University of Stavanger Faculty of Science and Technology MASTER'S THESIS		
Study program/ Specialization: Offshore Technology/Subsea Technology	Spring semester, 2011 Open / Restricted access	
Writer: Rika Afriana Faculty supervisor:	(<u>W</u> riter's signature)	
Prof. Ove Tobias Gudmestad External supervisor(s): Prof. Jan Vidar Aarsnes Einar B. Glomnes		
Titel of thesis: Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser Based on Numerical Simulation		
Key words: Coupled Dynamic Analysis, Decoupled Analysis, Cylindrical Floater, Moorings, Riser WADAM/HYDRO D, RIFLEX, SIMO, SIMA MARINTEK	Pages: 222 pages + enclosure: 159 pages Stavanger, July 28, 2011 Date/year	

Abstract

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser Based on Numerical Simulation

The hostile environments are presently one of the challenges that should to be deal with in offshore floating system design where the hydrodynamic interaction effects and dynamic responses dominate the major consideration in its design.

Nowadays, the cylindrical FPSO is being extensively used as an offshore facility in the oil and gas industry. This system has been deployed widely around the world as a unique design facility which is regarded as a promising concept. As a floating offshore system, a cylindrical FPSO will be deployed together with slender members (moorings and risers) responding to wind, wave and current loading in complex ways.

In order to quantify the coupling effects between each component in an offshore floating system and the associated structural response in offshore structure design, two kind of analyses, the decoupled analysis and the nonlinear-coupled dynamic analysis have been presented in this thesis. It introduces a consistent analytical approach that ensures higher dynamic interaction between the floater, moorings and risers. The nonlinear-coupled dynamic analysis requires a complete model of the floating offshore system including the cylindrical S400 floater, 12 mooring lines and the feasible riser configurations for the 6" and 8" production risers. Furthermore, the results from the nonlinear-coupled dynamic analysis will also be compared to the separated analyses for each component as a discussion of the analysis results.

The frequency domain and time domain analysis will be implemented to solve the equation of motions at the simulations. The simulation will be conducted in two simulation schemes, static and dynamic conditions. The 3 hours + build up time will be used in the dynamic condition because the time domain requires a proper simulation length to have a steady result.

Several software computer programs will be used in the analyses. In the separated analysis for each component in offshore floating system, the cylindrical floater hydrodynamic analysis as a decoupled analysis is performed by using the integrated software program Hydro D which is related to several support software programs (Prefem, Wadam and Postresp). For mooring system analysis as a decoupled analysis will be analyzed by using SIMO in time domain analysis. In SIMO, two models (the body model and the station keeping model) will be required and the quasi-static design will be applied as the design method in mooring system analysis. The analysis for riser system also is done as the decoupled analysis in this study. The main purpose of this analysis is to find a feasible single arbitrary configuration for

each of the 6" and 8" production risers. The riser system analysis will also be performed in time domain analysis in RIFLEX for two simulation conditions, static and dynamic conditions.

After the separated analyses for each component, a single complete computer model that includes a cylindrical floater, moorings and risers with use of SIMA will be as the nonlinearcoupled dynamic analysis. The analysis is performed in time domain for two conditions, static and dynamic conditions. The SIMA Marintek computer will be used in this study because it has the capability to integrate the cylindrical S400 floater, moorings and risers as one complete model. As an integrated dynamic system, the environmental forces on the floater induce the motions which will be introduced in a detail FEM (Finite Element Model) of the moorings, risers and cylindrical S400 floater.

In the end, not only the accurate prediction of the responses of the overall system but also the individual responses of the floater, mooring and risers are obtained. The summary of results between the decoupled analysis and the nonlinear-coupled dynamic analysis will also be presented briefly in this study.

Acknowledgement

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser Based on Numerical Simulation

This thesis is the final work of my graduate study at the Department of Offshore Technology, Faculty of Natural Science and Technology, University of Stavanger, Norway. The thesis has been carried out from February until June 2011 at the Research and Development Department in Sevan Marine AS, Arendal.

I would like to acknowledge and extend my heartfelt gratitude to the following persons who have made the completion of this thesis possible:

My supervisor, Professor Ove T. Gudmestad for his interest to this thesis and for his great motivation to me. Without his encouragement, guidance and endless supports, this thesis would not have been accomplished. Life blessed me with a lot of opportunity after I met him.

My supervisor in Sevan Marine AS, Professor Jan V. Aarsnes for his advices during this study.

My supervisor, Einar B. Glomnes who always helpful and willing to take some time togive me his guidances. His advices and knowledge are very valuable for this thesis.

Kåre Syvertsen, for giving me the opportunity and providing me with so many valuable facilities during the thesis work at the Research and Development Department in Sevan Marine AS, Arendal.

Kåre G. Breivik, for giving me the opportunity to write my thesis at the Research and Development Department in Sevan Marine AS, Arendal.

Knot Mo and Elizabeth Passano from Marintek, for providing guidance regarding SIMA Marintek computer software.

The people from the Research and Development Department Sevan Marine AS for giving me such a wonderful experience during this study. Tor Stokke, Irina Kjærstad, Torhild Konnestad, Alf Reidar Sandstad, Veslemøy U. Sandstad, Per Høyum.

All of my friends in University of Stavanger, Norway for they supportive and fun-filled environment during our study period in University of Stavanger. For Indonesian heroes this year: Iswan Herlianto, Adri Maijoni, Eko Yudhi Purwanto, Sari Savitri, Winia Farida and Dian Ekawati. We have to be very proud for our achievements. The special thanks for Adedayo Adebayo, Tonje Charlotte Stald, Morten Langhelle, Henry Ezeanaka, Bamidele Oyewole, Mina Jalali, Markus Humel, Jarle Gundersen, Ragnhild O Steigen, Sahr M. Hussain, Farhia B. Nur, Rakhshinda Ahmad and Fery Simbolon, Tomy Nurwanto, Hermanto Ang, Yahya Januarilham, Surya Dharma, Sakti Tanripada, Sanggi Raksagati. Our university can't be homie without you guys.

Hans Marthyn Franky Panjaitan, Iqbal Ruswandi, Dilly Soemantri, Ahmad Makintha Brany, Airindy Felisita, Maurina Adriana, Agung Ertanto, Miftachul Choiri, Ronny Costamte, Novithasari Dewi Anggraeni, Trimaharika Widarena and Ratna Nita Perwitasari. Many thanks for the guidance and valuable advices.

Apak and Amak, for teaching me the love of science and the belief that almost anything can be accomplished through hard work and determination. I especially dedicated this thesis for them. My brother and sister for their warm supports.

My loving, supportive, encouraging, and patient soulmate Indra Permana whose faithful and always give me his endless support from the beginning till the end of time. This thesis would not have been possible without his contributions. Thank you for always believe in me to chase my dream and pursuit our happiness. Happy wedding!

I offer my regards to all of those who supported me in any respect during the completion of this study. Finally, my greatest regards to Allah SWT for bestowing upon me the courage to face the complexities of life and complete this thesis.

Rika Afriana

Table of Contents

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

Abstract	. ii
Acknowledgement	iv
Tables of Contents	vi
List of Figures	. ix
List of Tables	xv

Chapter 1 Introduction

1.1	Background	1-1
1.2	State of Art	1-2
1.3	Problem Statement	1-4
1.4	Purpose and Scope	1-5
1.5	Location of Study	1-6

Chapter 2 Theoretical Background

2.1	Equation of Motion for Floating Structure	2-1
2.2	Response of Single Body Structures	2-4
2.3	Second-Order Nonlinear Problems	2-5
	2.3.1 The Mean Wave (Drift) Forces	2-6
	2.3.2 The Slowly Varying (Low frequency) Wave Forces	2-9
2.4	Frequency Domain and Time Domain Analysis	2-10
	2.4.1 Frequency Domain Analysis	2-10
	2.4.2 Time Domain Analysis.	2-11
2.5	Fundamental Continuum Mechanics Theory and Implementation	
	of the Finite Element Method	2-13
	2.5.1 Fundamental Continuum Mechanics Theory	2-13
	2.5.2 Implementation of the Finite Element Method	2-16
2.6	Coupling Effects	2-20

Chapter 3 Environmental Conditions

3.1	Water Level	3-3
3.2	Winds	3-4
	3.2.1 The Wind Force Simulated In Time Domain	3-5

	3.3 Wa	ves	3-7
	3.3.	.1 Regular waves	3-7
	3.3.	.2 Irregular Waves	3-13
	3.4 Cur	rents	3-20
	3.4.	.1 The Current Force Simulated In Time Domain	3-22
	3.5 Hea	ading Dependency of Environmental Conditions	3-23
Chapter 4	Method	ology of the Analysis	
•	4.1 Svs	stem Components	4-5
	4.2 Met	thad Analysis of Nonlinear-counled dynamic	4-6
	4.3 Nur	merical Simulation Steps	4-8
Chapter 5	Hvdrody	vnamic Analysis of Cylindrical FPSO S400	
	5.1 Ger		5-1
	5.1 Oei	del Concent and Analysis Stens	
	5.2 MO	Aradynamic Response and Stability Analysis	
	5.5 Tiye	1 Stability Analysis	
	5.3	2 Transfer Functions	
	5.3.	2 Moon Ways (Drift) Force	
	5.3.	.4 Nonlinear Damping Effect	5-23 5-31
Chapter 6	Mooring	as Analysis	
	6 1 Mov	oring Systems	6-1
	6.2 Mo	oring System Design	
	0.2 10100	1 Pasia Theory for Design	
	0.Z. 6.2	2 Design Criteria	
	0.2.	2 Modeling Concent and Analysis Stone	0-10 6 12
	6.2 Mo	oringe Applyoin	0-13 6 21
	0.3 10100	1 Static Condition	
	6.3.	2 Dynamic Condition	6-21 6-22
Chantas 7	Dicor A	nalveis	
		narysis duction Dison Quaterna	7.0
	7.1 Pro		
	7.2 Fiex	A Diser Orstingerties Orlections	
	7.2.	A Riser Configuration Selections	
	7.2.	2 Design Parameters	
	7.2.	.3 Design Criterion	
	7.2.	4 Methodology Design and Analysis Steps	
	7.2.	.5 The Western Isles Field Layout and Model Properties for	7.40
		the Riser System	
	7.2.	.6 Modeling Concept by RIFLEX	
	7.3 Ris	er Analysis	
	7.3.	.1 Layout and Schematic Riser Configuration	
	7.3.	2 Static Condition	
	7.3.	.3 Dynamic Condition	7-26
Chapter 8	Coupled	d Dynamic Analysis	
	8.1 Mo	deling Concept by SIMA Marintek	8-2

	 8.2 The System Response in the Nonlinear-Coupled Dynamic Analysis	3-7 3-7 12 14
Chapter 9	Conclusions and Further Studies	
	9.1 Conclusions)-1
	9.2 Further Studies)-9
Referenc	es	
Appendix A	Response Amplitude Operator (RAO)	
Appendix B	Wave Drift Force	
Appendix C	System Description SIMO	
Appendix D	Riflex Decoupled Input	

- Appendix E SIMA (RIFLEX+SIMO) Coupled Input
- Appendix **F** Hydro D Model

List of Figures

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

Figure 1.1	: Floating offshore structure.	1-3
Figure 1.2	: Field overview.	1-7
Figure 2.1	: Definition of rigid-body motion modes.	2-1
Figure 2.2	: Superposition of hydro mechanical and wave loads.	2-5
Figure 2.3	: The relation between the waves and the motions.	2-10
Figure 2.4	: Motion of a material particle.	2-14
Figure 2.5	: Nodal point with translational and rotational degrees of freedom	2-16
Figure 2.6	: Bar element in initial and deformed configuration.	2-17
Figure 2.7	: Nodal degrees of freedom for beam element	2-18
Figure 2.8	: Prismatic beam.	2-19
Figure 3.1	: Definition of location and measurement points for metocean data.	3-2
Figure 3.2	: ISO 19901-1 wind spectrum for a mean wind speed of 20 m/s. In the SIMO $\hfill \ldots$	3-6
Figure 3.3	: Harmonic wave definitions.	3-8
Figure 3.4	: Atmospheric pressure at the free surface.	3-10
Figure 3.5	: Sinusoidal wave profile	3-11
Figure 3.6	: Surface wave definitions based on WADAM	3-12
Figure 3.7	: The data for regular waves calculation in WADAM analysis.	3-13
Figure 3.8	: Directional relative magnitudes of significant wave height.	3-14
Figure 3.9	: Hs/Tp Omni directional Hs-Tp contour for the 100-years return	
	period sea state.	3-15
Figure 3.10	: Jonswap spectrum.	3-18
Figure 3.11	: Torsethaugen spectrum.	3-20
Figure 3.12	: Ten years directional current profile. Directions are towards	
	which current is flowing3.	3-22
Figure 3.13	: The distribution of heading probability of the environmental parameters	3-24

Figure 4.1	: Illustration of traditional separated analysis; de-coupled analysis
Figure 4.2	: Schematic for nonlinear-coupled dynamic analysis4-3
Figure 4.3	: Coupled floater motion and slender structure analysis4-4
Figure 4.4	: An integrated scheme analysis4-8
Figure 4.5	: Load cases combinations scheme analysis4-10
Figure 5.1	: S400 FPSO - 3D model5-3
Figure 5.2	: S400 FPSO - 2D model
Figure 5.3	: Overview of model types5-4
Figure 5.4	: S400 FPSO - 2D model
Figure 5.5	: The relation between Prefem, Wadam and Postresp as an integrated
	program for analysis of a cylindrical floater S4005-5
Figure 5.6	: A simple procedure for the hydrodynamic analysis for a cylindrical floater S400. \dots 5-6
Figure 5.7	: Hydro model combinations5-7
Figure 5.8	: Finite element models for a cylindrical floater S400
Figure 5.9	: The data for the Wadam mass models for the cylindrical floater S4005-8
Figure 5.10	: The hydrodynamic properties for the Wadam mass model
Figure 5.11	: The appearance of HydroD5-10
Figure 5.12	: A cylindrical floater model of S400 model in HydroD5-11
Figure 5.13	: Inclined a cylindrical floater S4005-13
Figure 5.14	: The movement of GM from the ballasted to fully loaded condition
Figure 5.15	: The amplitude of the response variable for surge in regular wave condition5-17
Figure 5.16	: The amplitude of the response variable for sway in regular wave condition5-18
Figure 5.17	: The amplitude of the response variable for heave in regular wave condition5-18
Figure 5.18	: The amplitude of the response variable for roll in regular wave condition
Figure 5.19	: The amplitude of the response variable for pitch in regular wave condition5-19
Figure 5.20	: The amplitude of the response variable for yaw in regular wave condition5-20
Figure 5.21	: The amplitude of the response variable for surge in irregular wave condition5-21
Figure 5.22	: The amplitude of the response variable for sway in irregular wave condition5-21
Figure 5.23	: The amplitude of the response variable for roll in irregular wave condition
Figure 5.24	: The amplitude of the response variable for pitch in irregular wave condition5-22
Figure 5.25	: The amplitude of the response variable for yaw in irregular wave condition5-23
Figure 5.26	: The drift force-far field versus the pressure integration in surge for regular waves. 5-24
Figure 5.27	: The drift force, far field versus the pressure integration in sway for regular waves. 5-24

Figure 5.28	: The drift moment, far field versus the pressure integration in yaw	
	for regular waves.	5-25
Figure 5.29	: The drift force, pressure integration in heave for regular waves	5-26
Figure 5.30	: The drift moment, pressure integration in roll for regular waves.	5-26
Figure 5.31	: The drift moment, pressure integration in pitch for regular waves	5-27
Figure 5.32	: The drift force, far field versus pressure integration in surge for irregular waves.	5-28
Figure 5.33	: The drift force, far field versus pressure integration in sway for irregular waves.	5-28
Figure 5.34	: The drift moment, far field versus pressure integration in yaw	
	for irregular waves.	5-29
Figure 5.35	: The drift force, pressure integration in heave for irregular waves	5-29
Figure 5.36	: The drift moment, pressure integration in roll for irregular waves.	5-30
Figure 5.37	: The drift moment, pressure integration in pitch for irregular waves	5-30
Figure 5.38	: The non linear damping effect in surge for regular wave	5-31
Figure 5.39	: The non linear damping effect in sway for regular wave	5-32
Figure 5.40	: The non linear damping effect in heave for regular wave	5-32
Figure 5.41	: The non linear damping effect in roll for regular wave.	5-33
Figure 5.42	: The non linear damping effect in pitch for regular wave.	5-33
Figure 5.43	: The non linear damping effect in yaw for regular wave.	5-34
Figure 6.1	: Environmental forces acting on a moored vessel in head conditions and	
g	the transverse motion of catenary mooring lines.	6-2
Figure 6.2	: Mooring lines layout overview.	6-3
Figure 6.3	: Mooring line composition.	6-5
Figure 6.4	: The movable winch on a cylindrical S400 floater.	6-7
Figure 6.5	: The combined fairlead/chain stopper on a cylindrical S400 floater.	6-8
Figure 6.6	: The cable line with symbols.	6-9
Figure 6.7	: The forces acting on an element of mooring line.	6-9
Figure 6.8	: A simple procedure for mooring analysis.	6-13
Figure 6.9	: The structural mass data for a cylindrical S400 floater.	6-14
Figure 6.10	: Layout of the SIMO program system and file communication	
	between modules.	6-20
Figure 6.11	: The calculation parameters for static and dynamic condition	6-21
Figure 6.12	: The global motion response, the low frequency motions for surge	6-23
Figure 6.13	: The global motion response, the low frequency motions for sway.	6-24
Figure 6.14	: The global motion response, the low frequency motions for heave	6-24
Figure 6.15	: The global motion response, the low frequency motions for roll.	6-25

Figure 6.16	: The global motion response, the low frequency motions for pitch.	6-25
Figure 6.17	: The global motion response, the low frequency motions for yaw.	6-26
Figure 6.18	: The total global motion response, the total frequency motions for surge.	6-26
Figure 6.19	: The total global motion response, the total frequency motions for sway	6-27
Figure 6.20	: The total global motion response, the total frequency motions for heave	6-27
Figure 6.21	: The total global motion response, the total frequency motions for roll	6-28
Figure 6.22	: The total global motion response, the total frequency motions for pitch	6-28
Figure 6.23	: The total global motion response, the total frequency motions for roll	6-29
Figure 6.24	: The mooring line dynamic tensions in time series for S400_Line1	6-31
Figure 6.25	: The mooring line dynamic tensions in time series for S400_Line2.	6-31
Figure 6.26	: The mooring line dynamic tensions in time series for S400_Line3	6-32
Figure 6.27	: The mooring line dynamic tensions in time series for S400_Line4	6-32
Figure 6.28	: The mooring line dynamic tensions in time series for S400_Line5	6-33
Figure 6.29	: The mooring line dynamic tensions in time series for S400_Line6	6-33
Figure 6.30	: The mooring line dynamic tensions in time series for S400_Line7	6-34
Figure 6.31	: The mooring line dynamic tensions in time series for S400_Line7	6-34
Figure 6.32	: The mooring line dynamic tensions in time series for S400_Line9	6-35
Figure 6.33	: The mooring line dynamic tensions in time series for S400_Line10	6-35
Figure 6.34	: The mooring line dynamic tensions in time series for S400_Line11	6-36
Figure 6.35	: The mooring line dynamic tensions in time series for S400_Line12	6-36
Figure 6.36	: The second order wave forces – XR Forces (in Surge)	6-38
Figure 6.37	: The second order wave forces – YR Forces (in Sway).	6-38
Figure 6.38	: The second order wave moment – Moment ZR axis (in Yaw)	6-39
Figure 6.39	: The drift damping forces – XR Forces (in Surge).	6-40
Figure 6.40	: The drift damping forces – YR Forces (in Sway).	6-40
Figure 6.41	: The drift damping forces – moment ZR axis (in Yaw).	6-41
Figure 7.1	: Examples of riser systems	7-2
Figure 7.2	: Flexible riser	7-3
Figure 7.3	: Standard flexible riser configurations.	7-4
Figure 7.4	: The influence of vessel offset in riser design.	7-5
Figure 7.5	: Methodology design for a riser system.	7-12
Figure 7.6	: The riser system for South Drill Centre.	7-13
Figure 7.7	: Layout of the RIFLEX program system and file communication	
	between modules.	7-16
Figure 7.8	: System definition for the description of the layout configuration design	

	of the Arbitrary Riser system configuration (AR).	7-17
Figure 7.9	: The riser configuration of the 6" production riser for the Western Isle Field	7-19
Figure 7.10	: The riser configuration of the 8" production riser for the Western Isle Field	7-20
Figure 7.11	: The static effective tension for the 6" production riser for the Western Isle Field.	7-22
Figure 7.12	: The static effective tension for the 8" production riser for the Western Isle Field.	7-23
Figure 7.13	: The static bending moment for the 6" production riser for the Western Isle Field	l. 7-24
Figure 7.14	: The static bending moment for the 8" production riser for the Western Isle Field.	7-24
Figure 7.15	: The static curvatures for the 6" production riser for the Western Isle Field	7-25
Figure 7.16	: The static curvatures for the 8" production riser for the Western Isle Field	7-25
Figure 7.17	: The displacement envelope curvature for the 6" production riser	7-26
Figure 7.18	: The displacement envelope curvature for the 8" production riser	7-27
Figure 7.19	: The dynamic effective tension for the 6" production riser for	
	the Western Isle Field.	7-28
Figure 7.20	: The dynamic effective tension for the 8" production riser for	
	the Western Isle Field.	7-29
Figure 7.21	: The dynamic bending moment for the 6" production riser for	
	the Western Isle Field.	7-30
Figure 7.22	: The dynamic bending moment for the 8" production riser for	
	the Western Isle Field.	7-30
Figure 7.23	: The dynamic curvatures for the 6" production riser for the Western Isle Field	7-31
Figure 7.24	: The dynamic curvatures for the 8" production riser for the Western Isle Field	7-31
-		
Figure 8.1	: Library data system of the SIMA Marintek.	8-6
Figure 8.2	: The total global motion response, the total frequency motions for surge.	8-8
Figure 8.3	: The total global motion response, the total frequency motions for sway	8-8
Figure 8.4	: The total global motion response, the total frequency motions for heave.	8-9
Figure 8.5	: The total global motion response, the total frequency motions for roll.	8-9
Figure 8.6	: The total global motion response, the total frequency motions for pitch.	8-10
Figure 8.7	: The total global motion response, the total frequency motions for yaw.	8-10
Figure 8.8	: The total global motion response, the total frequency motions for surge	
	from the station keeping system modeling in SIMO (Chapter 6).	8-13
Figure 8.9	: The static effective tension for the 6" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-16
Figure 8.10	: The static effective tension for the 8" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-17
Figure 8.11	: The static bending moment for the 6" production riser for the Western Isle	

	Field in the nonlinear-coupled dynamic analysis.	8-18
Figure 8.12	: The static bending moment for the 8" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-18
Figure 8.13	: The static curvatures for the 6" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-19
Figure 8.14	: The static curvatures for the 8" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-19
Figure 8.15	: The displacement envelope curvature for the 6" production riser	8-20
Figure 8.16	: The displacement envelope curvature for the 8" production riser	8-21
Figure 8.17	: The dynamic effective tension for the 6" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-22
Figure 8.18	: The dynamic effective tension for the 8" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-23
Figure 8.19	: The dynamic bending moment for the 6" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-24
Figure 8.20	: The dynamic bending moment for the 8" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-24
Figure 8.21	: The dynamic curvatures for the 6" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-25
Figure 8.22	: The dynamic curvatures for the 8" production riser for the Western Isle	
	Field in the nonlinear-coupled dynamic analysis.	8-25

List of Tables

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser Based on Numerical Simulation

Table 3.1	: NORSOK Guidance Return Period Combinations in the Design	3-2
Table 3.2	: Still Water Levels, Surges and Still Water Depths Based on	
	a Nominal LAT Depth	3-3
Table 3.3	: Extreme Water Levels and Depths Based on a Nominal LAT Depth	3-3
Table 3.4	: Extreme Wind Speeds at 10 m asl- by Direction (From)	3-4
Table 3.5	: Extreme Wind Speeds at 10 m asl- Omnidirectional	3-4
Table 3.6	: Directional hs Relative magnitudes	3-14
Table 3.7	: Extreme Wave Criteria for eight directional	3-16
Table 3.8	: Extreme Wave Height and Asscociated Periods- Omnidirectional	3-16
Table 3.9	: Tide, Surge and Total Directional Depth Averaged Currents (cm/s)	3-21
Table 3.10	: Extreme Total Current Profile (m/s) - by direction (direction are towards)	3-21
Table 3.11	: The used design environmental conditions for return period condition	3-25
Table 5.1	: S400 FPSO Main Particulars	5-2
Table 5.2	: The Damping and Restoring Matrices for the Ballasted Loading Condition	5-9
Table 5.3	: The Damping and Restoring matrices for the fully loaded condition	5-10
Table 5.4	: The mass properties for ballasted condition	5-14
Table 5.5	: The hydrostatic data for ballasted condition	5-14
Table 5.6	: The mass properties for fully loaded condition	5-15
Table 5.7	: The hydrostatic data for fully loaded condition	5-15
Table 6.1	: Mooring Line Composition for Sevan 400 FPSO	6-4
Table 6.2	: The Detailed Orientation and The Pretension of The Lines	6-6
Table 6.3	: ULS Line Tension Limits and Design Safety Factors	6-11
Table 6.4	: The Linear Damping Coefficients for Mooring Analysis	6-15
Table 6.5	: The Quadratic Damping Coefficients for Mooring Analysis	6-16

Table 6.6	: The Linear Hydrostatic Stiffness Matrix for Mooring Analysis (kg.m/s2)	6-16
Table 6.7	: The Quadratic Current Coefficients for 6 DOF Motions From 0 ° to 90 °	6-17
Table 6.8	: The Wind Coefficients for 6 DOF Motions From 0 ° to 90 °	6-18
Table 6.9	: The Wave Drift Damping Coefficients	6-18
Table 6.10	: The Wave Drift Damping Coefficients	6-19
Table 6.11	: The Final Static Body Position of A Cylindrical S400 Floater	6-21
Table 6.12	: The Static Forces and Moments on S400 Floater	6-22
Table 6.13	: The Mooring Line Static Tensions	6-22
Table 6.14	: The Summary of The Global Motion Response of A Cylindrical S400 Floater	6-29
Table 6.15	: The Summary of Mooring Line Dynamic Tensions of a cylindrical S400 floater	6-30
Table 6.16	: The Summary of Line Tension Limit and Design Safety Factor	6-37
Table 6.17	: The Summary of Second Order Wave Forces	6-37
Table 6.18	: The Summary of wave drift damping forces	6-39
Table 7.1	: Design MBR requirements	7-10
Table 7.2	: Physical Properties for Risers	7-14
Table 7.3	: Physical Properties for Risers	7-15
Table 8.1	: The EVA Analysis Results for 100 Years Waves	8-4
Table 8.2	: Extreme Wave Height and Associated Periods- Omnidirectional	8-4
Table 8.3	: The Summary of The Global Motion Response of A Cylindrical S400	
	Floater in the Nonlinear-Coupled Dynamic Analysis	8-7
Table 8.4	: The Summary of The Global Motion Response of the Cylindrical S400 Floater	
	in the Nonlinear-Coupled Dynamic Analysis and the Station Keeping System	
	Modeling results as found from SIMO (Chapter 6)	8-11
Table 8.5	: The summary of mooring line dynamic tensions of the cylindrical S400	
	floater in the nonlinear-coupled dynamic analysis	8-14
Table 9.1	: The Summary of The Global Motion Response of A Cylindrical S400	
	Floater in the Nonlinear-Coupled Dynamic Analysis and the Station Keeping	
	System Modeling results as found from SIMO (Chapter 6)	9-6
Table 9.2	: The Summary of Mooring Line Dynamic Tensions in The Nonlinear-Coupled	
	Dynamic Analysis and Mooring Line Dynamic Tensions Results as Found from	
	SIMO (Chapter 6)	9-7

CHAPTER

1

Introduction

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

1.1 Background

Nowadays, the cylindrical FPSO is being extensively used as an offshore facility in the oil and gas industry. This system has been deployed widely around the world as a unique design facility which is regarded as a promising concept for an economic oil production since it has capability for storage and wider deck that is giving better layout flexibility. Moreover, it has also the ability to move and relocate after the operation is completed and is suitable for all offshore environments meeting the challenges of the oil and gas industry.

As a floating offshore system, a cylindrical FPSO will be deployed together with slender members (moorings and risers) responding to wind, wave and current loading in complex ways. In the traditional way, the hydrodynamic interaction among the floater, moorings and risers cannot be evaluated since the floater, moorings and risers are treated separately. Moreover, this traditional method, also known as the decoupled analysis, the hydrodynamic behavior of the system is only based on hydrodynamic behavior of the hull and ignores all or part of the interaction effects (mass, damping, stiffness, current loads) between the floater, moorings and risers.

In order to capture the interaction between the floater, moorings and risers, one extensive method has been introduced and developed in the last decade. This method, also known as the nonlinear-coupled dynamic analysis, ensures higher dynamic interaction among the components responding to environmental loading due to wind, waves and currents since the main coupling effects will be included automatically in the analysis. Hence, the accurate prediction of the response for the overall system as well as the individual response of floater, moorings and risers can be obtained.

Lately, the nonlinear-coupled dynamic analysis of the floating systems is becoming more and more important in order to evaluate the dynamic interaction among the floater, moorings and risers. Extensive work during last decade has been performed by many researches. Most of their implementations that are related to the study will be presented below:

Omberg and Larsen (1998) concluded that the uncoupled analysis may produce severely inaccurate results. Besides that, *Kim and Kim (2002)* have investigated the global motion of a

turret-moored FPSO with 12 chain-polyester-chain mooring lines and 13 steel catenary risers in a fully coupled hull/mooring/riser dynamic analysis and concluded that the coupled behavior of vessel, moorings and riser will greatly enhance the understanding of the relevant physics and the overall performance assessment of the system. Furthermore, *Chaudry and Yo Ho* (2000) concluded that the full coupling of dynamic equilibrium in actual motions will be important for moorings and risers motion since the coupling effects give significant influence to the motion of moorings and risers.

Based on the reasons above, the nonlinear-coupled dynamic analysis has been addressed as the proper strategy to improve the understanding of the overall hydrodynamic behavior. This analysis will ensure higher dynamic interaction between the vessel and the slender system because of two reasons:

- The overall behavior of the floater will be influenced not only from the hydrodynamic behavior of the hull but also from the dynamic behavior of the slender members (moorings and risers)
- The coupling effects such as restoring, damping and added mass will be taken into account automatically in the process of analysis.

Hence, the nonlinear-coupled dynamic analysis represents a truly integrated system which ensures accurate prediction of all motions and responses without imposing conservatism.

In the study, the Western Isles Development Project (WIDP) that is located in the UKCS, Block 210/24 to the North East of Shetland will be taken as reference case. Moreover, the WIDP has shallow water conditions and also has harsh environment. These two major characteristics will influence the design of the overall system of the floating offshore system.

Furthermore, the study has been performed at the Research and Development Department in Sevan Marine AS, Arendal from February until June 2011. **All of information in this project is confidential**.

1.2 State of Art

Offshore structures are located in the ocean environments without continuous access to dry land and this causes offshore structures to have hydrodynamic interaction effects and dynamic response as major considerations for their design. They may be required to stay in position in all weather conditions. The configuration of an offshore structure may be classified by whether the structure is a fixed structure or floating structure. *Chakrabarti* (2010) has mentioned that the requirements for a floating structure are that it should be moored in place and that the facility under the action from the environment remains within a specified distance from a desired location achieved by the station keeping.

A floating offshore system consists of three principal structural components (**Figure 1.1**):

- 1. Floating hull: facilitating the space for the operations of the production work and storage for supplies
- 2. The station keeping: providing a connection between the structure and the seafloor for the purposes of securing the structure against the environmental loads, and
- 3. Riser system: achieving drilling operations or product transport

Figure 1.1 : Floating offshore structure. Reference: Chakrabarti, 2010

The station-keeping may also be achieved by a dynamic positioning system solely using thrusters or in combination with mooring lines. The mooring lines and risers provide restoring forces to the floater.

Coupled versus Decoupled Analysis

Traditionally, the offshore industry has used de-coupled analysis as the methodology for design of floating offshore platforms with moorings and risers.

Nowadays, a lot of researches have suggested that the integration between the floating hull, mooring and the risers as a dynamic system is important in order to capture the interaction between them and obtain realistic motion values for each individual system.

Omberg et al. (1997 and 1998) concluded that the design of a Floater Production System (FPS) should consider the fact that the moored system and the risers comprise a truly integrated system; that is the overall behavior of the floating system is dictated not only by the hydrodynamic behavior of the hull but also by its interaction with the hydrodynamic/structural behavior of the lines.

Another suggestion has been presented by *Chakrabarti (2008)* regarding a specific recommendation for the systematic proces of the coupled analysis.

The de-coupled analysis

Based on DNV definition, *DNV-RP-F205 (2010)*, a de-coupled analysis is performed of the floater motion in time domain, but the effects of the mooring and riser system are included quasi-statically using non linear springs, i.e. having quasi static restoring force characteristic. All other coupling effects such as contribution damping and current loading on the slender structures, need to be given as input to the analysis based on a separate assessment.

Chakrabarti (2008) explained that the de-coupled analysis represents the traditional methodology, in which the numerical analysis tool is based on the hydrodynamic behavior of the floater, uninfluenced by the nonlinear dynamic behavior of moorings or riser. Generally, little or no integration between the moored system and the riser takes place. It is still the common design practice for floating production systems.

The coupled analysis

On the other hand, based on *DNV-RP-F205 (2010)*, the complete system of equations accounting for the rigid body model of the floater as well as the slender body model for the risers and mooring lines are solved simultaneously using a non-linear time domain approach for the dynamic analysis. Dynamic equilibrium is obtained by the time domain approach at each time step ensuring consistent treatment of the floater/slender structure coupling effect. The coupling effects are automatically included in the analysis scheme.

Specifically, the response of each component in such a system is influenced by the mechanical and hydrodynamic coupling effect and the proximity to the other components. Hence, all relevant coupling effects will be analyzed. The floater, moorings and risers system comprise an integrated dynamic system responding to environmental loadings due to wind, waves and currents. In an integrated dynamic system, the environmental forces on the floater induce the motions which will be introduced in a detailed finite element model of the moorings and risers. Furthermore, the coupled analysis will verify the integrations of radiation/diffraction theory with a beam finite element technique in time domain scenario analysis. With reference to *Connaire et al (2003)*, a coupled analysis capability has been developed and extensively verified, which integrates radiation/diffraction theory with a beam finite element technique for slender offshore structures.

1.3 Problem Statement

As oil and gas exploitations move to deepwater and more harsh environment, the hydrodynamic integration between the floating hull, mooring and the risers as a dynamic system will be complex and become important. Hence, more advance methodologies are needed to provide a much deeper understanding of the system behavior. Moreover, the capacity to analyze and model test for this situation are challenged. Efficient tools and procedures on how to determine dimensioning response will be needed.

This study will emphasize on how to perform the nonlinear-coupled analysis of the floater, moorings and risers with efficient tools and procedures in order to capture the interaction between the floater, moorings and risers. This study will present a consistent analytical approach to ensure higher dynamic interaction between floater, moorings and risers.

As a consistent analytical approach, the study will implement numerical simulation steps by using several analysis programs such as Wadam/HYDRO D, SIMO and RIFLEX for an integrated program analysis.

A single and complete model will include a cylindrical S400 floater, 12 mooring lines and one of feasible riser configurations. The detailed model for each component, characterization of the environments in covering relevant load models and the simulation schemes will be presented in this study.

The analysis will be performed in the frequency domain and time domain in order to solve the problems during the analysis.

1.4 Purpose and Scope

The objective of the study is to document a consistent analytical approach for the nonlinearcoupled analysis of the floater, moorings and risers that ensure higher dynamic interaction between floater, moorings and risers.

Generally, the study will cover the following activities below:

- 1. The study of literature for a floating offshore system and each component, cylindrical FPSO, moorings and risers and the therotical background that provides deeper understanding on a consistent analytical approach for the numerical simulations.
- 2. The study of literature for the basic theory of Wadam/HYDRO D, SIMO and RIFLEX and other complementary programs such as PREFEM, POSTRESP and ORCAFLEX.
- 3. The nonlinear-coupled analysis perfomance in SIMA.

Chapter 2 presents the theoretical background that will be helpful to give the perspective for the analysis. The basic knowledge and key definitions that relate to the analysis will be presented here.

Chapter 3 presents the specification of data from the environment based on metaocean design criteria. The environmental conditions such as water depth, wind, waves and currents will be presented here.

Chapter 4 presents the methodology of the analysis. This chapter will explain the analysis procedures for system components, analysis method for nonlinear-coupled dynamic analysis and the numerical simulation steps in the nonlinear-coupled dynamic analysis. The analysis will be performed by using several programs such as Wadam/Hydro D, RIFLEX and SIMO. These programs will be used under an integrated scheme analysis to obtain a consistent analytical approach for the nonlinear-coupled dynamic analysis.

Chapter 5 presents the hydrodynamic analysis of the cylindrical S400 FPSO. The general description of the cylindrical S400 FPSO will be presented here. This chapter will present the analysis of the floater's load model based on diffraction theory to obtain the transfer function, mean wave drift forces and non linear damping. Furthermore, the analysis will be performed by using a diffraction program, Wadam/HYDRO D. The resulting analysis will not only present on the hydrodynamic but also the stability of the cylindrical floater. The hydrodynamic analysis of the hull is performed in the frequency domain analysis as a simple iterative technique to solve a linear equation of motions to obtain a set frequency dependent RAO.

Chapter 6 presents the general description and configuration of the moorings that will be used in the analysis. This chapter will also present the combined model between cylindrical floater and moorings in time domain analysis by using SIMO. In this analysis, the effect of wind and currents will be considered. SIMO as a computer software program for moored vessels will be used in order to include the mooring stiffness in the equation of the motions. Therefore, motions are found by time integration enforcing force equilibrium at all time steps. The corresponding mooring line tensions are established using a quasi static approach.

The result of the analysis will give us the result of a set of time series of the offset vessel value under LF motions and also the total motions (LF+WF motions).

Chapter 7 presents a feasible arbitrary riser configuration. The investigations of the riser configurations will use RIFLEX. Furthermore, the investigation will be performed under decoupled analysis to obtain a single arbitrary configuration. The analysis will also be performed in time domain under two simulation schemes, static and dynamic conditions. A discussion of the analysis results such as top angle (hang off position angle), effective tension, bending radius and seabed clearance will be presented here.

Chapter 8 presents a single complete model that includes the cylindrical floater, moorings and riser by using SIMA Marintek computer software. In principle, the SIMA will combine two nonlinear numerical simulations together those obtained by SIMO and RIFLEX. In other words, the cylindrical floater and moorings model from SIMO will be combined together with an arbitrary riser configuration from RIFLEX in time domain analysis.

The results of the analysis will be a set of accurate predictions for floater motions as well as the moorings and riser system with regard to the coupling effects. Furthermore, the resulting analysis for the riser will be presented and compared with the previous analysis based on the decoupled analysis from **Chapter 6** and **Chapter 7**.

Chapter 9 provides the conclusions and the recommended further studies from this study.

1.5 Location of Study

An overview of the location can be seen in **Figure 1.2**, *Dana Petroleum E&P Limited (2011)* has mentioned that the offshore field Western Isles is located in the UKCS Block 210/24 to the North East of Shetland. The nearest fixed facility is the Tern platform located 12 km East of Western Isles. The Western Isles Field is located approximately 61^o 13' 00" N, 0^o 42' 28" E.

Moreover, the offshore Western Isles Field is located in relatively on shallow water condition and also harsh environment. The water depth is approximately 170 m.

The design life is specified to be 20 years.

Figure 1.2 : Field overview.

Reference: Dana Petroleum E&P Limited (2011)

2

Theoretical Background

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

This chapter will review the basic knowledge to give a perspective for the analysis. Moreover the key definitions that are related to the analysis will also be explained here. The explanation about the equation of motion will be the starting point then we will continue to the structure response, non linear problems, frequency domain analysis and time domain, fundamental continuum mechanics and implementation of finite element method, and finaly coupling effects.

2.1 Equation of Motion for Floating Structure

Before the further explanation about the equation of motion for the floater, the relation between the motion of the floater and the influence on its responses will be presented below:

A floater is almost always taken as a 6 DOF (degrees of freedom) rigid body motions model for its response calculations. The basic theory about this can be clearly found in *Faltinsen (1990)*. Further, the oscillatory rigid body translation motions can be referred to as surge, sway and heave while the oscillatory angular motions are referred to as roll, pitch and yaw based on **Figure 2.1**. below:

Figure 2.1. : Definition of rigid-body motion modes.

