University of
Stavanger

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Offshore Technology/ Subsea Technology

Spring semester, 2011

Restricted access

Writer: Sivert Duvsete

(Writer’s signature)

Faculty supervisor: Ove Tobias Gudmestad, University of Stavanger

External supervisor(s): Pal Foss, IKM Ocean Design AS

Title of thesis:

‘Development of Screening Software Tool for Evaluation of Pipeline Lateral Buckling’

Credits (ECTS): 30

Key words:

Buckling, Lateral Buckling, Python,
Smoothing

Pages: 132
+ enclosure: CD w/ LBSS.py, Survey.txt

and Design.txt (the software
and two text files)

Stavanger, 14.06.11

Development of Screening Software Tool for
Evaluation of Pipeline Lateral Buckling

Pipeline exposed to lateral buckling 20

Master thesis at the University of Stavanger
Spring 2011

By Sivert Duvsete

b

P e
e ——
e ——
I
m UniverSity 7
Stavanger

Summary

During its lifetime a pipeline is subjected to an increase in internal pressure and
temperature from its as-installed condition. These loads cause the pipeline to expand at its
“free” end, and induce stresses and forces in the pipe wall. If the pipeline is not allowed to
expand, this will result in buckling if the magnitude of the loads is large enough, to
overcome external restraining forces.

The scope of this thesis is to develop a Screening Software Tool for Evaluation of Pipeline
Lateral Buckling; a tool for evaluation of pipeline integrity based on survey results. The main
purpose of the software is the identification and evaluation of locations that have
undergone lateral buckling. This is done by first of all creating a software tool that can
import text files; files such as the design route, as-laid data and survey data. With this
information the software is able to print all three pipeline routes, and a visual comparison
between design/as-laid and the survey route can be performed. Further, the lateral offset
between design/as-laid and the survey route is plotted in order to get a better overview on
locations that may have undergone global lateral buckling. From this plot the user can select
a section for further investigation. The survey data is the data set to be analyzed, it is not
fully accurate; noise often occurs and needs to be reduced/ eliminated. Noise reduction is
done by smoothing the data set. After this smoothing is carried out and the user feels the
smoothed curve is realistic; this part of the work is finalized.

With this smoothed curve the screening tool can now calculate the curvature, and
multiplying it with the bending stiffness of the pipe; the result is the bending moment. This
is not a fully accurate result, but it gives a good indication on where the pipeline might be
operating under a high degree of utilization, and that a better and more thorough FE-
analysis should be run.

The verification work on this screening tool has been applied in the program SIMLA, where
self-established routes have been tested with the Lateral Buckling Screening Software.

The Lateral Buckling Screening Software (LBSS) has shown to be a good tool for the
evaluation of pipeline lateral buckling. It has developed into an easy and effective tool for
import of data files. And it contains a great smoothing function that makes the results
realistic and sufficient to obtain a good estimate for further curvature calculations.

The LBSS has its limitations when calculating the bending moment; it only takes the
horizontal position into consideration. So any effect from an uneven seabed or upheaval
buckling is not included, this is why the LBSS will always give lower stress results than a FE-
analysis software.

Preface

This Master thesis has been written in the spring of 2011 as the final examination before
achieving my Master degree in Offshore Technology — Subsea Technology at the University
of Stavanger. The thesis has been defined in cooperation with IKM Ocean Design AS,
Trondheim. IKM Ocean Design AS provided office space at their location in Trondheim,
where the writing, programming and analytical work of the thesis was performed. It has
been an exciting and challenging phase of my life.

Through this period many people have given me useful advice and guidance to help me
complete my thesis. | would like to express my gratitude to the following people;

e Professor Ove Tobias Gudmestad, my supervisor from the University of Stavanger.
He has given me much valuable guidance through this whole process.

e Engineering Manager Bjgrn Lunde for given me the opportunity to write my thesis in
cooperation with IKM Ocean Design AS.

e Discipline Manager (pipelines) Pal Foss, my supervisor in IKM Ocean Design. He has
been my go-to-guy when problems have occurred, and he has been defining the

problems for me and explained them well.

e Knut Nordanger, engineer, for helping me to understand the program Python, and
he has helped me through the whole programming part of the thesis.

e Per Tommy Roten, engineer, for helping me getting the program SIMLA running.

e Audun Kristoffersen, engineer, my problem solver. He has been a very useful asset
during this period, with FE-analysis in SIMLA and programming in Python.

e John Bjarne Svinvik, engineer, my office partner and oil and gas-dictionary. He has
used a lot of time explaining words and expressions | have needed help with.

Sivert Duvsete, Stavanger, 14.06.2011

Table of Contents

Y U101 0 1 VTP PP TP P PP I
] - 1ol T TP PR PR PSP Il
ADDIEVIALIONS ...ttt bt sh e st st sttt ettt e be e s sreereens \Y
1537] o] USSP \
Iy o] T f SRR Vi
LISt OF TADIES ..ottt st e s e s bt e s bt e s bte e sabeesabeeebeeennbee s beeene sabeesares Vil
L = INEFOTUCTION ettt ettt bt e st e e s bt e e ba e e abe e s bt e ebbeesbeesaseesabeeennseenas sbeean 1
B] o =Yt u V7Y 2
I I o T=To T YA 3
TR0 = 10 ol {1 o= USRS 3
T8 0 R G- o T - | TPV PS PSPPI 3
3.1.2 UPh@aval BUCKINGccciiiiiiiiiie ettt ettt ettt e s stee e s sbte e e s bae e s snbae e e sabaeaeennreeas 4
3.1.3 Lateral BUCKIING ..cceeveee ettt ettt et e e s bee e s s abe e e e s bae e e eabeeeesnnnes 5
3.1.4 Relation between Lateral and Upheaval BUCKIINGccvvviiiiiiiiiiiiiie e 6

I A YT A =11 a1 Te Il o110 1T L1 oS 6

3.3 EffECtS Of HP /HT FSOIVOIIS «.veeeeeeeieeeeeeeee e et e ettt e e e eeeeeeeeesssesaaereeeesseaanseereeeesssasassseeseeesssennnnes 7
T I = 1LV 1 = USRS 8
3.5 Pipeling DESIZN ANAIYSIS.....uiiiiiiiiiiiciiie ittt s e e s e st e e s e e e e ra e e e anaee s 10
3.5.1 GENEral STreSS CRECKcocveiiiiiiieiiteee et 10
3.5.2 Pipeline Design according t0 DNV COUESuvuiiiiiiiiiiiiiriieeeeeeeiirreeeeeeeeesttreeeeeeeeessarsseeesesenennnns 13
BLB CUIVATUNE L.eiiiiiiiiiii it bbb e e e s et e e s ab b e e s sba s e e s ba e e e snes snes 19
T Y 5 o To 1 |1 =20 20
IR 2O AV T o 1] = ol = SR 21
3.9 Finite Element Method - ANalySis (FEM-A)uuiiiiiiiiieeieee ettt ettt e e e e 22
o AV [oo [V =] (o] o1 =T o | F R PRSP 23
5 — Calibration @NAIYSESciiicuiiieiiiiee ettt e e e e et e e et te e e e et e e e e eba e e e erntaeeeeataeeearaeeeennes 25
6 — DISCUSSION ONi.iiiiiiiiiiiiiiiiiiiieiii et a e s s e e e s b e e s s aaba s e s s saba e e s snbee sabas 27
7 = CONCIUSIONS ..ttt et st sm e sab e s bt e e be e e s me e e sabeesabeesbeeesmneesareeerees seesns 29
Sl A= (=T <] o Tl E TP UOUPPRPRTVII 30
Appendix A — 5pt- and 7pt-files and Design route filesoooeccuiiiieii e 31
4 o1 £ LT T Yo [T oY 1 USRS 32
DESIGN ROULE-FIlB..uiiiiciiiee ittt e e e e e et e e e satt e e e sentaeeesnbteeeesnbaeeesnstaeaeannes 33

Appendix B — Python programmingc.c.eeeiiciiie e ecieee e e esire e e sstre e e sre e e ssaaeeessasaeessnssaeesssseeean 34

VA ToT ol oY o= - [0 o110 Yo USRI 35

Fa I == o T=T o | PSP 35

I [l Y Y= {UE: T= N) R ERE 36
APPENAIX € = SIMLA ...ttt ettt et e e bt e b e e bt e s bt e s bt e sb e e saeesatesatesabesabesabeenbeenseenteenteenns 40
SIMLA [B] .ttt ettt ettt ettt et ettt b et e s b e s bt e she e satesatesatesabeeabeeabeenbeenbeenbeesbeesaee st esatesaeesane eebeenseas 41
o T=4 [0 a1 o = 1Y PSRRI 41

2] (ol oo] s [0l =] o) £ J N 41
Appendix D — USEr MaNUAluiiiiiieee et e e e e e e e e e e e s s aeb e e e e e e e s esansraeeeeeeeennnnens 43
T Ay oo [0 14T o TSP 45
INSTALLATION ...t eitettestte ettt sttt sttt et et b e bt e b e e s b e e sbeesheesaeesatesatesabeeateenbeenteenseebeenseenseens sane 46
Y= (U]« IO OSSOSO P PP PP PPPPPPPPPPPR 46
HOW TO USE THE SOFTWARE (LBSS) ...eeiuttittiieeieeieeteer ettt 47
OVEIVIEW ..ttt et st s bt s s et e s s e e e s e bt e e s abe e e s sas s sarees 47
Converting geographical coordinates to easting and northing coordinates...........ccccceeveenvvnnennn. 49

B 1S = L U o SR 49
Appendix E — Verification tests Of Programcoovciiiiiiiiiieiiie e 50
Verification teStS Of PrOZramcci i e e e e ee e e e rre e e e s bee e e e nnees 51
Appendix F — Script of PYthon Program ...ttt et e e e e s e e e e e e e saaaee s 66

Abbreviations

HP/HT — High pressure / high temperature
VIV —Vortex induced vibrations

FEM — Finite element method

DNV — Det Norske Veritas

FE — Finite Element

FEA — Finite element analysis

ULS — Ultimate Limit State

SLS — Serviceability Limit State

FLS — Fatigue Limit State

ALS — Accidental Limit State

KP — Kilometer Point (along pipeline)

ROV — Remotely Operated Vehicle

GPS — Global Positioning System

EPD — Enthought Python Distribution

ID — Internal pipe diameter

TH — Pipe wall thickness

E — Modulus of elasticity (Young’s modulus)
LBSS — Lateral Buckling Screening Software
BM — Bending moment

m Meter m
- Degrees of Celsius °C
Do External hydrostatic pressure N/m’

WD Water depth m
p Density Kg/m’
g Gravity m/s’
oy =Sy Hoop stress N/m?
o, =35, Longitudinal stress N/m?
Pi Internal pressure (operating pressure) N/m?
D; Internal diameter m
Do Outer diameter m
t Wall thickness m
a Linear thermal expansion coefficient 1/°C
AT Temperature difference °C
Da Differential pressure across pipe wall N/m?
v Poisson’s ratio -
Fa Axial force N
A Cross-section area of pipe m?
My Bending moment Nm
I Moment of inertia m*
y Distance from the pipe bottom to the centre of the pipe; Do/2 m
g Longitudinal strain -
K Curvature m™*
R Radius m
y" Second derivative of y -
y' First derivative of y -

\

List of Figures

Figure 1 - Pipeling With OVErDENdooi i e e e e e et re e e e e e eennnes 4
Figure 2 - Pipeline exposed to upheaval bUuCkling............oooviiiioiiiiie e 4
Figure 3 - Pipeline exposed to lateral BUCKING™covivieeeueeeeeeeeeeee et 5
Figure 4 - Weight coat loss at damaged location™ (Kvitebj@rn gas pipe)........cccoeeeveeeereereevrreeseenesenns 8
FIGUrE 5 - BOTEOM TraWling @CHIVITY ™eeeeeeeeeeeeeeeee ettt e et eeee et ee et et eeseseseeeeeeeeeeeeeeeeeeeeeeeenens 9
Figure 6 - Hoop stress and longitudinal stress in a cylindrical shaped part.......ccccceevveeiviieeeccciee e, 10
(O A Y o U [=] o =T o} =T] TR 20
Figure 8 - An example of SMOOtNINGcooi i e e e e e nrrae e e e e s 21
Figure 9 - A simulated pipeline on meshed seabed...........cuvviiiiii e e 25

List of Tables

Table 1 - Material reSistanCe faCloruuuiviiiiiiiiiiieieee e 14
Table 2 - Material SErENGLN ..o e e e e et e e e e e e sererreeaeeeeean 15
Table 3 - Load effect factors and load combinations...........ceeeiiiiiiiiiiiicei e 17

Vi

1 - Introduction

In the offshore industry fluids have to be moved in huge quantities and over long distances;
water, oil, natural gas, and carbon dioxide are examples. One option to move fluids is
transporting them through pipelines. A pipeline is a fixed asset with large capital costs. Once
the pipeline is in place, the operation and maintenance costs are relatively small', which
makes the pipelines a good option for transport of oil and gas from many fields.

Due to the risk of impact by fishing gear, ship anchors, etc, pipelines should be buried under
the seabed, but this is not always the case, nor does it always solve the problem.

When production starts and the produced fluid runs through the pipeline the internal
temperature and pressure will increase, due to the reservoir conditions. When the internal
pressure increases the hydrostatic pressure outside the pipe remains the same, which
causes greater circumferential stress, also called hoop stress, in the pipe. The temperature
increase will lead to thermal expansion of the steel, and result in axial compressive forces in
the pipe. Combined they result in a longitudinal stress of the pipe. As a response to the
longitudinal compressive force, when the pipeline is restrained (see chapter 3.2), global
buckling may occur at a position determined by the curvature of the pipeline and the
support conditions.

A pipeline will buckle in the direction where it meets the least resistance. In a free span it
usually buckles downwards, on the seabed it can move sideways (lateral buckling), and for
buried pipelines the easiest way to move usually is upwards. The last one is well known as
‘upheaval buckling’, which is a phenomenon that is unfavorable considering the risk of
impact by fishing gear mentioned earlier.

For control of the pipeline and its movement after being set in operation, an ROV is used,
equipped with several cameras and a pipetracker. This method of determining the new
position of the pipeline will not give the exact position; it will have its errors. These errors
are called noise (see smoothing section) in the data set (positional coordinates). The
standard formats of these data sets are 5pt-files or 7pt-files (appendix A). To use this data,
for example, to find the curvature of the pipeline, smoothing of the data set is necessary.
This thesis is narrowed into the lateral movement of the pipeline.

2 - Objectives

The scope of this thesis is to develop a Screening Software Tool for Evaluation of Pipeline
Lateral Buckling, a tool for evaluation of pipeline integrity based on survey results. The
survey results to be evaluated will be in the form of 5-pt or 7-pt files (explained in appendix
A). The main purpose of the software is evaluation of locations that have undergone lateral
buckling. The software tool will be based on Python (appendix B). Python is the chosen
programming tool because of its effectiveness; quick line reading, and great memory (this is
a requirement because of the size of the survey data file).

