvendige overflatearealet, som igjen definerer diameter og lengde. Ved spesifisering av tillatt trykkfall som også avhenger blant annet lengde og diameter utarter estimeringsprosessen seg i retning av enda større kompleksitet. Forbundet med denne problemstillingen inngår det ofte flere rekker iterasjoner, gjerne i kombinasjon med en eller flere forventede forholdstall til startantakelser.

Etter anmodning fra Aker Solutions er det valgt at bruker av regnearket skal kunne spesifisere ytterdiameter og veggtykkelse av rør. Valg av diameter og veggtykkelse gjøres etter veiledning ved valg av rør som beskrevet for rør over. Under omstendigheter med innhold av laminær rørstrømning, følger det dog en gjentakelsesrekke i tilknytning til beregning av varmeovergangskoeffisient for innside av rør.

Figur 2.4 Flytskjema for overslagsprosess[3]

Det er i figur 2.4 over vist en klassisk prosedyre for bestemmelse av størrelse av en varmeveksler. Ved å beregne LMTD med tilhørende korreksjonsfaktor F, varmerate og varmeovergangskoeffisienter bestemmes nødvendig overflateareal og størrelse av varmeveksleren.

Beregning av varmerate:

$$q = m_h c_h (T_{h,i} - T_{h,o}) = m_c c_c (T_{c,o} - T_{c,i})$$
 (Ligning 2.1)

Hvor,

 m_h = Massestrøm av varmt medium [kg/s] c_h = Spesifikk varmekapasitet av varmt medium [kJ/kg · K] $T_{h,i}$ = Inngangstemperatur av varmt medium [°C] $T_{h,o}$ = Utgangstemperatur av varmt medium [°C] m_c = Massestrøm av kaldt medium [kg/s] c_c = Spesifikk varmekapasitet av varmt medium [kJ/kg · K] $T_{c,o}$ = Utgangstemperatur av kaldt medium [°C] $T_{c,i}$ = Inngangstemperatur av kaldt medium [°C]

Beregning av "Logaritmisk Midlere Temperaturdifferanse", LMTD (motstrøms)[7]:

$$LMTD = \Delta t_{lm} = \frac{(T_{h,i} - T_{c,o}) - (T_{h,o} - T_{c,i})}{\ln \left[(T_{h,i} - T_{c,o}) / (T_{h,o} - T_{c,i}) \right]}$$
(Ligning 2.2)

Den logaritmisk midlere temperaturdifferansen er den største drivkraften for varmeoverføringen som finner sted varmeveksler. Denne temperaturdifferansen er basert på en varmeveksler hvor to medier er i et rent motstrømsmønster. Flere varmevekslere vil ikke være arrangert i et slikt rent mønster, men som i et varierende strømningsmønster. Den "virkelige gjennomsnittlige temperaturdifferansen", MTD, vil i disse tilfeller avvike noe fra den logaritmiske gjennomsnittlige temperaturdifferansen. En korreksjonsfaktor, F, er utviklet for å kompensere for denne forskjellen.

Alternativ 1 for beregning av korreksjonsfaktor relatert Logaritmisk gjennomsnittlig temperaturdifferanse, F[7]:

Alternativ 1 er den enkleste metoden og det beste alternativet dersom videre iterasjonsrekker ønsket unngått. Metoden går ut på å bestemme korreksjonsfaktoren, F, ut i fra et PR-diagram for valgt type varmevekslerarrangement. Det er som nevnt tatt utgangspunkt i en varmeveksler hvor det er brukt rette rør og ledeplater slik at skallmediet følger en "sikksakk"bevegelse og på denne måten krysser rørene flere ganger. Korreksjonsfaktoren, F, er i disse tilfeller relatert logaritmisk temperaturdifferanse av motstrøms karakter. I forbindelse med bruk av vedlagt PR-diagram er det gjort antakelse om at minimum 7 ledeplater er blitt brukt, slik at skallmediet passerer rørene minimum 8 ganger. Det er også et kriterium til metoden at varmeoverføring er en lineær funksjon av temperaturforskjell.

P = Parameter for bestemmelse av korreksjonsfaktor **F**:

$$P = \frac{T_{c,o} - T_{c,i}}{T_{h,i} - T_{c,i}}$$
(Ligning 2.3)

R = Parameter for bestemmelse av korreksjonsfaktor **F**:

$$R = \frac{T_{h,i} - T_{h,o}}{T_{c,o} - T_{c,i}}$$
(Ligning 2.4)

Det finnes mange forskjellige PR-diagram for ulike situasjoner, basert på antall skall i serier, antall bend i rør, type skall og strømningsarrangement. Vedlagt i brukerveiledning, vedlegg D, finnes PR-diagram for ett E-skall med medier ordnet i motstrøm arrangement og innhold av rette rør.

Alternativ 2 for beregning av korreksjonsfaktor relatert Logaritmisk gjennomsnittlig temperaturdifferanse, F[3]:

Også denne metoden tar utgangspunkt i en varmeveksler av motstrøms strømningsmønster. P og R er på samme måte som i alternativ 1 med på å bestemme F, men i dette tilfellet i kombinasjon med numeriske parametre av strømningsarrangement i stedet for grafisk fremstilling. Temperaturene brukt i P og R er i dette tilfellet definert ved skallside og rørside. Også dette alternativet for bestemmelse av F begrenser seg til en antakelse om lineær varmeoverføring i forhold til temperaturdifferanse.

$$F = \frac{1}{(R-1)NTU_t} ln \left[\frac{1-P}{1-PR} \right] \text{ for } R \neq 1 \text{ (Ligning 2.5)}$$
$$= \frac{P}{(1-P)NTU_t} \text{ for } R = 1 \text{ (Ligning 2.6)}$$

$$F = \frac{1}{(1-C^*)NTU_t} ln \left[\frac{1-\varepsilon C^*}{1-\varepsilon} \right] \text{ for } C^* \neq 1 \text{ (Ligning 2.7)}$$
$$= \frac{\varepsilon}{(1-\varepsilon)NTU_t} \text{ for } C^* = 1 \text{ (Ligning 2.8)}$$

Hvor,

C* = Forhold mellom varmekapasitetsrate:

$$C * = \frac{C_{min}}{C_{max}} = \frac{(mc)_{min}}{(mc)_{max}}$$
 (Ligning 2.9)

 ϵ = Effektivitet av varmeveksler, forhold mellom virkelig varmeoverføringsrate og maksimal varmeoverføringsrate:

$$\varepsilon = \frac{q}{q_{max}} = \frac{C_h(T_{h,i} - T_{h,o})}{C_{min}(T_{h,i} - T_{c,i})} = \frac{C_c(T_{c,o} - T_{c,i})}{C_{min}(T_{h,i} - T_{c,i})}$$
(Ligning 2.10)

Hvor,

C = varmekapasitetsrate, produktet av massestrøm og spesifikk varmekapasitet, med notasjon "c" for kaldt medium, "h" for varmt medium og "min" for lavest produkt av de to mediene $[kJ/s \cdot C]$

P = Termisk effektivitet, temperatureffektivitet av medium på rørside:

$$P = \frac{T_{t,o} - T_{t,i}}{T_{s,i} - T_{t,i}} (\text{Ligning 2.11})$$

Hvor,

 $T_{t,o} =$ utgangstemperatur på medium i rørside [°C] $T_{t,i} =$ inngangstemperatur på medium i rørside [°C] $T_{s,i} =$ inngangstemperatur på medium i skallside [°C]

R = Varmekapasitetsforhold:

$$R = \frac{T_{s,i} - T_{s,o}}{T_{t,o} - T_{t,i}}$$
(Ligning 2.12)

NTU_t = forhold mellom total konduktivitet og varmekapasitetsrate på medium i rørside:

$$NTU_t = NTU \frac{C_{min}}{C_t} = NTU$$
 for $C_t = C_{min}$ (Ligning 2.13)
= $NTU C *$ for $C_t = C_{max}$ (Ligning 2.14)

Hvor,

$$NTU = \frac{1}{C_{min}} \left[\frac{1}{R_h + R_1 + R_w + R_2 + R_h} \right]$$
(Ligning 2.15)

Hvor,

 $R_{h} = \text{koeffisient av filmkonveksjon på varm side av rør [W/m²· K]}$ $R_{c} = \text{koeffisient av filmkonveksjon på kald side av rør [W/m²· K]}$ $R_{1} = \text{koeffisient for termisk motstand mtp begroing og korrosjon på varm rørside [W/m²· K]}$ $R_{w} = \text{koeffisient av termisk motstand i rørveggen [W/m²· K]}$ $R_{2} = \text{koeffisient for termisk motstand mtp begroing og korrosjon på kald rørside [W/m²· K]}$

Å beregne korreksjonsfaktor for logaritmisk gjennomsnittlig temperaturdifferanse, F, er etter alternativ 2 altså en omstendelig prosess, da NTU avhenger de forskjellige varmeovergangskoeffisientene, som til nå er ukjent. Det er derfor i regnearket benyttet alternativ 1 for bestemmelse av F, men enkelte deler fra alternativ 2 er benyttet i beregning av varmevekslerens karakteristikk. Korreksjonsfaktoren ligger ofte i intervallet mellom 0,8 og 1.0, og kan ved grove overslag anslås i dette området. Faktoren angir som nevnt hvordan varmeveksleren er arrangert i forhold til en ren motstrøms varmeveksler, hvor en verdi på 1.0 tilsvarer et rent motstrømsarrangement.

Beregning av total varmeovergangskoeffisient, U [7]:

$$\frac{1}{U} = \frac{1}{h_o} + \frac{1}{h_i(\frac{D_i}{D_o})} + \frac{1}{h_w} + \frac{1}{h_s} \text{(Ligning 2.16)}$$

Hvor,

U = Total varmeovergangskoeffisient [W/m²· K]

- $h_o = Varmeovergangskoeffisient for utside av rør [W/m²·K]$
- $h_i = Varmeovergangskoeffisient for innside av rør [W/m²·K]$
$h_w = Varmeovergangskoeffisient på tvers av rørveggen [W/m²· K]$ $h_s = Varmeovergangskoeffisient relatert begroing og korrosjon [W/m²· K]$

Å beregne den totale varmeovergangskoeffisienten, U, utøver ofte en stor usikkerhet i en prosess med å estimere en varmeveksler. Dette i forbindelse med spesifisering av fysiske egenskaper, som gjerne gjøres med gjennomsnittsverdier og ofte antakelser i viskositetsforhold. Det følger under beskrivelse av hvordan den enkelte varmeovergangskoeffisienten tilhørende i ligning 2.16 beregnes.

I tilfeller med tvungen konveksjon med strømning uten faseendring kan varmeovergangskoeffisienten for innside av rør, h_i, bestemmes ved[7]:

$$h_i = \frac{0.023 c G_t}{(\Pr_t)^{2/3} (Re_t)^{0.2} (\frac{\mu_w}{\mu_b})^{0.14}}$$
 for Re>8000 (Ligning 2.17)

$$h_i = \frac{1.86cG_t}{(\Pr_t)^{2/3} (Re_t)^{2/3} (\frac{L}{D_i})^{1/3} (\frac{\mu_W}{\mu_b})^{0.14}} \text{ for Re<2100 (Ligning 2.18)}$$

Hvor,

 $Pr_t = Prandtls tall for rørside$ $Re_t = Reynolds tall for rørside$ L = Lengde av rør [m]

Varmeovergangskoeffisienten for utside av rørbunt, h_o , i strømning ved samme betingelser som ovenfor[7]:

$$h_o = hF_1F_r$$
 (Ligning 2.19)

Hvor,

$$h = \frac{acG_s}{(\Pr_s)^{2/3} (Re_s)^m (\frac{\mu_W}{\mu_b})^{0.14}}$$
(Ligning 2.20)

Hvor,

 $Pr_s = Prandtls tall på skallside$

Re_s =Reynolds tall på skallside

a og m er konstanter som avleses figur 2.5 avhengig av Reynolds tall på skallside og rørmønster.

Reynolds number	Tube pattern	m	a
Greater than 200,000	Staggered	0.300	0.166
Greater than 200,000	In-line	0.300	0.124
300 to 200,000	Staggered	0.365	0.273
300 to 200,000	In-line	0.349	0.211
Less than 300	Staggered	0.640	1.309
Less than 300	In-line	0.569	0.742

Figur 2.5 Konstanter for bruk i ligning 2.20[7]

Det er i koeffisienten for utside av rørbunt også implementert korreksjonsfaktorer relatert lekkasje og forbipassering av deler av mediet. Noe av mediet vil unngå å krysse rør ved lekkasje gjennom klaring mellom rør og hull i ledeplater og ved å strømme rundt skallveggen. Følgende er definert[7]:

> $F_1 = 0.8(B/D_s)^{\frac{1}{6}}$ for bunter med normal lekkasje og forbipassering $F_1 = 0.8(B/D_s)^{\frac{1}{4}}$ for bunter uten lekkasje og forbipassering $F_r = 1.0$ for Re_s>100 $F_r = 0.2(\text{Re}_s)^{1/3}$ for Re_s<100

Uttrykkene for korreksjonsfaktorene er naturligvis utledet med antakelse i at varmeveksleren er designet på en slik måte at lekkasje mellom rør og hull i ledeplater, og andelen av mediet på skallsiden som unngår å krysse rørbunten er minimert. Det er i tillegg antatt et kutt i ledeplatene på 20% av skalldiameteren ved bruk av uttrykk for å beregne varmeovergangskoeffisient for utside av rør. Varmeovergangskoeffisienten for varmeledning gjennom rørveggen i rørene, h_w, kan på forenklet vis bestemmes etter følgende[7]:

$$h_w = \frac{2k}{D_o - D_i}$$
 (Ligning 2.21a)

Det ble etter samtale med intern veileder valgt å benytte dens logaritmiske variant for å unngå avvik som følger forenklet uttrykk med økt varmemotstand, altså lavere varmeledningskoeffisient og økt diameter. Følgende er derfor valgt å benytte i regneark:

$$h_w = \frac{2k}{D_o \cdot \ln{(\frac{D_o}{D_i})}}$$
 (Ligning 2.21b)

Beregning av totalt utvendig varmeoverføringsareal, Ao:

Etter bestemmelse av q, U, LMTD og F finner man totalt utvendig varmeoverføringsareal av rør, inkludert eventuelle finner ved:

$$A_o = \frac{q}{UF(LMTD)}$$
 (Ligning 2.22)

Bestemmelse av størrelse på skall og lengde av rør ved hjelp av totalt utvendig varmeoverføringsareal:

Totalt utvendig varmeoverføringsareal kan uttrykkes:

$$A_0 = \pi D_o L_{ta} N_t$$
 (Ligning 2.23)

Hvor,

L_{ta} = Varmeoverførende lengde av rør [m]

Antall rør avhengig av senteravstand mellom rør og rørmønster, er definert ved:

$$N_t = \frac{0.78D_{ctl}^2}{C_l L_{tp}^2}$$
 (Ligning 2.24)

39

Hvor,

 $C_1 = 0,86$ for 30° rørmønster $C_1 = 1,0$ for 45° og 90° rørmønster

Totalt utvendig varmeoverføringsareal kan videre uttrykkes:

$$A_{0} = (0.78\pi) \frac{D_{o}}{C_{l}L_{tp}^{2}} \left[L_{ta} D_{ctl}^{2} \right] \text{(Ligning 2.25)}$$

Uttrykket over oppsummerer det totale utvendig overflateareal av alle rørene. Ved iterasjonsprosedyre blir det i siste ledd for uttrykket gjort en startbetingelse, et såkalt "Aspect Ratio", hvor forholdet mellom rørlengde og buntdiameter først settes til 8.

Buntdiameteren kan også finnes ved hjelp av konstanter avhengig av rørmønster og antall passeringer for rørside[6]:

$$D_{ctl} = D_o \left(\frac{N_t}{K_1}\right)^{\frac{1}{n}} (\text{Ligning 2.26})$$

Hvor,

n

K₁ og n er konstanter angitt i figur 2.6 under:

2.207

2007 NO 107 L	2010-11-14	Т	riangular Pitch pt =	1.25 d₀	10.52 ×
Number Passes	1	2	4	6	8
K1	0.319	0.249	0.175	0.0743	0.0365
n	2.142	2.207	2.285	2.499	2.675
			Square Pitch $p_t = 1$.25 d₀	
Number Passes	1	2	4	6	8
K ₁	0.215	0.156	0.158	0.0402	0.0331

2.263

2.617

2.643

Figur 2.6 Konstanter for bruk i ligning 2.26 for estimering av buntdiameter [6]

2.291

Merk at antall passeringer i figur 2.6 ikke er relatert hvor mange ganger skallmediet krysser rør ved hjelp av ledeplater, men antall passeringer rørmediet krysser frem og tilbake i skallet. Etter buntdiameter er beregnet, beregnes minimum skalldiameter, ved hjelp av minimum avstand mellom skalldiameter og buntdiameter, etter følgende[3]:

$$L_{bb} = 12.0 + 0.005 D_s$$
 (Ligning 2.27)

Hvor,

L_{bb}= Minimum avstand mellom skall og rørbunt [mm]

Minimum avstand mellom skall og rørbunt kan også uttrykkes ved:

$$L_{bb} = D_{s.min} - D_{ctl} - D_o \text{ (Ligning 2.28)}$$

$$D_{s,min} = \frac{D_{ctl} + D_o + 12.0}{0.995}$$
 (Ligning 2.29)

(Dimensjoner uttrykkes her i millimeter)

2.3.2 ESTIMERNG AV VARMEVEKSLERENS TRYKKFALL

Det er i design av varmevekslere ofte et overordnet mål å designe en varmeveksler som leverer en gitt varmerate innenfor lavest mulig trykkfall, dette da trykkfall og nødvendig massestrømning er relatert kompressor- og pumpearbeid som må utføres. Ved kjøling av gass er dog temperaturdifferansen av større betydning for kompressorarbeidet enn hva trykkfallet som medfølger kjøleprosessen er. Det er tidligere nevnt at det medium som er mest sensitivt for trykkfall bør velges til rørside. Hovedandelen av trykkfallet som oppstår på rørside av en "skall og rør"-varmeveksler er forbundet med trykkfall inni rørene. For skallsiden er trykkfallsdistribusjonen noe mer varierende alt etter geometri av varmeveksleren.

Beregning av trykkfall på skallside

Det totale trykkfallet på skallsiden kan deles inn i 3 hoveddeler med utgangspunkt i hvor trykkfallet er distribuert og kan uttrykkes etter følgende[8]+[3]:

$$\Delta P_s = \Delta P_c + \Delta P_w + \Delta P_e \text{ (Ligning 2.30)}$$

Hvor,

 ΔP_s = Totalt trykkfall på skallside [Pa]

 ΔP_c = Trykkfall i kryssende strømning mellom alle ledeplatene [Pa]

 ΔP_w = Trykkfall i alle ledeplatevinduer [Pa]

 ΔP_e = Trykkfall i inngangs- og utgangsområder [Pa]

Figur 2.7 Trykkfallsområder i ulike deler av skallet a) ΔP_c b) ΔP_w og c) ΔP_e [8]

Trykkfallet i kryssende strømning mellom ledeplater kan uttrykkes ved [8]:

 $\Delta P_c = (N_b - 1) \cdot \Delta p_{ideal} \cdot R_L \cdot R_B \text{ (Ligning 2.31)}$

Hvor,

N_b = Antall ledeplater

 R_L = Korreksjonsfaktor relatert lekkasje, typisk 0,4-0,6 [3]

 $R_B = Korreksjonsfaktor relatert forbipasserende medium, typisk 0,4-0,7 [3]$

 $\Delta P_{ideal} = \frac{2 \cdot f_{ideal} \cdot N_{tcc} \cdot G_s^2}{g_c \cdot \rho} \cdot \left(\frac{\mu_w}{\mu_b}\right)^{0,14} = \text{Ideelt trykkfall mellom rørbunten [Pa]}$ $N_{tcc} = \frac{D_s(1-2Bc)}{L_{pp}} = \text{Antall rekker rør}$

 B_c = Forhold mellom kutt i ledeplater og skalldiameter

 $g_c = Tyngeakselerasjon = (kg \cdot m/s^2)/N$

Den ideelle friksjonskoeffisienten beregnes best med bruk av konstanter valgt med hensyn på rørmønster og Reynolds tall i skall:

$$f_{ideal} = b_1 \cdot (\frac{1.33}{\frac{L_{tp}}{D_0}})^b \cdot Re_s^{b_2}$$

$$b = \frac{b_3}{1 + 0.14 R e_s^{b_4}}$$

Hvor,

b₁, b₂, b₃ og b₄ avleses figur 2.8 under med hensyn på rørmønster og Reynolds tall i skall.

Layout Angle	Reynolds Number	<i>a</i> ₁	a2	<i>a</i> 3	a4	b 1	b 2	<i>b</i> ₃	<i>b</i> 4
30°	105-104	0.321	-0.388	1.450	0.519	0.372	-0.123	7.00	0.500
	104-10 ³	0.321	-0.388			0.486	-0.152		
	10 ³ -10 ²	0.593	-0.477			4.570	-0.476		
	102-10	1.360	-0.657			45.100	-0.973		
	<10	1.400	-0.667			48.000	-1.000	64	
45°	105-104	0.370	-0.396	1.930	0.500	0.303	-0.126	6.59	0.520
	104-103	0.370	-0.396			0.333	-0.136		
	$10^{3}-10^{2}$	0.730	-0.500			3.500	-0.476		
	102-10	0.498	-0.656			26.200	-0.913		
	<10	1.550	-0.667			32.00	-1.000		
90°	105-104	0.370	-0.395	1.187	0.370	0.391	-0.148	6.30	0.378
	104-103	0.107	-0.266			0.0815	+0.022		
	103-10 ²	0.408	-0.460			6.0900	-0.602		
	102-10	0.900	-0.631			32.1000	-0.963		
	<10	0.970	-0.667			35.0000	-1.000		

Figur 2.8 Konstanter for beregning av friksjonskoeffisient i skall [8]

Trykkfallet i alle ledeplatevinduer kan uttrykkes på følgende måte[8]+[3]:

$$\Delta P_w = N_b \cdot \Delta P_{w,ideal} \cdot R_L \text{ (Ligning 2.32)}$$

Hvor,

$$\begin{split} \Delta P_{w,ideal} &= \frac{(2+0.6N_{tcw})G_w^2}{2\cdot g_c \cdot \rho} = \text{Ukorrigert trykkfall i ledeplatevinduer ved turbulent} \\ \text{skallstrømning, Re}_s > 100 [Pa] \\ G_w &= \frac{m_s}{\sqrt{a_s \cdot s_w}} = \text{Massestrømning per areal i ledeplatevinduer [kg/m^2 s]} \\ N_{tcw} &= \frac{0.8}{L_{pp}} (D_s B_c - \frac{D_s - D_{ctl}}{2}) = \text{Antall effektive rekker rør som krysses i ett ledeplatevindu} \\ s_w &= s_{wg} - A_{t,w} = \text{Strømningsareal i ledeplatevindu [m^2]} \\ s_{wg} &= \frac{\pi}{4} D_s^2 (\frac{\theta_{ds}}{2\pi} - \sin \frac{\theta_{ds}}{2\pi}) = \text{Areal av ledeplatevindu [m^2]} \\ \theta_{ds} &= 2\cos^{-1}(1 - 2Bc) \\ A_{t,w} &= N_t \cdot F_w \cdot \frac{\pi D_o^2}{4} = \text{Areal som dekkes av rør i ledeplatevindu [m^2]} \\ F_w &= \frac{\theta_{ctl}}{2\pi} - \frac{\sin \theta_{ctl}}{2\pi} = \text{Andel av rør som er i ledeplatevindu} \\ \theta_{ctl} &= 2\cos^{-1}(\frac{D_s}{D_{ctl}}(1 - 2Bc)) \end{split}$$

Trykkfallet i inngangs- og utgangsområder kan uttrykkes ved[8]+[3]:

$$\Delta P_e = 2 \cdot \Delta P_{ideal} (1 + \frac{N_{tcw}}{N_{tcc}}) R_B R_S \text{ (Ligning 2.33)}$$

Hvor,

 $R_s = Korreksjonsfaktor relatert variabel avstand mellom ledeplater i innløps og utløpsseksjon.$ 0,8 for fastlås rørdesign [3]

Det nevnes at det i forbindelse med bruk av denne metoden til trykkfallsberegninger for skallsiden, er opplyst at trykkfallet vil være i størrelsesorden 20-30 % av trykkfallsberegninger gjort uten å ta høyde for lekkasje og forbipassering av mediet[3].

Beregning av trykkfall på rørside

Da oppgaven omfatter varmevekslere med innhold av rette rør, uten noe form for bend eller ekspansjonsanretninger, er det valgt å bruke et forenklet uttrykk for det totale trykkfallet på rørside. Det er tatt utgangspunkt i klassisk beregning av trykkfall i glatte rør og antatt at det totale trykkfallet på rørsiden er dobbelt så stort som trykkfallet inni rørene. Dette for å gjøre lettelser i estimeringsprosedyren ved å unngå at bruker spesifiserer konstruksjonsdetaljer vedrørende innløps- og utløpskoblinger og innløps- og utløpsrør. Det totale trykkfallet på rørsiden ved turbulent strømning i rette rør uttrykkes da med faktor 2 og viskositetsforhold implementert, på følgende måte[9]:

$$\Delta P_t = 2f_t \left(\frac{L}{D_i}\right) \frac{G_t^2}{2 \cdot \rho_t} \cdot \left(\frac{\mu_w}{\mu_b}\right)^{0,14} \text{ (Ligning 2.34)}$$

Hvor,

 ΔP_t = Det totale trykkfallet for rørside av varmeveksleren [Pa] f_t = Friksjonskoeffisient for rør (som tidligere beskrevet i oppgaven)

Det merkes at det i beregninger av trykkfall multipliseres med samme viskositetsforhold som det i beregninger for varmeovergangskoeffisienter divideres med. Utslag av antatt viskositetsforhold vil ved trykkfallsberegninger gi motsatt utslag av hva det vil gjøre i beregninger av varmeovergangskoeffisienter.

Utover beskrevne uttrykk i kapitel 1 og 2 er det i utviklingen av regnearket for øvrig blitt utført noen helt elementære regneoperasjoner, som skulle være unødvendige å liste opp på mastergradsnivå.

3. PROSEDYRE, RESTRIKSJONER OG ANTAKELSER FOR REGNEARKET

3.1 INTRODUKSJON

Det er i utarbeidingen av regnearket for estimering av "skall og rør"-varmevekslere, vært et gjennomgående fokus på å gjøre overslagene så presise som mulig for hver enkelt situasjon, samtidig som regnearket skal være så brukervennlig som mulig, i den forstand at det skal kunne opereres av flest mulig brukere på en rask og effektiv måte. Enkelte antakelser og forenklinger er derfor gjort, mens andre valgmuligheter på sin side er åpne for bruker.

3.2 PROSEDYRE

Med utgangspunkt i temperaturer, strømningsmengder og fysiske egenskaper, skal regnearket ved hjelp av få manuelle valg underveis i hovedsak estimere varmevekslerens størrelse, varmeovergangstall, karakteristikk og trykkfall. Enkelte valg, antakelser og parametre vil kunne være større eller mindre utslagsgivende, det er derfor i neste kapitel presentert en parameteranalyse, mens betydninger av antakelser er kommentert under antakelser og forklart utslag av i resultater av studier. Det er også basert på dette, utarbeidet en brukerveiledning av regnearket.

Regnearket er oppdelt i flere seksjoner med følgende hovedtrekk:

- 1. Innsetting av temperaturer og spesifisering av tilhørelse til rørside og skallside
- Innsetting av volum- og masserater og spesifisering av fysiske egenskaper. Massestrømning og utgangstemperatur for vekslende medium kombineres slik at varmeraten for begge medier er i overensstemmelse.
- 3. Beregning av LMTD og tilhørende korreksjonsfaktor, F, ved hjelp av PR-diagram.
- 4. Valg av ønsket middelhastighet i rør. Anbefalte intervall for ulike medier og forventet begroing og korrosjon er til veiledning, som tidligere beskrevet i kapitel 2.
- 5. Med hensyn på gjennomsnittlig volumstrømning og valgt strømningshastighet beregnes nå **strømningsareal** (tverrsnittsareal) av alle rør.
- 6. Valg av **diameter og veggtykkelse** i rør med hensyn på temperatur og trykk. Det velges også material med varmeledningskoeffisient, med hensyn på økonomi og

korrosjonsfare som følger de ulike medier. Det er vedlagt dimensjoner fra TEMA i vedlegg A, men det anbefales å bruke NORSOK for større valgfrihet til materialkvalitet og ved høye trykk. Det er vedlagt rørdimensjoner i Duplex av NORSOK i vedlegg B

- 7. Antall rør, innerdiameter og Reynolds tall i rør blir beregnet.
- 8. Minimum **ordinær senteravstand** mellom rør blir nå beregnet og valgt verdi skal spesifiseres. Merk at det i tilfeller hvor mekanisk rengjøring er nødvendig, er det spesifisert minimum "vegg til vegg"-avstand mellom rør for ulike skalldiametre. Dette må eventuelt implementeres i valgt senteravstand.
- 9. Beregning av **buntdiameter** etter valgt konstant for rørmønster blir videre beregnet.
- 10. Minimum skalldiameter blir beregnet etter minimum avstand til buntdiameter.
- 11. Forhold i avstand mellom ledeplater og skalldiameter spesifiseres.
- 12. Strømningsareal i skall blir beregnet etter valgt skalldiameter, avstand mellom ledeplater og rørmønster.
- 13. Beregning av massestrømning per areal, middelhastighet i skall og de dimensjonsløse Prandtls tall og Reynolds tall for begge sider.
- 14. Beregning av varmeovergangskoeffisienter for innside av rør, utside av rørbunt, vegg i rør og korrosjon/begroing relatert rørside. Videre beregning av den totale varmeovergangskoeffisienten for varmeveksleren.
- 15. Beregning av nødvendig overflateareal, med utgangspunkt i varmerate, varmeovergangskoeffisient, Logaritmisk midlere temperaturdifferanse og tilhørende korreksjonsfaktor.
- 16. Bestemmelse av **total utvendig lengde** og **diameter av varmeveksler** etter valg av skalldiameter og rørlengde med utgangspunkt i minimum varmeoverførende rørlengde.
- 17. Bestemmelse av varmevekslerens karakteristikk som temperatureffektivitet,
 beregnet maksimal hastighet i skall, friksjonskoeffisienter og Nusselts tall for begge sider.
- 18. Bestemmelse av **trykkfall** på rørside og skallside.

Under følger figur for å illustrere regnearkets oppbygging og forskjellige deler. Regnearket i sin helhet medfølger naturligvis kun elektronisk utgave av oppgaven.