Reference: Journée and Massie (2001)

For the analyses of the floater motions it is needed to consider the different hydrodynamic effects on the floater. Generally, a structure responds to environmental forces due to wind, waves and currents with motions on three different time scales; Wave Frequency (WF), Low

Frequency (LF) and High Frequency (HF). The inviscous fluid effects mostly govern the wave frequency and high frequency motions while the low frequency motion will be determined by the viscous fluid effects.

The wave frequency motions (WF) are generated by the wave forces on the floater while the low frequency motions (LF) are driven by the mean wave (drift) and slowly-varying forces from waves or currents. On the other hand, the higher-order wave forces result from the high frequency motion (HF) that may induce springing or ringing response (*DNV-RP-F205 (2010*)).

Normally, a moored floater is dynamically excited by ordinary wave frequency load but also exposed to the mean wave (drift) and slowly-varying forces from waves or currents. *Løken et al. (1999)* mentioned that the dynamic equations of equilibrium forces are formulated in the terms of:

- excitation forces
- inertia forces
- damping forces
- and restoring forces

The solutions of the dynamic equations are found by frequency domain analysis or can be derived by time domain analysis. Generally, frequency domain analysis will be applicable for the environmental load that gives satisfactorily results by linearization theory while time domain analysis will be performed as direct numerical integration of the equation of motions which involves non linear functions to predict the maximum response and capture the higher order load effects.

The large volume body of a floater is represented by a 6 DOF (Degrees of Freedom) rigid body motions model. The floater will be assumed as having a rigid body, unrestrained and in a state of equilibrium when in calm water (steady state).

The basic theory concerning this can be clearly found in Newman (1986) and Faltinsen (1990)

The six components of inertia force which are associated with the body mass can be defined based on the linearized motion assumption as follows:

$$F_{i} = \sum_{j=1}^{6} M_{ij} \dot{U}_{j} (j = 1, ..., 6)$$
(2.1)

where the mass matrix M_{ij} is defined by:

$$M_{ij} = \begin{bmatrix} M & 0 & 0 & 0 & -M_{yG} \\ 0 & M & 0 & 0 & 0 & 0 \\ 0 & 0 & M & M_{yG} & 0 & 0 \\ 0 & 0 & M_{yG} & I_{11} & I_{12} & I_{13} \\ 0 & 0 & 0 & I_{21} & I_{22} & I_{23} \\ -M_{yG} & 0 & 0 & I_{21} & I_{32} & I_{33} \end{bmatrix}$$

 $M_{\gamma G}$ = the mass at the centre gravity

 I_{ij} = the product of moment inertia w. r. t. coordinate system and the body mass is:

$$M=\iiint_{\mathcal{V}_B}\rho_B d\,\mathcal{V}$$

Further, six simultaneous equations of motion will be formulated by equating the inertia forces to the sum of the pressure forces of the fluid over the wetted surface and the forces due to the body weight which are incorporated in the total static restoring forces as follow:

$$\sum_{j=1}^{6} \xi_j \left(-c_{ij} + f_{ij} \right) + AX_i = -\omega^2 \sum_{j=1}^{6} M_{ij} \xi_j \text{ for } (i = 1, \dots, 6)$$

Rearranging and adding the added mass (a_{ij}) and damping coeffecients correlations (b_{ij}) , the equation will be:

$$\sum_{j=1}^{\circ} \xi_j \left[-\omega^2 (M_{ij} + a_{ij}) + i\omega b_{ij} + c_{ij} \right] = AX_i \quad for \ (i = 1, ..., 6)$$

The body motion (ξ_i) can be determined by standard matrix-inversion techniques as follow:

$$\xi_j = A \sum_{j=1}^{6} [C_{ij}]^{-1} X_i \quad for \ (i = 1, ..., 6)$$

Where C_{ij} denotes the total matrix in the square bracket on the left hand side, $\left[-\omega^2(M_{ij}+a_{ij})+i\omega b_{ij}+c_{ij}\right]$

Then the complex amplitude of the body motion in the *j*-th mode, in response to an incident wave of unit amplitude, frequency (ω) and direction (θ) can be described by the ratio below:

$$H_{j}(\omega,\theta) \equiv \frac{\xi_{j}}{A} = \sum_{j=1}^{6} [C_{ij}]^{-1} X_{i} \text{ for } (i=1,\dots,6)$$
(2.2)

The ratio is known as *the transfer function or response amplitude factor*. The transfer function can be calculated if the added mass, damping, exciting and hydrostatic forces are known.

Furthermore, in the case of a mechanical oscillator, the relation between the exciting force damping and resonant response can be found from the equations of motion.

The equations of motions for harmonic forcing motion e.g. regular waves of the rigid body systems are expressed in the global coordinate system below:

$$\sum_{j=1}^{6} \left[\left(M_{ij} + A_{ij} \right) \ddot{\xi}_{j} + B_{ij} \dot{\xi}_{j} + C_{ij} \xi_{j} \right] = F_{i} e^{-i\omega t} \text{ for } (i = 1, \dots, 6)$$
(2.3)

where:

M _{ii}	= the mass	matrix for	the structure
<u>'''</u> []	- the mass	muu ix ioi	the structury

- A_{ii} = the added mass coefficients
- B_{ij} = the damping coefficients

 $F_i e^{-i\omega t}$ = the complex amplitudes of the exciting forces

(*i* is complex unit) for the six of components (i = 1, ..., 6) of rigid body

The equation motion (2.3) can be solved by substituting $\xi_j = \bar{\xi}_j e^{-i\omega t}$ in the left hand side, where $\bar{\xi}_j$ are the complex amplitude of the motion modes. This leads to the six coupled algebraic equations for the real and imaginary parts of the complex amplitudes for surge, heave and pitch. A similar approach can be used to determine sway, roll and yaw. When the motions are found, the wave loads can be obtained using the expression for hydrodynamic forces. *Faltinsen (1990)* has emphasized that *equation (2.3)* is only generally valid for steady state sinusoidal motions.

On the other hand, the response in irregular waves can be given by using the following form below:

$$\sum_{j=1}^{N} A_j |H(\omega_j)| \sin(\omega_j t + \delta(\omega_j) + \epsilon_j)$$
(2.4)

where:

 $|H(\omega_j)|$ = the transfer function, which is the response amplitude

per unit wave amplitude with frequency $\left(\omega_{
m j}
ight)$

 $\delta(\omega_i)$ = a phase angle which is associated with the response

 ω_i = the frequencies of the oscillation

$$A_j = 2\sqrt{S(\omega_j)\Delta\omega}, S(\omega_j)$$
 is the sea spectrum

The response in irregular waves can be formed as linear wave-induced motion or load on structure. In the limit as $N \to \infty$ and $\Delta \omega \to 0$, the variance of the response σ_r^2 can be obtained as follow:

$$\sigma_r^2 = \int_0^\infty \mathcal{S}(\omega) |\mathcal{H}(\omega)|^2 \,\mathrm{d}\omega \tag{2.5}$$

2.2 Response of Single Body Structures

The response of the structures in irregular waves can be explained by the assistance of linear wave theory. *Faltinsen (1990)* has mentioned that a useful consequence of linear theory is that we can obtain the results in irregular waves by adding together results from the regular wave of different amplitudes, wave length and propagation directions.

Here, we consider a structure in incident regular waves of amplitude ζ_a where the wave steepness is small, i.e. the waves are far from breaking. Hence, the wave-induced motion and load amplitudes will be linearly proportional when the linear theory is applied.

Faltinsen (1990) has divided the hydrodynamics problem into two sub-problems as follow:

- 1. *Wave excitation load* and moments are produced by waves coming onto the restrained body. This load is composed of Frode-Kriloff and diffraction forces and moments.
- 2. *Hydromechanical load and moments* are induced by the harmonic oscillations of the rigid body which are moving on the undisturbed surface of the fluid. Moreover, the hydrodynamic loads are identified as added mass, damping and restoring terms.

Since the system is linear, the resulting motion in waves can be seen as a superposition of the motion of the body in still water and the forces on the restrained body in waves. The superposition loads can be seen in **Figure 2.2**.

More details about the wave excitation load and hydromechanical load can be found in *Faltinsen (1990)* and *Journée and Massie (2001)*.

Figure 2.2. : Superposition of hydro mechanical and wave loads. Reference: Journée and Massie (2001)

2.3 Second-Order Nonlinear Problems

Faltinsen (1990) has mentioned that the way to solve non-linear wave-structure problems for ship and offshore hydrodynamic is to use perturbation analysis with the wave amplitude as a small parameter. The potential theory is assumed then the problem is solved to the second-order in incident wave amplitude. This method is very powerful to give a solution for several practical problems.

In the linear solution, both the free-surface condition and the boundary condition are satisfied on the mean position of the free-surface and the submerged hull surface respectively. Further, the fluid pressure and the velocity of fluid particles on the free-surface are linearized.

On the other hand, the second-order theory will account more properly for the zero-normal flow condition on the body at the instantaneous position of the body. It also approximates more accurately the fluid pressure being equal to the atmospheric pressure on the instantaneous position of the free-surface. Further, the second-order theory will also account more properly for the non-linearities in the velocity of fluid particles on the free-surface. Hence, in a second-order theory, we keep all terms in the velocity potential and fluid pressure and wave loads that are either linear with respect to the wave amplitude or proportional to the square of the wave amplitude.

A simple way to illustrate the presence of non-linear wave effects is to consider the quadratic velocity in the complete Bernoulli's equation as follow:

$$-\frac{\rho}{2}(u^2 + v^2 + w^2) = -\frac{\rho}{2}|\nabla\phi|^2$$
(2.6)

Where: *u*, *v*, *and w* are the fluid velocity vectors

By emphasizing that equation (2.6) provides only one of the non-linear effects and also considering an idealized sea state which consists of two wave components of the circular frequencies ω_1 and ω_2 . The formula for an approximation of the x-component of the velocity can be written as follow:

$$u = A_1 \cos(\omega_1 t + \epsilon_1) + A_2 \cos(\omega_2 t + \epsilon_2), v = 0 \text{ and } w = 0$$

$$(2.7)$$

By introducing equation (2.7) to equation (2.6), it now follows that:

$$-\frac{\rho}{2}u^{2} = -\frac{\rho}{2} \left[\frac{A_{1}^{2}}{2} + \frac{A_{2}^{2}}{2} + \frac{A_{1}^{2}}{2} \cos(2\omega_{1}t + 2\epsilon_{1}) + \frac{A_{2}^{2}}{2} \cos(2\omega_{2} + 2\epsilon_{2}) + A_{1}A_{2}\cos[(\omega_{1} - \omega_{2})t + \epsilon_{1} - \epsilon_{2}] + A_{1}A_{2}\cos[(\omega_{1} + \omega_{2})t + \epsilon_{1} + \epsilon_{2}] \right]$$

$$(2.8)$$

The equation above gives the three components of the result; the mean wave (drift) forces, the forces oscillating in the difference frequencies and the forces oscillating in sum frequencies. Further, the two main second-order non linear terms that are the mean wave (drift) loads and slowly varying wave loads.

The effects of second order wave forces are most apparent in the behavior of anchored or moored floating structures. *Journée and Massie (2001)* show that the responses of a structure on the irregular waves for the horizontal motions of moored or anchored floating structures in a seaway include three important components:

- 1. A mean displacement of the structure, resulting from a constant load component. Obvious sources of these loads are current and wind. In addition to these, there is also a so-called **mean wave drift force**. This drift force is caused by non-linear (second order) wave potential effects. Together with the mooring system, these loads determine the new equilibrium position.
- 2. An oscillating displacement of the structure at frequencies corresponding to those of the waves; the wave-frequency region. These are linear motions with a harmonic character, caused by **the first order wave loads**. The time-averaged value of this wave load and the resulting motion component are zero.
- 3. An oscillating displacement of the structure at frequencies which are much lower than those of the irregular waves; the low-frequency region. These motions are caused by non-linear elements in the wave loads (**the low-frequency wave drift forces**), in combination with the spring characteristics of the mooring system. Generally, a moored ship has a low natural frequency in its horizontal modes of motion as well as very little damping at such frequencies. Very large motion amplitudes can then result at resonance so that a major part of the ship's dynamic displacement (and resulting loads in the mooring system) can be caused by these low-frequency excitations.

2.3.1 The Mean Wave (Drift) Forces

In order to calculate mean wave (drift) forces on a structure, it is not necessary to solve the second order equations because the time dependence over one period of oscillation of the pressure is zero. It means that the second order potential does not result in mean loads.

Two methods that can be used to calculate the mean wave (drift) forces are the far field method and near field method. The far field method is based on the equation for conservation momentum in the fluid while the near field method is based on the direct pressure integration. The explanation of the difference between the far field method and the direct pressure integration can be found easily in *Faltinsen (1990)*.

Hung and Taylor has explained the differences of both methods clearly in the paper; *The formulation of mean drift forces and moments for floating bodies*. Furthermore, *Scalavounos (1987)* has pointed out the relative advantages and disadvantages between them, the far field method maybe more efficient and less demanding on numerical discretisation. On the other hand, the near field method is potentially more useful if one wishes to extend the solution to the calculation of time harmonic second order forces, that is useful for cross checking theoretical derivation and computational implementation.

The far field method was originated by *Maruo (1960)*. One way to obtain expressions for mean wave forces in regular waves is to use the equations for conservation of momentum M(t) in the fluid for a closed surface.

$$M(t) = \iiint_0 \rho V d\tau \tag{2.9}$$

where: $V = (V_1, V_2, V_3)$ is the fluid velocity and Ω = the control volume

Further, the volume integral can be reduced to a surface integral by using vector algebra and the Gauss's divergence theorem as is shown below:

$$\frac{dM}{dt} = -\rho \iint_{\mathcal{S}} \left[\left(\frac{p}{\rho} + gz \right) + V(V_n - U_n) \right] ds$$
(2.10)

where:

 $V_n = \frac{\partial \phi}{\partial n}$ = the normal component of the fluid velocity at the surface S U_n = the normal component of the velocity of the surface S where the positive

normal direction to be out of the fluid.

The closed surface S consists of the body surface S_B , a non-moving vertical circular cylindrical surface S_{∞} away from the body, the free-surface S_F and the sea bottom S_0 inside S_{∞} as the boundary conditions. Further, it should be noted that S_{∞} does not need to be far away from the body.

Hence, the boundary condition can be written as follow:

$$U_n = V_n \text{ on } S_B \text{ and } S_F$$

 $U_n = 0 \text{ on } S_\infty \text{ and } S_0$

By time averaging *equation (2.10)* over one period of oscillation and noting that the time average of $\frac{dM}{dt}$ is zero, the force on the body can be found:

$$\overline{F}_{i} = -\int \int \int_{S_{\infty}} [pn_{i} + \rho V_{i} V_{n}] ds \quad i = 1,2$$
(2.11)

Maruo (1960) used the equation (2.11) to derive a useful formula for drift forces on a twodimensional body in incident regular deep-water waves. The body may be fixed or freely floating oscillating around a mean position and there is no current and no constant speed on the body. The result is:

$$\overline{F_2} = \frac{\rho g}{4} [\zeta_a^2 + A_R^2 - A_T^2]$$
(2.12)

where:

 ζ_a = the amplitude of the incident waves

 A_R = the amplitude of the reflected waves

 A_T = the amplitude of the transmitted waves

Further, Maruo's formula follows by assuming the average energy flux is zero through S_B . This means: $\zeta_a^2 = A_R^2 - A_T^2$

Hence, the equation (2.12) can be written:

$$\overline{F_2} = \frac{\rho g}{4} A_R^2 \tag{2.13}$$

Long wavelengths relative to the cross-sectional dimensions of the body, will not disturb the wave field. This means, the reflected wave amplitude A_R^2 and the wave drift force become negligible. On the other hand, when the wavelengths are very short, the incident waves are totally reflected from a surface-piercing body with a vertical hull surface in the wave zone. This means, the wave drift-force can never be larger than $\left(\frac{\rho g}{2}\right)\zeta_a^2$.

When the body motions are large, the amplitude of the reflected waves A_R will be larger. This means, the wave-drift force will have a peak in a frequency range around the resonance frequency.

For a submerged body, A_{R_i} will go to zero when the wavelength goes to zero. In the special case of a submerged circular cylinder that is either restrained from oscillating or whose centre follows a circular orbit, A_R is zero for all frequencies and all depths of submergence (*Ogilvie* (1963)).

Further, the combined effect of waves and current have an effect on the wave field and therefore on the wave-drift forces. *Maruo (1960)* has also derived a formula similar to *equation (2.13)* for drift-forces on a three-dimensional structure in incident regular waves, with no current present, which can be written as follow:

$$\overline{F_2} = \frac{\rho g}{4} \int_0^{2\pi} A^2 \left(\theta\right) (\sin\beta - \sin\theta) d\theta \tag{2.14}$$

Here β is the wave propagation direction relative to the x-axis and $\frac{A(\theta)}{r^{1/2}}$ is the amplitude generated by the body far away at large horizontal radial distance $r = (x^2 + y^2)^2$ from the body and the angle θ is defined as $x = r \cos \theta$ and $y = r \sin \theta$

Another way to obtain the mean wave forces and moment is the near field method. This method was introduced by *Pinkster and van Oortmerssen (1977)* based on the direct pressure integration. Here, all three force components and three moments can be found. By analyzing an incident regular deep water waves on the vertical wall, the asymptotic value agreed with Maruo's formula.

Further, the mean wave (drift) force in irregular seas can be found from the result in regular sea by assuming a long-crested sea described by sea spectrum. The formula is written as follows:

$$\overline{F_l^S} = 2 \int_0^\infty S(\omega) \left(\frac{\overline{F_l}(\omega;\beta)}{\zeta_a^2} \right) d\omega \quad i = 1, \dots, 6$$
(2.15)

2.3.2 The Slowly Varying (Low frequency) Wave Forces

The slow-drift motions are resonance oscillations excited by non-linear interaction effect between the waves and the body motion. The slow-drift motions are of equal importance as the linear first-order motion in design of mooring systems for large-volume structures. For a moored structure, slow-drift resonance oscillations occur in surge, sway and yaw. For a freely floating structure with low water plane area, the second-order slow-drift motions are most important for large volume structures.

The slow-drift excitation load can be found by starting from *equation (2.8)* and formally writing

$$F_{i}^{SV} = \sum_{j=1}^{N} \sum_{k=1}^{N} A_{j} A_{k} [T_{jk}^{ic} \cos\{(\omega_{k} - \omega_{j})t + (\epsilon_{k} - \epsilon_{j})\} + T_{jk}^{is} \sin\{(\omega_{k} - \omega_{j})t + (\epsilon_{k} - \epsilon_{j})\}]$$

where:

 A_i = the wave amplitudes

 ω_i = the wave frequencies

 ϵ_i = the random phase angles

N = the number of wave components

 T_{jk}^{ic} and T_{jk}^{is} = the coefficients of the second-order transfer functions for the difference frequency loads associated with ω_i and ω_k .

Since the direct summation in *equation* (2.16) is still relatively time consuming. Newman (1974) has proposed a double summation approximation by using the square of a single series. This implies that only N terms should be added together at each time step compared to N^2 terms by *equation* (2.17). The formula will be:

$$F_{i}^{SV} = 2\left(\sum_{j=1}^{N} A_{j} (T_{jj}^{ic})^{1/2} \cos(\omega_{j} t + \epsilon_{j})\right)^{2}$$
(2.17)

Obviously *equation (2.17)* requires that T_{ii}^{ic} being a positive.

Faltinsen (1990) has suggested having the slow-drift excitation force in spectral form rather than in a time series form in order to have inconvenient solution.

According to Pinkster (1975), the spectral density of the low frequency will be:

$$S_F(\mu) = 8 \int_0^\infty S(\omega) S(\omega + \mu) \left(\frac{\overline{F_l}(\omega + \frac{\mu}{2})}{\zeta_a^2}\right)^2 d\omega$$
(2.18)

where $\overline{F}_{l}\left(\omega + \frac{\mu}{2}\right)$ is the mean wave load in direction *i* for frequency $\omega + \frac{\mu}{2}$.

(2.16)

2.4 Frequency Domain and Time Domain Analysis

Frequency domain and time domain analysis will be used in the study to solve several problems in the analysis.

2.4.1 Frequency Domain Analysis

A frequency domain analysis will be the basis for generating the transfer functions for frequency dependent excitation forces, added mass and damping. In a frequency domain analysis, the solutions of the equation of motions are solved by method of the harmonic analysis or methods using the Laplace and Fourier transforms. *DNV-RP-F205 (2010)* has explained that the equations of motion are solved for each of the incoming regular wave components for a wave frequency analysis. Further, the results of the analysis are given as descriptions of variables of interest such as floater motion and floater forces as a function of frequency.

Løken et al (1999) mentioned that a frequency domain analysis is naturally suited to the analysis of system exposed to random environments since it provides a clear and direct relationship between the spectrum of the environmental loads and the spectrum of the system response. The relation between the waves and the motion can be seen in **Figure 2.3**.

Figure 2.3. : The relation between the waves and the motions.

Reference: Journée and Massie (2001)

In the system above, the wave spectrum is input to a system that is considered to possess linear characteristics. Further, the output of the system is the motions which have an irregular behavior. Generally, the floater motion has a linear behavior, it means that the different ratios between the motion amplitudes and the wave amplitudes and also the phase shifts between the motions and the waves are constant.

As a consequence of linear theory, the resulting motions in irregular waves can be obtained by adding together results from regular waves of different amplitudes, frequencies and possibly propagation directions. With known wave energy spectra and the calculated frequency characteristics of the responses of the ship, the response spectra and the statistics of these responses can be found. *Løken et al (1999)* also mentioned that analysis in the frequency domain will be a convenient method to calculate the inviscid hydrodynamic properties for a large floater where the wave scattering and radiation is important.

Furthermore, the frequency domain requires linear equation of motion and predominantly linear assumptions. The linear equation of motion for a single body will adapt *the equation of* (2.3):

$$\sum_{j=1}^{6} \left[\left(M_{ij} + A_{ij} \right) \ddot{\xi}_{j} + B_{ij} \dot{\xi}_{j} + C_{ij} \xi_{j} \right] = F_{i} e^{-i\omega t} \text{ for } (i = 1, \dots, 6)$$

where:

M _{ij}	= the mass matrix for the structure
A _{ij}	= the added mass coefficients
B _{ij}	= the damping coefficients
$F_i e^{-i\omega t}$	= the complex amplitudes of the exciting forces
	(<i>i</i> is complex unit) for the six of components ($i = 1,, 6$) of rigid body

2.4.2 Time Domain Analysis

In order to solve the problem as close as possibly to the real condition with regarding to non linear system, the foundation of the frequency domain approach - is no longer valid. *Løken et al. (1999)* has mentioned that the time domain analysis will a be very convenient way for extreme condition analysis since linearized analysis is not working efficiently. It also has advantage in allowing changing the boundary conditions and allowing non-linear forcing and stiffness functions.

The time domain analysis requires a proper simulation length to have a steady result. Furthermore, the time domain analysis procedure consists of a numerical solution of rigidbody equation of motion for the floater subject to external actions which may originate in the fluid motion due to waves, currents, floater motion, positioning system and also disturbing effects such as wind.

The direct numerical integration of the equation of motion will be applied in the time domain analyses. Hence, the non-linear functions of the relevant wave and motion variables such as drag forces, finite motion and finite wave amplitude effects, and the non-linear positioning due to mooring system will be involved in the analysis. The increase of computing time will be a major effect in the analysis since we adopt a direct numerical integration computation.

Moreover, a wave spectrum is used as a basis for the generation of the random time series. The first order wave exciting forces and second order slowly varying wave drift forces are both represented in the form of random time histories.

The theory of time domain analysis will be adopted from *Marintek (2008); "SIMO - Theory Manual Version 3.6, rev: 1".*

The equation of motion for a freely moving floater or a moored structure in time domain analysis:

$$M\ddot{x} + C\dot{x} + D_1\dot{x} + D_2f(\dot{x}) + K(x)x = q(t, x, \dot{x})$$
(2.19)

$$M = m + A(\omega)$$

$$A(\omega) = A_{\infty} + a(\omega), A_{\infty} = A(\omega = \infty)$$

$$C(\omega) = C_{\infty} + c(\omega), C_{\infty} = C(\omega = \infty) \equiv 0$$

where:

= frequency-dependent mass matrix
= body mass matrix
= frequency-dependent added-mass
= frequency-dependent potential damping matrix
= linear damping matrix
= quadratic damping matrix
= vector function where each element is given by f_i
= hydrostatic stiffness matrix
= position vector
= exciting force vector

The exciting forces on the right-hand side of *equation (2.19)* can be written as follow:

$$q(t, x, \dot{x}) = q_{WI} + q_{WA}^{(1)} + q_{WA}^{(2)} + q_{CU} + q_{ext}$$
(2.20)

 $= \dot{x}_i |\dot{x}_i|$

where:

 q_{WI} = the wind drag force

 $q_{WA}^{(1)}$ = the first order wave excitation force

 $q_{WA}^{(2)}$ = the second order wave excitation force

 q_{ext} = any other forces (specified forces and forces from station keeping and coupling elements, etc.)

The wave frequency (WF) motions are excited by the first order wave excitation force while the low-frequency (LF) motions are excited by the slowly varying part of the second order wave excitation force, the wind drag force and the current drag force. The high-frequency (HF) motions are excited by the sum-frequency second-order wave excitation force.

Two different solution methods described in the following two subsections are available in SIMO; solution by convolution integral or by separation of motions.

A. Solution by Convolution Integral

Assume that the equations of motion can be written: $[m + A(\omega)]\ddot{x} + C(\omega)\dot{x} + Kx = f'(t) = q - D_2 f(\dot{x}) - D_1 \dot{x} \qquad (2.21)$

By using the following equation below:

$$A(\omega) = A_{\infty} + a(\omega), A_{\infty} = A(\omega = \infty)$$

$$C(\omega) = C_{\infty} + c(\omega), C_{\infty} = C(\omega = \infty) \equiv 0$$

Also by using the inverse Fourier transform taking into account that the values of $h(t - \tau)$ for, t < 0, i.e. before the "experiment" started, is zero:

$$A_{\infty}\ddot{x}(t) + \int_{0}^{t} h(t-\tau) \,\dot{x}(\tau) d\tau = f(t)$$
(2.22)

Hence, the equation of motion becomes:

$$[m + A_{\infty}]\ddot{x} + D_1\dot{x} + D_2f(\dot{x}) + Kx + \int_0^t h(t - \tau)\,\dot{x}(\tau)d\tau = q(t, x, \dot{x})$$
(2.23)

 $h(\tau)$, the retardation function is computed by a transform of the frequency-dependent added-mass and damping:

$$h(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} [c(\omega) + i\omega \ a(\omega)] e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) \ e^{i\omega t} d\omega$$
(2.24)

or similarly:

$$H(\omega) = \int_{-\infty}^{\infty} h(\tau) e^{i\omega t} d\tau = c(\omega) + i\omega a(\omega)$$
(2.25)

B. Separation of Motions

Solving the integral in *equation (2.23)* may be very time consuming, another method has been developed by using separated motions. The separated motion method is a common approach by using a multiple scale approach. This method separates the wave-frequency part from the low-frequency part. In this method, the quadratic damping D_2 is set to be zero and the stiffness *K* is constant.

The exciting force is separated in a high-frequency part, $q^{(1)}$ and a low-frequency part, $q^{(2)}$:

$$q(t, x, \dot{x}) = q^{(1)} + q^{(2)}$$

$$q^{(1)} = q^{(1)}_{WA}$$

$$q^{(2)} = q_{WI} + q^{(2)}_{WA} + q_{CU} + q_{ext}$$
(2.26)

The position vector can then be separated into:

 $x = x_{HF} + x_{LF}$

Further, the high-frequency motions to be solved in frequency domain are expressed by:

$$[m + A(\omega)]\ddot{x}_{HF} + [D_1 + C(\omega)]\dot{x}_{HF} + Kx_{HF} = q_{WA}^{(1)}(\omega)$$
(2.27)

While the low-frequency motions are solved in the time domain, the dynamic equilibrium equation is written:

$$[m + A(\omega = 0)]\ddot{x}_{LF} + D_1\dot{x}_{LF} + D_2f(\dot{x}) + Kx_{LF} = q_{WI} + q_{WA}^{(2)} + q_{CU} + q_{ext}$$
(2.28)

2.5 Fundamental Continuum Mechanics Theory and Implementation of the Finite Element Method

2.5.1 Fundamental Continuum Mechanics Theory

Finite element modeling will be the based on the slender structure modeling. This subchapter will present the basic theoretical background for finite element modeling, the fundamental continuum mechanics. The details in formulation can be found in *Malvern (1969)*.
The Lagrangian description is used to describe the motion of the material particles. This motion is referred to a fixed global system where the rectangular Cartesian coordinate frames are defined by the base vector I_i . The motion of a material particle can be seen in **Figure 2.4** below:

Figure 2.4. : Motion of a material particle.

Reference: Marintek (2010)

Furthermore, the motion of the particle for nonlinear analysis can be expressed as:

$$x = x(X, t)$$

$$x = X + u$$
(2.29)

*C*_o = the initial configuration of the body

 C_n = the deformed configuration at a given time t

 C_{n+1} = a new incremental configuration for time $t + \Delta t$

The strains in C_n and C_{n+1} are referred to the initial configuration C_o , usually this is termed as a *"total Lagrangian formulation"*. Generally, the total motion is determined by combining the motion of the local position vector and the motion of the local reference system.

Moreover, the formulation for the bar element and beam element will be adopted from *Marintek (2010); "RIFLEX Theory Manual Finite Element Formulation".* In RIFLEX the bar elements are formulated using "*a total Lagrangian description*", while the beam elements formulation uses a so called "*a co-rotated ghost reference description*".

For the Lagrangian formulation, the strains are measured in terms of the **Green strain tensor** *E*. If C_o is used as initial configuration, this strain tensor is defined by:

$$dS_n^2 - dS_0^2 = 2dX \cdot \mathbf{E} \cdot dX \tag{2.30}$$

where: dS_n^2 and dS_0^2 are the length of the line segment PQ before and after deformation (**Figure 2.4**) and *E* is the strain tensor which can be expressed as follow:

$$\boldsymbol{E} = E_{ij} I_i I_j \tag{2.31}$$

Further, the rectangular components of *E* referred to I_i and I_j may be expressed as:

$$E_{ij} = \frac{1}{2} \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \frac{\partial u_i}{\partial x_j}$$
(2.32)

where: the component of the displacement vector *u* have been introduced.

From *equation (2.32)*, we may conclude that *E* is a symmetric tensor consisting of both linear and quadratic terms.

The symmetric **Piola-Kirchhoff stress tensor** *S* will also be used here as a stress measure. Moreover, the symmetric Piola-Kirchhoff stress tensor **S** is always used in conjunction with Green strain tensor **E**. The symmetric Piola-Kirchhoff stress tensor **S** referred to the initial configuration C_o will be expressed as follow:

$$\boldsymbol{S} = S_{ij} I_i I_j \tag{2.33}$$

Hence the virtual work equation can be formulated by using Green Strain tensor **E** and Piola-Kirchhoff stress tensor **S** as below:

$$\int_{V_0} S: \partial \boldsymbol{E} dV_0 = \int_{A_0} t_0 \cdot \partial \boldsymbol{u} dA_0 + \int_{V_0} f_0 \cdot \partial \boldsymbol{u} dV_0 \tag{2.34}$$

where: A_0 and V_0 express the surface and volume of the initial reference configuration. The surface traction t_0 and body forces f_0 are referred to a unit surface and a unit volume in the initial reference state.

Further, an incremental form of the virtual work principle can be written as follow:

$$\int_{V_0} (S:\delta\Delta \boldsymbol{E} + \Delta \boldsymbol{S}:\delta \boldsymbol{E}) dV_0 = \int_{A_0} \Delta t_0 \cdot \delta \boldsymbol{u} dA_0 + \int_{V_0} \Delta f_0 \cdot \delta \boldsymbol{u} dV_0$$
(2.35)

where: δ indicates virtual quantities and Δ is used to denote finite but small increments between C_n and C_{n+1} (**Figure 2.4**).

Equation (2.34) and *equation (2.35)* are valid for the bar elements and the beam elements.

Furthermore, the dynamic equilibrium equation expressed in terms of virtual work can be written, as *Remseth (1978)*:

$$\int_{V_0} S: \delta \boldsymbol{E} dV_0 + \int_{V_0} \rho_0 \ddot{\boldsymbol{u}} \cdot \delta \boldsymbol{u} dV_0 + \int_{V_0} \tilde{c} \dot{\boldsymbol{u}} \cdot \delta \boldsymbol{u} dV_0 = \int_{A_0} t_0 \cdot \delta \boldsymbol{u} dA_0 + \int_{V_0} f_0 \cdot \delta \boldsymbol{u} dV_0$$
(2.36)

And the incremental form of the virtual work equation yields:

$$\int_{V_0} (S:\delta\Delta \boldsymbol{E} + \Delta \boldsymbol{S}:\delta \boldsymbol{E}) dV_0 + \int_{V_0} \rho_0 \Delta \boldsymbol{\ddot{u}} \cdot \delta \boldsymbol{u} dV_0 + \int_{V_0} \tilde{c} \dot{\Delta \boldsymbol{u}} \cdot \delta \boldsymbol{u} dV_0 = \int_{A_0} \Delta t_0 \cdot \delta \boldsymbol{u} dA_0 + \int_{V_0} \Delta f_0 \cdot \delta \boldsymbol{u} dV_0$$

$$(2.37)$$

where: ρ_0 denotes mass density and \tilde{c} is a viscous damping density function (i.e. damping forces are proportional to velocity).

2.5.2 Implementation of the Finite Element Method

The finite element nodal points may have up to six degrees of freedom, i.e. three in translations and three in rotation. The case of a node that is both translated and rotated must be treated more carefully. This is because large rotations in space are not true vectors and should be expressed by vectorial components in a base coordinate system. The orientation of the nodal point in space is uniquely defined by the base vector transformation:

$$\overline{\iota_{\iota}}^n = \overline{T_{\iota_J}}^n I_j \tag{2.38}$$

where: $\overline{\iota_{l}}^{n}$ are the base vectors, I_{j} are the global vetors and $\overline{T_{\iota_{j}}}^{n}$ is the rotation matrix which has nine elements.

A nodal point with translational and rotational degrees of freedom can be seen in **Figure2.5** as follow:

Figure 2.5.: Nodal point with translational and rotational degrees of freedom.

Reference: Marintek (2010)

Two of the elements that are mostly used in slender structure modeling are the bar element and the beam element.

A. The Bar Element

The spatial bar element is described in a total Langrangian formulation. It is adjusted to a formulation based on integrated cross-section forces and small strain theory.

The element is assumed to be straight with an initial cross-sectional area A_0 which is constant along the element length. Each of the two nodes has three translational degrees of freedom, which are expressed directly in the global coordinate system. The element length is denoted L_o and L in the initial and deformed configuration, respectively (**Figure 2.6**).

The deformed element length is given by:

$$L = \sqrt{\Delta x^{2} + \Delta y^{2} + \Delta z^{2}}$$
(2.39)
where: $\Delta x = x_{2} - x_{1}$, $\Delta y = y_{2} - y_{1}$, $\Delta z = z_{2} - z_{1}$

Based on a total Langrangian formulation and linear displacement functions, the Green strain is expressed:

$$E_f = \frac{1}{2} \frac{L^2 - L_0^2}{L_0^2} = \frac{1}{2L_0^2} (\Delta x^2 + \Delta y^2 + \Delta z^2 - L_0^2)$$
(2.40)

And the Piola-Kirchhoff stress S_f can be found from the constitutive law:

$$S_f = S_f(E_f, E_0, S_0)$$
(2.41)

where: E_0 is initial strain and S_0 is initial stress.

Further, small strain theory is used, and it is assumed that Lo^2 and L^2 is the initial stress free element length. Thus, the axial force of the element *N* and the strain ε are given by:

$$N = \varepsilon(EA) \text{ and } \varepsilon = \frac{L - L_0}{L_0}$$
(2.42)

where: EA is the axial stiffness.

B. The Beam Element

Marintek (2010) has described the beam element by using the concept of co-rotated ghost reference. A detailed discussion of this element together with examples demonstrating its capabilities may be found in *Mollestad (1983)* and *Engseth (1984)*.

The beam theory is based on the following assumptions:

- a plane section of the beam initially normal to the x-axis, remains plane and normal to the x-axis during deformations
- lateral contraction caused by axial elongation is neglected
- the strains are small
- shear deformations due to lateral loading are neglected, but St. Venant torsion is accounted for
- coupling effects between torsion and bending are neglected. Thus, warping resistance and torsional effects are neglected
- stability problems are not considered

Figure 2.7. : Nodal degrees of freedom for beam element.

Reference: Marintek (2010)

As indicated in **Figure 2.7**, the beam has 3 translational and 3 rotational degrees of freedom at each node. They are defined in relation to the local x, y, and x-system in the C_{on} configuration. Further, the C_{on} configuration is oriented along the x-axis with cross-sectional principal axis in the y- and z-direction. It is important to note that the rotational degrees of freedom in **Figure 2.7** express deformational rotations in relation to the co-rotated straight element.

The explanation of the Green strain and the torsional behavior of the beam in the beam element will be based on **Figure 2.8** as follow:

Reference: Marintek (2010)

As shown in **Figure 2.8**, the displacement of an arbitrary point P with coordinates x, y and z may be expressed as:

$$\boldsymbol{u}(x, y, z) = \boldsymbol{u}_{0}(x) - y \frac{dv_{0}}{dx} - z \frac{dv_{0}}{dx}$$
$$\boldsymbol{v}(x, y, z) = \boldsymbol{v}_{0}(x) - z\theta$$
$$\boldsymbol{z}(x, y, z) = \boldsymbol{w}_{0}(x) + y\theta$$
(2.43)

where: $\boldsymbol{u}_0, \boldsymbol{v}_0$ and \boldsymbol{w}_0 are the displacements of the corresponding point on the reference axis.

By using *equation (2.43)* and the assumption that quadratic strain terms that are zero on the x-axis are neglected, the Green strain can be formulated:

$$E_{xx} = \boldsymbol{u}_{0,xx} - y\boldsymbol{v}_{0,xx} - z\boldsymbol{w}_{0,xx} + \frac{1}{2}\left(v_{0,x}^2 + w_{0,x}^2\right)$$
(2.44)

The torsional behavior of the beam is based on the relationship:

$$M_{\theta} = GI_t \theta_x \tag{2.45}$$

where: M_{θ} is the moment of twist and GI_t is the torsional stiffness

Further, a standard element formulation gives:

$$\begin{aligned} \boldsymbol{u}_{0} &= N_{u} v_{u} \text{ where } v_{u}^{T} = [v_{x1}, v_{x2}] \\ \boldsymbol{v}_{0} &= N_{v} v_{v} \text{ where } v_{v}^{T} = [v_{y1}, \theta_{x1}, v_{y2}, \theta_{z2}] \\ \boldsymbol{w}_{0} &= N_{w} v_{w} \text{ where } v_{w}^{T} = [v_{z1}, \theta_{y1}, v_{z2}, \theta_{y2}] \end{aligned}$$

$$(2.46)$$

where: N_u and N_{θ} are linear interpolation, while N_v and N_w express cubic interpolation functions.

2.6 Coupling Effects

Based on the explanation in *DNV-RP-F205 (2010)*, the coupling effects are referred to the influence on the floater mean position and dynamic response from the slender structure restoring, damping and inertia forces.

The following items are considered when discussing the coupling effects:

The restoring forces:

- 1) Static restoring force from the mooring and riser system as a function of floater offset
- 2) Current loading and its effects on the restoring force of the mooring and riser systems
- 3) Seafloor friction (if mooring lines and/or risers have bottom contact

The damping:

- 4) Damping from mooring and riser system due to dynamics, current, etc.
- 5) Friction forces due to hull/riser contact.

The inertia:

6) Additional inertia forces due to the mooring and riser system.

In a traditional de-coupled analysis, item 1) can be accurately accounted for. Items 2), 4) and 6) may be approximated. Generally, items 3) and 5) cannot be accounted for. A coupled analysis as described previously can include a consistent treatment of all these effects.

3

Environmental Conditions

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

The environmental conditions are very important since they will be the key design factor for an offshore field development. Moreover, the hostile environmental conditions may give a high-level challenge that influences the options for the chosen technical solutions.

In this study, the offshore field "Western Isles" will be taken as a case study. The field is located in the northern North Sea which has three major characteristics; shallow water depth and harsh environment with strong currents.

The detail information about the location of the Western Isles is based on *PhyseE Ltd (2010)* for *"Metocean Criteria for Western Isles"*.