In order to develop a buckling screening tool for evaluation of results from pipeline surveys,
the following work should be included:

» Calibration analyses
- FE analyses (using the program SIMLA) for selected pipeline dimensions and
pipe-soil parameters will be performed in order to check buckling scenarios.
- Existing IKM Ocean Design in-house data will also be used as an input to the
result database.
- A comparison of the Python and SIMLA results will give a good approximation as
to which of the smoothing methods should be used.

» Software development
- ldentification of locations that have undergone lateral buckling will be made,
and comparison between different surveys will be carried out.
- Automated routines for import of design/ as-laid and operational data.
- Presentation of development in lateral buckling behavior.
- Evaluation of identified locations, smoothing of survey data, estimation of
utilization factor.

» User manual development
- The user manual shall give a description of the applied methodology.
- Description of required input and operations in order to use the software.

3 - Theory

3.1 Buckling

3.1.1 General

Global buckling is a mode of buckling which involves a substantial length of the pipeline;
usually several pipe joints without gross deformations of the cross section; upheaval
buckling is an example thereof. On the other hand, local buckling is a mode of buckling that
is confined to a short length of the pipeline causing gross changes in the cross section;
collapse, localized wall wrinkling and kinking are examples of thereof’. Global buckling of a
pipeline can be compared to a bar in compression; the pipeline will buckle in the direction
where it meets the least resistance. In a free span it usually buckles downwards, on the
seabed it can move sideways (lateral buckling), and for buried pipelines the easiest way to
move usually is upwards. The last one is well known as upheaval buckling, which is a
phenomenon that is unfavorable considering the risk of impact by fishing gear and anchors.

The driving force for buckling of the pipeline is the effective axial force (see chapter 3.5.1). It
is induced by a temperature or/and pressure increase. Before production starts the internal
temperature of the pipeline is about the same as its surrounding seawater. When the
pipeline is put into service the temperature and pressure will increase. As a result of this the
pipe will expand. A constrained pipeline will not allow expansion to occur which will result in
axial compressive forces in the pipe wall. The pipeline will try to relieve the stresses by
buckling?, it will try to find a new equilibrium by moving perpendicular to the pipe axial axis.
The level of axial force to initiate this global buckling depends on™®:

e Pipe cross section properties

e Lateral resistance

e Qut-of-straightness in the pipeline

e Lateral trigging force (for example trawling)

This phenomenon is most likely to happen in HP/HT reservoirs. Even pipelines with
adequate wall thickness may be exposed to buckling at moderate temperatures and
pressures’.

There are several failure modes for a pipe exposed to global buckling. Global buckling is a
load response and not a failure mode alone, but global buckling may lead to failures such as
fracture, fatigue, local buckling, bending moments, and large plastic deformations. For
pipelines lying exposed on the seabed, global buckling may be allowed as long as its
displacement is predetermined? (controlled).

If the curvature of the buckle (upheaval) leaves a gap between the pipe and seabed, a free
span is formed. The pipeline may then be vulnerable to fatigue due to VIV, vortex induced
vibrations, at this region3 or to fishing gear hooking onto the pipeline.

3.1.2 Upheaval Buckling

A buried pipeline can sometimes arch upwards out of the seabed, forming a raised loop that
may project several meters’. This phenomenon (upheaval buckling) is induced by a
longitudinal compressive force due to temperature and pressure increase, when going into
operating mode. Upheaval buckling is caused by the interaction between that longitudinal
compressive force and the local curvature of the pipeline axis’. In other words, axial
compressive forces tend to make the pipe push upwards. Upheaval may occur if the
combination of weight and the uplift resistance of any cover are not large enough to
restrain the pipe’.

Buckle

Figure 1 - Pipeline with overbend Figure 2 - Pipeline exposed to upheaval buckling

If the pipeline is buried, then there is less resistance to upwards movement compared to
sideways/ lateral buckling. The pipeline therefore buckles upwards, almost invariably at
overbends where the profile is convex upwards. Figures 1 and 2 illustrate the sequence
schematically’. The pipe can also buckle down into the ground, if the seabed stiffness is low
enough; for example soft mud. The pipe will always buckle in the direction where it meets
the least resistance.

3.1.3 Lateral Buckling

Lateral buckling is induced in the same way as upheaval buckling by a temperature or
pressure increase. The difference between lateral and upheaval buckling is just the direction
of the bending movement.

If a pipeline is not buried it is usually easier for it to buckle sideways. The resistance to
sideways movement is the friction force (soil friction), which is the submerged weight of
pipe multiplied by the friction coefficient. There is also a resistance when moving through
seawater, but it is negligible’. In figure 3, a pipeline in service has been exposed to lateral
buckling. The track of the as-laid pipeline is notable.

Many pipelines buckle laterally to some extent, but lateral movements frequently go
undetected. Lateral movements are often harmless, because the lateral movement occurs
over a substantial distance, the bending stresses are small, and the buckle does not localize
into a sharp kink. However, lateral movements can be larger, and if one is unlucky, all the
movement is concentrated in one buckle. If this movement is too large then a kink might be
formed, and if the strain is large enough this can result in rupture of the pipe wall.

Figure 3 - Pipeline exposed to lateral buckling13

A lateral buckling incident in Brazil in 2000 has generated further concern. A hot pipeline
buried in soft mud in a shore approach buckled sideways and kinked. The thin wall folded,
and the pipe ruptured, leading to a damaging oil spill*. In other words, lateral buckling can
be a problem and it needs to be controlled and monitored.

3.1.4 Relation between Lateral and Upheaval Buckling

When a pipeline is exposed to upheaval buckling its normal response will be to lie down on
the ‘side’, on the seabed. This is due to the curvature of the pipeline lay and currents on the
sea bottom. For illustration, one can think of a perfectly straight elastic stick on a flat table.
Compressive axial force is applied from both sides of the stick; this will result in the stick
bending up in a smooth curve, as long as it is not bent upwards in an angle (transverse
angle). Pipelines are usually not laid in a perfectly straight line given the uneven seabed, so
gravity and currents will be the forces laying the pipeline down.

If a pipeline buckling leads the pipeline into exposure on the seabed, the simplest solution
would be to stabilize the pipeline at its new position. This can be done by covering the
exposed pipe, for example by rock dumping, concrete mats, etc. However, if the integrity of
the pipeline is reduced and the pipe wall is overstressed, this may lead to rupture. Then the
damaged part will have to be replaced before stabilizing the pipeline again3.

3.2 Restrained pipeline

So far it has been have written that the temperature increase is proportional to the
expansion. This statement is only correct as long as the pipeline is unrestrained. If it is
restrained or partially restrained, then the result might be global buckling (note: the pipe
can also buckle without being restrained). The stresses acting depend on whether the
pipeline is unrestrained, restrained or partially restrained.

Friction (soil friction) acts as a restraining force. A fixed object that is connected to the
pipeline will have the same effect, for example; a platform.

3.3 Effects of HP/HT reservoirs

A high pressure, high temperature reservoir is formally defined by having an undisturbed
bottom hole temperature of greater than 149°C and a reservoir pressure higher than
690bar.°

High temperatures from the content of the pipeline causes expansion of the pipe.

Material properties such as yield stress, tensile strength and Young’s modulus change with
material temperature, and if necessary may be accounted for.

External hydrostatic pressure (po) is an important factor regarding the strength capacity of
deep-water pipelines. The external pressure is a function of the water depth (WD), water
density (p = 1025 kg/m? for seawater) and gravity (g = 9,81m/s?).

po=WD-p-g

So, for example a reservoir has its wellhead on the seabed, at 3000m water depth. The
content running through the pipeline has a pressure of 700bar. The hydrostatic pressure in
this case would be around 300 bar, which means that the differential pressure (pi-po) is 400
bar.

For a reservoir with pressures around 200 - 400bar, at the same water depth, the pipe
would not be exposed to the same amount of axial forces.

This just shows that for HP/HT reservoirs buckling will always be an issue, because of the
great axial forces induced.

3.4 Trawling

Trawling is a method of fishing that involves pulling fishing nets through the water behind
one or more boats. The net that is used for trawling is called a trawl’. One method is bottom
trawling, see figure 5, the trawl is dragged on the seabed and it can apply a pullover load on
the pipeline. Trawling may affect the pipeline in several ways; trawl impact, pullover and
hooking. Trawl impact is when the fishing gear hits the pipe, while dragged on the sea

Il

bottom, and causes deformation/damage on the pipe. Buckling has a “weakness” for
deformed pipes since the deformation weakens the pipe’s bending stiffness, and makes it
more exposed to axial compressive forces. While a pullover load is when the trawl sweeps
across the pipeline and exposes the pipe for a great load for a short period of time. If a
pipeline curve is experiencing great tension but still not enough to cause buckling of the
pipe, then the pullover load might be all that is needed triggering lateral buckling of the
pipeline. At last there is hooking; it can inflict some serious damage to the pipeline. Hooking
is caused by a ships anchor, or other similar types of gear, hooking on to the pipeline and

dragging it along.

With upheaval buckling the risk of trawl impact increases, this is one of the reasons why
upheaval buckling is a very unfavorable scenario. An example of such an incident occurred
at the gas field Kvitebjgrn in the North Sea, with HP/HT conditions. The cause of the
accident was an anchor; it had hooked on to the pipeline and inflicted serious damage, see
figure 4. The pipe was dragged 53m along the seabed, which resulted in a kink of the
pipeline. A 26m long pipe section needed to be replaced™” *2.

Figure 4 - Weight coat loss at damaged location™ (Kvitebjgrn gas pipe)

When the pipeline is installed it is placed on the seabed in tension, which makes it less
vulnerable to trawl pullover loads, compared to a pipeline in service exposed to axial
compressive forces. In the last case a pullover load might be the triggering factor for the
pipe to collapse or be exposed to local buckling. So lateral buckling might also be a problem
if not controlled.

Figure 5 - Bottom trawling activity™

http://upload.wikimedia.org/wikipedia/commons/2/2a/Trawling_Drawing.jpg�

3.5 Pipeline Design Analysis

3.5.1 General stress check

This write up on theory used for the stress check is inspired by (1), (3) and (4).

A pipeline has to be designed to withstand all the loads that it will be subjected to, both
during installation and operation. During installation it will be bent, pulled and twisted.
When production starts and it goes into operation mode it will be loaded by; internal
pressure from the fluid it carries, by external pressure from the sea (hydrostatic pressure),
and by stresses induced by temperature changes. External impacts from anchors and fishing
gear (trawling) can also occur.

Figure 6 - Hoop stress and longitudinal stress in a cylindrical shaped part

In figure 6, hoop stress (Sy) and longitudinal stress (S.) are shown. Hoop stress is
circumferential stress; it is generated by internal pressure (being the operating pressure). If
the hoop stress is too large the pipeline can yield circumferentially, and continued yielding
will lead to thinning of the pipe wall and ultimately to a rupture.

Hoop stress, o, = %
Where, p; isinternal pressure (operating pressure)
D, isexternal pressure (hydrostatic pressure of sea)
D; is inside diameter of pipe
D, isoutside diameter of pipe
t is wall thickness of pipe

A pipeline in operation is exposed to longitudinal stresses as well as hoop stress.
Longitudinal stresses arise primarily from two effects: Poisson and Temperature. The first
one can be explained by imagining a steel bar loaded in tension, it will extend in the tension
direction and contract in transverse direction. If transverse contraction is prevented, a
transverse tensile stress is set up. As for only circumferential stress (no longitudinal stress),
the pipe will extend radially and contract in longitudinal direction. If friction against the
seabed (soil friction) or attachments to fixed objects such as platforms prevents longitudinal
contraction, a longitudinal tensile stress occurs. This is the Poisson effect.
The second effect that induces longitudinal stress is temperature. When the temperature

10

inside the pipe increases the pipe expands in all directions, if the pipe is free to expand in all
directions, both axially and circumferentially (radially). Circumferential expansion is usually
completely unconstrained, but longitudinal expansion is constrained by the seabed (soil
friction) and other objects that constrain the pipe. As for the first effect, if axial expansion is
prevented, a longitudinal compressive stress will occur.

Bending moments due to, for example, free span or bending under installation can also
occur and will be included in longitudinal stress. If the pipe is applied with an external axial
force, this axial force will also be included in longitudinal stress.

Longitudinal stress, 0; = a - AT - E — U% + (% + %y)

(piDi—poDo)
2t

Poisson effect: v

Thermal effect: a - AT - E, (thermal stress)

Where, E is young’s modulus
a is linear thermal expansion coefficient
AT is temperature difference
Di is internal pressure (operating pressure)
Do is external pressure (hydrostatic pressure of sea)

D; is inside diameter of pipe

D, is outside diameter of pipe

t is wall thickness of pipe

Da is differential pressure across pipe wall
v is Poisson’s ratio

Fa is axial force

A is cross-section area of pipe

My is bending moment
[is moment of inertia
y is distance from the pipe bottom to centre of pipe; D, /2

Longitudinal strain,

11

The resulting axial force in curvature:

Poisson contraction effect is seen acting in the opposite direction to the end cap force.
The end cap force is caused by the internal pressure of the content in the pipeline acting on
an effectively “closed” end of a pipeline, such as a bend™*.

2
i

4

End cap force: pj

Expansion is due to combined effects of temperature, pressure and Poisson’s effect. In
operational pipelines, the three factors will usually occur in combination, which gives this
expansion axial force:

(piDi - poDo) 7-[Diz
F,=a-AT ‘E-A—v———A+pp—
Thermal force Poisson force End cap force

12

3.5.2 Pipeline Design according to DNV codes

The information in this chapter is found in (9) and (10).

The DNV-0S-F101 standard is used to provide an internationally acceptable standard of
safety for submarine pipeline systems. It serves as a guideline for designers, purchaser and
contractors.

Two load conditions are used, load controlled condition and displacement controlled
condition. Different design checks apply for these two conditions. An example of a
displacement controlled condition is a pipeline being installed; it is bent into the shape of
another curved structure, such as a reel. In this case, the curvature of the pipe is
predetermined. But the circumferential bending that leads to ovalisation is determined by
the interaction between the curvature and the internal forces induced by the curvature.
Another case is an expansion spool on the seabed. Pipeline expansion due to a temperature
or pressure increase imposes a displacement at the end of the spool. The structural
response is primarily displacement controlled. However, the lateral resistance to sideways
movement of the spool on the seabed also plays a significant part and induces a degree of
load control.

These examples show that to choose which condition to use is not so easy, there is no
distinct difference between the two conditions in several cases, so the choice should be
based on a skilled judgment on which components of the combined conditions are more
important.

IKM Ocean Design takes both the Load controlled condition and the displacement controlled
condition into consideration during pipeline design.

Load controlled condition = Moment criteria

Displacement controlled condition = Strain criteria

Global buckling is a combination of these two criteria. To combine the load controlled
condition with the displacement controlled condition a condition load effect factor, y,, needs
to be calibrated.