ESTIMERING AV "SKALL OG RØR" - VARMEVEKSLER, E-SKALL Regneark, Mal				
TEMPERATURER:				
	Varmt fluid:		Kaldt fluid:	
Inngangstemperatur [°C]		T _{hi}		T _{el} i
Utgangstemperatur ["C]		Tho		T _{c,o}
Carrillan far sauld an statista	Returida (unsust allas kalda)		Charltaider	
Spesifiser for rørside og skaliside	Kørside (Varmt eller kaldt)	T	Skaliside:	T 21
Litrangstemperatur [*0]		T.		12,1 T
organizatemperatur (aj		°to		15,0
FYSISKE PARAMETRE				
	Varmt fluid:		Kaldt fluid:	
Spesifikk varmekapasitet [J/kg K]		Ch.		د
Massestrøm [kg/t]	0.00	m _h	0.00	m _c
Wassestrøm (kg/s)		m _h	0,00	m _e
Spesifiser minimum og maksimum av varmekapasitetsratene [1/s]		Cmin		Cmax
Varmemengde [W]	(q	0	q
	BUCK CONTRACTOR		or	
Spesifike varmekanasitet []/kg k]	Kørside (varmt eller kaldt):		Skallside:	
Massestrøm (kg/s)		m _t (W _t)		-, m, (W,)
Varmekapasitetsrate [J/s]		C,	0	C,
Tetthet av fluid [kg/m ³]		Pt	<u>}</u>	ρs
Volumstrøm [m ³ /s]	#DIV/0!	Vt	#DIV/01	Vs
Dynamisk viskositet [cP]		μ _t		μ
Dynamisk viskositet SI [Pa·s]		⁾ μ _{si,t}	0	μ ₅₍₃
Kinematisk viskositet [m*/s]	#DIV/01	V ₁	#DIV/01	Vs
Varmeledningskoeffisient i fluider [W/m· ⁴ K]		k _t	and the second second	ks
Termisk spredningsevne [m ⁻ /s]	#DIV/0!	a,	#DIV/0!	a,
vameredningskoenisient i rømatenar (w/m ⁻ kj		ĸ		
LOGARITMISK GJENNOMSNITTLIG TEMPERATURDIFFERANSE, LMTD	= #DIV/01	1		
KORREKSIONSEAKTOR				
KOMERSJONSI AKTON, I				
P, Temperatureffektivitet på rørside				
	#DIV/0!			
R, Varmekapasitetsforhold				
	R= #DIV/0!			
Korreksionsfaktor F avles	-			
BEREGNING AV VARMEOVERGANGSKOEFFISIENTER				
Viskositetsforhold i veggtemp og bulktemp i rør		μ/μ.		
Forhold mellom rørlengde og buntdiameter "Aspect ratio"		L _{ts} /D _{ct}	#DIV/0!	L _{ts} [m]
Valgt verdi av arealoverførende lengde, Lta. Kun relevant for beregninger ved lamniær strømnir	ıg			L _{te} [m]
Forhold mellom rørlengde og innerdiameter rør	#DIV/0!	L _{ts} /D _i		
and the second sec	Turbulent strømning; Ret > 8000	10.00	Laminær strømning; Ret<2100	1.04-0
Varmeovergangskoettisient for innside av rør, n _i (w/m · K)	#017/01	n _{it}	#DIV/0!	nu
Varge varmeovergangskoeffisient for innside av rør multiplisert med diameterforhold (W/m2·*K)	#DIV/01			
			se and a suma a	
	Normal lekkasje og forbipasserin	g	Uten lekkasje og forbipassering	
Korreksjonstaktor relatert lekkasje og forbipassering av fluid, F ₁ , for bestemmelse av h _o	#DIV/0!	F1	#DIV/0!	F1
	Re,>100		Re _s <100	
Korreksjonsfaktor relatert strømningsmønster rundt rørbunt, Fr, for bestemmelse av ho		F,	#DIV/0!	F,
Valgt korreksjonsfaktor, F,				
Konstant a relatert demonster og Rounolds tall i skall		2		
Konstanter, m. relatert rørmønster og Revnolds tall i skall		m		
		and a second sec		
Varmeovergangskoeffisient for utside av rørbunt før korreksjonsfaktorer, h [W/m ^{2,*} K] Korrigert varmovergangskoeffisient for utside av rørbunt, h _o [W/m ^{2,*} K]	#DIV/0! #DIV/01	h h _o		
Varmeovergangskoeffisient for varmeovergang gjennom rørvegg, h _w [W/m ^{3,*} K]	#DIV/0!	hw		
Varmeovergangskoeffisient for begroing og korrosjon, h _s [(h·Ft ² ·*F)/Btu]		h,[(h·Ft2·*F)/Btu]	#DIV/0!	h₅[W/m2· [®] K]
Total varmeoverføringskoeffisient, U [W/m ^{2.} *K]	#DIV/0I	U		
in the second seco	monary of	-		
BEREGNING AV VARMEMENGDE, q, OG NØDVENDIG UTVENDIG OVERFLATEAREAL	AV ALLE RØR, A _o :			
Beregning av varmemengde o IWI		0		
Totalt utvendig overflateareal av alle rør, A _o [m ²]	#DIV/0!	Ao		

VARMEVEKSLERENS KARAKTERISTIKK							
Forhold mellom varmekapasitetsrate	1	#DIV/0!	C*				
Effektivitet av varmeveksler		#DIV/0!	з				
Friksjonskoeffisient for turbulent strømning i glatte rør, ft		#DIV/0!	f,				
Nusselts tall i rør, fullt utviklet turbulent strømning, Nut		#DIV/0!	Nut				
	b1		b2		b3	b4	b
Valgte konstanter for beregning av friksjonskoeffisient i skall	_						#DIV/0!
Friksjonskoeffisient i skall, f		#DIV/0!	fs		Barthaut and a loss of	an barranta a si sa barra	and the second
Giør valg av mellomberegninger til høvre før valg av makshastighet					Wenomberegninger i	for beregning av u _{max,} ivu o	g senere trykkian
Maksimal hastighet mellom rør i skall ved 90°, rektangulært rørmønster [m/s]	5	#DIV/0!	Umax		0	0	0
Maksimal hastighet mellom rør i skall ved 45°, rotert rektangulært rørmønster [m/s]	1	#DIV/0!	Umax		0	0	0
Maksimal hastighet mellom rør i skall ved 30°, triangulært rørmønster [m/s]		#DIV/0!	U _{max}		0	0	0
Valgt maksimal hastighet mellom rør med hensyn på rørmønster [m/s]			Umax		Lpn	L _{pp}	Sn
Spesifiser s _n og s _p ut i fra valgt førmønster		s /d		s./d			
Konstanter i forbindelse med beregning av Nusselts tall		#DIV/0!	* #	#DIV/01	1		
Konstanter for beregning av Nusselts tall for rørbunten		С		n			
Valgte konstanter med hensyn på røravstander og rørmønster Nusselt tall gjennom rørbunt, skallside		#DIV/0!					
BESTEININIELSE AV VARINEVERSLERENS GEOMETRI							
Ytterdiameter av rør, D _ø , fra tidligere beregning [m]			0	D,			
Antall rør, N _b , fra tidligere beregning		#DIV/0!		Nt			
Buntdiameter, D _{et} , fra tidligere beregning [m]		#DIV/01		D _{cti}			
Valgt skalldiameter fra tidligere, D, [m]			0,00	D,			
Valgt veggtykkelse i skall etter TEMA [m]							
Varmeoverførende lengde av rør, L _{av} , basert på nødvendig overflateareal, A _o [m]		#DIV/0!	(Lte			
Minimum nominell rørlengde, L _{to} (m)		#DIV/01		Lto			
Valgt rørlengde [m]				L			
Valat langda forboda til skall (m)							
Valgt lengde bakhode til skall [m]							
Total utvendig lengde varmeveksler [m]		-	0,00	-			
דייניין איייניין איי							
TRYKKTAP I VARMEVEKSLEREN, VED TURBULENT STRØMNING							
Totalt trykktap for rørside av varmeveksler $\Delta P_t[Pa]$		#DIV/0!		ΔPt			
		_					
Valgt forhold mellom vindu og diameter av ledeplater, Bc				B _c			
Røravstand for trykkberegning, tidligere valgt L _{pp} [m]			0	Црр			
Senteravstand mellom rør, tidligere valgt, L _{tp} [m]			0	L _{tp}			
Antali rekker rør i kryssende strøm, N _{toc}		#DIV/0!		Ntoc			
ideelt trykktap i rørbuilt, DP _{ideal} [Pa]		#DIV/01		ΔPideal			
Antall ledeplater, N _s		*	#DIV/0!	Ne			
Trykktap i kryssende strømning mellom ledeplater, ΔPc [Pa]		#DIV/0!		ΔPc			
				16			
Antall rør-rekker som krysses av strømning i ett ledeplatevindu, N _{tew}		#DIV/0!		Ntow			0.)
Mellomberegninger for beregning av strømningsareal i hvert vindu		#DIV/01		Heti		1,00	0 ds
2 cus (o) av nennolasvis octi og das nër		#DIV/01		H _{ctl}		0,00	Uds
Ander av rørene som er i vindu, r _w		#DIV/0!		rw A			
Areal som uekkes av før i vindu, A _{tw} (m.)		#017/01	0.000	At,w			
Arear i segmental barrie -vindu, S _{wg} [m] Strampingspread i vindu, S [m ²]			0,000	Swg C			
Jdeelt trykktan i ledenlatevinduer (turbulent). APw ideal (Pa)		#DIV/0		AP -			
Trykktap i ledeplatevinduer, ΔP _w [Pa]		#DIV/01		ΔP _w			
Trykktap i inngang og utgang av skall, ΔPe [Pa]		#DIV/0!		ΔPe			
Totalt toykkfall fra jongang til utgang i skall AD (Da)		#0.07/01		AP			
iotait a yrkitai na inngang ti utgang i skan, dr ₃ [Pd]		#010/0!		s			

	~ 1	-		
Higur.	21	Regnearlyste	onn	hygging
rigui	J. I	Regilearnets	upp	Uygging
0		0		100 0

3.3 RESTRIKSJONER TIL BRUK AV REGNEARKET OG BEREGNINGER

Beregningene i regnearket er gjeldende for en "skall og rør"-varmeveksler begrenset til følgende:

- E1-1-skall; ett skall og en rørpassasje (rette rør).
- Vekslende medier ordnet i motstrøms arrangement.
- Tversgående ledeplater for kryssende strømning.
- Væske på skallside og væske eller gass på rørside (Nusselts tall for skallside er begrenset til væskestrømning).
- Glatte rør, uten finner, ordnet i enten 30°, 45° eller 90° mønster.
- Fullt utviklet turbulent eller laminær strømning (Beregninger av trykkfall og Nusselts tall er begrenset til turbulent strømning).
- Varmeoverføring dominert av tvungen konveksjon.
- Varmeoverføring uten faseendring i medier.

3.4 ANTAKELSER

Det er gjort følgende antakelser i beregninger og regneark:

- Viskositetsforhold relatert veggtemperatur og bulktemperatur for medium på skallside settes lik 1.
- Samme viskositetsforhold for rørside settes også til 1.
- Varmeoverføringen antas å være lineær med temperaturen.
- Det er antatt at det brukes minimum 7 ledeplater i skall. Dette i forbindelse med bestemmelse av korreksjonsfaktor, F.
- Det er antatt et kutt i ledeplater på 20% i forbindelse med beregning av korreksjonsfaktor relatert lekkasje og forbipassering av medium på skallside, tilhørende varmeovergangskoeffisienten for utside av rør.
- Det er i studiene antatt å spesifisere vannets fysiske egenskaper ved middeltemperatur. Bruker velger imidlertid selv hvilke verdier av fysiske egenskaper som innsettes. Gassens fysiske egenskaper er i studiene spesifisert med gjennomsnittsverdier av innog utgangstemperatur.

Betydninger av antakelser relatert viskositetsforhold og spesifisering av fysiske egenskaper

Det er i studiene valgt å spesifisere kjølevannets fysiske egenskaper ved middeltemperatur, mens det for gassen er spesifisert gjennomsnittlig verdi av fysiske egenskaper ved inn- og utgangstemperatur av gassen. Det er altså ikke valgt å benytte seg av gjennomsnittlig filmtemperatur, som for kjølevæsken vil være noe høyere enn gjennomsnittlig bulktemperatur, og omvendt for den varme gassen. Vann vil oppleve en svekkelse i viskositeten med økt temperatur, hvor det ved lave temperaturer (det menes her temperaturer rundt 20°C eller lavere) vil være en betydelig svekkelse i viskositeten bare ved få graders temperaturøkning. Ved å spesifisere vannets fysiske egenskaper ved middeltemperatur, anvendes det da blant annet en viskositet lavere enn gjennomsnittlig verdi. Forskjellen i anvendt og virkelig verdi av andre fysiske egenskaper for vannet, som spesifikk varmekapasitet, varmeledningskoeffisient og massetetthet vil være mindre sammenlignet med viskositeten, da de opplever mindre utslag ved endret temperatur. Det gjøres imidlertid oppmerksom på at vannets spesifikke varmekapasitet for temperaturer opp til rundt 40[1] vil reduseres ved økt temperatur mens for temperaturer over 40 vil motsatt gjelde.

Avvikene som følger ved å spesifisere vannets fysiske egenskaper ved middeltemperatur vil følgelig øke med økt temperaturdifferanse mellom inngang og utgang for vannet, særlig i tilfeller med lav inngangstemperatur og ved økt temperaturforskjell mellom rørvegg og bulktemperatur. Avvikene som følger vil gjøre seg gjeldende i form av lavere beregnet Reynolds og Prandtls tall for skallside, med tilhørende medvirkning til høyere varmeovergangskoeffisient for utside av rør.

Det er også gjort antakelser i viskositetsforholdet mellom vegg- og bulktemperatur, ved å sette forholdet til 1,0, både for rørside og skallside. Felles for avvikene på begge sider, er økt utslag ved økt forskjell mellom veggtemperatur og bulktemperatur for begge sider. For rørsiden med innhold av varm gass og viskositet som svekkes ved redusert temperatur, vil viskositeten være lavere ved kjølende rørvegg enn i bulktemperatur og viskositetsforholdet vil i virkeligheten være lavere enn antatt verdi tilsier. For gasser med liten variasjon i viskositeten vil utslagene ved anvendelse av antakelse, ofte være så små at det ikke vil være av merkbar betydning. Dog, det vil med bruk av antakelsen isolert sett medvirke til at beregnet varmeovergangskoeffisient for innside av rør vil være noe lavere beregnet i regneark enn i tilfeller det er tatt høyde for viskositetsforholdet. For skallsiden med innhold av kaldt vann, vil betydningen av antakelsen derimot være mer utslagsgivende, da utslagene i vannets viskositet vil endres mer med temperaturen. Ved antatt viskositetsforhold lik 1 på skallsiden, vil det i virkeligheten opereres med et lavere viskositetsforhold, som medfører at det ved bruk av antakelse vil medvirke til lavere varmeovergangskoeffisient for utside av rør sammenlignet med bruk av at det faktiske viskositetsforhold. Begge viskositetsforholdene er i beregninger av varmeovergangskoeffisienter tillagt en eksponent på 0,14 og det skal derfor store temperaturforskjeller til for at avvikene ved bruk av antakelser skal være dramatiske.

For trykkberegninger, hvor viskositetsforholdene inngår som teller, vil det ved bruk av antakelser om et forhold lik 1, medvirke til at beregninger er noe høyere enn hva resultatet ville vært dersom det hadde vært tatt høyde for det virkelige forhold.

4. PARAMETERANALYSE

4.1 INTRODUKSJON

Det er foretatt en parameteranalyse for mer effektiv å kunne påvirke og styre designet av varmeveksleren i en slik retning man ønsker. Sentrale temaer i design av varmevekslere er gjerne tillatt trykkfall satt opp mot effektiv varmeoverføring og nødvendig areal, samtidig som fabrikasjonskostnader, driftsikkerhet og vedlikehold mås tas hensyn til. Det er i parameteranalysen tatt utgangspunkt noe data fra studie 1, som forøvrig er beskrevet i kapitel 5. Dersom ikke annet er spesifisert ved den enkelte parameteranalysen er det brukt ytterdiameter 21,3mm med veggtykkelse 2,67mm, senteravstand mellom rør lik 1,25 ganger ytterdiameter, rørmønster i 30°, forhold mellom avstand i ledeplater og skalldiameter lik 0,4, skalldiameter lik minimum beregnet skalldiameter, åpning i ledeplater på 21,3% av skalldiameter og strømningshastighet i rør lik 15m/s. Under følger resultater for hver parameteranalyse som er gjort, for fullstendig oversikt over beregninger i regneark henvises det til vedlegg F (vedlegg F er kun vedlagt elektronisk utgave av oppgaven).

4.2 BETYDNINGER VED VALG AV RØRDIAMETER

Valget av diameter er, som flere av uttrykkene beskrevet tidligere i oppgaven over viser, en parameter som inngår hyppig i beregninger for varmeveksleren og som med endringer vil gi utslag på mange områder. Det er i parameteranalysen for diameter sett på 4 forskjellige diametre fra ¹/₂" til ³/₂" (merk at tommer ikke er i overensstemmelse med millimeter for dimensjonene), som for øvrig er de mest aktuelle dimensjonene i en varmeveksler. Det er i parameteranalysene brukt rør i Duplex med varmeledningskoeffisient antatt rundt 50 W/m K. Det er for dette materialet valgt diameter og veggtykkelse etter NORSOK, basert på 4 forskjellige trykk- og temperaturintervall, som i vedlegg B. Det poengteres at det i parameteranalysene ikke er de numeriske verdiene som er av betydning, men tendensene som følger med endring av parametrene. Resultater fra studier i oppgaven vil for øvrig bli presentert i neste kapitel.

Under følger tabell over resultater beregnet ved 4 forskjellige rørdiametre. Deler av resultatene er videre presentert ved grafisk fremstilling. Det nevnes at alle andre variable parametre i denne analysen er uendret, kun rørdiameter med tilhørende veggtykkelse er varierende og ene grunn til utslagene. Det påpekes at slutninger gjort for betydninger ved endret diameter er på grunnlag av NORSOK sin standard til ytterdiameter og veggtykkelse. Ved bruk av andre standarder og krav til veggtykkelse, vil ikke nødvendigvis alle slutninger gjort angående valg av ytterdiameter som parameter gjelde.

Do	Tw	Di	D _o -D _i	D _i /D _o	Ret	h _i	h _i *(D _i /D _o)	h _w	Nt	L _{tp}	D _{ctl}	Ds
[mm]	[mm]	[mm]	[mm]			[W/m² K]	[W/m ² K]	[W/m² K]		[mm]	[m]	[m]
[]	[]	[]	[]							[]	[]	[]
21,3	2,77	15,76	5,54	0,740	158925	538	398	16065	1465	26,625	1,07	1,10
26,7	2,87	20,96	5,74	0,785	211363	509	400	15950	828	33,375	1,01	1,04
33,4	3,38	26,64	6,76	0,798	268640	485	387	13647	513	41,75	0,99	1,03
48,3	3,68	40,94	7,36	0,848	412843	445	377	12909	217	60,375	0,93	0,99

Do	a _s	Gs	Res	h _o	U	A _o	L _{ta}	L/Di	ΔPt	ΔPs
[mm]	[m²]	[kg/m² s]		[W/m² K]	[W/m² K]	[m²]	[m]		[Pa]	[Pa]
21,3	0,098	310	6339	2637	307	390	3,98	253	7027	2966
26,7	0,086	354	9054	2638	308	389	5,61	268	6806	3674
33,4	0,083	367	11736	2486	298	403	7,5	282	6684	4006
48,3	0,077	395	18293	2279	288	416	12,63	309	6509	48212

Figur 4.1 Tabell over data relatert endret rørdiameter

Figur 4.2 Ytterdiameters innflytelse på varmeovergangskoeffisienter

Kommentar: Det ses av figur 4.2 at det med økende rørdiameter og endret veggtykkelse vil føre til lavere varmeovergangskoeffisienter både for innside og utside av rør, samt rørvegg. Størst reduksjon forekommer i varmeovergangskoeffisienten for rørveggen, da veggtykkelsen vil øke med diameteren for disse 4 dimensjonene. Det er av denne grafen vanskelig å lese tendensen i varmeovergangskoeffisienten for innside av rør og den er derfor plottet i graf under sammenlignet med produktet av diameterforholdet.

Figur 4.3 Ytterdiameters innflytelse på varmeovergangskoeffisient for innside av rør

Kommentar: Det ses av figur 4.3 som i figur 4.2 at varmeovergangskoeffisienten for innside av rør reduseres med økende diameter. Ved beregning av total varmeovergangskoeffisient korrigeres varmeovergangskoeffisient for innside av rør med diameterforholdet. Til tross for vekst i diameterforholdet med økende diameter, vil produktet av dette og varmeovergangskoeffisienten generelt reduseres med økende diameter. En liten økning i produktet observeres dog her for dimensjon 2 sammenlignet med dimensjon 1.

Figur 4.4 Ytterdiameters innflytelse på total varmeovergangskoeffisient

Kommentar: Figur 4.4 viser en reduksjon i varmevekslerens totale varmeovergangskoeffisient med økende diameter. Ses det bort fra den marginale økningen mellom de to første dimensjonene følger det som tendens at større rørdiameter vil føre til dårligere varmeovergang, mye grunnet tykkere rørvegg og dårligere varmeovergangskoeffisient for rørvegg som tidligere vist i figur 4.2.

Figur 4.5 Ytterdiameters innflytelse på nødvendig varmeoverførende areal

Kommentar: Det nødvendige varmeoverførende arealet vil med økt ytterdiameter naturlig nok øke i samsvarelse med tidligere viste dårligere varmeovergangskoeffisienter. Det er dog en marginal reduksjon mellom de to minste dimensjoner.

Figur 4.6 Ytterdiameters innflytelse på nødvendig rørlengde

Kommentar: Til tross for økt omkrets og areal per lengdeenhet som følger økt diameter, vil minimum rørlengde øke også øke for økt diameter. I tillegg til en økning i nødvendig varmeoverførende areal som må tilfredsstilles skylles mye av økningen i nødvendig lengde av reduksjonen i antall rør som må til for å opprettholde ønsket strømningshastighet i rør.

Figur 4.7 Ytterdiameters innflytelse på trykkfall

Kommentar: Trykkfallet på rørside vil med økende diameter reduseres noe. Dette på tross av at økt diameter vil føre til økt rørlengde samt økt forhold mellom lengde og diameter av rør. Reduksjonen skyldes redusert friksjonskoeffisient med økt diameter og Reynolds tall.

Trykkfallet for skallsiden vil øke betraktelig med økt diameter. Friksjonskoeffisienten for skallsiden vil med økt diameter og Reynolds tall på samme måte som for rørsiden reduseres noe. Forøkelsen i trykkfallet har grunn i redusert strømningsareal og økt massestrømning per areal, som følger med økt rørdiameter.

4.3 BETYDNINGER VED VALG AV SKALLDIAMETER OG AVSTAND MELLOM LEDEPLATER

Det velges skalldiameter etter minimum skalldiameter er beregnet med utgangspunkt i buntdiameter. Det anbefales å velge avstand mellom ledeplater i intervallet 0,2-1.0 ganger skalldiameteren. Det vil med økt avstand mellom skalldiameter og buntdiameter føre til større strømningsareal på skallsiden, noe som også er tilfellet ved økt avstand mellom ledeplater. Det vil med dette føre til endring i både middelhastighet, Reynolds tall og massestrømning per areal for skallsiden. Det er også sett på hvilke utslag for varmeovergang og trykkfall endringer i skalldiameter og avstand mellom ledeplater medfører.

Økt skalldiameter og større avstand mellom ledeplater vil føre til økt strømningsareal på skallsiden. Dette gir følgelig en reduksjon i massestrømning per areal, middelhastighet og med det, redusert Reynolds tall for skallsiden. De to sistnevnte inngår i varmeovergangskoeffisienten for utsiden av rørene. En fordobling i avstand mellom ledeplater vil gi en forøkning av strømningsarealet av samme størrelsesorden, som igjen vil føre til halvert massestrømning per areal og Reynolds tall. Reynolds tall som inngår i varmeovergangskoeffisienten for utsiden av rør er knyttet til en konstant varierende fra 0,300 til 0,569 avhengig av rørmønster og verdi av Reynolds tall. Utslaget av halvert massestrømning per areal vil derfor gi større innvirkning i varmeovergangskoeffisienten enn samme halvering av Reynolds tall. I tillegg er massestrømning per areal en viktig faktor for trykkfallet på skallsiden. Dette er illustrert i grafiske fremstillinger under. Først resultatene av analysen samlet i tabell:

D _s [m]	B (0,4D _s) [m]	a _s [m ²]	G _s [kg/m ² s]	Res	h₀ [W/m² K]	U [W/m ² K]	ΔPt [Pa]	ΔPs [Pa]
1,08	0,432	0,092	331	6752	2745	312	6637	3226
1,12	0,448	0,114	267	5449	2395	307	6752	2241
1,16	0,464	0,136	224	4567	2141	302	6851	1517
1,20	0,48	0,16	190	3882	1931	297	6950	1157

Figur 4.8 Tabell over data relatert skalldiameter

Figur 4.9 Skalldiameters innflytelse på varmeovergangskoeffisient for utside av rør

Kommentar: Figur 4.9 viser hvordan varmeovergangskoeffisienten for utside av rør, varierer med endret skalldiameter. Minimum skalldiameter beregnet med utgangspunkt i buntdiameter er for dette tilfellet 1,08m. Det kan ses av figuren at det ved å velge større skalldiameter, altså større avstand mellom skall og rørbunt, vil føre til dårligere varmeovergangskoeffisient for utsiden av rør. Dette i hovedsak med grunn i mindre massestrømning per areal som medfølger det økte strømningsarealet større skalldiameter forårsaker. Dette til tross for reduksjon i Reynolds tall med økt skalldiameter, som beskrevet er underlegen massestrømning per areal

Figur 4.10 Skalldiameters innflytelse på trykkfall

Kommentar: Trykkfallet for rørsiden vil øke noe med økt skalldiameter. Den lille økningen i trykkfallet har grunn i at det er behov for lengre rørlengder for å tilfredsstille et noe høyere overflateareal, da varmeovergangskoeffisienten for utside av rør reduseres med økt skalldiameter, som vist i figur 4.9. Trykkfallet for skallsiden vil reduseres med økt skalldiameter og er i hovedsak et resultat av økt strømningsareal og lavere massestrømning per areal.

Endring i avstand mellom ledeplater vil på samme måte som økt skalldiameter, påvirke strømningsarealet og Reynolds tall for skallside og med det, resultere i samme utfall for varmeovergangskoeffisienten for utside av rør og trykkfall for rørside og skallside.

Under er det valgt avstander mellom ledeplater i intervall fra 0,2 til 1,0 ganger skalldiameteren.

B (x*D _s)							
[m]	a _s [m ²]	G _s [kg/m ² s]	Res	$h_o [W/m^2 K]$	U [W/m ² K]	∆Pt [Pa]	∆Ps [Pa]
0,2	0,046	661	13504	3797	322	6785	20670
0,4	0,092	331	6752	2745	312	6999	3226
0,6	0,138	220	4501	2270	304	7147	1135
0,8	0,184	165	3376	1983	299	7279	510
1	0,231	132	2689	1781	294	7394	284

Figur 4.11 Tabell over data relatert varierende avstand mellom ledeplater

Figur 4.12 Avstand mellom ledeplaters innflytelse på varmeovergangskoeffisienten for utside av rør

Kommentar: Figur 4.12 illustrerer at det med økt avstand mellom ledeplater, på samme måte og med samme grunnlag som ved økt skalldiameter, fører til dårligere varmeovergangskoeffisient for utside av rør. Det registreres en betydelig svekkelse i varmeovergangskoeffisienten for utside av rør ved å øke avstanden mellom ledeplater fra 0,2 til 0,4 ganger skalldiameter.

Figur 4.12 Avstand mellom ledeplaters innflytelse på trykkfall

Kommentar: Trykkfallet for rørside vil med økt avstand mellom ledeplater, på samme måte og med samme grunnlag som økt skalldiameter, føre til en liten økning i trykkfallet på rørsiden. Trykkfallet for skallsiden vil med økt avstand mellom ledeplater også på samme måte og med samme grunnlag som økt skalldiameter, reduseres. Det er vesentlig forskjellig i trykkfallet på skallsiden for avstand mellom ledeplater på 0,2 kontra 0,4 ganger skalldiameteren. Da avstand mellom ledeplater er definert som lengen som inngår i strømningsarealet for kryssende strømning vil en halvering i avstanden mellom ledeplater føre til en halvering i strømningsarealet og en fordobling i massestrømning per areal for kryssende strømning.

4.4 BETYDNINGER VED VALG AV GJENNOMSNITTLIG HASTIGHET I RØR

Det er i regnearket oppgitt veiledende strømningshastigheter for å unngå begroing og korrosjon for ulike medier. Valget av strømningshastighet i rør er en viktig parameter da den sammen med volumstrømningen definerer nødvendig strømningsarealet for rørene, i tillegg til å inngå direkte i Reynolds tall. Det er ved valg av gass på rørside anbefalt en strømningshastighet fra 15-30m/s. Det er under gjort en sammenligning for hastigheter fra 5-30m/s, med resultater i tabell under.

			D _{s,min}		h _i [W/m²	ho [W/m ²	U [W/m²		ΔP _t	ΔPs
u _t [m/s]	$A_t [m^2]$	Nt	[m]	a _s [m ²]	К]	К]	К]	L _{ta} [m]	[Pa]	[Pa]
5	0,857	4284	1,86	0,279	223	1357	141	2,96	804	338
10	0,429	2142	1,32	0,139	388	2112	234	3,58	3110	1352
15	0,286	1428	1,08	0,092	537	2745	312	4,03	6999	3226
20	0,214	1071	0,94	0,07	676	3256	317	4,42	12560	5470
25	0,171	857	0,85	0,059	808	3639	438	4,78	19930	8321
30	0,143	714	0,77	0,047	935	4204	494	5,08	29026	12990

Figur 4.13 Tabell over data relatert variabel strømningshastighet i rør

Figur 4.14 Strømningshastighets innflytelse på strømningsareal på skallside og rørside

Kommentar: Figur 4.14 viser at det med økt hastighet i rør vil føre til en reduksjon i strømningsarealene både på rørside og skallside. Strømningsarealet på rørsiden må nødvendigvis reduseres for at høyere strømningshastighet skal oppnås. Det er interessant at også strømningsarealet på skallside reduseres med økt hastighet i rør. Dette da et mindre strømningsareal for rør vil medføre en reduksjon i antall rør, buntdiameter og skalldiameter.

Figur 4.15 Strømningshastighets innflytelse på varmeovergangskoeffisienter

Kommentar: Figur 4.15 illustrerer at det med økt strømningshastighet i rør, til tross for økt Reynolds tall som inngår som nevner i uttrykket for varmeovergangskoeffisienten for innside av rør, vil føre til bedre varmeovergangskoeffisienter for både innside og utside av rør. Dette med grunnlag i økt massestrømning per areal, da strømningsarealene, som vist i figur 4.14, reduseres med økt strømningshastighet i rør.

Figur 4.16 Strømningshastighets innflytelse på trykkfall

Kommentar: Figur 4.16 viser at det med økt strømningshastighet i rør fører til en betydelig forøkelse av trykkfallet, særlig på rørside. Trykkfallet for rørsiden vil isolert sett øke med kvadratet av massestrømning per areal, som nevnt tidligere vil øke med økt hastighet. Det skrives isolert sett, da friksjonskoeffisienten vil reduseres med økt Reynolds tall som øker proporsjonalt med massestrømning per areal. Massestrømning per areal er dog en mye sterkere faktor i trykkfallet for rørsiden enn hva Reynolds tall er. De geometriske endringene for skallsiden, som strømningshastigheten på rørsiden medfører vil som figur 4.16 illustrerer, føre til at trykkfallet for skallsiden også øker med økt strømningshastighet for rør. Økningen er også her i hovedsak et resultat av redusert strømningsareal og økt massestrømning per areal, som reduksjonen i antall rør, buntdiameter og skalldiameter forårsaker.

4.5 BETYDNINGER VED VALG AV RØRMØNSTER

Valget av rørmønster er nok en parameter som har innvirkning på både trykkfall for rørside og skallside, samt varmeovergangskoeffisient for utside av rør. Ofte vil designet være begrenset til rørmønster i 90° vinkel grunnet behov for mekanisk rengjøring. Dersom man står fritt å velge rørmønster er sammenhengene i tabell under verdt å merke seg.

Rørmønster			h _o [W/m ²	U [W/m2			
[°]	D _{ctl} [m]	a _s [m ²]	К]	К]	$A_o [m^2]$	ΔP_t [Pa]	ΔP_s [Pa]
30	1,06	0,092	2745	312	385	6999	3226
45	1,14	0,155	1971	298	402	7312	1173
90	1,14	0,111	2162	302	397	7230	1543

Figur 4.17 Tabell over data relatert rørmønster

Kommentar: Det kan bekreftes i figur 4.17, at det som tidligere beskrevet ved valg av rørmønster i 30° vil føre til en mer kompakt varmeveksler; både ved redusert buntdiameter og nødvendig varmeoverførende areal, med grunn i økt varmeovergangskoeffisient for utside av rør. Rørmønster i 30° vil også gjennom noe lavere nødvendig rørlengde oppleve et marginalt mindre trykkfall på rørsiden, mens trykkfallet for skallsiden derimot er markant høyere ved valg av dette rørmønsteret. Dette har grunn i endret avstander mellom rør, som i trykkfallsberegninger defineres normalt på strømretningen. For rørmønster i 45° og 90° vil buntdiameteren naturligvis være lik, da mønsteret er det samme, bare i rotert variant. Rørmønster i 90° vil dog gi noe lavere nødvendig varmeoverførende areal, med grunnlag i høyere varmeovergangskoeffisient for utside av rør, sammenlignet med rørmønster i 45°. Grunnet små forskjeller i areal og lengde er det også små forskjeller i trykkfallet på rørside for de to rørmønstrene. Trykkfallet for skallsiden er noe redusert ved rørmønster i 45° sammenlignet med rørmønster i 90°. Dette med hovedsaklig grunn i de nevnte røravstandene normalt på strømretning, og et noe høyere strømningsareal som vil gi mindre massestrømning per areal for skallside.

4.6 BETYDNINGER VED VALG AV KOMBINASJON AV UTGANGSTEMPERATUR OG MASSESTRØMNING PÅ SKALLSIDE

Dersom man med utgangspunkt i nødvendig varmerate, står fritt å velge kombinasjon av utgangstemperatur og massestrømning for det kjølende mediet på skallsiden, vil et naturlig spørsmål være hvilken kombinasjon som vil gi best ytelse med hensyn på LMTD, korreksjonsfaktor og varmeovergangskoeffisienter med korrelerende nødvendig varmeoverførende areal og trykkfall. Det er sett på den ene studien hvor gass kjøles fra 70°C til 25°C og det er antatt en inngangstemperatur i kjølende medium på 8°C. Følgende data med varierende utgangstemperatur og tilhørende nødvendig massestrømning på skallsiden er registrert:

Tc,o [°C]	M _s [kg/s]	LMTD	F	G _s [kg/m ² s]	h _o [W/m² K]	U [W/m² K]	A _o [m ²]	ΔPt [Pa]	ΔPs [Pa]
18	66,94	31,31	0,91	728	4529	326	302	5566	11241
22	47,78	29,87	0,9	519	3656	321	325	5962	6021
26	37,11	28,39	0,89	403	3114	316	351	6406	4212
30	30,42	26,88	0,87	331	2745	312	385	6999	3226

Figur 4.18 Tabell over data relatert varierende utgangstemperatur

Det gjøres oppmerksom på at det i denne analysen ikke er implementert endringer i vannets fysiske egenskaper. Endringene i vannets fysiske egenskaper som en forøkning i utgangstemperatur på 12 °C medfører er regnet som liten av betydning i denne sammenheng. Det er senere i rapporten under resultat av studier utdypet hvilke utslag forenklinger i vannets fysiske egenskaper gir.