This chapter will present meteorological and oceanographic (metocean) criteria for water levels, winds, waves and currents for the design conditions. These data are for the location in **Figure 3.1.** The red circle indicates the Western Isles location; the blue crosses are the BODC (British Oceanographic Data Centre) current data measurement locations, the blue circle is the NNS (Northern North Sea) wind waves data measurement set location, the black triangle is the POL (Proudman Oceanographic Laboratory) tidal and current data measurement location.

The study has also provided a set of wind, wave and current criteria associated with extreme events. The criteria are considered to be independent, i.e. no account is taken of the effects of joint probability. NORSOK N-003 (2007) will be taken as guidance for selection of environment condition. The relevant table from NORSOK Standard is presented in **Table 3.1**.

The study will be based on the return period combinations for 100 year waves and wind criteria and 10 years current criteria.

Figure 3. 1. : Definition of location and measurement points for metocean data. Reference: PhyseE Ltd (2010)

Limit state	Wind	Waves	Current	Ice	Snow	Earthquake	Sea
							level ¹⁾
	10-2	10-2	10 ⁻¹	-	-	-	10 ⁻²
Ultimate	10 -1	10 ⁻¹	10 -2	-	-	-	10 ⁻²
Limit	10 -1	10 ⁻¹	10 ⁻¹	10 ⁻²	-	-	m
State	-	-	-	-	10 ⁻²	-	m
	-	-	-	-	-	10 ⁻²	m
Accidental	10 -4	10-2	10 -1	-	-	-	m*
Limit	10 ⁻²	10 -4	10 -1	-	-	-	m*
State	10 -1	10 ⁻¹	10 4	-	-	-	m*
	-	-	-	104	-	-	m
	-	-	-	-	-	10 -4	m

Tabel 3. 1. : NORSOK Guidance Return Period Combinations in the Design

Reference: NORSOK Standard (2007)

3.1 Water Level

The water depths are in the range 155 – 170m. For the analysis, the water depth will be taken as 170 m a conservative value.

The still water level depth relative to the seabed and the surge displacement relative to LAT. (Lowest Astronomical Tide) can be seen in **Table 3.2** and the extreme water depth can be seen in **Table 3.3**.

The detail information above is on PhyseE Ltd (2010).

Tabel 3. 2. : Still Water Levels, Surges and Still Water Depths Based on a Nominal LAT Depth

			All-Year Criteria	
	Tidal Levels	Surge Displacement	Still Water Level	Still Water Denth
				(Del Cee Bed)
	(Rel. LAT)	(Rel. LAT)	(Rel. LAT)	(Rel. Sed Deu)
	(m)	(m)	(m)	(m)
Positive				
1000-Years	-	1.85	2.57	162.57
100-Years	-	1.78	2.53	162.53
50-Years	-	1.75	2.51	162.51
10-Years	-	1.68	2.46	162.46
1-Year	-	1.57	2.38	162.38
НАТ	2.13	-	2.13	162.13
MHWS	1.77	-	1.77	161.77
MHWN	1.39	-	1.39	161.39
MSL	1.06	-	1.06	161.06
MLWN	0.74	-	0.74	160.74
MLWS	0.36	-	0.36	160.36
LAT	0.00	-	0.00	160.00

Reference: PhyseE Ltd (2010)

	1-Year	10-Years	50-Years	100-Years	1,000-Years	10,000-Years
	(m)	(m)	(m)	(m)	(m)	(m)
Crest Elevation	11.7	14.7	16.6	17.4	20.0	22.6
Extreme Water Level (Rel. LAT)	12.4	15.5	17.4	18.2	20.9	23.6
Extreme Water Depth	172.4	175.5	177.4	178.2	180.9	183.6

Tabel 3. 3. : Extreme Water Levels and Depths Based on a Nominal LAT Depth

Reference: PhyseE Ltd (2010)

3.2 Winds

Based on the study of *Physe Ltd (2010)*, two estimates have been considered for wind speed design value (1-hourly mean wind speed at 10 m above sea level) for recommendation at the Western Isles location:

- The NNS data set which gives a value of 38.4 m/s
- The Guidance notes contours from *Department of Energy (1990)*, which give a value of approximately 39 m/s

In light of the close agreement between the two of them, it is thought prudent to choose the slightly more conservative value of 39 m/s (at 1-hourly mean wind speed). Hence, a 100 year hourly wind speed design value of 39 m/s is recommended for the Western Isles.

The wind speed criteria for the eight directional sectors and the omni-directional wind speed can be seen in **Table 3.4** and **Table 3.5**. Note that in **Table 3.4**, wind direction is defined as "Coming from".

	24-hr (m/s)	12-hr (m/s)	6-hr (m/s)	3-hr (m/s)	1-hr (m/s)	10-min (m/s)	1-min (m/s)	15-sec (m/s)	5-sec (m/s)	3-sec (m/s)
100-years										
N	26.8	29.1	31.2	32.5	33.5	37.1	41.7	44.5	46.7	47.8
NE	24.0	26.1	27.9	29.1	30.0	33.0	36.9	39.3	41.1	42.0
E	21.7	23.6	25.2	26.3	27.1	29.7	33.0	35.0	36.6	37.3
SE	29.8	32.5	34.7	36.2	37.3	41.6	47.1	50.4	53.0	54.2
S	31.2	33.9	36.3	37.8	39.0	43.6	49.5	53.1	55.9	57.2
SW	27.8	30.3	32.4	33.8	34.8	38.6	43.6	46.5	48.9	50.0
W	29.0	31.6	33.8	35.2	36.3	40.4	45.7	48.8	51.3	52.5
NW	27.7	30.1	32.2	33.6	34.6	38.4	43.3	46.2	48.5	49.6

Tabel 3. 4. : Extreme Wind Speeds at 10 m asl- by Direction (From)

Reference: PhyseE Ltd (2010)

Tabel 3. 5. : Extreme Wind Speeds at 10 m asl- Omnidirectional

Return Period	24-hr (m/s)	12-hr (m/s)	6-hr (m/s)	3-hr (m/s)	1-hr (m/s)	10-min (m/s)	1-min (m/s)	15-sec (m/s)	5-sec (m/s)	3-sec (m/s)
All-year										
1-year	24.6	26.7	28.6	29.8	30.7	33.8	37.9	40.3	42.2	43.1
10-years	28.1	30.5	32.6	34.0	35.1	39.0	44.0	47.0	49.4	50.5
50-years	30.3	33.0	35.2	36.8	37.9	42.3	47.9	51.3	54.0	55.3
100-years	31.2	33.9	36.3	37.8	39.0	43.6	49.5	53.1	55.9	57.2
1,000-years	34.1	37.1	39.6	41.3	42.6	47.9	54.8	58.9	62.1	63.6
10K-years	36.8	40.0	42.8	44.6	46.0	52.0	59.8	64.5	68.2	69.9

Reference: PhyseE Ltd (2010)

3.2.1 The Wind Force Simulated In Time Domain

Chakrabarti, S. (2005) has mentioned that the wind generally has two effects, one from the mean speed and the other from fluctuations about this mean value. The mean speed is generally treated as a steady load on the offshore structure while the fluctuating wind (gust) is described by a wind spectrum. Moreover, the dynamic wind effect will be significant and should be not ignored for a floating structure.

The wind speed design for simulation will be taken as the average speed occurring for a period of 1-hour duration at a reference height, typically 30 ft (10m) above the mean still water level.

In the study, the wind loads on the floater will be simulated to be 2-dimensional, i.e. propagating parallel to the horizontal plane when using the software program in SIMO. Furthermore, the model includes gust spectra both in the mean direction and normal to the mean wind direction. The wind gust (the varying part of the wind velocity) is assumed to be a Gaussian stochastic process.

Further, NPD wind spectrum (*ISO 19901-1 (2005)*, wind spectrum) will be used. The wind loads will be simulated in time domain, no transverse gust and no admittance function will be used. The basic theory about this can be found in *Marintek (2008)* in "*SIMO - Theory Manual Version 3.6, rev: 1*"

For strong wind conditions the design wind speed, $u(z,t)(^{m}/_{S})$ at height z(m) above sea level and corresponding to an averaging time period $t \le t_0 = 3600s$ is given by:

$$u(z,t) = U(z) \left[1 - 0.41 \cdot I_u(z) \cdot \ln\left(\frac{t}{t_0}\right) \right]$$
(3.1)

Where the 1 hour mean wind speed U(z) (m/s) is given by:

$$U(z) = U_0 \left[1 + C \cdot \ln\left(\frac{z}{10}\right) \right]$$
(3.2)

$$C = 5.73 \cdot 10^{-2} (1 + 0.15 \cdot U_0)^{\frac{1}{2}}$$
(3.3)

and where the turbulence intensity factor $I_u(z)$ is formulated by:

$$I_u(z) = 0.06[1 + 0.043 \cdot U_0] \left(\frac{z}{10}\right)^{-0.22}$$
(3.4)

For a structure on which the wind fluctuations are important such as a floating structure, the wind spectrum for longitudinal wind speed fluctuations can be described by a formula below:

$$S(f) = \frac{320 \cdot \left(\frac{U_0}{10}\right)^2 \left(\frac{z}{10}\right)^{0.45}}{\left(1 + f_m^n\right)^{\frac{5}{3n}}} \text{ and}$$

$$f_m = 172 \cdot f \cdot \left(\frac{z}{10}\right)^{\frac{2}{3}} \cdot \left(\frac{U_0}{10}\right)^{-0.75}$$
(3.5)

where: n= 0.468

$$S(f) {\binom{m^2}{s}} = \text{the spectral density at frequency } f(Hz)$$

$$z(m) = \text{the height above sea level}$$

$$U_0 {\binom{m}{s}} = \text{the 1 hour mean wind speed at 10 m above sea level}$$

$$f(Hz)$$
 = the frequency, $\frac{1}{600}Hz \le f \le 0.5 Hz$

In SIMO implementation of the spectrum is set to zero above 0.5 hz and is limited in magnitude below 1/600 Hz (**Figure 3.2**).

Figure 3. 2. : ISO 19901-1 wind spectrum for a mean wind speed of 20 m/s. In the SIMO implementation the magnitude is limited between 0 and 1/600 Hz.

Reference: Marintek (2008)

Faltinsen (1990) has also described that wind can produce slowly-varying oscillations of marine structures with high natural periods. This is caused by wind gusts with significant energy at periods of the order of the magnitude of a minute.

Since no important variation in the wind over the structure and the wind will flow to frontal area of the structure, the wind gusts force spectrum can be written by the expression below:

$$F_D = \frac{\rho_{air}c_D}{2}AU^2(t) \tag{3.6}$$

where: the mass density of the air is 1.21 kg/m³ at 20°C, and $U(t) = \overline{U} + u'$. \overline{U} is the mean wind velocity while u' is the gust.

Further, the mean drag force can be defined as follow:

$$\overline{F_D} = \frac{\rho_{air}c_D}{2}A\overline{U^2}$$
(3.7)

By ignoring terms of order $\left(\frac{u'}{\overline{U}}\right)^2$, the fluctuating drag force can be written as:

$$F_{D'}(t) = C_D A \rho_{air} \overline{U} u'(t)$$
(3.8)

Note that the fluctuating drag force is linearly dependent on the gust velocity. Hence, the power spectrum of $F_{D'}(t)$ is then related to the gust velocity spectrum by:

$$S_F(f) = (C_D A \rho_{air} \overline{U})^2 S(f)$$
(3.9)

The calculation of the slowly varying wind is the same as the calculation of the slowly varying wave. For instance if we consider head wind the mean square value of the surge motion is:

$$\sigma_x^2 = S_F^W(\omega_n) \frac{\pi}{2ch}$$
(3.10)

Where: the index *W* means wind then the relation between gust spectra expressed respectively by circular frequency ω and frequency *f* in hertz is:

$$S_F^W(\omega_n)d\omega = S_F(f)df, \omega = 2\pi f$$
(3.11)

3.3 Waves

The study will analyze the wave loads by using two forms; regular waves and irregular waves. The regular waves will be used to calculate the wave-induced motion and load on a cylindrical floater while the irregular waves will have contributions in describing the real condition of the surface sea which has a combination of many different waves with different heights and different periods.

The motions of the vessel at the frequency of the waves represent an important contribution to the floater loads analysis, particularly in shallow water. These motions can be obtained from regular or random waves by computer analysis by using frequency domain techniques. The frequency domain technique involves determining the response amplitude operator (RAO) as a function of the frequency over the full range of wave frequencies.

Moreover *Faltinsen (1990)* has also mentioned that the non linear effects of irregular seas are important in describing the horizontal motion of moored structures (a cylindrical floater with slender members).

Furthermore, linear wave theory will govern the response in regular wave (sinusoidal waves). On the other hand, Fourier series analysis will be used to describe the energy density spectrum of the irregular waves.

Furthermore in this study, the irregular wave analysis will be important to analyze the slow drift oscillation because it contains groups of waves. The slow drift oscillation period can be quite long and it can be managed by the large group envelope period. The group period excites the slow drift causing a large oscillation amplitude.

3.3.1 Regular waves

Chakrabarti, S. (2005) has described that regular waves have the characteristics of having a period such that each cycle has exactly the same form. Hence, the theory will describe the properties of one cycle in regular waves and these properties are invariant from cycle to cycle.

Figure 3. 3. : Harmonic wave definitions. Reference: Journée and Massie (2001)

The potential theory will be used to solve the flow problem in regular waves (**Figure 3.3**). In order to use this linear theory with waves, it will be necessary to assume that the water surface slope is very small. This means that the wave steepness is so small that terms in the equations of the waves with a magnitude in the order of the steepness-squared can be ignored. Using the linear theory holds here that harmonic displacements, velocities and accelerations of the water particles and also the harmonic pressures will have a linear relation with respect to the wave surface elevation.

The clear theory can be found in *Gudmestad (2010)*.

A velocity potential φ can be used to describe the velocity vector at time t. The velocity potential $\varphi(x, z, t)$ of the harmonic waves has to fulfill the Continuity condition and the Laplace equation.

A function $\varphi(x, z, t)$ can be found from the partial derivatives of this function with respect to the directions that will be equal to the velocities in these directions. Since we operate with the partial derivatives of the velocities, $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}, \frac{\partial w}{\partial z}$, the partial differential equation can be written as follow:

$$u = \frac{\partial \varphi}{\partial x}, v = \frac{\partial \varphi}{\partial y}, w = \frac{\partial \varphi}{\partial z}$$
$$\vec{U} = (u, v, w) = \left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right)$$
and $\nabla \varphi = \vec{U} = \frac{\partial \varphi}{\partial x} \cdot \vec{i}, \frac{\partial \varphi}{\partial y} \cdot \vec{j}, \frac{\partial \varphi}{\partial z} \cdot \vec{k}$ (3.12)

Two important assumptions will be used here; incompressible and inviscid flow.

- 1. Incompressible (Continuity equation for incompressible flow) $\nabla \cdot \vec{U} = 0$ where: $\nabla \cdot \vec{U} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$
- 2. Non-rotational/inviscid flow $\nabla \mathbf{x} \, \vec{U} = \vec{0}$ where:

$$\nabla \times \bar{U} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix} = \bar{i} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) - \bar{j} \left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z} \right) + \bar{k} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \underset{non-rotational}{=} \bar{0}$$

By using two assumptions above, we will find the Laplace equation:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$

$$\nabla^2 \varphi = 0$$
(3.13)

The complete mathematical problem of finding a velocity potential of Non-rotational, incompressible fluid motion consists of the solution of the Laplace equation with relevant boundary conditions in the fluid. The boundary conditions will be found from physical considerations.

1. Bottom Condition

No water can flow through the bottom, a flat bottom will be considered here.

$$w\Big|_{z=-d} = 0 \qquad \Rightarrow \qquad \frac{\partial \varphi}{\partial z}\Big|_{z=-d} = 0$$
(3.14)

where: *d* is the water depth

2. Wall Condition

No water can flow through the wall, a vertical wall at x=a will be considered here.

$$u|_{x=a} = 0 \qquad \Longrightarrow \qquad \frac{\partial \varphi}{\partial x}\Big|_{x=a} = 0$$
(3.15)

For a moving wall,

$$\frac{\partial \varphi}{\partial x}\Big|_{x=a(t)} = S(t)$$
(3.16)

Where: S(t) is the velocity of the moving wall at time t.

Hence, for a ship:

$$\frac{\partial \varphi}{\partial n}\Big|_{(x_i, y_i, z_i)} = 0$$
(3.17)

This condition means that there will be no flow through the ship surface.

3. Surface Condition

The distinction between different types of fluid motion results from the condition of the boundaries imposed on the fluid domain. Two types of surface boundary conditions will be considered here:

A. The kinematical surface condition

"A water particle at the free surface will always remain at surface". Let's consider the velocity in the vertical direction as:

$$w = \frac{\partial \varphi}{\partial z} = \frac{Dz}{Dt} \bigg|_{z = \xi(x,t)} = \left(\frac{\partial z}{\partial t} + u \cdot \frac{\partial z}{\partial x}\right) \bigg|_{z = \xi(x,t)} = \left(\frac{\partial \xi}{\partial t} + u \cdot \frac{\partial \xi}{\partial x}\right)$$
(3.18)

Since we use the water surface slope is very small as an assumption, linearizing can be applied and gives:

$$\frac{\partial \varphi}{\partial z}\Big|_{z=\xi(x,t)}_{\substack{velocity \ at \\ wave \ surface}} = \frac{\partial \varphi}{\partial z}\Big|_{z=0}_{\substack{z=0 \\ velocity \ at \\ still \ surface}}} = \frac{\partial \xi}{\partial t}$$
(3.19)

Here, the non-linear cross term $u \frac{\partial \xi}{\partial t}$ is disregarded, and the velocity at wave surface is set equal to the velocity at still surface.

B. The dynamic boundary condition

This criterion is corresponding with the forces on the boundary. At the free surface, the boundary condition is simply that the water pressure is equal to the constant atmospheric pressure p_0 on the free surface (**Figure 3.4**).

Figure 3. 4. : Atmospheric pressure at the free surface. Reference: Journée and Massie (2001)

The Bernoulli equation for an unstationary irrotational flow:

$$\frac{P}{\rho} + g \cdot z + \frac{\partial \varphi}{\partial t} + \frac{1}{2}(u^2 + w^2) = Ct$$
(3.20)

At surface $P = P_0$ and $z = \xi(x, t)$:

$$g \cdot \xi + \frac{\partial \varphi}{dt}\Big|_{z=\xi} + \frac{1}{2}(u^2 + w^2)\Big|_{z=\xi} = 0$$
(3.21)

Since we still use the water surface slope is very small as an assumption, linearizing can be applied. Hence the $\frac{1}{2}(u^2 + w^2)\Big|_{z=\xi} = 0$ terms can be neglected.

Also, the boundary $z = \xi \rightarrow z = 0$ can be applied here and we get:

$$\left.\frac{\partial\varphi}{\partial t}\right|_{z=\xi} = \frac{\partial\varphi}{\partial t}\Big|_{z=0}$$
(3.22)

Hence, the equation of (3.22) at the surface can be written as follow:

$$g \cdot \xi + \frac{\partial \varphi}{\partial t}\Big|_{z=0} = 0 \qquad \Rightarrow \qquad \xi = -\frac{1}{g} \cdot \frac{\partial \varphi}{\partial t}\Big|_{z=0}$$
(3.23)

By combining two boundaries, the kinematical surface condition and dynamic boundary condition:

$$\frac{\partial \varphi}{\partial z}\Big|_{z=0} = \frac{\partial \xi}{\partial t} = \frac{\partial}{\partial t} \left(-\frac{1}{g} \cdot \frac{\partial \varphi}{\partial t} \right|_{z=0} \right)$$

$$\Rightarrow \frac{\partial^2 \varphi}{\partial t^2} + g \cdot \frac{\partial \varphi}{\partial z} = 0 \qquad \text{for } z = 0$$
(3.24)

Figure 3. 5. : Sinusoidal wave profile. Reference: Gudmestad(2010)

Hence, the velocity potential is given as:

$$\varphi(x,z,t) = \frac{\xi_0 \cdot g}{\omega} \cdot \underbrace{\frac{\cosh k(z+d)}{\cosh (kd)}}_{depth \ dependent} \cdot \underbrace{\frac{\cos(\omega t - kx)}{\operatorname{regular \ linear \ wave}}}_{regular \ linear \ wave}$$
(3.25)
Where (Figure 3.5):

 $\xi = \xi(x, t) = \xi_0 \sin(wt - kx)$

Now the *equation (3.25)* satisfies all the requirements. However, the fluid should be follow the assumptions; incompressible and non-rotational.

Further, the theory above is also known as **Airy wave theory (first order potential theory)** and will be adopted in WADAM calculations. *Det Norske Veritas (2008)* in "Sesam User Manual for Wadam-Wave Analysis by Diffraction and Morison Theory" has defined that the incident waves may be specified by either wave lengths, wave angular frequencies or wave periods. The direction of the incident waves are specified by the angle β between the positive x-axis and the propagating direction while the wave profile represents a wave with its crest at the origin for t = 0 as shown in **Figure 3.6**.

The still water level is obtained by constant extrapolation in WADAM.

(a) wave propagation direction

(b) wave phase at t=0

Figure 3. 6. : Surface wave definitions based on WADAM Reference: Det Norske Veritas (2008)

The incident wave used in WADAM is defined as: $\xi = Re \left[A e^{i \left(\omega t - k (x \cos \beta + y \sin \beta) \right)} \right]$ or $\xi = A \cos \omega t - k (x \cos \beta + y \sin \beta)$

The fluid velocity $v = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$ and acceleration $a = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$ for the incident wave:

$$v_{h} = v_{x}\mathbf{i} + v_{y}\mathbf{j} = \frac{A\omega}{k}\mathbf{k}\frac{\cosh(kz+kd)}{\sinh kd}\cos(\omega t - \mathbf{k}\mathbf{x})$$

$$v_{z} = -A\omega\frac{\sinh(kz+kd)}{\sinh kd}\sin(\omega t - \mathbf{k}\mathbf{x})$$

$$a_{h} = -a_{x}\mathbf{i} + a_{y}\mathbf{j} = \frac{A\omega^{2}}{k}\mathbf{k}\frac{\cosh(kz+kd)}{\sinh kd}\sin(\omega t - \mathbf{k}\mathbf{x})$$

$$a_{z} = -\frac{A\omega^{2}}{k}\mathbf{k}\frac{\sinh(kz+kd)}{\sinh kd}\cos(\omega t - \mathbf{k}\mathbf{x})$$

(3.27)

(3.26)

where:	
d	= depth
k	= absolute value of wave number
ω	= wave angular frequency
Α	= wave amplitude
$x = x\mathbf{i} + y\mathbf{j}$	= location in the x-y plane
$\boldsymbol{k} = k(i\cos\beta + j\sin\beta)$	= two dimensional wave number
Z	= vertical coordinate with z-axis upward, z=0 at still water level
β	= direction of wave propagation

Further, WADAM will be used to calculate the wave frequency dependent floater motions and mean drift forces by using two kinds of regular waves; ULS regular wave ($H_0 = 25$ m) and FLS regular wave ($H_0 = 6$ m) as shown in **Figure 3.7**:

	🗘 Create/Edit Wave Height
Create/Edit Wave Height	Wave Height Function Wave Height Surface
Wave Height Function Wave Height Surface	
🗞 Name 🛛 WaveHeightSurface 🔽	
	First wave period: 2 s [\$]
	Wave period step: 28 s [s]
Wave period step: [28 s [s]	Number of wave periods: 2
Number of wave periods: 2	First wave heading: [180 deg [deg]
First wave heading: 180 deg [deg]	Wave heading step: 1 deg [deg]
Wave heading step: 1 deg [deg]	Wave heading step. Tueg [deg]
Number of wave headings:	Number of wave headings:
) (sue heighter 92	Wave heights: 9 ?
wave neights: ar	Period/Headin 180 deg
Period\Headin 180 deg	1 2 s 25 m
1 2s 6m	230 s 25 m
Cancel Apply	Cancel Apply

Figure 3.7.: The data for regular waves calculation in WADAM analysis.

3.3.2 Irregular Waves

The ocean waves are random and not well represented by sinusoidal waves. Moreover, the real sea has a combination of many different waves with different heights and different periods. Hence, irregular waves will be a good representation action in order to describe the real condition.

Chakrabarti, S. (2005) has also mentioned that in a random ocean the waves appear in group and should be described by statistical or spectral form. One method of defining a group is to establish a threshold value and to consider a group to be a sequence of waves given by an envelope that exceeds this value. This threshold level may be the mean wave height, the significant wave height or a similar statistical wave height parameters.

A. Extreme Wave Criteria

In this study, the extreme wave criteria will be based on the return period combinations for 100 year wave criteria. The study from *Physe Ltd (2010)* has mentioned that the estimation for the 100 year significant wave height design value is based on:

- The NNS data set gives a value of 15.56 m
- The HSE report from *"HSE Research Report 392: Wave mapping in UK waters"* from *Physe Ltd (2005)* presents contours of 100 year Hs which give a value of approximately 15.8 m
- Knowledge of other criteria in the region suggest that a value of 15.6 m is very much in line with expectation for the Western Isles location

Hence, a 100 year significant wave height design value of 15.6 m is recommended for the Western Isles location. Furthermore, a 100 year significant wave height design value will be presented for the eight directional sectors. The omni-directional wave condition and the wave spectra will also be given.

The study from from *Physe Ltd (2010)* has presented the directional distributions of extreme significant wave heights as given in **Table 3.6** and Figure **3.8**.

Directional Relative Magnitudes								
N	NE	E	SE	S	sw	w	NW	
0.974	0.717	0.505	0.979	1.000	0.920	0.954	0.966	

Гabel З	8.6.:	Directional	hs Rela	ative	magnitud	es
					0	

Reference: PhyseE Ltd (2010)

Figure 3.8.: Directional relative magnitudes of significant wave height. Reference: PhyseE Ltd (2010)

A 100 years form contour of Hs and Tp can be seen in **Figure 3.9**. The extreme wave criteria for the eight directional sectors and the omni-directional can be seen in **Table 3.7** and **Table 3.8**. Note that in **Table 3.7**, the wave direction is defined as "Coming from".

Figure 3. 9. : Hs/Tp Omni directional Hs-Tp contour for the 100-years return period sea state. Reference: PhyseE Ltd (2010)

					Тp,	Тp,	Тp,		
Return Period	Hs	Tz	Tz	Tz	Tass	Tass	Tass	Hmax	Crest
		(lower)	(central)	(upper)	(lower)	(central)	(upper)		Height
	(m)	(s)	(s)	(s)	(s)	(s)	(s)	(m)	(m)
100-years									
N	15.2	11.2	12.5	14.6	15.4	17.4	20.6	27.5	17.0
NE	11.2	9.7	10.7	12.6	13.2	14.9	17.7	20.2	12.5
E	7.9	8.1	9.0	10.6	11.1	12.5	14.9	14.2	8.8
SE	15.3	11.3	12.5	14.7	15.4	17.4	20.6	27.6	17.0
S	15.6	11.4	12.6	14.8	15.5	17.5	20.8	28.2	17.4
SW	14.4	10.9	12.1	14.2	14.9	16.8	20.0	26.0	16.0
W	14.9	11.1	12.4	14.5	15.3	17.2	20.5	26.9	16.6
NW	15.1	11.2	12.4	14.6	15.3	17.2	20.5	27.3	16.8

Tabel 3. 7. : Extreme Wave Criteria for eight directional

Reference: PhyseE Ltd (2010)

Tabel 3. 8. : Extreme Wave Height and Associated Periods- Omnidirectional

					Тp,	Тp,	Тp,	_	Crest
Return Period	Hs	Tz	Tz	Tz	Tass	Tass	Tass	Hmax	Height
		(lower)	(central)	(upper)	(lower)	(central)	(upper)		
	(m)	(s)	(s)	(s)	(s)	(s)	(s)	(m)	(m)
All-year									
1-year	11.4	9.7	10.8	12.7	13.3	15.0	17.8	19.2	11.7
10-years	13.6	10.6	11.8	13.8	14.5	16.4	19.5	23.9	14.7
50-years	15.0	11.2	12.4	14.5	15.3	17.2	20.5	26.9	16.6
100-years	15.6	11.4	12.6	14.8	15.5	17.5	20.8	28.2	17.4
1,000-years	17.6	12.1	13.4	15.7	16.5	18.6	22.1	32.4	20.0
10,000-years	19.4	12.7	14.1	16.5	17.3	19.6	23.3	36.4	22.6

Reference: PhyseE Ltd (2010)

B. Description of Ocean Waves as Sea Spectrum

It is often useful to describe a sea state in terms of the linear random wave model by specifying a wave spectrum, which determines the energy in different frequency and/or direction bands. The most appropriate spectral form depends on the geographical area and the severity of the sea state to be modeled. The shape of wave spectra varies widely with the wave conditions, wind seas and swells. Wind seas are generated by the local wind while swell are not related to the local wind but originated from a wind-driven sea that travels out of an area.

In order to describe the real surface of the sea, the linear theory can be used to obtain the results in the irregular waves by adding together the results from the regular waves as a practice solution. In other words, the Fourier series analysis will be used to describe the irregular waves by using an assumption that the irregular waves contains a Fourier series of linear waves that do not interact with each other. Hence, the energy transfer from one wave component to another can be discarded.

The basic theory about this will be adopted from *Gudmestad (2010)*. A certain limited history of measured waves in time history from 0 to time T will be considered. Further the height of the surface at a selected location in the sea, at x = 0, may be described by the process $\xi(t)$ during the time period from -T/2 to T/2. Then, $\xi(t)$ can be described by Fourier series:

$$\xi(t) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos \frac{2n\pi}{T} t + b_n \sin \frac{2n\pi}{T} t \right]$$
(3.28)

After trigonometric manipulations, this can be written as:

$$\xi(t) = \sum_{n=1}^{\infty} \xi_n \cos(\omega_n t - \theta_n)$$
(3.29)
where: $\xi_n = \sqrt{a_n^2 + b_n^2}$ and $\theta_n = \operatorname{arctg}\left(\frac{b_n}{a_n}\right)$

Thus, any wave process can be written as a sum of "cosine" or "sinus" waves with given amplitudes ξ_n and phases θ_n .

The energy in a harmonic wave is proportional to the amplitude squared. The wave energy spectrum describes the energy content of an ocean wave and its distribution over a frequency range of the random wave. In order to investigate how the energy in the sea is distributed on the different frequencies, the wave spectrum as a function $S(\omega)$ will be given:

$$S(\omega_n) = \frac{1}{2} \frac{\xi_n^2}{\Delta \omega}$$
(3.30)

The moment of the spectrum are defined by:

$$m_j = \int_0^\infty \omega^j S(\omega) d\omega \tag{3.31}$$

where: $\sigma_{\Xi}^2 = m_0$

Significant wave height:

$$h_{m_0} = 4\sqrt{m_0} = 4\sigma_{\Xi}$$

(3.32)

Expected period between zero up crossings:

$$t_{m_0^2} = 2\pi \sqrt{\frac{m_0}{m_2}} \tag{3.33}$$

and dominating harmonic period:

$$t_p = \frac{2\pi}{\omega_p} \tag{3.34}$$

The two most frequently used standard formulations of the wave frequency spectrum $S(\omega)$ are the Pierson-Moskowitz and the JONSWAP spectrum for developing sea. *PhyseE Ltd* (2010) has recommended the Jonswap spectrum as the formulation of the wave frequency spectrum for Western Isles.

Furthermore in the study, two spectrum formulas will be used; the Jonswap (Join North Sea wave Project) spectrum and Torsethaugen spectrum (the Jonswap double peaked) as a comparison.

1. Jonswap Spectrum (Figure 3.10):

$$S(\omega) = \alpha g^2 \omega^{-5} \exp\left(-1.25 \left(\frac{\omega}{\omega_p}\right)^{-4}\right) \gamma \exp\left(-\frac{(\omega - \omega_p)^2}{2\sigma^2 \omega_p^2}\right)$$
(3.35)

which has 5 parameters; H_s , ω_0 , γ , τ_a , τ_b

where:

- α = Philip constant
- γ = peakedness parameter
- σ = spectral width parameter

Figure 3. 10. : Jonswap spectrum.

- 2. Torsethaugen Spectrum based on *Torsethaugen, K. (2004),* (Figure 3.11): A double peak spectral for wind dominated sea $T_p < T_{pf}$, where T_p is the spectral period and T_{pf} = the spectral period for fully developed sea at the actual location. This means, the sea states have a significant wave height that is higher than value corresponding to locally fully developed sea with the given spectral period. Spectral parameter for wind dominated sea $T_p < T_{pf}$:
 - Primary Peak
 - Significant wave height:

$$H_{w1} = R_w H_s \qquad R_w = (1 - a_{10})e^{-\left(\frac{\varepsilon_l}{a_1}\right)^2} + a_{10}$$

> Spectral peak period:
$$T_{pw1} = T_p$$

Peak enhancement factor:

$$\gamma = k_g s_p^{6/7} \quad s_p = \left(\frac{2\pi}{g}\right) H_{w1} / T_{pw1}^2$$

- Secondary Peak
 - Significant wave height:

$$H_{w2} = (1 - R_w^2)^{1/2} H_s$$

> Spectral peak period:
$$T_{pw2} = T_{pf} + b_1$$

Peak enhancement factor:

$$\gamma = 1$$

Where:

Parameter	Value	Used in formulae
a _f	6.6 sm ^{-1/3}	13,41
ac	$2.0 \text{ sm}^{-1/2}$	26
au	25 s	27
a ₁₀	0.7	31
a ₁	0.5	31
k ₂	35.0	33,39
$\tilde{b_1}$	2.0 s	35
a20	0.6	37
a ₂	0.3	37
a3	6	39

Resulting spectral formula

$$S(f_n) = \sum_{j=1}^{2} E_j S_{jn}(f_n)$$

j = 1 primary sea system and j = 2 secondary sea system

$$E_1 = (1/_{16}) H_1^2 T_{p1} \text{ and } E_2 = (1/_{16}) H_2^2 T_{p2}$$

$$S_{1n}(f_{1n}) = G_0 A_{\gamma} f_{1n}^{-4} e^{-f_{1n}^{-4}} \gamma^{(exp - (1/_{2\sigma^2})(f_{1n})^2)} \sigma$$

$$S_{2n}(f_{2n}) = G_0 A_{\gamma} f_{2n}^{-4} e^{-f_{2n}^{-4}}$$

$$f_{1n} = f * T_{p1} \text{ and } f_{2n} = f * T_{p2}$$

$$G_0 = 3.26 \text{ and } A_{\gamma} = (1 + 1.1[\ln \gamma]^{1.19})/\gamma$$

And $\sigma = 0.07$ for $f_n < 1$ and $\sigma = 0.09$ for $f_n > 1$ $H_1 = H_{w1}$ and $H_2 = H_{w2}$ $T_{p1} = T_{pw1}$ and $T_{p2} = T_{pw2}$

Figure 3. 11. : Torsethaugen spectrum.

3.4 Currents

Based on the study from *Physe Ltd (2010)*, the current data for the Western Isles location consist as: tide (M_2+S_2) (cm/s), surge current (cm/s) and total current (cm/s). The study will be based on the return period combinations for 10 years current criteria.

The current criteria will be presented for the eight directional sectors and the vertical current profile will be given. The vertical current profile for the Western Isles will be calculated from Guidance Notes; *Department of Energy (1990)* for "Offshore Installations: Guidance on Design, Construction and Certification":

$$U_{t(z)} = \left(\frac{z}{0.32h}\right)^{1/7} \cdot U'_{t} \quad for \ 0 \le z \le 0.5h$$
$$U_{t(z)} = 1.07 \cdot U'_{t} \qquad for \ 0.5 \le z \le h \tag{3.36}$$

where:

 $U_{t(z)}$ = the speed of tidal current at height z above bed

 U'_t = the depth mean speed of the tidal current

z = height above sea bed

h = total water depth

the speed of current is also considered to induce a current at the surface of 3% of the wind speed.

The 10 years current criteria for eight directional sectors can be seen in **Table 3.9** and **Table 3.10**. Note that in this table current direction is defined as "Towards" which the current is flowing. The graph of vertical current profile can be seen in **Figure 3.12**.

All currents in cm/s	Tide (M2+S2)	Surge current (cm/s)			Total current (cm/s)				
Sector (° towards)	cm/s	1yr	10yr	50yr	100yr	1yr	10yr	50yr	100yr
N	19	11	13	15	16	32	34	35	35
NE	12	11	14	16	17	25	27	29	29
E	11	13	16	18	19	26	29	30	31
SE	17	13	17	19	20	34	37	39	39
s	19	23	29	33	35	42	47	50	52
sw	12	38	48	54	57	54	63	69	71
w	11	27	33	38	40	41	46	50	52
NW	17	11	13	15	16	30	31	32	33

Tabel 3. 9. : Tide, Surge and Total Directional Depth Averaged Currents (cm/s)at Western Isles Location

Reference: PhyseE Ltd (2010)

	1			1		1			
Height (asb)/Depth	North	Northeast	East	Southeast	South	Southwest	West	Northwest	Omni
Ratio]									
10 Years									
Surface	0.36	0.29	0.31	0.40	0.50	0.67	0.49	0.33	0.67
75% of Water Depth	0.36	0.29	0.31	0.40	0.50	0.67	0.49	0.33	0.67
50% of Water Depth	0.36	0.29	0.31	0.40	0.50	0.67	0.49	0.33	0.67
40% of Water Depth	0.35	0.28	0.30	0.38	0.49	0.65	0.47	0.32	0.65
30% of Water Depth	0.34	0.27	0.29	0.37	0.47	0.63	0.46	0.31	0.63
20% of Water Depth	0.32	0.25	0.27	0.35	0.44	0.59	0.43	0.29	0.59
10% of Water Depth	0.29	0.23	0.25	0.31	0.40	0.54	0.39	0.26	0.54
5% of Water Depth	0.26	0.21	0.22	0.29	0.36	0.49	0.35	0.24	0.49
Near Bed	0.21	0.17	0.18	0.23	0.30	0.40	0.29	0.20	0.40

Tabel 3. 10. : Extreme Total Current Profile (m/s) - by direction (direction are towards)

Reference: PhyseE Ltd (2010)

Figure 3. 12. : Ten years directional current profile. Directions are towards which current is flowing. Reference: PhyseE Ltd (2010)

3.4.1 The Current Force Simulated In Time Domain

Current is a common occurrence in the open ocean. *Chakrabarti, S. (2005)* mentions that the current at the sea surface is mainly introduced by the wind effect on the water, variation of atmospheric pressure and tidal effects and that current is also presented in the subsurface and the seafloor regions. Furthermore, the total current is the vector sum of the current from local wind, tidal component, Strokes drift, ocean circulation, local density-driven current and set-up phenomena. The speed and direction of the current at specified water depths are represented by a current profile. The surface current may affect the drift of the floating structure.

Current loads on the ship can be representing by drag force in longitudinal direction due to the frictional force. Traditionally, the viscous hull surge and the sway forces and the yaw moment have been calculated based on the current coefficients and the instantaneous magnitude of the translational relative velocity between the vessel and the fluid. The basic theory about this can be found in *Faltinsen (1990)* and *Marintek (2008)* in *"SIMO - Theory Manual Version 3.6, rev: 1"*.

The calculation procedure for surge follows the ship resistance estimation. The following approximate formula as follows:

$$F_1^c = \frac{0.075}{(\log_{10} Rn - 2)^2} \frac{1}{2} \rho S U_c^2 \cos\beta |\cos\beta|$$
(3.37)

where: β is the angle between the current velocity and the longitudinal x-axis. *S* is the wetted surface of the ship and *Rn* can be calculated from:

$$Rn = \frac{U_c L|\cos\beta|}{v} \tag{3.38}$$

where: U_c is current velocity, L is the length of ship, v is kinematic viscosity of the sea water

While the transverse viscous current forces and yaw moment follow the cross flow principle as long as the current direction is not close to the longitudinal axis of the ship, The transverse current force F_2^c for sway will be:

$$F_2^c = \frac{1}{2}\rho \left[\int_L dx C_D(x) D(x) U_c^2 \sin\beta |\sin\beta| \right]$$
(3.39)

Due to the quadratic nature of the viscous hull forces, the forces obtained from the vessel translation and the current, the forces obtained from a yaw induced cross flow cannot be separated and then added. Hence, the distributions of the cross flow along the hull for yaw moment F_6^c will be the sum of the Munk moment and the viscous yaw moment:

$$F_6^c = \frac{1}{2}\rho \left[\int_L dx C_D(x) D(x) U_c^2 \sin\beta |\sin\beta| \right] + \frac{1}{2} U_c^2 (A_{22} - A_{11}) \sin\beta |\sin\beta|$$
(3.40)

where: A_{22} , A_{11} are the added mass in surge and sway , respectively.