13

Using the Load controlled condition, pipe members subjected to bending moment, effective
axial force and internal overpressure shall be designed to satisfy the following condition at

all cross section:

2 2 2
Sa) My Apg Apg
YscVm\ =< | + VscVm| = 1—(—) +(—) <1
serm <ac5p serm ach acpb(tz) acpb(tz)

Where,

Mgy is Design bending moment

Sq is Design effective axial force
Apy is Design differential overpressure
Vsc is Safety class resistance factor

Vi is Material resistance factor

Mp is Plastic moment resistance

Table 1 - Material resistance factor

Limit state category | SLS/ULS/ALS FLS
Vi 1.15 1.00

My, =f,- (D - t)*t,
Sp is Characteristic plastic axial force resistance given by:

Sp=fym-D—1t3) ¢ty

D is Nominal outside diameter
fy is Yield stress to be used in design
fu is Tensile strength to be used in design

14

Table 2 - Material strength

Characteristic material strength, f,, f,
Property Value
Characteristic yield stress f,=(SMTS-f, temp) ¥y
Characteristic tensile strength fi=(SMTS-ftemp)* Ay ™y
where,

fy,tempand fy temp is the reduction value due to the temperature of the yield stress and the
tensile strength.

oly is the material strength factor,
normally 0.96 if not increased confidence in yield stress, then 1.00 is used.

Oa is the Anisotropy factor,
0.95 for axial direction due to relaxed testing requirements in line pipe specification,
1.00 for other cases.

t, is Pipe wall thickness*

* t; and t, are found in DNV-0S-F101, section 5-C 300, Characteristic wall thickness. t; is
pipe wall thickness used for calculations of pressure containment resistance, in other words
in situations like system pressure testing. Here the fabrication thickness tolerance, t¢g, is
taken into consideration. This is because the pipe will crack at the spot where the wall
thickness is the thinnest. When designing for the bending moment this is not needed, in this
case the nominal wall thickness is used (the overall wall thickness). The next step is to know
if the pipe is being designed for an operational condition, or for the construction phase
(installation mode). For a pipe in operational condition t,r is included, which is the
corrosion allowance. t is the nominal wall thickness of the pipe(un-corroded);

ty =t —teorr

This is due to the corrosion from the seawater, CO, and Hydrogen Sulfide from the reservoir
fluid.

Po (t2) is the Burst pressure

Pb (X) = Min(pp,s(X);Pb,u(X)), Which is the pressure containment resistance.

Pb,s(x) :% “fy % , Which is yielding limit state.

15

2% fu 2 il i Bursting limi
Poun =55 " 115 T3 which is Bursting limit state.

Note! In the two formulas above x shall be replaced by t; or t, as appropriate.

a. is Flow stress parameter accounting for strain hardening given by:
fi
ac = (1- ﬁ) + ﬁ_u
y
But maximum 1,20.
0,4+ qy D for D/t,< 15
B =1(0,4+qn) (60 - /tz) /45 for 15 < D/t, < 60
0

for D/t, > 60

(P1a — De) 2 for p1g > pe
dn = pp(t2) 3
0 for pig < pe

a. is not to be taken larger than 1,20

Where,
Pe is External pressure
Pid is Local design pressure

My = MpypYe + Mgye + Myyave

Yr, Yaand yg are given in table 1. While v, is to be found separately.

Mg is Functional bending moment
Mg is Environmental bending moment
M, is Accidental bending moment

16

Table 3 - Load effect factors and load combinations

Functional Environmental | Accidental Pressure
Limit State/ ' Loads? load loads loads
Load combination Yr Ye Ya Yp
SLS & a 1,2 0,7 - 1,05
ULS b 1,1 1,3 - 1,05
FLS 1,0 1,0 - 1,0
ALS 1,0 1,0 1,0 1,0

Y the functional load effect reduces the combined load effects, y shall be taken as 1/1,1.

To find y., DNV-RP-F110 section 9 must be used, Condition Load Effect For Exposed
Pipelines.

This chapter includes calculation procedures to calculate the load condition factor, y, for
pipelines that buckles. The procedure applies to scenarios of even seabed, un-even seabed,
with and without trawl. Depending on the scenario one or more of the parameters may be
zero.

The condition factor, y.is based on the prevailing uncertainty in the response bending
moment given by:

Ye(p, T, Fr) = max [080;0,72 - (1 + 2 CoV (X (p, T, Fr)))|

Where;

p is characteristic pressure
T is temperature

Fr is trawl load

A y_less than unity calculated in this section shall not be applied to the effective axial load
according this Recommended Practice.

17

COV(XF(p, T, FT)) is the Coefficient of Variation of the resulting bending moment in the
buckle. The uncertainty in the bending moment response from the global FE-analyses is
assumed to arise from:

- uncertainty in the axial soil resistance, Xa

- uncertainty in the lateral soil resistance, X,

- uncertainty in the applied stress-strain curve, Xg
- uncertainty in the applied trawl load, X

This uncertainty may be estimated from:

CoV (X (p, T, Fp)) = \/ CoV(Xa(p, T, Fr))* + CoV (X, (p, T, F))” + CoV (Xp(p, T, Fp))* + CoV (X (p, T, Fp))°

The CoV(X) terms in the equation above reflects the uncertainty in the impact on the
bending moment response, this from the uncertainty in the soil parameters, choice of
stress-strain curve, and uncertainty in the applied trawl pull-over load. The condition factor,
Y., Will then also represent the degree of displacement control that the pipeline
experiences.

18

3.6 Curvature

The definition of curvature is the amount by which a geometric object deviates from being
flat, or straight in the case from a line, but curvature is defined in different ways depending
on the context™.

1
K= —.
R
Where;
K is curvature.
R is radius.

The formula above shows that in a straight line the curvature is equal to zero, and the
curvature of a bend is related to its radius. The bigger the radius is the smaller the curvature
is which means that for a small radius the curvature is large.

Bending moment is equal to curvature multiplied with its bending stiffness (El). The bending
stiffness of the pipeline is found by:

Bending Stiffness = material stiffness * moment of inertia

E is the Young’s modulus; it is a measure of the stiffness of the material. | is the moment of
inertia. The moment of inertia depends on the objects cross-section; in the case of pipelines
a thin walled cylinder approximation is good, which is:

Where,

D, is outer diameter
D; is inner diameter

The location of an installed pipeline is defined by coordinates easting(x) and northing(y). To
find the curvature of the plotted curve/route this formula is used:

E

=

{1+ ?‘2}3{2 y' and y" are derivatives of the curve of the pipeline route.

19

3.7 Smoothing

The survey data is acquired with ROV support. The data is not fully accurate; every survey
report has its own tolerance regarding survey accuracy. When plotting the data points and
interpolating between them a very curvy graph occurs, a curve which in reality is not
possible with the transport pipeline dimensions used in the offshore industry. So to get a
realistic pipe lay picture as output, this graph needs to be smoothed. Smoothing is to
smooth a data set to create an approximating function that attempts to capture important
patterns in the data, while leaving out noise®®. (In common use the word noise means any
unwanted sound, but in this case it is unwanted data without meaning)lg. In this case, as
seen in figure 7, there are multiple stages that take place to get this survey data. First there
is the connection between the satellite and the ship that gives the ships location with the
use of GPS. Second, by using echo the ship knows where the ROV is located at every time,
and at last, the ROV is equipped with a pipetracker (see section ROV Pipetracker) to locate
the pipeline. At each of the three stages of locating the pipelines position there are
measurement errors, all errors together causes the noise.

satellite

ship

seabed

Figure 7 - Measurement errors

With this new approximating function the curvature can be calculated, and the curvature
should tell where the pipeline could have buckled. The different smoothing conditions and
what order of polynomial approximation is used make the result vary. This is why choosing
the right smoothing condition is very important.

20

+6,7 70526 Smoothed plotted pipaling position

]
o

» & survey data
~— .Splines

&

[
T
L]
Ll

gy

:.
|
f’

Marthing [y)
i

5
£

,,i

3

-
(=]

w

] 100 120 140 160 160 00 730
Easting Lx) #4175

Figure 8 - An example of smoothing

Figure 8 is an example of plotted survey data set (green points) and the (blue) smoothed
line (spline). For the untrained eye it looks like three possible areas have undergone local
buckling. But if considering a 20 inch pipeline then this kind of movement is not possible,
the resulting bending moment would be too large (unrealistic) because of the unusual high
curvature.

This is the kind of noise that needs to be reduced. But then again where does the line go
between noise and useable measurements? This is really up to the user; trust in the data
given by the survey contractor, but also use common sense. If the data given is not very
realistic then a quick check of an area can be all that is needed, and then if nothing is wrong
with the pipe this data can be labeled as noise, and can be reduced by smoothing as done in
the figure above. But again, the areas should be checked if the survey contractor says the
data is good, since the contractors usually performs their own calibration, etc of survey
data.

3.8 ROV Pipetracker

A ROV Pipetracker provides the capability of tracking subsea pipelines. To track the pipeline
magnetometer-based sensors can be used. But it is easily affected by other forms of
magnetism, which can cause measurement errors (noise). The pipetracker can also use
pulse induction technology that gives the ability to locate any conductive material on or
below the sea surface. The unit generates highly accurate survey data that can enable the
location of any type of subsea pipeline to be recorded with exceptional accuracy?’. It has the
ability to function around subsea structures.

21

3.9 Finite Element Method - Analysis (FEM-A)

The finite element analysis is a way to simulate the behaviors of an installed pipeline in a
realistic three-dimensional environment obtained by measurements of the seabed
topography. This allows engineers to exploit any opportunities that the pipeline behavior
may offer to develop both safe and cost-effective solutions’. The finite element model may
be a tool for analyzing the in place behavior of a pipeline.

In this thesis the verification work is performed in SIMLA; a FE-analyze software (see
Appendix C).

22

4 - Software development

The design criterion is the allowable bending moment, so to find the actual bending
moment of a pipeline in the operational mode is very important. If the actual bending
moment exceeds the allowable bending moment the axial compressive stress will be higher
than expected, and this can cause buckling of the pipe. This is why finding the curvature of
the pipeline can be so helpful.

In most cases a map of the pipeline route has the coordinates easting(x) and northing(y),
but at the same time engineers want the different positions of the pipeline given in KP
(Kilometric Point along the pipeline). The KP follows the pipeline route from KP O (zero)
which is the starting point, to the end. The way it is written varies, sometimes KP 6 is the
point on the pipeline after 6 meters, but in other cases this point will be written as KP 0.006,
where KP 6 is the point after 6 kilometers. The last alternative is the correct one, since it is
called kilometer point not meter point, however both are used.

To find the curvature, survey data needs to be collected so the position of the pipeline in
operational mode can be determined. The survey data set is a data set of positional
measurements, how many measurements that are taken varies, but normally it is at every
meter following the KP. But as said these measurements differ from each other, distance
wise and in accuracy. Noise in data set reduces the accuracy. This noise needs to be
eliminated/ reduced, and this is done by smoothing the data set through some kind of
interpolating that takes this into consideration by not interpolating through every point,
instead it gives us a better approximation of the pipeline position. It is this smoothing
operation that is important in this software.

For the Lateral Buckling Screening Software (LBSS) the Python programming will be used to
obtain automated routines.

There are 2 main steps in the development of the software tool:

Step 1 will aim to present an overview of the results, based on an evaluation of the survey
data:

- Lateral offset from design/as-laid data.

Import of survey data shall be performed automatically.

23

Step 2, based on reported lateral offset, selected locations will be evaluated individually. In
order to get an accurate estimate of pipeline curvature and bending moments, different
smoothing alternatives will be evaluated for use in the software. Smoothing of the survey
data will reduce/eliminate “noise” in the data set.

Three different smoothing functions in the software Python was applied:

e polyfit()
e interpolation.UnivariateSpline()
e interpolate.splrep() with interpolate.splev()

The polyfit() function gives a polynomial approximation of the data set, but this is for the
whole graph, not just for parts of it, so for long graphs (data sets) this is not a good
alternative. The other two functions uses a method of smoothing, fitting a smooth curve to
a set of noisy observations®’, using a spline function, which is piecewise polynomials with
continuous derivatives to chosen degree. This allows an interpolation with a smoothing
factor that determines how many of the points that should be used (interpolated through).
This allows the user to reduce the “noise” in the data set, and it will most likely give a
smoother/ better picture of the pipeline position.

The interpolation.UnivariateSpline() function reduces the noise very well, however the
coefficients for the piecewise polynomial is needed to calculate the derivative of the curve.
According to a source on the internett®” these coefficients belong to the Bézier formula (for
Bézier curves), which got too complicated compared to the next alternative, so this resulted
in abondonment of the function. The choice ended on the function combination:
interpolate.splrep() and interpolate.splev(). The combination is user friendly and executes
excellent interpolations, and it has the .splev() function to calculate the derivatives of the
graph/curve.

The resulting curvature and bending moment (according to the curvature) for the chosen
alternative is presented as output in the Lateral Buckling Screening Software.

Calculation of the curvature of the smoothed curve multiplied with the pipes bending
stiffness gives the bending moment along the pipeline.

The allowable bending moments for the pipeline will be plotted together with the calculated
bending moments for the smoothed line. (Existing and verified in-house spreadsheets for
calculation of allowable bending moments will be applied for calculation of allowable
moments.)

24

5 - Calibration analyses

The selection of best possible smoothing method when evaluating survey data is critical. In
order to increase the confidence in selection of smoothing method, a set of calibration
analyses using a 3D FE in-place analysis tool, named the SIMLA is used.

y Time

Losd oSt 111 [rosri ;e avrioea]

Figure 9 - A simulated pipeline on meshed seabed

SIMLA reads the seabed data from survey data to generate the three-dimensional terrain
mesh. As the pipeline is laid onto the seabed mesh, the pipeline elements are free to move
in all degrees of freedom, at both ends. The pipeline is therefore not restricted to
movements in the vertical direction only, but may slide sideways if the slope is large
perpendicular to the pipe axis.

25

In order to get a good estimate of pipeline utilization (bending moment) at the time of
survey the following analysis is applied:

1. Create a pipeline route on a pre-made seabed (in SIMVIS).

2. Add pipeline dimensions and soil friction (in SIMLA).

3. Lay the pipeline down on the seabed (in SIMLA).

4. Add pressure and temperature, gradually (in SIMLA).

5. Run SIMPOST for the results: KP value, new x and y coordinates for the pipeline and
the bending moment.

6. Create a text-file with three columns; one with the KP value, the two other columns
contain x and y coordinates separately.

7. Import the new text-file in the developed Lateral Buckling Screening Software.

8. Evaluate the result, and compare it to the results given in SIMLA.

26

6 - Discussion on:

Selecting the program Python:

Because of its effectiveness, fast line reading and great memory, the program Python is a
very good fit for the operations required in the Lateral Buckling Screening Software. Python
lets the user quickly write the code needed and thanks to a highly optimized byte compiler
and support libraries, Python runs more than fast enough for most applications. This makes
it very compatible with the use of large data files, such as survey data.

The three smoothing functions tested in the program Python:

The polyfit() function gives a polynomial approximation of the data set, but this is for the
whole graph, not just for parts of it, so for long graphs (data sets) this is not a good
alternative. It might work for simple curves (short distances), but for longer distances with
several curves this function will be too rough when smoothing the survey data.