Figur 4.19 Utgangstemperaturs innflytelse på total varmerovergangskoeffisient

Kommentar: Det kan ses av figur 4.19 at det ved å velge høyere utgangstemperatur i kombinasjon med lavere massestrømning vil medføre en reduksjon i den totale varmeovergangskoeffisienten. Svekkelsen i den totale varmeovergangskoeffisienten for varmeveksleren kommer av en reduksjon i varmeovergangskoeffisienten for utsiden av rør som følge av redusert massestrømning per areal som nødvendigvis medfølger lavere massestrømning.

Figur 4.20 Utgangstemperaturs innflytelse på trykkfall

Kommentar: Det vil med økt utgangstemperatur og redusert massestrømning på skallsiden, føre til økt trykkfall for rørsiden, mens det for skallsiden vil oppleves en reduksjon i trykkfallet. Det vil med økt utgangstemperatur føre til større behov for overflateareal på grunn av reduksjon i den totale varmeovergangskoeffisienten og LMTD. Dette medfører behov for lengre rør som resulterer i høyere trykkfall på rørside. For skallsiden vil trykkfallet reduseres med grunnlag i reduksjonen av massestrømning per areal som medfølger økt utgangstemperatur og lavere massestrømning.

Det nevnes i tillegg, med henvisning til tabell i figur 4.18, at det ved å øke utgangstemperatur og senke massestrømning, vil føre til redusert korreksjonsfaktor relatert LMTD. Liten massestrømning på skallsiden vil ligne mindre et rent motstrømsarrangement enn hva høyere massestrømning vil gjøre.

4.7 OPPSUMMERING AV PARAMETERANALYSE

Resultatene av parameteranalysene som er gjennomført er oppsummert i tabell under.

	U	A _o	ΔP _t	ΔPs
D₀ ↑	\downarrow	\uparrow	\checkmark	\uparrow
D₅↑	\checkmark	\uparrow	\uparrow	\checkmark
В↑	\downarrow	\uparrow	\uparrow	\checkmark
U _t ↑	\wedge	\rightarrow	\uparrow	\uparrow
30°	\uparrow	\downarrow	\downarrow	\uparrow
45°	\downarrow	\uparrow	\uparrow	\checkmark
T _{c,o} ↑	\downarrow	\uparrow	\uparrow	\checkmark

Figur 4.21 Tabell over oppsummering av parameteranalyse

Det følger i tabellen over en oppsummering i hva en økning i de forskjellige parametrene vil medføre i total varmeovergangskoeffisient, nødvendig varmeoverførende areal og trykkfall.

Dersom en varmeveksler med gode varmeovergangstall og lite areal ønskes bør det velges:

- Liten rørdiameter
- Liten skalldiameter (liten klaring i forhold buntdiameter)
- Liten avstand mellom ledeplater
- Høy strømningshastighet i rør
- Rør i 30 mønster
- Lav utgangstemperatur mot høy massestrømning på skallside

Dersom trykkfall på rørside ønskes å minimeres bør det velges:

- Stor rørdiameter
- Liten skalldiameter
- Liten avstand mellom ledeplater
- Liten strømningshastighet i rør
- Rør i 30 mønster
- Lav utgangstemperatur mot høy massestrømning på skallside

Dersom trykkfall på skallside ønskes å minimeres bør det velges:

- Liten rørdiameter
- Stor skalldiameter
- Stor avstand mellom ledeplater
- Liten strømningshastighet i rør
- Rør i 45 mønster
- Høy utgangstemperatur mot liten massestrømning på skallside

5. STUDIER, RESULTATER OG SAMMENLIGNING MED HTFS

5.1 INTRODUKSJON

Det er i oppgaven gjort studier for 4 forskjellige gasstrømninger tatt fra plattformen Draugen. Alle tilfellene omhandler gasskjøling uten faseendring, i forbindelse med lettelse av kompressorarbeid. Det benyttes indirekte varmeveksling mellom sjøvann og ferskvann iblandet kjølemiddel. Dette for å begrense begroing og korrosjon på skallsiden i varmeveksleren, da gasstrømningen blir valgt til rørsiden, etter veiledning for sidevalg av medier beskrevet tidligere i oppgaven. Det er i beregninger både i HTFS og regneark tatt utgangspunkt i ferskvanns fysiske egenskaper for skallsiden, mens det for gasstrømningene er hentet egenskaper fra prosessprogrammet HYSYS. I beregninger i regnearket er gassenes fysiske egenskaper spesifisert ved gjennomsnittlige verdier mellom inngangs- og utgangstemperatur, mens det for kjølevannet er tatt utgangspunkt i fysiske egenskaper ved middeltemperatur.

Det er antatt en inngangstemperatur i kjølevannet på 8°C, mens utgangstemperatur og massestrømning for hvert tilfelle er justert slik at tilført varmerate på kjølevæsken samsvarer med gassens avgitte varmerate. I de 4 forskjellige studiene varierer gassene både i trykk, temperatur, sammensetning og følgelig fysiske egenskaper. Trykket strekker seg fra rundt 600kpa til 17000kpa og inngangstemperatur varierer fra 70°C til 150°C.

Det er i studiene gjort sammenligninger mellom to forskjellige rørmønstre for alle tilfellene. De to første og den fjerde med rør ordnet i 30° og 90°, mens det for den tredje er gjort sammenligninger mellom rør ordnet i 45° og 90°. Alle studiene er først gjennomført i HTFS, programmet Aker Solutions bruker for beregninger av varmevekslere, for videre å kunne sammenligne med resultater av regnearket som er utviklet i oppgaven. HTFS har et uttallig antall variable designparametre tilgjengelig for manuelle spesifiseringer, hvor den ene, er spesifisering av tillatt trykkfall. Ved ikke å spesifisere noe tillatt trykkfall, antar HTFS selv en verdi basert på inngangstrykket. Det er valgt og ikke å spesifisere noen grense for tillatt trykkfall, men det er gjort variasjoner i inngangstrykket på skallsiden for å se om det kan gi utslag. Det er derimot spesifisert restriksjoner i at designet av varmeveksleren skal begrense seg til ett E-skall med én rørpassasje og tversgående ledeplater, som regnearket er begrenset til. HTFS beregner dimensjoner, ytelser og karakteristikk for den beste varmeveksleren i forhold til kostnad og areal, basert på disse restriksjonene og valgt rørdiameter med veggtykkelse som er spesifisert.

Etter beregninger er utført i HTFS, er det etter samme premisser gjort beregninger for en tilsvarende varmeveksler i regnearket. Det vil si det er valgt samme diameter og veggtykkelse for rør, varmeledningskoeffisient for rørvegg, begroings- og korrosjonsmotstand for innside av rør og lik åpning i ledeplater. Det velges i tillegg omtrentlig lik avstand mellom ledeplater og valg av hastighet i rør gjøres slik at beregnet antall rør i regnearket er i samsvarelse med hva som er spesifisert av HTFS. På den måten sikres best mulig sammenligningsgrunnlag. Noen av sammenligningsdataene er i HTFS beregnet ved inngang og utgang av medier, mens det for alle beregninger i regnearket er basert på gjennomsnittlige data.

Det er under gitt resultater i tabeller, med korte kommentarer for hvert av studiene, før det videre er gjort sammenligninger og trukket slutninger basert på resultater på tvers av studiene i 90° rørmønster sammenlignet regneark og HTFS seg imellom. For fullstendig oversikt over beregninger av studier utført i HTFS og regneark, refereres det til henholdsvis vedlegg E og G. Vedlegg G – Beregninger av studier utført i regneark, er kun å finne i elektronisk utgave av oppgaven.

5.2 STUDIE 1

Det er i tabell under vist de viktigste strømningsdata for gassen som kjøles i studie 1. Dataene er utdrag av dataeksport fra HYSYS, mens fullstendig oversikt over dataeksporten er vedlagt i vedlegg C.

Studie 1	In	Out
Temperature [C]	70	35
Pressure [kPa]	612,8976471	612,8976471
Mass Flow [kg/h]	114091,7952	114091,7952
Mass Density [kg/m3]	30,6809911	30,6809911
Mass Heat Capacity [kJ/kg-C]	2,042148196	1,886933596
Thermal Conductivity [W/m-K]	3,04E-02	2,49E-02
Viscosity [cP]	1,17E-02	1,03E-02

Figur 5.1 Data for gass i studie 1

Dataene i tabell ovenfor er videre satt direkte inn i HTFS mens det for regnearket er innsatt gjennomsnittsverdier av fysiske egenskaper. Det er spesifisert å bruke vann på skallsiden med valgt inngangstemperatur på 8°C og utgangstemperatur på 30°C. Følgende fysiske egenskaper ved vannets inngangs-, middel- og utgangstemperatur samt ved valgt inngangstrykk er hentet fra HTFS' databank:

Vann, studie 1	In	Middel	Out
Temperature [C]	8	19	30
Pressure [kPa]	200		
Mass Density [kg/m3]	998,59	998,9	997,34
Mass Heat Capacity [kJ/kg-C]	4,198	4,194	4,19
Thermal Conductivity [W/m-K]	0,5773	0,5924	0,607
Viscosity [cP]	1,4157	1,0431	0,7998

Figur 5.2 Data for vann i studie 1

I alle studiene er det valgt å anvende fysiske egenskaper ved vannets middeltemperatur. Det er for begge to rørmønstrene i studie 1 valgt å bruke karbonstål som rørmaterial, med ytterdiameter lik 25mm og veggtykkelse 2mm. Dette er tilfeldig valgt og ikke sjekket opp mot trykkbegrensninger, men HTFS, som følger ASME-koder, angir dette som et alternativ. HTFS spesifiserer for dette en tilhørende varmeledningskoeffisient for rørmaterial lik 51,54 W/m K. Det er som siste spesifikasjon før beregninger er utført, valgt en begroings- og korrosjonsmotstand for rørside lik 0,0003 m²K/W / 0,0017 h·Ft²·°F/BTU.

	30°		
STUDIE 1	НТ	FS	REGNEARK
Minimum skalldiameter, D _{s,min} [m] (kun regneark)			0,73
Skalldiameter, D _s [m]		0,75	0,75
Nødvendig varmelengde rør, L _{ta} [m]		6,755	6,760
Valgt rørlengde, L [m]		6,850	6,910
Avstand mellom ledeplater, B [m]		0,22	0,225 @ B/Ds=0,3
Antall ledeplater, N _B		28	30
Antall rør, N _t		454	458 @ u _t =27m/s
Kutt i ledeplater, B _c [%D _s]		21,13	21,13
Nødvendig varmeoverførende areal, A_o [m ²]		240,9	243
Total varmerate, q [kW]		2801,6	2802,4
Nødvendig massestrøm skallside, m _s [kg/s]		30,37	30,37
Total varmeovergangskoeffisient, U [W/m ² K]	428,4		492
Varmovergangskoeffisient for innside av rør, h _i *Di/Do			
[W/m ² K]		600,5	684
Varmovergangskoeffisient for utside av rør, h _o [W/m ² K]		3713,7	4397
Varmovergangskoeffisient for rørvegg, h _w [W/m ² K]		23647,1	23649
Varmovergangskoeffisient for begroing og korrosjon, h _s			
[W/m ² K]		2800	3341
Effektiv MTD (LMTD*F) [°C]		27,16	23,39
Trykkfall rørside, ΔP _t [Pa]		22728	22588
Trykkfall skallside, ΔP _s [Pa]	27237		29145
	Inngang	Utgang	
Hastighet rørside, u _t [m/s]	29,6	26,64	27
Hastighet skallside, u _s [m/s]	1	1	0,82
Reynolds tall rørside, Re _t	361740	410909	381179
Reynolds tall skallside, Re _s	17672	31280	19672
Prandtls tall rørside, Pr _t	0,79	0,78	0,78
Prandtls tall skallside, Pr _s	10,3	5,52	7,38

Det følger under tabell over resultater av studie 1 ved 30° rørmønster.

Figur 5.3 Resultater av studie 1 ved 30° rørmønster

Kommentar: Det viser i tabellen over at det er god samsvarelse i nødvendig varmeoverførende areal og rørlengde beregnet i regneark sammenlignet med HTFS. Dette til tross for noe variasjon i effektiv MTD og total varmeovergangskoeffisient. Det ses også bra samsvarelse i trykkfallene og de dimensjonsløse tallene, men det merkes at Reynolds tall for skallside beregnet i regneark ligger noe under gjennomsnittet av inngang og utgang beregnet i HTFS.

	90°		
STUDIE 1	HTFS		REGNEARK
Minimum skalldiameter, D _{s,min} [m] (kun regneark)			0,76
Skalldiameter, D _s [m]		0,775	0,775
Nødvendig varmelengde rør, L _{ta} [m]		7,055	7,140
Valgt rørlengde, L [m]		7,150	7,290
Avstand mellom ledeplater, B [m]		0,250	0,248 @B/Ds=0,32
Antall ledeplater, N _B		26	28
Antall rør, N _t		424	424 @ u _t =29,2
Kutt i ledeplater, B _c [%D _s]		19,66	19,66
Nødvendig varmeoverførende areal, A _o [m ²]		234,9	238
Total varmerate, q [kW]		2801,6	2802,4
Nødvendig massestrøm skallside, m _s [kg/s]		30,37	30,37
Total varmeovergangskoeffisient, U [W/m ² K]	440,1		505
Varmovergangskoeffisient for innside av rør, h _i *Di/Do			
[W/m ² K]		634	727
Varmovergangskoeffisient for utside av rør, h _o [W/m ² K]		3383,2	3763
Varmovergangskoeffisient for rørvegg, h _w [W/m ² K]		23647,1	23649
Varmovergangskoeffisient for begroing og korrosjon, h _s			
[W/m ² K]		2800	3341
Effektiv MTD (LMTD*F) [°C]		27,16	23,39
Trykkfall rørside, ΔP _t [Pa]		25770	27331
Trykkfall skallside, ΔP_s [Pa]		23662	18156
	Inngang	Utgang	
Hastighet rørside, u _t [m/s]	31,7	28,25	29,2
Hastighet skallside, u _s [m/s]	0,85	0,85	0,74
Reynolds tall rørside, Re _t	387335	439983	412238
Reynolds tall skallside, Re _s	14964	26487	17753
Prandtls tall rørside, Pr _t	0,79	0,78	0,78
Prandtls tall skallside, Pr _s	10,3	5,52	7,38

Under følger resultater av samme studie i 90° mønster.

Figur 5.4 Resultater av studie 1 ved 90° rørmønster

Kommentar: Også for rørmønster i 90° er det god samsvarelse i nødvendig varmeoverførende areal og lengde av rør mellom de to beregningsmetodene, til tross for at det også her er beregnet høyere total varmeovergangskoeffisient og lavere effektiv MTD i regneark sammenlignet med HTFS. Forskjellene i beregnet trykkfall er ikke betydelige men det merkes at det for denne rørvarianten er beregnet høyere trykkfall for rørside og lavere for skallside i regneark sammenlignet med HTFS. Dette er motsatt av forskjellene ved rørmønster i 30°. Trykkfallene for de forskjellige rørmønstrene i studiene kan for øvrig ikke direkte sammenlignes slik som det er gjort i parameteranalysen, da det her også er geometriske variasjoner. For øvrig ses det også her at Reynolds tall for skallside beregnet i regneark er nærmere inngangsverdien enn gjennomsnittet beregnet i HTFS.

5.3 STUDIE 2

Gassen i studie 2 er av høyere trykk og inngangstemperatur enn gassen i studie 1. Massestrømmen er også noe redusert samtidig som tettheten er økt, sammenlignet med studie 1. Under følger tabell med utdrag fra data av gassen som kjøles i studie 2. Det refereres til vedlegg C for komplett dataeksport fra HYSYS.

Studie 2	In	Out
Temperature [C]	90	25,00000016
Pressure [kPa]	2084,828584	2084,828584
Mass Flow [kg/h]	88024,01536	88024,01536
Mass Density [kg/m3]	20,12101981	26,35792023
Mass Heat Capacity [kJ/kg-C]	2,241669926	2,115546987
Thermal Conductivity [W/m-K]	3,60E-02	2,80E-02
Viscosity [cP]	1,31E-02	1,11E-02

Figur 5.5 Data for gass i studie 2

Det er i studie 2 valgt å sette utgangstemperatur på kjølevæsken til 47°C. Under følger data for vannet ved spesifisert temperatur og inngangstrykk, hentet fra HTFS' databank.

Vann, studie 2	In	Middel	Out
Temperature [C]	8	27,5	47
Pressure [kPa]	200		
Mass Density [kg/m3]	998,59	997,85	991,88
Mass Heat Capacity [kJ/kg-C]	4,198	4,191	4,186
Thermal Conductivity [W/m-K]	0,5773	0,6037	0,6284
Viscosity [cP]	1,4157	0,8462	0,5785

Figur 5.6 Data for vann i studie 2

Det er i studie 2 valgt å bruke ytterdiameter av rør lik 25mm og veggtykkelse på 2,6mm. Det brukes karbonstål som rørmaterial som i studie 1 og alle de øvrige studier, men HTFS spesifiserer en noe endret varmeledningskoeffisient for denne veggtykkelsen og temperaturdifferansen; tilsvarende 51,3 W/m K. Det velges også her, samt i øvrige studier, en begroings- og korrosjonsmotstand for rørside lik 0,0003 m²K/W / 0,0017 h·Ft²·°F/BTU.

Resultater fra studie 2 ved 30° rørmønster følger under i figur 5.7.

		30°			
STUDIE 2	НТ	FS	REGNEARK		
Minimum skalldiameter, D _{s,min} [m] (kun regneark)			0,69		
Skalldiameter, D _s [m]		0,7	0,71		
Nødvendig varmelengde rør, L _{ta} [m]		9,173	10,270		
Valgt rørlengde, L [m]		9,250	10,410		
Avstand mellom ledeplater, B [m]		0,275	0,284 @ B/Ds=0,4		
Antall ledeplater, N _B		32	36		
Antall rør, N _t		410	407 @ u _t =8,4m/s		
Kutt i ledeplater, $B_c [\%D_s]$		29,04	29,04		
Nødvendig varmeoverførende areal, A _o [m ²]		293,8	328		
Total varmerate, q [kW]		3462,5	3463,1		
Nødvendig massestrøm skallside, m _s [kg/s]		21,18	21,18		
Total varmeovergangskoeffisient, U [W/m ² K]		419,6	483		
Varmovergangskoeffisient for innside av rør, h _i *Di/Do					
[W/m ² K]		610,9	699		
Varmovergangskoeffisient for utside av rør, h _o [W/m ² K]		3221,4	3544		
Varmovergangskoeffisient for rørvegg, h _w [W/m ² K]		17605,5	17599		
Varmovergangskoeffisient for begroing og korrosjon, h _s					
[W/m ² K]		2640	3341		
Effektiv MTD (LMTD*F) [°C]		28,32	21,86		
Trykkfall rørside, ΔP _t [Pa]		13802	11474		
Trykkfall skallside, ΔP_s [Pa]	8308		8963		
	Inngang	Utgang			
Hastighet rørside, u _t [m/s]	9,63	7,38	8,4		
Hastighet skallside, u _s [m/s]	0,57	0,57	0,48		
Reynolds tall rørside, Re _t	292744	345490	319444		
Reynolds tall skallside, Res	9969	24396	14221		
Prandtls tall rørside, Pr _t	0,82	0,84	0,82		
Prandtls tall skallside, Pr _s	10,3	3,85	5,87		

Figur 5.7 Resultater av studie 2 ved 30° rørmønster

Kommentar: Til estimering å være ses det også her en grei samsvarelse i varmeoverførende areal, varmeovergangskoeffisienter og trykkfall. Det er for begge de to første studiene i 30° rørmønster beregnet et noe lavere trykkfall på rørside ved bruk av regnearket sammenlignet med HTFS, mens det for skallsiden er motsatt for begge tilfeller. Det er i studie 2, mellom de to beregningsmetodene forskjell av betydning i beregnet effektiv MTD. Effektiv MTD i studie 2 beregnet ved hjelp av HTFS er faktisk høyere enn beregnet LMTD, ukorrigert MTD, er i gjort i regnearket.

	90°		
STUDIE 2	HT	FS	REGNEARK
Minimum skalldiameter, D _{s,min} [m] (kun regneark)			0,69
Skalldiameter, D _s [m]		0,71	0,71
Nødvendig varmelengde rør, L _{ta} [m]		9,803	11,030
Valgt rørlengde, L [m]		9,850	11,180
Avstand mellom ledeplater, B [m]		0,225	0,227 @B/Ds=0,32
Antall ledeplater, N _B		42	48
Antall rør, N _t		352	349 @ u _t =9,8
Kutt i ledeplater, B _c [%D _s]		19,09	19,09
Nødvendig varmeoverførende areal, A _o [m ²]		268,8	302
Total varmerate, q [kW]		3462,5	3463,1
Nødvendig massestrøm skallside, m _s [kg/s]		21,18	21,18
Total varmeovergangskoeffisient, U [W/m ² K]		457	524
Varmovergangskoeffisient for innside av rør, h _i *Di/Do			
[W/m ² K]		689,6	790
Varmovergangskoeffisient for utside av rør, h _o [W/m ² K]		3303	3505
Varmovergangskoeffisient for rørvegg, h _w [W/m ² K]		17605,5	17599
Varmovergangskoeffisient for begroing og korrosjon, h _s			
[W/m² K]		2640	3341
Effektiv MTD (LMTD*F) [°C]		28,32	21,86
Trykkfall rørside, ΔP _t [Pa]		10890	16139
Trykkfall skallside, ΔP _s [Pa]	24592		18154
	Inngang	Utgang	
Hastighet rørside, u _t [m/s]	11,21	8,6	9,8
Hastighet skallside, u _s [m/s]	0,71	0,72	0,59
Reynolds tall rørside, Re _t	340980	402418	372685
Reynolds tall skallside, Re _s	12603	30841	17382
Prandtls tall rørside, Pr _t	0,82	0,84	0,82
Prandtls tall skallside, Pr _s	10,3	3,85	5,87

Figur 5.8 Resultater av studie 2 ved 90° rørmønster

Kommentar: Det er også for denne studien ved 90° rørmønster beregnet høyere trykkfall på rørside ved hjelp av regneark sammenlignet med HTFS. Forskjellen her blir også forsterket i takt med økt forskjell i rørlengde, med grunnlag i avvik i total varmeovergangskoeffisient og særlig i nevnte effektiv MTD. Samme tendens i Reynolds tall for skallsiden observeres også i studie 2 som notert i studie 1. Det kan se ut til at spriket i varmeovergangstallene øker med økt temperaturforskjell, dersom tallene for studie 2 sammenlignes med studie 1. For de to neste studiene økes inngangstemperatur og trykk av gass ytterligere.

5.4 STUDIE 3

Gassen som kjøles i studie 3 er i hovedtrekk beskrevet i tabell under. For komplett oversikt over data, se vedlegg C.

Studie 3	In	Out
Temperature [C]	102,8386277	55,8
Pressure [kPa]	5572,580116	5572,580116
Mass Flow [kg/h]	76643,52501	76643,52501
Mass Density [kg/m3]	57,17296106	74,64149077
Mass Heat Capacity [kJ/kg-C]	2,544180591	2,720154369
Thermal Conductivity [W/m-K]	4,11E-02	3,64E-02
Viscosity [cP]	1,50E-02	1,42E-02

Figur 5.9 Data for gass i studie 3

Både trykk og inngangstemperatur er hevet i forhold til de to foregående studiene. Gassen kjøles til 55,8°C og det er valgt å sette utgangstemperatur på kjølevannet til 60°C. Data for kjølevannet hentet fra HTFS' databank, er postet under.

Vann, studie 3	In	Middel	Out
Temperature [C]	8	34	60
Pressure [kPa]	500		
Mass Density [kg/m3]	998,59	996,37	985,66
Mass Heat Capacity [kJ/kg-C]	4,198	4,189	4,186
Thermal Conductivity [W/m-K]	0,5773	0,6122	0,6432
Viscosity [cP]	1,4157	0,7344	0,4743

Figur 5.10 Data for vann i studie 4

Det er valgt å øke inngangstrykket på kjølevannet til 500kPa for senere å se om det kan gjøre utslag i trykkfallsdistribusjonen og beregninger. Det er i studie 3 valgt ytterdiameter av rør til 25,4mm og veggtykkelse lik 2,6mm med samme materialkvalitet som tidligere og varmeledningskoeffisient pålydende 50,8 W/m K. Det er i studie 3 sett på rør orientert i 45° og 90° mønster, med resultater postet i henholdsvis figur 5.11 og 5.12 under.

	45°		
STUDIE 3	НТ	FS	REGNEARK
Minimum skalldiameter, D _{s,min} [m] (kun regneark)			0,37
Skalldiameter, D _s [m]		0,38735	0,38735
Nødvendig varmelengde rør, L _{ta} [m]		9,379	9,380
Valgt rørlengde, L [m]		9,550	9,460
Avstand mellom ledeplater, B [m]		0,175	0,174 @ B/Ds=0,45
Antall ledeplater, N _B		52	53
Antall rør, N _t		89	92 @ u _t =11m/s
Kutt i ledeplater, B _c [%D _s]		35,51	35,51
Nødvendig varmeoverførende areal, A_o [m ²]		66,9	69
Total varmerate, q [kW]		2633,8	2633,6
Nødvendig massestrøm skallside, m _s [kg/s]		12,09	12,09
Total varmeovergangskoeffisient, U [W/m ² K]		889,9	964
Varmovergangskoeffisient for innside av rør, h _i *Di/Do			
[W/m ² K]		2060,7	2213
Varmovergangskoeffisient for utside av rør, h _o [W/m ² K]		4900,5	4369
Varmovergangskoeffisient for rørvegg, h _w [W/m ² K]		17477,1	17462
Varmovergangskoeffisient for begroing og korrosjon, h _s			
[W/m ² K]		2650,9	3341
Effektiv MTD (LMTD*F) [°C]		45,01	39,82
Trukkfall rereida AD [Da]		24040	27240
Trykkfall (β Side, ΔP_t [Pa]		27600	57540 9421
	Inngang	Litgang	0421
Hastighet rørside. u. [m/s]	13.06	10.06	11
Hastighet skallside, u. [m/s]	0.65	0.65	0.61
Revnolds tall rørside. Re	1005186	1061816	1003096
Revnolds tall skallside. Re	11580	34564	20907
Prandtls tall rørside. Pr	0.93	1.06	0.99
Prandtls tall skallside, Prs	10,3	3,09	5,03

Figur 5.11 Resultater av studie 3 ved 45° rørmønster

Kommentar: Avviket i trykkfallet på skallsiden er i denne studien påfallende. Av størst variasjon fra forrige studier er inngangstrykket høyere og skalldiameteren er redusert, samtidig som andelen av kuttet i ledeplater er økt. Det kan se ut til at inngangstrykket på skallsiden påvirker avvik i beregnede trykkfall i negativ retning. For studie 4 vil det derfor bli valgt enda høyere inngangstrykk for kjølevannet. Først resultater fra studie 3 ved 90° rørmønster postet under.

		90°			
STUDIE 3	HT	FS	REGNEARK		
Minimum skalldiameter, D _{s,min} [m] (kun regneark)			0,37		
Skalldiameter, D _s [m]		0,38735	0,38735		
Nødvendig varmelengde rør, L _{ta} [m]		9,244	9,330		
Valgt rørlengde, L [m]		9,250	9,400		
Avstand mellom ledeplater, B [m]		0,2	0,194 @B/Ds=0,5		
Antall ledeplater, N _B		44	48		
Antall rør, N _t		92	92 @ u _t =11 m/s		
Kutt i ledeplater, B _c [%D _s]		33,61	33,61		
Nødvendig varmeoverførende areal, A _o [m ²]		67	68		
Total varmerate, q [kW]		2633,8	2633,6		
Nødvendig massestrøm skallside, m _s [kg/s]		12,09	12,09		
Total varmeovergangskoeffisient, U [W/m ² K]		873,8	970		
Varmovergangskoeffisient for innside av rør, h _i *Di/Do					
[W/m ² K]		2007,1	2213		
Varmovergangskoeffisient for utside av rør, h _o [W/m ² K]		4723,7	4483		
Varmovergangskoeffisient for rørvegg, h _w [W/m ² K]		17477,1	17462		
Varmovergangskoeffisient for begroing og korrosjon, h _s					
[W/m ² K]		2650,9	3341		
Effektiv MTD (LMTD*F) [°C]		45,01	39,82		
Trykkfall rørside, ΔP _t [Pa]		31603	37103		
Trykkfall skallside, ΔP _s [Pa]		29500	8633		
	Inngang	Utgang			
Hastighet rørside, u _t [m/s]	12,63	9,73	11		
Hastighet skallside, u _s [m/s]	0,79	0,8	0,71		
Reynolds tall rørside, Re _t	972408	1027192	1003096		
Reynolds tall skallside, Re _s	14073	42003	24597		
Prandtls tall rørside, Pr _t	0,93	1,06	0,99		
Prandtls tall skallside, Pr _s	10,3	3,09	5,03		

Figur 5.12 Resultater av studie 3 ved 90° rørmønster

Kommentar: Også for 90° er det betydelige forskjeller i trykkfallet på skallsiden. Det registreres for øvrig i studie 3 bedre samsvarelse i MTD og total varmeovergangskoeffisient sammenlignet med studie 2, til tross for økt trykk, temperaturdifferanser og forhold i massestrømninger.

5.5 STUDIE 4

Studie 4 er mer en eksperimentell studie enn de andre. Gassen som kjøles i studie 4 er av absolutt størst trykk og inngangstemperatur av alle gassene det er sett på i denne oppgaven. Den har fysiske egenskaper som ligner væske, med økning i viskositet og varmekapasitet ved redusert temperatur. Det er likevel spesifisert at det ikke forekommer faseendring med kjølingen. Temperaturforskjellen mellom inngang og utgang er størst av alle studiene, samt at studie 4 er det tilfellet hvor massestrømmen av gassen er minst og tettheten med trykket følgelig størst. Følgende utdrag av data fra gassen er hentet fra vedlegg C:

Studie 4	In	Out
Temperature [C]	150,8759069	34,3
Pressure [kPa]	16926,74711	16926,74711
Mass Flow [kg/h]	65808,18571	65808,18571
Mass Density [kg/m3]	156,7295559	(324,9355118)
Mass Heat Capacity [kJ/kg-C]	2,544180591	2,720154369
Thermal Conductivity [W/m-K]	6,04E-02	7,36E-02
Viscosity [cP]	2,27E-02	3,05E-02

Figur 5.13 Data for gass i studie 4

Merk: HTFS ville ikke godta den høye tettheten ved utgangstemperatur ved betingelse at det ikke skulle forekomme faseendring. Det ble derfor nødvendig å spesifisere tettheten ved inngang som gjennomsnittsverdi for tettheten i denne studien. De andre fysiske egenskapene for rørside er derimot blitt spesifisert ved gjennomsnitt av inngangs- og utgangstemperatur slik det har blitt gjort tidligere. Dette har naturligvis blitt utført i både HTFS og regneark.

Det kan som nevnt tidligere se ut til at inngangstrykket i kjølevannet er av betydning for trykkfallet på skallsiden. Det er derfor i studie 4 valgt enda høyere inngangstrykk på skallsiden, samtidig som vannets utgangstemperatur er høynet til 70° C. Vannets data kan kort oppsummeres etter følgende utdrag fra HTFS' databank:

Vann, studie 4	In	Middel	Out
Temperature [C]	8	39	70
Pressure [kPa]	1000		
Mass Density [kg/m3]	998,59	994,87	979,91
Mass Heat Capacity [kJ/kg-C]	4,198	4,188	4,186
Thermal Conductivity [W/m-K]	0,5773	0,6186	0,6535
Viscosity [cP]	1,4157	0,6657	0,4107

Figur 5.14 Data for vann i studie 4

Det er i studie 4 økt veggtykkelsen til 3mm for ytterdiameter av rør lik 25mm, med tilhørende varmeledningskoeffisient lik 50,55 W/m K. Som resultat av lavere massestrømning kombinert med større massetetthet for gassen i studie 4 sammenlignet med de andre studiene, følger det lavere hastighet på rørsiden enn hva som tidligere er anbefalt med hensyn på fare for begroing. Resultater fra studie 4 er for de to rørmønstrene oppsummert i tabeller under.