3.5 Heading Dependency of Environmental Conditions

The heading position of the floater will influence the environmental criteria in the design. The distribution of heading probability of the environmental parameters in for all year data will be found in **Figure 3.13**. The environmental parameters contain waves, wind and current speed.

Moreover, the design significant wave height, H_s and wind speed, U_w , as function of heading are shown **in Figure 3.14**. The criteria will be based on the return period combinations for 100 year waves and wind. Note that the heading dependency of current speeds is not included. The data is presented as design H_s and U_w values for heading divided by design omni-directinal H_s and U_w value.

Figure 3. 13. : The distribution of heading probability of the environmental parameters for all year data. Reference: Sevan Marine (2011)

Figure 3. 14. : 100-years return period design significant wave height and wind speed as function of heading for all year data. Reference: Sevan Marine (2011)

The study will be based on the return period combinations for 100 year waves and wind criteria and 10 years current criteria as basis design. The used design environmental conditions for return period condition wind and wave as function of heading are listed in **Table 3.11** respectively. Note that all environmental data in tables, concerning directions, are based on the definition "Coming From".

Heading	Hs	Тр	Uw	Uc
0 deg	15.2 m	15.4 s	33.5 m/s	0.50 m/s
45 deg	11.2 m	14.9 s	30.0 m/s	0.67 m/s
90 deg	7.9 m	11.1 s	27.1 m/s	0.49 m/s
135 deg	15.3 m	15.4 s	27.3 m/s	0.33 m/s
180 deg	15.6 m	15.5 s	39.0 m/s	0.36 m/s
225 deg	14.4 m	14.9 s	24.8 m/s	0.29 m/s
270 deg	14.9 m	15.3 s	36.3 m/s	0.31 m/s
315 deg	15.1 m	15.3 s	34.6 m/s	0.40 m/s

Tabel 3. 11. : The used design environmental conditions for return period condition wind and wave as function of heading

Reference: Sevan Marine (2011)

4

Methodology of the Analysis

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

Two kind of analyses, the decoupled analysis and the coupled analysis, have been elaborated to quantify the coupling effects between a floating offshore system (a floater and the moorings and riser) and the associated structural response (e.g. motion responses) in offshore structure designs.

According to *Omberg, H. et al. (1997)*; traditionally way, the motions of a floating vessel and the load effects in moorings and risers have been analyzed by a separated two-step procedure (**Figure 4.1**):

- 1. Simulate motions of the floater based on "large body theory" in which load effects from moorings and risers are modeled as non linear position dependent forces only. Two simplifications are usually made in the vessel motion analysis. First, the velocity-dependent forces (damping) are neglected or implemented in a rough manner by linear damping forces acting on the floater itself. Second, the influence of current forces on the moorings and risers on the position-dependent vessel forces (stiffness) is incorporated as an additional current force on the vessel. Hence, the result for the horizontal forces and the line tension may be inaccurate.
- 2. Apply the vessel motions from the first step as top end excitation of the moorings and risers in order to calculate dynamic loads in these elements.

Furthermore, *Omberg and Larsen (1998)* also have mentioned the main shortcoming of this method such as:

- 1. The mean loads on moorings and risers are normally not accounted for. Hence, the interaction between current forces on the underwater elements and the mean offset and LF motions of the floater are neglected.
- 2. The important damping effect from moorings and risers on LF motions has to be included in a simple way, usually as linear damping forces acting on the floater.

Figure 4.1 : Illustration of traditional separated analysis; de-coupled analysis.

Hence, it's very clear that the de-coupled analysis is based on the hydrodynamic behavior of the floater only and uninfluenced by the nonlinear dynamic behavior of moorings or riser. As a consequence, the precision of the floater motions and the detailed slender structure response are difficult to obtain since the interaction between the components cannot be captured.

This method is sufficiently accurate to obtain good prediction of motion for mooring lines and riser dynamics but it may be severely inaccurate for a system that is sensitive to low frequency (LF) response, such as a moored ship.

Further, a new (coupled) method that ensures truly integrated dynamic system is required to minimize the effect of the main shortcomings. This method also known as the nonlinear-coupled dynamic analysis ensures evaluation of the dynamic interaction among them (a floater, moorings and risers) when responding to environmental loading due to wind, waves and currents since the main coupling effects will be included automatically in the analysis. This method presents a single complete model that includes the cylindrical floater, moorings and risers (**Figure 4.2**).

All relevant coupling effects can be adequately accounted for using a fully coupled analysis where the vessel force model is introduced in a detailed FE model of the complete slender structure system including moorings and risers.

Non linear time domain analysis, irregular wave frequency (WF) and low frequency (LF) environmental loading are required to give an adequate representation of the dynamic behavior of the coupled vessel and slender system (moorings and risers).

The total load (from environmental loading, dynamic included) from the "slender body models" of moorings and risers are transferred as a force into the "large body model" of the

floater. The forces on of the floater are implemented as nodal force at the top end of finite element models of the moorings and risers.

Figure 4. 2 : Schematic for nonlinear-coupled dynamic analysis. Reference: adapted from *Omberg and Larsen (1998)*

The nonlinear-coupled dynamic analysis ensures higher dynamic interaction between the vessel and the slender systems because of the reasons below:

- The overall behavior of the floater will be influenced not only from the hydrodynamic behavior of the hull but also from the dynamic behavior of the slender members (moorings and risers). As an example, the mean current forces on moorings and risers will change the horizontal restoring force and mooring line tension for a given vessel offset.
- The coupling effects such as the restoring effect, damping and added mass will be taken into account automatically in the process of analysis. As an example, velocity dependent forces (damping) from moorings and risers are automatically included.

Hence, the nonlinear-coupled dynamic analysis represents a truly integrated system which ensures the accurate prediction of response simultaneously for the overall system as well as the individual response of floater, moorings and risers.

Since the accurate prediction of the response for the overall system can be generated, more accurate estimate of the mean offset and LF motion can be gained. As a consequence, this will also improve the estimates of the dynamic loads in moorings and risers. This is the main advantage for performing coupled analysis rather than decoupled analysis. Because in the decoupled analysis, the offset value is not applied based on the equilibrium of the static result

each time step but it is applied based on a single representative offset value only. Hence, too conservative results of a single representative offset value for dynamic loads in mooring and risers may be generated in the de-coupled analysis.

The approach to perform the nonlinear-coupled dynamic analysis can be adopted from *DNV*-*RP-F205* (2010) in **Figure 4.3**:

Figure 4.3 : Coupled floater motion and slender structure analysis.

Reference: adapted from DNV-RP-F205 (2010)

Two branches of different alternatives for interfacing coupled motion analysis with subsequent slender structure analysis can be seen from **Figure 4.3**. The time series of floater motions (WF and LF motions) are computed by the coupled floater motion analysis as boundary conditions in the slender structure analysis (*branch a*). It will also capture possible LF slender structure dynamics as well as the influence from the LF response (possibly quasi-static) on the WF response. This effect will be important for moorings and risers designs.

The traditional assumptions which consider WF floater motion as dynamic excitation while LF floater motions are accounted by an additional offset (*branch b*). Then, the slender structure is consequently assumed to respond quasi-static to LF floater motions.
4.1 System Components

In this subchapter, system components; contains a brief explanation of a single complete model that includes cylindrical floater, moorings and riser exposed to environmental loading due to wind, waves and currents. All the system components are described in a Finite Element Model. As a single complete model that includes cylindrical floater, moorings and riser, the model will be quite complex and use a "master-slave" approach for connecting the riser and the frequency-dependent floater and moorings.

A. Hydrodynamic model of the floater

The cylindrical FPSO will be modeled as a large volume body. This model is represented by a 6 DOF rigid body motion model. The wave forces acting on the vessel are calculated from a hydrodynamic analysis program which is based on diffraction theory (WADAM) obtaining a set of frequency dependent coefficient for inertia, damping and exciting forces. Linear and quadratic forces are included.

Further the frequency dependent added mass and damping coefficients will be converted to a retardation function. The frequency dependent forces are included as a convolution integral, introducing a memory-effect in the time domain analysis.

In vessel motion analysis, the floater motions may contain the following components:

- Mean response due to steady currents, mean wave drift and mean wind load
- WF response due to 1st order wave excitation
- LF response due wave drift, wind gust and viscous drift

These response components will consequently also be present in the slender structure response. Furthermore, the WF and LF are generally described as stochastic processes. The HF responses are not included in the analysis since the cylindrical FPSO are not sensitive to the HF response.

Global position of the cylindrical FPSO will be calculated based on WF motion, LF motion and Total motion (WF+LF).

B. Slender Structures

Slender structures are modeled by means of finite element line systems. Two different types of elements are introduced in the model, a 3D bar/cable element where the bending stiffness is negligible and a 3D beam element to include the bending stiffness.

The bar element presents only 3 translational DOF per node and do not provide the rotational stiffness. Therefore, it will a suitable model to represent moorings.

On the other hand, the beam element will incorporate rotational stiffness and it will be a suitable model to represent the flexible riser.

Moreover, the bar element is formulated using a "total Lagrangian description", while the beam element formulation uses a "co-rotated ghost reference description".

The basic theory about this can be found in **Chapter 2** based on Marintek (2010) for "RIFLEX Theory Manual Finite Element Formulation". The procedure for a riser sytem model can be found in details in Marintek (2010) for "RIFLEX User Manual Finite Element Formulation".

C. Environmental modeling

The external forces are mainly due to environmental loadings from wave and current that are acting on the submerged portion of the cylindrical FPSO and wind that is acting on the exposed portion of the topside.

The wave description may be defined as single regular wave which has a specified height, period, direction and phase characteristics. Irregular waves are also considered in the analysis based on Torsethaugen (double peak) spectra. In the irregular wave analysis, the seastate is represented in the time domain by an ensemble of regular wave components that are generated from the wave spectrum. Airy linear wave theory will be used as the basis for practical application in the analysis.

The wind is assumed to be 2D i.e. propagating parallel to the horizontal plane. The model includes gust spectra both in the mean direction and normal to the mean wind direction. The wind gust (the varying part of the wind velocity) is assumed to be a Gausian stochastic process. The varying part of the wind velocity in the mean direction is described by the NPD wind gust spectrum (Marintek (2008) for "SIMO - Theory Manual Version 3.6, rev: 1).

The wind forces will be calculated by the direction-dependent coefficient specifying linear and quadratic forces as functions of wind directions relative to the vessel.

The dynamic loading from wind and waves is modeled as a stationary stochastic process in a coupled analysis. Simulation of 3 hours will be performed to obtain extreme response estimates with sufficient statistical confidence.

The current velocity is normally assumed to be constant with time at a given position. It is described by the speed and direction. This can be done by input of discrete values and it will be interpolated to actual node position by definition of standard profiles. This current profile is assumed to move with surface i.e. during computation, the depth for interpolation within the current table is measured below the instantaneous wave surface. The interpolated value of the current velocity is added vectorially to the wave velocity. The current forces will be calculated by using the direction-dependent coefficients specifying linear and quadratic forces as functions of current directions relative to the vessel.

4.2 Method Analysis of Nonlinear-coupled dynamic

The method of analysis will be adopted from *Omberg, H. et al. (1997)*. This method will generate the solution of the nonlinear-coupled dynamic analysis in time domain using a non-linear integration scheme that ensures consistent treatment of the coupling effect between the cylindrical FPSO and the slender members.

The governing dynamic equilibrium equation of the spatially discredited system is expressed by:

$$R^{I}(r,\ddot{r},t) + R^{D}(r,\dot{r},t) + R^{S}(r,t) = R^{E}(r,\dot{r},t)$$
(4.1)

where: R^{I} , R^{D} , R^{S} represent inertia, damping and internal reaction force vectors respectively. R^{E} is the external load vectors. r, \dot{r}, \ddot{r} are the structural displacement, velocity and acceleration vectors respectively.

The inertia force vectors $R^{I}(r, \ddot{r}, t)$ can be expressed as:

$$R^{I}(r,\ddot{r},t) = M(r)\ddot{r}$$
(4.2)

where: M is the system mass matrix that includes structural mass, mass accounting for internal fluid flow and hydrodynamic mass.

while the damping force vectors $R^D(r, \dot{r}, t)$ can be expressed as:

$$R^{D}(r,\dot{r},t) = \mathcal{C}(r)\dot{r} \tag{4.3}$$

where: *C* is the system damping matrix that includes contributions from internal structural damping and discrete dashpot dampers.

The internal reaction force vector $R^{S}(r, t)$ is calculated based on instantaneous state of the stress in elements. The applied FEM procedure is a displacement formulation that allows for unlimited displacements and rotations in the 3-dimensional space while the strains are assumed to be moderate. The external load vector accounts for weight and buoyancy, forced displacement, environmental forces and specified forces.

Nonlinearities in *equation (4.1)* may be due to the displacement dependencies in the inertia and damping forces and also because of the coupling effect between the external load vector and structural displacement and velocity. The relationship between inertial reaction forces and deformations also may give nonlinearities in *equation (4.1)*.

Further, the numerical solution for *equation (4.1)* can be found from an incremental solution procedure using a dynamic time integration scheme according to the Newmark β family method. Newton–Raphson iteration is used for equilibrium iteration.

Introducing the tangential mass, damping and stiffness matrices at the start of the time increment and implementation of the residual force vector from the previous time step, the linearized incremental equation of motion is given by:

$$M\Delta \ddot{r} + C_t \Delta \dot{r} + K_t \Delta r = R_{t+\Delta t}^E - \left(R_t^{\ I} + R_t^{\ D} + R_t^{\ S}\right)$$

$$(4.4)$$

where: Δr , $\Delta \dot{r}$, and $\Delta \ddot{r}$ are the incremental nodal displacements, velocities and accelerations respectively.

All force vectors and system matrices are established by assembly of element contributions and nodal component contributions.

In the coupled dynamic analysis, the cylindrical FPSO is regarded as a nodal component in the FEM model. The forces on the vessel are represented by a large volume body and computed separately for each time step and included in the external load vector R^E . Besides, the vessel inertia forces represent the vessel mass and the frequency-independent part of added mass that are included in the mass matrix of the system.

Omberg, H. et al. (1997) have also mentioned about the practical implementations for time domain analysis with irregular wind and wave excitation, the excitation time series should be generated by the FFT technique before the dynamic analysis. Time series of wave kinematics, including also 2nd order wave forces, and wind speed are stored for sufficient duration for a set of positions expected to be required in the analysis. In addition, a gradually build up of excitation should also be obtained in order to avoid instabilities in the start-up the analysis.

4.3 Numerical Simulation Steps

The nonlinear-coupled dynamic analysis demand substantial computer capacity since it requires a single and complete model including the cylindrical floater S400, 12 mooring lines and one feasible riser configurations. It also requires the detailed model for each component and characterization of the environments in covering relevant load models. Hence the analysis will be more time consuming than the de-coupled analysis. This is a main disadvantage when performing the coupled analysis. Efficient tools and procedures on how to perform the analysis will be needed.

Several strategies can be proposed to achieve computational efficiency but it should always give an adequate representation of the coupling effects. In the study, we will present a consistent analytical approach to ensure better dynamic interaction between floater, moorings and risers by implementing the numerical simulation steps in order to capture the interaction between the cylindrical floater, moorings and risers. The analysis will be performed by using several programs such as WADAM/Hydro D, RIFLEX and SIMO.

An integrated analysis scheme to obtain a consistent analytical approach for the nonlinearcoupled dynamic analysis can be seen in **Figure 4.4**. below:

Where: MBR = Minimum Bending Radius of the flexible pipes

Figure 4. 4 : An integrated scheme analysis.

As the first step, the cylindrical floater motion analysis will be performed as a decoupled analysis. The analysis will be done in WADAM to compute the rigid body floater motion of the S400 based on diffraction theory to obtain the transfer function, mean wave drift forces and

non linear damping. In WADAM, the cylindrical floater will be modeled as a dual model configuration. Two kinds of Finite Element Models (FEM), a panel FEM and a Morison FEM will be combined in this configuration. For the structural analysis, the Morison FEM and the panel FEM are connected in a super element hierarchy. The resulting analysis will not only present the hydrodynamics but also the stability of the cylindrical floater. The analysis is performed in the frequency domain as a simple iterative technique to solve a linear equation of motions to obtain a set frequency dependent RAO.

Further, the cylindrical floater and the moorings will be analyzed in computer software program SIMO. The model configuration of the cylindrical floater and the resultsing analysis are converted to SIMO. SIMO is also used as tool to compute floater motion as like WADAM but in time domain analysis through use of retardation functions and it also analyzes the station-keeping behavior. The environmental loading due to wind, waves and currents will be considered here. The simulation will be performed for two cases; static and dynamic simulations. Static forces and moments on cylindrical floater S400 and mooring line tension will be obtained from the static results. In dynamic simulation, the sea states are simulated for 3 hours plus build-up time. Motions are found by time integration enforcing force equilibrium at each time steps. The corresponding mooring line tensions are established using a quasi static approach. The outputs of the analysis are floater motions in time domain, mooring line tension and the global position of cylindrical floater or the offset value, all given in time series.

Besides that, the dynamic slender structure analysis for riser configuration will also be performed in RIFLEX as decoupled analysis in order to reduce time analysis. The main purpose of the analysis is to find a feasible single arbitrary configuration. The analysis will also be performed in time domain under two simulation schemes, static and dynamic conditions. The vessel motions i.e. the transfer function from the WADAM results will be applied as top end excitation for the moorings and risers in order to calculate dynamic loads in these elements. For analysis results such as top angle (hang off position angle), effective tension, bending radius and seabed clearance will be given in order to get a feasible configuration.

As the final step, the cylindrical S400 floater and mooring from the SIMO analysis will be integrated with an arbitrary riser configuration from RIFLEX as a single and complete model by using SIMA. Hence, a consistent analysis ensuring higher dynamic interaction between floater, moorings and risers can be gained.

The analyses are performed in accordance with the scheme give in, **Figure 4.5**, below:

Figure 4.5 : Load cases combinations scheme analysis.

5

Hydrodynamic Analysis of Cylindrical FPSO S400

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser Based on Numerical Simulation

This chapter will present the general description of the cylindrical FPSO, S400 and present the hydrodynamic analysis of the floater based on diffraction theory to obtain hydrodynamic response of the floater. Moreover, the modeling concept and the analysis steps in Wadam will be presented briefly.

Furthermore, the analysis will be performed by using a diffraction program, Wadam/HYDRO D for single body (free cylindrical floater) without moorings (*Det Norske Veritas (2008)*). The analysis has been performed in the frequency domain analysis for problem solving.

From the resulting analysis the hydrodynamic responses such as: transfer function, mean wave drift forces and non linear damping and also the stability of the cylindrical floater Will be presented Further, the results from Wadam the analysis will be used to perform time domain simulation which includes second order wave and mooring analysis by the program SIMO.

5.1 General Description

The Sevan Floating, Production, Storage and Offloading vessel (FPSO) S400 is used for the floating production and storage of hydrocarbons. It has capability to store hydrocarbons within the range from 300 to 2.000.000 bbls. Other design characteristics include:

- no turret and swivel
- spread mooring
- segregated ballast
- wider and high deck load capacity
- offloading to tankers
- is moveable
- etc

The main particulars for S400 FPSO are summarized in **Table 5.1.** Two different platform drafts are specified for fully loaded and ballast conditions. Further, the 3D model and 2D model can be seen in **Figure 5.1** and **Figure 5.2**.

Parameter	Unit	Dimensions
Diameter Main Hull Cylinder	m	70.0
Diameter Main Deck	m	78.0
Diameter Process Deck	m	84.0
Area Process Deck	m ²	5 675
Diameter Pontoon	m	87.5
Height Pontoon	m	2.5/5.0
Elevation Main Deck	m	32.0
Elevation Process Deck	m	38.0
Elevation start flare	m	24.0
Radius of gyration in roll	m	22.3
Radius of gyration in pitch	m	22.3
Radius of gyration in yaw	m	32
Ballast Draft		
Draft	m	16.35
Displacement	Ton	70 690
Freeboard to MD	m	15.7
Freeboard to PD	m	20.7
VCG	m	19.1
GM (inc correction for free surface)	m	6.5
Loaded Draft		
Draft	m	20.72
Displacement	Ton	92 950
Freeboard to MD	m	11.3
Freeboard to PD	m	16.3
VCG	m	18.23
GM (inc correction for free surface)	m	6.2

Tabel 5. 1. : S400 FPSO Main Particulars

Reference: Sevan Marine (2011)

Figure 5. 1. : S400 FPSO - 3D model. Reference: Reference: Sevan Marine (2011)

Figure 5. 2. : S400 FPSO - 2D model.

Reference: Reference: Sevan Marine (2011)

5.2 Model Concept and Analysis Steps

The cylindrical floater hydrodynamic analysis will be performed as a decoupled analysis. The analysis is based on the wave loads acting on the floater only, as the most important contributor to derive the response of motion in a floater.

A cylindrical S400 floater will be modeled both as a hydro and a mass model which do not involve the influence of moorings and risers. The hydro model will be used for calculating hydrodynamic loads from potential theory and Morison's equation while the mass model is used both in the hydrostatic calculations to report imbalances between weight and buoyancy of the structure and in the equation of motion.

Figure 5.3.: Overview of model types.

Reference: adapted from Det Norske Veritas (2008)

Frequency domain analysis is chosen in this analysis as a simple iterative technique to derive the motion response of a floater and the calculation of wave loads. The analysis will also be performed for regular waves and irregular waves. The regular waves are chosen to analyze the motion response of the floater in the frequency domain while the irregular waves are chosen to describe the real conditions.

Furthermore, the floater hydrodynamic analysis is performed by using the integrated software program HydroD. HydroD is an integral part of the SESAM system which is related to several programs such as Prefem, Wadam and Postresp in **Figure 5.4**.

Prefem has the function to generate a finite element model as basic hydro model in Wadam while Postresp has the function to present the resulting analysis. A simple flow diagram which describes the relation between Prefem, Wadam and Postresp as an integrated program for floater analysis can be seen in **Figure 5.5**.

First, the finite element models (T*.FEM) are build in Prefem as the basic hydro model input in HydroD then the models are read by Wadam from the Input Interface File (T-file). The Wadam analysis control data is generated by the Hydrodynamic design tool HydroD. Further, the results may be stored on a Hydrodynamic Results Interface File (G-file) for statistical postprocessing in Postresp.

Reference: Det Norske Veritas (2008)

Figure 5. 5. : The relation between Prefem, Wadam and Postresp as an integrated program for analysis of a cylindrical S400 floater.

A simple procedure for the hydrodynamic analysis for a cylindrical floater S400 has been described in **Figure 5.6**.

Figure 5. 6. : A simple procedure for the hydrodynamic analysis for a cylindrical floater S400.

The hydrodynamic analysis by using HydroD will be divided into data and assumptions, modeling the cylindrical floater, loading conditions and analysis and results.

The input for the analysis will be based on data and assumptions. It will be categorized as follow:

- General Data
- Dimensions and Specifications of the Cylindrical Floater S400

The detail information of the dimensions and the specification for the cylindrical floater S400 can be found in subchapter **5.1 General Description**.

Environment Load

Regular wave and irregular waves will be considered as environmental loads which have directions set coming from 180 degree. Two forms of regular waves will be used in the analysis; ULS regular wave ($H_0 = 25$ m) and FLS regular wave ($H_0 = 6$ m) while two spectrum formulas will be used for the irregular waves; the Jonswap (Joint North Sea Wave Project) spectrum and The Torsethaugen spectrum (the Jonswap double peaked) to describe the real conditions. It also has a set of defined frequency ranges from 2 s - 30 s because the analysis will be performed by frequency domain analysis.

Further information for the wave input can be found in **Chapter 3, Environmental Conditions**.

Further, the analysis requires finite element models that have been built in Prefem as basic input for the Hydro model. Two types of finite element models are used a combination of a panel- and a Morison model - called a dual model. The dual model is used when both potential theory and Morison's equation shall be applied to the same part of the hydro model. The dual model must be used when pressure distribution from potential theory shall be transferred to a beam structural model. Note that different superelement number should be used in the analysis. An overview of the hydro model combination for the dual model can be seen in **Figure 5.7** while **Figure 5.8** describes the finite element models for a cylindrical floater S400 that are used in the analysis.

Figure 5. 7. : Hydro model combinations. Reference: adapted from *Det Norske Veritas (2008)*

Morison Model for S400

Besides the hydro model, the analysis also requires mass model. The mass model is relevant for the floating structure only and may be defined either by finite elements with mass properties or as a global mass matrix. The mass model is used to analyze the stability of the floater. Hence, two kinds of data will be used here with respect to loading conditions (**Figure 5.9**).

The floater will be heavier in fully loaded condition than in the ballast loading condition. Hence the buoyancy volume in the fully loaded condition will be higher.

👬 Define Mass Model 🛛 🗶 🗙	Define Mass Model
Mass model: MassModel1	Mass model: MassModel1
Add mass of compartment content	Add mass of compartment content
Update stiffness matrix with free surface effects	Update stiffness matrix with free surface effects
C From File User Specified Matrix Morison Model	C From File C User Specified C Matrix C Morison Model
Coordinate system: 9?	Coordinate system: 9?
Mixed Coordinate System	Mixed Coordinate System
Automatic computation:	Automatic computation:
Fill from buoyancy S? Buoyancy volume: 68963.35109 nJ9 n	Fill from buoyancy S? Buoyancy volume: 85763.24282 n82 n
Homogeneous Density Panel Model S? Center of bouyancy: -8.15401156e-i6e-i	Homogeneous Density Panel Model 🔗 Center of bouyancy: -2.739206031¢131¢
Mass: \$?	Mass: 8?
Total mass: 70687500 Kg [Kg]	Total mass: 87907200 Kg [Kg]
Center of gravity:	Center of gravity:
X: 0 m [m] Y: 0 m [m] Z: 18.23 m [m]	X: 0 m [m] Y: 0 m [m] Z: 18.23 m [m]
Radius of gyration: \$?	Radius of gyration: \$?
RX: 22 m [m] RY: 22 m [m] RZ: 32 m [m]	RX: 22 m [m] RY: 22 m [m] RZ: 32 m [m]
Specific product of intertia: Ø?	Specific product of intertia: 8?
RXY: 0 m [m] RXZ: 0 m [m] RYZ: 0 m [m]	RXY: 0 m (m) RXZ: 0 m (m) RYZ: 0 m (m)
OK	OK Cancel
Mass model for ballast loading condition	Mass model for fully load loading condition

Figure 5. 9. : The data for the Wadam mass models for the cylindrical floater S400.

The hydrodynamic properties should be defined since they will influence the magnitude of the wave load acting on a floater. The drag coefficients and element diameters for calculating hydrodynamic loads are chosen with respect to the loading condition; ballasted and fully loaded conditions. Moreover, the drag coefficient on the Morison element is the most important parameter in the mass model, for fully loaded condition, we can use Cd = 5500 while Cd = 5000 for the ballasted condition *(Sevan Marine (2011)* (**Figure 5.10**). The physical properties of the air and water such as the density and kinematic viscosity are also listed in the environment modeling.

Further, the loading conditions will be defined based on the z-coordinate at the waterline. In this analysis, two loading conditions are chosen:

- Ballast loading condition, z =16.32 m The damping matrix and the restoring matrix for the ballasted loading condition can be seen in Table 5.1
- Fully load loading condition, z = 20.72 m The damping matrix and the restoring matrix for the fully loaded condition can be seen in Table 5.2

The damping and the restoring matrix have been provided from model tests carried out by *Sevan Marine (2011)*.

🎎 Define Morison C	rossection	×	‡å De	fine Morison C	rossection	×
📚 🔿 New 💿 Edi	it existing	Allow edit	٠	New 🖲 Ed	it existing	Allow edit
PIPE1		•		PIPE1	<u>×</u>]
Dry section	83			ry section	83	
Part of dual model	85			art of dual model	83	
Diameter:	Q? 0.02 m	[m]		iameter:	Q ? 0.02 m	[m]
Distributed mass:	83	[Kg/m]		istributed mass:	85	[Kg/m]
No sub elements:	83 1	-	N	o sub elements;	8? 1	
Cdy:	83	1		Cdy:	8? 1	Ī
Cdz.	8 ? 5000			Cdz:	8 ? 5500	
Cay:	8 5 1]		Cay:	8 5 1	
Caz	8 5 1			Caz	8 5 1	
Corresponding section:	• PIPE1]	Corresp	onding section:	PIPE1]
Parameter	Value			Parameter	Value]
1 Section type	Pipe		1	Section type	Pipe	
2 Section area	2.82743373e-005 m^2		2	Section area	2.82743373e-005 m*2	_
3 Dinner	0.008999999613 m		3	D inner	0.008999999613 m	-
4 Douter	0.0099999999776 m		5	Thickness	0.0033333333776 m	-
- Inicial das	0.00100000010411		<u> </u>	1110000	0.001000000104111	4
	OK Cancel	Apply		0	IK Cancel App	b l

Mass model for ballast loading condition

Mass model for fully load loading condition

Figure 5. 10. : The hydrodynamic properties for mass model in Hydro D computer software program.

		Da	mping Matrix for	Ballast Loading Cond	lition	
Motions	Х	Y	Z	RX	RY	RZ
Surge	800000 N*s/m	0 N*s/m	0 N*s/m	0 N*s	0 N*s	0 N*s
Sway	0 N*s/m	800000 N*s/m	0 N*s/m	0 N*s	0 N*s	0 N*s
Heave	0 N*s/m	0 N*s/m	0 N*s/m	0 N*s	0 N*s	0 N*s
Roll	0 N*s	0 N*s	0 N*s	0 N*s*m	0 N*s*m	0 N*s*m
Pitch	0 N*s	0 N*s	0 N*s	0 N*s*m	0 N*s*m	0 N*s*m
Yaw	0 N*s	0 N*s	0 N*s	0 N*s*m	0 N*s*m	1e+010 N*s*m
		Res	storing Matrix for	Ballast Loading Cond	dition	
Motions	Х	Y	Z	RX	RY	RZ
Surge	1140000 N/m	0 N/m	0 N/m	0 N	-18500000 N	0 N
Sway	0 N/m	1140000 N/m	0 N/m	18500000 N	0 N	0 N
Heave	0 N/m	0 N/m	0 N/m	0 N	0 N	0 N
Roll	0 N	5930000 N	0 N	469000000 N*m	0 N*m	0 N*m
Pitch	-5930000 N	0 N	0 N	0 N*m	469000000 N*m	0 N*m
Yaw	0 N	0 N	0 N	0 N*m	0 N*m	0 N*m

Table 5.1 : The Damping and Restoring Matrices for the Ballasted Loading Condition.

Motions		Damping Matrix for Fully Loading Condition						
	Х	Y	Z	RX	RY	RZ		
Surge	800000 N*s/m	0 N*s/m	0 N*s/m	0 N*s	0 N*s	0 N*s		
Sway	0 N*s/m	800000 N*s/m	0 N*s/m	0 N*s	0 N*s	0 N*s		
Heave	0 N*s/m	0 N*s/m	0 N*s/m	0 N*s	0 N*s	0 N*s		
Roll	0 N*s	0 N*s	0 N*s	0 N*s*m	0 N*s*m	0 N*s*m		
Pitch	0 N*s	0 N*s	0 N*s	0 N*s*m	0 N*s*m	1e+010 N*s*m		
Yaw	0 N*s	0 N*s	0 N*s	0 N*s*m	0 N*s*m	0 N*s*m		

Table 5.2 : The Damping and Restoring Matrices for the Fully Loaded Condition.

	Restoring Matrix for Fully Loading Condition							
Motions	Х	X Y Z RX RY RZ						
Surge	900000 N/m	0 N/m	0 N/m	0 N	0 N	0 N		
Sway	0 N/m	900000 N/m	0 N/m	17000000 N	0 N	0 N		
Heave	0 N/m	0 N/m	0 N/m	0 N	0 N	0 N		
Roll	0 N	17000000 N	0 N	90000000 N*m	0 N*m	0 N*m		
Pitch	0 N	0 N	0 N	0 N*m	900000000 N*m	0 N*m		
Yaw	0 N	0 N	0 N	0 N*m	0 N*m	0 N*m		

The appearance of the cylindrical floater S400 in HydroD can be seen in **Figure 5.11** and **Figure 5.12** below:

Figure 5. 11. : The appearance of HydroD.

From the **Figure 5.11** above, Hydro D has two main windows; the data organizations and the model view.

Figure 5. 12. : A cylindrical floater model of S400 model in HydroD.

5.3 Hydrodynamic Response and Stability Analysis

The response of the floater can be divided into hydrostatic analysis and hydrodynamic analysis. The hydrostatic analysis will be governed by the structure weight and buoyancy force balance. It will also be the starting point to analyze the stability of the floater and is also important for the success of subsequent hydrodynamic analysis. On the other hand, the hydrodynamic analysis will be the key factor to analyze the performance of the cylindrical floater from its motions.

The motions of the cylindrical floater are mainly constructed from the wave frequency motion and low frequency motion components. Furthermore, the wave frequency motion comes from the wave frequency loads as the first order wave loads and should be analyzed in the frequency domain analysis. This is a relatively simple and efficient method to solve the problem since we can assume a linear equation of motion. Further, the linear force transfer function or Response Amplitude Operator (RAO) can be generated from this analysis. On the other hand, the low frequency motion comes from secondary order wave loads such as the mean wave (drift) force and slowly varying wave force. Further, the quadratic transfer function can be produced from this analysis. The result will be strongly depending on the first order motions from the wave frequency load. Normally, it will give relatively smaller magnitude forces compared to first order force. However, it is very important for a cylindrical floater since it is related to the ability of the structure to produce waves. These waves may coincide with the natural frequency of its system and produce resonance.

In *subchapter 5.3*, the resulting of stability, first order motions and second order forces will be presented as the starting point to determine global performance of the cylindrical floater. The RAO of the cylindrical floater will be presented here as the parts of Wadam result while the QTF will not be presented since the analyses are done by the frequency domain analysis.

Eight combinations will be considered here with respect to environmental load and the waterline position as follow:

- Regular wave with Ho=25 m for ballasted at z=16.35 m as ULS ballast case
- Regular wave with Ho=6 m for ballasted at z=16.35 m as FLS ballast case
- Regular wave with Ho=25 m for fully loaded at z=20.73 m as ULS fully load case
- Regular wave with Ho=25 m for fully loaded at z=20.73 as FLS fully load case
- Irregular wave with Jonswap spectrum (Hs=15.6m and Tp=15.5s) for ballasted at z=16.35 m as Jonswap_Ballast case
- Irregular wave with Torsethaugen spectrum (Hs=15.6m and Tp=15.5s) for ballasted at z=16.35 m as Torsethaugen _Ballast case
- Irregular wave with Jonswap spectrum (Hs=15.6m and Tp=15.5s) for fully loaded at z=20.73 m as Jonswap_fullyload case
- Irregular wave with Torsethaugen spectrum(Hs=15.6m and Tp=15.5s) for fully loaded at z=20.73 m as Torsethaugen _fullyload case

5.3.1 Stability Analysis

Stability analysis describes the position of the floater in static equilibrium where the forces of gravity and buoyancy are equal and acting in opposite directions in line with one another. *Ship Hydrostatic (2002)* has mentioned that stability is the ability of a body, in this setting a ship or a floating vessel, to resist the overturning forces and return to its original position after the disturbing forces are removed. It requires initial stability. Initial stability is achieved from a small perturbation from its original position. We have initial stability when we have an uprighting moment larger than zero. Hence, the floater will be back to its initial position when the inclining moment is taken away.

Furthermore from *Gudmestad (2010)*, an uprighting moment larger than zero can only be achieved if:

 $\overline{GM} > 0 \rightarrow M_r > 0$

where:

 \overline{GM} = the metacentre height M_r = the uprighting moment

From the geometry, the metacentre height is given as follows:

 $\overline{GM} = \overline{KB} + \overline{BM} - \overline{KG}$

where:

 \overline{KB} = the distance between the keel K and the centre of buoyancy B

 \overline{BM} = the distance between the centre of buoyancy B and the metacentre M

 \overline{KG} = the distance between the keel K and the centre of gravity G

Figure 5. 13. : Inclined a cylindrical floater S400. Reference: adapted from *Gudmestad (2010)*

The requirement for $\overline{GM} > 0$ will be related to freeboard *F* also. The stability of a cylindrical floater can be also analyzed from the roll period. A floater has higher stability if a floater has the ability to roll back in shorter time since $\overline{GM} \sim \frac{1}{(T_{roll})^2}$

$$T_{roll} = \frac{b}{\sqrt{GM}}$$

where:

 T_{roll} = the roll period b = the width of ship \overline{GM} = the metacentre height

The result analysis for stability of a cylindrical floater S400 can be seen in **Table 5.3** until **Table 5.6** for ballasted and fully loaded conditions. Based on the results, a cylindrical floater S400 has good initial stability since $\overline{GM} > 0$ and the movement of \overline{GM} from the ballasted to fully loaded condition can be seen in **Figure 5.14**.

A. Stability Analysis for Ballast for z= 16.35m

Mass Properties and Structural Data	Symbol	Values	Unit
Mass Of The Structure	М	7.07E+07	[M]
Weight Of The Structure	M*G	6.93E+08	[M*L/T**2]
Centre Of Gravity	XG	0.00E+00	[L]
	YG	0.00E+00	[L]
	ZG	1.82E+01	[L]
Roll Radius Of Gyration	XRAD	2.20E+01	[L]
Yaw Radius Of Gyration	YRAD	2.20E+01	[L]
Pitch Radius Of Gyration	ZRAD	3.20E+01	[L]
Roll-Pitch Centrifugal Moment	XYRAD	0.00E+00	[L**2]
Pitch-Yaw Centrifugal Moment	XZRAD	0.00E+00	[L**2]
Roll-Yaw Centrifugal Moment	YZRAD	0.00E+00	[L**2]

Table 5.3 : The mass properties for ballasted condition.

Hydrostatic Data	Symbol	Values	Unit
Displaced Volume	VOL	6.90E+04	[L**3]
Mass Of Displaced Volume	RHO*VOL	7.07E+07	[M]
Water Plane Area	WPLA	3.84E+03	[L**2]
Centre Of Buoyancy	XCB	3.24E-13	[L]
	YCB	-8.91E-13	[L]
	ZCB	7.58E+00	[L]
Longitudinal Metacentric Height	GM4	7.08E+00	[L]
Transverse Metacentric Height	GM5	7.08E+00	[L]
Heave-Heave Restoring Cefficient	C33	3.86E+07	[M/T**2]
Heave-Roll Restoring Cefficient	C34	0.00E+00	[M*L/T**2]
Heave-Pitch Restoring Cefficient	C35	0.00E+00	[M*L/T**2]
Roll-Roll Restoring Cefficient	C44	4.91E+09	[M*L**2/T**2]
Pitch-Pitch Restoring Cefficient	C55	4.91E+09	[M*L**2/T**2]
Roll-Pitch Restoring Cefficient	C45	0.00E+00	[M*L**2/T**2]

B. Stability Analysis for Fully load for z= 20.72m

Mass Properties and Structural Data	Symbol	Values	Unit
Mass Of The Structure	М	8.79E+07	[M]
Weight Of The Structure	M*G	8.62E+08	[M*L/T**2]
Centre Of Gravity	XG	0.00E+00	[L]
	YG	0.00E+00	[L]
	ZG	1.82E+01	[L]
Roll Radius Of Gyration	XRAD	2.20E+01	[L]
Yaw Radius Of Gyration	YRAD	2.20E+01	[L]
Pitch Radius Of Gyration	ZRAD	3.20E+01	[L]
Roll-Pitch Centrifugal Moment	XYRAD	0.00E+00	[L**2]
Pitch-Yaw Centrifugal Moment	XZRAD	0.00E+00	[L**2]
Roll-Yaw Centrifugal Moment	YZRAD	0.00E+00	[L**2]

Table 5. 5 : The mass	properties for fully loaded condition.

Table 5. 6 : The h	ydrostatic data fo	or fully loaded (condition.

Hydrostatic Data	Symbol	Values	Unit
Displaced Volume	VOL	8.58E+04	[L**3]
Mass Of Displaced Volume	RHO*VOL	8.79E+07	[M]
Water Plane Area	WPLA	3.84E+03	[L**2]
Centre Of Buoyancy	ХСВ	2.61E-13	[L]
	YCB	-7.17E-13	[L]
	ZCB	9.73E+00	[L]
Longitudinal Metacentric Height	GM4	6.26E+00	[L]
Transverse Metacentric Height	GM5	6.26E+00	[L]
Heave-Heave Restoring Cefficient	C33	3.86E+07	[M/T**2]
Heave-Roll Restoring Cefficient	C34	0.00E+00	[M*L/T**2]
Heave-Pitch Restoring Cefficient	C35	0.00E+00	[M*L/T**2]
Roll-Roll Restoring Cefficient	C44	5.39E+09	[M*L**2/T**2]
Pitch-Pitch Restoring Cefficient	C55	5.39E+09	[M*L**2/T**2]
Roll-Pitch Restoring Cefficient	C45	0.00E+00	[M*L**2/T**2]

Figure 5. 14. : The movement of \overline{GM} from the ballasted to fully loaded condition.