The interpolation.UnivariateSpline() function reduces the noise very well, however the
coefficients for the piecewise polynomial are needed in order to calculate the derivative of
the curve. According to a source on the internet® these coefficients belong to the Bézier
formula (for Bézier curves), and after testing the next function interpolate.splrep() with

interpolate.splev() the choice was made. The combination is user friendly and executes

excellent interpolations, and it has a function named .splev() to calculate the derivatives of
the graph/curve. All the user needs to do is to choose a smoothing factor (see appendix D)
that fits; in other words, a factor that reduces the noise and gives a realistic picture of the
pipeline’s position on the seabottom. The smoothing factor is a great attribute of the
function since every survey data set is different with respect to size and the frequency of the
data.

Problems arising through work on the thesis:

Importing easting and northing coordinates and KP values from different data set was
challenging, because some survey data has the data separated with a couple of lines with
field information. This field information is not required and is easy to not import, but the
information can contain numbers which cause problems, for example dates. These numbers
must be excluded from the import through a separate method.

The program SIMLA would never accept the flat seabed profiles created. This was never
achieved during the thesis work. The solution to the problem was to use actual seabed
profiles generated in the program SIMVIS from earlier IKM Ocean Design projects (no field
names given). Due to this solution another problem arose, the verification work got more
challenging. The LBSS tool does not take into consideration the stress effects from upheaval

27

buckling and an uneven seabed. This is an important factor to consider when evaluating the
LBSS results, when comparing them to the results in SIMLA.

This was not the only problem when using the program SIMLA; when the material
parameters were imported, SIMLA would not finalize the FE-analysis when using a linear
material type (which is used in the Lateral Buckling Screening Software). So, in every FE-
analysis run performed in SIMLA an elasto platic material type has been used.

Both these problems have had their effect on the results given in SIMLA, which have made
the verification work complicated. This, as said, is because the Lateral Buckling Screening
Software analyses are run with a linear material type, and on a flat seabed profile.

The finalized Lateral Buckling Screening Software developed:

See chapter 7 — Conclusions.

Further work and improvements:

The effects on the stresses from an uneven seabed can be the next big step for further
development of the software. This might be the solution to achieve more accurate results.

The method used for importing easting and northing coordinates and KP values from
different data set should be improved. The current method reads a line in the data set and
imports the elements in that line that contain a numerical value. The reason for this is that
some survey data has the data separated with a couple of lines with field information. This
field information is not wanted and is easy to not import, but the information can contain
numbers which cause a problem, for example dates. These numbers must be excluded from
the import through a separate method.

More testing of the software should be performed. Testing on a totally flat seabed would be
very useful, the result will show the effects from a flat seabed compared to an uneven
seabed. More testing with different pipe parameters should be performed to see how
essential the pipe dimensions are for the results.

28

7 - Conclusions

The Lateral Buckling Screening Software (LBSS) has shown to be a good tool for the
evaluation of pipeline lateral buckling. By using the program Python as programming
software it has developed into an easy and effective tool for import of data (for example
survey data); with quick line reading and great memory. LBSS contains a smart smoothing
function. Why is it smart? Every survey data file contains different amount of data; length
and frequency wise. So a permanent formula or smoothing factor will not work. LBSS gives
the user the opportunity to choose a smoothing factor as many times as the user feels is
necessary for the outcome/ result to be realistic and sufficient to obtain a good estimate for
further curvature calculations.

Currently the LBSS has its limitations. Calculations can only be done with a linear material
type, and when calculating the bending moment it only takes the horizontal position into
consideration. So any effect from an uneven seabed or upheaval buckling is not included,
this is why the LBSS will always give lower stress results than a FE-analysis software. To
improve the tool, this is the difference maker.

Note! The LBSS smoothing function can also be used for smoothing of other types of data.

29

8 - References

(1)

(2)
(3)

(4)

(5)

(6)
(7)
(8)
(9)

(10)

(11)

(12)

(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

Palmer A. C., and King R. A., Subsea Pipeline Engineering. PennWell Corporation,
Tulsa, USA (2006)

http://en.wikipedia.org/wiki/trawl

Ommundsen, M. L., Upheaval Buckling of Buried Pipelines, Master thesis at University of
Stavanger (2009)

Karunakaran, D., Structural Design of Pipelines [Lecture notes], University of Stavanger
(2010)

Karunakaran, D., Upheaval and Lateral Buckling [Lecture notes], University of Stavanger
(2010)

http://www.glossary.oilfield.slb.com, on HP/HT.

Bai, Y., Subsea Pipelines and Risers. Elsevier Ltd, Oxford, UK (2005)

ANSYS Training manual, SAS IP Inc. (2006)

DNV-0S-F101, Submarine Pipeline Systems. Det Norske Veritas, Offshore
Standard. DNV, Hgvik, Norway (2007)

DNV-RP-F110, Global Buckling of Submarine Pipelines-Structural Design due to
High Temperature/High Pressure. Det Norske Veritas, Recommended Practice.
DNV, Hevik, Norway (2007)

Solheim, R., Presentasjon sikkerhetsforum — alvorlige hendelser.
Petroleumstilsynet. Stavanger, Norway (2007)
http://www.aftenbladet.no/energi/1253149/Anker_kan_truga_lys_og_varme.ht
ml

OIL&GAS JOURNAL, www.ogj.com, picture search on www.google.com

J P Kenny Group, Pipeline expansion analysis, Design guidelines (1994)
http://news.mongabay.com/2006/1124-trawling.html
http://en.wikipedia.org/wiki/Curvature
http://en.wikipedia.org/wiki/Smoothing_spline
http://en.wikipedia.org/wiki/Smoothing

http://en.wikipedia.org/wiki/Noise
http://www.epmag.com/archives/features/64.htm
http://findarticles.com/p/articles/mi_qa5367/is_199808/ai_n21426438/
http://comments.gmane.org/gmane.comp.python.scientific.user/24701

30

Appendix A
5pt- and 7pt-files
and

Design Route-files

7pt-files and Spt-files

The files start with general information about the field, and are completed with a long series
of numbers. Each separated part of the line contains certain information; this pattern is
followed through the whole document. For the Lateral Buckling Screening Software, only
three of these line elements are needed; KP, Easting and Northing. These three tell the
horizontal position of the pipeline (a 2D horizontal coordinate system) and the given KP
value along the pipeline.

The problem here (for the Lateral Buckling Screening Software) is that the software needs to
know which line not to read, and that every line needs to be split for export of wanted data
(the tree mentioned above).

en
=7}

Figure A - A trenched pipeline with the seven points given in a 7pt-file

Under this text there is a section from a 7pt-file, it contains; the KP value, Easting
coordinate, Northing coordinate, and then the 7 points shown in figure A follows. The last
points after that tell the offset from the survey centre line. The difference between 7pt-files
and 5pt-files is that the 5pt-files contain two less points then the 7pt-files. The two
outermost points is not to be found in the 5pt-files.

KP;Easting;Northing;FarPortMSBL;NearPortMSBL;PortMSBL;StbdMSBL;NearStbdMSBL;FarStbdMSBL; TOP;FarM
SBLdist;NearMSBLdist;MSBLdist (# This originally only one line)

-000.0101;473081.77;6772032.49;189.91;189.94;189.53;189.45;189.62;189.31,188.70;17.88;6.06,;1.82
-000.0091;473082.65;6772031.91;190.11;189.82;189.55;189.55,189.57;189.34,;188.72;18.12;5.70;1.50
-000.0081;473083.56;6772031.56;190.16;189.62;189.68;189.66,189.46,189.45,;188.75;18.12;5.65;1.47
-000.0071;473084.53;6772031.21;190.05;189.56;189.59;189.59;189.56,;189.60;188.79;18.76,6.03;1.55
-000.0062;473085.43;6772030.89;190.10;189.71;189.71,189.71;189.64,189.71,;188.86;18.41,5.73;1.55
-000.0052;473086.41;6772030.58;190.23;189.66;189.80;189.82;189.59;189.42;188.89;18.31,6.36;1.53

-000.0041,473087.38;6772030.28;190.19;189.93;189.71,189.71,189.66,189.28;188.93;17.51,5.80,1.82

32

Design Route-file

As the 7pt- and the 5pt-file, the Design Route-file (see example under this text) starts with
general field information (not included in example), and this is followed by a bunch of
numbers. In this case the station column is the KP value.

When using Design Route-files in the screening tool, it is column 1, 3 and 4 which is needed

to perform the correct plotting.

Station Point Easting (X) Northing (Y) Elevation (Z)
0.0 POB 473090.8610 6772027.9130 0.0000
1.0 POT 473091.7671 6772027.4900 0.0000
2.0 POT 473092.6733 6772027.0670 0.0000
3.0 POT 473093.5794 6772026.6441 0.0000
4.0 POT 473094.4856 6772026.2211 0.0000
5.0 POT 473095.3917 6772025.7981 0.0000
6.0 POT 473096.2978 6772025.3751 0.0000
7.0 POT 473097.2040 6772024.9522 0.0000
8.0 POT 473098.1101 6772024.5292 0.0000
9.0 POT 473099.0163 6772024.1062 0.0000
10.0 POT 473099.9224 6772023.6832 0.0000

33

Appendix B

Python Programming

Python programming
In general

Python is an Enthought developed software. It provides scientists and engineers a
comprehensive set of tools to perform rigorous data analysis and visualization®. Python,
well known for its flexibility and ease-of-use, is becoming a more and more popular
programming language for users worldwide. EPD, Enthought Python Distribution, backs this
statement up by its impressive and powerful collection of Python libraries, including SciPy,
NumPy and matplotlib.

The choice of selecting EPD as a programming tool is reasoned by its effectiveness; fast line
reading, with a great memory. Python lets the user write the code needed, quickly. And,
thanks to a highly optimized byte compiler and support libraries, Python runs more than fast
enough for most applications®. This makes it very compatible with the use of large data files,
compared to computational demanding software, like Visual Basic. And, it is free to use.

Some of its key distinguishing features include?:

e Very clear and readable language

e Intuitive object orientation

e Natural expression of procedural code

e Full modularity (the use of individually distinct functional units)

e Exception-based error handling

e Very high level dynamic data types

e Extensive standard libraries and third party modules for virtually every task

! http://www.enthought.com/products/epd.php
? http://www.python.org/about/
3 http://dictionary.reference.com/browse/modularity

35

The language [4]

Python was intended to be a highly readable language. It is designed to have a clear and
organized visual layout, frequently using English keywords where other languages use
punctuation. The language uses certain statements and expressions.

def addS(x):
return x+5

def dotwritelast):
nedename = getModename ()
label=symbol. sym_name. get(int(ast[0]),ast[0])
print % Inodename, label],
if 151n5tan:e[35t[1] strl:
if ast[1].strip():
print X ast[1]
else:
print
else:
print
children = []
for n, child in enumeratel(ast[1:]]:
children. append[dnturltelchlld]]

print % nodename,
for name in children:
print % name,

Figure B - The figure shows a Python 2.x code and the language that is used*

Among others, these are the main statements that have been used developing the
screening tool (# marks a comment):

e The if statement, which conditionally executes a block of code, along with else and
elif (a contraction of else if).

A simple unrelated example:
A variable x is found, this is a check to see if the variable found has a value higher than 10.
if x> 10:
print "The variable is too high!"
else:
print "The variable has a value of 10 or less, accepted!"

* http://en.wikipedia.org/wiki/Python_(programming_language)

36

http://en.wikipedia.org/wiki/File:Python_add5_syntax.png�

The for statement, which iterates over an iterable object, capturing each element to
a local variable for use by the attached block.

A simple unrelated example:
Duplicate test
A list named x1 is imported, and this is a duplicate check of the list x1
foriin range(len(x1)): # A function that iterates as many times as the length of list x1
if x1.count(x1[i])>1: # A function that counts the number of similar values as x1[0], x[1], etc
print x1[i], x1.count(x1[i]) # All duplicates are being printed out as output on the screen
else:

pass # if element has no duplicates, nothing happens, it just goes on to the next element
in the list

The while statement, which executes a block of codes as long as its condition is true.

A simple related example:

A list named xx1 contains integers and is imported
A simple test to find the closest value in the list xx1; with respect to what’s being asked for
test=1
startl = input('What is the start easting coordinate of your check? ')
while test==1: # this function runs as long as the variable test is equal to 1.
if startl in xx1:

test=2 # if the coordinate asked for is in the list, the while loop is quit
print "\n'
print str(startl)+" is the start of your interval"
print '\n'
else:
startl=startl+1 # if not, it adds 1 and searches again

37

e The try statement, which allows exceptions raised in its attached code block to be
caught and handled by except clauses.

A simple related example:

This is a method that, after a text file has been imported, dismisses unwanted words and certain numbers
x1=[] # an empty list is created
try:
if float(al[g1-1])>30: # 30 s just a set value, but this also indicates that the wanted value > 30
x1.append(float(al[gl-1])) # A function that enters the wanted numbers into the list x1
else:
pass # if the list element, al[gl-1], is not greater than 30; nothing happens, it just passes on
except ValueError: # this function allows exceptions in the list, so if it reads a string (a word),

pass # the string is not appended in the list x1

e The def statement, which defines a function or method. The def statement does not
execute its block immediately, unlike most other statements. It executes when
wanted in the main() function, as shown under:

A related example:

A function is defined outside the main() function, where its return value is executed in the main() function.

4 alternatives are given
def ask_alt(prompt = "Which of the four alternatives above do you want to look at? In other words,
what files do you have? ', complaint ='1 to 4, please!'): #the function is named ask_alt
while True: # a while loop is executed, it only quits when one of the elements in the list good is given
good =["1','2','3",'4"]
alt = raw_input(prompt) # the variable alt will contain the answer given
if alt in good: # if statement that asks if the answer given can be found in the list good
print "Okey, alternative "+alt+" it is."
return alt # this says that alt is the return value when the function is executed
else:
print complaint

def main(): # this is the main() function

alt = ask_alt() # it is at this position the ask_alt() function is being executed
if _name__=='_main__ "

main() # this is the end of the main() function

38

Expressions:

e In Python, == compares by value.

e Python uses the words and, or, not for its Boolean operators.

e Python makes a distinction between lists and tuples (a tuple is similar to a list but
with parentheses instead). Lists are written [1,2,3,4,5], and changes can be made.
While tuples are written (1,2,3,4,5), and cannot be changed.

e Python has slice expressions on lists, denoted as: [left:right:stride]

Ex. If the variable x is assigned the list [1,2,3,4,5], then the following expressions will
be true:

x[0:2] == [1,2], ps: x[0] is the first element in the list.

x[1:4] == [2,3,4], i.e. the slice goes up to, but not including, the right index.

x[:] makes a copy of the list.

e As decimal separator punctuation is used, not comma. Comma is used for separation
of different elements in a list.

e To use a function that belongs to a certain library, that library needs to be imported.
Ex. Import scipy

Methods:

Methods on objects are functions attached to object, example, x1.append(“1”). Where x1 is
the object and append is the function. The number 1 is being appended in the list x1.