		30°			
STUDIE 4	HT	FS	REGNEARK		
Minimum skalldiameter, D _{s,min} [m] (kun regneark)			0,47		
Skalldiameter, D _s [m]		0,48895	0,48895		
Nødvendig varmelengde rør, L _{ta} [m]		14,691	15,860		
Valgt rørlengde, L [m]		14,700	15,960		
Avstand mellom ledeplater, B [m]		0,315	0,318 @ B/Ds=0,65		
Antall ledeplater, N _B		44	49		
Antall rør, N _t		176	179 @ u _t =2,3m/s		
Kutt i ledeplater, B_c [% D_s]		38,93	38,93		
Nødvendig varmeoverførende areal, A _o [m ²]		199,9	223		
Total varmerate, q [kW]		6951	6950,6		
Nødvendig massestrøm skallside, m _s [kg/s]		26,76	26,76		
Total varmeovergangskoeffisient, U [W/m ² K]		733,2	802		
Varmovergangskoeffisient for innside av rør, h _i *Di/Do					
[W/m ² K]		1394,6	1432		
Varmovergangskoeffisient for utside av rør, h _o [W/m ² K]		5428,3	5532		
Varmovergangskoeffisient for rørvegg, h _w [W/m ² K]		14736,6	14736		
Varmovergangskoeffisient for begroing og korrosjon, h _s					
[W/m ² K]		2533,3	3341		
Effektiv MTD (LMTD*F) [°C]		47,45	38,87		
Trykkfall rørside, ΔP _t [Pa]		7106	9782		
Trykkfall skallside, ΔP _s [Pa]		40023	12894		
	Inngang	Utgang			
Hastighet rørside, ut [m/s]	2,34	2,34	2,3		
Hastighet skallside, u _s [m/s]	0,87	0,89	0,75		
Reynolds tall rørside, Re _t	306642	228202	257845		
Reynolds tall skallside, Re _s	15390	53046	27915		
Prandtls tall rørside, Pr _t	1,15	1,44	1,29		
Prandtls tall skallside, Pr _s	10,3	2,63	4,51		

Figur 5.15 Resultater av studie 4 ved 30° rørmønster

Kommentar: Det er oppsiktsvekkende forskjell i resultatene over trykkfallet på skallsiden. Avviket har økt ytterligere fra forrige studie. Ellers ser ikke spriket i resultatene ut til å bli av overdrevet forskjell som følge av økt trykk, temperaturforskjell og endret fysiske egenskaper. Noe høyere trykkfall på rørsiden er dog beregnet i regneark sammenlignet med HTFS. Det samme er også rørlengden som er av betydning for dette trykkfallet.

		90°			
STUDIE 4	HTF	S	REGNEARK		
Minimum skalldiameter, D _{s,min} [m] (kun regneark)			0,52		
Skalldiameter, D _s [m]		0,53975	0,53975		
Nødvendig varmelengde rør, L _{ta} [m]		14,278	15,710		
Valgt rørlengde, L [m]		14,400	15,820		
Avstand mellom ledeplater, B [m]		0,405	0,405 @B/Ds=0,75		
Antall ledeplater, N _B		34	38		
Antall rør, N _t		196	196 @ u _t =2,1		
Kutt i ledeplater, B_c [% D_s]		38,38	38,38		
Nødvendig varmeoverførende areal, A _o [m ²]		217,7	242		
Total varmerate, q [kW]		6951	6950,6		
Nødvendig massestrøm skallside, m _s [kg/s]		26,76	26,76		
Total varmeovergangskoeffisient, U [W/m ² K]		678,6	740		
Varmovergangskoeffisient for innside av rør, h _i *Di/Do					
[W/m ² K]		1280,2	1332		
Varmovergangskoeffisient for utside av rør, h _o [W/m ² K]		4350,1	4277		
Varmovergangskoeffisient for rørvegg, h _w [W/m ² K]		14736,6	14736		
Varmovergangskoeffisient for begroing og korrosjon, h _s					
[W/m ² K]		2533,3	3341		
Effektiv MTD (LMTD*F) [°C]		47,45	38,87		
Trykkfall rørside, ΔP _t [Pa]		6057	8269		
Trykkfall skallside, ΔP _s [Pa]		21432	4307		
	Inngang	Utgang			
Hastighet rørside, u _t [m/s]	2,1	2,1	2,1		
Hastighet skallside, u _s [m/s]	0,61	0,62	0,56		
Reynolds tall rørside, Re _t	275352	204916	235095		
Reynolds tall skallside, Re _s	10758	20937			
Prandtls tall rørside, Pr _t	1,15	1,44	1,29		
Prandtls tall skallside, Pr _s	10,3	2,63	4,51		

Figur 5.16 Resultater av studie 4 ved 90° rørmønster

Kommentar: Også for rør ordnet i 90° mønster er det forskjellen i trykkfallet for skallsiden som er mest påfallende. Trykkfallet for rørsiden er også her sammen med rørlengden noe høyere enn beregnet i regneark sammenlignet med HTFS. Tendensene i gjennomsnittlig Reynolds tall for skallsiden følger også i studie 3 og 4 samme mønster som notert for de to foregående studiene. Det følger under en sammenligning på tvers av studiene hvor det blir gitt videre utdypninger og forklaringer til resultatene.

5.6 SAMMENLIGNING AV RESULTATER PÅ TVERS AV STUDIER

Det er til oppsummering av resultatene gjort sammenligninger av resultater på tvers av alle studiene for rør i 90° mønster. Det er først sett på strømningshastigheter og de to dimensjonsløse tallene av Reynold og Prandlt, for rørside og skallside, postet i henholdsvis figur 5.17 og 5.19.

Hastighet, Reynolds tall og Prandtls tall

Under følger tabell over de respektive hastigheter, Reynolds og Prandtls tall som er beregnet for rørside i de to metodene for de 4 studiene. Det er også beregnet en prosentvis samsvarelse mellom gjennomsnittsverdier som er beregnet i regnearket sammenlignet med bruk av HTFS.

90°	u _t [m/s]			Ret			Pr _t		
			R/HTFS			R/HTFS			R/HTFS
Studie	HTFS	REGNEARK	*100%	HTFS	REGNEARK	*100%	HTFS	REGNEARK	*100%
1	29,975	29,2	97,4	413659	412238	99,7	0,785	0,78	99,4
2	9,905	9,8	98,9	371699	372685	100,3	0,83	0,82	98,8
3	11,18	11	98,4	999800	1003096	100,3	0,995	0,99	99 <i>,</i> 5
4	2,1	2,1	100,0	240134	235095	97,9	1,295	1,29	99,6

Figur 5.17 Hastigheter, Reynolds tall og Prandtls tall for rørside

Kommentar: Det er i figur 5.17 gjort sammenligninger av gjennomsnittet av verdier for innog utgangsside beregnet i HTFS med resultater av regnearket. For strømningshastigheten på rørsiden viser det i prosentvise forholdsberegninger, at det i de 3 første studiene er små avvik i beregnet hastigheter. I studie 4, hvor gassens massetetthet ble spesifisert ved kun en verdi i begge beregningsmetoder, er det 100 % samsvarelse. Med grunn i dette og at det er benyttet samme diameter og antall rør, må avvikene i hastigheten på rørside for de andre 3 studiene skyldes avvik i anvendt massetetthet som følge av spesifisering ved gjennomsnittlige verdier basert på inngangs- og utgangstemperatur.

Det er for alle studiene svært bra samsvarelse i Reynolds og Prandtls tall for rørside mellom de to beregningsmetodene. Det prosentvise forholdet mellom beregnet gjennomsnittlig Reynolds tall for rørside i de 3 første studiene er dog noe over det prosentvise forholdet i hastighetene. Dette tyder på at kinematisk viskositet i disse studiene ligger noe under verdien som er benyttet ved bruk av HTFS. Da Prandtls tall i regnearket er beregnet svært nøyaktig sammenlignet med HTFS, er det lite som tyder på avvik i anvendt viskositet, varmeledningskoeffisienten eller spesifikk varmekapasitet, i tilfellet veier de opp for hverandre i beregning av Prandtls tall. Massetettheten som er anvendt i regnearket er allerede forklart å måtte ligge noe over gjennomsnittlig verdi beregnet av HTFS og har grunn i de små forskjellene som må være tilstedet i kinematisk viskositet. For studie 4 hvor viskositeten for mediet på rørside øker med redusert temperatur, må gjennomsnittlig viskositet som er anvendt i regnearket være noe høyere enn reelt, med grunnlag i at forholdet i beregnet Reynolds tall er lavere enn forholdet i hastigheten og at tettheten som er anvendt her er lik i regnearket og HTFS. Med grunn i nøyaktig beregnet Prandtls tall også for denne studien, må da enten den anvendte verdi av spesifikk varmekapasitet være noe lavere eller varmeledningskoeffisienten noe høyere, enn hva den i gjennomsnitt er i realiteten. Avvikene som medfølger å spesifisere gassens fysiske egenskaper ved gjennomsnitt av verdier tilhørende inngangs- og utgangstemperatur er kort oppsummert små å regne i denne sammenheng, men det vil senere bli vist at avvik i tettheten har en viss innvirkning på videre beregninger.

90°	u _s [m/s]			Res			Pr _s		
			R/HTFS			R/HTFS			R/HTFS
Studie	HTFS	REGNEARK	*100%	HTFS	REGNEARK	*100%	HTFS	REGNEARK	*100%
1	0,85	0,74	87,1	20726	17753	85,7	7,91	7,38	93,3
2	0,715	0,59	82,5	21772	17382	79,8	7,075	5,87	83,0
3	0,795	0,71	89,3	28038	24597	87,7	6,695	5,03	75,1
4	0,615	0,56	91,1	23920	20937	87 <i>,</i> 5	6,465	4,51	69,8

Som i tabell i figur 5.17, er det i figur 5.18 gjort en tilsvarende sammenligning for skallsiden:

Figur 5.18 Hastigheter, Reynolds tall og Prandtls tall for skallside

Kommentar: Det er for skallsiden noe større forskjeller i beregnet gjennomsnittlige hastigheter enn det er for rørsiden. Forholdene i beregnet Reynolds tall ligger for alle studiene noe under forholdene i beregnet hastigheter. Prandtls tall er også for alle studiene beregnet lavere i regnearket, med økende avvik for hver studie. De prosentvise avvikene i strømningshastighet og Reynolds tall for skallsiden ved de to beregningsmetodene er illustrert i grafisk fremstilling under, før videre utdypning av resultatene for skallsiden følger.

Figur 5.19 Prosentvise forhold i beregnet hastighet og Reynolds tall for skallside

Det kan ses av graf i figur 5.19, som også i tabell i figur 5.18, at forholdene i beregnet hastighet og Reynolds tall for skallsiden mellom de to beregningsmetodene følger hverandre bra. Forholdet i Reynolds tall ligger dog rundt 2-4% under forholdet i beregnet hastighet. Et noe større avvik mellom de to parametrene ses i studie 4, hvor temperaturdifferansen er størst.

Det er notert ved presentasjoner av resultater fra studier at beregnet Reynolds tall for skallsiden ligger under HTFS' gjennomsnittlig Reynolds tall. Det er tidligere under antakelser nevnt betydninger av å spesifisere vannets fysiske egenskaper ved vannets middeltemperatur. Vannets viskositet er sterkt temperaturavhengig, hvor viskositeten er mye høyere ved lave temperaturer enn ved høye temperaturer. For å statuere et eksempel, med referanse i HTFS' databank over fysiske egenskaper, vil viskositeten i vann omtrent halveres ved en temperaturøkning fra 8°C til 30°C. Å spesifisere vannets fysiske egenskaper ved middeltemperatur, slik det i studier er blitt gjort i regnearket, vil medføre at anvendt viskositet er lavere enn hva gjennomsnittlig verdi i bulktemperaturen i virkeligheten er. Dette er dog før høyde er tatt for filmtemperaturen. Ses det først på beregninger av Prandtls tall, er beregninger i regneark for alle studiene lavere enn gjennomsnittsberegninger i HTFS. Da de prosentvise variasjonene i spesifikk varmekapasitet og varmeledningskoeffisienten i vann er en god del mindre ved endret temperatur sammenlignet med utslagene i viskositeten og i tillegg til en viss grad vil oppveie for hverandre, er det tydelig at det er benyttet lavere viskositet i regnearket enn hva HTFS har operert med. Forskjellene øker også for hver studie og med økt temperaturdifferanse.

Går man videre med lavere anvendt viskositet og legger til grunn at tettheten i vann varierer mye mindre enn hva viskositeten gjør med temperaturen, skulle det ved anvendelse av lavere kinematisk viskositet tilsi at gjennomsnittlig beregnet Reynolds tall i regneark ville ligget over gjennomsnittlig Reynolds tall beregnet i HTFS. Sammenligningen i figur 5.19 viser derimot at Reynolds tall beregnet i regneark ligger under gjennomsnittet av Reynolds tall beregnet i HTFS, med grunn i forskjeller i hastighet. Det fremgår ikke av figur 5.18 (som er en sammenligning av gjennomsnittsverdier), men med henvisning til resultater for hver enkelt studie, kan det som nevnt ses at middelhastigheten beregnet i regnearket for alle studiene ligger noe under hastigheten både ved inngang og utgang beregnet i HTFS. Da hastigheten i skallmediet defineres av massestrømning på strømningsareal og tetthet. Tettheten i vann varierer kun med noen promille ved doblet temperatur og forskjeller i hastighet må derfor hovedsaklig skyldes at det i regnearket er benyttet større strømningsareal. Dette medfører igjen lavere massestrømning per areal i regneark enn i HTFS.

Varmeovergangskoeffisienter

Det er i tabell i figur 5.20 under, en oppsummering av resultater fra varmeovergangskoeffisienter beregnet både i HTFS og i regnearket for alle studiene ved 90° rørmønster.

90°	U [W/m ² K]		$U[W/m^2 K]$ $h_i * D_i/D_o[W/m^2 K]$		h _o [W/m ² K]		h _w [W/m² K]	h₅ [W/m² K]	
Studie	HTFS	REGNEARK	HTFS	REGNEARK	HTFS	REGNEARK	HTFS	REGNEARK	HTFS	REGNEARK
1	440	505	634	727	3383	3763	23647	23649	2800	3341
2	457	524	690	790	3303	3505	17606	17599	2640	3341
3	874	970	2007	2213	4724	4483	17477	17462	2651	3341
4	679	740	1280	1332	4350	4277	14377	14736	2533	3341

5.20 Varmeovergangskoeffisienter

Den totale varmeovergangskoeffisienten, U, er for alle studiene beregnet noe høyere i regnearket enn i HTFS. Det ses av tabell 5.20 at felles for varmeovergangskoeffisienten for innside av rør er at den er beregnet høyere i regneark enn i HTFS. Koeffisienten for utside av rør varier mellom studiene, med høyere verdi i de to første tilfellene og lavere i de to siste tilfellene sammenlignet resultatene av regneark og HTFS seg imellom. Varmemotstanden beregnet i rørvegg er uten avvik av betydninger, mens koeffisienten for begroing og korrosjon i HTFS varier for hver studie, samtidig som den er konstant i regnearket. Det følger videre grafiske fremstillinger og utdyping av utslag i hver enkelt varmeovergangskoeffisient.

Figur 5.21 Varmeovergangskoeffisient justert for diameterforhold for innside av rør

Det ses av figur 5.21 over at varmeovergangskoeffisientene for innside av rør beregnet i regnearket samsvaret greit med resultater fra HTFS. Regnearket beregner i alle studiene varmeovergangskoeffisienten for innside av rør noe over hva HTFS gjør. Lavest prosentvis forskjell opptrer i de to siste studiene hvor også varmeovergangskoeffisientene og temperaturdifferansene er høyest.

Avvikene i Reynolds og Prandtls tall for rørsiden er så små å regne at de kan neglisjeres i denne sammenheng, da de i tillegg er tillagt eksponenter under 1,0. Det er tidligere under betydning av antakelser i viskositetsforholdet beskrevet at det for varme gasser med viskositet som svekkes med redusert temperatur, vil medvirke til at varmeovergangskoeffisienten for innside av rør, isolert sett vil bli beregnet marginalt lavere i regnearket enn hva det ville blitt gjort ved og tatt høyde for det faktiske viskositetsforhold. For gassen i studie 4 med andre viskositetsegenskaper gjelder motsatt. Den spesifikke varmekapasiteten vil for gassene i studie 1 og 2 reduseres med lavere temperatur mens den for gassene i studie 3 og 4 vil oppleve økning i ved lavere temperatur. Ved å angi fysiske egenskaper ved gjennomsnittet mellom inngangs- og utgangstemperatur vil anvendt varmekapasitet for studie 1 og 2 da være høyere enn ved filmtemperatur, mens motsatt er gjeldende for studie 3 og 4. Kombinasjonen av dette og mindre betydning av viskositetsforholdet i studie 1 og 2 er grunnen til at varmeovergangskoeffisienten i disse studiene er beregnet med litt større avvik enn de to siste studiene, sammenlignet med HTFS.

Figur 5.22 Varmeovergangskoeffisient for utside av rør

Figur 5.22 over illustrerer varmeovergangskoeffisienten for utside av rør for de 4 studiene beregnet i regneark og HTFS. Det ses her større og mer varierende avvik enn for varmeovergangskoeffisienten for innside av rør. Som beskrevet tidligere er også variasjonene i Reynolds og Prandtls tall større for skallsiden, mye med grunn i vannets sterkt temperaturavhengige viskositet. Følgelig vil også forholdet mellom viskositeten angitt ved vegg- og bulktemperatur være av større betydning enn for gassiden.

Av forskjell i beregningsmetode sammenlignet med for innside av rør er Reynolds tall her brukt i kombinasjon med en eksponent varierende med Reynolds tall i seg selv samt rørmønsteret. Eksponenten som er tillagt i disse tilfellene av studiene er lik 0,349, mens Prandtls tall og viskositetsforholdet inngår i beregninger med en eksponent på 2/3, likt som for innside av rør. Det er i regnearket også tatt høyde for forbipassering og lekkasje av mediet, varierende for hver geometri, uten at det fremgår av resultater i HTFS om samme korrigeringer er gjort. For ordens skyld; korreksjonsfaktorene varierer mellom studiene i

størrelsesorden rundt 0,66 til 0,73, høyest i de to siste. Utfallene i

varmeovergangskoeffisienten er til tross for lavere Reynolds og Prandtls tall for samtlige studier, av varierende resultat sammenlignet med HTFS. Varmeovergangskoeffisientene er i de to første studiene beregnet høyere i regneark sammenlignet med HTFS, mens samme koeffisient for de to siste studiene er beregnet under HTFS, til tross for ytterligere økt avvik i Reynolds og Prandtls tall her. For lettere å kunne analysere resultatene er det gjort nye beregninger korrigert for avvikene i Reynolds og Prandtls tall i regneark, hvor det i stedet er benyttet gjennomsnittlige verdier beregnet i HTFS. Resultater av sammenligningen følger i tabell under.

Studie	h _o , Regneark	h _o , Korrigert	h _o , HTFS	h _o , Korrigert / h _o , HTFS *100%
1	3763	3404	3383	100,62
2	3505	2859	3303	86,56
3	4483	3538	4727	74,85
4	4277	3200	4350	73,56

Figur 5.23 Sammenligning av korrigert varmeovergangskoeffisient for utside av rør

Det viser av sammenligningene mellom korrigert varmeovergangskoeffisient og beregning i HTFS at resultatene nå er annerledes og med mer sammenheng enn tidligere. Sammenheng i den forstand at avviket øker for hver studie i form av lavere varmeovergangskoeffisient sammenlignet med HTFS. Det vil med økt temperaturdifferanse medføre større forskjell mellom vegg- og bulktemperatur. Viskositeten vil være lavere ved veggtemperatur og antakelsen om et viskositetsforhold lik 1, vil føre til at regnearket underestimerer varmeovergangskoeffisienten i forhold til hva som vil være reelt. I ukorrigerte beregninger trekker lavere verdier av Prandtls og Reynolds tall opp underestimatet av varmeovergangskoeffisienten utført i regnearket, slik at det for de større temperaturdifferansene gir bedre samsvarelse i varmeovergangskoeffisienten, mens det i de to første studiene med minst temperaturforskjell er beregnet høyere varmeovergangskoeffisient.

Det er tidligere beskrevet avvik i strømningsareal og tilhørende lavere massestrømning per areal for skallsiden. Dette er felles for alle studiene og medvirker til lavere varmeovergangskoeffisient for utside av rør. Avviket er størst i studie 2 og 4. Det vil også være variasjoner i vannets spesifikke varmekapasitet mellom de forskjellige studiene. I lave temperaturer, rundt 40°C og lavere[1], vil spesifikk varmekapasitet oppleve reduksjon ved økt temperatur, mens ved høyere temperaturer vil varmekapasiteten øke med temperaturen. Dette ses i studie 3 og 4 med innhold av varmest gass, hvor det i regneark er blitt anvendt lavere spesifikk varmekapasitet enn hva som er reelt ved filmtemperatur. Summen av dette, massestrømning per areal og viskositetsforholdet vil i studie 3 og 4 overgå avvikene i Reynolds og Prandtls tall og resultatet er følgelig lavere beregnet varmovergangskoeffisient i regneark sammenlignet med HTFS. I studie 1 og 2 hvor betydningen av viskositetsforholdet og varmekapasiteten er mindre, er varmeovergangskoeffisienten som følge av lavere Reynolds og Prandtls tall, beregnet høyere. I studie 2 ses det dog et noe lavere avviket grunnet lavere massestrømning per areal og større effekt av viskositetsforholdet, sammenlignet med studie 1.

Figur 5.24 Varmeovergangskoeffisient for rørvegg

Avvikene i varmeovergangskoeffisienten for rørvegg beregnet i de to metodene er som vist i figur 5.24 av ubetydelig størrelse. Med like rørdimensjoner, likt material og lik varmeledningskoeffisient, forklares forskjellene med at HTFS justerer varmeledningskoeffisienten med temperaturen, som vil være av størst betydning i studie 4.

Figur 5.25 Varmeovergangskoeffisient relatert begroing og korrosjon

Det er for hver studie spesifisert en motstand for rørside relatert begroing og korrosjon lik $0,0003 \text{ m}^2\text{K/W} \approx 0,0017 \text{ h Ft}^2 \text{ }^2\text{F/BTU}$ (Innsettes i US i regneark da vedlegg over motstander fra TEMA er i følgende benevning). Små forskjeller i beregnede verdier, som vist i figur 5.25, oppstår da HTFS korrigerer motstanden med forhold i areal mellom utside og innside av rør.

Figur 5.26 Total varmeovergangskoeffisient for varmeveksler

Figur 5.26 illustrerer beregnet total varmeovergangskoeffisient for alle 4 studiene for de to beregningsmetodene. For alle studiene er det beregnet høyere total varmeovergangskoeffisient i regneark sammenlignet med HTFS. Størst forholdsvise avvik finnes i studie 1 og 2. Varmeovergangskoeffisienten for utside av rør er i studie 1 og 2 beregnet høyere i regneark sammenlignet med HTFS, mens det i studie 3 og 4 er beregnet lavere koeffisient i regneark sammenlignet med HTFS. Ellers, går avvikene på tvers av studiene i felles retning for alle varmeovergangskoeffisienter. For den totale varmeovergangskoeffisienten kan det oppsummeres at det er avvik i de dimensjonsløse tallene, massestrømning per areal og viskositetsforholdet på skallside samt variasjonen i spesifikk varmekapasitet for vannet som er grunn for de største variasjonene.

Trykkfall

Det er i tabell under listet de beregnede trykkfall for rørside ved de forskjellige studiene i 90° rørmønster. Det er i tillegg til det totale trykkfallet for rørside også gjort en mer relevant sammenligning av trykkfallet i rør per lengdeenhet.

90°	ΔP _t [Pa]		ΔP _t [Pa] Andel trykkfall i rør		Lv	_{algt} [m]	Trykkfall i rør per meter		
Studie	HTFS	REGNEARK	HTFS	REGNEARK	HTFS	REGNEARK	HTFS	REGNEARK	
1	25770	27331	0,5744	0,5	7,15	7,29	2070	1875	
2	10890	16139	0,6902	0,5	9,85	11,18	763	722	
3	31603	37103	0,6771	0,5	9,25	9,4	2313	1974	
4	6057	8269	0,6688	0,5	14,4	15,82	281	261	

Figur 5.27 Trykkfall for rørside

Det kan ses av tabell over, at distribusjonen av trykkfallet for rørside beregnet i HTFS varierer noe fra studie til studie. Det er for beregninger i regnearket som tidligere beskrevet antatt en fordeling der halvparten av det totale trykkfallet er forbundet med trykkfallet inni rørene. Det er også grunnet noe variasjon i beregnet MTD, varmeovergangskoeffisienter og nødvendig varmeoverførende areal, operert med litt forskjellige rørlengder i regnearket og HTFS. Da trykkfallet for rørsiden i stor grad avhenger rørlengden i tillegg til trykkfallsdistribusjonen antatt i regnearket, er det valgt å gjøre en sammenligning av trykkfallet i rør korrigert for forskjeller i rørlengden. Dette for å ha et mer relevant sammenligningsgrunnlag i beregninger og å illustrere avvik. Først følger graf og kommentarer relatert det totale trykkfallet.

Figur 5.28 Totalt trykkfall for rørside

Det kan ses av figur 5.28 at det ved å bruke regnearket gir et grovt overslag av det totale trykkfallet på rørside sammenlignet med HTFS. Regnearket beregner for alle tilfellene her høyere trykkfall enn hva HTFS gjør. Dette med mye grunn i antakelsen av trykkfallsdistribusjonen, som senere utredning vil vise. Størst prosentvist avvik opptrer i studie 2 og 4, hvor også differansen i andelen av trykkfallet som er lokalisert inni rørene er størst.

Figur 5.29 Trykkfall i rør per lengdeenhet

Resultatene av sammenligningene for trykkfallet i rør per lengdeenhet som vist i figur 5.29 er oppsiktsvekkende når det sammenlignes med resultatene for det totale trykkfallet. Mens regnearket for alle studiene beregnet det totale trykkfall høyere enn HTFS, viser beregningene av trykkfall i rør per lengdeenhet det motsatte. Ikke bare beregner regnearket dette trykkfallet lavere enn HTFS, men for studie 2 og 4, som det var knyttet størst avvik til i det totale trykkfallet, er dette studiene det her er best samsvarelse i, sammenlignet med HTFS.

Det er tidligere beskrevet at viskositetsforholdet for de 3 første studiene er blant bidragsyterne til at varmeovergangskoeffisienten for innside av rør er beregnet noe høyere enn i HTFS. Det er også nevnt at det i regneark opereres med en noe høyere massetetthet enn hva HTFS gjør. Dette vil for de 3 første studiene bidra til lavere beregnet trykkfall i regneark sammenlignet med HTFS. For studie 4, hvor gassens anvendte massetetthet i begge beregningsmetoder er lik er det beregnet et marginalt høyere trykkfall i regneark enn i HTFS; effekten av viskositetsforholdet og avviket i Reynolds tall påvirkning i friksjonskoeffisient kan derfor her betraktes som neglisjerbar. Avviket i beregnet trykkfall er størst i studie 1 og 3, hvor også strømningshastigheten er beregnet forholdsvis lavest og anvendt massetetthet må være forholdsvis høyest.

For trykkfallet på skallsidens angående, er det i studiene observert betydelig mye mer variasjon og volatile avvik enn hva det er gjort i trykkberegninger for rørsiden. Det er for trykkfallet på skallsiden gjort sammenligninger mellom trykkfallet beregnet i kryssende strømningsområde og i ledeplatevinduer i tillegg til det totale trykkfallet. Under følger tabell med resultater fra trykkfallsberegninger for studier i 90° mønster.

90°	ΔPs	[Pa]	ΔP _c	[Pa]	ΔP _w [Pa]		
Studie	HTFS	REGNEARK	HTFS	REGNEARK	HTFS	REGNEARK	
1	23662	18156	15452	15660	3390	610	
2	24592	18154	16668	16124	3922	930	
3	29500	8633	15925	6342	8694	1685	
4	21432	4302	11330	3167	4784	643	

Figur 5.30 Trykkfall for skallside

Som det kan ses av resultater av tabell i figur oven er det store avvik i beregnede trykkfall i studie 3 og 4, og særlig knyttet til trykkfallet i ledeplatevinduer. Hovedandelen av trykkfallet på skallsiden i "skall og rør"-varmevekslere generelt forekommer normalt i området hvor skallmediet krysser rørbunten mellom ledeplatene. I tillegg til at inngangstrykket er økt i studie 3 og 4, finnes det en del geometriske variasjoner her i forhold til de to første studiene. Skallet i varmeveksleren i studie 3 er av absolutt minst diameter av de 4 studiene, til sammenligning nesten bare en halvpart i forhold til studie 1 og 2, noe som vil påvirke strømningsarealet som det allerede er sett avvik i. I tillegg er det i de to siste studiene økt størrelsen av vinduet i ledeplatene, fra rundt 20% til nesten 40% av skalldiameter, noe som normalt vil medføre redusert trykkfall[3]. Dette til tross, har trykkfallet i ledeplatevinduene økt betraktelig beregnet i HTFS. Det skal nevnes at HTFS selv gjør oppmerksom på at det med grunn i beregningsprosedyren kan forekomme variasjon i påliteligheten av trykkfallsberegninger hvor tillatt trykkfall ikke er spesifisert. Under følger en videre analyse av trykkfall i hvert trykkfallsområde samt kommentarer angående det totale trykkfallet for skallside.

Figur 5.31 Totalt trykkfall for skallside

Figur 5.31 illustrer det totale trykkfallet som er beregnet for de 4 studiene i de to beregningsmetodene. Særlig store avvik ses i de to siste studiene, hvor resultatet av studie 3 er mest påfallende. HTFS beregner her en økning i trykkfallet i forhold til studie 2 mens det i regnearket er beregnet et betydelig lavere trykkfall i forhold til samme studie. Også trykkfallet i studie 4 er beregnet betydelig mye lavere i regnearket enn i HTFS. Det registreres også at trykkfallet i studie 4 er redusert i forhold til studie 3, til tross for økt inngangstrykk. Dette gjelder for øvrig i begge beregningsmetoder.

Nå finnes det flere variable i forhold til beregning av trykkfall på skallside sammenlignet med rørside. Trykkfallet i kryssende strømningsområde mellom ledeplater og i ledeplatevindu korrigeres med faktorer relatert lekkasje mellom skall og ledeplater samt for forbipasserende medium (medium som følger rundt skallveggen og ikke krysser rørene). Faktorene varierer typisk i størrelsesorden fra 0,4 til 0,7, avhengig av geometri av varmeveksler. Det er for alle studiene valgt begge faktorer til 0,6 i regnearket uten at det kan avleses resultater i HTFS
hvilke faktorer som er brukt og om de endres for hver studie. Dog, det må være andre årsaker til de betydelige forskjellene i trykkfallene beregnet i studie 3 og 4.

Figur 5.32 Trykkfall i kryssende strømning

Det ses av figur 5.32 at det for de to første studiene er god samsvarelse i trykkfallet i kryssende strømning beregnet i regneark sammenlignet med HTFS. I studie 3 og 4 er det derimot beregnet betydelig mye lavere i regnearket. Det ideelle trykkfallet for dette området avhenger riktignok viskositetsforholdet og massestrømning per areal, men variasjonen i avvikene mellom de to siste og de to første studiene skulle ikke tilsi et slikt drastisk utfall. Det samme gjelder forskjellene i avviket i Reynolds tall som inngår i friksjonskoeffisienten. Dersom det derimot som et skrivende tankeeksperiment antas at det i geometrien for de to siste studiene som har innhold av større ledeplatevinduer, ikke vil være effekt av lekkasje og forbipassering av medium og at en dermed kan utelukke korreksjonsfaktorene relatert dette, så vil trykkfallene mellom de to beregningsmetodene omtrentlig samsvare.

Figur 5.33 Trykkfall i ledeplatevinduer

Tendensen i trykkfallet i ledeplatevinduer er den samme som sett tidligere; trykkfallet er i regnearket beregnet betydelig lavere samtidig som avvikene er størst i studie 3 og 4. Det ses i studie 3 en betydelig økning i trykkfallet i ledeplatevinduer. Det ideelle trykkfallet for ledeplatevinduer er i stor grad avhengig av antall rekker rør i ledeplatevinduer. Antall rekker rør defineres blant annet av differansen mellom buntdiameter og skalldiameter. Denne differansen er følgelig mest ømfintlig ved små diametre. Det fremgår ikke av beregninger i HTFS hvilken buntdiameter det er operert med, men det er sannsynlig at det er brukt annen toleranse mellom buntdiameter og skalldiameter som er tilfellet for varmeveksleren i studie 3. Foruten inngangstrykket, kan ikke avviket i studie 3 forklares med annet enn forskjellig i innvendig geometri av varmeveksleren. Det kan sånn litt på siden nevnes at det utenom studiene i oppgaven er utført en rekke tester angående trykkfallet på skallsiden. Det ses for regnearket best samsvarelse i beregnet trykkfall i geometrier hvor en stor andel av trykkfallet finner sted i det kryssende strømningsområdet og ved lavere inngangstrykk, slik som i studie 1 og 2 her.

MTD

Effektiv MTD beregnet i HTFS er for alle studiene høyere enn tilsvarende korrigert LMTD er ved beregning i regnearket. Noen verdier av effektiv MTD er også høyere enn beregnet LMTD, og det følger ved bruk av regnearket og vedlagt PR-diagram et avvik her som videre slår ut i beregnet areal og rørlengde. Nå oppveier den lavere beregnet MTD for en noe høyere varmeovergangskoeffisient og resulterer i studiene til god samsvarelse i beregnet nødvendig areal de to beregningsmetodene sammenlignet seg imellom.