Figure 5.14 shows that the stability of the cylindrical floater S400 in ballasted condition (Z=16.35 m) is higher than in fully loaded condition (Z=20.73m).

In the ballasted condition, the metacentre height is \overline{GM} =7.08 while in the fully loaded condition, the metacentre height is \overline{GM} =6.26. When the ballast tanks are full, the keel position will move down and the distance between the keel and the buoyancy centre \overline{KB} will be higher. However, the centre of gravity will also moves up and the distance between the keel K and the centre of gravity G \overline{KG} will be also higher. Since the \overline{KG} is higher than \overline{KB} , the \overline{GM} will be lower. It is the main reason the stability of a cylindrical floater S400 becomes lower than its position in the ballast condition.

5.3.2 Transfer Functions

The transfer function or the Response Amplitude Operator (RAO) will represent the amplitude of harmonic or sinusoidal response to harmonic load. It means that the RAO will be produced from the first order force component i.e. the wave load. Further the energy from the wave load will be transferred to the floaters response by transfer functions RAO with respect to all 6 DOF (surge, sway, heave, roll, pitch and yaw).

The RAO is very important to reflecting the key performance of the floater because it can describe how the response of the vessel varies with the frequency. Below, the RAO of the cylindrical floater S400 will be presented by using two forms of regular waves, Ho= 25 m and Ho= 6 m from direction 180°. The regular waves are chosen as a practical solution to generate the RAO. In addition, the regular waves also give a good screening result to analyze the response of the cylindrical floater.

However, the irregular wave forms can also be used to generate the RAO in order to describe the real conditions of the sea. The irregular waves are based on Jonswap Spectrum, Hs=15.6 m and Tp= 15 s and Torsethaugen Spectrum, Hs=15.6 m and Tp= 15 s.

These cases are chosen based on environmental condition in **Chapter 3**.

The responses of the cylindrical floater S400 with respect to 6 DOFs can be seen in the figures below. The RAO in regular waves can be seen in **Figures 5.15 - 5.20** while the RAO in irregular waves can be seen in **Figures 5.21 - 5.25**.

A. Regular waves

Four conditions have been chosen to describe the amplitude of the response variable in regular wave condition with respect to 6 DOF motions of a floater.

- Regular wave with Ho=25 m for ballast at z=16.35 m as **ULS ballasted** case
- Regular wave with Ho=6 m for ballast at z=16.35 m as **FLS ballasted** case
- Regular wave with Ho=25 m for fully load at z=20.73 m as **ULS fully loaded** case
- Regular wave with Ho=25 m for fully load at z=20.73 as **FLS fully loaded** case

> The surge motions

Figure 5.15. : The amplitude of the response variable for surge in regular wave condition.

> The sway motions

Figure 5. 16. : The amplitude of the response variable for sway in regular wave condition.

> The heave motions

Figure 5. 17. : The amplitude of the response variable for heave in regular wave condition.

> The roll motions

Figure 5. 18. : The amplitude of the response variable for roll in regular wave condition.

> The pitch motions

Figure 5. 19. : The amplitude of the response variable for pitch in regular wave condition.

> The yaw motions

Figure 5. 20. : The amplitude of the response variable for yaw in regular wave condition.

Based on the information from **Figures 5.15, 5.16 and 5.20**, it may be seen that the cylindrical floater S400 has a tendency to be "soft" in the horizontal plane with respect to surge, sway and yaw motions when these motions are in longer periods. It means that the cylindrical floater S400 will follow the wave behavior and gives little resistance. However, the cylindrical floater S400 also gives significant responses for the surge motion for short periods, this happens because of the influence of the direction of wave comes from 180°.

The cylindrical floater has unique dimension characteristic, as a straight circular cylinder. Hence the axis in *x* and *y* will be symmetric. As examples, the surge motion in 0° will coincide with the sway in 90° and the surge motion in 90° will coincide with the sway in 0° .

Normally the motions in the vertical plane are decisive for the cylindrical floater, Hence **Figure 5.17 -5.19** shows that heave, roll and pitch motions will be important in the performance of the floater.

B. Irregular waves

Four conditions have been chosen to describe the amplitude of the response variable in irregular wave condition with respect to 6 DOF motions of a floater.

- Irregular wave with Jonswap spectrum (Hs=15.6m and Tp=15.5s) for ballasted at z=16.35 m as Jonswap Ballast case
- Irregular wave with Torsethaugen spectrum (Hs=15.6m and Tp=15.5s) for ballasted at z=16.35 m as Torsethaugen Ballast case
- Irregular wave with Jonswap spectrum (Hs=15.6m and Tp=15.5s) for fully loaded at z=20.73 m as Jonswap fullyload case

- Irregular wave with Torsethaugen spectrum (Hs=15.6m and Tp=15.5s) for fully loaded at z=20.73 m as Torsethaugen fullyload case
- > The surge motions

Figure 5. 21. : The amplitude of the response variable for surge in irregular wave condition.

> The sway motions

Figure 5. 22. : The amplitude of the response variable for sway in irregular wave condition.

> The roll motions

Figure 5.23. : The amplitude of the response variable for roll in irregular wave condition.

> The pitch motions

Figure 5. 24. : The amplitude of the response variable for pitch in irregular wave condition.

> The yaw motions

Figure 5.25. : The amplitude of the response variable for yaw in irregular wave condition.

Based on the information from **Figures 5.21 - 5.25**, the RAOs in irregular waves may be seen to have the same tendency as the RAOs in the regular waves. Moreover, the RAOs in the irregular waves give better behavior for the responses. Hence, we will use the RAOs from the irregular wave analysis as the input to next step, the cylindrical floater motion and moorings analysis in SIMO.

5.3.3 Mean Wave (Drift) Force

The mean wave (drift) forces on a structure can be calculated due to linear incident waves in Wadam. It is not necessary to include the second order terms since the second order potential does not result in mean loads.

The mean wave (drift) force from the two calculation methods, the far field method and the near field method will be presented in **Figures 5.26 – 5.31**. The far field method is based on the equation for conservation of momentum in the fluid while the near field method is based on the direct pressure integration.

Furthermore, the mean wave (drift) force for the three horizontal degrees of freedom (surge, sway and yaw) based on conservation momentum versus the pressure integration calculation method can be seen in **Figures 5.26 - 5.28** while for the remaining degrees of freedom (heave, roll and pitch) the results based on the pressure integration calculation method can be seen in **Figures 5.29 - 5.31**.

As like as transfer functions in *subchapter 5.3.2*, the mean wave drift forces are also calculated for the irregular wave forms. The results can be seen in **Figures 5.32 - 5.37**.

A. Mean wave (drift) force for regular waves

> The drift force in surge

Figure 5.26. : The drift force, far field versus the pressure integration in surge for regular waves.

> The drift force in sway

Figure 5. 27. : The drift force, far field versus the pressure integration in sway for regular waves.

> The drift moment in yaw

Figure 5.28. : The drift moment, far field versus the pressure integration in yaw for regular waves.

From **Figure 5.26** above, the mean wave (drift) force based on conservation of momentum versus the pressure integration calculation method for surge shows some differences in calculation results in the range short periods below 10 s, however after 10 s the tendency in the results will be looking similar. Furthermore, the resulting calculations from the far field method give more well-organized results than the pressure integration method.

From **Figure 5.27** above, the mean wave (drift) force based on conservation of momentum versus the pressure integration calculation method for sway shows much variation in the calculation results. Calculation disturbance from numerical model effects is the main reason for the variation in the results. Furthermore, the resulting calculations from the far field method also give more well-organized results than the pressure integration method.

From **Figure 5.28** above, the mean wave (drift) force based on conservation of momentum versus the pressure integration calculation method for yaw shows some differences in the calculation results where most of them coincide along the periods.

Hence, these results from **Figures 5.26 – 5.28** agree with *Hung and Taylor and Scalavounos (1978)*, have pointed that the far field method maybe more efficient than the pressure integration method since the far field method is less demanding on numerical discretization.

The numerical discretization of the geometry for the cylindrical floater S400 are strongly related to the number of elements in the panel model. Hence, a finer discretization of the geometry is can only be generated if the FEM for the panel model has a good surface mesh (a more massive model).

> The drift force in heave

Figure 5. 29. : The drift force, pressure integration in heave for regular waves.

> The drift moment in roll

Figure 5. 30. : The drift moment, pressure integration in roll for regular waves.

> The drift moment in pitch

Figure 5. 31. : The drift moment, pressure integration in pitch for regular waves.

On the other hand, the pressure integration method is potentially more useful to obtain the solution for mean wave (drift) force in heave, roll and pitch (**Figures 5.29 – 5.31**) because the far field method has limitation in generating these particular solutions.

B. Mean wave (drift) force for irregular waves

> The drift force in surge

Figure 5. 32. : The drift force, far field versus pressure integration in surge for irregular waves.

> The drift force in sway

Figure 5. 33. : The drift force, far field versus pressure integration in sway for irregular waves.

> The drift moment in yaw

Figure 5. 34. : The drift moment, far field versus pressure integration in yaw for irregular waves.

> The drift force in heave

Figure 5.35. : The drift force, pressure integration in heave for irregular waves.

> The drift moment in roll

Figure 5. 36. : The drift moment, pressure integration in roll for irregular waves.

> The drift moment in pitch

Figure 5. 37. : The drift moment, pressure integration in pitch for irregular waves.
Based on the information from **Figures 5.32 - 5.37**, the mean wave (drift) force in the irregular waves gives better and more well-organized results. Hence, we will use the irregular wave results as the input to next step, the cylindrical floater motion and moorings analysis in SIMO.

5.3.4 Nonlinear Damping Effect

The nonlinear damping effect can be described from the rate of change of the mean drift force between two forms of regular waves (Ho= 25m and Ho= 6m). The sign of this rate of change is in most cases negative, meaning that this will represent a damping mechanism for the slow drift motion excited by the second-order difference frequency forces or due to the interaction of the waves with the current. However, we use absolute value in this case in order to show the magnitude value of the force.

The calculation is based on the pressure integration methods hence the computation of the wave drift damping requires a free surface mesh which is defined as input exactly like the free surface mesh for the second-order analysis.

The non linear damping effects for the cylindrical floater S400 can be seen in **Figures 5.38 – 5.43** below:

> The non linear damping effect in surge

Figure 5. 38. : The non linear damping effect in surge for regular wave.

> The non linear damping effect in sway

Figure 5. 39. : The non linear damping effect in sway for regular wave.

> The non linear damping effect in heave

Figure 5. 40. : The non linear damping effect in heave for regular wave.

> The non linear damping effect in roll

Figure 5. 41. : The non linear damping effect in roll for regular wave.

> The non linear damping effect in pitch

Figure 5. 42. : The non linear damping effect in pitch for regular wave.

> The non linear damping effect in yaw

Figure 5. 43. : The non linear damping effect in yaw for regular wave.

CHAPTER

6

Moorings Analysis

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

In this chapter the general description regarding the mooring system and the moorings analysis to obtain the horizontal offset values and moorings tension will be presented. Moreover, the modeling concept and the steps for the analysis in SIMO will be presented briefly.

Furthermore, the cylindrical S400 floater and moorings are modeled by using software SIMO for simulation of motions and station-keeping behavior of the floater, the analysis has been performed in time domain.

The moorings lay out and composition of lines will be presented here. The analysis has been performed in SIMO for static and dynamic conditions. The static condition will give results such as static moment and forces for a cylindrical S400 floater and moorings and also the bodies position in static condition; while in the dynamic condition the results will be motion response given by time series, the second order wave forces and also wave drift damping forces and also the positioning system forces for the moorings.

6.1 Mooring Systems

It is essential that floating structures have precise motions and position systems. Hence, the mooring system is important to hold the structure against winds, waves and currents (**Figure 6.1**). *Chakrabarti, S. (2005)* has mentioned that mooring system design is a trade-off between making the system compliant enough to avoid excessive forces on the floater and making it stiff enough to avoid difficulties due to excessive offsets. This is very difficult in shallow water. *Chakrabarti, S. (2005)* also suggests to develop increasingly integrated moorings/riser system design methods to optimize the system components to ensure lifetime system integrity.

Figure 6. 1. : Environmental forces acting on a moored vessel in head conditions and the transverse motion of catenary mooring lines.

Reference: Chakrabarti S. (2005)

The mooring system for a cylindrical S400 floater will adopt the spread mooring system without using a thruster to stay in the desired position. The spread of mooring lines as in a conventionally mooring system each of the lines forms a catenary shape. A spread of mooring lines generates a non linear restoring force by relying on an increase or decreases in line tension as the mooring lines lift off or settle on the seabed. The force increases with the horizontal offset and balances quasy-steady environmental loads on the surface platform.

Furthermore, *Faltinsen (1990)* has mentioned that the tension forces in the lines depend on their weight and elastic properties and are also depending on the manner in which moorings are laid. Besides, the longitudinal motion and transverse motions of the moorings themselves can also influence the response of a floater through line dynamics. Hence, the moorings have an effective stiffness composed of an elastic and a geometric stiffness which combined with the motion of the unit will introduce forces on lines.

The mooring system for the cylindrical S400 floater consists of 12 mooring lines which are distributed on 3 clusters (3 groups of 4 lines). The overall line lay out of the mooring lines is shown in **Figure 6.2** below:

The mooring lines for a cylindrical S400 floater will be made from combination of chain and polyester rope. The polyester has been considered in the design because it has good characteristics such as being lighter, relatively very flexible and having capability to absorb imposed dynamic motions through extension without causing an excessive dynamic tension. Moreover, it also reduces the line length of mooring lines.

The composition of a mooring line for a cylindrical S400 floater will be fairlead, top chain segments, upper polyester segment and lower polyester segment, anchor chain segment and anchor. The given length of the top chain represent the "as installed" initial length of the top chain measured from fairlead to the polyester rope connection. The total length of this chain segment is 125 m.

The details of the composition of each of the 12 mooring lines are shown in **Table 6.1** and in **Figure 6.3**.

Segment Type (From Anchor)	Lenghth (m)	Nominal diameter (mm)	Axial stiffness EA (kN)	Weight in air (kN/m)	Submerged Weight (kN/m)
Anchor	-	-	-	-	-
Anchor Chain	50	155	1.76E+06	4.71	4.1
Link	1	-	-	25	22
Lower Polyester Rope	400	260	See comments below	0.46	0.12
Buoy w. link	5	-	-	225	-125
Upper Polyester Rope	700	260	See comments below	0.46	0.12
Link	1	1	-	25	22
Top Chain	125	155	1.76E+06	4.71	4.1

Table 6. 1. : Mooring Line Composition for Sevan 400 FPSO

Reference: Sevan Marine (2011)

Comments:

For the axial stiffness of the polyester rope, different mooring line stiffness values have to be considered. The following stiffness values are defined based on *DNV-OS-E301 (2004)*. Typical values of stiffness data for fibre moorings are determined from the test program of the actual polyester rope.

In this study, two typical values of stiffness data for polyester are used:

- 1. Static stiffness also called drift stiffness is the **intermediate** of stiffness values for polyester from 18.4 MBL (Minimum Breaking Load)
- 2. Dynamic stiffness also called storm stiffness is the **maximum** of stiffness values for polyester from 18.4 MBL (Minimum Breaking Load)

Moreover, the MBL of the polyester Rope and Chain are:

- 1. 260 mm Polyester Rope; MBL=19250 kN
- 2. 155 mm Chain, Grade R4; MBL=20802 kN

The corrosion properties for the chains are also considered in the design. According to ISO 19901-7 (2005), a corrosion allowance referred to the chain diameter, can be taken to be 0.4 mm/year for splash zone and 0.2 mm/year for the remaining length. Using the combined fairlead/chain stopper solution the entire load carrying part of the mooring chain (i.e. part outside the Chain stopper) will be below splash zone. 0.2 mm/year corrosion allowance has therefore been assumed. Based on the specified a design life of 20 years and assuming no replacement of mooring lines, this gives a reduction of the diameter of 4 mm, which implies: 155 mm Chain, Grade R4; MBL=19942 kN (Including 20 years corrosion margin).

The choice of anchor will be based on the actual soil conditions. At present, use of suction anchors is the base case.

Furthermore, the mooring line composition can also be seen in **Figure 6.3** below:

Figure 6. 3. : Mooring line composition. Reference: Sevan Marine *(2011)*

The detailed orientation and the pretension of the lines will be given based on the SIMO configuration and can be seen in **Table 6.2** as follow:

Name	X (m)	Y (m)	Z (m)	Pretension (kN)	Direction (degree)
S400_Line1	31.2	-18	-9.35	1.75E+03	342
S400_Line2	31.2	-18	-9.35	1.75E+03	340
S400_Line3	31.2	-18	-9.35	1.75E+03	330
S400_Line4	31.2	-18	-9.35	1.75E+03	328
S400_Line5	-31.2	-18	-9.35	1.75E+03	212
S400_Line6	-31.2	-18	-9.35	1.75E+03	210
S400_Line7	-31.2	-18	-9.35	1.75E+03	200
S400_Line8	-31.2	-18	-9.35	1.75E+03	198
S400_Line9	0	36	-9.35	1.50E+03	97
S400_Line10	0	36	-9.35	1.50E+03	95
S400_Line11	0	36	-9.35	1.50E+03	85
S400_Line12	0	36	-9.35	1.50E+03	83

Table 6. 2. : The Detailed Orientation and The Pretension of The Linesfor Mooring System of Sevan 400 FPSO

Reference: Sevan Marine (2011)

The initial tension or pre-tension in mooring lines are established by the use of winches on the floater. The winches pull on the mooring lines to set up the desirable configurations. Hence, a cylindrical S400 floater will be also equipped with the mooring winches. The mooring winches are located on the main deck. The mooring winches will be of the rotating type with one winch for each cluster. The winches can be skidded on rails on the main deck to cover the different lines in the cluster.

By using the winches, a cylindrical S400 floater can be moved to different positions relative to its defined zero position. The maximum radius will depend on the length of the top chain and the storage capacity of the chain lockers. The present mooring system solution is based on a maximum offset radius of 75 m. This imply that the Sevan Floater, may be located at any position within a radius of 75 m from its defined zero position.

The movable winches will be installed by one winch per cluster on the main deck. The typical winch that will be applied on a cylindrical S400 floater can be seen in **Figure 6.4** below:

Figure 6. 4. : The movable winch on a cylindrical S400 floater.

Reference: Sevan Marine (2011)

Besides the moveable winches, a cylindrical S400 floater will be also equipped with combined fairlead/chain stoppers. This combined solution has the following advantages compared to the traditional solution with fairlead at the FPSO side and chain stopper at the main deck such as:

- Since the position of the chain stopper is below splash zone, it will gives less required corrosion allowance for the loaded part of the Chain (0.2 mm/year relative to 0.4 mm/year, according to *ISO 19901-7 (2005)*)
- It also gives lower resulting mooring forces at fairlead interface towards hull structure and reduced strength requirements at main deck (no mooring forces transferred to this level)

However, this is also a drawback with this solution. It makes the chain stoppers not directly accessible for inspection and maintenance.

The fairlead and chain stoppers (i.e. chain stopper outside fairlead) are located at the bilge box; it can be seen in **Figure 6.5** below:

Figure 6. 5. : The combined fairlead/chain stopper on a cylindrical S400 floater. Reference: Sevan Marine (2011)

6.2 Mooring System Design

The aim of the moorings analysis is to ensure that the mooring system has adequate capacity to generate a non-linear restoring force to provide the station-keeping function. This force will be expressed by the mooring tension that will also be influenced by the horizontal offset values.

6.2.1 Basic Theory for Design

Since a cylindrical S400 floater adopts the spread mooring system, the basic mechanics of catenary moorings is still satisfactory to be used as a basic theory for model the concept. Further, the basic mechanics of catenary moorings will be described by the catenary model. From the behavior of catenary moorings one can derive line tension and horizontal force in moorings. The theoretical background of the catenary mooring lines has been adopted from *Faltinsen (1990)* and *Chakrabarti, S. (2005)*.

The catenary model for a single line mooring and the force acting on a segment of the mooring line is depicted in **Figure 6.6** and **Figure 6.7** below:

Reference: Chakrabarti, S. (2005)

Figure 6. 7. : The forces acting on an element of mooring line. Reference: Chakrabarti, S. (2005)

The term w represents the constant submerged line weight per unit length, T is the line tension, A is the cross-sectional area and E is the elastic modulus. The mean hydrodynamic forces on the element are given by D and F per unit length.

The assumptions are neglecting bending stiffness and the single line in a vertical plane coincides with the x-z plane. By analyzing the equilibrium in normal and tangential directions in one element of the mooring line, we can write equations as follow:

$$dT - \rho gAdz = \left[wsin\phi - F\left(\frac{T}{EA}\right)\right]ds$$
(6.1)

$$Td\phi - \rho gAdzd\phi = \left[w\cos\phi + D\left(1 + \frac{T}{EA}\right)\right]ds$$
(6.2)

In order to simplify the equation above, the hydrodynamic forces from F and D will be neglected. It is noted that elastic stretch can be important and needs to be considered when lines become tight or for a large suspended line weight (large *w* or deepwater)

The vertical dimension, *h*, and the suspended line length, S, can be obtained as follow:

$$S = \left(\frac{T_H}{w}\right) sinh\left(\frac{wx}{T_H}\right)$$
(6.3)

$$h = \left(\frac{T_H}{w}\right) \left[\cosh\left(\frac{wx}{T_H}\right) - 1 \right]$$
(6.4)

Giving the tension in the line at the top, written in terms of the catenary length *S* and depth *d* as:

$$T = \frac{w(S^2 + d^2)}{2d}$$
(6.5)

Hence, the vertical component of line tension at the top end becomes:

$$Tz = wS \tag{6.6}$$

and the horizontal component of line tension is constant along the line and is given by:

$$T_H = T\cos\phi_w \tag{6.7}$$

It is noted that the above analysis assumes that the line is horizontal at the lower end without no uplift. Furthermore, the multi-element lines made up by varying lengths and physical properties are used to increase the non-linear restoring force in the system.

6.2.2 Design Criteria

Chakrabarti, S. (2005) has mentioned that although the spread of mooring lines is the simplest in terms of design, it may not be the optimum in terms of performance. Hence, the design requirements should be considered to withstand environmental conditions and accommodate space restrictions caused by the subsea spatial layout or the riser system.

The design requirements of the mooring system for a cylindrical S400 floater have been listed by *Sevan Marine (2011)* as follow:

• The mooring system shall fulfill the requirements to safety factors both in intact condition and with mooring line failures and shall limit the lateral excursions within the limits of the riser design.

- The mooring system shall make the FPSO passively moored, i.e. the mooring system shall not depend on thruster assistance. Due it the circular shape of the Sevan FPSO weather vaning is not an issue.
- The Sevan FPSO mooring equipment and mooring system shall have sufficient structural/mechanical integrity with respect to continuous operations during the specified design life.
- The mooring system with the FPSO connected shall be designed to withstand 100year return period storm conditions, including damage condition with one line broken
- The mooring system shall comply with required safety factors and offsets such that the FPSO can continue production operations in the 100 year return period storm conditions without interruptions caused by mooring constraints.

In this study, the application of design requirement for mooring line failures or damage condition with one line broken criteria will not be considered.

Besides the design requirements, *Sevan Marine (2011)* also listed the acceptance criteria for tension limits for Ultimate Limit States (ULS) based on *ISO 19901-7 (2005)*. The design safety factor is defined as the ratio between the Minimum Breaking Load (MBL) of the mooring line component and the maximum tension in the same component.

The mooring system will be designed according to the specified minimum safety factors as defined in *ISO 19901-7 (2005)*. For a mooring component, a tension limit should be expressed as a percentage of its MBL after reductions for corrosion and wear.

Tension limits for various conditions and analysis methods shall be set in accordance with **Table 6.3**, in which design safety factors are also listed.

Analysis condition	Analysis method	Line tension limit (percent of MBL)	Design safety factor
Intact	Quasi-static	50 %	2,00
Intact	Dynamic	60 %	1,67
Redundancy check	Quasi-static	70 %	1,43
Redundancy check	Dynamic	80 %	1,25
Transient	Quasi-static or dynamic	95 %	1,05

Table 6.3.: ULS Line Tension Limits and Design Safety Factors

Reference: ISO 19901-7 (2005)

In this study, the design safety factor for the mooring line will be applied only in the intact condition for Ultimate Limit States (ULS).

The available design method that can be applied for the mooring system is as follow:

1. Quasi-static design

Van den Boom (1985) has mentioned that the quasi-static design comprises dynamic motion analysis of the moored structure and computations of mooring line tension based on the extreme position of the floater and the static load-excursion characteristic of the mooring system.

Furthermore, *Chakrabarti, S. (2005)* has also explained that the quasi-static analysis is usually non-linear in that the catenary stiffness at each horizontal offset is used within the equations of motion. Further, the equations of motion are integrated in time domain.

 $(m+A)\ddot{x} + B\dot{x} + B_v \dot{x} |\dot{x}| + C_t x = F_x(t)$ (6.8)

In each degree of freedom to give the motions, x, coupling between the motions can also be included. The terms m, A, B and B_v refer to the floater mass, added mass, linear and viscous damping respectively with F_x representing the time varying external forcing.

There are two types of calculation that are carried out:

- A time domain simulation that allows for the wave induced floater forces and responses at the wave and drift frequency while treating wind and current forces as being steady and using the mooring stiffness curve without considering line dynamics.
- A frequency response method (where the mooring stiffness is treated as linear) Wave force and low frequency dynamic responses to both wave drift and wind gust effects are calculated as for a linear single degree of freedom system
- 2. Dynamic design

Chakrabarti, S. (2005) has mentioned that the full dynamic analysis is usually performed in design. Generally, a static configuration must first be established with non-linear analysis where the effect of line dynamics on platform motion is mutually included in the time-domain solution. Dynamic methods also include the additional loads from the mooring system other than restoring forces, specifically the hydrodynamic damping effects caused by the relative motion between the line and fluid. Inertial effects between the line and fluid are also included.

Two methods using discrete element techniques for dynamic simulation are:

The Lumped Mass Method (LMM)

This technique involves the lumping of all effect of mass, external forces and internal reactions at a finite number of point ("nodes") along the line. By applying the equations of dynamic equilibrium and continuity (stress/strain) to each mass a set of discrete equation for the motion is derived. These equations may be solved in time domain directly using finite difference techniques. Material damping, bending and torsional moment from the lines are normally neglected.

- and the Finite Element Method (FEM).
 - The main difference between the LMM and FEM is the FEM utilizes interpolation functions to describe the behavior of a given variable internal to the element in terms of the displacement (or other generalized co-ordinates). The equation of motion for single elements are obtained by applying the interpolation function to the kinematic relations (strain/displacement), constitutive relations (stress/strain) and the equations of dynamic equilibrium. The solution procedure is similar to the LMM.

The research related to these methods can be found in *van den Boom (1985)*. Furthermore, *van den Boom (1985)* has suggested that dynamic analysis should be performed in the design because the dynamic behavior of mooring lines strongly increases the maximum line tensions and may affect the low frequency motions of a moored structure by increase of the virtual stiffness and the damping of the system.

Further, in the design application the corresponding mooring line tensions are established both using a quasi-static approach and including the contribution from the mooring line dynamic. SIMO has the capability to perform both of them, quasi static analysis and simplified dynamic analysis. However in this chapter, mooring analysis will be performed in quasi-static while dynamic analysis (the Finite Element Method (FEM)) will be performed in **Chapter 8**.

6.2.3 Modeling Concept and Analysis Steps

The moorings system will be modeled by using the computer program, SIMO, with S400 ballasted at a draft of z=16.35. Here, the analysis has been performed in time domain for problem solving. The spread mooring system will be based on the model used in MIMOSA in the frequency domain. Moreover, the design of the mooring system in MIMOSA has been performed by *Sevan Marine (2011)*. The analysis implementation will also include a cylindrical S400 floater as the body based on the model used in the diffraction program Wadam/Hydro D in **chapter 5**.

The steps of the moorings analysis for the cylindrical S400 floater can be seen in **Figure 6.8** as follow:

Figure 6.8.: A simple procedure for mooring analysis.

The mooring analysis by using SIMO will be divided into data and assumptions, modeling and analysis and results.

The input for the analysis will be based on data and assumptions categorized as follow:

- General data
- Environmental Load

The wave, wind and currents will be considered in the analysis and simulated in time series. The environmental load data will be based on the return period combinations for 100 year waves and wind criteria and 10 years current criteria.

The analysis will use the load combination below:

- ➤ The wave: Jonswap double peaked spectrum (Hs=15.6m and Tp=15.5s)
- The wind: NPD Spectrum wind
- > The current: Current profile

The general data and the environmental load data will be input to INPMOD as a part of system descriptions. Further information about environmental load data can be found in **Chapter 3**.

Further, the analysis requires two models, the body model and the station keeping model.

The body model will be adopted from Wadam/Hydro D. The FEM model of a cylindrical S400 floater (Hydro and Mass model) and the wave load from Wadam/HydroD will be read into INPMOD. In addition, the kinetic and radiation data as the body data will be input to INPMOD to obtain the forces that are acting on the hull, such as:

1. Mass force

The mass force will be determined by the body mass, the centre of gravity and the mass moment of inertia with respect to origin for a cylindrical S400 floater. The structural mass data can be seen in **Figure 6.9** below:

Structural Mass on s400

Centre of Gravity:

Х	γ	Z
0.000	0.000	1.880

Mass coefficients:

Mass	Ъх	Iyx	Іуу	Izx	Гzy	Izz
7.069e+04	3.421e+07	0.000	3.421e+07	0.000	0.000	7.238e+07

Figure 6. 9. : The structural mass data for a cylindrical S400 floater.

2. Low-frequency hydrodynamic damping forces

The low frequency damping should be included in the design because the low frequency force can generate large amplitude resonant motions. When the damping at low frequency is very small, it causes the second order slowly varying forces to generate large amplitude resonant motions. Hence, the low frequency resonant amplitude motions can be predicted if the magnitude of the damping is known.

The following low frequency damping contributions are considered not only from the body but also from the mooring lines for:

- Viscous hull damping
- Wave drift damping
- Mooring line damping

The viscous damping will partly be covered by the current force coefficient while the wave drift damping will be derived from the mean drift force. Mooring line damping is represented by a low frequency damping of the form:

$$F_{i} = B_{L,i} \cdot U_{SD,i} + B_{Q,i} \cdot U_{SD,i} |U_{SD,i}|$$
(6.9)

where:

 $B_{L,i}$ = the linear low frequency damping in DOF number *i*

 $B_{Q,i}$ = the quadratic low frequency damping in DOF number *i*

 $U_{SD,i}$ = the slow drift velocities in DOF number *i*

In order to verify the magnitude value of the damping, Sevan Marine has recently performed model tests for Sevan FPSO's to define the damping coefficients for the calibration of the numerical model. *Sevan Marine (2011)* has mentioned that the linear and quadratic damping term will be highly different. Based on the calibration towards previous model test results and scaling to actual floater size, the following data have been established in **Table 6.4 - 6.5**:

	Surge	Sway	Heave	Roll	Pitch	Yaw
Surge	9.90E-02	0	0	0	0	0
Sway	0	9.90E-02	0	0	0	2.20E-02
Heave	0	0	4.00E-04	0	0	0
Roll	0	0	0	4.00E-04	0	0
Pitch	0	0	0	0	4.00E-04	0
Yaw	0	2.20E-02	0	0	0	1.50E+06

Table 6.4.: The Linear Damping Coefficients for Mooring Analysis

Reference: Sevan Marine (2011)

	Surge	Sway	Heave	Roll	Pitch	Yaw
Surge	1.40E+04	0	0	0	0	0
Sway	0	1.40E+04	0	0	0	2.20E-02
Heave	0	0	1.00E+03	0	0	0
Roll	0	0	0	3.50E+04	0	0
Pitch	0	0	0	0	3.50E+04	0
Yaw	0	2.20E-02	0	0	0	1.50E+06

Table 6. 5. : The Quadratic Damping Coefficients for Mooring Analysis

Reference: Sevan Marine (2011)

3. Hydrostatic stiffness forces

The hydrostatic stiffness fully governs the heave, pitch, and roll response motions. The coefficients for hydrostatic stiffness forces are determined from model test results. These data will be established based on the test results from *Sevan Marine* (2011) in **Table 6.6** below:

Table 6. 6. : The Linear Hydrostatic Stiffness Matrix for Mooring Analysis (kg.m/s²)

	Surge	Sway	Heave	Roll	Pitch	Yaw
Surge	0	0	0	0	0	0
Sway	0	0	0	0	0	0
Heave	0	0	3.86E+04	0	0	0
Roll	0	0	0	4.41E+06	0	0
Pitch	0	0	0	0	4.41E+06	0
Yaw	0	0	0	0	0	0

Reference: Sevan Marine (2011)

4. Wave excitation forces

A Floating structure moored at sea is subjected to forces that tend to shift them from its desired position. The forces on a floater caused by the wave excitation may be split into two parts:

- First order oscillatory forces with the wave frequency
- Second order slowly varying forces with frequencies much lower than the wave frequency

Wichers and Huijisman (1984) has explained that the first order oscillatory wave forces on a floater cause ship motions with frequencies equal to the frequencies present in the spectrum of the waves while the second order wave forces, also known as the wave drift forces, have been shown to be proportional to the square of the wave height.

Further, the first order wave forces are described in the frequency domain as a linear motion transfer function, also denoted Response Amplitude Operator (RAO) while the second order wave forces are described as the mean wave (drift) force. Both of them will be input to INPMOD as a part of the program input.

Furthermore, the first order transfer motion (RAO) will be considered in 6 DOF motion of a floater for translational motions (surge, sway, and heave) and also

rotational motions (roll, pitch and yaw). Both of them will be described from 0° to 90° .

The mean wave (drift) force will be considered for translation motions surge and sway from 0° to 90° . The mean wave (drift) force for the rest of DOF will be considered as zero.

The further details can be found in Appendices A and B.

5. Current forces

The current forces are calculated using the following equation:

$$F_C = C_C \cdot U_C^2 \tag{6.10}$$

where: U_C is current speed, C_C is the force coefficients for current.

The current loads on a ship will be represented by drag forces in form of viscous hull surge and sway forces and also as yaw moment. These will be calculated based on current coefficients from current tests where the mooring and riser system were included.

The current coefficients are divided into the linear current force coefficients C_1 and quadratic current force coefficients C_2 . Usually for the current drag forces acting on the hull, the linear coefficient, C_1 is not used in the analysis. The quadratic current force coefficients C_2 for the 6 DOF motions from 0 ° to 90 ° can be seen in **Table 6.7** below:

No	Direction	C ₂₁ Surge	C ₂₂ Sway	С ₂₃ Нозуо	C ₂₄ Roll	C ₂₅ Pitch	C ₂₆ Vaw
NU	(deg)	Surge	Sway	(kNs	² /m ²)	Then	Taw
1	0	500	0	0	0	0	0
2	15	483	129	0	1.04E+03	-4.00E+03	0
3	30	433	250	0	2.00E+03	-3.86E+03	0
4	45	354	354	0	2.83E+03	-3.46E+03	0
5	60	250	433	0	3.46E+03	-2.83E+03	0
6	75	129	483	0	3.86E+03	-2.00E+03	0
7	90	0	500	0	4.00E+03	-1.04E+03	0

Table 6.7.: The Quadratic Current Coefficients for 6 DOF Motions From 0 ° to 90 °

Reference: Sevan Marine (2011)

Besides, the coefficients above will be used to predict the viscous damping that is acting on a floater.

6. Wind forces

The wind is calculated using the following equation:

$$F_W = C_{WI} \cdot U_W^2 \tag{6.11}$$

where: U_W is the wind speed, C_{WI} is the force coefficient for wind.

The wind coefficients for 6 DOF motions from 0 $^{\circ}$ to 90 $^{\circ}$ can be seen in **Table 6.8** below:

No	Wind Direction	W ₁₁ Surge	W ₁₂ Sway	W ₁₃ Heave	W ₁₄ Roll	W ₁₅ Pitch	W ₁₆ Yaw
	(ueg)			(kNs	² /m ²)		
1	0	1.35	0	0	0	21.6	0
2	15	1.3	0.35	0	-5.59	20.86	0
3	30	1.17	0.68	0	-8.71	15.72	0
4	45	0.95	0.95	0	-10.8	10.8	0
5	60	0.68	1.17	0	-15.72	8.71	0
6	75	0.35	1.3	0	-20.86	5.59	0
7	90	0	1.35	0	-21.6	0	0

Table 6.8. : The Wind Coefficients for 6 DOF Motions From 0 $^{\circ}$ to 90 $^{\circ}$

Reference: Sevan Marine (2011)

7. Simplified wave drift damping forces

The wave drift damping forces will be very important to calculate the potential flow effect for the low frequency motions. *DNV-RP-F205 (2010)* has defined that the wave drift damping forces is the increase in the second-order difference frequency force experienced by a structure moving with a small forward speed in waves.

For a floater, the mean wave drift damping is considered based on an expansion of the mean drift force F_d :

$$F_{d}(\omega, \dot{x}) = F_{d}(\omega, 0) - B(\omega)\dot{x} + O(\dot{x}^{2})$$
(6.12)
where: $B(\omega) = -\frac{\partial F_{d}}{\partial \dot{x}} l_{\dot{x}=0}$

In this analysis, the Newman method will be implemented. (Marintek (2008))

The wave drift damping coefficients are given for two numbers of peak periods, 13s and 16s. These coefficients will be considered for the 2 DOF motions, surge and sway as can be seen in **Table 6.9** below:

No		W_{d1}	W _{d2}
	Periods	(kNs^2/m^2)	
1	13	0.33	0.33
2	16	0.33	0.33

Table 6.9.: The Wave Drift Damping Coefficients

Reference: Sevan Marine (2011)

8. Potential damping forces

Potential damping can be determined from potential theory. This damping will happen due to the forces causing harmonic motions. It means this damping can be considered based on the first order wave forces. Generally, this damping should be used in the equation of motion for sinusoidal waves. Hence, the linear transfer functions (RAO) are important to give good prediction about the potential damping.

Hence, *Det Norske Veritas (2008)* in "Sesam User Manual for Wadam-Wave Analysis by Diffraction and Morison Theory" has mentioned that the transfer function should

generally be smooth to avoid large jumps. Large jumps in the transfer functions will cause too large wave period step and cause difficulties to predict the potential damping.

Besides, the potential damping is also strongly related to the added mass due to the radiation effects. The radiation is found when a floater oscillates without waves. Moreover, it was shown by *(Cummins, 1962)* that the frequency dependence of added mass and potential damping can be seen as a consequence of a convolution term in the radiation potential.

Hence, the added mass coefficient will be considered in the analysis in order to describe the hydrodynamic interaction. Further, the added mass and potential damping will be included in retardation functions. The added mass coefficient can be seen in **Table 6.10** as follow:

	Surge	Sway	Heave	Roll	Pitch	Yaw
Surge	3.70E+04	0	0	0	-6.33E+05	0
Sway	0	3.70E+04	0	6.33E+05	0	0
Heave	0	0	1.56E+05		0	0
Roll	0	6.34E+05	0	5.31E+07	0	0
Pitch	-6.34E+05	0	0	0	5.31E+07	0
Yaw	0	0	0	0	0	0

Table 6. 10. : The Wave Drift Damping Coefficients

Reference: Sevan Marine (2011)

After the body model is made, the mooring lines will be attached for station keeping in the model of the system. The implementation of a catenary mooring line model in SIMO is based on the model used in the mooring analysis program MIMOSA based on quasi static analysis in the frequency domain. Further, in SIMO, the catenary mooring line model is extended to the time domain. The mooring lines are treated individually based on property characteristic such as: material, dimension, length etc.

Since a cylindrical S400 floater adopts the spread mooring system, the mooring lines are assumed to form catenaries and will be modeled by the catenary equations. Because the analysis method chose a quasy-static analysis thus the procedure for calculating the mooring line configuration is based on a "shooting method" or iteration on boundary conditions at one end in order to satisfy specified boundary conditions at the other. Using this procedure a fairly accurate static equilibrium configuration for a multi segment line can be obtained with a minimum of computational efforts.

By using the quasi-static model, the moorings tension arising due to a floater motions can be calculated. This not only for WF mooring line tension or LF mooring line tension but also for the combination of the LF and WF mooring line tension.