Libraries used (among others):

e Matplotlib is the python 2D plotting library

e NumPy is the fundamental package needed for scientific computing with Python. It
provides convenient and fast N-dimensional array manipulation.

e Pylabis another library used for plotting.

e SciPy is open-source software for mathematics, science and engineering. It depends
on NumPy, it is built to work with NumPy arrays, and provides user-friendly and
efficient numerical routines such as routines for numerical integration and
derivation”. It also have good interpolation routines.

> http://www.scipy.org/

39

Appendix C

SIMLA

SIMLA [6]
Program basis

SIMLA is a computer program for simulation of umbilical structures. It was developed (Sept.,
2000) after a simulation request related to the installation of the Ormen Lange Pipeliness.

Basic concepts
Analysis in SIMLA can be divided up in several phases; they are organized in figure C.

Figure C - The figure illustrates the SIMLA system architecture®

e The Input File is where the user enters his pipeline and field data. It is text string
based; every input line starts with a string, also called a card in SIMLA. Every card has
its own function, some is used to enter the pipe dimensions, other cards can be used
to: decide the different loads and load histories (temperature and pressure, etc),
enter material properties, seabed properties (friction wise), decide the sequence of
analysis (it defines a set of time intervals where different properties may apply with
respect to step length, time interval for result storage and type of analysis — static or
dynamic), and among others a text file containing the seabed profile.

e When the input file is complete the next phase is to run the analysis in SIMLA. If the
analysis is successful the user can use XPOST for visualization of pipeline and the
buckling effects on it for each time step.

e To get the results such as new pipeline position after a buckle has been triggered,
bending moment, etc, SIMPOST is the tool to use. These two results have been used

® saevik, S., @kland, O. D., Baarholm, G. S., and Gjgsteen, J. K. @., SIMLA User Manual, MARINTEK, (2010)

41

in this thesis verifying the screening tool developed. This is done by calculating the
curvature of the new pipeline position in the screening tool and matching the result
with the result given in SIMPOST.

e Other files used are the LOG file, which tells the user when something is wrong and
where the problem is. It also logs every step of the analysis when being run.
SIMVIS is another program used, this is where a 3D seabed is visualized and the user
can create a self-made pipeline route, to analyze further in SIMLA.

For more information, see SIMLA User Manual.

42

Appendix D

User manual

USER MANUAL
for
LBSS

A Screening Software Tool for Evaluation of Lateral Buckling

44

Introduction

The software is developed to reveal potential lateral buckling/snakings, and to check the
degree of utilization with respect to the allowable bending moment (actual BM / allowable
BM).

The main function of the software is to reduce noise from the survey data. This is done by
smoothing the data set with a special function in python programming, and making the
survey data more realistic and useable for calculations of the pipeline curvature.

45

INSTALLATION
Setup

To use this software (LBSS) the program Python is required. Python is an Enthought
developed software; it provides a comprehensive set of tools to perform rigorous data
analysis and visualization’.

Python runs on Windows, Linux/Unix and Mac OS X.
To download Python (including its very much needed libraries), follow these steps:

Enter this web page: http://www.enthought.com/products/trialdownload.php

1) Choose the correct operating system, and enter personal information.
2) Follow the setup instructions.

Note! Attached to the thesis is a CD, it contains program LBSS.py, the master thesis and two
survey data files for testing of the Lateral Buckling Screening Software (LBSS).

7 http://www.enthought.com/products/epd.php

46

http://www.enthought.com/products/trialdownload.php

HOW TO USE THE SOFTWARE (LBSS)

Overview

To get a brief overview of the software; it is divided in three phases. First is the import
phase where three sorts of data can be imported; the design route, as-laid data and survey
data. The wanted combination is of the users own choice. Second phase is an overview
(illustration) of selected data. From this a more detailed search can be done to find possible
lateral buckling, and a wanted section of pipeline is to be chosen. The last phase is to find
the curvature, and the related bending moment of the selected pipeline section. This is
done by finding the best suited smoothing factor* through some sort of iteration. When the
user feels satisfied with the chosen smoothing factor, meaning it gives the most realistic
picture of the pipeline lay, the user should be able to find possible lateral bucklings. All this
is described in detail in the section under.

Phase one: The purpose of the software is to smooth a data set, in other words a list of
data (survey) must be imported. The software will then need to know where on your
computer the file is located, for example, C:\Program files\project2011\(file name).txt. The
software needs a certain format on the imported file. It needs to be a text file (.txt), and
every column needs to be separated by space, not semi-colon or any other sign. If original
data set is separated by such signs this need to be changed. This can easily be performed in
Excel, by using the replace function. When this is in accordance, the next step is to get
acquainted with where your wanted data is positioned, in which column. The software will
ask from which column it should import the KP values from, likewise with the x and y
coordinates.

As mentioned above, the main goal is to find the curvature of the pipeline. The curvature
formula contains the second derivative of the polynomial approximation of the curve, this
causes a small problem; there can be no duplicates in the x-column (this is a problem in the
last phase, but it is best to perform the duplicate check before running the program). This is
only relevant for the section chosen to be checked.

Station Point Easting (X) Northing (Y) Elevation (2)
0.0 POB 473090.8610 6772027.9130 0.0000
1.0 POT 473091.7671 6772027.4900 0.0000
2.0 POT 473092.6733 6772027.0670 0.0000

3.0 POT 473093.5794 6772026.6441 0.0000

The list above is an example of one of many formats that are acceptable for import.
PS: Decimal separators must be punctuation, not comma.

47

Typical errors:

e Entering the wrong file-address
e File is not in order, comma instead of punctuation, columns are not separated with
space

Phase two: After importing the necessary files the output will be a figure with graphs
corresponding to the pipeline position according to, for example, the survey data. In this
figure the user can zoom and explore the unsmoothed curve(s) and decide which section
needs a better look, a section that might have undergone more lateral buckling than
wanted. This section is from one easting (x) coordinate to another easting (x) coordinate.
The length of it should not exceed 10 km, this number is relative to the number of

measurements in the data set. If the data set is from every meter of pipe, 10 km is a good
limitation. If less measurements, the maximum length of the interval expands.

PS: if the user enters 18001 as start en end coordinate, the software searches for the next
integer that is closest to 18001. What the method does is that it just removes the current
decimals, and the remaining is the new number in the “integer list”.

Typical errors:
e Entering too big of an easting (x) interval.

Phase three: This is the last phase; this is where through manual iteration a reasonable
result appears as output. Before the result, curvature and corresponding bending moment,
appears as output the user is asked to enter a smoothing factor®. It is a parameter in the
smoothing function scipy.interpolate.splrep() in python. The result from this function is later
entered in the derivative function scipy.interpolate.splev(). These are the main functions in
calculating the curvature.

After the smoothing factor is entered and the curvature and BM (bending moment) diagram
has appeared the user can evaluate the result, the smoothing of curve. If it is realistic or not,
there is no textbook answer here, this is when the ability to use logic enters. The survey can
be good but at some pieces of the data set the ROV Pipetracker can collect wrong data,
thinking something beside the pipe is the real pipe, and as usual there are always small
measuring errors. This is why smoothing is so important.

if the user feels that the smoothing factor used is not satisfying, the user enter “no” when
asked, and phase three starts over again, a new smoothing factor is entered. This is the
iteration part; it should end up giving a satisfying result.

PS: A good starting point for the smoothing factor can be between 10 and 50. Then work it
from there.

Typical errors:

48

e Duplicates in the x-coordinate column
e Too small smoothing factor

* A smoothing condition. s = smoothing factor. The amount of smoothness is determined by satisfying the
conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) is the smoothed interpolation of (x,y). The user can use
s to control the tradeoff between closeness and smoothness of fit. Larger s means more smoothing while
smaller values of s indicate less smoothing. Recommended values of s depend on the weights, w. If the weights
represent the inverse of the standard-deviation of y, then a good s value should be found in the range (m-

sqrt(2*m),m+sqrt(2*m)) where m is the number of data points in x, y, and w. default : s=m-sqrt(2*m) if

weights are supplied. s = 0.0 (interpolating) if no weights are supplied®.

Converting geographical coordinates to easting and northing
coordinates

Geographical coordinate system is a coordinate system that enables every location on the
Earth to be specified by a set of numbers. A common choice of coordinates is latitude,
longitude and elevation®. Compared to easting and northing coordinates with the unit
meter, these coordinates do not, which is a problem when calculating the curvature.
However, they can be converted, having the new unit being meter.

Usually the 5pt-files and 7pt-files are given in easting and northing coordinates, but when
they occasionally come in geographical coordinates they have to be converted. This can be
performed with software, called Geotrans.

The Startup
To start the software (LBSS) the user must open Python idle, and open the file; (LBSS.py). To

run the software when file is opened, just press F5 or run module in the menu bar above the
script.

Problems:

Contact Sivert Duvsete
E-mail: Sivert.Duvsete@IKM.no

® http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html
° http://en.wikipedia.org/wiki/Geographic_coordinate_system

49

Appendix E

Verification tests of software

Verification tests of program

Test 1.1. SMR1300 — last time step (time step 503)

SMR1300 is a self-made route constructed in SIMVIS (see Appendix C) on a pre-developed
uneven seabed. It is laid with 1300m in radius. After the pipeline is installed the
temperature and internal pressure is increased to trigger buckling of the pipeline. These test
results are from the last time step in the load history. When visualized in XPOST (see
Appendix C), two sections of the pipeline are exposed to significant buckling; both can be
seen in the two result figures D and E.

SIMLA input: LBSS input:

ID: 0.254m ID: 0.254m

TH: 0.0175m TH: 0.0175m

Material type: X60, elastoplastic Material type: x60, linear
E: 8.26e10 N/m’ E: 8.26e10 N/m?

Comments/ results: Internal pipe test parameters; 93.5 Celsius and 100 bar. This test displays two
possible areas for lateral buckling.

Table A - Results from test 1.1

Results SIMLA [kNm] SST [kNm] Differential (SST/SIMLA) [%]
KP 500-600 =175 = 88 =50
KP 1000-1100 =197 =144 =73

51

Bending moment (Nm)

100

200

300

400

500

Northing (y)

700

800

+1.621e5

Smoothed plotted pipeline position

e e survey data
— Splines 0.010

0.005

..... e 40.000

10100

150000

100000

50000

—50000

—100000

10200

10300 10400

10500
Easting (x)

10600 10700

5th order spline

— Actual
— Allowable

i
200

i
400

i
600

i
800

i
1000

L
1200

curvature, 5th order splines

Figure D - The result from LBSS, test 1.1

52

Moment Z [kM]

200

100

-100

-200

100

200

300

400

500

a00

oo

200

200
EP [m]

1000

1100

1200

1300

1400

1500

1a00

1700

Figure E - The result from SIMLA, test 1.1

53

Test 1.2. SMR1300 — time step 307

SMR1300 is a self-made route constructed in SIMVIS on a pre-developed uneven seabed. It
is laid with 1300m in radius. After the pipeline is installed the temperature and internal
pressure is increased to trigger buckling of the pipeline. These test results are from time
step 307 (of 503) in the load history. The purpose of this test is to compare the results given
from an earlier time step with the results from test 1.1 (same input data, the only difference
is the magnitude of the temperature and pressure, which mean less curvature). When
visualized in XPOST, two sections of the pipeline are exposed to moderate buckling; both
can be seen in the two result figures F and G.

SIMLA input: LBSS input:

ID: 0.254m ID: 0.254m

TH: 0.0175m TH: 0.0175m

Material type: X60, elastoplastic Material type: x60, linear
E: 8.26€10 N/m’ E: 8.26e10 N/m?

Comments/ results: Internal pipe test parameters at last time step; 93.5 Celsius and 100 bar. But
this is the 307" time step out of 503 time steps. So the internal pipe test parameters are around 60-
70% of the final test parameters (own assumption). This test displays two possible areas for lateral
buckling.

Table B - Results from test 1.2

Results SIMLA [kNm] SST [kNm] Differential (SST/SIMLA) [%]
KP 500-600 =101 =56 =55
KP 1000-1100 =115 =93 =81

54

Bending moement (Nm)

100

200

300

400

500

Northing (y)

600

120000

100000

80000

60000

40000

20000

—20000

—40000

+1.621e5

Smoothed plotted pipeline position

e e survey data
— Splines

Easting (x)

5th order spline

Actual
Allowable

i
200

i
600

L
1000

i
1200

0.008

0.006

0.004

0.002

0.000

curvature, 5th order splines

Figure F - The result from LBSS, test 1.2

55

Moment & [kH]

EP [m] versus Moment Z [KIM]

ELMOM-Z 4751

120

110

100

0

a0

70

&0

50

40

30

20

200

300

400

300

&00

00

800 00 1000
EF [m]

1100

1200

1300

1400

1300

1800

i

Figure G - The result from SIMLA, test 1.2

56

Test 2.1. SMR1 — last time step (time step 503)

SMR1 is a self-made route constructed in SIMVIS (see Appendix C) on a pre-developed
uneven seabed. After the pipeline is installed the temperature and internal pressure is
increased to trigger buckling of the pipeline. These test results are from the last time step in
the load history. When visualized in XPOST (see Appendix C), one section of the pipeline is
exposed to significant buckling; it can be seen in the result figures H and I.

SIMLA input: LBSS input:

ID: 0.254m ID: 0.254m

TH: 0.0175m TH: 0.0175m

Material type: X60, elastoplastic Material type: x60, linear
E: 8.26e10 N/m’ E: 8.26e10 N/m?

Comments/ results: Internal pipe test parameters; 93.5 Celsius and 100 bar. This test displays one
possible area for lateral buckling.

Table C - Results from test 2.1

Results SIMLA [kNm] SST [kNm] Differential (SST/SIMLA) [%]
KP 1200-1300 =233 =173 =74

57

Smoothed plotted pipeline positian

* » survey data

le3400

0.010

—

163200

0.005

163000

0.000

MNorthing (y)

162800 0,005

162600 0010

1e2400 . L .
Baon Q000 9100 9200 9300 9400 9500 Ae00

Easting (=)

5th order spline

150000 _
: — Actual

LOOGON [| —— Allowable

50000

=30000 -

Bending moment (Nm)

=100000

= 150000

—_— : L :
200000 >0 an0 600 800 1000 1200 1400

curvature, 5th order splines

Figure H - The result from LBSS, test 2.1
58

Moment £ [kH]

200

KP [m] versus Moment Z [KIN]

ELMOM-Z 4751

100

-100

-200

-300

100

200

300

400

00

&00

00

200 200 1000
EF [m]

1100

1200

1300

1400

1500

1800

1700

Figure | - The result from SIMLA, test 2.1

59

Test 2.2. SMR1 —time step 258

SMR1 is a self-made route constructed in SIMVIS on a pre-developed uneven seabed. After
the pipeline is installed the temperature and internal pressure is increased to trigger
buckling of the pipeline. These test results are from time step 258 (of 503) in the load
history. The purpose of this test is to compare the results given from an earlier time step
with the results from test 2.1 (same input data, the only difference is the magnitude of the
temperature and pressure, which mean less curvature). When visualized in XPOST, one
section of the pipeline is exposed to moderate buckling; it can be seen in the two result

figures J and K.

SIMLA input: LBSS input:

ID: 0.254m ID: 0.254m

TH: 0.0175m TH: 0.0175m

Material type: X60, elastoplastic Material type: x60, linear
E: 8.26e10 N/m? E: 8.26e10 N/m?