Annet

Det er i studiene også foretatt noen beregninger som ikke er sammenlignet med HTFS. Regnearket er programmert for å beregne Nusselts tall tilhørende både skallside og rørside for å bekrefte at antakelse om varmeovergang ved tvungen konveksjon er tilfredsstilt. For alle studiene viser beregninger av Nusselts tall både for skallside og rørside høye verdier av Nusselts tall, i størrelsesorden fra rundt 350 til nærmere 1200. Det kan konkluderes med at tvungen konveksjon er den dominante form for varmeovergang i alle studiene. I forbindelse med beregning av Nusselts tall for skallside, er det også for det valgte rørmønster beregnet maksimale hastigheter for skallmediet ved passering mellom rør. Rør i ordnet mønster oppnår høyere maksimal hastighet mellom rør, med tilhørende økning i Nusselts tall.

6. KONKLUSJON

Det er i oppgaven gjennomført 4 forskjellige studier, hver med to forskjellige rørmønster. Felles for alle studiene er kjøling av varm gass ved bruk av vann på skallside. Gassene er av varierende temperatur, trykk, strømningsmengde og fysiske egenskaper. Resultater fra samme studier er videre sammenlignet med resultater ved bruk av varmevekslerprogrammet HTFS. Konklusjoner som er sluttet i oppgaven er gjort på grunnlag av sammenligning med HTFS for de situasjoner som inngår i studiene, og bør ikke automatisk, uten videre testing, overføres til andre situasjoner hvor det opereres med medier av helt andre fysiske egenskaper på rørside og skallside eller til tilfeller hvor det er benyttet annen geometri og oppbygging av varmeveksleren enn hva som foreligger i restriksjoner.

Det konkluderes med at regnearket i estimeringsøyemed generelt gir tilfredsstillende resultater. Det gir ved bruk av regnearket en god pekepinne på omtrentlige varmeovergangskoeffisienter, nødvendig varmeoverførende areal og trykkfall for rørside. Det er i alle tilfeller full samsvarelse i beregnet skalldiameter, mens største avvik i nødvendig rørlengde som er registrert i de 8 tilfellene det er gjort beregninger for i oppgaven er på 12,5%.

Ved å spesifisere fysiske egenskaper for gassen på rørside med gjennomsnittsverdier av egenskaper ved inngangs- og utgangstemperatur er det sett meget god nøyaktighet i både hastighet og Reynolds tall for rørside, mens det ved å spesifisere fysiske egenskaper for kjølevannet ved middeltemperatur er gjort samme beregninger innenfor 10-20% avvik.

De forskjellige varmeovergangskoeffisientene samt total varmeovergangskoeffisient for varmevekslerne er beregnet med avvik innenfor rimelighetens grenser. Den totale varmeovergangskoeffisienten er i alle tilfeller beregnet noe høyere i regnearket enn i HTFS. Størst variasjon i resultater opptrer i varmeovergangskoeffisienten for utside av rør. Lavere beregnet dimensjonsløse forholdstall for skallsiden medvirker til forøkelse av sistnevnte varmeovergangskoeffisient i alle studiene, men antakelsen i viskositetsforholdet og anvendelse av lavere spesifikk varmekapasitet for de to siste studiene med høyest temperaturdifferanse fører til at varmeovergangskoeffisienten blir trukket ned til noe under beregnet verdi i HTFS. Dette medfører at varmeovergangskoeffisienten for utside av rør totalt sett er beregnet innenfor mindre avvik for de to siste studiene, hvor temperaturforskjellene er størst og forventningene kanskje var lavest.

Ved å anta at det totale trykkfallet for rørside i varmeveksleren er to ganger høyere enn trykkfallet som forekommer inni rørene, er det oppnådd tilfredsstillende resultater i estimering av trykkfallet samtidig som det er innlagt en liten sikkerhetsmargin ved normal trykkfallsdistribusjon. Det totale trykkfallet for rør er beregnet noe høyere sammenlignet med verdier beregnet i HTFS. Sammenlignes beregnet trykkfall i rør per lengdeenhet er resultatene sammenfallende og viskositetsforholdet i gass kan for disse studiene konkluderes med å være ubetydelig.

Det er i HTFS anvendt korreksjonsfaktor relatert LMTD rundt 1,0, som er noe høyere enn hva som er avlest vedlagt PR-diagram. Kombinasjonen av en noe lavere MTD og høyere total varmeovergangskoeffisient utfyller hverandre og resulterer i tilfredsstillende beregnet nødvendig varmeoverførende areal. Det kan ved grove estimat antas en korreksjonsfaktor mellom 0,8-1,0.

Beregninger av trykkfallet på skallsiden er forbundet med stor usikkerhet og varierende resultater. Det er i oppgaven sett store avvik ved inngangstrykk over 2 bar og i geometrier med liten skalldiameter og stort vindu i ledeplater. Det er hovedsakelig trykkfallet i ledeplatevinduer som blir underestimert i regnearket. I tilfeller med stor andel av trykkfallsdistribusjonen lokalisert i kryssende strømningsområde, større skalldiameter og ledeplatevindu rundt 20% åpning, samsvarer resultatet i det totale trykkfallet for skallsiden i større grad.

Det er av forslag til videre arbeid, å utvide regnearket til å omhandle også varmevekslere med valgfritt antall rørpassasjer, da flere rørpassasjer ofte er brukt i større varmevekslere. Trykkfallsberegningene for skallsiden bør også modifiseres til å dekke et videre spekter av geometrier.

7. REFERANSER

[1] Holman, J.P. (2002) "Heat Transfer" 9th Edition (McGraw-Hill)

[2] Standard for Norsk Sokkel (NORSOK), Piping class L-001, hentet fra Standard.no http://www.standard.no/norsok/L-001/pclass/index.htm (OK - 13.06.10)

[3] Kuppan, T. (2000) "Heat Exchanger Design Handbook" (Marcel Dekker)

[4] Tubular Exchanger Manufacturers Association (1999) "Standards of Tubular Exchanger Manufacturers Association" 8th Edition (Tubular Exchanger Manufacturers Association)

[5] Campbell, J.M. (1994) "*Gas Conditioning and Processing*" Vol.2, 7th Edition (Campbell Petroleum Series)

[6] Coulson, J.M. and Richardson, J.F. (1993) "*Chemical Engineering*" Vol.1, 2nd Edition (Pergamon)

[7] Chopey, N.P. and Hicks, T.G. (1984) "Handbook of Chemical Engineering Calculations" (McGraw-Hill)

[8] Serth, R.W. (2007) "Process heat transfer" 1st Edition (Elsevier)

[9] Brautaset, K. (2004) "*Innføring i OljeHydraulikk*" 6th Edition (Universitetsforlaget, Gyldendal)

VEDLEGG A – TEMA-SPESIFIKASJONER

RCB-2.1 TUBE LENGTH

The following tube lengths for both straight and U-tube exchangers are commonly used: 96 (2438), 120 (3048), 144 (3658), 192 (4877) and 240 (6096) inches (mm). Other lengths may be used. Also see Paragraph N-1.12.

Vedlegg A-1 RCB-2.1 Lengder rør [4]

er a refe	BARE	TUBE DIAMETERS AND GAG	GES
O.D. Inches (mm)	Copper and Copper Alloys	Carbon Steel, Aluminum and Aluminum Alloys	Other Alloys
palitaka (* 1684	B.W.G.	B.W.G.	B.W.G.
1/4 (6.4)	27 24 22	an a	27 24 22
3/8 (9.5)	22 20 18	na standard a finisha na standarda a finisha -	22 20 18
1/2 (12.7)	20 18	antitati attation	20 18
5/8 (15.9)	20 18 16	18 16 14	20 18 16
3/4 (19.1)	20 18 16	16 14 12	18 16 14
7/8 (22.2)	18 16 14 12	14 12 10	16 14 12 -
1 (25.4)	18 16 14	14 12 -	16 14 12
1-1/4 (31.8)	16 14	14 12	14 12
1-1/2 (38.1)	16 14	14 12	14 12
2 (50.8)	14 12	14 12	14 12

Notes:

1. Wall thickness shall be specified as either minimum or average.

2. Characteristics of tubing are shown in Tables D-7 and D7M.

Vedlegg A-2 RCB-2.21 Rørdiametre [4]

TABLE R-3.13 MINIMUM SHELL THICKNESS Dimensions In Inches (mm)

		1						
Nominal Shell Diameter		Carbor	Carbon Steel			Alloy *		
	Γ	Pipe	PI	ate				
6 8 - 12	(152) (203-305)	SCH. 40 SCH. 30	-		1/8 1/8	(3.2) (3.2)		
13 - 29 30 - 39	(330-737)	SCH. STD	3/8 7/16	(9.5) (11.1)	3/16 1/4	(4.8)		
40 - 60 61 - 80	(1016-1524)	· -	1/2	(12.7)	5/16 5/16	(7.9)		
81 - 100	(2057-2540)		1/2	(12.7)	3/8	(9.5)		

TABLE CB-3.13 MINIMUM SHELL THICKNESS Dimensions In Inches (mm)

			Minimum Th	nickness		
Nominal Shell Diameter		Carbon	Steel		All	oy *
		Pipe	PI	ate		
6 (1 8 - 12 (2 13 - 23 (3 24 - 29 (4 30 - 39 (1 40 - 60 (11 61 - 80 (15 81 - 100 (20	152) 203-305) 330-584) 510-737) 762-991) 016-1524) 549-2032) 057-2540)	SCH. 40 SCH. 30 SCH. 20 - - - -	5/16 5/16 3/8 7/16 1/2 1/2	(7.9) (7.9) (9.5) (11.1) (12.7) (12.7)	1/8 1/8 3/16 1/4 1/4 5/16 3/8	(3.2) (3.2) (3.2) (4.8) (6.4) (6.4) (7.9) (9.5)

*Schedule 5S is permissible for 6 inch (152 mm) and 8 inch (203 mm) shell diameters.

Vedlegg A-3 RCB R-3.13 og CB-3.13 Minimum skalldiameter [4]

Nominal Shell ID		12 19	Plate Thickness								
		Uns	supporte	d tube tubesh	length be eets and	tweer baffle	central b s are not	affles. a cons	End spa	ces be	tween
		24 (6 [.] Ui	10) and nder	Over a to 36 Inc	24 (610) 5 (914) Iusive	Over to 4 Inc	36 (914) 8 (1219) clusive	0\ (121 (1 Inc	ver 48 9) to 60 1524) clusive	0` (1	ver 60 1524)
6 - 14 15 - 28 29 - 38 39 - 60 61 - 100	(152-356) (381-711) (737-965) (991-1524) (1549-2540)	1/8 3/16 1/4 1/4 3/8	(3.2) (4.8) (6.4) (6.4) (9.5)	3/16 1/4 5/16 3/8 1/2	(4.8) (6.4) (7.5) (9.5) (12.7)	1/4 3/8 3/8 1/2 5/8	(6.4) (9.5) (9.5) (12.7) (15.9)	3/8 3/8 1/2 5/8 3/4	(9.5) (9.5) (12.7) (15.9) (19.1)	3/8 1/2 5/8 5/8 3/4	(9.5) (12.7) (15.9) (15.9) (19.1)

TABLE R-4.41 BAFFLE OR SUPPORT PLATE THICKNESS

Vedlegg A-4 RCB R-4.41 Platetykkelse ledeplate [4]

TABLE RCB-4.52 MAXIMUM UNSUPPORTED STRAIGHT TUBE SPANS

	Tube Materials and Temperature Limits ° F (° C)							
Tube OD	Carbon Steel & High Alloy Steel, 750 (399) Low Alloy Steel, 850 (454) Nickel-Copper, 600 (316) Nickel, 850 (454) Nickel-Chromium-Iron, 1000 (538)	Aluminum & Aluminum Alloys, Copper & Copper Alloys, Titanium Alloys At Code Maximum Allowab Temperature						
$ \begin{array}{c} 1/4 & (6.4) \\ 3/8 & (9.5) \\ 1/2 & (12.7) \\ 5/8 & (15.9) \\ 3/4 & (19.1) \\ 7/8 & (22.2) \\ 1 & (25.4) \\ 1-1/4 & (31.8) \\ 1-1/2 & (38.1) \\ 2 & (50.9) \\ \end{array} $	26 (660) 35 (889) 44 (1118) 52 (1321) 60 (1524) 69 (1753) 74 (1880) 88 (2235) 100 (2540) 125 (2175)	22 (559) 30 (762) 38 (965) 45 (1143) 52 (1321) 60 (1524) 64 (1626) 76 (1930) 87 (2210) 110 (2704)						

Dimensions in Inches (mm)

Vedlegg A-5 RCB-4.52 Maksimale rørspenn mellom ledeplater [4]

Oils:	
Fuel Oil #2	0.002
Fuel Oil #6	0.005
Transformer Oil	0.001
Engine Lube Oil	0.001
Quench Oil	0.004
Gases And Vapors:	
Manufactured Gas	0.010
Engine Exhaust Gas	0.010
Steam (Non-Oil Bearing)	0.0005
Exhaust Steam (Oil Bearing)	0.0015-0.002
Refrigerant Vapors (Oil Bearing)	0.002
Compressed Air	0.001
Ammonia Vapor	0.001
CO ₂ Vapor	0.001
Chlorine Vapor	0.002
Coal Flue Gas	0.010
Natural Gas Flue Gas	0.005
Liquids:	
Molten Heat Transfer Salts	0.0005
Refrigerant Liquids	0.001
Hydraulic Fluid	0.001
Industrial Organic Heat Transfer Media	0.002
Ammonia Liquid	0.001
Ammonia Liquid (Oil Bearing)	0.003
Calcium Chloride Solutions	0.003
Sodium Chloride Solutions	0.003
CO ₂ Liquid	0.001
Chlorine Liquid	0.002
Methanol Solutions	0.002
Ethanol Solutions	0.002
Ethylene Glycol Solutions	0.002

Vedlegg A-6 RGP-T-2.4 Begroings- og korrosjonsmotstand[4]

Fouling Resistanc	es For	Chemical	Processing	Streams
-------------------	--------	----------	------------	---------

Gases And Vapors:	
Acid Gases	0.002-0.003
Solvent Vapors	0.001
Stable Overhead Products	0.001
Liquids:	
MEA And DEA Solutions	0.002
DEG And TEG Solutions	0.002
Stable Side Draw And Bottom Product	0.001-0.002
Caustic Solutions	0.002
Vegetable Oils	0.003

Fouling Resistances For Natural Gas-Gasoline Processing Streams

Gases And Vapors:	
Natural Gas	0.001-0.002
Overhead Products	0.001-0.002
Liquids:	
Lean Oil	0.002
Rich Oil	0.001-0.002
Natural Gasoline And Liquified Petroleum Gases	0.001-0.002

Vedlegg A-7 RGP-T-2.4 Begroings- og korrosjonsmotstand [(h·Ft²·°F)/Btu] [4]

Atmo	spheric Tow	er Overhead	Vapors			0.001		
Light		0.001						
Vacu		0.002						
Crude And V	acuum Liqui	ds:						
Crud	e Oil			a ser de la companya				
	VE	0 to 250 ° F LOCITY FT/S	SEC	250 to 350 ° F VELOCITY FT/SEC				
	<2	2-4	>4	<2	2-4	4	>4	
DRY	0.003	0.002	0.002	0.003	0.00)2	0.002	
SALT*	0.003	0.002	0.002	0.005	0.00	04	0.004	
	VE	350 to 450 ° F LOCITY FT/S	= SEC	4 VE	50 ° F a LOCITY	nd ove 'FT/S	er EC	
an an tha an	<2	2-4	>4	<2	2-	4	>4	
DRY	0.004	0.003	0.003	0.005	0.0	04	0.004	
SALT*	SALT* 0.006 0.005 0.005 0.007 0.0				0.0	06	0.006	
*Ass	umes desaltii	ng @ approx	. 250 ° F	alay di kata di kata sa	an an Angelan an Angelan Angelan an Angelan Angelan		alasta and a share a sh	
Gasc	oline	and a second		ing ang pang ang bana Ing ang pang ang ang ang ang pang ang ang ang ang ang ang ang ang ang		0.002	2	
Naph	tha And Ligh	t Distillates	In collection of the second		andra series and and and a series of the ser	0.002-0.003		
Kero	sene				100 C 100 E	0.002-0.003		
Light	Gas Oil					0.002	2-0.003	
Heav	y Gas Oil		1 de -	a a Kari		0.003-0.005		
Heav	y Fuel Oils	an a she				0.005-0.007		
Asphalt And	Residuum:							
Vacu	ium Tower Bo	ottoms	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			0.010		
Atmo	osphere Towe	er Bottoms				0.007		
Cracking An	nd Coking Un	it Streams:	-				la parte	
Overhead Vapors 0.00							2	
Light Cycle Oil							2-0.003	
Heavy Cycle Oil							3-0.004	
Light	Coker Gas (Dil				0.003	3-0.004	
Heav	vy Coker Gas	Oil				0.004	4-0.005	
Botto	oms Slurry O	il (4.5 Ft/Sec	Minimum)			0.003	3	
Light	Liquid Produ	ucts				0.002	2	

Fouling Resistances For Oil Refinery Streams

Vedlegg A-8 RGP-T-2.4 Begroings- og korrosjonsmotstand[4]

Catalytic Reforming, Hydrocracking And Hydrodesulfuriz	ation Streams:
Reformer Charge	0.0015
Reformer Effluent	0.0015
Hydrocracker Charge And Effluent*	0.002
Recycle Gas	0.001
Hydrodesulfurization Charge And Effluent*	0.002
Overhead Vapors	0.001
Liquid Product Over 50 ° A.P.I.	0.001
Liquid Product 30 - 50 ° A.P.I.	0.002
*Depending on charge, characteristics and stora may be many times this value.	ge history, charge resistance
Light Ends Processing Streams:	
Overhead Vapors And Gases	0.001
Liquid Products	0.001
Absorption Oils	0.002-0.003
Alkylation Trace Acid Streams	0.002
Reboiler Streams	0.002-0.003
Lube Oil Processing Streams:	
Feed Stock	0.002
Solvent Feed Mix	0.002
Solvent	0.001
Extract*	0.003
Raffinate	0.001
Asphalt	0.005
Wax Slurries*	0.003
Refined Lube Oil	0.001
*Precautions must be taken to prevent wax depe	osition on cold tube walls.
Visbreaker:	
Overhead Vapor	0.003
Visbreaker Bottoms	0.010
Naphtha Hydrotreater:	
Feed	0.003
Effluent	0.002
Naphthas	0.002
Overhead Vapors	0.0015

Fouling Resistances For Oil Refinery Streams- continued

Vedlegg A-9 RGP-T-2.4 Begroings- og korrosjonsmotstand[4]

Fouling Resistances for Oil Refinery Streams - continued

Catalytic Hydro Desulfurizer:	
Charge	0.004-0.005
Effluent	0.002
H.T. Sep. Overhead	0.002
Stripper Charge	0.003
Liquid Products	0.002
HF Alky Unit:	te na ser en
Alkylate, Deprop. Bottoms, Main Fract. Overhead Main Fract. Feed	0.003
All Other Process Streams	0.002

Fouling Resistances For Water

Temperature Of Heating Medium	Up To	240° F_	240 to	400° F
Temperature Of Water	125	5°F	Over	125° F
	Water Velo	city Ft/Sec	Water Velo	city Ft/Sec
	3 and Less	Over 3	3 and Less	Over 3
Sea Water	0.0005	0.0005	0.001	0.001
Brackish Water	0.002	0.001	0.003	0.002
Cooling Tower And Artificial Spray Pond:	a in der im kommunis s			ere ve ve sere Grandel
Treated Make Up	0.001	0.001	0.002	0.002
Untreated	0.003	0.003	0.005	0.004
City Or Well Water	0.001	0.001	0.002	0.002
River Water:		and the second	an a	en er egen væregete. Redikter
Minimum	0.002	0.001	0.003	0.002
Average	0.003	0.002	0.004	0.003
Muddy Or Silty	0.003	0.002	0.004	0.003
Hard (Over 15 Grains/Gal.)	0.003	0.003	0.005	0.005
Engine Jacket	0.001	0.001	0.001	0.001
Distilled Or Closed Cycle				ang na sa
Condensate	0.0005	0.0005	0.0005	0.0005
Treated Boiler Feedwater	0.001	0.0005	0.001	0.001
Boiler Blowdown	0.002	0.002	0.002	0.002

If the heating medium temperature is over 400 $^{\circ}$ F and the cooling medium is known to scale, these ratings should be modified accordingly.

Vedlegg A-10 RGP-T-2.4 Begroings- og korrosjonsmotstand[4]

VEDLEGG B – NORSOK RØRDIMENSJONER

ax Design Pressure at	Temperature				111042-1-12			2010/06/2012			
essure (Barg)				20.0	20.0		19.5	17.7	15.8	14.0	12.1
mperature (Deg. C)				-46	38	1	50	100	150	200	250
ND (inch)	0.50	0.75	1.00	1.50	2.00	3.00	4.00	6.00	8.00	10.00	
OD (mm)	21.3	26.7	33.4	48.3	60.3	88.9	114.3	168.3	219.1	273.1	
THK (mm)	2.77	2.87	3.38	3.68	2.77	3.05	3.05	3.40	3.76	4.19	
SCH	40S	40S	40S	40S	10S	10S	10S	10S	10S	10S	
		and a second sec									

Vedlegg B-1 Diameter og veggtykkelse for opp til 12,1-20 bar. Duplex etter NORSOK [2]

ssure (Barg)				51.7	51.7	51.3		49.2	45.8	42.7	40.1
nperature (Deg. C)				-46	38	50		100	150	200	250
141											
ND (inch)	0.50	0.75	1.00	1.50	2.00	3.00	4.00	6.00	8.00	10.00	
OD (mm)	21.3	26.7	33.4	48.3	60.3	88.9	114.3	168.3	219.1	273.1	
THK (mm)	2.77	2.87	3.38	3.68	2.77	3.05	3.05	3.40	3.76	6.35	
SCH	40S	40S	40S	40S	10S	105	10S	10S	105	20	

Vedlegg B-2 Diameter og veggtykkelse for opp til 40,1-51,7 bar. Duplex etter NORSOK [2]

esign Pressure at Temp	eranure										
re (Barg)			103.4	ś	103.4	102.5		98.4	91.6	85.4	80.3
rature (Deg. C)			-46		38	50		100	150	200	250
la managemente Di			0001100			1.007				1101/250	
ND (inch)	0.50	0.75	1.00	1.50	2.00	3.00	4.00	6.00	8.00	10.00	
OD (mm)	21.3	26.7	33.4	48.3	60.3	88.9	114.3	168.3	219.1	273.1	
THK (mm)	2.77	2.87	3.38	3.68	3.91	5.49	6.02	7.11	8.18	9.27	
SCH	40S	40S	40S	40S	40S	40S	40S	40S	40S	40S	
WEIGHT	1	20			1		200			11	

Vedlegg B-3 Diameter og veggtykkelse for opp til 80,3-103,4 bar. Duplex etter NORSOK [2]

Max Design Pressure a	it Temperature										
Pressure (Barg)			258.6	258.5	81	256.3	245.9	228.9	213.1	200.9	
Temperature (Deg. C)			-46	38		50	100	150 200		250	
ND (inch)	0.50	0.75	1.00	1.50	2.00	3.00	4.00	6.00	8.00	10.00	
OD (mm)	21.3	26.7	33.4	48.3	60.3	88.9	114.3	168.3	219.1	273.1	
THK (mm)	2.77	2.87	3.38	3.68	5.54	7.62	8.56	14.27	18.26	21.44	
SCH	40S	40S	40S	40S	805	80S	80S	120	120	120	
WEIGHT								10		1	

Vedlegg B-4 Diameter og veggtykkelse for opp til 200,9-258,6 bar. Duplex etter NORSOK

^[2]

VEDLEGG C – DATAEKSPORT FRA HYSYS

Stream Name	1ST IN		1ST OUT	
Vapour / Phase Fraction		1		1
Temperature [C]		70		25
Pressure [kPa]		612,8976471		612,8976471
Molar Flow [kgmole/h]		3718,647642		3718,647642
Mass Flow [kg/h]		114091,7952		114091,7952
Std Ideal Liq Vol Flow [m3/h]		267,7895804		267,7895804
Molar Enthalpy [kJ/kgmole]		-91251,37415		-93962,2348
Molar Entropy [kJ/kgmole-C]		178,6922752		170,2319381
Heat Flow [kJ/h]		-339331707,3		-349412442,8
Liq Vol Flow @Std Cond [m3/h]	<empty></empty>		<empty></empty>	
Fluid Package	WestLabir	ncallhypos	WestLabir	ncallhypos
Stream Name	151 IN	20 000014	151 001	20 000011
Molecular weight		30,6809911		30,6809911
Molar Density [kgmole/m3]		0,221896783		0,259956477
Mass Density [kg/m3]		6,808013212		1,913122331
Act. Volume Flow [m3/n]		10/50,450/0		14304,00001
		-29/4,199030		-3062,555395
Mass Entropy [KJ/kg-C]		5,824201528		5,548449772
		62,65513063		51,89299280
		2,042148190		1,886933390
Lower Heating value [KJ/Kgmole]	<empty></empty>		<empty></empty>	
Mass Lower Heating Value [kJ/kg]	<empty></empty>		<empty></empty>	
Phase Fraction [Vol. Basis]	<empty></empty>	158112170-	<empty></empty>	150110170-
Phase Fraction [Mass Basis]	4,940000-	+30412415-	4,940000-	130412415-
Partial Pressure of CO2 [kPa]	02-T	4.31E+00	027	4 31414366
Cost Based on Flow [Cost/s]		0		0
Act Gas Flow [ACT m3/h]		16758,45678		14304.88551
Ava Lia Density [kamole/m3]		13 88645382		13 88645382
Specific Heat [k.]/kgmole-C]		62.65513063		57,89299286
Std Gas Flow [STD m3/h]		87925.32617		87925.32617
Std Ideal Lig. Mass Density [kg/m3]		426.050166		426.050166
Act. Lig. Flow [m3/s]	<empty></empty>		<empty></empty>	120,000.00
Z Factor		0.968113353	(a.u.) (a	0.951099081
Watson K		16.00457341		16.00457341
User Property	<empty></empty>	/	<empty></empty>	,
Cp/(Cp - R)		1.153003238		1.167699527
Cp/Cv		1,178114405		1,208614702
Heat of Vap. [kJ/kgmole]		21430,547		21430,547
Kinematic Viscosity [cSt]		1,725414774		1,2879286
Liq. Mass Density (Std. Cond)				·
[kg/m3]	<empty></empty>		<empty></empty>	
Liq. Vol. Flow (Std. Cond) [m3/h]	<empty></empty>		<empty></empty>	
Liquid Fraction		0		0
Molar Volume [m3/kgmole]		4,506599818		3,846797785
Mass Heat of Vap. [kJ/kg]		698,4959165		698,4959165
Phase Fraction [Molar Basis]		1		1

Surface Tension [dyne/cm]	<empty></empty>		<empty></empty>	
Thermal Conductivity [W/m-K]		3,04E-02		2,49E-02
Viscosity [cP]		1,17E-02		1,03E-02
Cv (Semi-Ideal) [kJ/kgmole-C]		5,43E+01		49,57867286
Mass Cv (Semi-Ideal) [kJ/kg-C]		1,771155647		1,615941046
Cv [kJ/kgmole-C]		53,18255202		47,90028847
Mass Cv [kJ/kg-C]		1,733403978		1,561236673
Cv (Ent. Method) [kJ/kgmole-C]		53,17583155		47,96696379
Mass Cv (Ent. Method) [kJ/kg-C]		1,733184935		1,733184935
Cp/Cv (Ent. Method)		1,178263297		1,206934696
Reid VP at 37.8 C [kPa]	<empty></empty>		<empty></empty>	
True VP at 37.8 C [kPa]		10321,36487		10321,36487
Liq. Vol. Flow - Sum(Std. Cond)				
[m3/h]		0		0
Partial Pressure of H2S [kPa]		0		0

Vedlegg C-1 Data for studie 1

Stream Name	2ND IN	2ND OUT
Vapour / Phase Fraction	1	1
Temperature [C]	90	25,0000016
Pressure [kPa]	2084,828584	2084,828584
Molar Flow [kgmole/h]	3247,201558	3247,201558
Mass Flow [kg/h]	88024,01536	88024,01536
Std Ideal Liq Vol Flow [m3/h]	222,2546844	222,2546844
Molar Enthalpy [kJ/kgmole]	-85959,96797	-89779,39457
Molar Entropy [kJ/kgmole-C]	172,4902064	160,9128134
Heat Flow [kJ/h]	-279129341,9	-291531789,9
Liq Vol Flow @Std Cond [m3/h]	<empty></empty>	<empty></empty>
Fluid Package	WestLabincallhypos	WestLabincallhypos
Stream Name	2ND IN	2ND OUT
Molecular Weight	27,10765371	27,10765371
Molar Density [kgmole/m3]	0,742263422	0,972342369
Mass Density [kg/m3]	20,12101981	26,35792023
Act. Volume Flow [m3/h]	4374,729322	3339,566043
Mass Enthalpy [kJ/kg]	-3171,058952	-3311,95741
Mass Entropy [kJ/kg-C]	6,363155154	5,936065698
Heat Capacity [kJ/kgmole-C]	60,7664121	57,34751514
Mass Heat Capacity [kJ/kg-C]	2,241669926	2,115546987
Lower Heating Value [kJ/kgmole]	<empty></empty>	<empty></empty>
Mass Lower Heating Value [kJ/kg]	<empty></empty>	<empty></empty>
Phase Fraction [Vol. Basis]	<empty></empty>	<empty></empty>
	4,94065645841247e-	4,94065645841247e-
Phase Fraction [Mass Basis]	324	324
Partial Pressure of CO2 [kPa]	16,4572348	16,4572348
Cost Based on Flow [Cost/s]	0	0
Act. Gas Flow [ACT_m3/h]	4374,729322	3339,566043
Avg. Liq. Density [kgmole/m3]	14,61027274	14,61027274
Specific Heat [kJ/kgmole-C]	60,7664121	57,34751514

Std. Gas Flow [STD_m3/h]		76778,24942		76778,24942
Std. Ideal Liq. Mass Density [kg/m3]		396,0502142		396,0502142
Act. Liq. Flow [m3/s]	<empty></empty>		<empty></empty>	
Z Factor		0,930249637		0,864947192
Watson K		16,73787658		16,73787658
User Property	<empty></empty>		<empty></empty>	
Cp/(Cp - R)		1,158512648		1,169565128
Cp/Cv		1,230602496		1,331279656
Heat of Vap. [kJ/kgmole]		16289,76085		16289,76085
Kinematic Viscosity [cSt]		0,653283914		0,422652658
Liq. Mass Density (Std. Cond)				
[kg/m3]	<empty></empty>		<empty></empty>	
Liq. Vol. Flow (Std. Cond) [m3/h]	<empty></empty>		<empty></empty>	
Liquid Fraction		0		0
Molar Volume [m3/kgmole]		1,347230606		1,028444334
Mass Heat of Vap. [kJ/kg]		600,9284692		600,9284692
Phase Fraction [Molar Basis]		1		1
Surface Tension [dyne/cm]	<empty></empty>		<empty></empty>	
Thermal Conductivity [W/m-K]		3,60E-02		2,80E-02
Viscosity [cP]		1,31E-02		1,11E-02
Cv (Semi-Ideal) [kJ/kgmole-C]		52,4520921		49,03319514
Mass Cv (Semi-Ideal) [kJ/kg-C]		1,934955074		1,808832135
Cv [kJ/kgmole-C]		49,37939934		43,07698604
Mass Cv [kJ/kg-C]		1,821603591		1,589107877
Cv (Ent. Method) [kJ/kgmole-C]		49,37764842		43,0747947
Mass Cv (Ent. Method) [kJ/kg-C]		1,821538999		1,589027039
Cp/Cv (Ent. Method)		1,266838826		1,331347382
Reid VP at 37.8 C [kPa]	<empty></empty>		<empty></empty>	
True VP at 37.8 C [kPa]		12609,95951		12609,95951
Liq. Vol. Flow - Sum(Std. Cond)		-		-
[m3/h]		0		0

Vedlegg C-2 Data for studie 2

Stream Name	3RD IN	3RD OUT
Vapour / Phase Fraction	1	1
Temperature [C]	102,8386277	55,8
Pressure [kPa]	5572,580116	5572,580116
Molar Flow [kgmole/h]	2829,390863	2829,390863
Mass Flow [kg/h]	76643,52501	76643,52501
Std Ideal Liq Vol Flow [m3/h]	193,7859674	193,7859674
Molar Enthalpy [kJ/kgmole]	-86031,37854	-89339,75689
Molar Entropy [kJ/kgmole-C]	164,1667167	154,7598189
Heat Flow [kJ/h]	-243416396,4	-252777091,8
Liq Vol Flow @Std Cond [m3/h]	<empty></empty>	<empty></empty>
Fluid Package	WestLabincallhypos	WestLabincallhypos
-		
Stream Name	3RD IN	3RD OUT
Molecular Weight	27,08834825	27,08834825