The procedure for a catenary mooring line model can be found in details in *Marintek (2007);* in the "Marintek Report: Mimosa 5.7 – User's Documentation".

As for the data such as the mooring line compositions (**Table 6.1**), the detailed orientation and the pretension for the mooring system will be input to INPMOD for the catenary mooring line model in SIMO.

Further, all inputs from the simple procedure for mooring analysis (**Figure 6.8**) will be integrated to SIMO in INPMOD module. Moreover, SIMO consist of six different modules (INPMOD, STAMOD, DYNMOD, OUTMOD and PLOMOD) by a file system as shown in **Figure 6.10** below:

Figure 6. 10.: Layout of the SIMO program system and file communication between modules.

The INPMOD module has the function to gather all data inputs and also to provide interfaces for external input data sources from Wadam/Hydro D. The INPMOD module will generate the system description file, SYSFIL, which contains a description about the body, station keeping and also the environmental data. Further, these data will be read by STAMOD to define the initial condition for the dynamic simulation. A static equilibrium position and the static force will be calculated in this module. The dynamic simulation in time domain will be performed in DYNMOD module in order to calculate the response of the system. The result of the simulation in time series will be read by OUTMOD module then the plot of the time series and statistical parameters can be access from the PLOMOD module. The detail information about the input of these modules that are used in the analysis can be found in **Appendix C**. Further information can be seen in *Marintek (2008)*; "SIMO - Theory Manual Version 3.6, rev: 1."

6.3 Moorings Analysis

The mooring analysis are carried out in two conditions, static and dynamic condition. The results from the static condition are derived without variation of the environmental loads while it will be taken into account in the dynamic condition.

The results from the static condition will be the final static body position and mooring line static tensions while the results from the dynamic condition are time series of second order wave forces and the wave drift damping forces. These also represent the mooring line dynamic tensions and the response motions of a cylindrical S400 floater. Further, the response motions will be used to define the horizontal offset of a cylindrical S400 floater.

The calculation parameters that will be used for mooring analysis can be seen in **Figure 6.11** below:

Figure 6. 11. : The calculation parameters for static and dynamic condition

Static calcula	ation paramet	ers in S	IMOTask1			
alculate equilibriun	n: 🔽					
Max Period	Pos Tol [Dir Tol	Time Step	Max Step	Critical Damping	
10.000	0.100	0.100	1.000e-02	10000		
Dynamic ca	alculation p	aramet	ers in SII	MOTask1		
Time Step	2^N	Clutch	Steps Simulation Steps		Sub Divisions	
1.000	14		5 11800		10]	
	1					
Start Step	Wave Seed	Wind S	Seed			
1	. 1		1			
Wave Method	Heading Cor	rection	Max Headi	ng Change	Write Vis File	
EET and			45.000			

6.3.1 Static Condition

A static equilibrium position for a cylindrical S400 floater can be seen in **Table 6.11**. Further, this position will be the initial condition for the dynamic simulation.

Table 6. 11. : The Final Static Body Position of A Cylindrical S400 Floater

Static Body Position									
Body	X	Y	Z	Rx	Ry	Rz			
S400	0	0	0	0	0	0			

While the static forces and moments that are acting on a cylindrical S400 floater can be seen in **Table 6.12**. and **Table 6.13**. These will also be the initial conditions for the dynamic simulation.

Static forces and moments on s400										
Name	Fx	Fy	Fz	Ftotal	Acceleration	Mx	My	Mz		
Hydrostatic stiffness	5.050e-09	6.974e-10	0.145	0.145	2.046e-09	-2.141e-02	0.155	-4.123e-18		
Wind forces	-843.750	-1.992e-04	0.000	843.750	1.194e-05	3.182e-03	-1.350e+04	0.000		
Quadratic current	-180.000	0.000	0.000	180.000	2.546e-06	0.000	1.440e+03	0.000		
Second order wave drift, wind	-2.766e+03	8.943e-14	0.000	2.766e+03	3.913e-05	0.000	0.000	0.000		
Positioning elements	-1.921e-02	-56.097	-8.497e+03	8.497e+03	1.202e-04	3.837e+03	0.121	-2.441e-02		
Total	-3.790e+03	-56.097	-8.497e+03	9.304e+03	1.316e-04	3.837e+03	-1.206e+04	-2.393e-02		

Table 6. 13. : The Mooring Line Static Tensions

Static results for in SIMOTask1

➡ Positioning element forces on s400

Name	Ftotal	Fx	Fy	Fz	Mx	My	Mz
s400_line1	1.754e+03	1.522e+03	-494.450	-718.190	8.304e+03	8.179e+03	1.197e+04
s400_line2	1.754e+03	1.504e+03	-547.260	-718.190	7.811e+03	8.349e+03	9.990e+03
s400_line3	1.754e+03	1.386e+03	-800.040	-718.190	5.447e+03	9.451e+03	-18.483
s400_line4	1.754e+03	1.357e+03	-847.910	-718.190	4.999e+03	9.720e+03	-2.030e+03
s400_line5	1.754e+03	-1.357e+03	-847.910	-718.190	4.999e+03	-9.720e+03	2.030e+03
s400_line6	1.754e+03	-1.386e+03	-800.050	-718.190	5.447e+03	-9.451e+03	18.469
s400_line7	1.754e+03	-1.504e+03	-547.260	-718.190	7.811e+03	-8.349e+03	-9.990e+03
s400_line8	1.754e+03	-1.522e+03	-494.450	-718.190	8.304e+03	-8.179e+03	-1.197e+04
s400_line9	1.505e+03	-163.100	1.328e+03	-687.900	-1.234e+04	1.525e+03	5.872e+03
s400_line10	1.505e+03	-116.640	1.333e+03	-687.900	-1.230e+04	1.091e+03	4.199e+03
s400_line11	1.505e+03	116.640	1.333e+03	-687.900	-1.230e+04	-1.091e+03	-4.199e+03
s400_line12	1.505e+03	163.100	1.328e+03	-687.900	-1.234e+04	-1.525e+03	-5.872e+03

6.3.2 Dynamic Condition

The aims of mooring analysis are presented in this chapter. Since the analysis has been performed in time domain for problem solving, the floater motions in time domain, the horizontal offset values and the mooring line dynamic tensions will be presented as time series results.

Besides, the supported analysis results for the time series of second order wave forces and the wave drift damping forces will also be presented in this chapter.

The dynamic condition has been simulated for "3 hours +" build up time.

Further, these analysis results will be compared with the related results in **Chapter 8** (the floater motion, horizontal offset and mooring line tension).

A. The Floater Motions

The global motion response of a cylindrical S400 floater can be categorized based on their frequency of the motion. Generally, two types of frequency motions will be the results of the particular effects of the environmental loads.

First, the global motion response the wave frequency motions (WF motions), is generated by the first order wave force on a floater. Second, a global motion response, the low frequency motions (LF motions) is generated by the second order forces such as the mean wave (drift) forces and the slowly-varying forces from waves or currents. Since the magnitude of the second order forces are small compared to the magnitude of the first order forces, the global motion response wave frequency motions (WF motions) will govern a floater's response characteristic mostly. Further, the global motion response, the wave frequency motions, will be described by a transfer function or a Response Amplitude Operator (RAO). Further information can be found in **chapter 5**.

The Second global motion response, the low frequency motions (LF motions) can be found from **Figure 6.12 to Figure 6.17**.

> The global motion response, the low frequency motions for surge

Figure 6. 12. : The global motion response, the low frequency motions for surge.

> The global motion response, the low frequency motions for sway

Figure 6.13.: The global motion response, the low frequency motions for sway.

> The global motion response, the low frequency motions for heave

Figure 6. 14. : The global motion response, the low frequency motions for heave.

> The global motion response, the low frequency motions for roll

Figure 6. 15. : The global motion response, the low frequency motions for roll.

> The global motion response, the low frequency motions for pitch

Figure 6. 16. : The global motion response, the low frequency motions for pitch.

> The global motion response, the low frequency motions for yaw

Figure 6. 17. : The global motion response, the low frequency motions for yaw.

Besides, the global motion response for the total motion as combination of the low frequency motions (LF motions) and wave frequency motions (WF motions) can be found from **Figure 6.18 to Figure 6.23**.

> The total global motion response, the total frequency motions for surge

Figure 6. 18. : The total global motion response, the total frequency motions for surge.

> The total global motion response, the total frequency motions for sway

Figure 6. 19. : The total global motion response, the total frequency motions for sway.

> The total global motion response, the total frequency motions for heave

Figure 6. 20. : The total global motion response, the total frequency motions for heave.

> The total global motion response, the total frequency motions for roll

Figure 6. 21. : The total global motion response, the total frequency motions for roll.

> The total global motion response, the total frequency motions for pitch

Figure 6. 22. : The total global motion response, the total frequency motions for pitch.

Figure 6. 23. : The total global motion response, the total frequency motions for roll.

B. The Horizontal Offset Values

The horizontal offset can be derived from the global motion response. The summary of the global motion response for the low frequency motions and the total frequency motions can be seen in **Table 6.14**. below:

	The Global Motion Response in Low Frequency Motions									
Channel		Min	Max	Mean	Std. Dev.	Skewness	Kurtosi s			
Surge	XG translation LF Motion	-13.86	1.15	-3.37	2.10	-0.89	4.32			
Sway	YG translation LF Motion	-6.44	1.96	-0.80	1.60	-0.50	3.64			
Heave	ZG translation LF Motion	-1.38	0.98	-0.22	0.42	0.00	2.28			
Roll	XL rotation LF Motion	-4.80	4.26	0.04	1.60	0.00	2.83			
Pitch	YL rotation LF Motion	-4.96	4.30	-0.40	1.60	0.00	2.60			
Yaw	ZG rotation LF Motion	-2.96	5.42	1.00	1.31	0.05	2.73			
	The Global Motio	n Respon	se in Tota	l Frequer	ncy Motio	ns				
	Channel	Min	Max	Mean	Std.	Skownoss	Kurtosi			
		MIII	Мал	Mean	Dev.	SKe wiless	S			
Surge	XG translation Total Motion	-22.82	7.08	-3.37	3.55	-0.60	3.93			
Sway	YG translation Total Motion	-8.47	5.09	-0.80	0.73	-0.15	3.19			
Heave	ZG translation Total Motion	-15.02	4.14	-0.22	3.82	0.00	2.97			
Roll	XL rotation Total Motion	-5.50	5.89	0.03	1.78	0.03	2.89			
Pitch	YL rotation Total Motion	-9.73	8.48	-0.41	2.35	-0.09	2.91			
Yaw	ZG rotation Total Motion	-2.69	5.42	1.00	1.31	0.05	2.73			

Table 6. 14. : The Summary of The Global Moti	ion Response of A Cylindrical S400 Floater
---	--

Based on **Table 6.14**, it is clear that a cylindrical S400 floater will experience significant surge motion in LF and total frequency (LF+WF). These responses are resulting due to surge excitation from the second order force such as the mean wave (drift) forces and the slowly-varying forces from waves or currents.

Besides, the analysis also shows that a cylindrical S400 floater maybe particularly sensitive to total heave in total frequency motion (LF+WF). The magnitude of the values of the first order wave forces (Hs =15.6 m and Tp= 15s) should be the main reason for this result.

Further, the horizontal offset of a cylindrical S400 floater for the environmental data, 100 years wind + 100 years wave + 10 years currents can be determined as follow:

- The wave : Jonswap double peaked spectrum (Hs=15.6m and Tp=15.5s)
- > The wind : NPD Spectrum wind
- > The current : Current profile
- ➤ The static offset: : 3,37 m
- The max offset : 22,82 m

C. Mooring Line Dynamic Tensions

The mooring line dynamic tensions of a cylindrical S400 floater have been found for the environmental data: 100 years wind + 100 years wave + 10 years currents as follow:

- The wave : Jonswap double peaked spectrum (Hs=15.6m and Tp=15.5s)
- > The wind : NPD Spectrum wind
- > The current : Current profile

The summary of the mooring line dynamic tension for a cylindrical S400 floater can be seen in **Table 6.15** below:

Channel	Min Tension kN	Max Tension kN	Mean Tension kN	Std. Dev.	Skewness	Kurtosis
S400_Line1	1035.01	9634.71	2535.28	998.46	0.00	0.01
S400_Line2	1040.80	9547.82	2521.88	983.74	0.00	0.01
S400_Line3	1048.27	8967.19	2440.06	894.12	0.00	0.01
S400_Line4	1050.11	8822.99	2420.97	873.29	0.00	0.01
S400_Line5	764.80	3530.18	1418.10	340.04	0.00	0.01
S400_Line6	763.48	358.87	1418.32	343.36	0.00	0.01
S400_Line7	755.87	3791.81	1424.36	359.73	0.00	0.01
S400_Line8	754.84	3824.52	1426.53	362.89	0.00	0.01
S400_Line9	1060.31	3001.74	1586.37	253.12	0.00	0.01
S400_Line10	1061.07	3059.34	1607.36	264.08	0.00	0.01
S400_Line11	1068.95	3721.06	1724.61	347.89	0.00	0.01
S400_Line12	1071.35	4003.40	1750.27	370.04	0.00	0.01

Table 6. 15. : The Summary of Mooring Line Dynamic Tensions of a cylindrical S400 floater

While the result of mooring line dynamic tensions gives by time series for each line can be seen from **Figure 6.24 to Figure 6.35** below:

> The mooring line dynamic tensions in time series for S400_Line1

Figure 6. 24. : The mooring line dynamic tensions in time series for S400_Line1.

> The mooring line dynamic tensions in time series for S400_Line2

Figure 6. 25. : The mooring line dynamic tensions in time series for S400_Line2.

> The mooring line dynamic tensions in time series for S400_Line3

Figure 6. 26. : The mooring line dynamic tensions in time series for S400_Line3.

> The mooring line dynamic tensions in time series for S400_Line4

Figure 6. 27.: The mooring line dynamic tensions in time series for S400_Line4.

> The mooring line dynamic tensions in time series for S400_Line5

Figure 6. 28. : The mooring line dynamic tensions in time series for S400_Line5.

> The mooring line dynamic tensions in time series for S400_Line6

Figure 6. 29. : The mooring line dynamic tensions in time series for S400_Line6.

> The mooring line dynamic tensions in time series for S400_Line7

Figure 6. 30.: The mooring line dynamic tensions in time series for S400_Line7.

> The mooring line dynamic tensions in time series for S400_Line8

Figure 6.31.: The mooring line dynamic tensions in time series for S400_Line7.

> The mooring line dynamic tensions in time series for S400_Line9

Figure 6. 32. : The mooring line dynamic tensions in time series for S400_Line9.

> The mooring line dynamic tensions in time series for S400_Line10

Figure 6. 33. : The mooring line dynamic tensions in time series for S400_Line10.

> The mooring line dynamic tensions in time series for S400_Line11

Figure 6. 34. : The mooring line dynamic tensions in time series for S400_Line11.

> The mooring line dynamic tensions in time series for S400_Line12

Figure 6.35.: The mooring line dynamic tensions in time series for S400_Line12.

The forces in a mooring line will also be checked with the acceptance criteria for tension in the Ultimate Limit State (ULS) based on *ISO 19901-7 (2005)*. The results can be seen in **Table 6.16** below:

Channel	Min Tension kN	Max Tension kN	Mean Tension kN	Std. Dev.	Skewness	Kurtosis	Line Tension Limit (% of MBL)	Design Safety Factor
S400_Line1	1035.01	9634.71	2535.28	998.46	0.00	0.01	50.05	2.00
S400_Line2	1040.80	9547.82	2521.88	983.74	0.00	0.01	49.60	2.02
S400_Line3	1048.27	8967.19	2440.06	894.12	0.00	0.01	46.58	2.15
S400_Line4	1050.11	8822.99	2420.97	873.29	0.00	0.01	45.83	2.18
S400_Line5	764.80	3530.18	1418.10	340.04	0.00	0.01	18.34	5.45
S400_Line6	763.48	3581.87	1418.32	343.36	0.00	0.01	18.61	5.37
S400_Line7	755.87	3791.81	1424.36	359.73	0.00	0.01	19.70	5.08
S400_Line8	754.84	3824.52	1426.53	362.89	0.00	0.01	19.87	5.03
S400_Line9	1060.31	3001.74	1586.37	253.12	0.00	0.01	15.59	6.41
S400_Line10	1061.07	3059.34	1607.36	264.08	0.00	0.01	15.89	6.29
S400_Line11	1068.95	3721.06	1724.61	347.89	0.00	0.01	19.33	5.17
S400_Line12	1071.35	4003.40	1750.27	370.04	0.00	0.01	20.80	4.81

Table 6. 16. : The Summary of Line Tension Limit and Design Safety Factor

Based on *ISO 19901-7 (2005)*, the acceptance criteria for the tension in the Ultimate Limit State (ULS) for intact stability when using a quasi-static method should be line tension limit 50% of the Minimum Breaking Load (MBL) of the mooring line component. Moreover, the specified minimum safety factor is 2.00 as defined in *ISO 19901-7 (2005)*.

Hence, the criteria above are met for the mooring system design for a cylindrical S400 floater.

D. The Results

The resulting analysis for dynamic condition such as the time series of second order wave forces and the wave drift damping forces will be also presented here. Further, these results will be compared to the result in **Chapter 8** to show the influence of the hydrodynamic interaction.

1. The second order wave forces

The summary of the results for the second order wave forces are described in surge, sway and yaw can be seen in **Table 6.17** while the graphs can be found from **Figure 6.36 to Figure 6.38**.

Channel	Min Tension kN		Max Tension kN		Mean Tension kN		Std. Dev.	Skewness	Kurtosis
XR Force (in Surge)	-25039.92	kN	-0.01	kN	-2547.91	kN	25.79.33	0.00	0.01
YR Force (In Sway)	-501.86	kN	1287.17	kN	47.97	kN	102.76	0.00	0.02
Moment-ZR axis (in Yaw)	0.00	KNm	0.00	KNm	0.00	KNm	0.00	0.00	0.00

Table 6. 17. : The Summary of Second Order Wave Forces

Figure 6. 36. : The second order wave forces – XR Forces (in Surge).

Figure 6. 37.: The second order wave forces – YR Forces (in Sway).

Figure 6. 38.: The second order wave moment – Moment ZR axis (in Yaw).

2. The wave drift damping forces

The results for the wave drift damping forces are described for surge, sway and yaw. The summary can be seen in **Table 6.18** while the graphs can be found from **Figure 6.39 to Figure 6.41**.

Channel	Min Tension Max Tensi kN kN		Mean Tension kN		Std. Dev.	Skewness	Kurtosis
XR Force (in Surge)	-4570.06 kN	2193.88 kN	-439.99	kN	441.26	0.00	0.01
YR Force (In Sway)	-37.70 kN	350.24 kN	9.77	kN	20.66	0.00	0.05
Moment-ZR axis (in Yaw)	0.00 KNm	0.00 KNr	n 0.00	KNm	0.00	0.00	0.00

Table 6. 18. : The Summary of wave drift damping forces

Figure 6. 39.: The drift damping forces – XR Forces (in Surge).

Figure 6. 40.: The drift damping forces – YR Forces (in Sway).

Figure 6. 41.: The drift damping forces – moment ZR axis (in Yaw).

CHAPTER

7

Riser Analysis

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser Based on Numerical Simulation

This chapter will present a general description of the riser system and present the riser analysis to obtain a feasible configuration for a floating offshore system. As we know, the nonlinear-coupled dynamic analysis represents a truly integrated system which ensures the accurate prediction of response simultaneously for the overall system as well as the individual response of floater, moorings and risers. This is the main advantage for performing coupled analysis rather than the decoupled analysis. On the other hand, it also requires many efforts and is very time consuming since this analysis demand substantial efforts since it requires a single and complete model including a floater, moorings and riser. It also requires the detailed model for each component and characterization of the environments in covering relevant load models.

Several strategies can be proposed to achieve higher efficiency analysis. In this case, the dynamic slender structure analysis for riser configuration will be performed in RIFLEX as a decoupled analysis in order to reduce time analysis. The main purpose of the analysis is to find a feasible single arbitrary configuration. The analysis will also be performed in time domain analysis under two simulation schemes, static and dynamic conditions. Moreover, the modeling concept and the steps when analysis in RIFLEX will be presented briefly.

In this chapter, the analysis results will be presented such as top angle (hang off position angle), effective tension, bending radius and seabed clearance briefly in order to document the feasible configurations.

Furthermore, this chapter will also explain the basic knowledge of a riser system to give the perspective for the analysis.

7.1 Production Riser Systems

Based on American Petroleum Institute definitions, *API (1998)*, the riser system is a key element in providing safety in all phases from drilling, completion/workover, production/injection to export. The main function of a riser is to transport fluids or gas from seabed to a host platform. Additional functions of risers according to area of application are provided as follows:

- Conveys fluid between the wells and the floater in production and injection risers.
- Export fluid from floater to pipeline for export risers.
- Guide drilling or workover tools and tubulars to and into the wells for drilling and workover risers.

In the riser system design, the dynamic behavior of the floater at the surface will mainly govern the chosen riser type. Hence, according to the ability to cope with floater motion, *DNV- OS-F201 (2001)* has categorized the production riser system into (**Figure 7.1**.):

- Top tensioned riser
- Compliant riser (flexible riser)
- Hybrid riser being a combination of tensioned and compliant risers.

Figure 7. 1. : Examples of riser systems Reference : Karunakaran (2008)

Besides the floater's motion, the riser system design will be governed by the floater type, water depth, design of pressure/temperature, mechanical characteristics of the riser, and environmental conditions.

The riser system design drivers also include a number of factors such as, host vessel access/hang-off location, field layout such as number and type of risers and mooring layout.

Since the base case for the study is in North Sea region and the facilities should be built to withstand very harsh weather conditions in shallow waters (approximately 170 m), the application of a flexible riser (compliant riser) will be very suitable in this floating offshore system. The flexible riser has been extensively applied in North Sea, Gulf of Mexico, Brazil and West of Africa.

According to *Chandwani and Larsen (1997)*, a flexible riser is defined as an unbonded flexible pipe designed to specific engineering requirements. Moreover, a flexible riser provides the flexibility to cope with the floater's motions. Configurations of flexible risers are formed such that they could absorb floater motions without having additional equipment e.g. heave compensation system. The design flexibility to have high dynamic resistance allows flexible riser to work in deeper waters and harsher environments.

Its structure consists of concentric extruded polymer and reinforcing helical metallic layers (**Figure 7.2**.). As shown, each metallic and polymer layer satisfies particular strength/weight/flexibility/ containment and chemical requirements. These layers will ensure that flexible risers could accommodate high curvature, allowing ease of installation and accommodation of dynamic motion.

Figure 7. 2. : Flexible riser

Reference : Chandwani and Larsen (1997)

A dynamic flexible riser system can be designed for most types of floating production structures. The system flexibility is achieved by arranging the flexible pipe in some of the basic configurations below (**Figure 7.3**.):

Figure 7. 3. : Standard flexible riser configurations. Reference : Karunakaran (2010)

Furthermore, the riser configuration design shall be performed according to the production requirements and the site-specific environmental conditions. According to *Yong Bai et al (2005)*, some basic requirements shall be taken into account while determining the riser configurations such as the global behavior and geometry of riser, structural integrity, rigidity and continuity of riser, cross sectional properties, means of support, material and costs.

7.2 Flexible Riser Design in Shallow Water and Harsh Environments

In this study, many key issues of riser system design which are related to the combination of shallow water and harsh environmental conditions will be the primary focus. These situations will give the challenges of designing the riser system and will increase the complexity of riser system design.

Since the field is located in shallow water condition and also harsh environment, the application of cylindrical FPSO will give many advantages. However, it also gives real challenges for riser system design.

The combination of harsh environment and limited water depth conditions leads to significant challenges in riser design:

- Limited water depth gives very little room between the FPSO and the seabed. This
 condition leads to significant impact from the environmental loading and the vessel
 motion itself.
- Another challenge comes from the configuration itself. Limited water depth leads to large vessel offset and this will govern the pliancy requirements for the two extreme configurations, the far and near conditions, in the riser design.

Influence of the large vessel motion and the harsh environmental loadings

In deep water, the vessel motion represents a significant loading impact and it will be damped gradually along the riser length. This condition cannot happen smoothly in shallow water. Furthermore, the impact of the vessel's motion from pitch and roll will be significant in shallow water. These motions will be one of the reasons why the effective top tension becomes larger at the hang off position. Not only the effective top tension but also the angle position will be larger at the hang off position.

The harsh environment also leads to a significant dynamic riser behavior. In shallow water, large drag forces from the environment will result from the combination of strong current and large waves. For small submerged weight of riser under extreme currents, potential clashing with adjacent moorings is high. Another potential problem is risk of compression forces at touchdown area (TDA).

Another condition that will be a main consideration is the impact loading that generates from shock due to snapping in slack condition. Significant vessel motion, (roll and pitch motion) creates slack in one position. This stored energy releases quickly when the wave passes and snapping occurs in the riser system, generating a significant shock for the system.

Influence of large vessel offset

As the riser system has to absorb vessel motions, large vessel motions will have direct impact on the riser behavior. As vessel offset increases due to harsh environment, options for riser configuration become limited. Hence, a **Top tensioned riser may not be applied**, or **conventional free hanging steel catenary riser will experience high bending moment at touchdown point**.

Didier Hanoge (2010) has mentioned that vessel offset has major influence on the riser configuration design. It governs the pliancy requirement and the riser system must accommodate the two extreme configurations; far and near conditions, as presented in **Figure 7.4.** below:

Figure 7.4.: The influence of vessel offset in riser design.

Reference: Didier Hanoge (2010)

Furthermore, the deeper the water depth, the higher the offset value is. However in terms of percentage, the value will be eminent. Since the riser system will be designed according to the decoupled analysis, the distance between the vessel's centers of motions to the riser hang off will be taken as single representative offset (a conservative value) due to the vessel motions (pitch and surge). In the far case, the riser length must be long enough to avoid an over stretch that would result in an unacceptable tension, while in the near case the riser length must be short enough to avoid over bending or clashing issues.

7.2.1 Riser Configuration Selections

These real challenges discussed above will represent essential information to design the optimum riser configuration for a floating offshore system in Western Isles Field. As we mention above, the dynamic response of a riser system to the environmental conditions will play the key role in selection of a feasible configuration for a riser.

Hoffman et al (1991) has also mentioned about the important factors that should also be considered during the configuration selection:

- Interference with others, such as riser systems and moorings (design layout)
- Activity of other vessels in the vicinity
- Ease of laying and retrieval and future requirements of maintenance (future development)
- Inspection and worker operations

It should be highlighted that the dynamic responses of a riser are strong related to the environmental loading due to the wave-current combination and the interaction arising from the structural non-linear behavior of the riser itself. In shallow water and harsh environmental conditions, the effects of the wave-current combination are very significant in the magnitude and in the direction of fluid forces. Hence, these effects will have significant influence from hydrodynamic force coefficients, current velocity profiles and relative direction of waves and currents.

A number of riser concepts offer technical and commercial advantages for shallow water and harsh environmental condition. The alternative riser concepts that can be developed for these situations are:

1. Flexible riser

Most of fields with floating production around the world are associated with flexible risers. The flexible risers were specified and installed in the Encova field offshore Brazil as part of a floating production system (*Machado and Dumay (1980)*) then these risers have been used extensively at North Sea, Gulf of Mexico, Brazil and West of Africa. This leads to flexible riser as a proven technology especially for shallow to mid water depth. *Chandwani and Larsen (1997)* has also stated that the flexible riser is suitable for shallow to medium water depths (>600m).

The flexible riser has the ability to accommodate high curvature and dynamic motions which results in good performance for harsh environments such as Offshore Norway. It is easy to install, retrieve, corrosion resistant and reusable.

Hoffman et al (1991) also pointed out some prominent characteristics for flexible risers, such as:

- The riser accommodates the floating platform motion and hydrodynamic loading by being flexible. In storm conditions the riser undergoes large dynamic deflections and must remain in tension throughout their response. Hence it must have high structural axial stiffness and relatively low structural bending stiffness.
- Besides that, it also provides small resistance to lateral disturbances caused by wave and current induced hydrodynamic loadings.

And *Karve et al. (1988)* have also mentioned that a flexible riser offers the advantage of having inherent heave compliance in the catenary thereby greatly reducing the complexity of the riser-to-rig and riser-to-subsea interfaces. Moreover, these risers are available in continuous lengths thereby avoiding seals and makeup joints every 50 feet as required by steel risers.

These risers have also relatively lower fatigue sensitivity than steel catenary risers by being flexible and can be applied in many possibility configurations such as the steep wave, steep-S, lazy wave, lazy-S and free hanging.

2. Steel catenary riser

The Steel Catenary Riser (SCR) is one direct alternative to the flexible riser. It may be used at larger diameters, higher pressures and temperatures and also may be produced more easily. It has the capacity to be suspended in longer lengths, removing the need for mid-depth buoys. These risers are cheaper than the flexible risers and also can be used in greater water depths without a disproportionate increase in cost.

However, the SCRs are very sensitive to environmental loading. Large heave and surge motions from host platform due to harsh environment result in buckling issues at the touchdown point. The length of pipe between the supports changes when the host platform moves. This makes the seabed touchdown point shift, hence moving the point of maximum curvature up and down along the length of the pipe at the seabed. As a result, at the touchdown area, the pipe is subjected to maximum and almost zero curvature, making the region highly sensitive to the fatigue damage. The vortex induced vibrations due to currents in deepwater application another issue for SCR design.

Hence, the SCRs could be the economical solution but these risers require good engineering studies to minimize the risks due to their potential problems in design.

In shallow water riser design, the riser system must be strong enough to withstand high tension and bending moments due to the harsh environment and significant vessel motions. Comparing the two riser types above, the application of flexible riser (compliant riser) will be very suitable in this floating offshore system. A Lazy Wave riser configuration has been chosen in this project. Increasing pliancy of the system is the main reasons to modify the configuration by introducing a lazy wave with a multiple buoyancy section at the hog bend position. This riser configuration will hopefully not only be a robust solution for riser but also as an economic design.

As one of the solutions to reduce the impact of the vessel's motions and the environmental loading, buoyancy modules are used to reduce overall tension at the upper region and improve the curvature at the lower region. Besides that, the buoyancy modules will create

the riser shape desired easier. Furthermore, the hog bend position gives positive significant effects for the response of the riser system.

Other ancillary components will be used to fulfill pliancy requirements in the riser design optimization. The bending stiffeners can be used to avoid overbending and increase the curvature to acceptable levels at the hang off connection.

7.2.2 Design Parameters

The design of a flexible riser system should be related to many design parameters such as environmental conditions, vessel motions and riser properties. These parameters should be well defined. The main design parameters are the choice of riser configuration, the length of the riser, the system geometry and the sizing of riser and ancillary components. The other factors that should also be considered are the hang off location, the location of touchdown point and also the position of the wells. All of these parameters should be optimized to gain a feasible riser configuration.

The system design will be checked by static and dynamic analysis. In the static analysis only the static riser configuration with and without vessel offset and dynamic analysis of the entire system will be performed by combining static loads with dynamic environmental loads based on the movements of the riser at the top (far and near).

The riser will be analyzed in a short term periodic condition (i.e. just after installation (at 0 years operation) without any variation of riser characteristics (e.g. the dimension and weight of the riser and the ancillary components).

A. Limit State Design Criteria and Design Conditions

In this analysis, the limit state design criteria will be the Ultimate Limit State (ULS) to determine the level of safety required for the riser conditions. Based on DNV, *DNV*-*OS-F201 (2001)*, the Ultimate Limit State (ULS) requires that the riser must remain intact and avoid rupture, but not necessary be able to operate. For the operating condition this limit state corresponds to the maximum resistance to an applied loads with a 10^{-2} annual exceedence probability. Hence the load combination for the riser will be defined as follow:

- 100 years Irregular Wave (Hs=15,6 m and Tp=15,5 s) for Torsethaugen (Jonswap double peaked)
- 10 years currents
- Static offset ± 25 m
- At Ballast condition , draft z =16.32 m

Furthermore, riser system design will cover normal operations (when the riser is filled with the operating contents). Hence, the riser will always be filled with stabilized crude (i.e. the riser will not be empty or gas filled or in the other words, not analyzed in a condition with slug). The analysis will also not cover for compartment damage in order to simplify the study.

B. Sensitivity analysis

A sensitivity analysis will be done to study the variation of the output results for different variations of the input data to enhance and increase the understanding of the riser system's behavior and to reduce the error possibilities.

Sensitivity analysis should be done with respect to:

- Dimension and weight of the riser
- Buoyancy elements
- Seabed friction

Due to short time available for the thesis work, the sensitivity analysis will not be reported in this study.

C. Load designs

Yong Bai et al. (2005) have categorized the loads acting on marine risers as follows:

Functional loads

Loads due to the existence of the riser system without environmental and accidental effects. The following shall be considered as functional loads:

- 1. Weight of riser and contents
- 2. Pressures due to internal contents and external hydrostatics
- 3. Buoyancy
- 4. Thermal effects
- 5. Nominal top tension

The following should be considered as appropriate:

- 1. Weight of marine growth, attachments, tubing contents
- 2. Loads due to internal contents flow, surges, slugs or pigs
- 3. Loads due to installation
- 4. Loads due to vessel restraints
- Environmental loads

Loads caused by the surrounding environment that are not classified as functional or accidental loads. The following shall be considered as environmental loads:

- 1. Wave loads
- 2. Current loads
- Accidental loads

Loads caused by the surrounding environment that are not classified as functional or accidental loads. The following shall be considered as accidental loads:

- 1. Partial loss of station keeping capability
- 2. Dropped objects
- 3. Riser collisions, vessel impact and operational malfunction

7.2.3 Design Criterion

The design of a flexible riser system is usually based on the allowable pipe curvature or MBR (Minimum Bending Radius) and allowable tensions which are prescribed by the manufacturer. These criteria will also be influenced by the clearance area between the riser and other parts of the floating offshore system.

The allowable curvature and the tension are based on a full scales test from the manufacturer combined with stress analysis carried out by the manufacturer and these limits ensure that the flexible pipe will not be overstressed when responding to dynamic loads and vessel motions.

The system should also be designed such that the flexible pipe is always in tension throughout its dynamic response cycle. The minimum clearances are also specified to avoid clashing problems between the riser and the seabed or the riser and the vessel or the riser and mooring lines.

The main requirements from the results of the analysis will be based on:

A. Top angle position

In this design analysis, maximum top angle positions for the design will be limited to around 15-20 deg in static analysis and less than 45 deg at dynamic analysis for the Ultimate Limit State (ALS). This is to ensure that overstressing or compression will not happen along the upper location around the hang off position.

B. Effective tension

In this design analysis, any compression would be avoided with upper limit of 5 kN because compression may cause (birdcaging and) buckling which may affect the integrity of the riser adversely and reduce the service life.

C. Bending radius

Minimum bending radius (MBR) for the flexible pipe is governed by the allowable strain of the polymeric layers and the permissible relative movements of the wires in the metallic armour layers during pipe bending. Minimum bending radius (MBR) criterions are determined based on *Braestrup (2005):*

Bending radius requirements can be seen in **Table 7.1** below:

MBR	Design Criterion				
Static application	1,0 times storage MBR				
Dynamic application					
Normal operation	1,5 times storage MBR				
Abnormal operation	1,25 times storage MBR				

Table 7. 1. : Design MBR requirements

Reference: Braestrup (2005)

D. Seabed clearance and line clashing

Minimum clearances are specified to avoid clashing problems between the riser and the seabed or the riser and the vessel and between the riser or other adjacent risers, the cables or the mooring systems. Seabed clearance at the sag bend position is 5 m and line clashing checks are performed.

7.2.4 Methodology Design and Analysis Steps

In this chapter, the riser system will be analyzed by using RIFLEX for decoupled analysis in order to reduce time analysis. In the de-coupled analysis, the results of simulated motions of a cylindrical S400 floater based on "large body theory" in WADAM will be transferred as top end excitation of the riser in order to calculate dynamic loads in these elements.

Moreover, this analysis only considers the vessel motion where the wave load comes from the wave frequency loads as first order wave loads while the low frequency motion that comes from secondary order wave load such as the mean wave (drift) force and slowly varying wave force will be neglected. This analysis only depends on the vessel's Response Amplitude Operator (RAO) as input without any influence from secondary order force. Hence, there is only little integration between the cylindrical S400 floater and the riser.

Further, these effects from the vessel motions and environmental loadings will be simulated in the two extreme riser configurations; far and near conditions. These far and near conditions will be represented by a representative offset value. These values should also accommodate the mean and low frequency motion (LF) since we neglect these terms of the vessel motions in this simulation.

The variations of representative offset values are carried to investigate the effect on the riser based on different vessel positions. Hence, the static configuration of the riser system will be strongly influenced by the variations of the representative offset value.

Generally, this value is determined by hypothetical or empirical calculations from the previous projects. Furthermore, the deeper the water depth, the higher the offset value is. However in terms of percentage, the value will be reduced with depth. Besides the water depth, the environment characteristics in the area will also influence the magnitude of the representative offset value.

Further the analysis will be performed in time domain as problem solving method. Time domain analysis should be used in the riser analysis since we have to deal with non linear systems such as drag forces, finite motion and finite wave amplitude effects.

The riser design is iterative and the process may continue until all the design requirements are optimum. A methodology is needed to provide a systematic design to fulfill the requirements of the global analysis. Simple steps of the riser analysis for the cylindrical S400 floater based on the decoupled analysis can be seen in **Figure 7.5**.:

Figure 7. 5. : Methodology design for a riser system.

In this study, the riser system for the Western Isles Field will be modeled as a single production riser for with 6" and 8" diameter in RIFLEX. A Lazy Wave riser configuration has been chosen based on reasonable proponents discussed in **subchapter 7.2.1**.

As the first step in the riser system design, the data and assumptions used as input will be identified to provide all relevant situations for the design criterions and limit states. Furthermore, the data and the assumptions will be categorized as below:

- The field layout data Water depth and orientation of the riser and hang off coordinates of the riser can be determined from Western Isles Field layout
- Pipe data sheets and ancillary components
 Type of pipe (flexible riser), the conveyed fluid and contents data, the dimension specification for the risers (e.g. internal diameter, outside diameter, etc), the structure and limit specification (e.g. bending stiffness, axial stiffness and minimum bending radius) and the ancillary components data.

The detail information about the field layout data, pipe data sheets and ancillary components can be found in **Subchapter 7.2.5**.

- The environmental data Current profile for 10 years condition, wave profile for 100 years condition and seabed friction coefficient
- The vessel response and the variations of a representative offset value
 The vessel response will be based on the first order wave forces which are described
 in the frequency domain as a linear motion transfer function, also denoted Response
 Amplitude Operator (RAO). The further details can be found in **Appendix A**.
 The vessel offset will be determined as a representative offset value by hypothetically
 empirical calculations. These values will accommodate mean and low frequency
 motion (LF). The variations of the representative offset values are carried out to
 investigate the effect on the riser based on different vessel positions for two extreme
 riser configurations; the far and near conditions.

The detail information about a representative offset value can be found in **Subchapter 7.2.5**.

7.2.5 The Western Isles Field Layout and Model Properties for the Riser System

A. The Western Isles Field Layout

The Western Isles Field consists of two drill centers denoted North Drill Centre and South Drill Centre. Separate risers are routed to the two drill centers. However, the study will only model two risers for the South Drill Centre; for 6" and 8" production risers in RIFLEX as depicted in **Figure 7.6.** below:

Figure 7. 6. : The riser system for South Drill Centre.

Moreover, the offshore field Western Isles Field is located on shallow water conditions and also harsh environment. The water depth is approximately 170 m.

The orientation of the riser system will be at 330 degrees relative Grid North. Spacing of Risers at FPSO hang-off is 3.0 m both at radius 33.5 m from FPSO center. Since the analysis will be modeled in ballast loading condition (z = 16.32 m), Hence the riser hang off position will be at (33.5m; -16.32m).

B. Model Properties for the Riser System

1. Flexible riser properties

The flexible riser properties contain the data about dimensions and weight of the riser, the structural limit prescribed from manufacture and hydrodynamic coefficients.

A. Physical properties for the risers

Dimension and weight of the riser will give contributions to the functional loads on the riser and the strength capability of the riser. *Gudmestad (2007)* has mentioned that the thickness has a linear relation to the strength capability of the riser. Higher thickness gives higher strength value. On other side, the economical reason should be the main consideration because higher thickness will spend higher resources. Optimization has to be done to get proper dimensions based on the design conditions such as pressure and mass flow.

The structural limits are given by maximum tension, bending stiffness, axial tensile stiffness and minimum bending radius.

As slender structures, the risers will also experience drag forces and lift forces in constant currents. The drag forces are caused by the friction between the cylinder and the fluid. These forces will be affected by the roughness of the cylinder. A rough cylinder will set up larger eddy currents and the forces will be larger. In this analysis, we are only concerned with the drag forces. On the other hand, the lift forces will be neglected because they will not have a big difference pressure between upstream and downstream.