Comments/ results: Internal pipe test parameters at last time step; 93.5 Celsius and 100 bar. But
this is the 258" time step out of 503 time steps. So the internal pipe test parameters are around 50-
60% of the final test parameters (own assumption). This test displays one possible area for lateral
buckling.

Table D - Results from test 2.2

Results SIMLA [kNm] SST [kNm] Differential (SST/SIMLA) [%]
KP 1200-1300 =97 = 60 = 62

60

Northing (y)

Bending moment [(Nm)

163400

163200

163000

162800

162600

162400

Ba00

40000

20000

=20000

=40000

—6a000

—30000

smoothed plotted pipeline position

® ¢ survey data
— Splines

0.003

0.0032

0.001

40.000

40,001

Q000 9100

9200 9300 9400 9500 900

Easting (=)

=0.002

—0.003

5th arder spline

— Actual
— Allowable

400

1
G00 aoo 1000 1200

1400

curvature, 5th order splines

Figure J - The result from LBSS, test 2.2

61

IMoment £ [kH]

EP [m] wersus Moment Z [KIN]

ELMOM-Z 4751

40

30

20

-20

-30

-40

-30

-a0

-0

-20

-50

-100

100

200

300

400

500

aula]

700

800 200 1000
EP [m]

1100

1200

1300

1400

1500

1a00

1700

Figure K - The result from SIMLA, test 2.2

62

Test 3.1. SMR2 — last time step (time step 356)

SMR2 is the same self-made route from test 2.1, but with new pipe dimensions. A smaller
pipe with a thinner wall thickness is experimented with. After the pipeline is installed the
temperature and internal pressure is increased to trigger buckling of the pipeline. These test
results are from the last time step in the load history. When visualized in XPOST (see
Appendix C), two sections of the pipeline is exposed to significant buckling; it can be seen in
the result figures L and M.

SIMLA input: LBSS input:

ID:0.212m ID: 0.212m

TH: 0.014m TH: 0.014m

Material type: X60, elastoplastic Material type: x60, linear
E: 8.26e10 N/m? E: 8.26e10 N/m’

Comments/ results: Internal pipe test parameters; 93.5 Celsius and 60 bar. This test displays two
possible areas for lateral buckling compared to the one displayed in test 2.1 with the same pipeline
route. Smaller pipe dimensions together with less internal pressure have caused lateral buckling in
two areas instead of one area, and a better SST result compared to the SIMLA result.

Table E - Results from test 3.1

Results SIMLA [kNm] SST [kNm] Differential (SST/SIMLA) [%]
KP 600-700 =97 = 82 = 85
KP 1300-1400 =110 =92 =84

Note! In this test the last time step is 356 instead of 503. This is because SIMLA needs less time to
increase the pressure to 60 bar instead of 100 bar.

63

Smoothed plotted pipeline position

B __H_ . RS . 0.015%
163400 [| » @ survey data
% __ — 5Splines
0.010
163200
0.005
=
o 163000
£ e 0.000
162800 [-
162600 —0.010
8900 9000 9100 9200 9300 9400 9500 9600 9700 QBO0
Easting (x)
Sth arder spline
100000 _ _ P _
: : — Actual
: — Allowable
_ 50000 :
E :
.m. B
m m N J
5 of— — m R N
P ; ; ;
g : :
m N N
= H :
i
fie] : :
—50000 |- : i]
= 1 1 1
160000 200 400 600 800 1000 1200 1400

curvature, 5th aorder splines

Figure L- The result from LBSS, test 3.1

64

Moment Z [N]

120

KP [m] versus Momeni Z [kIN]

— ELMOM-Z 4751

110

100

S0

&0

70

al

A0

40

30

20

-100
100

200

300

400

500

a0

700

200

00
KP [m]

1000

1100

1200

1300

1400

1500

1&00

1700

Figure M- The result from SIMLA, test 3.1

65

Appendix F

Script of python program

import string

import pylab

import numpy as np

import matplotlib.pyplot as plt
from pylab import linspace
from scipy import interpolate

from copy import deepcopy

import math
x1={]
yl=]]
x2 =]
y2 =]
x3 =]
y3=I]

SurveyKp =]
allowable_BM = input('What is the allowable bending moment? ')

What files to be imported

print '1 - Survey data’

print '2 - Design route and survey data'

print '3 - As-laid data and survey data'

print '4 - Design route, as-laid data and survey data'

print "\n'

#While loop, so the numbers 1-4 have to be chosen

67

def ask_alt(prompt = 'Which of the four alternatives above do you want to look at? In other words,
what files do you have? ', complaint ='1 to 4, please!'):

while True:
good =['1','2','3','4']
alt = raw_input(prompt)
if alt in good:
print "Okey, alternative "+alt+" it is."
return alt
else:

print complaint

def test(prompt ="is this a test? ', complaint ="y for yes, please!'): # A test function
while True:
good = ['y']
testrun = raw_input(prompt)
if testrun in good:
print "Okey, test it is."
return testrun
else:

return "no"

def main():

alt = ask_alt()

if alt =="1": # Survey data
HEHHHHE A

68

print "\n'
testrun = test()
if testrun =="y":

filelocationl = 'c:\\Sivert\\ola.txt'

gl=2
hl1=3
surveyKp =1

f1 = open(str(filelocation1))
else:
print "\n'

print "To open your text file(s) the location of the file(s) is needed. The file(s) needs to be in
txt format.\n"

filelocation1 = raw_input('Where is the "survey" data file located? Example: C:\Program
Files\example.txt ')

print "\n'

gl = input("Which column from the left contains the Easting(x) coordinates? ")
print "\n'

h1 = input("Which column from the left contains the Northing(y) coordinates? ")
print "\n'

surveyKp = input("Which column from the left contains the KP number? ")

print "\n'

f1 = open(str(filelocation1))

tmpl = fl.readlines()

foriin range(len(tmp1l)):
try:

al=[]

69

line = tmp1[i]
al = string.split(line)
try:
if float(al[gl-1])>1: # This number (1), might need to be changed
x1.append(float(al[gl-1]))
else:

pass

if float(a1[h1-1])>2100: # This number (2100), might need to be changed
yl.append(float(al[h1-1]))
else:

pass

if float(al[surveyKp-1])<12000: # This number (12000), might need to be changed
SurveyKp.append(float(al[surveyKp-1]))
else:
pass
except ValueError:
pass
except IndexError:

pass

fl.close()

#try:
foriinrange(len(x1)):

if x1.count(x1[i])>1:

70

print x1[i], x1.count(x1[i]) # Duplicate check, if needed
else:

pass

#except IndexError:

pass

print "Find the interval you want to check through your easting coordinates."

pylab.plot(x1,y1, 'r")

pylab.ylabel('Northing (y)')

pylab.xlabel('Easting (x)')

pylab.grid(True)

pylab.title('Plotted pipeline position') #finn tittel
pylab.legend(('Survey') , loc = 'upper right')

#pylab.savefig('save') # finn navn for fil

pylab.show()

print "\n'

xx1=[]

foriin range(len(x1)):

xx1.append(float(int(x1[i])))

figo=1

startl = input('What is the start easting coordinate of your check? ')

71

while figo==1:
if startl in xx1:
figo=2
print "\n'
print str(startl)+" is the start of your interval"
print "\n'
else:

startl=startl+1

lara=1
endl = input(‘What is the last easting coordinate of your check? ')
while lara==1:
if end1 in xx1:
lara=2
print "\n'
print str(end1)+" is the end of your interval"
else:

endl=end1+1

slp1 = xx1.index(start1)

slp2 = xx1.index(end1)

if slpl < slp2:
XnewStart = startl
XnewEnd = end1
print "\n'

print 'The interval being checked: KP '+str(SurveyKp[slp1])+' - KP '+str(SurveyKp[slp2])

72

print "\n'

El, Bending stiffness calculation for given pipe interval

E = input("Enter the Young's modulus (N/m~2): ")

Do= input("Enter the outer diameter of the pipeline (m): ")

ts= input("Enter the wall-thickness of the pipeline(m): ")

I= ((math.pi)/64)*(Do**4-(Do-2*ts)**4)

EI=E*I # (NmA2)

print "Pipeline bending stiffness: "+str(EI)+" Nm#2"

print '\n'

KpStart = SurveyKp[slp1]

KpEnd = SurveyKp[slp2]

smoothingfactor = input("Enter a smoothing factor: ")

tck = interpolate.splrep(x1[slpl:slp2],y1[slpl:slp2], k=5, s= smoothingfactor)
xnew = linspace(XnewStart, XnewEnd, abs(1000*(slp2-slp1)+1))
ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)

y2der =interpolate.splev(xnew[::1000],tck,der=2)

curvature = (y2der)/((1+yder**2)**(3/2))

abs_curvature = abs((y2der)/((1+yder**2)**(3/2)))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()

ax1 = fig.add_subplot(211)
ax1l.plot(x1[slpl:slp2],y1[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend(('survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')

axl.set_ylabel('Northing (y)', color="b')

73

for tl in ax1.get_yticklabels():

tl.set_color('b')
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y1[slp2],y1[slp1])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1], 'b', SurveyKp[slp1:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(min(SurveyKp[slp1:slp2]),max(SurveyKp[slp1:sip2]))

pylab.grid(True)

pylab.title('5th order spline')

pylab.legend((‘Actual’,'Allowable'), loc = 'upper right')

#pylab.savefig('save')

74

pylab.show()

g =raw_input("Are you satisfied? (yes or no) ")
kiko=1
while kiko ==1:
if g=="yes":
kiko =kiko+1
else:
smoothingfactor = input("Enter a new smoothing factor: ")
tck = interpolate.splrep(x1[slpl:slp2],y1[slpl:slp2], k=5, s= smoothingfactor)
xnew = linspace(XnewsStart, XnewEnd, abs(1000*(slp2-slp1)+1))
ynew = interpolate.splev(xnew,tck,der=0)
yder = interpolate.splev(xnew[::1000],tck,der=1)
y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))
abs_curvature = abs((y2der)/((1+yder**2)**(3/2)))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.plot(x1[slp1:slp2],y1[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend(('survey data', 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color="b')
for tlin ax1.get_yticklabels():

tl.set_color('b')

ax2 = ax1.twinx()

75

ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y1[slp2],y1[slp1])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1], 'b’, SurveyKp[slpl:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(min(SurveyKp[slp1:slp2]),max(SurveyKp[slp1:slp2]))

pylab.grid(True)

pylab.title('5th order spline')

pylab.legend(('Actual’,'Allowable') , loc = 'upper right')

#pylab.savefig('save')

pylab.show()

g = raw_input("Are you satisfied? ")

76

else:
x1.reverse()
yl.reverse()
SurveyKp.reverse()
xx1.reverse()
slpl = xx1.index(start1)
slp2 = xx1.index(end1)
print "\n'
print 'The interval being checked: KP '+str(SurveyKp[slp2])+' - KP '+str(SurveyKp[slp1])
print '\n'
El, Bending stiffness calculation for given pipe interval
E = input("Enter the Young's modulus (N/m~2): ")
Do= input("Enter the outer diameter of the pipeline (m): ")
ts= input("Enter the wall-thickness of the pipeline(m): ")
I= ((math.pi)/64)*(Do**4-(Do-2*ts)**4)
EI=E*I # (NmA2)
print "Pipeline bending stiffness: "+str(EI)+" Nm~2"
print "\n'
KpStart = SurveyKp[slp2]
KpEnd = SurveyKp[slp1]
XnewStart = start1 # x1[slp1]

XnewEnd = end1 #x1[slp2]

smoothingfactor = input("Enter a smoothing factor: ")

tck = interpolate.splrep(x1[slp1:slp2],y1[slpl:slp2], k=5, s=smoothingfactor)

xnew = linspace(XnewStart, XnewEnd, 1000*(slp2-slp1)+1)

77

ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)
y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))
abs_curvature = abs((y2der)/((1+yder**2)**(3/2)))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
axl.plot(x1[slpl:slp2],y1[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend((‘survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color='b")
pylab.grid(True)
for tl in ax1.get_yticklabels():

tl.set_color('b')
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y1[slp1],y1[slp2])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

78

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slpl1:slp2],BM[:slp2-slpl], 'b', SurveyKp[slpl:slp2], a_BM, 'r")
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(max(SurveyKp[slp1:slp2]),min(SurveyKp[slpl:slp2]))

pylab.grid(True)

pylab.title('5th order spline')

pylab.legend((‘Actual’,'Allowable'), loc = 'upper right')

#pylab.savefig('save')

pylab.show()

g = raw_input("Are you satisfied? ")
kiko=1
while kiko==1:
if g=="yes":
kiko = kiko+1
else:
smoothingfactor = input("Enter a new smoothing factor: ")
tck = interpolate.splrep(x1[slp1:slp2],y1[slpl:slp2], k=5, s=smoothingfactor)
xnew = linspace(XnewStart, XnewEnd, 1000*(slp2-slp1)+1)
ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)

79

y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))
abs_curvature = abs((y2der)/((1+yder**2)**(3/2)))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
axl.plot(x1[slpl:slp2],yl[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend(('survey data', 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color="b")
pylab.grid(True)
for tlin ax1.get_yticklabels():

tl.set_color('b')
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tlin ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y1[slp1],y1[slp2])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

80

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1l], 'b', SurveyKp[slpl:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(max(SurveyKp[slp1:slp2]),min(SurveyKp[slpl:slp2]))

pylab.grid(True)

pylab.title('5th order spline') #finn tittel

pylab.legend((‘Actual’,'Allowable') , loc = 'upper right')

#pylab.savefig('save')

pylab.show()

g = raw_input("Are you satisfied? ")

elif alt =="2": # Design route and survey data
HEHHHEH A HHHE

print "\n'

testrun = test()

if testrun =="y":
filelocation1 = 'c:\Sivert\DesignR.txt'
gl=3
hi=4

f1 = open(str(filelocation1))

filelocation3 = 'c:\\Sivert\\new7pt.txt'

81

surveyKp =1

f3 = open(str(filelocation3))
else:

print "\n'

print "To open your text file(s) the location of the file(s) is needed. The file(s) needs to be in

txt format.\n"

filelocation1 = raw_input('Where is the "as-designed" data file located? Example: C:\Program
Files\example.txt ')

print "\n'

gl = input("Which column from the left contains the Easting(x) coordinates? ")
print "\n'

h1 = input("Which column from the left contains the Northing(y) coordinates? ")
print "\n'

f1 = open(str(filelocation1))

filelocation3 = raw_input(‘Where is the "survey data" file located? Example: C:\Program

Files\example.txt ')
print "\n'
g3 = input("Which column from the left contains the Easting(x) coordinates? ")
print "\n'
h3 = input("Which column from the left contains the Northing(y) coordinates? ")
print "\n'
surveyKp = input("Which column from the left contains the Kp? ")
print "\n'

f3 = open(str(filelocation3))