Molar Density [kgmole/m3]		2 110610826		2 755483284
Mass Density [kg/m3]		57 17296106		74 64149077
Act Volume Flow [m3/h]		1340 555458		1026 822002
Mass Enthalpy [k]/kg]		-3175 955129		-3298 088022
Mass Entropy [k]/kg_C]		6 060/18127		5 713150818
Heat Capacity [k]/kgmole_C]		68 0176/086		73 68448883
Mean Heat Capacity [k]/kg.[]		2 5444 80501		73,00440000
Mass Heat Capacity [No/Ng-C]	-omntus	2,344100331	romotus	2,120134303
LOWER Fleating Value [KJ/KgHole]	<empty></empty>		<empty></empty>	
Mass Lower meaning value [KJ/Ky]	<empty></empty>		<empty></empty>	
Phase Fraction [vol. dasis]	<empty> 1 0/0656/</empty>	159/10/70-	<empty> 4 0/0656/</empty>	158/12/70-
Phase Fraction [Mass Basis]	324	10412416-	324	10412416-
Partial Pressure of CO2 [kPa]	027	44 08444744	027	44 08444744
Cost Read on Flow [Cost/s]		<u>ب</u> بېبېرون 44. ۱		4 4 ,00474777
$\Delta ct Cas Elow [\Delta CT m3/h]$		1210 555458		1026 822002
Act. Gas Flow [Act _mo/n]		1340,333400		1020,022002
Avg. Liq. Density [Kymole/mo]		14,00009720		14,00009120
		00,91704900		13,00440003
Std. Gas Flow [STD_m3/n]		66899,35117		66899,35117
Std. Ideal Liq. Mass Density [Kg/m3]		395,5060629		395,5060629
Act. Liq. Flow [m3/s]	<empty></empty>		<empty></empty>	
Z Factor		0,844591516		0,739438253
Watson K		16,74598926		16,74598926
User Property	<empty></empty>		<empty></empty>	
Cp/(Cp - R)		1,137192462		1,12718829
Cp/Cv		1,341854677		1,567542062
Heat of Vap. [kJ/kgmole]		12072,29339		12072,29339
Kinematic Viscosity [cSt]		0,26241491		0,1899084
Liq. Mass Density (Std. Cond)				
[kg/m3]	<empty></empty>		<empty></empty>	
Liq. Vol. Flow (Std. Cond) [m3/h]	<empty></empty>		<empty></empty>	
Liquid Fraction		0		0
Molar Volume [m3/kgmole]		0,473796489		0,362912744
Mass Heat of Vap. [kJ/kg]		445,6636959		445,6636959
Phase Fraction [Molar Basis]		1		1
Surface Tension [dyne/cm]	<empty></empty>		<empty></empty>	
Thermal Conductivity [W/m-K]		4,11E-02		3,64E-02
Viscosity [cP]		1,50E-02		1,42E-02
Cv (Semi-Ideal) [kJ/kgmole-C]		60,60332986		65,37016883
Mass Cv (Semi-Ideal) [kJ/kg-C]		2,237247148		2,413220926
Cv [kJ/kgmole-C]		51,35999526		47,006387
Mass Cv [kJ/kg-C]		1,896017978		1,735299125
Cv (Ent. Method) [kJ/kgmole-C]		51,35957087		47,00555663
Mass Cv (Ent. Method) [kJ/kg-C]		1,896002311		1,73526847
Cp/Cv (Ent. Method)		1.395725638		1.567569754
Reid VP at 37.8 C [kPa]	<empty></empty>	,	<empty></empty>	,
True VP at 37.8 C [kPa]	<empty></empty>		<empty></empty>	
Liq. Vol. Flow - Sum(Std. Cond)	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
[mˈ3/h]		0		0
Partial Pressure of H2S [kPa]		0		0

Vedlegg C-3 Data for studie 3

Stream Name	4TH IN		4TH OUT	
Vapour / Phase Fraction		1		1
Temperature [C]		150,8759069		34,3
Pressure [kPa]		16926,74711		16926,74711
Molar Flow [kgmole/h]		2429,390863		2429,390863
Mass Flow [kg/h]		65808,18571		65808,18571
Std Ideal Liq Vol Flow [m3/h]		166,3898278		166,3898278
Molar Enthalpy [kJ/kgmole]		-85036,56531		-95481,46208
Molar Entropy [kJ/kgmole-C]		159,0641437		130,1315585
Heat Flow [kJ/h]		-206587054,8		-231961791,5
Liq Vol Flow @Std Cond [m3/h]	<empty></empty>		<empty></empty>	
Fluid Package	WestLabi	ncallhypos	WestLabi	ncallhypos
Stream Name	4TH IN		4TH OUT	
Molecular Weight		27,08834825		27,08834825
Molar Density [kgmole/m3]		5,785866102		11,99539776
Mass Density [kg/m3]		156,7295559		324,9355118
Act. Volume Flow [m3/h]		419,8836993		202,5269117
Mass Enthalpy [kJ/kg]		-3139,230364		-3524,816693
Mass Entropy [kJ/kg-C]		5,872050309		4,803968014
Heat Capacity [kJ/kgmole-C]		82,68741567		93,97971896
Mass Heat Capacity [kJ/kg-C]		3,052508589		3,469377982
Lower Heating Value [kJ/kgmole]	<empty></empty>		<empty></empty>	
Mass Lower Heating Value [kJ/kg]	<empty></empty>		<empty></empty>	
Phase Fraction [Vol. Basis]	<empty></empty>		<empty></empty>	
	4,940656	45841247e-	2,121995	79096527e-
Phase Fraction [Mass Basis]	324		314	
Partial Pressure of CO2 [kPa]		133,9067861		0
Cost Based on Flow [Cost/s]		0		0
Act. Gas Flow [ACT_m3/h]		419,8836993	<empty></empty>	
Avg. Liq. Density [kgmole/m3]		14,60059725		14,60059725
Specific Heat [kJ/kgmole-C]		07 607 11 667		93,97971896
		02,00741507		
Std. Gas Flow [STD_m3/h]		57441,57677		57441,57677
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3]		57441,57677 395,5060629		57441,57677 395,5060629
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s]	<empty></empty>	57441,57677 395,5060629		57441,57677 395,5060629 5,63E-02
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor	<empty></empty>	57441,57677 395,5060629 0,829824016		57441,57677 395,5060629 5,63E-02 0,552023568
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K	<empty></empty>	62,68741367 57441,57677 395,5060629 0,829824016 16,74598926		57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property	<empty></empty>	62,68741367 57441,57677 395,5060629 0,829824016 16,74598926	<empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R)	<empty></empty>	57441,57677 395,5060629 0,829824016 16,74598926 1,111792039	<empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv	<empty></empty>	57441,57677 395,5060629 0,829824016 16,74598926 1,111792039 1,430808272	<empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole]	<empty> <empty> <empty></empty></empty></empty>	57441,57677 395,5060629 0,829824016 16,74598926 1,111792039 1,430808272	<empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt]	<empty> <empty> <empty></empty></empty></empty>	52,68741367 57441,57677 395,5060629 0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01	<empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond)	<empty> <empty> <empty></empty></empty></empty>	57441,57677 395,5060629 0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01	<empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond) [kg/m3]	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	57441,57677 395,5060629 0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01	<empty> <empty> <empty></empty></empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond) [kg/m3] Liq. Vol. Flow (Std. Cond) [m3/h] Liquid Erection	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	57441,57677 395,5060629 0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond) [kg/m3] Liq. Vol. Flow (Std. Cond) [m3/h] Liquid Fraction Malar Vialume [m3/kgmole]	<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>	0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02 0
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond) [kg/m3] Liq. Vol. Flow (Std. Cond) [m3/h] Liquid Fraction Molar Volume [m3/kgmole] Mass Mast of Vap. [k1/kg]	<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>	0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01 0 1,73E-01	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02 0 8,34E-02
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond) [kg/m3] Liq. Vol. Flow (Std. Cond) [m3/h] Liquid Fraction Molar Volume [m3/kgmole] Mass Heat of Vap. [kJ/kg] Decent Fraction	<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>	0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01 0 1,73E-01	<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02 0 8,34E-02
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond) [kg/m3] Liq. Vol. Flow (Std. Cond) [m3/h] Liquid Fraction Molar Volume [m3/kgmole] Mass Heat of Vap. [kJ/kg] Phase Fraction [Molar Basis] Surface Tables (Std. Cond)	<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>	0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01 0 1,73E-01	<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02 0 8,34E-02
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond) [kg/m3] Liq. Vol. Flow (Std. Cond) [m3/h] Liquid Fraction Molar Volume [m3/kgmole] Mass Heat of Vap. [kJ/kg] Phase Fraction [Molar Basis] Surface Tension [dyne/cm] Thermal Conductivity [M1/m K1]	<empty> <empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty></empty>	0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01 0 1,73E-01 1	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02 0 8,34E-02 1 1,881524821
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond) [kg/m3] Liq. Vol. Flow (Std. Cond) [m3/h] Liquid Fraction Molar Volume [m3/kgmole] Mass Heat of Vap. [kJ/kg] Phase Fraction [Molar Basis] Surface Tension [dyne/cm] Thermal Conductivity [W/m-K]	<empty> <empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty></empty>	0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01 0 1,73E-01 1 6,04E-02	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02 0 8,34E-02 1 1,881524821 7,36E-02
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond) [kg/m3] Liq. Vol. Flow (Std. Cond) [m3/h] Liquid Fraction Molar Volume [m3/kgmole] Mass Heat of Vap. [kJ/kg] Phase Fraction [Molar Basis] Surface Tension [dyne/cm] Thermal Conductivity [W/m-K] Viscosity [CP]	<empty> <empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty></empty>	0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01 0 1,73E-01 1 6,04E-02 2,27E-02	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02 0 8,34E-02 1 1,881524821 7,36E-02 3,05E-02
Std. Gas Flow [STD_m3/h] Std. Ideal Liq. Mass Density [kg/m3] Act. Liq. Flow [m3/s] Z Factor Watson K User Property Cp/(Cp - R) Cp/Cv Heat of Vap. [kJ/kgmole] Kinematic Viscosity [cSt] Liq. Mass Density (Std. Cond) [kg/m3] Liq. Vol. Flow (Std. Cond) [m3/h] Liquid Fraction Molar Volume [m3/kgmole] Mass Heat of Vap. [kJ/kg] Phase Fraction [Molar Basis] Surface Tension [dyne/cm] Thermal Conductivity [W/m-K] Viscosity [cP] Cv (Semi-Ideal) [kJ/kgmole-C]	<empty> <empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty></empty>	0,829824016 16,74598926 1,111792039 1,430808272 1,45E-01 0 1,73E-01 1 6,04E-02 2,27E-02 74,37309567	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	57441,57677 395,5060629 5,63E-02 0,552023568 16,74598926 1,097055755 1,921906843 9,39E-02 0 8,34E-02 1 1,881524821 7,36E-02 3,05E-02 85,66539896

Cv [kJ/kgmole-C]		57,79070286		48,89920618
Mass Cv [kJ/kg-C]		2,133415531		1,805174894
Cv (Ent. Method) [kJ/kgmole-C]	<empty></empty>		<empty></empty>	
Mass Cv (Ent. Method) [kJ/kg-C]		1,73526847	<empty></empty>	
Cp/Cv (Ent. Method)		1,759098745	<empty></empty>	
Reid VP at 37.8 C [kPa]	<empty></empty>		<empty></empty>	
True VP at 37.8 C [kPa]	<empty></empty>		<empty></empty>	
Liq. Vol. Flow - Sum(Std. Cond)				
[m3/h]		0		0
Partial Pressure of H2S [kPa]		0		0

Vedlegg C-4 Data for studie 4

VEDLEGG D - BRUKERVEILEDNING REGNEARK

Regnearket er et verktøy for bruk til å gjøre forskjellige estimeringer for en "skall og rør"varmeveksler. Deler av beregningene i regnearket er basert på de allerede etablerte metodene av Bell og Bell-Delaware, mens andre er forenklet for lettet brukerterskel. Det er i utviklingen av programmet, utover ovennevnte metoder, tatt utgangspunkt i standard fra TEMA (Tubular Exchanger Manufacturers Association) i tillegg til tilgjengelig litteratur som er offentlig publisert om varmelære og varmevekslere.

Regnearket er oppdelt i flere seksjoner med følgende hovedtrekk:

- 1. Innsetting av temperaturer og spesifisering av tilhørelse til rørside og skallside
- Innsetting av volum- og masserater og spesifisering av fysiske egenskaper. Massestrømning og utgangstemperatur for vekslende medium kombineres slik at varmeraten for begge medier er i overensstemmelse
- 3. Beregning av LMTD og tilhørende korreksjonsfaktor, F, ved hjelp av PR-diagram.
- 4. Valg av ønsket middelhastighet i rør. Anbefalte intervall for ulike medier og forventet begroing og korrosjon er til veiledning, som tidligere beskrevet i kapitel 2.
- 5. Med hensyn på gjennomsnittlig volumstrømning og valgt strømningshastighet beregnes nå **strømningsareal** (tverrsnittsareal) av alle rør.
- 6. Valg av diameter og veggtykkelse i rør med hensyn på temperatur og trykk. Det velges også material med varmeledningskoeffisient, med hensyn på økonomi og korrosjonsfare som følger de ulike medier. Det er vedlagt dimensjoner fra TEMA i vedlegg A, men det anbefales å bruke NORSOK for større valgfrihet til materialkvalitet og ved høye trykk. Det er vedlagt rørdimensjoner i Duplex av NORSOK i vedlegg B
- 7. Antall rør, innerdiameter og Reynolds tall i rør blir beregnet.
- 8. Minimum **ordinær senteravstand** mellom rør blir nå beregnet og valgt verdi skal spesifiseres. Merk at det i tilfeller hvor mekanisk rengjøring er nødvendig, er det spesifisert minimum "vegg til vegg"-avstand mellom rør for ulike skalldiametre. Dette må eventuelt implementeres i valgt senteravstand.
- 9. Beregning av buntdiameter etter valgt konstant for rørmønster blir videre beregnet.
- 10. Minimum skalldiameter blir beregnet etter minimum avstand til buntdiameter.
- 11. Forhold i avstand mellom ledeplater og skalldiameter spesifiseres.

- 12. Strømningsareal i skall blir beregnet etter valgt skalldiameter, avstand mellom ledeplater og rørmønster.
- 13. Beregning av massestrømning per areal, middelhastighet i skall og de dimensjonsløse Prandtls tall og Reynolds tall for begge sider.
- 14. Beregning av **varmeovergangskoeffisienter** for innside av rør, utside av rørbunt, vegg i rør og korrosjon/begroing relatert rørside. Videre beregning av den totale varmeovergangskoeffisienten for varmeveksleren.
- 15. Beregning av nødvendig overflateareal, med utgangspunkt i varmerate, varmeovergangskoeffisient, Logaritmisk midlere temperaturdifferanse og tilhørende korreksjonsfaktor.
- 16. Bestemmelse av **total utvendig lengde** og **diameter av varmeveksler** etter valg av skalldiameter og rørlengde med utgangspunkt i minimum varmeoverførende rørlengde.
- 17. Bestemmelse av varmevekslerens karakteristikk som temperatureffektivitet,
 beregnet maksimal hastighet i skall, friksjonskoeffisienter og Nusselts tall for begge sider.
- 18. Bestemmelse av **trykkfall** på rørside og skallside.

Beregningene i regnearket er gjeldende for en "skall og rør"-varmeveksler begrenset til følgende:

- E1-1-skall; ett skall og en rørpassasje (rette rør).
- Vekslende medier ordnet i motstrøms arrangement.
- Tversgående ledeplater for kryssende strømning.
- Væske på skallside og væske eller gass på rørside (Nusselts tall for skallside er begrenset til væskestrømning).
- Glatte rør, uten finner, ordnet i enten 30°, 45° eller 90° mønster.
- Fullt utviklet turbulent eller laminær strømning (Beregninger av trykkfall og Nusselts tall er begrenset til turbulent strømning).
- Varmeoverføring dominert av tvungen konveksjon.
- Varmeoverføring uten faseendring i medier.

Videre er det gjort følgende antakelser for lettelser i beregninger og brukerterskel:

- Viskositetsforhold relatert veggtemperatur og bulktemperatur for medium på skallside settes lik 1.
- Samme viskositetsforhold for rørside settes også til 1.
- Varmeoverføringen antas å være lineær med temperaturen.
- Det er antatt at det brukes minimum 7 ledeplater i skall. Dette i forbindelse med bestemmelse av korreksjonsfaktor, F.
- Det er antatt et kutt i ledeplater på 20% i forbindelse med beregning av korreksjonsfaktor relatert lekkasje og forbipassering av medium på skallside, tilhørende varmeovergangskoeffisienten for utside av rør.
- Det er i studiene antatt å spesifisere vannets fysiske egenskaper ved middeltemperatur. Bruker velger imidlertid selv hvilke verdier av fysiske egenskaper som innsettes. Gassens fysiske egenskaper er i studiene spesifisert med gjennomsnittsverdier av innog utgangstemperatur.

Betydninger av antakelser relatert viskositetsforhold og spesifisering av fysiske egenskaper

Det er i studiene valgt å spesifisere kjølevannets fysiske egenskaper ved middeltemperatur, mens det for gassen er spesifisert gjennomsnittlig verdi av fysiske egenskaper ved inn- og utgangstemperatur av gassen. Det er altså ikke valgt å benytte seg av gjennomsnittlig filmtemperatur, som for kjølevæsken vil være noe høyere enn gjennomsnittlig bulktemperatur, og omvendt for den varme gassen. Vann vil oppleve en svekkelse i viskositeten med økt temperatur, hvor det ved lave temperaturer (det menes her temperaturer rundt 20°C eller lavere) vil være en betydelig svekkelse i viskositeten bare ved få graders temperaturøkning. Ved å spesifisere vannets fysiske egenskaper ved middeltemperatur, anvendes det da blant annet en viskositet lavere enn gjennomsnittlig verdi. Forskjellen i anvendt og virkelig verdi av andre fysiske egenskaper for vannet, som spesifikk varmekapasitet, varmeledningskoeffisient og massetetthet vil være mindre sammenlignet med viskositeten, da de opplever mindre utslag ved endret temperatur. Det gjøres imidlertid oppmerksom på at vannets spesifikke varmekapasitet for temperaturer opp til rundt 40[1] vil reduseres ved økt temperatur mens for temperaturer over 40 vil motsatt gjelde. Avvikene som følger ved å spesifisere vannets fysiske egenskaper ved middeltemperatur vil følgelig øke med økt temperaturdifferanse mellom inngang og utgang for vannet, særlig i tilfeller med lav inngangstemperatur og ved økt temperaturforskjell mellom rørvegg og bulktemperatur. Avvikene som følger vil gjøre seg gjeldende i form av lavere beregnet Reynolds og Prandtls tall for skallside, med tilhørende medvirkning til høyere varmeovergangskoeffisient for utside av rør.

Det er også gjort antakelser i viskositetsforholdet mellom vegg- og bulktemperatur, ved å sette forholdet til 1,0, både for rørside og skallside. Felles for avvikene på begge sider, er økt utslag ved økt forskjell mellom veggtemperatur og bulktemperatur for begge sider. For rørsiden med innhold av varm gass og viskositet som svekkes ved redusert temperatur, vil viskositeten være lavere kjølende rørvegg enn i bulktemperatur og viskositetsforholdet vil i virkeligheten være lavere enn antatt verdi tilsier. For gasser med liten variasjon i viskositeten vil utslagene ved anvendelse av antakelse, ofte være så små at det ikke vil være av merkbar betydning. Dog, det vil med bruk av antakelsen isolert sett medvirke til at beregnet varmeovergangskoeffisient for innside av rør vil være noe lavere beregnet i regneark enn i tilfeller det er tatt høyde for viskositetsforholdet.

For skallsiden med innhold av kaldt vann, vil betydningen av antakelsen derimot være mer utslagsgivende, da utslagene i vannets viskositet vil endres mer med temperaturen. Ved antatt viskositetsforhold lik 1 på skallsiden, vil det i virkeligheten opereres med et lavere viskositetsforhold, som medfører at det ved bruk av antakelse vil medvirke til lavere varmeovergangskoeffisient for utside av rør sammenlignet med bruk av at det faktiske viskositetsforhold. Begge viskositetsforholdene er i beregninger av varmeovergangskoeffisienter tillagt en eksponent på 0,14 og det skal derfor store temperaturforskjeller til for at avvikene ved bruk av antakelser skal være dramatiske.

For trykkberegninger, hvor viskositetsforholdene inngår som teller, vil det ved bruk av antakelser om et forhold lik 1, medvirke til at beregninger er noe høyere enn hva resultatet ville vært dersom det hadde vært tatt høyde for det virkelige forhold.

Veiledning for valg av forskjellige parametre:

Dersom en varmeveksler med gode varmeovergangstall og lite areal ønskes bør det velges:

- Liten rørdiameter
- Liten skalldiameter
- Liten avstand mellom ledeplater
- Høy strømningshastighet i rør
- Rør i 30 mønster
- Liten utgangstemperatur mot høy massestrømning på skallside

Dersom trykkfall på rørside ønskes å minimeres bør det velges:

- Stor rørdiameter
- Liten skalldiameter
- Liten avstand mellom ledeplater
- Liten strømningshastighet i rør
- Rør i 30 mønster
- Liten utgangstemperatur mot høy massestrømning på skallside

Dersom trykkfall på skallside ønskes å minimeres bør det velges:

- Liten rørdiameter
- Stor skalldiameter
- Stor avstand mellom ledeplater
- Liten strømningshastighet i rør
- Rør i 45 mønster
- Stor utgangstemperatur mot liten massestrømning på skallside

	U	A _o	ΔP_t	ΔPs
$\mathbf{D_o}\uparrow$	\downarrow	1	\downarrow	1
$\mathbf{D}_{\mathbf{s}}$	\downarrow	1	1	\downarrow
B ↑	\downarrow	1	1	\downarrow
$\mathbf{U_s}\uparrow$	1	\downarrow	1	1
30 •	1	\downarrow	\downarrow	1
45 ·	\downarrow	1	1	\downarrow
T _{c,0} ↑	\downarrow	↑	↑	\downarrow

Tabell fra parameteranalyse

For mer utfyllende informasjon om de forskjellige parametrene, refereres det til kapitel 3 i rapporten.

Følgende veiledninger er til hjelp for valg av side for medier[5]:

Skallside:

- Medium med høyest viskositet, for generell økning av total varmeoverføringskoeffisient
- Medium med lavest volumstrømning
- Kondenserende eller kokende medium (Ikke aktuelt for regneark)

Rørside:

- Etsende eller helseskadelig medium, i tilfellet lekkasje
- Korrosivt medium
- Medium relatert begroing og erosjon
- Medium med høy temperatur
- Medium med høyt trykk, for å unngå høy kostnad med større skalltykkelse
- Medium som er mest eksponert for trykkfall

Når og hvor kan avvik forventes

Det er stor usikkerhet knyttet til beregning av trykkfallet på skallsiden. I varmevekslere med inngangstrykk høyere enn 2 bar og i geometrier hvor en mindre andel av trykkfallsdistribusjonen er lokalisert i kryssende strømning mellom ledeplater, enn hva som er normalt, vokser avvikene i form av at regnearket underestimerer trykkfallet i forhold til HTFS. Felles for en slik geometri er liten skalldiameter (<0,5m), med tilhørende lite strømningsareal og stor åpning i ledeplatevinduer (>30%).

Ved bruk av vann (eller andre medier med viskositet som er sterkt temperaturavhengig) på skallside og antakelse om viskositetsforhold mellom vegg- og bulktemperatur lik 1 vil avvikene øke med økt forskjell i gjennomsnittstemperatur av mediene på rørside og skallside, og særlig i tilfeller med lav inngangstemperatur på vannet (<20°C). Viskositeten vil også for skallside med innhold av vann og spesifisering av dets egenskaper ved middeltemperatur, medvirke til lavere Prandtls og Reynolds tall. Summen at dette er at varmeovergangskoeffisienten er beregnet høyere ved lave temperaturer, mens viskositetsforholdet vil trekke ned avviket sammenlignet med HTFS.

Regnearket beregner i alle tilfeller en noe lavere MTD sammenlignet med HTFS. Kombinert med en gjennomgående noe høyere total varmeovergangskoeffisient, er resultatene i nødvendig varmeoverførende areal og tilhørende rørlengde beregnet med god samsvarelse sett i forhold til HTFS.

Trykkfallet for rørsiden er også i overslagsøyemed beregnet med tilfredsstillende resultater. Grunnet antakelsen om et totalt trykkfall for rørside tilsvarende 2 ganger trykkfallet i rørene, er det i alle studiene beregnet et noe høyere trykkfall en hva som er gjort ved bruk av HTFS.

Det henvises ellers til resultater og konklusjon i rapporten for mer utfyllende beskrivelser.

Under følger figurer til bruk for innsetting av verdier i regnearket.

Figurer og tabeller for bruk av regnearket:

Figur 1 – PR-diagram for avlesning av korreksjonsfaktor, F. E1-1 skall [7]

ax Design Pressure at	Temperature										
essure (Barg)	ssure (Bæg)		20.0	20.0		19.5	17.7	15.8	14.0	12.1	
nperature (Deg. C)		-46	38	38 50		100	150	200	250		
	10.000		10.00	1	6			115/200	12:22	-	
ND (inch)	0.50	0.75	1.00	1.50	2.00	3.00	4:00	6.00	8.00	10.00	4
Contraction and the second		1	11-0-0	and the second	CONTRACTOR OF A DESCRIPTION OF A DESCRIP		A DESCRIPTION OF A DESC			2 . SOCK V	
OD (mm)	21.3	20.7	33.4	48.3	60.3	88.9	114.3	168.3	219.1	273.1	
OD (mm) THK (mm)	21.3	2.87	33.4	3.68	2.77	3.05	3.05	3.40	3.76	4.19	
OD (mm) THK (mm) SCH	21.3 2.77 40S	26.7 2.87 40S	33.4 3.38 40S	48.3 3.68 40S	60.3 2.77 10S	88.9 3.05 10S	114.3 3.05 10S	168.3 3.40 10S	219.1 3.76 10S	273.1 4.19 10S	

Figur 2a – Diameter og veggtykkelse for opp til 12,1-20 bar. Duplex etter NORSOK [2]

x Design Pressure at Te	mperature											
ssure (Barg)				51.7	51.7	51	.3	49.2	45.8		42.7	40.1
nperature (Deg. C)	verature (Deg. C)			-46	38	50	50 10		150	1	200	250
11												
ND (inch)	0.50	0.75	1.00	1.50	2.00	3.00	4.00	6.00	8	.00	10.00	
OD (mm)	21.3	26.7	33.4	48.3	60.3	88.9	114.3	168.3	2	19.1	273.1	
THK (mm)	2.77	2.87	3.38	3.68	2.77	3.05	3.05	3.40	3	.76	6.35	
Concernation in the	400	400	400	400	100	200	100	100	1	0.0	20.	<u> </u>
SCH	140S	405	1405	405	105	105	1105	1103	1	05	120	

Figur 2b – Diameter og veggtykkelse for opp til 40,1-51,7 bar. Duplex etter NORSOK [2]

Design Pressure at Temp	aanne											
rure (Barg)			103.4		103.4	102.5		98.4	91.6	1	85.4	80.3
arature (Deg. C)		-46	-46		50	50 1		150		200	250	
5						1.000				1.121		
ND (inch)	0.50	0.75	1.00	1.50	2.00	3.00	4.00	6.00	8.(00	10.00	
OD (mm)	21.3	26.7	33.4	48.3	60.3	88.9	114.3	168.3	21	9.1	273.1	
THK (mm)	2.77	2.87	3.38	3.68	3.91	5.49	6.02	7.11	8.	18	9.27	
SCH	40S	40S	40S	40S	40S	40S	40S	40S	40	S	40S	
WEIGHT		210					200				116	

Figur 2c – Diameter og veggtykkelse for opp til 80,3-103,4 bar. Duplex etter NORSOK [2]

Max Design Pressure a	it Temperature									
Pressure (Barg)			258.6	258.5	8	256.3	245.9	228.9	213.1	200,9
Temperature (Deg. C)		-46	38	8 50		100	150	200	250	
ND (inch)	0.50	0.75	1.00	1.50	2.00	3.00	4.00	6.00	8.00	10.00
OD (mm)	21.3	26.7	33.4	48.3	60.3	88.9	114.3	168.3	219.1	273.1
THK (mm)	2.77	2.87	3.38	3.68	5.54	7.62	8.56	14.27	18.26	21.44
SCH	40S	40S	40S	40S	80S	80S	80S	120	120	120
WEIGHT								10	1	1

Figur 2d – Diameter og veggtykkelse for opp til 200,9-258,6 bar. Duplex etter NORSOK [2]

Reynolds number	Tube pattern	m	а
Greater than 200,000	Staggered	0.300	0.166
Greater than 200,000	In-line	0.300	0.124
300 to 200,000	Staggered	0.365	0.273
300 to 200,000	In-line	0.349	0.211
Less than 300	Staggered	0.640	1.309
Less than 300	In-line	0.569	0.742

Figur 3 – Konstanter for beregning av utvendig varmeovergangskoeffisient [7]

Fouling Resistances For Chemical Processing Streams

Gases And Vapors:	
Acid Gases	0.002-0.003
Solvent Vapors	0.001
Stable Overhead Products	0.001
Liquids:	5.
MEA And DEA Solutions	0.002
DEG And TEG Solutions	0.002
Stable Side Draw And Bottom Product	0.001-0.002
Caustic Solutions	0.002
Vegetable Oils	0.003

Fouling Resistances For Natural Gas-Gasoline Processing Streams

Gases And Vapors:	
Natural Gas	0.001-0.002
Overhead Products	0.001-0.002
Liquids:	
Lean Oil	0.002
Rich Oil	0.001-0.002
Natural Gasoline And Liquified Petroleum Gases	0.001-0.002

Figur 4a – Begroing og korreksjonsmotstander for rørside etter TEMA [($h\cdot Ft^2 \cdot F$)/Btu] [4]

Oils:	
Fuel Oil #2	0.002
Fuel Oil #6	0.005
Transformer Oil	0.001
Engine Lube Oil	0.001
Quench Oil	0.004
Gases And Vapors:	
Manufactured Gas	0.010
Engine Exhaust Gas	0.010
Steam (Non-Oil Bearing)	0.0005
Exhaust Steam (Oil Bearing)	0.0015-0.002
Refrigerant Vapors (Oil Bearing)	0.002
Compressed Air	0.001
Ammonia Vapor	0.001
CO ₂ Vapor	0.001
Chlorine Vapor	0.002
Coal Flue Gas	0.010
Natural Gas Flue Gas	0.005
Liquids:	
Molten Heat Transfer Salts	0.0005
Refrigerant Liquids	0.001
Hydraulic Fluid	0.001
Industrial Organic Heat Transfer Media	0.002
Ammonia Liquid	0.001
Ammonia Liquid (Oil Bearing)	0.003
Calcium Chloride Solutions	0.003
Sodium Chloride Solutions	0.003
CO ₂ Liquid	0.001
Chlorine Liquid	0.002
Methanol Solutions	0.002
Ethanol Solutions	0.002
Ethylene Glycol Solutions	0.002

Fouling	Resistances	For Industria	I Fluids
---------	-------------	---------------	----------

Figur 4b – Begroing og korreksjonsmotstander for rørside etter TEMA [($h\cdot Ft^2 \cdot {}^\circ F$)/Btu] [4]

		Dimensions	In Inches (m	im)		Sec. 2
		27				
Nominal Shell Diameter		Carboi	n Steel	n (j	All	oy *
		Pipe	PI	ate		
6 8 - 12 13 - 29 30 - 39 40 - 60 61 - 80 81 - 100	(152) (203-305) (330-737) (762-991) (1016-1524) (1549-2032) (2057-2540)	SCH. 40 SCH. 30 SCH. STD - - -	3/8 7/16 1/2 1/2 1/2	(9.5) (11.1) (12.7) (12.7) (12.7)	1/8 1/8 3/16 1/4 5/16 5/16 3/8	(3.2) (3.2) (4.8) (6.4) (7.9) (7.9) (9.5)

TABLE R-3.13 MINIMUM SHELL THICKNESS Dimensions In Inches (mm)

TABLE CB-3.13 MINIMUM SHELL THICKNESS Dimensions In Inches (mm)

Nominal Shell Diameter		Minimum Thickness						
		Carbon Steel			Alloy *			
		Pipe	PI	Plate		1. B		
6 8 - 12 13 - 23 24 - 29 30 - 39 40 - 60 61 - 80 81 - 100	(152) (203-305) (330-584) (610-737) (762-991) (1016-1524) (1549-2032) (2057-2540)	SCH. 40 SCH. 30 SCH. 20 - - - - - - - -	5/16 5/16 3/8 7/16 1/2 1/2	(7.9) (7.9) (9.5) (11.1) (12.7) (12.7)	1/8 1/8 3/16 1/4 1/4 5/16 3/8	(3.2) (3.2) (3.2) (4.8) (6.4) (6.4) (7.9) (9.5)		

*Schedule 5S is permissible for 6 inch (152 mm) and 8 inch (203 mm) shell diameters.