The data about dimensions and weight for risers, structural limits and also hydrodynamic coefficients can be found in **Table 7.2** and **Table 7.3** below:

Parameter	Unit	6"	8"
Outer diameter	mm	270.9	311.7
Inner diameter	mm	156.9	208.5
Weight in air	kg/m	145	150
Bending stiffness @ 20 deg C	kNm ²	33	40
Axial stiffness	MN	500	1000
MBR storage	m	1.76	2.02

Table 7. 2. : Physical Properties for Risers

Reference: Sevan Marine (2011)

Table 7.3.: Physical Properties for Risers

	Normal drag	Tangential drag	Normal added mass
Bare line	0.2	0.2	0
Bouyancy modules	0.25	0.2	0.2

Reference: Sevan Marine (2011)

2. Bending stiffener

The bending stiffeners are used to avoid overbending and increase the curvature to acceptable levels. It will be applied at the top position of the risers to reduce the free floating of the sag bend. In the analysis, it will be assigned as a variable parameter.

3. Buoyancy modules

The analysis will include buoyancy modules in order to:

- Achieving stable configuration, distributed buoyancy will be used to comply the motions of the FSU without undue stress onto the flexible riser due to the environmental forces
- Minimizing compression and excessive bending in the touchdown region as buffer
- Decreasing the tension required at the surface

In the analysis, buoyancy modules are distributed over specific lengths of the riser configuration and the suitable dry weight of buoyant elements will be assigned along the buoyancy section as a variable parameter.

7.2.6 Modeling Concept by RIFLEX

The riser design will be modeled by using RIFLEX based on the finite element technique which has proved to be a powerful tool for several applications. Moreover, the riser will be modeled with beam elements which will be formulated by using a "co-rotated ghost reference description". The basic theory about this can be found in **Chapter 2** based on *Marintek (2010)* for "RIFLEX Theory Manual Finite Element Formulation".

The procedure for the riser system model can be found in details in *Marintek (2010) "RIFLEX User Manual Finite Element Formulation"*. The program system consists of three programs or modules communicating by a file system as shown in **Figure 7.7**. below:

Figure 7.7.: Layout of the RIFLEX program system and file communication between modules.

The FREMOD and PLOMOD modules will not be used in this analysis; PLOMOD module is just a plot routine. The INPMOD module has the function to gather all data inputs and organizes a data base for use during the subsequent analyses in STAMOD. The STAMOD module has the function to perform several types of static analyses. Further these results are used to define the initial configuration for a succeeding dynamic analysis in DYNMOD module. The data for the element mesh, stressfree configuration and key data for the finite element analysis are also generated by STAMOD module based on system data given as input to INPMOD module. In the DYNMOD module, time domain dynamic analyses based on the final static configuration will be performed in order to calculate the responses of the system. The results of the simulation in time series format will be read by OUTMOD module then the plot of the time series and statistical parameters can be access from PLOMOD. The detailed information about the input to these modules as being used in the analysis can be found in **Appendix D**.

The flexible riser that will be modeled in RIFLEX will adopt an Arbitrary Riser system configuration (AR). This system will determine the layout configuration of a riser based on its topology and boundary conditions. The system definition starts with definition of the topology and proceeds in increasing detail to the line and component descriptions. The system topology is in general described in terms of branching points and terminal points. These points are denoted supernodes. Further, these supernodes are classified as free, fixed or prescribed depending on their boundary condition modelling.

We use a Lazy Wave riser configuration in this project. It will use supernodes which are denoted as free or fixed. A free constrained node will be used for modeling a joint point between a bending stiffener and a body line of the riser while a fixed constrained node will be used for modeling at hangoff position and at connection to the seabed. If a supernode is denoted free, all degrees of freedom are free while in the fixed constrained node, all degrees of freedom are fixed.

Besides supernodes, the initial layout configuration of a riser will also be defined as a stressfree configuration. This configuration will represent the initial and no structural forces/deformations along a riser. Furthermore, this configuration will be used as a basis for calculation of structural forces and deformations in the finite element analysis. The stressfree configuration for the Arbitrary Riser system configuration (AR) is defined by the input and can be seen in the file sima_inpmod (RES file). Further between two supernodes, the riser system will be identified as a line which contains elements. The number of elements in each segment will influence the accuracy of the result. The description of the layout configuration design in the Arbitrary Riser system configuration (AR) can be seen in **Figure 7.8.** below:

Figure 7. 8. : System definition for the description of the layout configuration design of the Arbitrary Riser system configuration (AR).

Hence, the riser line in the layout configuration design of the riser will be defined as Arbitrary Riser system (AR) which has 2 supernodes and 5 segments with many elements in each segment.

Moreover, the riser design will be modeled by using RIFLEX in two stages:

1. Static analyses

As the first stage of the modeling, the result from the static analysis will determine the acceptable system layout for the riser. In this stage, the effects of changing the design parameters (i.e. system geometry and length) on the static curvature and tension will be investigated. Based on these parameters, the design will select a suitable range of system geometries and lengths that satisfy the design criteria. Moreover, the static effects of the vessel offset (based on far and near conditions) and the current loading are investigated for different locations.

The static analysis is based on a complete non-linear formulation. However, the catenary theory will also be implemented to reduce the computing time as a good starting point.

Static analysis comprises:

- Equilibrium configuration
- Parameter variations of tension or position parameters, current velocity and direction
- 2. Dynamic time domain analysis including eigen value analysis

In the second stage, the dynamic analysis of the system will be performed to assess the global dynamic response. An acceptable system layout from the previous stage and the dynamic loadings will be considered here. The analysis will combine the loads from the combination of waves and current, vessel positions and riser contents in order to prove the acceptance condition based on the design criteria. The results of these analyses such as the dynamic curvatures, tensions and clearance area should be checked against the design limits.

Time domain analysis is based on step by step numerical integration of the dynamic equilibrium equations.

Dynamic analysis comprises:

- Eigenvalue analysis, natural frequencies and mode shapes
- Response to harmonic motion and wave excitation
- Response to irregular wave- and motion excitation

7.3 Riser Analysis

7.3.1 Layout and Schematic Riser Configurations

The riser design is an iterative and complicated process that may continue until all the design requirements are optimum.

Since the riser system design will be the focus in the combination of shallow water and harsh environmental conditions, the challenges from this condition will introduce some modifications in order to obtain a feasible riser configuration.

The main challenges that will be faced in the design process come from the large vessel motion and vessel offset due to limited space between the FPSO and the seabed. The harsh environmental loading will also give impact on the dynamic riser behavior. Beside, the external influence from the environmental condition, the configuration itself will govern the pliancy requirement and the riser system should accommodate two extreme configurations,

the far and the near conditions. In the far case, the riser length must be long enough to avoid an over stretching that would result in an unacceptable tension, while in the near case the riser length must be short enough to avoid over bending or clashing issues.

Hence, some modifications have been made as follows:

- Heavy weight riser
 - By increasing the weight of the riser to reduce the free floating loads from the riser makes the configuration more stable
- A multiple buoyancy section at the hog bend position By introducing a lazy wave with a multiple buoyancy section at the hog bend position, this riser configuration will not only represent a robust solution for the riser but also be an economic design.
 - As one of the solutions to reduce the impact of the vessel motion and the environmental loading, buoyancy modules are used to reduce the overall tension at the upper region and improve the curvature at the lower region. Besides that, the buoyancy modules will create the riser shape desired easier. Furthermore, the hog bend position gives significant positive effects for the response of the riser system.

By referring to the design parameters, the feasible riser configurations for 6" and 8" production risers in the Western Isle field can be seen in **Figure 7. 9.** and **Figure 7. 10**.

Figure 7.9.: The riser configuration of the 6" production riser for the Western Isle Field.

The feasible configuration for the 6" production riser will adopt a Lazy Wave riser configuration with multiple buoyancy sections at the hog bend position. The upper buoyancy modules are shown by segment 3 and the lower buoyancy modules are shown by segment 2 in **Figure 7.9**.

The upper buoyancy modules will help to reduce the overall tension at the upper region from the vessel motion and environmental loading (the combination of waves and currents) while the lower buoyancy modules will help to improve the curvature at the lower region. Hence the buoyancy modules will create the riser shape desired easier.

The hog bend position influences positive significantly the response of the riser system. The tip of the hog bend will be put in range -130 m below the surface in order to minimize riser pay load on the FPSO and to obtain good dynamic response of the riser system. The weight risers itself will be heavy having a length of 320 m. The detailed information about its cross section and the buoyancy module's cross section can be found in **Appendix D**.

As like the feasible configuration for the 6" production riser, the 8" production riser will also adopt a Lazy Wave riser configuration with multiple buoyancy sections at the hog bend position. The upper buoyancy modules are shown by segment 3 and the lower buoyancy modules are shown by segment 2 in **Figure 7.10**. The hog bend position gives significant positive effects for the response of the riser system. The tip of the hog bend will be put at a range -120 m below the surface. The weight of the riser itself will also be heavy riser having a length 320 m. The detailed information about its cross section and the buoyancy module's cross section can be found in **Appendix D**.

Figure 7. 10.: The riser configuration of the 8" production riser for the Western Isle Field.

The system design will be checked by static and dynamic analysis. In the static analysis only the static riser configuration with and without vessel offset will be considered while the dynamic analysis of the entire system will be performed by combining static loads with dynamic environmental loads based on movements of the riser.

7.3.2 Static Condition

The purpose of the static analysis is to determine the acceptable system layout for a riser based on the input parameters. The main design parameters are such as the choice of riser configuration, the length of riser, the system geometry and the sizing of riser and ancillary components based on the consideration of the hang off location and the location for the touchdown point will be simulated in the static condition.

The main requirements for the result of the analysis are such as the top angle position, effective tension, bending radius and seabed clearance and clashing.

The top angle position and seabed clearance can be seen in **Figure 7.9**. and **Figure 7.10**. The top angle positions in static condition are less than 15 deg while the seabed clearance in static condition are around 5 m to 15 m on the lowest point in the sag bend area.

The other results such as the static forces, bending moment and bending radius can be seen below. The static forces will be represented by the effective tension, the riser itself should always be in tension because compression along the riser should be avoided as it will cause (birdcaging and) buckling which may affect the integrity of the riser adversely and reduce the service life. The bending moment and the curvature of the riser will show the performance of the riser. Furthermore, the curvature of the riser will show the capability of the riser to be bent until its limits without kinking or damaging it and it depends on its minimum bending radius. The smaller the bending radius, the greater is the material flexibility (as the radius of curvature decreases, the curvature increases).

A. Effective tension

The effective tensions for the 6" and 8" production risers can be seen in **Figure 7.11**. and **Figure 7.12**.

The maximum effective tension for the 6" production riser is 180 kN while the minimum will be 32,08 kN.

The range of values for the effective tension for the 8" production riser is slightly different. The maximum effective tension for the 8" production riser is 155 kN while the minimum will be 26,58 kN.

These results are quite good and any compression can be avoided.

Figure 7. 11.: The static effective tension for the 6" production riser for the Western Isle Field.

Figure 7. 12.: The static effective tension for the 8" production riser for the Western Isle Field.

B. Bending Moment and Curvature

The bending moments for the 6"and 8" production risers can be seen in **Figure 7.13**. and **Figure 7.14**. while the curvatures for the 6"and 8" production risers can be seen in **Figure 7.15**. and **Figure 7.16**.

The maximum bending moment and curvature for the 6" and 8" production risers are found in the hang off position. The results are quite good since they are still within the allowable limit.

Based on the design criterion, in the static condition; the minimum bending radius (MBR) of a riser should be same or less than that of the MBR at storage. The MBR for a 6" riser is 1,76 m or in the terms of curvature this will be 0,57 (1/1,76). The MBR for a 8" riser is 2,02 m or in the terms of curvature this will be 0,5 (1/2,02).

These results are quite good since the curvatures of the risers are less than 0,5 (**Figure 7.15.** and **Figure 7.16**.)

Figure 7. 13. : The static bending moment for the 6" production riser for the Western Isle Field.

Figure 7. 14.: The static bending moment for the 8" production riser for the Western Isle Field.

Figure 7. 15.: The static curvatures for the 6" production riser for the Western Isle Field.

Figure 7. 16.: The static curvatures for the 8" production riser for the Western Isle Field.

7.3.3 Dynamic Condition

In the dynamic condition, time domain dynamic analyses will be performed based on the final static configuration in order to calculate the global dynamic responses of the system. Furthermore, the results of these analyses such as the dynamic tensions and curvatures should be checked against the design limits.

During the dynamic simulation, the feasible riser configurations for 6" and 8" production risers in the Western Isle field as shown in **Figure 7. 9.** and **Figure 7. 10**. will move in a range in a response to hydrodynamic loading. The movements of a riser will be recorded in the diagram showing the displacement envelope curvature.

The diagram of the displacement envelope curvatures for the 6"and 8" production risers can be seen in **Figure 7.17.** and **Figure 7.18**.

Figure 7.17.: The displacement envelope curvature for the 6" production riser for the Western Isle Field.

Figure 7. 18. : The displacement envelope curvature for the 8" production riser for the Western Isle Field.

The other results such as the dynamic tensions and curvatures can be seen below.

A. Effective tension

The effective tensions for the 6" and 8" production risers can be seen in **Figure 7.19**. and **Figure 7.20**.

The maximum effective tension for the 6" production riser is 240 kN while the minimum will be 23,94 kN.

The range of values for the effective tension for the 8" production riser is slightly different. The maximum effective tension for the 8" production riser is 220 kN while the minimum will be 10 kN.

These results are quite good and any compression can be avoided.

Figure 7. 19. : The dynamic effective tension for the 6" production riser for the Western Isle Field.

Figure 7. 20.: The dynamic effective tension for the 8" production riser for the Western Isle Field.

B. Bending Moment and Curvature

The bending moments for the 6"and 8" production risers can be seen in **Figure 7.21**. and **Figure 7.22**. while the curvatures for the 6"and 8" production risers can be seen in **Figure 7.23**. and **Figure 7.24**.

The maximum bending moment and curvature for 6" and 8" production risers are found in the hang off position. The results are quite good since they are still within the allowable limit.

Based on the design criterion, in the dynamic condition; the minimum bending radius (MBR) of a riser should be same or less than 1,5 times that of the MBR at storage. The MBR for a 6" riser is 1,76 m or in terms of the curvature this will be 0,57 (1/1,76). Hence the limit MBR in the dynamic condition is 0,38.

While, the MBR for a 8" riser is 2,02 m or in terms of the curvature this will be 0,5 (1/2,02). Hence the limit MBR in the dynamic condition is 0,33.

These results are quite good since the curvatures of the risers are less than 0,3 (**Figure 7.23.** and **Figure 7.24**.)

Figure 7. 21.: The dynamic bending moment for the 6" production riser for the Western Isle Field.

Figure 7. 22.: The dynamic bending moment for the 8" production riser for the Western Isle Field.

Figure 7. 23.: The dynamic curvatures for the 6" production riser for the Western Isle Field.

Figure 7. 24. : The dynamic curvatures for the 8" production riser for the Western Isle Field.

CHAPTER

8

Coupled Dynamic Analysis

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser Based on Numerical Simulation

This chapter will present a single complete computer model that includes the cylindrical floater, moorings and riser with use of SIMA. In principle, SIMA will combine two nonlinear numerical simulations, a SIMO and a RIFLEX analysis. In other words, the cylindrical floater and moorings model from SIMO will be combined with an AR (arbitrary riser) configuration from RIFLEX in time domain analysis.

A set of accurate predictions of the response of the overall system will be obtained because the nonlinear-coupled dynamic analysis ensures a truly integrated system. Not only the accurate prediction of the response of the overall system but also the individual responses of the floater, moorings and risers are obtained. Hence, the accurate prediction of the floater motions will be presented here. The accurate prediction of the motions of the cylindrical floater will refer to the global motion response for the total motion as combinations of the low frequency motions (LF motions) and the wave frequency motions (WF motions) and will be presented here. Further, these results will be compared to the results from the global motion response for the total motion as found in **Chapter 6** (*Subchapter 6.3.2 points A and B*).

Besides the accurate prediction of the motion of the cylindrical floater, the results from the riser analysis will also be presented here. In this chapter, the riser analysis will be performed by using the nonlinear-coupled dynamic analysis in time domain under two simulation schemes, static and dynamic conditions. As for the response of the floater, the results will be compared to the results from the decoupled analysis of the top angle (hang off position angle), effective tension, bending radius and seabed clearance in **Chapter 7** (*Subchapters 7.3.2 and 7.3.3*).

Furthermore, this chapter will also give a description of the analysis program that will be used, SIMA to give the perspective for the analysis.

8.1 Modeling Concept by SIMA Marintek

As the final step, the cylindrical floater S400, 12 mooring lines and two of feasible riser configurations for a production riser with 6" and 8" diameter will be modeled as one complete model which is required in the nonlinear-coupled dynamic analysis to obtain a consistent treatment of the coupling effect between the cylindrical FPSO and the slender members. This method will generate the solution of the nonlinear-coupled dynamic analysis in time domain using a non-linear integration scheme and will adopt the dynamic equilibrium equation of the spatially discredited system (*Omberg, H. et al. (1997)*).

Further, The SIMA Marintek computer software will be used in this study because it has the capability to integrate the cylindrical floater S400, moorings and riser as one complete model. Here, a complete model of the floating offshore system will be modeled in one module of The SIMA Marintek/the RIFLEX Coupled model (combination software for RIFLEX and SIMO which are run together). In other words, a model of the cylindrical floater S400 with moorings system as established from SIMO will be combined with a model of a feasible riser system from RIFLEX into a complete model in RIFLEX Coupled and are run together in a time domain analysis.

The SIMA Marintek software is developed as a Joint Industry Project by MARINTEK and Statoil.

The SIMA Marintek is a powerful tool for modeling and analysis of tasks within the field of marine technology. Beside it has the capability to integrate each components of a floating offshore system, The SIMA Marintek has also the capability to support several programs that will be used in this study such as RIFLEX and SIMO. Hence, the analysis can be accessed in a single file as done in the library data system of SIMA Marintek (**Figure 8.1**).

In the nonlinear-coupled dynamic analysis, the complete model of the floating offshore system will consist of three principal structural components such as the cylindrical floater, moorings and riser responding to the environmental loading due to wind, waves and currents. Moreover, a previous model of the cylindrical floater and the mooring system from **Chapters 5 and 6** will be modeled as the body while a previous feasible riser configuration model will be extracted from **Chapter 7** to be modeled as an AR (arbitrary riser configuration) system.

Further information about how to model the system components can be found in **Chapter 4**.

As an integrated dynamic system, the environmental forces on the floater induce the motions which will be introduced in a detailed Finite Element Model of the moorings and risers. The finite element model has been used to describe the behavior of a given variable internal to the element in terms of the displacement (or other generalized co-ordinates) by utilizing interpolation functions (*van den Boom (1985)*).

Here, two different types of elements are introduced in the model, a 3D bar/cable element where the bending stiffness is negligible and a 3D beam element to include the bending stiffness.

The bar element presents only 3 translational DOF per node and do not provide the rotational stiffness. Therefore, it will be a suitable model to represent the moorings. On the other hand, the beam element will incorporate rotational stiffness and it will be a suitable model to represent the flexible riser. Moreover, the bar element is formulated using a "total

Lagrangian description", while the beam element formulation uses a "co-rotated ghost reference description". The basic theory about this can be found in **Chapter 2** based on *Marintek (2010)* for "RIFLEX Theory Manual Finite Element Formulation". The procedure for the riser system model can be found in details in *Marintek (2010) "RIFLEX User Manual Finite Element Formulation"*.

Since a Finite Element Model has been applied to slender members (moorings and risers), a dynamic analysis will be performed during the design because the dynamic behavior of the slender members strongly increases the maximum line tensions and may affect the low frequency motions of the moored structure by increasing the virtual stiffness and damping of the system.

Moreover, the application of the Finite Element Model will be for all system components, including the body of the cylindrical S400 floater. The FEM model of the cylindrical S400 floater (Hydro and Mass model) that originated from Wadam/HydroD will be taken as input. This input has been adopted from SIMO as a body model directly. In addition, the kinetic and radiation data will also be taken as inputs to obtain the forces that are acting on the hull.

Since the model will be quite complex, a "master-slave" approach will be used to connect the riser and the frequency-dependent floater and moorings. This connection will be placed in the body section as a so called AR (arbitrary riser) Connection.

Here, the environmental loading from winds, waves and currents will be considered. The study has also provided a set of wind, wave and current criteria associated with the extreme events. The criteria are considered to be independent, i.e. no account is taken of the effects of joint probability. The study will be based on the return period combination of 100 years waves and wind criteria and 10 years current criteria.

The wind forces will be simulated in the time domain. The wind speed design for simulation will be taken as the average speed occurring for a period of 1-hour duration at a reference height, typically 30 ft (10m) above the mean still water level. NPD wind spectrum (*ISO 19901-1 (2005)*, wind spectrum) will be used. The wind loads will be simulated in time domain, no transverse gust and no admittance function will be used.

The study will analyze the wave loads by using irregular waves. The irregular waves will have contributions in describing the real condition of the surface sea. The wave data will be based to the study from *Physe Ltd (2010)*. All-year omni-directional extreme significant wave heights have been assessed by using NNS (Northern North Sea) measured data set. The full NNS measured data set was used to create frequency distributions and the data were extrapolated by applying a range of functional fits. Peaks Over Threshold (POT) analysis was also performed on the time series data, picking 40, 60 and 80 storms to determine the best fit. The EVA (Extreme Value Analysis) results for extreme significant wave heights are given in **Table 8.1** below:

Data	Weibull 95%	FT3 95%	Weibull 10%	FT3 10%	POT 80	POT 60	РОТ 40				
	15.23	15.50	15.48	15.58	15.64	15.64	15.74				
NNS	Average of CFE Analysis 15.45 Average of POT analysis 15.67										
		Data Set Average 15.56									

Table 8.1. : The EVA Analysis Results for 100 Years Waves

Where: FT3 = Fisher-Tippett distribution, Type 3, POT= Peaks Over Threshold (POT) (40, 60 and 80 storms)

CFE = Cumulative Frequency Extrapolation

Further, the extreme significant wave height values for return periods of 100 years were calculated from the NNS measured data. The complete NNS data set was extrapolated applying both a 10% and a 95% Weibull fit to each data set. Hence, a 100 year significant wave height design value of 15.6 m is recommended for the Western Isles location.

According to *Physe Ltd (2010),* the final recommendations for the waves at the Western Isles location are given **Table 8.2.** below:

					Тp,	Тp,	Тp,		Crest
Return Period	Hs	Tz	Tz	Tz	Tass	Tass	Tass	Hmax	Height
		(lower)	(central)	(upper)	(lower)	(central)	(upper)		
	(m)	(s)	(s)	(s)	(s)	(s)	(s)	(m)	(m)
All-year									
1-year	11.4	9.7	10.8	12.7	13.3	15.0	17.8	19.2	11.7
10-years	13.6	10.6	11.8	13.8	14.5	16.4	19.5	23.9	14.7
50-years	15.0	11.2	12.4	14.5	15.3	17.2	20.5	26.9	16.6
100-years	15.6	11.4	12.6	14.8	15.5	17.5	20.8	28.2	17.4
1,000-years	17.6	12.1	13.4	15.7	16.5	18.6	22.1	32.4	20.0
10,000-years	19.4	12.7	14.1	16.5	17.3	19.6	23.3	36.4	22.6

Table 8.2. : Extreme Wave Height and Associated Periods- Omnidirectional

Reference: PhyseE Ltd (2010)

Further, this waves criteria (Hs = 15,6m and Tp= 15,5s) will be modeled by the Torsethaugen Spectrum (Jonswap double peaked). It will be simulated for "3 hours +" build up time in the SIMA Marintek.

Reference: PhyseE Ltd (2010)

The current criteria are based on the 10 years current criteria. The vertical current profile for the Western Isles will be calculated from Guidance Notes; *Department of Energy (1990)* for "Offshore Installations: Guidance on Design, Construction and Certification".

Further, the floating offshore system will be modeled for two conditions, the static and dynamic conditions. The calculation parameters for each condition will be set differently depending on their functions. The static condition stage has as functions to obtain a static equilibrium position and generate the initial condition for the dynamic simulation while the dynamic simulation will be performed in the dynamic condition in order to calculate the responses of the system responding to the dynamic loading conditions.

Since the analysis has been performed as a time domain analysis, it requires a proper simulation length to obtain a steady result. Moreover, in the dynamic condition the environmental criteria (the wind, waves and current criteria) has been simulated for "3 hours +" build up time. According to Omberg et al. (1998), the extreme values found from "3 hours +" simulations will represent a reasonable max expected value for the simulated time series, in particular as we for the floater motion have that "the statistical variability, in terms of coefficient of variation, is in the range of 4-5% for the model results and 2-3% for the simulations". For the member tension "the variability is 3-4% for the simulations".

Further the floater's response (floater motions and the horizontal offset values) and the slender member's response such as mooring line dynamic tensions as the mooring system's response and the effective tension and the bending moment and curvature as the riser's system's response will be presented in the next subchapters. These results are presented as time series which have the maximum, minimum and mean values. Furthermore, the results will be highlighted to the maximum or minimum values to show the deviation of each result.

Reference: Marintek, 2010

8.2 The System Response in the Nonlinear-Coupled Dynamic Analysis

The main reason for performing a coupled dynamic analysis is to obtain an accurate prediction of the response, simultaneously for the overall system as well as the individual response of the floater, moorings and risers.

The accurate prediction of the response for the overall system can be obtained since the coupled dynamic analysis ensures a truly integrated dynamic interaction between the components in the offshore floating system.

Hence, the estimation of the mean offset and the floater motions can be generated accurately to quantify the coupling effects between the floating offshore system (the floater, moorings and riser) and the associated structural response (e.g. motion responses) for offshore structure design.

Since the analysis has been performed in the time domain for problem solving, the floater motions in the time domain, the horizontal offset values and the mooring line dynamic tensions will be presented as time series results.

The resulting analysis for the floater motions and the horizontal offset values will be presented in time series below:

8.2.1 Floater Motions

In the nonlinear-coupled dynamic analysis , the global motion response of the cylindrical S400 floater will be represented by the total frequency motions as combinations of the low frequency motions (LF motions) and wave frequency motions (WF motions).

The summary of the global motion response i.e. the total frequency motions can be seen in **Table 8.3** below:

]	The Global Motion Response in Total Frequency Motions									
	Channel	Min	Max	Mean	Std. Dev.					
Surge	XG translation Total Motion	32.11	33.50	32.61	0.07					
Sway	YG translation Total Motion	-0.30	0.00	-0.26	0.01					
Heave	ZG translation Total Motion	-9.19	-9.05	-9.15	0.00					
Roll	XL rotation Total Motion	-1.87	0.66	-0.63	0.27					
Pitch	YL rotation Total Motion	0.00	3.17	1.84	0.35					
Yaw	ZG rotation Total Motion	-7.61	0.00	-4.27	0.20					

Table 8.3. : The Summary of The Global Motion Response of The cylindrical S400 Floater in the Nonlinear-Coupled Dynamic Analysis

Further, the global motion response for the total motion as combinations of the low frequency motions (LF motions) and wave frequency motions (WF motions) can be found from **Figure 8.2** to **Figure 8.7**

> The total global motion response, the total frequency motions for surge

Figure 8.2: The total global motion response, the total frequency motions for surge.

> The total global motion response, the total frequency motions for sway

Figure 8.3 : The total global motion response, the total frequency motions for sway

> The total global motion response, the total frequency motions for heave

Figure 8.4: The total global motion response, the total frequency motions for heave.

> The total global motion response, the total frequency motions for roll

Figure 8.5: The total global motion response, the total frequency motions for roll.

> The total global motion response, the total frequency motions for pitch

Figure 8.6: The total global motion response, the total frequency motions for pitch.

> The total global motion response, the total frequency motions for yaw

Figure 8.7 : The total global motion response, the total frequency motions for yaw.

Moreover, the total global motion responses of the cylindrical S400 for the total frequency motions in the nonlinear-coupled dynamic analysis are slightly different from the total global motion responses of the cylindrical S400 for the total frequency motions as found by the SIMO results analysis in **Chapter 6**.

The difference of results analysis can be seen in **Table 8.4** as follow:

Table 8.4. : The Summary of The Global Motion Response of the Cylindrical S400 Floater in theNonlinear-Coupled Dynamic Analysis and the Station Keeping System Modeling results as found from
SIMO (Chapter 6)

Channel		The Gl Freque	obal Motion ncy Motions dynamic	Response in (nonlinear-o analysis)	n Total coupled	The Global Motion Response in Total Frequency Motions (Chapter 6)			
		Min	Max	Mean	Std. Dev.	Min	Max	Mean	Std. Dev.
Surge	XG translation Total Motion	32.11	33.50	32.61	0.07	-22.82	7.08	-3.37	3.55
Sway	YG translation Total Motion	-0.30	0.00	-0.26	0.01	-8.47	5.09	-0.80	0.73
Heave	ZG translation Total Motion	-9.19	-9.05	-9.15	0.00	-15.02	4.14	-0.22	3.82
Roll	XL rotation Total Motion	-1.87	0.66	-0.63	0.27	-5.50	5.89	0.03	1.78
Pitch	YL rotation Total Motion	0.00	3.17	1.84	0.35	-9.73	8.48	-0.41	2.35
Yaw	ZG rotation Total Motion	-7.61	0.00	-4.27	0.20	-2.69	5.42	1.00	1.31

Based on the results in **Table 8.2**, the total frequency global motion responses for the nonlinear-coupled dynamic analysis are caused by some reasons as follows:

1. The different applications for the design modeling

In **Chapter 6**, the cylindrical S400 floater and 12 mooring lines are modeled in SIMO as a station keeping system. Further, this system uses the Quasi-static design method which comprises a dynamic motion analysis of the moored structure and computations of mooring line tension based on the extreme position of the floater and the static load-excursion characteristics of the mooring system.

On the other hand, the nonlinear-coupled dynamic analysis comprises a single complete computer model that includes the cylindrical floater, moorings and riser as an offshore floating system in SIMA. Further, this system uses the dynamic, Finite Element Method (FEM) as design method.

By using the Finite Element Method (FEM), not only a static configuration will be established with non linear elements but the effect of line dynamics on the platform motion will be included in the simulation such as the additional loads from the mooring system and the hydrodynamic damping effects from the relative motion between the line and the fluid.

This technique, the Finite Element Method (FEM) will ensure higher contribution from the nonlinear dynamic behavior because the inertial effects between the line and the fluid are also included. Hence, it may affect the low frequency motions specifically and also the total frequency global motion responses of the moored structure.

2. The influence of the risers structure

In the nonlinear-coupled dynamic analysis, the overall behavior of the floater will be influenced not only from the hydrodynamic behavior of the hull and moorings system but also from the dynamic behavior of the risers because it comprises a single complete computer model (the cylindrical floater, moorings and riser) as an offshore floating system.

In the analysis, the riser system has used two heavy weight 6" and 8" production risers for study in the arbitrary riser system. Its characteristics are based on the mechanical characteristics of the riser and the mean current forces on risers may affect the horizontal restoring force of the system which then influences the total frequency global motion responses of the moored structure.

8.2.2 The Horizontal Offset Values

The horizontal offset values of the offshore floating system are very important in order to determine the global performance of the floater structure in the survival or operation conditions. These values will influence the design of the other components in the offshore floating system such as the mooring system and the riser system.

In terms of the moorings system, mooring system design is a trade-off between making the system compliant enough to avoid excessive forces on the floater and making it stiff enough to avoid difficulties due to excessive offsets (*Chakrabarti, S. (2005)*).

In terms of riser system, the horizontal offset values will represented two extreme riser configurations; far and near conditions. Moreover, the variations of a representative offset value will strongly influence the final static configuration in riser system design.

Based on the reasons above, the horizontal offset values are very important in the offshore floating system design and should be estimated accurately.

In this study, the horizontal offset values of the cylindrical S400 floater have been established from numerical simulations in three ways:

First, the horizontal offset value has been established from the station keeping system simulation in **Chapter 6**. In this simulation, the cylindrical S400 floater and moorings are modeled by using SIMO in a time domain analysis. In this chapter, the mooring analysis has been performed in quasi- static model for "3 hours +" build up time. Further, the representative horizontal offset values are derived from the total global motion response (the total frequency motions for surge). This can be seen in **Figure 8.8**. below. From this simulation, the horizontal representative offset value for the cylindrical S400 floater has been found which maximum values around 22,82 m ~23 m.

The detailed information can be found in **Chapter 6**.

2. The horizontal offset value has also tentatively been established for the riser system design in **Chapter 7**. In this simulation, the cylindrical S400 floater and feasible riser configurations (for 6" and 8" production risers) are modeled by using RIFLEX in a decoupled analysis. Further, the simulation has been performed in time domain analysis for "3 hours +" build up time. Moreover, in this simulation the FEM (Finite Element Model) has been applied as the design method.

In this chapter, the representative horizontal offset value is taken as a conservative value. Because, this value will not only represent two extreme riser configurations; the far and near conditions but it also should accommodate the mean and low

frequency motions (LF) since we neglect these terms from the vessel motions in the simulation. From the empirical calculations, the horizontal representative offset value for the cylindrical S400 floater has been found to be around \pm 25 m as the static offset.

Figure 8.8 : The total global motion response, the total frequency motions for surge from the station keeping system modeling in SIMO (**Chapter 6**).

3. Last, the horizontal offset value has also been established from a single complete computer model that includes the cylindrical floater S400, 12 mooring lines and two 6" and 8" of feasible riser configurations for the production riser as the nonlinear-coupled dynamic analysis in one module of SIMA Marintek/the RIFLEX Coupled model (combination software for RIFLEX and SIMO which are run together). In this analysis, the simulation has been performed by a FEM (Finite Element Model) for "3 hours +" build up time. Further, the representative horizontal offset values are derived from the total global motion response (the total frequency motions for

surge). This can be seen in **Figure 8.2**. above. From this simulation, the horizontal representative offset value for the cylindrical S400 floater has been found with maximum value around 33 m.

Method 3 is the best way to predict the representative values for the horizontal offset of the cylindrical floater S400.

This analysis uses a consistent analytical approach which ensures a truly integrated dynamic system in order to quantify the dynamic interaction between the vessel and the slender systems. Hence, the accurate prediction of the response simultaneously for the overall system as well as the individual response components (the floater, moorings and risers) including the estimation of the horizontal offset value can be gained accurately.

8.3 The Nonlinear-Coupled Dynamic Analysis for Slender Members

In the nonlinear-coupled dynamic analysis, two different types of elements have been introduced to represent the moorings and the risers as the slender members in the offshore floating system. These elements will be modeled in FEM (Finite Element Model). The simulation will be performed in time domain for "3 hours +" build up.

The nonlinear-coupled dynamic analysis applies the FEM (Finite Element Model) as design method. The resulting analysis for 6" and 8" production risers are not much different from the results of **Chapter 7**. However, the resulting analysis for the mooring line dynamic tensions is slightly different from the results of the analysis for the mooring line dynamic tension in **Chapter 6**.

Since the nonlinear-coupled dynamic analysis will be performed by FEM (Finite Element Model) as design method, the maximum line tensions of slender members will be increased due to the dynamic behavior of the slender members and may affect the low frequency motions of the moored structure.

The summary of the mooring line dynamic tensions of the cylindrical S400 floater in the nonlinear-coupled dynamic analysis can be seen in **Table 8.5** below:

Channel	Min Tension kN	Max Tension kN	Mean Tension kN	Line Tension Limit (% of MBL)	Design Safety Factor
Mooring Line1	1675.21	8689.94	2684.66	45.14	2.22
Mooring Line2	1676.55	8691.23	2686.54	45.15	2.21
Mooring Line3	1693.32	8703.47	2699.96	45.21	2.21
Mooring Line4	1697.83	8706.85	1703.41	45.23	2.21
Mooring Line5	10235.47	10762.22	10407.62	55.91	1.79
Mooring Line6	10405.46	10976.55	10581.34	57.02	1.75
Mooring Line7	10073.67	10854.45	10265.22	56.39	1.77
Mooring Line8	10069.85	10980.17	10363.85	57.04	1.75
Mooring Line9	2068.59	8357.34	2211.57	43.41	2.30
Mooring Line10	1847.79	8067.47	2961.11	41.91	2.39
Mooring Line11	1195.67	8232.31	2220.41	42.77	2.34
Mooring Line12	1130.80	8153.46	2144.68	42.36	2.36

Table 8.5. : The summary of mooring line dynamic tensions of the cylindrical S400 floater in the nonlinear-coupled dynamic analysis

Table 8.5 above will represent the range of tension force along the mooring line. The mooring lines should always be in tension. Further, these forces should also be checked with the acceptance criteria for tension limits for the ULS (Ultimate Limit State) based on *ISO 19901-7 (2005)*.

ISO 19901-7 (2005) has mentioned that the acceptance criteria for tension forces for the Ultimate Limit States (ULS) should have a specified minimum safety factor higher than 1,67 for intact condition by using dynamic analysis (FEM) method.

ISO 19901-7 (2005) has also mentioned the line tension limit for intact condition in dynamic analysis (FEM) method. It should have the line tension limit of 60% of the Minimum Breaking Load (MBL) of the mooring line component.

Hence, the criteria above are met for the mooring system design for the cylindrical S400 floater.

In the riser analysis, two feasible configurations of production risers, 6" and 8", from **Chapter 7** are checked by static and dynamic analysis. In the static analysis only the static riser configuration with and without the vessel offset and the dynamic analysis of the entire system will be performed by combining the static loads with dynamic environmental loads based on the movements of the riser.

The main results of the analysis such as effective tension, bending moment and curvatures for static and dynamic condition will be presented below:

A. Static condition

The purpose of the static analysis is to re-check two 6" and 8" feasible configurations of production risers from **Chapter 7**. The main design parameters are such as the choice of riser configuration, the length of riser, the system geometry and the sizing of riser and ancillary components based on the consideration of the hang off location and the location of the touchdown point will be simulated in the static condition.

1. Effective tension

The effective tensions for the 6"and 8" production risers can be seen in **Figure 8.9**. and **Figure 8.10**.

The maximum effective tension for the 6" production riser is 180 kN while the minimum will be 32,08 kN.

The range of values for the effective tension for the 8" production riser is slightly different. The maximum effective tension for the 8" production riser is 155 kN while the minimum will be 26,58 kN.

These results are quite good and any compression can be avoided.

2. Bending Moment and Curvature

The bending moments for the 6"and 8" production risers can be seen in **Figure 8.11**. and **Figure 8.12**. while the curvature for the 6"and 8" production risers can be seen in **Figure 8.13**. and **Figure 8.14**.

The maximum bending moment and curvature for the 6" and 8" production risers are found in the hang off position. The results are quite good and still within allowable limit.

Based on the design criterion, in the static condition; the minimum bending radius (MBR) of a riser should be the same or less than the MBR at storage. The MBR for a 6" riser is 1,76 m or in the curvature terms will be 0,57 (1/1,76). The MBR for a 8" riser is 2,02 m or in the curvature terms this will be 0,5 (1/2,02).

These results are quite good and the curvature of the risers are less than 0,5 (**Figure 8.13.** and **Figure 8.14**.)

Figure 8.9 : The static effective tension for the 6" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

Figure 8. 10 : The static effective tension for the 8" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

Figure 8. 11 : The static bending moment for the 6" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

Figure 8. 12 : The static bending moment for the 8" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

Figure 8. 13 : The static curvatures for the 6" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

Figure 8. 14 : The static curvatures for the 8" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

B. Dynamic condition

In the dynamic condition, time domain dynamic analyses will be performed based on the final static configuration in order to calculate the global dynamic responses of the system. Furthermore, the results of these analyses such as the dynamic tensions and curvatures should be checked against the design limits.

The diagram of displacement envelope curvatures for 6"and 8" production risers can be seen in **Figure 8.15.** and **Figure 8.16.**

Figure 8. 15 : The displacement envelope curvature for the 6" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

Figure 8. 16 : The displacement envelope curvature for the 8" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

The other results such as such as the dynamic tensions and curvatures can be seen below.

1. Effective tension

The effective tension for the 6" and 8" production risers can be seen in **Figure 8.17**. and **Figure 8.18**.

The maximum effective tension for the $6^{"}$ production riser is 230 kN while the minimum will be 31,37 kN.

The range of values for the effective tension for the 8" production riser is slightly different. The maximum effective tension for the 8" production riser is 200 kN while the minimum will be 24,9 kN.

These results are quite good and any compression can be avoided.