82

For loop, adding elements to the as-designed array

tmpl = fl.readlines()

foriin range(len(tmp1)):
try:

al=[]

line = tmp1[i]

al = string.split(line)

try:
if float(al[g1-1])>3000: # This number (3000), might need to be changed

x1.append(float(al[gl-1]))

else:

pass

if float(a1[h1-1])>3000:
yl.append(float(al[h1-1]))
else:
pass
except ValueError:
pass
except IndexError:

pass

fl.close()

For loop, adding elements to the survey data array

tmp3 = f3.readlines()

83

foriin range(len(tmp3)):
try:

a3 =]

line = tmp3[i]

a3 = string.split(line)

try:
if float(a3[g3-1])>3000: # This number (3000), might need to be changed

x3.append(float(a3[g3-1]))

else:

pass

if float(a3[h3-1])>3000:
y3.append(float(a3[h3-1]))
else:

pass

if float(a3[surveyKp-1])<49: # This number (49), might need to be changed
SurveyKp.append(float(a3[surveyKp-1]))
else:
pass
except ValueError:
pass
except IndexError:

pass

f3.close()

84

print "Find the interval you want to check through your easting coordinates."

pylab.plot(x1,y1, 'r', x3,y3, 'b')

pylab.ylabel('Northing (y)')

pylab.xlabel('Easting (x)')

pylab.grid(True)

pylab.title('Plotted pipeline position')

pylab.legend(('As-designed’, 'Survey') , loc = 'upper right')

#pylab.savefig('save')

pylab.show()

print "\n'

xx3=[]
foriin range(len(x3)):

xx3.append(float(int(x3[i])))

figo=1
startl = input('What is the start easting coordinate of your check? ')
while figo==1:
if startl in xx3:
figo=2

print "\n'

85

print str(startl)+" is the start of your interval"
print "\n'
else:

startl=startl+1 # this formula should be changed, adding .01 instead of 1. (But no luck so
far)

lara=1
end1 = input('What is the last easting coordinate of your check? ')
while lara==1:
if endl in xx3:
lara=2
print "\n'
print str(end1)+" is the end of your interval"
else:

endl=end1+1

slp1 = xx3.index(start1)

slp2 = xx3.index(end1)

if slpl < slp2:
XnewsStart = startl
XnewEnd = end1
print "\n'
print 'The interval being checked: KP '+str(SurveyKp[slp1])+' - KP '+str(SurveyKp[slp2])
print "\n'
El, Bending stiffness calculation for given pipe interval
E = input("Enter the Young's modulus (N/m~2): ")
Do= input("Enter the outer diameter of the pipeline (m): ")

ts= input("Enter the wall-thickness of the pipeline(m): ")

86

I= ((math.pi)/64)*(Do**4-(Do-2*ts)**4)

EI=E*I # (NmA2)

print "Pipeline bending stiffness: "+str(EI)+" Nm~2"

print '\n'

KpStart = SurveyKp[slp1]

KpEnd = SurveyKp[slp2]

smoothingfactor = input("Enter a smoothing factor: ")

tck = interpolate.splrep(x3[slpl:slp2],y3[sipl:slp2], k=5, s=smoothingfactor)
xnew = linspace(XnewsStart, XnewEnd, 1000*(slp2-slp1)+1)
ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)

y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))

abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.plot(x3[slpl:slp2],y3[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend(('survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color="b")
for tl in ax1.get_yticklabels():

tl.set_color('b")
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')

ax2.set_ylabel('curvature, 5th order splines', color="r")

87

for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp2],y3[slp1])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slpl1:slp2],BM[:slp2-slp1l], 'b', SurveyKp[slp1l:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(min(SurveyKp[slp1:slp2]),max(SurveyKp[slp1:sip2]))

pylab.grid(True)

pylab.title('5th order spline')

pylab.legend((‘Actual’,'Allowable'), loc = 'upper right')

#pylab.savefig('save')

pylab.show()

kiko=1
g = raw_input("Are you satisfied? (yes or no) ")

while kiko==1:

88

if g=="yes":
kiko=kiko+1

else:
smoothingfactor = input("Enter a new smoothing factor: ")
tck = interpolate.splrep(x3[slpl:slp2],y3[slpl:slp2], k=5, s=smoothingfactor)
xnew = linspace(XnewsStart, XnewEnd, 1000*(slp2-slp1)+1)
ynew = interpolate.splev(xnew,tck,der=0)
yder = interpolate.splev(xnew[::1000],tck,der=1)
y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))
abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.plot(x3[slpl:slp2],y3[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend(('survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color='b")
for tlin ax1.get_yticklabels():

tl.set_color('b")
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color='"r')
for tl in ax2.get_yticklabels():

tl.set_color('r')

axl.set_ylim(y3[slp2],y3[slp1])

89

ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)

pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1], 'b’, SurveyKp[slpl:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(min(SurveyKp[slp1:slp2]),max(SurveyKp[slp1:sip2]))

pylab.grid(True)

pylab.title('5th order spline') #finn tittel

pylab.legend(('Actual’,'Allowable') , loc = 'upper right')

#pylab.savefig('save')

pylab.show()

g = raw_input("Are you satisfied? ")

else:

x3.reverse()

y3.reverse()

90

SurveyKp.reverse()

slpl = x3.index(start1)

slp2 = x3.index(end1)

XnewStart = startl

XnewEnd = end1

print '\n'

print ‘'The interval being checked: KP '+str(SurveyKp[slp2])+' - KP '+str(SurveyKp[slp1])
print "\n'

El, Bending stiffness calculation for given pipe interval

E = input("Enter the Young's modulus (N/m~2): ")

Do= input("Enter the outer diameter of the pipeline (m): ")
ts= input("Enter the wall-thickness of the pipeline(m): ")
I= ((math.pi)/64)*(Do**4-(Do-2*ts)**4)

EI=E*I # (NmA2)

print "Pipeline bending stiffness: "+str(EI)+" Nm#2"

print "\n'

smoothingfactor = input("Enter a smoothing factor: ")

tck = interpolate.splrep(x3[slp1:slp2],y3[slpl:slp2], k=5, s=smoothingfactor)
xnew = linspace(XnewStart, XnewEnd, 1000*(slp2-slp1)+1)

ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)

y2der =interpolate.splev(xnew[::1000],tck,der=2)

curvature = (y2der)/((1+yder**2)**(3/2))

abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

91

fig = plt.figure()
ax1 = fig.add_subplot(211)
axl.plot(x3[slpl:slp2],y3[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend((‘survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color='b")
for tl in ax1.get_yticklabels():

tl.set_color('b')
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp1],y3[slp2])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')
#pylab.savefig('save')
aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)
ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1], 'b', SurveyKp[slp1l:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp")

92

pylab.xlim(max(SurveyKp[slp1:slp2]),min(SurveyKp[slpl:slp2]))
pylab.grid(True)

pylab.title('5th order spline') #finn tittel

pylab.legend((‘Actual’,'Allowable'), loc = 'upper right')
#pylab.savefig('save')

pylab.show()

kiko=1
g = raw_input("Are you satisfied? ")
while kiko==1:
if g=="yes":
kiko=kiko+1
else:
smoothingfactor = input("Enter a new smoothing factor: ")
tck = interpolate.splrep(x3[slp1:slp2],y3[slpl:slp2], k=5, s=smoothingfactor)
xnew = linspace(XnewStart, XnewEnd, 1000*(slp2-slp1)+1)
ynew = interpolate.splev(xnew,tck,der=0)
yder = interpolate.splev(xnew[::1000],tck,der=1)
y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))
abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.plot(x3[slp1:slp2],y3[slpl:slp2], 'go’, xnew,ynew , 'b')

pylab.legend(('survey data', 'Splines') , loc = 'upper right')

93

axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color="b")
for tlin ax1.get_yticklabels():

tl.set_color('b')
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp1],y3[slp2])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1], 'b’, SurveyKp[slp1:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(max(SurveyKp[slp1:slp2]),min(SurveyKp[slp1:sip2]))

pylab.grid(True)

pylab.title('5th order spline') #finn tittel

pylab.legend(('Actual’,'Allowable') , loc = 'upper right')

94

#pylab.savefig('save')

pylab.show()

g = raw_input("Are you satisfied? ")

elifalt=="'3": # as-laid data and survey data
HUHH R R R

print "\n'
testrun = test()
if testrun =="y":

filelocation2 = 'c:\Sivert\R.txt'

f2 = open(str(filelocation2))

filelocation3 = 'c:\\Sivert\\new7pt.txt'

surveyKp =1

f3 = open(str(filelocation3))
else:

print '\n'

print "To open your text file(s) the location of the file(s) is needed. The file(s) needs to be in
txt format.\n"

95

filelocation2 = raw_input('Where is the "as-laid" data file located? Example: C:\Program

Files\example.txt ')
print "\n'
g2 = input("Which column from the left contains the Easting(x) coordinates? ")
print "\n'
h2 = input("Which column from the left contains the Northing(y) coordinates? ")
print '\n'

f2 = open(str(filelocation2))

filelocation3 = raw_input('Where is the "survey data" file located? Example: C:\Program

Files\example.txt ')
print \n'
g3 = input("Which column from the left contains the Easting(x) coordinates? ")
print \n'
h3 = input("Which column from the left contains the Northing(y) coordinates? ")
print '\n'
surveyKp = input("Which column from the left contains the Kp? ")
print "\n'

f3 = open(str(filelocation3))

For loop, for a fylle as-laid vektorene

tmp2 =f2.readlines()

foriin range(len(tmp2)):
try:
a2 =]

line = tmp2[i]

96

a2 = string.split(line)

try:

if float(a2[g2-1])>3000: # This number (3000), might need to be changed

x2.append(float(a2[g2-1]))

else:

pass

if float(a2[h2-1])>3000: # This number (3000), might need to be changed

y2.append(float(a2[h2-1]))

else:
pass
except ValueError:
pass
except IndexError:

pass

f2.close()

tmp3 = f3.readlines()

foriin range(len(tmp3)):
try:
a3 =]
line =tmp3][i]
a3 = string.split(line)

try:

if float(a3[g3-1])>3000:

This number (3000), might need to be changed

97

x3.append(float(a3[g3-1]))
else:

pass

if float(a3[h3-1])>3000: # This number (3000), might need to be changed
y3.append(float(a3[h3-1]))
else:

pass

if float(a3[surveyKp-1])<49: # This number (49), might need to be changed
SurveyKp.append(float(a3[surveyKp-1]))
else:
pass
except ValueError:
pass
except IndexError:

pass

f3.close()

print "Find the interval you want to check through your easting coordinates."

pylab.plot(x2,y2, 'g', x3,y3, 'b")
pylab.ylabel('Northing (y)')
pylab.xlabel('Easting (x)')

pylab.grid(True)

98

pylab.title('Plotted pipeline position')
pylab.legend(('As-laid’, 'Survey') , loc = 'upper right')

#pylab.savefig('save')

pylab.show()

print "\n'

xx3=[]
foriin range(len(x3)):

xx3.append(float(int(x3[i])))

figo=1
startl = input(‘What is the start easting coordinate of your check? ')
while figo==1:
if startl in xx3:
figo=2
print "\n'
print str(startl)+" is the start of your interval"
print "\n'
else:
startl=startl+1
lara=1
end1 = input('What is the last easting coordinate of your check? ')
while lara==1:

if endl in xx3:

99

lara=2

print "\n'

print str(end1)+" is the end of your interval"
else:

endl=end1+1

slp1 = xx3.index(start1)

slp2 = xx3.index(end1)

if slpl < slp2:
XnewStart = startl
XnewEnd = end1
print "\n'
print 'The interval being checked: KP '+str(SurveyKp[slp1])+' - KP '+str(SurveyKp[slp2])
print "\n'
El, Bending stiffness calculation for given pipe interval
E = input("Enter the Young's modulus (N/m~2): ")
Do= input("Enter the outer diameter of the pipeline (m): ")
ts= input("Enter the wall-thickness of the pipeline(m): ")
I= ((math.pi)/64)*(Do**4-(Do-2*ts)**4)
EI=E*| # (NmA2)
print "Pipeline bending stiffness: "+str(El)+" Nm~2"
print '\n'
KpStart = SurveyKp[slp1]
KpEnd = SurveyKp[slp2]
smoothingfactor = input("Enter a smoothing factor: ")

tck = interpolate.splrep(x3[slp1:slp2],y3[slpl:slp2], k=5, s=smoothingfactor)

100

xnew = linspace(XnewsStart, XnewEnd, 1000*(slp2-slp1)+1)
ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)

y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))

abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1l.plot(x3[slpl:slp2],y3[slpl:slp2], 'go’, xnew,ynew , 'b")
pylab.legend((‘survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color="b")
for tl in ax1.get_yticklabels():

tl.set_color('b')
ax2 = ax1l.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp2],y3[slp1])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

101

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slpl], 'b', SurveyKp[slpl:slp2], a_BM, 'r")
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(min(SurveyKp[slp1:slp2]),max(SurveyKp[slpl:sip2]))

pylab.grid(True)

pylab.title('5th order spline') #finn tittel

pylab.legend((‘Actual’,'Allowable'), loc = 'upper right')

#pylab.savefig('save')

pylab.show()

kiko=1
g = raw_input("Are you satisfied? (yes or no) ")
while kiko==1:
if g=="yes":
kiko=kiko+1
else:
smoothingfactor = input("Enter a new smoothing factor: ")
tck = interpolate.splrep(x3[slp1:slp2],y3[slpl:slp2], k=5, s=smoothingfactor)
xnew = linspace(XnewsStart, XnewEnd, 1000*(slp2-slp1)+1)
ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)

102

y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))
abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1l.plot(x3[slpl:slp2],y3[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend(('survey data', 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color="b")
for tlin ax1.get_yticklabels():

tl.set_color('b')
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tlin ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp2],y3[slp1])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend(('curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

103

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1l], 'b’, SurveyKp[slpl:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(min(SurveyKp[slp1:slp2]),max(SurveyKp[slpl:slp2]))

pylab.grid(True)

pylab.title('5th order spline')

pylab.legend((‘Actual’,'Allowable') , loc = 'upper right')

#pylab.savefig('save')

pylab.show()

g =raw_input("Are you satisfied? ")

else:
x3.reverse()
y3.reverse()
SurveyKp.reverse()
slp1 = x3.index(start1)
slp2 = x3.index(end1)
XnewStart = startl
XnewEnd = end1
print "\n'
print 'The interval being checked: KP '+str(SurveyKp[slp2])+' - KP '+str(SurveyKp[slp1])

print '\n'

104

El, Bending stiffness calculation for given pipe interval

E = input("Enter the Young's modulus (N/m~2): ")

Do= input("Enter the outer diameter of the pipeline (m): ")
ts= input("Enter the wall-thickness of the pipeline(m): ")
I= ((math.pi)/64)*(Do**4-(Do-2*ts)**4)

EI=E*I # (NmA2)

print "Pipeline bending stiffness: "+str(El)+" Nm#2"

print "\n'

smoothingfactor = input("Enter a smoothing factor: ")

tck = interpolate.splrep(x3[slp1:slp2],y3[slpl:slp2], k=5, s=smoothingfactor)
xnew = linspace(XnewStart, XnewEnd, 1000*(slp2-slp1)+1)

ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)

y2der =interpolate.splev(xnew[::1000],tck,der=2)

curvature = (y2der)/((1+yder**2)**(3/2))

abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()

ax1 = fig.add_subplot(211)
ax1.plot(x3[slpl:slp2],y3[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend(('survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')

axl.set_ylabel('Northing (y)', color="b")

for tl in ax1.get_yticklabels():

105

tl.set_color('b")
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp1],y3[slp2])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1], 'b', SurveyKp[slp1:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(max(SurveyKp[slp1:slp2]),min(SurveyKp[slp1:slp2]))

pylab.grid(True)

pylab.title('5th order spline') #finn tittel

pylab.legend((‘Actual’,'Allowable'), loc = 'upper right')

#pylab.savefig('save') # finn navn for fil

pylab.show()

106

kiko=1
g = raw_input("Are you satisfied? ")
while kiko==1:
if g=="yes":
kiko=kiko+1
else:
smoothingfactor = input("Enter a new smoothing factor: ")
tck = interpolate.splrep(x3[slpl:slp2],y3[slpl:sip2], k=5, s=smoothingfactor)
xnew = linspace(XnewsStart, XnewEnd, 1000*(slp2-slp1)+1)
ynew = interpolate.splev(xnew,tck,der=0)
yder = interpolate.splev(xnew[::1000],tck,der=1)
y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))
abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.plot(x3[slpl:slp2],y3[slpl:slp2], 'go', xnew,ynew, 'b')
pylab.legend(('survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color="b")
for tlin ax1.get_yticklabels():

tl.set_color('b")
ax2 = ax1.twinx()

ax2.plot(xnew[::1000],curvature,'r')

107

ax2.set_ylabel('curvature, 5th order splines', color="r')
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp1],y3[slp2])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save') # finn navn for fil

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1], 'b’, SurveyKp[slpl:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(max(SurveyKp[slp1:slp2]),min(SurveyKp[slp1:sip2]))

pylab.grid(True)

pylab.title('5th order spline') #

pylab.legend(('Actual’,'Allowable') , loc = 'upper right')

#pylab.savefig('save')

pylab.show()

g = raw_input("Are you satisfied? ")

108

elif alt =="4": # Design route, as-laid data and survey data
HiuHH B R

print "\n'

testrun = test() # dette er kun for 3 gjgre det lettere 3 teste programmet
if testrun =="y":

filelocationl = 'c:\Sivert\DesignR.txt'

f1 = open(str(filelocation1))

filelocation2 = 'c:\Sivert\R.txt'

f2 = open(str(filelocation2))

filelocation3 = 'c:\\Sivert\\new7pt.txt'

surveyKp =1

f3 = open(str(filelocation3))
else:

print '\n'

print "To open your text file(s) the location of the file(s) is needed. The file(s) needs to be in
txt format.\n"

filelocationl = raw_input('Where is the "as-designed" data file located? Example: C:\Program
Files\example.txt ')

print "\n'
gl = input("Which column from the left contains the Easting(x) coordinates? ")

109

print "\n'
h1 = input("Which column from the left contains the Northing(y) coordinates? ")
print "\n'

f1 = open(str(filelocation1))

filelocation2 = raw_input('Where is the "as-laid" data file located? Example: C:\Program
Files\example.txt ')

print '\n'

g2 = input("Which column from the left contains the Easting(x) coordinates? ")
print '\n'

h2 = input("Which column from the left contains the Northing(y) coordinates? ")
print "\n'

f2 = open(str(filelocation2))

filelocation3 = raw_input('Where is the "survey data" file located? Example: C:\Program
Files\example.txt ')

print "\n'

g3 = input("Which column from the left contains the Easting(x) coordinates? ")
print "\n'

h3 = input("Which column from the left contains the Northing(y) coordinates? ")
print "\n'

surveyKp = input("Which column from the left contains the Kp? ")

print "\n'

f3 = open(str(filelocation3))

tmp1l = fl.readlines()

foriin range(len(tmp1l)):

110

try:
al=[]
line = tmp1[i]
al = string.split(line)
try:
if float(al[g1-1])>3000: # This number (3000), might need to be changed
x1.append(float(al[gl-1]))
else:

pass

if float(a1[h1-1])>3000: # This number (3000), might need to be changed
yl.append(float(al[h1-1]))
else:
pass
except ValueError:
pass
except IndexError:

pass

fl.close()

tmp2 = f2.readlines()

foriin range(len(tmp2)):
try:
a2 =[]

line =tmp2[i]

111

a2 = string.split(line)
try:
if float(a2[g2-1])>3000: # This number (3000), might need to be changed
x2.append(float(a2[g2-1]))
else:

pass

if float(a2[h2-1])>3000: # This number (3000), might need to be changed
y2.append(float(a2[h2-1]))
else:
pass
except ValueError:
pass
except IndexError:

pass

f2.close()

tmp3 = f3.readlines()

foriin range(len(tmp3)):
try:
a3 =]
line =tmp3][i]
a3 = string.split(line)
try:

if float(a3[g3-1])>3000: # This number (3000), might need to be changed

112

x3.append(float(a3[g3-1]))
else:

pass

if float(a3[h3-1])>3000: # This number (3000), might need to be changed
y3.append(float(a3[h3-1]))
else:

pass

if float(a3[surveyKp-1])<49: # This number (49), might need to be changed
SurveyKp.append(float(a3[surveyKp-1]))
else:
pass
except ValueError:
pass
except IndexError:

pass

f3.close()

print "Find the interval you want to check through your easting coordinates."

pylab.plot(x1,y1, 'r', x2,y2, 'g', x3,y3, 'b'")
pylab.ylabel('Northing (y)')
pylab.xlabel('Easting (x)')

pylab.grid(True)

113

pylab.title('Plotted pipeline position') #finn tittel
pylab.legend(('As-designed’, 'As-laid’, 'Survey') , loc = 'upper right')

#pylab.savefig('save')

pylab.show()

print "\n'

xx3=[]
foriin range(len(x3)):

xx3.append(float(int(x3[i])))

figo=1
startl = input(‘What is the start easting coordinate of your check? ')
while figo==1:
if startl in xx3:
figo=2
print "\n'
print str(start1)+" is the start of your interval"
print "\n'
else:

startl=startl+1

lara=1
end1 = input('What is the last easting coordinate of your check? ')
while lara==1:

if endl1 in xx3:

114

lara=2

print "\n'

print str(end1)+" is the end of your interval"
else:

endl=end1+1

slp1 = xx3.index(start1)

slp2 = xx3.index(end1)

if slpl < slp2:
XnewStart = startl
XnewEnd = end1
print "\n'
print 'The interval being checked: KP '+str(SurveyKp[slp1])+' - KP '+str(SurveyKp[slp2])
print "\n'
El, Bending stiffness calculation for given pipe interval
E = input("Enter the Young's modulus (N/m~2): ")
Do= input("Enter the outer diameter of the pipeline (m): ")
ts= input("Enter the wall-thickness of the pipeline(m): ")
I= ((math.pi)/64)*(Do**4-(Do-2*ts)**4)
EI=E*| # (NmA2)
print "Pipeline bending stiffness: "+str(El)+" Nm~2"
print '\n'
KpStart = SurveyKp[slp1]
KpEnd = SurveyKp[slp2]
smoothingfactor = input("Enter a smoothing factor: ")

tck = interpolate.splrep(x3[slp1:slp2],y3[slpl:slp2], k=5, s=smoothingfactor)

115

xnew = linspace(XnewsStart, XnewEnd, 1000*(slp2-slp1)+1)
ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)

y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))

abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1l.plot(x3[slpl:slp2],y3[slpl:slp2], 'go’, xnew,ynew , 'b")
pylab.legend((‘survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color="b")
for tl in ax1.get_yticklabels():

tl.set_color('b')
ax2 = ax1l.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp2],y3[slp1])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

116

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slpl], 'b', SurveyKp[slpl:slp2], a_BM, 'r")
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(min(SurveyKp[slp1:slp2]),max(SurveyKp[slpl:sip2]))

pylab.grid(True)

pylab.title('5th order spline') #finn tittel

pylab.legend((‘Actual’,'Allowable'), loc = 'upper right')

#pylab.savefig('save')

pylab.show()

kiko=1
g = raw_input("Are you satisfied? (yes or no) ")
while kiko==1:
if g=="yes":
kiko=kiko+1
else:
smoothingfactor = input("Enter a new smoothing factor: ")
tck = interpolate.splrep(x3[slp1:slp2],y3[slpl:slp2], k=5, s=smoothingfactor)
xnew = linspace(XnewsStart, XnewEnd, 1000*(slp2-slp1)+1)
ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)

117

y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))
abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1l.plot(x3[slpl:slp2],y3[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend(('survey data', 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color="b")
for tlin ax1.get_yticklabels():

tl.set_color('b')
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tlin ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp2],y3[slp1])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

118

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1l], 'b’, SurveyKp[slpl:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(min(SurveyKp[slp1:slp2]),max(SurveyKp[slpl:slp2]))

pylab.grid(True)

pylab.title('5th order spline')

pylab.legend((‘Actual’,'Allowable') , loc = 'upper right')

#pylab.savefig('save')

pylab.show()

g =raw_input("Are you satisfied? ")

else:
x3.reverse()
y3.reverse()
SurveyKp.reverse()
slp1 = x3.index(start1)
slp2 = x3.index(end1)
XnewStart = startl
XnewEnd = end1
print "\n'
print 'The interval being checked: KP '+str(SurveyKp[slp2])+' - KP '+str(SurveyKp[slp1])

print '\n'

119

El, Bending stiffness calculation for given pipe interval

E = input("Enter the Young's modulus (N/m~2): ")

Do= input("Enter the outer diameter of the pipeline (m): ")
ts= input("Enter the wall-thickness of the pipeline(m): ")
I= ((math.pi)/64)*(Do**4-(Do-2*ts)**4)

EI=E*I # (NmA2)

print "Pipeline bending stiffness: "+str(El)+" Nm#2"

print "\n'

smoothingfactor = input("Enter a smoothing factor: ")

tck = interpolate.splrep(x3[slp1:slp2],y3[slpl:slp2], k=5, s=smoothingfactor)
xnew = linspace(XnewStart, XnewEnd, 1000*(slp2-slp1)+1)

ynew = interpolate.splev(xnew,tck,der=0)

yder = interpolate.splev(xnew[::1000],tck,der=1)

y2der =interpolate.splev(xnew[::1000],tck,der=2)

curvature = (y2der)/((1+yder**2)**(3/2))

abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()

ax1 = fig.add_subplot(211)
ax1.plot(x3[slpl:slp2],y3[slpl:slp2], 'go’, xnew,ynew , 'b')
pylab.legend(('survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')

axl.set_ylabel('Northing (y)', color="b")

for tl in ax1.get_yticklabels():

120

tl.set_color('b")
ax2 = ax1.twinx()
ax2.plot(xnew[::1000],curvature,'r')
ax2.set_ylabel('curvature, 5th order splines', color="r")
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp1],y3[slp2])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1], 'b', SurveyKp[slp1:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(max(SurveyKp[slp1:slp2]),min(SurveyKp[slp1:slp2]))

pylab.grid(True)

pylab.title('5th order spline')

pylab.legend(('Actual’,'Allowable'), loc = 'upper right')

#pylab.savefig('save')

pylab.show()

121

kiko=1
g = raw_input("Are you satisfied? ")
while kiko==1:
if g=="yes":
kiko=kiko+1
else:
smoothingfactor = input("Enter a new smoothing factor: ")
tck = interpolate.splrep(x3[slpl:slp2],y3[slpl:sip2], k=5, s=smoothingfactor)
xnew = linspace(XnewsStart, XnewEnd, 1000*(slp2-slp1)+1)
ynew = interpolate.splev(xnew,tck,der=0)
yder = interpolate.splev(xnew[::1000],tck,der=1)
y2der =interpolate.splev(xnew[::1000],tck,der=2)
curvature = (y2der)/((1+yder**2)**(3/2))
abs_curvature = abs(y2der)/((1+yder**2)**(3/2))

BM = [x*El for x in curvature] # El*curvature = BM

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.plot(x3[slpl:slp2],y3[slpl:slp2], 'go', xnew,ynew, 'b')
pylab.legend(('survey data’, 'Splines') , loc = 'upper right')
axl.set_xlabel('Easting (x)')
axl.set_ylabel('Northing (y)', color="b")
for tlin ax1.get_yticklabels():

tl.set_color('b")
ax2 = ax1.twinx()

ax2.plot(xnew[::1000],curvature,'r')

122

ax2.set_ylabel('curvature, 5th order splines', color="r')
for tl in ax2.get_yticklabels():

tl.set_color('r')
axl.set_ylim(y3[slp1],y3[slp2])
ax2.set_ylim(min(curvature),max(curvature))
pylab.grid(True)
pylab.title('Smoothed plotted pipeline position')
pylab.legend((‘curvature'), loc = 'lower right')

#pylab.savefig('save')

aBM = [allowable_BM]

a_BM = aBM*len(SurveyKp[slp1:slp2])

ax3 = fig.add_subplot(212)

ax3.plot(SurveyKp[slp1:slp2],BM[:slp2-slp1], 'b’, SurveyKp[slpl:slp2], a_BM, 'r')
ax3.set_ylabel('Bending moment (Nm)')

ax3.set_xlabel('Kp')
pylab.xlim(max(SurveyKp[slp1:slp2]),min(SurveyKp[slp1:sip2]))

pylab.grid(True)

pylab.title('5th order spline')

pylab.legend(('Actual’,'Allowable') , loc = 'upper right')

#pylab.savefig('save')

pylab.show()

g = raw_input("Are you satisfied? ")

else:

123

print "ERROR"

if _name__=='_main__"

main()

124

	Front page Master thesis SPD
	Faculty of Science and Technology

	Master thesis 2001 SPD.pdf
	Summary
	Preface
	Abbreviations
	Symbols
	List of Figures
	List of Tables
	1 – Introduction
	2 – Objectives
	3 – Theory
	3.1 Buckling
	3.1.1 General
	3.1.2 Upheaval Buckling
	3.1.3 Lateral Buckling
	3.1.4 Relation between Lateral and Upheaval Buckling
	3.2 Restrained pipeline

	3.3 Effects of HP/HT reservoirs
	3.4 Trawling
	3.5 Pipeline Design Analysis
	3.5.1 General stress check

	3.5.2 Pipeline Design according to DNV codes
	3.6 Curvature
	3.7 Smoothing
	3.8 ROV Pipetracker
	3.9 Finite Element Method - Analysis (FEM-A)

	4 – Software development
	5 – Calibration analyses
	6 – Discussion on:
	7 – Conclusions
	8 – References
	Appendix A
	 7pt-files and 5pt-files
	Design Route-file

	Appendix B
	Python programming
	In general
	The language [4]

	Appendix C
	SIMLA [6]
	Program basis
	Basic concepts

	Appendix D
	Introduction
	INSTALLATION
	Setup

	HOW TO USE THE SOFTWARE (LBSS)
	Overview
	Converting geographical coordinates to easting and northing coordinates
	The Startup

	Appendix E
	Verification tests of program

	Appendix F