Figur 5 – Minimum skalldiameter etter TEMA [4]

Layout Angle	Reynolds Number	a ₁	a2	<i>a</i> 3	a4	b 1	b 2	b_3	<i>b</i> 4
30°	105-104	0.321	-0.388	1.450	0.519	0.372	-0.123	7.00	0.500
	104-103	0.321	-0.388			0.486	-0.152		
	10 ³ -10 ²	0.593	-0.477			4.570	-0.476		
	102-10	1.360	-0.657			45.100	-0.973		
	<10	1.400	-0.667			48.000	-1.000	64	
450	105-104	0.370	-0.396	1.930	0.500	0.303	-0.126	6.59	0.520
	104-103	0.370	-0.396			0.333	-0.136		
	$10^{3} - 10^{2}$	0.730	-0.500			3.500	-0.476		
	102-10	0.498	-0.656			26.200	-0.913		
	<10	1.550	-0.667			32.00	-1.000		
90°	105-104	0.370	-0.395	1.187	0.370	0.391	-0.148	6.30	0.378
	104-103	0.107	-0.266			0.0815	+0.022		
	10 ³ -10 ²	0.408	-0.460			6.0900	-0.602		
	102-10	0.900	-0.631			32.1000	0.963		
	<10	0.970	-0.667			35.0000	-1.000		

Figur 6 – Konstanter for beregning av friksjonskoeffisient i skall [8]

				Sn d				
S .	1.	25		1.5	<u>en di ana ana</u> Sen di Aliya	2.0	3	.0
d	c	<u> </u>	C	n	C	n	C	n
				In line				
1.25	0.386	0.592	0.305	0.608	0.111	0.704	0.0703	0.752
1.5	0.407	0.586	0.278	0.620	0.112	0.702	0.0753	0.744
2.0	0.464	0.570	0.332	0.602	0.254	0.632	0.220	0.648
3.0	0.322	0.601	0.396	0.584	0.415	0.581	0.317	0.608
				Staggered				
0.6			<u></u>				0.236	0.636
0.9	_	_			0.495	0.571	0.445	0.581
1.0			0.552	0.558		_		
1.125					0.531	0.565	0.575	0.560
1.25	0.575	0.556	0.561	0.554	0.576	0.556	0.579	0.562
1.5	0.501	0.568	0.511	0.562	0.502	0.568	0.542	0.568
2.0	0.448	0.572	0.462	0.568	0.535	0.556	0.498	0.570
3.0	0.344	0.592	0.395	0.580	0.488	0.562	0.467	0.574

Figur 7 – Konstanter for beregning av Nusselts tall på skallside [1]

VEDLEGG E - BEREGNINGER AV STUDIER UTFØRT I HTFS

Studie 1 30°

Heat Exchanger Thermal D		Tasc+ 2006.5 CP2				
ile: Studie1_30.EDR		Date: 09.0	06.2010	Time: 18	:13:15	
Description						
Heading Studie 1, rørmønster 30						
Remarks						
Application Options]
Calculation mode			Design			
Location of hot fluid			Tube side			
Select geometry based on this dimense	sional standard		SI			
Application		Gas, no phase change				
Condenser type			Set defaul	t		
Simulation calculation						
Application		Liquid, no phase change				
Vaporizer type		Set default				
Simulation calculation						
Process Data						
		Hot	Side	Cold	Side	
Fluid name		Varm	n Gass	Kjølev	æske	
		In	Out	In	Out	
Mass flow rate (total)	kg/h	114	1091			
Temperature	°C	70	25	8	30	
Vapor mass fraction		1	1	0	0	
Operating pressure (absolute)	bar	6,12	5,9588	2	1,88	
Pressure at liquid surface in column	bar					
Heat exchanged	kW					
Heat Load Balance Options		Heat load		Heat load		
Estimated pressure drop bar		0,1612		0,12		
Allowable pressure drop	bar	0,26		0,4		
Fouling resistance	m² K/W	0,0	003		0	
Heat Exchanger Thermal Design			Tasc+	2006.5 CP2	Page 12	
-------------------------------	------------	--------------	-------	------------	---------	
File: Studie1_30.EDR	C	ate: 09.06.2	010	Time: 18:	13:17	
Recap of Designs						
		Α				
Shell size	mm	750				
Tube length - actual	mm	6850				
Tube length - required	mm	6846				
Pressure drop, SS	bar	0,27237				
Pressure drop, TS	bar	0,22728				
Baffle spacing	mm	220				
Number of baffles		28				
Tube passes		1				
Tube number		454				
Number of units in series		1				
Number of units in parallel		1				
Total price	Dollar(US)	35686				
Program mode		Design				

1	Size 750 x 6850	mm Typ	e BEM H	Hor	С	onnected in	1 parallel	1 series
2	Surf/Unit (gross/eff/finned)	244,3 / 24	40,9 /	m²	S	hells/unit	1	
3	Surf/Shell (gross/eff/finned)	244,3 / 24	40,9 /	m²				
5	Design		PERFORMAN					
6		Shell Side	Tube S	ide	Heat Tran	nsfer Parameters		
7	Process Data	In Out	In	Out	Total heat	t load	kW	2801,6
8	Total flow kg/s	30,3652	31,69	919	Eff. MTD/	1 pass MTD	°C 2	7,16 / 27,16
9	Vapor	0 0	31,6919	31,6919	Actual/Re	qd area ratio - fou	iled/clean	1 / 1,18
10	Liquid 30,	3652 30,3652	0	0				
11	Noncondensable	0	0		Coef./Res	sist. W/(m² l	K) m² K/W	%
12	Condensed/Evaporated	0	0		Overall fo	uled 428	,4 0,0023	3
13	Temperature °C	8 30	70	25	Overall cle	ean 505	,8 0,0019	8
14	Dew / Bubble point				Tube side	film 600	,5 0,0016	7 71,35
15	Quality	0 0	1	1	Tube side	fouling 280	0,0003	6 15,3
16	Pressure bar	2 1,72763	6,12	5,89272	Tube wall	2364	7,1 0,0000	4 1,81
17	Pressure drop, allow./calc.	0,4 0,27237	0,26	0,22728	Outside fo	ouling	0	0
18	Velocity m/s	1 1	29,6	26,24	Outside fi	lm 3713	3,7 0,0002	7 11,54
19								
20	Liquid Properties				Shell Side	e Pressure Drop	bar	%
21	Density kg/m ³ 9	998,59 997,34			Inlet nozz	le	0,00586	2,15
22	Viscosity mPa s 1	1,4157 0,7998			Inlet spac	e Xflow	0,01665	6,11
23	Specific heat kJ/(kg K)	4,198 4,19			Baffle Xflo	w	0,18401	67,56
24	Therm. cond. W/(m K) C	0,5773 0,607			Baffle win	dow	0,03655	13,42
25	Surface tension N/m				Outlet spa	ace Xflow	0,01538	5,65
26	Molecular weight	100 100			Outlet noz	zzle	0,01393	5,11
27	Vapor Properties				Intermedia	ate nozzle	0	0
28	Density kg/m ³		6,81	7,68	Tube Side	e Pressure Drop	bar	%
29	Viscosity mPa s		0,0117	0,0103	Inlet nozz	le	0,04619	20,32
30	Specific heat kJ/(kg K)		2,042	1,887	Entering t	ubes	0,01464	6,44
31	Therm. cond. W/(m K)		0,0304	0,0249	Inside tub	es	0,125	55
32	Molecular weight		31,74	31,74	Exiting tub	bes	0,01819	8
33	Two-Phase Properties				Outlet noz	zzle	0,02326	10,24
34	Latent heat kJ/kg				Intermedia	ate nozzle	0	0
35								
36	Heat Transfer Parameters				Velocity	/ Rho*V2	m/s	kg/(m s²)
37	Reynolds No. vapor		361740,4	410909	Shell nozz	zle inlet	0,91	825
38	Reynolds No. liquid 17	7672,17 31280,02			Shell bune	dle Xflow	1 1	
39	Prandtl No. vapor		0,79	0,78	Shell baff	le window	0,75 0,76	
40	Prandtl No. liquid	10,3 5,52			Shell nozz	zle outlet	1,63	2661
41	Heat Load	c		4.0	Shell nozz	zie interm	00.04	0055
42	vapor only kvv	0	280	1,6	Tube noz	zle inlet	38,24	9955
43	2-mase vapor	U	0		Tubes	-la autlat	29,6 26,24	+
44	Latent heat	0	0		Tube noz	zie outlet	33,52	8/2/
45	2-mase liquid	U 2001 0	0			zie interm		N1-
46	Liquia only	2801,6	0		Knov2 vid	Diation		NO
4/	Tubac		Doffloo					
40	Tubes	Plain	Dames	Single co	amontol	NOZZIES: (NO./OL	1) Shall Side	Tubo Side
50		/ 25	Numbor	Single se	29	Inlot mm	1 / 210.09	
51	Length act/eff mm 6050	, 23		21 12	20		1 / 169 29	1 / 400,4
52		1	Cut orientation	21,13	ч	Intermediato	1 100,20	/ 400,4
52	Tube No	454	Spacing: c/c	mm	220	Impingement prot	rection	/ Nore
54	Tube nattern	30	Spacing. U/U Spacing at inlot	mm	407.48	mpingement prot	66001	None
55	Tube pattern	31.25	Spacing at milet	at mm	407.48			
56	rube piton mini	51,25		a (1111)	407,40			
57	Vibration problem: Tasc/TEMA	No / No						
5,								

Studie 1 90°

Heat Exchanger Thermal D			Tasc+ 2006.5 CP2 Pag				
ile: Studie1_90.EDR			Date: 09.0	06.2010	Time: 18:	12:33	
 Description 							
Heading Studie 1, rørmønster 90							
Remarks							
Application Options							
Calculation mode			Desian				
Location of hot fluid			Tube side				
Select geometry based on this dimension	ional standard		SI				
Application			Gas no pl	ase change			
Condenser type			Set defaul	t			
Simulation calculation							
A service states							
Application			Liquid, no	phase change	9		
Simulation calculation			Set defaul	L			
Process Data							
		Hot	Side	Cold	Side		
Fluid name		Varn	n Gass	Kjølev	æske		
		In	Out	In	Out		
Mass flow rate (total)	kg/h	11-	4091				
Temperature	°C	70	25	8	30		
Vapor mass fraction		1	1	0	0		
Operating pressure (absolute)	bar	6,12	5,9588	2	1,88		
Pressure at liquid surface in column	bar						
Heat exchanged	kW						
Heat Load Balance Options		Hea	t load	He	at load		
Estimated pressure drop	bar	0.1	312	0	12		
Allowable pressure drop	bar	0, 1	26		0.4		
· ·		-,					

Heat Exchanger Thermal Design		Tasc+	Tasc+ 2006.5 CP2	
File: Studie1_90.EDR	[Date: 09.06.2010	Time: 18	:12:35
Recap of Designs				
		А		
Shell size	mm	775		
Tube length - actual	mm	7150		
Tube length - required	mm	7132,2		
Pressure drop, SS	bar	0,23662		
Pressure drop, TS	bar	0,2577		
Baffle spacing	mm	250		
Number of baffles		26		
Tube passes		1		
Tube number		424		
Number of units in series		1		
Number of units in parallel		1		
Total price	Dollar(US)	36062		
Program mode		Design		

1	Size 775 x 7150	mm Ty	vpe BEM Hor	Connected in	1 parallel	1 series
2	Surf/Unit (gross/eff/finned)	238,1 / 2	234,9 / m	² Shells/unit	1	
3	Surf/Shell (gross/eff/finned)	238,1 / 2	234,9 / m	2		
4	Design		PERFORMANCE OF C			
6	Deelight	Shell Side	Tube Side	Heat Transfer Parameters		
7	Process Data	In Out	In Out	Total heat load	kW	2801.6
8	Total flow kg/s	30,3652	31,6919	Eff. MTD/ 1 pass MTD	°C 27	7.16 / 27.16
9	Vapor	0 0	31,6919 31,6919	Actual/Regd area ratio - fou	led/clean	1 / 1,19
10	Liquid 30	0,3652 30,3652	2 0 0			
11	Noncondensable	0	0	Coef./Resist. W/(m ²)	() m ² K/W	%
12	Condensed/Evaporated	0	0	Overall fouled 440	,1 0,00227	
13	Temperature °C	8 30	70 25	Overall clean 522	,2 0,00192	
14	Dew / Bubble point			Tube side film 63	4 0,00158	69,41
15	Quality	0 0	1 1	Tube side fouling 280	0 0,00036	15,72
16	Pressure bar	2 1,76338	8 6,12 5,8623	Tube wall 2364	7,1 0,00004	1,86
17	Pressure drop, allow./calc.	0,4 0,23662	2 0,26 0,2577	Outside fouling	0	0
18	Velocity m/s	0,85 0,85	31,7 28,25	Outside film 3383	3,2 0,0003	13,01
19						
20	Liquid Properties			Shell Side Pressure Drop	bar	%
21	Density kg/m ³	998,59 997,34		Inlet nozzle	0,00603	2,55
22	Viscosity mPa s	1,4157 0,7998		Inlet space Xflow	0,01405	5,94
23	Specific heat kJ/(kg K)	4,198 4,19		Baffle Xflow	0,15452	65,3
24	Therm. cond. VV/(m K)	0,5773 0,607		Baffle window	0,0339	14,33
25	Surrace tension N/m	100 100		Outlet space Xflow	0,01286	5,43
26	Molecular weight	100 100			0,01526	6,45
27	Vapor Properties		0.04 7.04		0	0
28	Viscosity Kg/m ²		0,81 /,04	Tube Side Pressure Drop	Dar	% 40.05
29	Charlie hast k Wkg K)		0,0117 0,0103		0,04651	18,05
21	Thorm cond M/(m K)		2,042 1,887	Entering tubes	0,01702	0,0 57.44
31	Melecular weight		0,0304 0,0249	Exiting tubes	0,14601	57,44
32	Two Phase Properties		31,74 31,74	Exiting tubes	0,02319	9 02
34	l atent heat k l/kg				0,02298	0,92
35	Latent neat Korky			Internetiate nozzie	0	0
36	Heat Transfer Parameters			Velocity / Rho*V2	m/s	$ka/(m s^2)$
37	Revnolds No. vapor		387335.2 439982.7	Shell nozzle inlet	0.91	825
38	Reynolds No. liquid 1	4964,18 26486,8	5	Shell bundle Xflow	0.85 0.85	020
39	Prandtl No. vapor		0,79 0,78	Shell baffle window	0,74 0,74	
40	Prandtl No. liquid	10,3 5,52	, ,	Shell nozzle outlet	1,63	2661
41	Heat Load			Shell nozzle interm		
42	Vapor only kW	0	2801,6	Tube nozzle inlet	38,24	9955
43	2-Phase vapor	0	0	Tubes	31,7 28,25	
44	Latent heat	0	0	Tube nozzle outlet	33,52	8727
45	2-Phase liquid	0	0	Tube nozzle interm		
46	Liquid only	2801,6	0	RhoV2 violation		No
47						
48	Tubes		Baffles	Nozzles: (No./OE))	
49	Туре	Plain	Type Single s	egmental	Shell Side	Tube Side
50	ID/OD mm 21	1 / 25	Number	26 Inlet mm	1 / 219,08	1 / 406,4
51	Length act/eff mm 715	0 / 7055	Cut(%d) 19,66	Outlet	1 / 168,28	1 / 406,4
52	Tube passes	1	Cut orientation	H Intermediate	/	/
53	Tube No.	424	Spacing: c/c mm	250 Impingement prot	ection	None
54	Tube pattern	90	Spacing at inlet mm	402,48		
55	Tube pitch mm	31,35	Spacing at outlet mm	402,48		
56	Vibration problem: Tass/TEM					
5/	vibration problem: Tasc/TEM	A NO/NO				

Studie 2 30°

Heat Exchanger Thermal De	esign		Tasc+ 2006.5 CP2			
ile: Studie2_30.EDR	xchanger Thermal Design die2_30.EDR ption glidie 2, rørmønster 30 s ation Options tion mode n of hot fluid geometry based on this dimensional standard tion iser type ion calculation tion er type ion calculation tion v rate (total) kg/h 88024	Date: 09.0	6.2010	Time: 18	:13:56	
- Description						
Heading						
Studie 2, rørmønster 30						
Remarks						
Kemano						
Application Options						
- Application Options						
Calculation mode			Design Tube side			
Select geometry based on this dimension	onal standard		SI			
Application			Gas no nh	ase change		
Condenser type			Set default	ase change		
Simulation calculation						
Application			Liquid, no	phase change	e	
Vaporizer type			Set default			
Simulation calculation						
— Process Data ————						
riocco butu		Hot	Side	Cold	Side	
Fluid name		Varn	n Gass	Kjølev	ræske	
		In	Out	In	Out	
Mass flow rate (total)	kg/h	88	024			
Temperature	°C	90	25	8	47	
vapor mass traction Operating pressure (absolute)	bar	20.84	20.5316	2	1.88	
Pressure at liquid surface in column	bar	20,04	20,0010	-	.,	
Heat exchanged	kW					
Heat Load Balance Options		Hea	t load	He	at load	
Estimated pressure drop	bar	0.3	084	C),12	
Allowable pressure drop	bar	0,3	084		0,4	

Heat Exchanger Thermal Design			Tasc+ 2006	.5 CP2	Page 11
File: Studie2_30.EDR	D	ate: 09.06.2	010	Time: 18:13	3:58
Recap of Designs					
		Α			
Shell size	mm	710			
Tube length - actual	mm	9250			
Tube length - required	mm	9172,8			
Pressure drop, SS	bar	0,13802			
Pressure drop, TS	bar	0,08308			
Baffle spacing	mm	275			
Number of baffles		32			
Tube passes		1			
Tube number		410			
Number of units in series		1			
Number of units in parallel		1			
Total price	Dollar(US)	42320			
Program mode		Design			

1	Size 710 x 9250 m	m Ty	pe BEM	Hor	Connec	ted in	1 parallel	1 series
2	Surf/Unit (gross/eff/finned)	297,9 / 2	293,8 /	m²	Shells/u	nit	1	
3	Surf/Shell (gross/eff/finned)	297,9 / 2	293,8 /	m²				
4	Desim		DEDEODW					
	Design	hall Sida	PERFORMA	Side		aramotore		
	Broose Data	nell Side	Tube	Side	Total heat load	rarameters	L\\/	2462.5
	Total flow ka/s	21 1813	24	4511	Eff MTD/1 page		°C	3402,3 28 32 / 28 32
0	Vapor 0	21,1013	24,	24 4511	Actual/Read are	a ratio - foule	d/clean	101 / 12
10	Liquid 21.181	3 21 1813	24,4511	0	Actual/Requ are		u clean	1,017 1,2
11	Noncondensable	0	, 0	0	Coef /Resist	W//(m² K)	m² K/V	V %
12	Condensed/Evaporated	0		0	Overall fouled	419 6	0.0023	8
13	Temperature °C 8	47	90	25	Overall clean	499	0.002	,
14	Dew / Bubble point		00	20	Tube side film	610.9	0.0016	64 68 69
15	Quality 0	0	1	1	Tube side foulin	a 2640		8 15 9
16	Pressure bar 2	1 86198	20.84	20 75692	Tube wall	17605	5 0,0000	6 2.38
17	Pressure drop allow/calc. 0.4	0.13802	20,04	0.08308	Outside fouling	11000	,0 0,0000	0
18	Velocity m/s 0.5	7 0.57	9.63	7 38	Outside film	3221	4 0.0003	1 13 03
19	······	. 0,0.						
20	Liquid Properties				Shell Side Pres	sure Drop	bar	%
21	Density kg/m ³ 998	59 991.88			Inlet nozzle		0.00856	62
22	Viscosity mPa s 1.41	57 0.5785			Inlet space Xflov	N	0.00712	5 16
23	Specific heat kJ/(kg K) 4.19	4.186			Baffle Xflow		0.08541	61.88
24	Therm cond W/(mK) 0.57	73 0.6284			Baffle window		0.01794	13
25	Surface tension N/m	0,0201			Outlet space Xfl	ow	0.00613	4 44
26	Molecular weight 10	0 100			Outlet nozzle	•••	0.01287	9.33
27	Vapor Properties				Intermediate no	zzle	0	0
28	Density ka/m³		20.12	26 25	Tube Side Pres	sure Drop	bar	%
29	Viscosity mPa s		0.0131	0.0111	Inlet nozzle	Suic Brop	0.00952	11 45
30	Specific beat k.l/(kg K)		2 242	2 116	Entering tubes		0.00458	5 52
31	Therm cond. W/(mK)		0.036	0.028	Inside tubes		0.05354	64 44
32	Molecular weight		29 15	29 15	Exiting tubes		0.00537	6 47
33	Two-Phase Properties		20,10	20,10	Outlet nozzle		0.01007	12 12
34	l atent heat k.l/kg				Intermediate no	zzle	0	0
35								
36	Heat Transfer Parameters				Velocity / R	ho*V2	m/s	ka/(m s²)
37	Revnolds No. vapor		292743.6	345490.2	Shell nozzle inle	et	1.14	1293
38	Reynolds No. liquid 9969	.01 24396.0	7		Shell bundle Xfl	ow	0.57 0.57	7
39	Prandtl No. vapor		0,82	0,84	Shell baffle wind	ow	0,42 0,42	2
40	Prandtl No. liquid 10.	3 3.85			Shell nozzle out	let	1.65	2715
41	Heat Load				Shell nozzle inte	erm		
42	Vapor only kW	0	34	62,5	Tube nozzle inle	et	10,14	2071
43	2-Phase vapor	0		0	Tubes		9,63 7,38	3
44	Latent heat	0		0	Tube nozzle out	let	12,38	3982
45	2-Phase liquid	0		0	Tube nozzle inte	erm		
46	Liquid only	3462,5		0	RhoV2 violation			No
47		-						
48	Tubes		Baffles		Nozzl	es: (No./OD)		
49	Туре	Plain	Туре	Single se	egmental	. ,	Shell Side	Tube Side
50	ID/OD mm 19,8 /	25	Number	-	32 Inlet	mm	1 / 168,28	1 / 406,4
51	Length act/eff mm 9250 /	9123	Cut(%d)	29,04	Outlet		1 / 141,3	1 / 323,85
52	Tube passes	1	Cut orientation	1	H Interm	ediate	1	1
53	Tube No.	410	Spacing: c/c	mm	275 Imping	gement prote	ction	None
54	Tube pattern	30	Spacing at inle	et mm	298,98			
55	Tube pitch mm	31,25	Spacing at our	tlet mm	298,98			
56			-					
57	Vibration problem: Tasc/TEMA	No / No						

Tasc+ 2006.5 CP2 Page 1

 File:
 Studie2_90.EDR
 Date:
 09.06.2010
 Time:
 18:14:41

- Description						
Heading						
Studie 2, rørmønster 90						
Demode						
Remarks						
Application Options						
Calculation mode			Design			
Location of hot fluid			Tube side			
Select geometry based on this dimens	ional standard		SI			
Application			Gas, no ph			
Application Condensor type			Gas, no pr	lase change		
Simulation calculation			Set delaun			
Sindlation calculation						
Application			Liquid, no	phase chang	e	
Vaporizer type			Set default			
Simulation calculation						
Process Data						
		Hot	Side	Col	d Side	
Fluid name		Varn	n Gass	Kjøle	væske	
		In	Out	In	Out	
Mass flow rate (total)	kg/h	88	024			
Temperature	°C	90	25	8	47	
Vapor mass fraction		1	1	0	0	
Operating pressure (absolute)	bar	20,84	20,5316	2	1,88	
Pressure at liquid surface in column	bar					
Heat exchanged	kW					
Heat Load Balance Options		Hea	t load	Н	eat load	
Estimated pressure drop	bar	0.3	084		0,12	
Allowable pressure drop	bar	0,3	084		0,4	
Fouling resistance	m² K/W	0.0	003		0	
		0,0			-	

		Tasc+	2006.5	CP2	Page 11
D	ate: 09.06.2	010 Time: 18:14:43		4:43	
	Α				
mm	710				
mm	9850				
mm	9803,4				
bar	0,24592				
bar	0,1089				
mm	225				
	42				
	1				
	352				
	1				
	1				
llar(US)	41675				
	Design				
•	D mm mm bar bar mm	Date: 09.06.24 mm 710 mm 9850 mm 9803,4 bar 0,24592 bar 0,1089 mm 225 42 1 352 1 1 1 Ilar(US) 41675 Design	Tasc+ Date: 09.06.2010 A Mm 710 mm 9850 9803,4 bar 0,24592 98 bar 0,1089 98 mm 225 42 1 352 1 352 1 1 Ilar(US) 41675 Design	Tasc+ 2006.5 Date: 09.06.2010 Ti A mm 710 mm 9850 mm 9850 mm 9803,4 bar 0,24592 bar 0,1089 bar 0,24592 bar 0,1089 mm 225 42 1 352 1 1 1 Illar(US) 41675 Design	Tasc+ 2006.5 CP2 Date: 09.06.2010 Time: 18:1 mm 710 mm 9850 mm 9850 mm 9803,4 bar 0,24592 bar 0,1089 mm 225 42 1 352 1 1 1 Illar(US) 41675 Design

1	Size 710 x 9850	mm Ty	pe BEM	Hor	Connecte	ed in	1 parallel	1 series
2	Surf/Unit (gross/eff/finned)	272,3 / 2	268,8 /	m²	Shells/ur	it	1	
3	Surf/Shell (gross/eff/finned)	272,3 / 2	268,8 /	m²				
5	Desian		PERFORMA	NCE OF ON				
6	······································	Shell Side	Tube	Side	Heat Transfer Pa	arameters		
7	Process Data	In Out	In	Out	Total heat load		kW	3462,5
8	Total flow kg/s	21,1813	24,	4511	Eff. MTD/ 1 pass	MTD	°C 2	8,32 / 28,32
9	Vapor	0 0	24,4511	24,4511	Actual/Reqd area	ratio - foule	d/clean	1 / 1,22
10	Liquid 21	1,1813 21,1813	0	0				
11	Noncondensable	0		0	Coef./Resist.	W/(m² K)	m² K/W	%
12	Condensed/Evaporated	0		0	Overall fouled	457	0,00219	9
13	Temperature °C	8 47	90	25	Overall clean	552,6	0,0018	1
14	Dew / Bubble point				Tube side film	689,6	0,0014	5 66,26
15	Quality	0 0	1	1	Tube side fouling	2640	0,00038	8 17,31
16	Pressure bar	2 1,75408	20,84	20,73111	Tube wall	17605,	5 0,00006	5 2,6
17	Pressure drop, allow./calc.	0,4 0,24592	0,3084	0,1089	Outside fouling		0	0
18	velocity m/s	0,71 0,72	11,21	8,6	Outside film	3303	0,0003	13,83
20	Liquid Proportion				Shall Side Press		bar	0/
20	Density kg/m ³	008 50 001 88			Inlet nozzle	sure Drop	0.00856	3 /8
22	Viscosity mPas	1 4 1 5 7 0 5 7 8 5			Inlet space Xflow		0,00030	4 01
23	Specific heat k.I/(kg K)	4 198 4 186			Baffle Xflow		0 16668	67 78
24	Therm cond W/(m K)	0.5773 0.6284			Baffle window		0.03922	15.95
25	Surface tension N/m	0,0201			Outlet space Xflo	w	0.00871	3.54
26	Molecular weight	100 100			Outlet nozzle		0.01288	5.24
27	Vapor Properties				Intermediate noz	zle	0	0
28	Density kg/m³		20,12	26,22	Tube Side Press	sure Drop	bar	%
29	Viscosity mPa s		0,0131	0,0111	Inlet nozzle		0,00952	8,74
30	Specific heat kJ/(kg K)		2,242	2,116	Entering tubes		0,00627	5,76
31	Therm. cond. W/(m K)		0,036	0,028	Inside tubes		0,07515	69,02
32	Molecular weight		29,15	29,15	Exiting tubes		0,00789	7,24
33	Two-Phase Properties				Outlet nozzle		0,01007	9,25
34	Latent heat kJ/kg				Intermediate noz	zle	0	0
35								
36	Heat Transfer Parameters				Velocity / RI	10*V2	m/s	kg/(m s²)
37	Reynolds No. vapor		340979,7	402417,5	Shell nozzle inlet		1,14	1293
38	Reynolds No. liquid 1	12602,78 30841,4	1		Shell bundle Xflo	w	0,71 0,72	
39	Prandtl No. vapor		0,82	0,84	Shell baffle winde	w	0,62 0,63	
40	Prandtl No. liquid	10,3 3,85			Shell nozzle outle	et	1,65	2715
41	Heat Load	0		00 F	Shell nozzle inter	m	10.14	0074
42	2 Rhass vener	0	34	02,5			10,14	2071
43	2-Phase vapor	0		0	Tubes	at	12 38	3082
44	2-Phase liquid	0		0	Tube nozzle out	el m	12,30	3902
45	Liquid only	3462.5		0	RhoV/2 violation			No
47		5402,5		0				
48	Tubes		Baffles		Nozzle	s: (No /OD)		
49	Type	Plain	Type	Sinale se	eamental		Shell Side	Tube Side
50	ID/OD mm 19	0.8 / 25	Number	2	42 Inlet	mm	1 / 168,28	1 / 406.4
51	Length act/eff mm 985	50 / 9723	Cut(%d)	19.09	Outlet		1 / 141,3	1 / 323,85
52	Tube passes	1	Cut orientation	1	H Interme	ediate	1	/
53	Tube No.	352	Spacing: c/c	mm	225 Imping	ement protec	tion	None
54	Tube pattern	90	Spacing at inle	et mm	248,98			
55	Tube pitch mm	31,35	Spacing at out	tlet mm	248,98			
56	·							
57	Vibration problem: Tasc/TEM	IA No / No						

Studie 3 45°

Heat Exchanger Thermal Design			Tasc+ 2006.5 CP2					
File: Studie3_45.EDR			Date: 09.0	06.2010	Time:	18:15:21		
Description								
Heading Studie 3, rørmønster 45								
Remarks								
Application Options				· · · · · · · · · · · · · · · · · · ·]		
Calculation mode			Design					
Location of hot fluid			Tube side					
Select geometry based on this dimens	sional standard		SI					
Application			Gas, no pl	nase change				
Condenser type			Set defaul	t				
Simulation calculation								
Application			Liquid, no	phase chang	e			
Vaporizer type			Set defaul	t				
Simulation calculation								
Process Data								
		Hot	Side	Col	d Side			
Fluid name		Varr	n Gass	Kjøle	væske			
		In	Out	In	Out			
Mass flow rate (total)	kg/h	76	643					
Temperature	°C	102,8	55,8	8	60			
Vapor mass fraction		1	1	0	0			
Operating pressure (absolute)	bar	55,73	55,0727	5	4,85			
Pressure at liquid surface in column	bar							
Heat exchanged	kW							
Heat Load Balance Options		Hea	it load	He	eat load			
Estimated pressure drop	bar	0.6	573		0,15			
Allowable pressure drop	bar	0,6	573		0,5			
Fouling resistance	m² K/W	0,0	003		0			

Heat Exchanger Thermal Design		Т	asc+ 2006	.5 CP2	Page 11	
File: Studie3_45.EDR	D	ate: 09.06.201	10	Time: 18:1	5:23	
Recap of Designs						
		Α				
Shell size	mm	387,35				
Tube length - actual	mm	9550				
Tube length - required	mm	9379,2				
Pressure drop, SS	bar	0,27699				
Pressure drop, TS	bar	0,3404				
Baffle spacing	mm	175				
Number of baffles		52				
Tube passes		1				
Tube number		89				
Number of units in series		1				
Number of units in parallel		1				
Total price	Dollar(US)	24962				
Program mode		Design				

	0:== 297.25 × 0550			Hor	0	apported in	1	norallal	1
1	Size 307,35 X 9550	67.8 /	SED /	П01 m ²	6	bells/unit	1	parallel	1 Series
2	Surf/Shell (gross/eff/finned)	67.8 /	66.9 /	m ²	5	nens/unit	'		
3	Sull/Shell (gloss/ell/lithed)	07,0 7	00,9 /	111-					
5	Design		PERFORM						
6	Boolgii	Shell Side	Tube	Side	Heat Trar	sfer Paramete	rs		
7	Process Data	In Out	In	Out	Total heat	load	- k\	w	2633.8
8	Total flow kg/s	12.0874	21.	2897	Eff. MTD/	1 pass MTD	0	°C 4	5.01 / 45.01
9	Vapor	0 0	21,2897	21,2897	Actual/Re	od area ratio - fo	ouled/cle	an 1	.02 / 1.53
10	Liquid 1	2.0874 12.087	74 0	0		4			, , .,
11	Noncondensable	0		0	Coef./Res	sist. W/(m	2 K)	m² K/W	%
12	Condensed/Evaporated	0		0	Overall fo	uled 88	39.9	0.00112	
13	Temperature °C	8 60	102.8	55.8	Overall cl	ean 13	39.5	0.00075	
14	Dew / Bubble point	• ••	102,0	00,0	Tube side	film 20	60 7	0 00049	43.18
15	Quality	0 0	1	1	Tube side	fouling 26	50.9	0.00038	33.57
16	Pressure bar	5 4 7230)1 55.73	55 3896	Tube wall	174 174	177 1	0,00006	5.09
17	Pressure drop allow /calc	0.5 0.2769	0 6573	0 3404	Outside fo	uling	,.	0,00000	0
18	Velocity m/s	0.65 0.65	13.06	10.06	Outside fi	lm 49	00.5	0.0002	18.16
19								0,0002	
20	Liquid Properties				Shell Sid	e Pressure Dro	n	bar	%
21	Density kg/m ³	998.59 985.6	6		Inlet nozz	le	۳ (0.01333	4.81
22	Viscosity mPas	1 4157 0 474	3		Inlet space	e Xflow	, (0,00663	2,39
23	Specific heat k.I/(kg K)	4 198 4 186	3		Baffle Xflo	w	(0.15054	54.35
24	Therm cond W/(mK)	0.5773 0.643	2		Baffle win	dow	, (0.08087	29.2
25	Surface tension N/m	0,0110 0,040	-		Outlet spa	ace Xflow	, (00595	2 15
26	Molecular weight	100 100			Outlet no		(0 01966	7 1
27	Vapor Properties	100 100			Intermedi	ate nozzle		0	0
28	Density kg/m ³		57 17	74 18	Tube Sid	e Pressure Dro	n	bar	%
20	Viscosity mPas		0.015	0.0142	Inlet nozz		4	03533	10.38
29	Specific best k I//kg K)		2 544	2 72	Entering t	uber		02414	7 00
21	Therm cond M//(m K)		2,344	0.0364	Inside tub	ubes		0,02414	60,1
22	Melecular weight		22.07	22.07	Exiting tub			0,23400	8.02
32	Two Phase Properties		32,07	32,07	Outlet po:			0,03030	4,61
24	Lotopt hoot				Intermedi	zzie		0,01571	4,01
34	Latent neat KJ/Kg				memeu			U	U
36	Heat Transfer Parameters				Velocity	/ Pho*\/2		m/s	$ka/(m s^2)$
37	Reynolds No. yapor		1005186	1061816	Shell noz	7 Kilo V2		1 51	2262
38	Reynolds No. liquid	11580 48 34563	71	1001010	Shell hun		0.65	0.65	LLOL
39	Prandtl No. vapor	11000,40 04000,	0.93	1.06	Shell baff		0,00	0.5	
40	Prandtl No. liquid	10.3 3.09	0,00	1,00	Shell noz	zle outlet	0,0	2 14	4508
41	Heat Load	10,0 0,00			Shell noz	zle interm		2,14	4000
42	Vapor only kW	0	26	33.8	Tube noz	zle inlet		11 54	7611
43	2-Phase vapor	0	20	0	Tubes		13.06	10.06	7011
40	Latent heat	0		0	Tube noz	zle outlet	10,00	8 94	5899
45	2-Phase liquid	0		0	Tube noz	zle interm		0,04	0000
46		2633.8		0	RhoV/2 vi				Ves
40		2000,0		0	111002 01	Jation			103
47	Tubos		Bafflos				וחר		
40	Tubes	Plain	Type	Single s	amontal	NO22185. (NO./C	50) Sha	II Sido	Tubo Sido
50	10/0D mm 21	02/254	Number	Single st	52	Inlet m	n 1/	114.3	1 / 219 08
50	Longth act/off mm 05	50 / 0427	Cut(%d)	25 51	52	Outlet	1/	101.6	1 / 210,00
57		1	Cut orientatio	00,01 n	н	Intermediate	,	101,0	/
52	Tube No	1	Spacing: c/c		175	Impingement pr			None
55	Tube nattern	0 9 45	Spacing at in	ot mm	250 08	buigement pi	010011		None
54	Tube pattern	40 21 75	Spacing at Ini	tlat mm	250,50				
50	Tube pitch min	31,75	Spacing at ou	uet mm	200,90				
57	Vibration problem: Tass/TEM								
01	vibration problem. rasc/TEN								

Studie 3 90°

Heat Exchanger Thermal Design

Tasc+ 2006.5 CP2 Page 1

Heading Studie 3, rørmønster 90 Remarks Application Options Design Calculation mode Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Set default Condenser type Simulation calculation Liquid, no phase change Application Vaporizer type Set default Simulation calculation - Process Data Cold Side Hot Side Fluid name Varm Gass Kjølevæske Out In Out In Mass flow rate (total) 76643 kg/h 60 °C 55,8 102.8 8 Temperature Vapor mass fraction 1 1 0 0 Operating pressure (absolute) bar 55,73 55,0727 5 4,85 Pressure at liquid surface in column bar Heat exchanged kW Heat load Heat Load Balance Options Heat load Estimated pressure drop 0,15 0.6573 bar Allowable pressure drop bar 0,6573 0,5 0,0003 0 Fouling resistance m² K/W

Heat Exchanger Thermal Design			Tasc+ 2006	.5 CP2	Page 11
File: Studie3_90.EDR	D	ate: 09.06.2	010	Time: 18:16	5:20
Recap of Designs					
		Α			
Shell size	mm	387,35			
Tube length - actual	mm	9250			
Tube length - required	mm	9243,6			
Pressure drop, SS	bar	0,295			
Pressure drop, TS	bar	0,31603			
Baffle spacing	mm	200			
Number of baffles		44			
Tube passes		1			
Tube number		92			
Number of units in series		1			
Number of units in parallel		1			
Total price	Dollar(US)	24585			
Program mode		Design			

1	Size 387,35 x 9250	mm	Тур	e BEM	Hor	Connected	d in	1 parallel	1 series
2	Surf/Unit (gross/eff/finned)	67,9	/ 6	67 /	m²	Shells/unit	t	1	
3	Surf/Shell (gross/eff/finned)	67,9	/ 6	67 /	m²				
4	Desim			DEDEODW					
5	Design	Shall	Sido	Tube	Side	Heat Transfer Par	amotore		
7	Process Data	In	Out	In	Out	Total heat load	ameters	kW	2633.8
8	Total flow kg/s	12 0	874	21	2897	Eff MTD/ 1 pass M	M TD	°C 4	5.01 / 45.01
9	Vapor	0	0	21.2897	21.2897	Actual/Regd area	ratio - foule	d/clean	1 / 1.49
10	Liquid 12	2,0874	12,0874	0	0				
11	Noncondensable	()		0	Coef./Resist.	W/(m² K)	m² K/W	%
12	Condensed/Evaporated	()		0	Overall fouled	873,8	0,00114	Ļ
13	Temperature °C	8	60	102,8	55,8	Overall clean	1303,5	0,00077	,
14	Dew / Bubble point					Tube side film	2007,1	0,0005	43,54
15	Quality	0	0	1	1	Tube side fouling	2650,9	0,00038	32,96
16	Pressure bar	5	4,705	55,73	55,41397	Tube wall	17477,	1 0,00006	5 5
17	Pressure drop, allow./calc.	0,5	0,295	0,6573	0,31603	Outside fouling		0	0
18	Velocity m/s	0,79	0,8	12,63	9,73	Outside film	4723,7	0,00021	18,5
19									
20	Liquid Properties					Shell Side Pressu	ure Drop	bar	%
21	Density kg/m ³	998,59	985,66			Inlet nozzle		0,01332	4,51
22	Viscosity mPa s	1,4157	0,4743			Inlet space Xflow		0,00858	2,91
23	Specific heat kJ/(kg K)	4,198	4,186			Baffle Xflow		0,15925	53,98
24	Therm. cond. W/(m K)	0,5773	0,6432			Baffle window		0,08694	29,47
25	Surface tension N/m					Outlet space Xflow	V	0,0076	2,58
26	Molecular weight	100	100			Outlet nozzle		0,01931	6,55
27	Vapor Properties					Intermediate nozz	le	0	0
28	Density kg/m³			57,17	74,22	Tube Side Pressu	ire Drop	bar	%
29	Viscosity mPa's			0,015	0,0142			0,03533	71,18
30	Specific heat kJ/(kg K)			2,544	2,72	Entering tubes		0,02259	7,15
31	Therm. cond. VV/(m K)			0,0411	0,0364	Inside tubes		0,21399	67,71
32	Molecular weight			32,07	32,07	Exiting tubes		0,0284	8,99
33	I wo-Phase Properties							0,01571	4,97
34	Latent heat KJ/Kg					Internediate 1022	le	0	0
36	Heat Transfer Parameters					Velocity / Rh	^*\/ 2	m/s	$ka/(m s^2)$
37	Reynolds No. vapor			972408 3	1027192	Shell nozzle inlet		1.51	2262
38	Reynolds No liquid	14072 92	42002 79	072400,0	1027 102	Shell bundle Xflow	,	0.79 0.8	LLOL
39	Prandtl No. vapor		.2002,10	0.93	1.06	Shell baffle window	N	0.55 0.55	
40	Prandtl No. liquid	10.3	3.09	-,	.,==	Shell nozzle outlet		2,14	4508
41	Heat Load		-,			Shell nozzle intern	n	_,	
42	Vapor only kW	(D	26	33,8	Tube nozzle inlet		11,54	7611
43	2-Phase vapor	(D		0	Tubes	1	2,63 9,73	
44	Latent heat	(D		0	Tube nozzle outle	t	8,94	5899
45	2-Phase liquid	(D		0	Tube nozzle interr	n		
46	Liquid only	263	3,8		0	RhoV2 violation			Yes
47									
48	Tubes		I	Baffles		Nozzles	: (No./OD)		
49	Туре	F	Plain -	Туре	Single se	egmental		Shell Side	Tube Side
50	ID/OD mm 20	0,2 / 25	,4 I	Number		44 Inlet	mm	1 / 114,3	1 / 219,08
51	Length act/eff mm 925	50 / 912	27 (Cut(%d)	33,61	Outlet		1 / 101,6	1 / 219,08
52	Tube passes		1 (Cut orientatio	n	H Intermed	diate	/	/
53	Tube No.	9	2 3	Spacing: c/c	mm	200 Impinge	ment protec	tion	None
54	Tube pattern	g	0 9	Spacing at inl	et mm	263,48			
55	Tube pitch mm	31	,75 \$	Spacing at ou	tlet mm	263,48			
56 57	Vibration problem: Tasc/TEN	IA No	o/No						

Studie 4 30°

Heat Exchanger Thermal Design

Tasc+ 2006.5 CP2 Page 1

 File: Studie4_30.EDR
 Date: 09.06.2010
 Time: 18:17:01

Heading Studie 4, remeinster 30 Remarks Application Options Calculation mode Location of Nuid Calculation mode Location of Nuid Select geometry based on this dimensional standard Select geometry based on this dimensional standard Select geometry based on this dimensional standard Simulation calculation Application Condenser type Set default Simulation calculation Process Data Fluid name Hot Side Cold Side Fluid name Hot Side Cold Side Cold Side Cold Side Set default Simulation calculation Mass flow rate (total) Kg/h 65808 Temperature Cold Side Set default Simulation calculation Mass flow rate (total) Kg/h 65808 Temperature Cold Side Fluid name Hot Side Cold Side Cold Side Fluid name Hot Side Cold Side Cold Side Fluid name Cold Side Cold Side C	Description								
Studie 4, rørmønster 30 Remarks - Application Options Calculation mode Design Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application calculation Liquid, no phase change Simulation calculation Set default Simulation calculation Liquid, no phase change Vaporizer type Set default Simulation calculation Liquid, no phase change Vaporizer type Set default Simulation calculation Liquid, no phase change Vaporizer type Set default Simulation calculation Liquid, no phase change Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 remperature *C 150, 43, 3 70 Vapor mass fraction 1 0 0	Heading								
Application Options Design Calculation mode Design Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application calculation Set default Simulation calculation Set default Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske Im Pout In Out Mass flow rate (total) Kg/h 65608 Temperature *C 150,9 34,3 8 70 Vapor mass fraction 1 0 0 0 Operating pressure (absolute) bar 169,28 167,4674 10 9,8 Pressure at liquid surface in column bar 1,7926 0,2 Allowable pressure drop 0,2 Allowable pressure drop bar 1,7926 0,5 5 10	Studie 4, rørmønster 30								
Application Options Design Calculation mode Design Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application Set default Simulation calculation Set default Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 Total Temperature *C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 1,7926 0,2 10 10 0 Abarded pressure drop bar 1,7926 0,5 10 10 10 10 10 10 10 10 <									
Application Options Design Calculation mode Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application Liquid, no phase change Simulation calculation Set default Process Data Hot Side Fluid name Varm Gass Mass flow rate (total) kg/h 65808 1 Temperature °C 169,26 167,4674 10 Operating pressure (tigosloute) bar 1,7926 Pressure at liquid surface in column bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5									
Percess Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske Image Statue 1 0 Process Data 1 0 0 Fluid name °C 150,98 169,28 167,4674 10 9,8 Pressure tilguid surface in column bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,2 Allowable pressure drop 0,5 1 1,7926 0,2 Allowable pressure drop 0,5 1 1,7926 0,2 1 1,7926 0,5 1 1,7926 0,5 1 1,7926 0,5 1 1,7926 0,5 1 1,7926 0,5 1 1,7926 0,5 1 1,7926 0,5 1 1,7926 0,5 1 1,7926 0,5 1									
Application Options Design Calculation mode Design Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Application Application Gas, no phase change Simulation calculation Set default Application Liquid, no phase change Simulation calculation Set default Simulation calculation Hot Side Process Data In Process Data Out Mass flow rate (total) kg/h 65808 Temperature °C 150.9 34.3 8 70 Operating pressure (absolute) bar 169.26 167.4674 10 9.8 Pressure a liquid surface in column bar 1.7926 0.2 Allowable pressure drop bar 1.7926 0.2 Allowable pressure drop bar 1.7926 0.5 5									
Application Options Calculation mode Design Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application Liquid, no phase change Vaporizer type Set default Simulation calculation Liquid, no phase change Vaporizer type Set default Simulation calculation Liquid, no phase change Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 65808 Temperature °C 150.9 34.3 8 70 Vapor mass fraction 1 1 0 0 0 Operating pressure (absolute) bar 169.26 167.4674 10 9.8 Pressure at liquid surface in column bar 1.7926 0.2 4llowable pressure drop 0.5 He	Remarks								
Application Options Calculation mode Design Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application Liquid, no phase change Vaporizer type Set default Simulation calculation Simulation calculation Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 6508 Temperature 'C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 1.7926 0,2 Allowable pressure drop 0,2 Allowable pressure drop bar 1.7926 0,5 0.5 0.5									
Application Options Design Calculation mode Design Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application Liquid, no phase change Vaporizer type Set default Simulation calculation Hot Side Vaporizer type Set default Simulation calculation In Out In Out In Out Not Mass flow rate (total) kg/h 65808 Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 0,7,4674 10 9,8 Pressure at liquid surface on column bar 1,7926 0,2 Allowable pressure drop <									
Application Options Calculation mode Design Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application Liquid, no phase change Vaporizer type Set default Simulation calculation Hot Side Process Data Hot Side Fluid name Varm Gass Kig/low 65808 Temperature Temperature °C 1 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 1,7926 0,2 Allowable pressure drop 0,2 Allowable pressure drop bar 1,7926 0,5 5									
Application Options Calculation mode Design Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Vaporizer type Set default Simulation calculation Liquid, no phase change Vaporizer type Set default Simulation calculation Liquid, no phase change Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 65808 Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 1,7926 0,2 4 Heat Load Balance Options Heat load Heat load Estimated pressure									
Calculation mode Design Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Application Liquid, no phase change Vaporizer type Set default Simulation calculation Process Data Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 Temperature °C 150.9 34.3 8 70 Vapor mass fraction 1 1 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar Heat load Meat Ioad Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Application Options								
Location of hot fluid Tube side Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application Liquid, no phase change Symplexity Set default Simulation calculation Liquid, no phase change Application Liquid, no phase change Vaporizer type Set default Simulation calculation Hot Side Process Data Hot Side Fluid name Varm Gass Kjølevæske In Out In Mass flow rate (total) kg/h 65808 Temperature °C 150.9 34.3 8 70 Vapor mass fraction 1 1 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Calculation mode			Design					
Select geometry based on this dimensional standard SI Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application Liquid, no phase change Vaporizer type Set default Simulation calculation Liquid, no phase change Vaporizer type Set default Simulation calculation Hot Side Process Data In Fluid name Varm Gass Kijølevæske In Out In Mass flow rate (total) kg/h 65808 Temperature Temperature °C °C 150,9 34,3 Vapor mass fraction 1 1 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 1,7926 0,2 Allowable pressure drop 0,5 Allowable pressure drop bar 1,7926 0,5 <td>Location of hot fluid</td> <td></td> <td></td> <td>Tube side</td> <td></td> <td></td> <td></td>	Location of hot fluid			Tube side					
Application Gas, no phase change Condenser type Set default Simulation calculation Liquid, no phase change Application Liquid, no phase change Vaporizer type Set default Simulation calculation Iquid, no phase change Vaporizer type Set default Simulation calculation Iquid, no phase change Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 Temperature Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 1,7926 0,2 2 Heat Load Balance Options Heat load Heat load Estimated pressure drop bar 1,7926 <td>Select geometry based on this dimens</td> <td>ional standard</td> <td></td> <td colspan="6">SI</td>	Select geometry based on this dimens	ional standard		SI					
Condenser type Set default Simulation calculation Liquid, no phase change Application Liquid, no phase change Vaporizer type Set default Simulation calculation Set default Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 1,7926 0,2 Allowable pressure drop 0,5 Allowable pressure drop bar 1,7926 0,5 0,5 0,5	Application			Gas, no ph	ase change				
Simulation calculation Application Liquid, no phase change Application Set default Simulation calculation Set default Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 0,7,4674 10 9,8 Pressure at liquid surface options Heat load Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Condenser type		Set default	ace change					
Application Vaporizer type Simulation calculation Liquid, no phase change Set default Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 70 Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 167,4674 0 9,8 Pressure at Blaance Options Heat load Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Simulation calculation								
Application Liquit, no prise change Vaporizer type Set default Simulation calculation Hot Side Process Data Hot Side Fluid name Varm Gass Kg/h 65808 Temperature °C °C 150,9 Yapor mass fraction 1 1 0 Operating pressure (absolute) bar Heat exchanged kW Heat Load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Application			Liquid no r	base chang	0			
Simulation calculation Hot Side Cold Side Fluid name Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 65808 Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar Heat load Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop 0,5	Vaporizer type			Set default	mase chang	e			
Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 65808 Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar Heat load Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Simulation calculation								
Process Data Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808									
Hot Side Cold Side Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808	Process Data								
Fluid name Varm Gass Kjølevæske In Out In Out Mass flow rate (total) kg/h 65808 Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 0,2 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 1,7926 0,2 169,26 Heat Load Balance Options Heat load Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Flocess Data		Hot	Side	Cold	1 Side			
In Out In Out Mass flow rate (total) kg/h 65808 Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar Heat load Heat load Heat Load Balance Options Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Fluid name		Varm	Gass	Kiølev	/æske			
InOutInOutMass flow rate (total)kg/h65808Temperature°C150,934,38Vapor mass fraction1100Operating pressure (absolute)bar169,26167,4674109,8Pressure at liquid surface in columnbarHeat loadHeat loadHeat loadHeat Load Balance OptionsHeat loadHeat loadHeat loadEstimated pressure dropbar1,79260,2Allowable pressure dropbar1,79260,5									
Mass flow rate (total) kg/n 55505 Temperature °C 150,9 34,3 8 70 Vapor mass fraction 1 1 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar Heat load Heat load Heat load Heat Load Balance Options Heat load Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5		le er fin	In	Out	In	Out			
Vapor mass fraction 1 1 0 0 Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar Heat load Heat load Heat load Heat Load Balance Options Heat load Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Mass now rate (total)	кg/n °С	150.0	34.3	8	70			
Operating pressure (absolute) bar 169,26 167,4674 10 9,8 Pressure at liquid surface in column bar 169,26 167,4674 10 9,8 Heat exchanged kW Heat Load Balance Options Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Vanor mass fraction	C	150,9	1	0	70 0			
Pressure at liquid surface in column bar Heat exchanged kW Heat Load Balance Options Heat load Estimated pressure drop bar Allowable pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Operating pressure (absolute)	bar	169.26	167 4674	10	9.8			
Heat exchanged kW Heat Load Balance Options Heat load Estimated pressure drop bar 1,7926 Allowable pressure drop bar 1,7926	Pressure at liquid surface in column	bar	100,20	101,1011		0,0			
Heat Load Balance Options Heat load Heat load Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Heat exchanged	k)\\/							
Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Heat Load Balance Options	K V V	Hee	tload	LL,	at load			
Estimated pressure drop bar 1,7926 0,2 Allowable pressure drop bar 1,7926 0,5	Heat Load Dalance Options		nea	libau	Π€				
Allowable pressure drop bar 1,7926 0,5	Estimated pressure drop	bar	1,79	926		0,2			
	Allowable pressure drop	bar	1,7	926	0,5				
Fouling resistance m ² K/W 0,0003 0	Fouling resistance	m² K/W	0,0	003		0			

Heat Exchanger Thermal Design			asc+ 2006.	5 CP2	Page 11
File: Studie4_30.EDR	D	ate: 09.06.20	10	Time: 18:17	:03
Recap of Designs					
		Α			
Shell size	mm	488,95			
Tube length - actual	mm	14700			
Tube length - required	mm	14691			
Pressure drop, SS	bar	0,40023			
Pressure drop, TS	bar	0,07106			
Baffle spacing	mm	315			
Number of baffles		44			
Tube passes		1			
Tube number		176			
Number of units in series		1			
Number of units in parallel		1			
Total price	Dollar(US)	60819			
Program mode		Design			

1	Size 488,95 x 14700) mm	Ту	pe BEM	Hor		Connected	in	1 parallel	1 series
2	Surf/Unit (gross/eff/finned)	203	3,2 / ·	199,9 /	m²	2	Shells/unit		1	
3	Surf/Shell (gross/eff/finned)	203	3,2 /	199,9 /	mª	2				
4										
5	Design			PERFORM	ANCE OF O	NE UNIT				
6		Shel	l Side	Tube	Side	Heat 1	ransfer Para	meters		
7	Process Data	In	Out	In	Out	Total h	eat load		kW	6951
8	Total flow kg/s	26	7579	1	8.28	Eff. M	D/ 1 pass M	TD	°C 4	17 45 / 47 45
9	Vapor	0	0	18.28	18.28	Actual	Read area ra	tio - foule	d/clean	1 / 141
10	Liquid 2	6.7579	26.7579) 0	0					,
11	Noncondensable		0	_	0	Coef./	Resist.	W/(m² K)	m² K/M	/ %
12	Condensed/Evaporated		0		0	Overa	l fouled	733.2	0.0013	6
13	Temperature °C	8	70	150.9	34.3	Overa	l clean	1031.9	0,0009	7
14	Dew / Bubble point	Ũ	, 0	100,0	04,0	Tube	ide film	1394.6	0,0007	, 2 52 57
15	Quality	0	0	1	1	Tube		2533 3	0,0007	Q 28 Q4
16	Pressure har	10	9 59977	169.26	160 1880	Tube	vall	14736	s 0,0000	7 4 98
17	Pressure drop allow /calc	0.5	0.40023	1 7926	0.07106	Outsid	e fouling	14700,	0,0000	, 4,50
18	Velocity m/s	0.87	0,40020	2 34	2 34	Outsid	e film	5428 3	0.0001	8 13 51
19		0,07	0,00	2,04	2,04	Outsid		0420,0	0,0001	0 10,01
20	Liquid Properties					Sholl	Sido Prossur	o Dron	bar	0/
21	Density kg/m ³	998 59	979 91			Inlet n		ebiop	0.01300	25
22	Viscosity mPas	1 / 157	0 4107			Inlot o			0,01399	3,5
22	Specific heat k I/(kg K)	1 108	4 186			Bafflo	Xflow		0,01294	5,25
24	Therm cond W//(m K)	0.5773	9,100			Bafflo	window		0,23714	39,23
24	Surface tension N/m	0,5775	0,0555			Daille			0,10312	25,77
20	Melecular weight	100	100			Outlet			0,01115	2,79
20	Vener Preparties	100	100			Uniter			0,02189	5,47
21	Vapor Properties			150 70	450.00	Tuba			0	0
20	Viscosity Kg/m ²			156,73	150,00	Tube	Side Pressur	e Drop	bar	%
29	Viscosity mPa's			0,0227	0,0305	Inlet n	ozzie		0,00678	9,54
30	Specific heat kJ/(kg K)			3,053	3,469	Enterin	ng tubes		0,00211	2,97
31	Therm. cond. VV/(m K)			0,0604	0,0736	Inside	tubes		0,05019	70,64
32	Molecular weight			32,64	32,64	Exiting	tubes		0,00337	4,75
33	Two-Phase Properties					Outlet	nozzle		0,0086	12,1
34	Latent heat kJ/kg					Interm	ediate nozzle		0	0
35										
36	Heat Transfer Parameters					Veloci	ty / Rho*	V2	m/s	kg/(m s²)
37	Reynolds No. vapor			306642	228201,9	Shell r	iozzle inlet		1,44	2064
38	Reynolds No. liquid	15389,63	53046,3	3		Shell b	undle Xflow	(0,87 0,89	
39	Prandtl No. vapor			1,15	1,44	Shell b	affle window	(0,71 0,72	:
40	Prandtl No. liquid	10,3	2,63			Shell r	ozzle outlet		2,12	4386
41	Heat Load					Shell r	ozzle interm			
42	Vapor only kW		0	6	6951	Tube r	nozzle inlet		3,01	1417
43	2-Phase vapor		0		0	Tubes		2	2,34 2,34	
44	Latent heat		0		0	Tube r	nozzle outlet		4,75	3494
45	2-Phase liquid		0		0	Tube r	nozzle interm			
46	Liquid only	e	6951		0	RhoV2	violation			No
47										
48	Tubes			Baffles			Nozzles:	(No./OD)		
49	Туре		Plain	Туре	Single s	egmental			Shell Side	Tube Side
50	ID/OD mm 1	9 /	25	Number		44	Inlet	mm	1 / 168,28	1 / 273,05
51	Length act/eff mm 147	/00 / 14	461	Cut(%d)	38,93		Outlet		1 / 141,3	1 / 219,08
52	Tube passes		1	Cut orientatio	n	н	Intermedia	ate	/	1
53	Tube No.		176	Spacing: c/c	mm	315	Impingem	ent protec	tion	None
54	Tube pattern		30	Spacing at inl	let mm	457,98		-		
55	Tube pitch mm	3	1,25	Spacing at ou	itlet mm	457,98				
56										
57	Vibration problem: Tasc/TEM	/A I	No / No							

Studie 4 90°

Heat Exchanger	Thermal Design
----------------	----------------

Tasc+ 2006.5 CP2 Page 1

File: Studie4_90.EDR Date: 09.06.2010 Time: 18:17:54

			Duto: 00.0	0.2010		
Description						
Heading Studie 4, rørmønster 90						
Remarks						
Application Options						
Calculation mode			Design			
Location of hot fluid			Tube side			
Select geometry based on this dimens	sional standard		SI			
Application			Gas, no ph	ase change		
Condenser type			Set default			
Simulation calculation						
Application			Liquid, no i	ohase chang	e	
Vaporizer type			Set default		-	
Simulation calculation						
Process Data						
		Hot	Side	Cold	d Side	
Fluid name		Varn	n Gass	Kjølev	væske	
		In	Out	In	Out	
Mass flow rate (total)	kg/h	65	808			
Temperature	°C	150,9	34,3	8	70	
Vapor mass fraction		1	1	0	0	
Operating pressure (absolute)	bar	169,26	167,4674	10	9,8	
Pressure at liquid surface in column	bar					
Heat exchanged	kW					
Heat Load Balance Options		Hea	t load	He	eat load	
Estimated pressure drop	bar	1,79	926		0,2	
Allowable pressure drop	bar	1,7	926		0,5	
Fouling resistance	m² K/W	0,0	003	0		

Heat Exchanger Thermal Design	40.00	1	asc+ 2006	.5 CP2	Page 11
File: Studie4_90.EDR	D	ate: 09.06.20	10	Time: 18:17	7:56
Recap of Designs					
		Α			
Shell size	mm	539,75			
Tube length - actual	mm	14400			
Tube length - required	mm	14278,3			
Pressure drop, SS	bar	0,21432			
Pressure drop, TS	bar	0,06057			
Baffle spacing	mm	405			
Number of baffles		34			
Tube passes		1			
Tube number		196			
Number of units in series		1			
Number of units in parallel		1			
Total price	Dollar(US)	66622			
Program mode		Design			

1	Size 539,75 x 14400 mm	Type E	BEM H	Hor	Connected	l in	1 parallel	1 series
2	Suff/Onit (gross/eff/finned) 221,7 / Suff/Shell (gross/eff/finned) 221,7 /	217,7	1	m²	Shells/unit		I	
4		2,	,					
5	Design	PEF	RFORMAN	NCE OF ON	E UNIT			
6	Shell Side	•	Tube S	Side	Heat Transfer Par	ameters		
7	Process Data In	Out	In	Out	Total heat load		kW	6951
8	Total flow kg/s 26,7579	9	18,	28	Eff. MTD/ 1 pass N	ITD	°C 4	47,45 / 47,45
9	Vapor 0	0	18,28	18,28	Actual/Reqd area r	atio - foule	d/clean	1,01 / 1,38
10	Liquid 26,7579 26	,7579	0	0			2 1 4 0 4	
11	Noncondensable 0		0		Coef./Resist.	VV/(m² K)	m² K/V	7 %
12	Condensed/Evaporated 0	70	150.0	24.2	Overall fouled	678,6	0,0014	1
13	Temperature C o	70	150,9	34,3	Tubo sido film	920,9		0 8 52 01
14		0	1	1	Tube side fouling	2533	2 0,0007 3 0,0003	0 26 70
16	Pressure bar 10 97	78568 1	169.26	160 1004	Tube wall	14736	6 0,000	7 46
17	Pressure drop allow /calc 0.5 0.2	1432 1	1 7926	0.06057	Outside fouling	14700,	0 0,0000	0
18	Velocity m/s 0.61 (0.62	2.1	2.1	Outside film	4350.1	0.0002	3 15.6
19			_,.	_,.				,-
20	Liquid Properties				Shell Side Pressu	re Drop	bar	%
21	Density kg/m ³ 998,59 97	79,91			Inlet nozzle		0,01438	6,71
22	Viscosity mPa s 1,4157 0,	4107			Inlet space Xflow		0,00841	3,92
23	Specific heat kJ/(kg K) 4,198 4	,186			Baffle Xflow		0,1133	52,86
24	Therm. cond. W/(m K) 0,5773 0,	6535			Baffle window		0,04784	22,32
25	Surface tension N/m				Outlet space Xflow		0,00699	3,26
26	Molecular weight 100	100			Outlet nozzle		0,0234	10,92
27	Vapor Properties				Intermediate nozzl	е	0	0
28	Density kg/m ³		156,73	156,67	Tube Side Pressu	re Drop	bar	%
29	Viscosity mPa s	(0,0227	0,0305	Inlet nozzle		0,00691	11,41
30	Specific heat kJ/(kg K)		3,053	3,469	Entering tubes		0,00171	2,83
31	Therm. cond. W/(m K)	(0,0604	0,0736	Inside tubes		0,04051	66,88
32	Molecular weight		32,64	32,64	Exiting tubes		0,0029	4,79
33	Two-Phase Properties				Outlet nozzle		0,00853	14,08
34	Latent heat kJ/kg				Intermediate nozzi	e	0	0
35	Heat Transfer Davameters					*\/0	m/a	ka//m a ²)
30	Reat Transfer Parameters		75250	204016	Shall parala inlat	o~v2	m/s	kg/(m s-)
38	Reynolds No. Vapol Reynolds No. liquid 10758.09 37(181 02	275352	204910	Shell hundle Xflow		1,44 0.61 0.67	2004
39	Prandtl No. vapor	01,92	1 15	1 44	Shell baffle window	,	0.56 0.52	7
40	Prandt No. liquid 10.3	2 63	1,10	1,77	Shell nozzle outlet		2.12	4386
41	Heat Load	,00			Shell nozzle interm	n	2,72	1000
42	Vapor only kW 0		69	51	Tube nozzle inlet		3.01	1417
43	2-Phase vapor 0		C)	Tubes		2,1 2,1	
44	Latent heat 0		C)	Tube nozzle outlet		4,75	3494
45	2-Phase liquid 0		C)	Tube nozzle intern	า		
46	Liquid only 6951		C)	RhoV2 violation			No
47								
48	Tubes	Baffle	es		Nozzles	(No./OD)		
49	Type Plair	п Туре		Single seg	gmental		Shell Side	Tube Side
50	ID/OD mm 19 / 25	Numb	ber		34 Inlet	mm	1 / 168,28	1 / 273,05
51	Length act/eff mm 14400 / 14141	Cut(%	6d)	38,38	Outlet		1 / 141,3	1 / 219,08
52	Tube passes 1	Cut o	rientation		H Intermed	iate	/	/
53	Tube No. 196	Spaci	ing: c/c	mm	405 Impinger	nent prote	ction	None
54	Tube pattern 90	Spaci	ing at inlet	t mm	387,98			
55 56	Tube pitch mm 31,35	Spaci	ing at outle	et mm	387,98			
57	Vibration problem: Tasc/TEMA No /	No						