Figure 8.17 : The dynamic effective tension for the 6" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

Figure 8. 18 : The dynamic effective tension for the 8" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

2. Bending Moment and Curvature

The bending moments for the 6"and 8" production risers can be seen in **Figure 8.19**. and **Figure 8.20**. while the curvatures for the 6"and 8" production risers can be seen in **Figure 8.21**. and **Figure 8.22**.

The maximum bending moments and curvatures for the 6" and 8" production risers are occur in the hang off position. The results are quite good since the result are still in the allowable limit.

Based on the design criterion, in the dynamic condition; the minimum bending radius (MBR) of the riser should be the same or less than 1,5 times that of the MBR at storage. The MBR for the 6"riser is 1,76 m or in the curvature terms this will be 0,57 (1/1,76). Hence the limiting MBR in the dynamic condition is 0,38.

While, the MBR for the 8" riser is 2,02 m or in is the curvature terms will be 0,5 (1/2,02). Hence the limiting MBR in the dynamic condition is 0,33.

These results are quite good since the curvature of the risers are less than 0,3 (Figure 8.21. and Figure 8.22.)

Figure 8. 19 : The dynamic bending moment for the 6" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

Figure 8. 20 : The dynamic bending moment for the 8" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

Figure 8.21 : The dynamic curvatures for the 6" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

Figure 8. 22 : The dynamic curvatures for the 8" production riser for the Western Isle Field in the nonlinear-coupled dynamic analysis.

CHAPTER

9

Conclusions and Further Studies

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser Based on Numerical Simulation

9.1 Conclusions

The hydrodynamic interaction effects and dynamic responses dominate the major consideration in the design of floating structures.

Two kind of analyses, the decoupled analysis and the nonlinear-coupled dynamic analysis have been presented in this thesis in order to quantify the coupling effects between each components in an offshore floating system. It also has a purpose to introduce a consistent analytical approach that ensures the higher dynamic interaction between the floater, moorings and risers be taken into account. The nonlinear-coupled dynamic analysis requires a complete model of the floating offshore system including the cylindrical S400 floater, the 12 mooring lines and the feasible riser configurations for the 6" and 8" production risers. Furthermore, the results from the nonlinear-coupled dynamic analysis have also been compared to the separated analyses for each component in the discussion of the analysis results.

Separated analyses for each component can be found in several chapters; **Chapter 5** (the floater analysis), **Chapter 6** (the mooring system analysis), **Chapter 7** (the risers system analysis) while **Chapter 8** presents a complete model of the floating offshore system.

Frequency domain and time domain analysis have been implemented to solve the equation of motions in the simulations. Moreover, the frequency domain analysis has been adopted in the hydrodynamic analysis of the cylindrical S400 floater (**Chapter 5**) as a simple iterative technique to solve the linear equation of motions to obtain a set of frequency dependent RAO (Response Amplitude Operator) while the time domain analysis has been implemented in the remains chapters (**Chapters 6, 7 and 8**) in order to solve the problems as close to the real condition as possible with regard to the non linear system where the frequency domain analysis is no longer valid to be used. The simulation has been conducted in two simulation schemes, static and dynamic conditions. A "3 hours +" build up time will be used in the dynamic condition because the time domain requires a proper simulation length to have a steady result.

The cylindrical floater hydrodynamic analysis as a decoupled analysis can be found in **Chapter 5**. The floater hydrodynamic analysis is performed by using the integrated software program Hydro D which is related to several support software programs (Prefem, Wadam and Postresp). Furthermore, the analysis is only based on the wave loads acting on the floater as the most important contributor to derive the response of motion of the floater. Two types of waves, regular waves and irregular waves as environmental loads have been simulated in two loading conditions. The loading conditions have been defined based on the z-coordinate at the waterline. Two loading conditions are chosen in this analysis, ballast loading condition (z = 16.32m) and fully load loading condition (z = 20.72m).

From the stability analysis, the positions of the floater in static equilibrium where the forces of gravity and buoyancy are equal and acting in opposite directions in line with one another, are presented. Based on the analysis results, the cylindrical S400 floater has good stability since $\overline{GM} > 0$. The change of \overline{GM} from the ballast to fully loaded condition is as follows: the metacentre height in the ballast condition (\overline{GM} =7.08) is higher than the metacentre height in the fully load condition (\overline{GM} =6.26). It happens because the keel position will move down when the ballast tanks are full. Hence, the distance between the keel and the buoyancy centre \overline{KB} will be higher. However, the centre of gravity \overline{KG} will also move up and the distance between the keel K and the centre of gravity \overline{KG} will be also higher. Since the \overline{KG} is higher than \overline{KB} , the \overline{GM} will be lower. It is the main reason why the stability of a cylindrical S400 floater becomes lower than its position in the ballast condition.

The transfer function between waves and responses or the RAO (Response Amplitude Operator) and the mean wave (drift) force are also generated from the wave excitation in the hydrodynamic analysis. The RAO represents as the first order wave forces while the second order wave forces are described as the mean wave (drift) forces. Further, these results are presented with respect to all 6 DOF (surge, sway, heave, roll, pitch and yaw) as the response of the floater. Beside the RAO (Response Amplitude Operator) and the mean wave (drift) force, the non linear damping effects are also presented in this analysis in order to quantify the low frequency damping from an expansion of the mean drift force. It is important to predict the non linear damping effects in the design because the mean drift forces can generate large amplitude resonant motions. Furthermore, all of the results in the hydrodynamic analysis and the rigid body model of cylindrical S400 floater have been used to perform the time domain simulation which includes the moorings system by using the software program SIMO in **Chapter 6**.

The mooring system is important to hold the offshore floating system against winds, waves and currents. The mooring system for a cylindrical S400 floater adopts the spread mooring system without using a thruster to stay in the desired position. It consists of 12 mooring lines which are distributed in 3 clusters. These mooring lines will be made from combination of chain and polyester rope. Moreover, each line consists of fairlead, top chain segments, upper polyester segment and lower polyester segment, anchor chain and anchor. The present mooring system solution is based on a maximum offset radius of 75 m. This implies that the Sevan Floater maybe located at any position within a radius of 75m from its defined zero position.

Further, this mooring system has been analyzed by using SIMO in time domain analysis. In SIMO, two models (the body model and the station keeping model) are required and the quasi-static design has been applied as the design method in the mooring system analysis.

Hence, it comprises the dynamic motion analysis of the moored structure and computations of mooring line tension based on the extreme position of the floater and the static load-excursion characteristic of mooring system. Furthermore, the wave, wind and current have been considered in the analysis. These environmental load data have been based on the return period combinations for 100 years waves and wind criteria and 10 years current criteria at ballast loading position (z = 16.32m).

The aim of the moorings analysis has been to ensure that the mooring system has adequate capacity to generate a non-linear restoring force the station keeping function. This force has been expressed by the mooring tension that will also be influenced by horizontal offset values.

In order to calculate the mooring tension and horizontal offset value, mooring analysis are carried out in two conditions, static and dynamic conditions. The results from the static condition are derived without variation of the environmental loads then it has been taken into account in the dynamic condition.

The results from the static condition have been used as the final static body position and mooring line tensions while the results from the static condition are time series of second order wave forces, the wave drift damping forces, the mooring line dynamic tensions and the response motions of the cylindrical S400 floater. Further, the response motion has been used to define the horizontal offset of the cylindrical S400 floater.

The horizontal offset values of an offshore floating system are very important to determine the global performance of the floater structure in the survival or operation conditions. These values will influence the design of the other components in the offshore floating system such as moorings system and risers system.

The horizontal offset values of the cylindrical S400 floater has been established in a quasistatic "3 hours +" build up time simulation. Further, the representative horizontal offset values are derived from the total global motion response (the total frequency motions for surge). From this analysis, the horizontal representative offset values for a cylindrical S400 floater have been found which having maximum value around 22,82 m ~23 m.

By using the quasi-static design method, the moorings tension arising due to the floater motions have been calculated. This not only for WF (Wave Frequency) mooring line tension or LF (Low Frequency) mooring line tension but also for the combination of the LF and WF mooring line tension.

From the analysis results, the maximum range of tension forces along the mooring lines are found to meet the criteria of the mooring system design for the cylindrical S400 floater and it is also found that the design safety factor for the mooring system is higher than 2,0. The acceptance criteria for tension limits for the ULS (Ultimate Limit State) are based on *ISO 19901-7 (2005)*. It has there been mentioned that the acceptance criteria for tension forces for the Ultimate Limit States (ULS) should have a specified minimum safety factor around 2,0 for intact condition when using a quasi-static design method.

Besides the mooring system, an offshore floating body also has the riser system as can be modeled as slender members. The analysis for the riser system is first done as a decoupled analysis in this study. The main purpose of this analysis is to find a feasible single arbitrary configuration for each of the 6" and 8" production risers. The riser system analysis in **Chapter 7** will also be performed in time domain analysis in RIFLEX for two simulation

conditions, static and dynamic conditions. The riser system design for the offshore Western Isles Field has real challenges since it is located in relatively shallow water condition $(\sim 170 \text{ m})$ and also a harsh environment. The main challenges that will be faced in the design process come from the relatively large vessel motions and vessel offset due to limited space between the the FPSO and the seabed. Harsh environmental loading will also give impact on the dynamic riser behavior. Besides, the external influence from the environmental condition, the configuration itself will govern the pliancy requirement and the riser system itself should accommodate two extreme configurations, the far and the near conditions. In dealing with these challenges, the application of flexible riser (compliant riser) will be very suitable in this offshore floating system. A Lazy Wave riser configuration has been chosen with some modifications in order to have a riser system which has robust solution and economic design. The riser system design will be introduced with a multiple buoyancy at the hog bend position and heavy weight riser. Multiple buoyancies have functions to reduce the overall tension at the upper region and improve the curvature at the lower region while a heavy riser has been used to reduce the free floating loads from the riser. This makes the configuration more stable.

Further, this riser system design will be checked by static and dynamic analysis. In the static analysis only the static riser configuration with or without vessel offset will be considered while the dynamic analysis of the entire system will be performed by combining the static loads with the dynamic environmental loads based on the movement of the riser.

The purpose of the static analysis has been to determine the acceptable system layout for the riser based on the input parameters while the dynamic analysis has the purposes to calculate the global dynamic responses of the system due to the environmental loadings based on the final static configuration. Furthermore, the wave, wind and current have been considered in the analysis. These environmental load data have been based on the return period combinations for 100 years waves and wind criteria and 10 years current criteria at ballast loading position (z = 16.32m).

The main parameters are such as the choice of riser configurations, the length of riser, the system geometry and the sizing of riser and ancillary components based on the consideration of the hangoff and touchdown positions. The main requirements for the result of the analysis are such as the top angle position, effective tension, bending radius and seabed clearance and clashing.

From the static analysis, the top angle positions are less than 15 deg while the seabed clearances are around 5 to 15 m at the lowest point in the sag bend area. The results for the effective tension are quite good and any compression is avoided. The riser itself should always be in tension because compression along the riser should be avoided as it will cause (birdcaging and) buckling which may affect the integrity of the riser adversely and reduce the service life. The maximum effective tension for the 6" production riser is 180kN while the minimum will be 32,08kN. The maximum tension for the 8" production riser is 155kN while the minimum will be 26,58kN.

The effective tensions in the dynamic analysis for the 6" and 8" production risers are slightly different than found in the static analysis. The maximum effective tension for the 6" production riser is 240kN while the minimum will be 23,94kN. The maximum tension for the 8" production riser is 220kN while the minimum will be 10kN.

The bending moments and the curvatures of the riser show the performance of the riser. Furthermore, the curvature of the riser show the capability of the riser to be bent until its limits without kinking or damaging, which depends on its minimum bending radius. The smaller the bending radius, the greater is the material flexibility (as the radius of curvature decreases, the curvature increases).

From the static analysis, the results for bending moment and the curvature for 6" and 8" production risers are found still to be within the allowable limit. The curvatures of the risers are less than 0,5 in the static analysis while in the dynamic analysis, the curvatures of the risers are less than 0,3.

Following the separated analyses for each component in the previous chapters (**Chapters 5,6 and 7**), a single complete computer model that included the cylindrical floater, moorings and risers with use of SIMA has been introduced in **Chapter 8** as a nonlinear-coupled dynamic analysis. The analysis is performed in time domain for two conditions, static and dynamic conditions. The SIMA Marintek computer has been used in this study because it has the capability to integrate the cylindrical S400 floater, moorings and risers as one complete model. As an integrated dynamic system, the environmental forces on the floater induce the motions which have been introduced in a detail FEM (Finite Element Model) of the moorings and risers. 3D bar/cable elements represent the mooring while 3D beam elements represent the flexible riser. Moreover, the application of the FEM has not only been used for moorings and risers but also for the floater. The FEM model of the cylindrical S400 floater originated from WADAM/HydroD.

Further, this complete model simulated the static and dynamic conditions in responding to environmental loading due to wind, waves and currents. These environmental load data were based on the return period combinations for 100 years waves and wind criteria and 10 years current criteria at ballast loading position (z = 16.32m). The environmental data were based on the Jonswap double peaked spectrum (Hs=15.6m and Tp=15.5s) for the wave and the NPD Spectrum for the wind while the currents have been based on the current profile on the Western Isle Offshore field.

The static equilibrium position and the initial condition for the dynamic simulation have been generated in the static condition. In the dynamic condition, the results of the nonlinear-coupled dynamic analysis have been presented in time series as the responses of the system due to the dynamic loading conditions. Thus, the nonlinear-coupled dynamic analysis ensures a truly integrated system. The dynamic analysis has been simulated for "3 hours +" build up time. Not only the accurate prediction of the responses of the overall system but also the individual responses of the floater, mooring and risers have been obtained. The summary of the results between the decoupled analysis and the nonlinear-coupled dynamic analysis will be presented as follow:

A. Floater motions

The global motion response of the cylindrical S400 floater is represented by the total frequency motions as a combination of the low frequency motions (LF motions) and the wave frequency motions (WF motions). Moreover, the total global motion responses of the cylindrical S400 floater in the nonlinear-coupled dynamic analysis are slightly different from the total global motion responses of the cylindrical S400 floater in the decoupled dynamic analysis. The difference in the analysis results can be seen in **Table 9.1** below:

Channel		The Global Motion Response in Total Frequency Motions (nonlinear-coupled dynamic analysis)				The Global Motion Response in Total Frequency Motions (Chapter 6)			
		Min	Max	Mean	Std. Dev.	Min	Max	Mean	Std. Dev.
Surge	XG translation Total Motion	32.11	33.50	32.61	0.07	-22.82	7.08	-3.37	3.55
Sway	YG translation Total Motion	-0.30	0.00	-0.26	0.01	-8.47	5.09	-0.80	0.73
Heave	ZG translation Total Motion	-9.19	-9.05	-9.15	0.00	-15.02	4.14	-0.22	3.82
Roll	XL rotation Total Motion	-1.87	0.66	-0.63	0.27	-5.50	5.89	0.03	1.78
Pitch	YL rotation Total Motion	0.00	3.17	1.84	0.35	-9.73	8.48	-0.41	2.35
Yaw	ZG rotation Total Motion	-7.61	0.00	-4.27	0.20	-2.69	5.42	1.00	1.31

Table 9.1. : The Summary of The Global Motion Response of A Cylindrical S400 Floater in theNonlinear-Coupled Dynamic Analysis and the Station Keeping System Modeling results as found fromSIMO (Chapter 6)

These different responses are generated by the different approaches to design modelling. In **Chapter 6**, the cylindrical S400 floater and 12 mooring lines are modelled in SIMO as a station keeping system. This system uses the Quasi-static design method while the nonlinear-coupled dynamic analysis (**Chapter 8**) comprises a single complete computer model that includes a cylindrical floater, moorings and risers as an offshore floating system in SIMA by using the dynamic FEM (Finite Element Model) as design method.

By using FEM, not only a static configuration will be established with the nonlinear analysis model but the effect of line dynamics on the platform motion will be included in the simulation. Hence, this technique ensures that the higher contributions from the nonlinear dynamic behavior are included. These affect the low frequency motions specifically and also the total frequency global motion responses of the moored structure.

Another reason comes from the influence of the riser structure. In the nonlinearcoupled dynamic analysis, the overall behavior of the floater is influenced not only from the hydrodynamic behavior of the hull and mooring system but also from the dynamic behavior of the risers because this analysis comprises a single complete computer model (a cylindrical floater, moorings and riser) as an offshore floating system. The mechanical characteristics of the riser and the mean current forces on the riser may affect the horizontal restoring force the system which then influences the total frequency global motions of the moored structure.

Further, the horizontal offset value can be established from the total frequency global motions of the moored structure. **Table 9.1** shows that the horizontal representative offset value for the cylindrical S400 floater has been found with a maximum value around 33m in the nonlinear-coupled dynamic analysis while the value is 23m in the decoupled dynamic analysis. It is clear that a cylindrical S400 floater could experience significant surge motions due to the surge excitation from the second order force such as the mean wave (drift) forces and slowly-varying forces from waves or currents.

B. Mooring line dynamic tension

Mooring line dynamic tensions in the nonlinear-coupled dynamic analysis are still within the allowable limit although the safety factors are slightly different from the mooring line dynamic tensions in the decoupled dynamic analysis (as found from **Chapter 6**).

The differences in the analysis results can be seen in **Table 9.2** below.

Table 9.2. : The Summary of Mooring Line Dynamic Tensions in The Nonlinear-Coupled DynamicAnalysis and Mooring Line Dynamic Tensions Results as Found from SIMO (Chapter 6)

Channel	Min tension kN	Max tension kN	Mean tension kN	Line Tension Limit (% of MBL)	Design Safety Factor
Mooring Line 1	1675.21	8689.94	2684.66	45.14	2.22
Mooring line 2	1676.55	8691.23	2686.54	45.15	2.21
Mooring Line 3	1693.32	8703.47	2699.96	45.21	2.21
Mooring Line 4	1697.83	8706.85	1703.41	45.23	2.21
Mooring Line 5	10235.47	10762.22	10407.62	55.91	1.79
Mooring Line 6	10405.46	10976.55	10581.34	57.02	1.75
Mooring Line 7	10073.67	10854.45	10265.22	56.39	1.77
Mooring Line 8	10069.85	10980.17	10363.85	57.04	1.75
Mooring Line 9	2068.59	8357.34	2211.57	43.41	2.30
Mooring Line 10	1847.79	8067.47	2691.11	41.91	2.39
Mooring Line 11	1195.67	8232.31	2220.41	42.77	2.34
Mooring Line 12	1130.80	8153.46	2144.68	42.36	2.36

Channel	Min toncion kN	Max tancian kN	Moon toncion kN	Line Tension Limit	Design Safety	
Channel	MIIII tension KN	Max tension KN	Mean tension KN	(% of MBL)	Factor	
Mooring Line 1	1035.01	9634.71	2535.28	50.05	2.00	
Mooring line 2	1040.80	9547.82	2521.88	49.60	2.02	
Mooring Line 3	1048.27	8967.19	2440.06	46.58	2.15	
Mooring Line 4	1050.11	8822.99	2420.97	45.83	2.18	
Mooring Line 5	764.80	3530.18	1418.10	18.34	5.45	
Mooring Line 6	763.48	3581.87	1418.32	18.61	5.37	
Mooring Line 7	755.87	3791.81	1424.36	19.70	5.08	
Mooring Line 8	754.84	3824.52	1426.53	19.87	5.03	
Mooring Line 9	1060.31	3001.74	1586.37	15.59	6.41	
Mooring Line 10	1061.07	3059.34	1607.36	15.89	6.29	
Mooring Line 11	1068.95	3721.06	1724.61	19.33	5.17	
Mooring Line 12	1071.35	4003.40	1750.27	20.8	4.81	

These different results are generated by the different design modelling. In **Chapter 6**, the cylindrical S400 floater and 12 mooring lines are modelled in SIMO as a station keeping system. This system uses the Quasi-static design method while the nonlinear-coupled dynamic analysis (**Chapter 8**) comprises a single complete computer model that includes the cylindrical floater, moorings and risers as an offshore floating system in SIMA by using the dynamic FEM (Finite Element Model) as design method.

By using FEM, the line tensions of the slender members (moorings) will be increased due to the dynamic behavior of the slender members.
The acceptance criteria for tension limits in the ULS (Ultimate Limit State) as based on *ISO19901-7 (2005)* should have a specified minimum safety factor higher than 1.67 for intact condition by using dynamic analysis FEM method while it should be higher than 2.0 for the intact condition by using the Quasi-static method.

C. Riser analysis

In this analysis, two feasible riser production riser configurations of 6" and 8" are checked by the nonlinear-coupled dynamic analysis and the decoupled dynamic analysis. The main design parameters, such as the choice of riser configuration, the length of riser, the system geometry and the sizing of riser and ancillary component will be in same parameter for both of the analyses. Not only these parameters but also the position of hang off and touchdown will be put in the same locations.

The main requirements for the results of the analysis such as top angle position, effective tension, bending radius and seabed clearance and clashing are compared between these analyses. After the results are compared, these results are not much different in the static and dynamic analysis. Moreover, these results are still shown to be within allowable limits for all main requirements.

The top angle positions in the static condition for both analyses are less than 15 deg while in the dynamic condition are less than 45 deg. The seabed clearance is around 5-15 m on the lowest point in the sag bend area for both analyses.

The results from the analyses for the effective tensions are quite good since any compression can be avoided.

The effective tension in the decoupled analysis:

In the static condition, the maximum effective tension for the 6" production riser is 180 kN while the minimum will be 32,08 kN and the maximum effective tension for the 8" production riser is 155 kN while the minimum will be 26,58 kN.

In the dynamic condition, the maximum effective tension for the 6" production riser is 240 kN while the minimum will be 23,94 kN and the maximum effective tension for the 8" production riser is 220 kN while the minimum will be 10 kN.

The effective tension in the nonlinear-coupled dynamic analysis:

In the static condition, the maximum effective tension for the 6" production riser is 180 kN while the minimum will be 32,08 kN and the maximum effective tension for the 8" production riser is 155 kN while the minimum will be 26,58 kN.

In the dynamic condition, the maximum effective tension for the 6" production riser is 230 kN while the minimum will be 31,37 kN and the maximum effective tension for the 8" production riser is 200 kN while the minimum will be 24,9 kN.

9.2 Further Studies

Further studies are needed to improve the offshore floating design:

• Additional limit states design analysis

The analysis should be performed not only in ULS (Ultimate Limit State) but also in other limit states designs such as ALS (Accidental Limit State) and FLS (Fatigue Limit State).

Sensitivity analyses

Sensitivity analyses for different wave periods and vessel headings should have been performed to check the effect of variations in the FSU's motion characteristics. Sensitivity analyses of the variation of the mass in the ancillary components such as the ballast modules and the buoyancy modules should also be performed.

References

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser Based on Numerical Simulation

API (1998): "Design of Risers for Floating Production Systems (FPSs) and Tension-Leg Platforms (TLPs)", Recommended Practice 2RD First Edition, American Petroleum Institute, June, USA.

Bai, Yong and Bai, Qiang (2005): "Subsea Pipelines and Risers", Elsevier, Kidlington, Oxford, UK.

Braestrup, Mikael W et al (2005): "Design and Installation of Marine Pipelines", Blackwell, Australia.

Chakrabarti, S. (2010): "Handbook of Coastal and Ocean Engineering", edited by Young C Kim, Section 24 Offshore Structure, World Scientific Publishing Co. Pte. Ltd., Singapore.

Chakrabarti, S. (2008): "Challenges for a Total System Analysis on Deepwater Floating Systems", The open mechanics journal, 2008, 2, 28-46

Chakrabarti, S. (2005): "Handbook of Offshore Engineering", edited by Subrata Chakrabarti, Volume 1, Elsevier, Oxford, UK.

Chandwani, R and Larsen, I (1997): "Design of Flexible Risers", Workshop on Subsea Pipelines, December 8-9. University of Brasil, Rio de Janeiro, Brasil

Chaudhury, G. and Yo Ho, C. (2000):"Coupled Dynamic Analysis of Platforms, Riser and Moorings", Offshore Technology Conference, 12084-MS, May 1-4, Houston, Texas, USA.

Connaire, A. D., Lang, D.W., Galvin, C.D., MCS (2003) : "Closely-Moored Floating Bodies in a Production and Offloading Facility – Requirement for and Application of a Coupled Analysis Capability", Offshore Technology Conference, 15378-MS, May 5-8, Houston, Texas, USA.

Cummins, W., (1962): "The impulse response function and ship motions", Departement of the Navy, david taylor Model Basin, Washington, D. C., Report 1661, October 1962.

Dana Petroleum (E&P) Limited (2011): "Western Isles Development Project Basis of Design", No. Document: ADIL-DWI-DV- BOD-0001.

Department of Energy (1990): "Offshore Installations: Guidance on Design, Construction and Certification".

Det Norske Veritas (2010): "Global Performance Analysis of Deepwater Floating Structures", Recommended Practice, DNV-RP-F205, October 2010.

Det Norske Veritas (2008): "Sesam User Manual for Wadam – Wave Analysis by Diffraction and Morison Theory", Høvik, Norway.

Det Norske Veritas (2004): "Position Mooring", Offshore Standard, DNV-OS-E301, October 2004.

Det Norske Veritas (2001): "Dynamic Risers", Offshore Standard, DNV-OS-F201, January 2001.

Engseth, A., Bech, A. and Larsen, C.M. (1988): "Efficient Method for Analysis of Flexible Risers", Proc. of the Int. Conf. on Behaviour of Offshore Structures (BOSS), Vol. 3, pp. 1357-1371, Tapir, Trondheim, Norway.

Faltinsen, O. M. (1990): "Sea Loads on Ships and Offshore Structures", Cambridge University Press, USA-Australia.

Gudmestad, O. T. (2010): Marine Technology and Design Compendium. University of Stavanger, Stavanger, Norway.

Hanoge, D., (Technip) and Luppi, A., Seal Engineering SA (2010): "Challenges of Flexible Riser System in Shallow Waters", Offshore Technology Conference,OTC 20578, 3-6 May,Houston, Texas, USA.

Hoffmam, D., (HMC Offshore Corp.), Ismail, N., M., and Nielsen, R., (Wellstream Corp.) and Chandwani, R., (Zentech) (1991): "The Design of Flexible Marine Riser in Deep and Shallow ware", Offshore Technology Conference, OTC 6724, 6-9 May,Houston, Texas, USA.

Hung, S. M. and Taylor R. E., (1988): "The Formulation of Mean Drift Forces and Moments for Floating Bodies", London Centre for Marine Technology, University College London, UK.

International Standard (2005): "Petroleum and natural gas industries — Specific requirements for offshore structures - Part 1: Metocean design and operating considerations", ISO 19901-1, Geneva, Switzerland.

International Standard (2005): "Petroleum and natural gas industries — Specific requirements for offshore structures - Part 7: Station keeping systems for floating offshore structures and mobile offshore units", Geneva, Switzerland.

Journée, J. M. J. and Massie, W. W. (2001): "Offshore Hydromechanics", First Edition, Delft University of Technology, <u>http://www.shipmotions.nl</u>., (Delft University course material).

Karunakaran, D., K. (2010): "Pipeline and Riser Compendium", University of Stavanger, Stavanger, Norway

Karve, S., (MacDermott Intl. Inc.), O'Brien, P., J., (Marine Computation Services) and McNamara, J., F., (University College Galway) (1988): "Comparison of Dynamic Response of Alternate Flexible Riser Product", Offshore Technology Conference, OTC 5796, 3-6 May,Houston, Texas, USA.

Kim, Y. B. and Kim, M.H., (2002):" Hull/Mooring/Riser Coupled Dynamic Analysis of a Tanker-based Turret-Moored FPSO in Deepwater", International Offshore and Polar Engineering Conference, May 26-31, ISBN 1-880653-58-3, Kitakyushu, Japan.

Løken, A. E., Sødahl, N., Hagen, O., DNV (1999): "Efficient Integrated Analysis methods for Deepwater Platforms", OTC 10809, Offshore Technology Conference, OTC 10809, May 3-6, Houston, Texas, USA.

Machado, Z., L., and Dumay, J., M., (1980): "Dynamic Production Riser on Enchova Field Offshore Brazil", Offshore Brazil Conference, Latin America Oils Show, Rio de Janeiro, Brazil.

Malvern, L. E. (1969): "Introduction to the Mechanics of a Continuous Medium", Prentice-Hall, New York.

Marintek (2010): "RIFLEX - Theory Manual Finite Element Formulation", SINTEF, P.O.Box 4125 Valentinlyst NO-7450, Trondheim, Norway.

Marintek (2010): "RIFLEX - User Manual Finite Element Formulation", SINTEF, P.O.Box 4125 Valentinlyst NO-7450, Trondheim, Norway.

Marintek (2008): "SIMO - Theory Manual Version 3.6, rev: 1", SINTEF, P.O.Box 4125 Valentinlyst NO-7450, Trondheim, Norway.

Marintek (2007): "Marintek Report: Mimosa 5.7 – User's Documentation", SINTEF, P.O.Box 4125 Valentinlyst NO-7450, Trondheim, Norway.

Maruo, H. (1960): "The Drift of a Body Floating in waves", *J*. Ship. Res., 4, 3, 1-10.

Mollestad, E. (1983): "Techniques for Static and Dynamic Solution for Nonlinear Finite Element Problems", ISBN 82-90240-14-7. Department Of Structural Engineering, Norwegian University Of Science And Technology, N–7491 Trondheim, Norway

Newman, J. N. (1974): "Second Order, Slowly Varying Forces on Vessel in Irregular Waves. In Proc. Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, ed. R. E. D. Bishop & W. G. Price, pp. 182-6, London: Mechanical Engineering Publications Ltd.

Newman, J. N. (1986): "Marine Hydrodynamics", The Massachusetts Institute of Technology, Cambridge, USA.

NORSOK Standard (2007): "Actions and Actions Effects – N003", Standard Norway, Lysaker, Norway.

Ogilvie, T. F. (1963): "First- and Second-Order Forces on a Cylinder Submerged Under a Free Surface, *J*. Fluid Mech., 16, 451-72.

Ormberg, H., Fylling, I., J., Larsen, K., and Sødahl, N. (1997): "Coupled Analysis of Vessel Motions and Mooring and Riser System Dynamics", OMAE 1997, Volume I-A, Offshore Technology.

Omberg, H. and Larsen, K. (1998): "Coupled Analysis of Floater Motion and Moorings Dynamics for a Turret-Moored Ship", Appl Ocean Res. (1998), Vol 20, pp.55-67, 8th International Conference on the Behaviour of Off-Shore Structure (BOSS'97), Delft, Netherlands.

Ormberg, H., Sødahl, N., and Steinkjer O. (1998) : "Efficient Analysis of Mooring System using De-coupled and Coupled Analysis", OMAE 1998-0351.

PhysE Ltd (2005): "HSE Research Report 392: Wave mapping in UK waters"

PhysE Ltd (2010): "Metocean Criteria for Western Isles (UK Block 210/24)", R-393-10 F2, SM Document Id: 54850-DAN-J-RA-0001

Pinkster, J. A. (1975): "Low-Frequency Phenomena Associated with Vessels Moored at Sea, Society of Petroleum Engineers *J*ournal, December, 487-94.

Pinkster, J. A. and van Oortmerssen, G. (1977): Computation of the First- and Second-Order Wave Forces on Oscillating Bodies in Regular Waves, In Proc. Second Int. Conf. Numerical Ship Hydrodynamics, ed. J. V. Wehausen & N. Salvesen, pp. 136-56, Berkeley: University Extension Publication, University of California, Berkeley. USA.

Remseth, S. N. (1978): "Nonlinear Static and Dynamic Analysis of Space Structures", Division of Structural Mechanics, The Norwegian Institute of Technology, University of Trondheim, Norway.

Sclavounos, P. D., (1987): "The vertical wave drift forces on floating bodies", 2nd International Workshop on Water Waves and Floating Bodies, University of Bristol, March 1987.

Sevan Marine (2011): "Western Isles Development Project (WIDP) FPSO - FEED Study - Mooring Analysis Report", 54850-SMA-J-RA-0010.

Sevan Marine (2011): "Western Isles Development Project (WIDP) FPSO - FEED Study - Riser Analysis Report", 54850-SMA-X-XX-####

Ship Hydrostatics, 2002:

http://web.nps.navy.mil/~me/tsse/NavArchWeb/1/module7/basics.htm#

Torsethaugen, K., (2004): "Simplified double peak spectral model for ocean waves", SINTEF, STF80 A048052, SINTEF Fisheries and Aquaculture, Trondheim.

Van den Boom, H., J., J., (2005): "Dynamic Behaviour of Mooring Lines", Maritime Research Institute Netherlands-Wageningen, Elsevier Science Publisher B.V, Amsterdams, Netherlands.

Wichers, J., E., W., and Huijsmans, R., M., H., (1984): "On the Low-Frequency Hydrodynamic Damping Forces Acting on Offshore moored Vessel", Offshore Technology Conference, OTC 4813, May 7-9, Houston, Texas, USA.

Response Amplitude Operator (RAO)

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

A. Response Amplitude Operator for Surge (0-90°)

B. Response Amplitude Operator for Sway (0-90°)

C. Response Amplitude Operator for Heave (0-90°)

D. Response Amplitude Operator for Roll (0-90°)

E. Response Amplitude Operator for Pitch (0-90°)

Response Amplitude Operator for Yaw (0-90°) F.

Wave Drift Force

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

A. Wave Drift Force for Surge (0-90°)

B. Wave Drift Force for Sway (0-90°)

С

System Description SIMO

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

SYSTEM DESCRIPTION SIMO 'txsys, 3 lines 'LENUNI TIMUNI MASUNI GRAV RHOW RHOA m s Mg 9.81 1.025 0.00125 'DEPTH DIRSLO SLOPE 170.0 ENVIRONMENT DATA SPECIFICATION ****** Env. Conditions -----00------IRREGULAR WAVE SPECIFICATION ' CHIRWA Wa ' IWASP1 IWADR1 IWASP2 IWADR2 $24 \quad 1 \quad 0 \quad 0$ WAVE SPECTRUM WIND ' siwahe tpeak 10.0 14.0 WAVE DIRECTION PARAMETERS ' wadir1 expo1 ndir1 CURRENT SPECIFICATION 'Chcurr L_extern Cu 0 'Ncur 1 'Curvel Curdir Curlev 0.6 180 -100 WIND SPECIFICATION ***** ' CHWI Wi 'iwitype 5 'widir zref alphwi winref gamma(dummy) fri 180 10. .11 25.0 1. .002 BODY DATA SPECIFICATION ****** 'CHBDY s400

'txbdy, 3 lines txbdy txbdy txbdy 'IBDTYP 2 '-----BODY LOCATION DATA '_____ 'Xglob Yglob Zglob Phi Theta Psi 0.00000 0.00000 0.00000 0.00000 0.00000 '-----BODY MASS DATA 'txmass, 2 lines 'xcog ycog zcog 0.000 0.000 1.880 MASS COEFFICIENTS 'rm rixx riyx riyy rizx rizy rizz 0.7069E+05 0.3421E+08 0.000 0.3421E+08 0.000 0.000 0.7238E+08 ADDED MASS ZERO -----
 'amz1
 amz2
 amz3
 amz4
 amz5
 amz6

 0.3703E+05
 0.000
 0.000
 .000
 .6329E+06
 0.000

 0.000
 0.3703E+05
 0.000
 0.6329E+06
 0.000
 0.000

 0.000
 0.3703E+05
 0.000
 0.6329E+06
 0.000
 0.000

 0.000
 0.1563E+06
 0.000
 0.000
 0.000
 LINEAR DAMPING ------'txdmpl. 2 lines 'dli1 dli2 dli3 dli4 dli5 dli6 9.90e-02 0.000 0.000 0.000 0.000 0.000 0.000 9.90e-02 0.000 0.000 0.000 2.20e-2 0.000 0.000 4.00e-4 0.000 0.000 0.000
 0.000
 0.000
 0.000
 4.00e-4
 0.000
 0.000

 0.000
 0.000
 0.000
 4.00e-4
 0.000
 0.000

 0.000
 0.000
 0.000
 4.00e-4
 0.000
 0.000

 0.000
 2.20e-02
 0.000
 0.000
 1.500e6
 -----QUADRATIC DAMPING -----'txdmpl. 2 lines 'dqi1 dqi2 dqi3 dqi4 dqi5 dqi6 1.400e4 0.000 0.000 0.000 0.000 0.000 0.000 1.400e4 0.000 0.000 0.000 0.000 0.000 0.000 1.000e3 0.000 0.000 0.000
 0.000
 0.000
 0.000
 3.500e4
 0.000
 0.000

 0.000
 0.000
 0.000
 3.500e4
 0.000
 0.000

 0.000
 0.000
 0.000
 3.500e4
 0.000
 0.000
 0.000 0.000 0.000 0.000 0.000 1.500e6 '-----WAVE DRIFT DAMPING *_____ 'txwadd. 2 lines Simplified wave - current interaction ' icof 1 ' nwadd 2 ' wdper wd11 wd12 13 0.33 0.33 16 0.33 0.33 ------QUADRATIC CURRENT COEFFICIENTS -----'txc2co. 2 lines 'nc2dir ic2sym istrip rltot rlori 7 2 0 0. 0. 'dir dof1 dof2 dof3 dof4 dof5 dof6
 ability
 <t 0 15 0 30 0 45 354 354 0 2828 -2828 0

25043303464-2000012948303864-10350 75 90 0 500 0 4000 0 0 '-----WIND FORCE COEFFICIENTS '_____ 'txwico. 2 lines 'nwidir iwisym wiarea zcoef 7 2 2000. 10.00 dir dof1 dof2 dof3 dof4 dof5 dof6 ' dir
 0
 1.35
 0.00
 0.00
 0.00
 21.60
 0.00

 15
 1.30
 0.35
 0.00
 -5.59
 20.86
 0.00
 1.17 0.68 0.00 -10.80 18.71 0.00 30 45 0.95 0.95 0.00 -15.27 15.27 0.00 60 0.68 1.17 0.00 -18.71 10.80 0.00 0.35 1.30 0.00 -20.86 5.59 0.00 75 90 0.00 1.35 0.00 -21.60 0.00 0.00 '-----HYDROSTATIC STIFFNESS DATA _____ 'txstif, 2 lines 'istmod 1 STIFFNESS REFERENCE '----------' refx refy refz rphi rtheta rpsi 0.000 0.000 0.000 0.000 0.000 0.000 LINEAR STIFFNESS MATRIX -----'kmati1 kmati2 kmati3 kmati4 kmati5 kmati6
 Kinatu
 Kinatu< 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.4441E+07 0.000 0.000 0.000 0.000 0.000 0.000 0.000 FIRST ORDER MOTION TRANSFER FUNCTION '_____ 'txmo1, 2 lines 'nmodir nmofre imosym itypin 19 26 2 2 WAVE DIRECTIONS MOTION TRANSFER FUNCTIONS 'imodir modir 1 0.00000 1 2 5.00000 10.0000 3 4 5 6 7 15.0000 20.0000 25.0000 30.0000 35.0000 40.0000 8 9 10 45.0000 11 50.0000 12 13 55.0000 60.0000 65.0000 14 15 70.0000 16 75.0000 17 18 80.0000 85.0000 90.0000 19 WAVE FREQUENCIES MOTION TRANSFER FUNCTIONS 'imofre mofre 0.209440 1 2 0.216662 0.224399 3

60

- 0.232711 4
- 5 0.241661

6 0 251327

- 0.261799 7
- 8 0.273182 9 0.285599

C-3

10 11 12 13 14 15 16 17 18 19 20 21	0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5	99199 14159 130694 149066 169599 192699 18879 148799 148799 148799 148799 123599 771199 128319		
22 23	0.6	98132 85398		
24	1.0	04720		
25 26	3.3	14159		
SURGE	мот	ION TRANSFEI	R FUNCTION	
'idir	ifreq	ampl phas	se	
1	1	1.669 1.586	-87.20 -87.28	
1	3	1.508	-87.28	
1	4	1.438	-86.98	
1	5	1.381	-86.77	
1	6 7	1.329	-86.93	
1	8	1.220	-87.45	
1	9	1.167	-87.62	
1	10	1.117	-87.73	
1	11	1.089	-87.80	
1	13	0.9786	-87.74	
1	14	0.9325	-87.54	
1	15 16	0.8831	-87.02	
1	17	0.7955	-84.89	
1	18	0.7458	-84.62	
1	19	0.6767	-83.63	
1	20 21	0.5950	-81.18 -76.81	
1	22	0.3941	-69.42	
1	23	0.2762	-56.10	
1	24 25	0.8741E-01	21.22	
1	26	0.3199E-03	-38.62	
2	1	1.662	-87.20	
2	2	1.580	-87.28	
2	3 4	1.502	-86.98	
2	5	1.376	-86.77	
2	6	1.324	-86.93	
2	7 8	1.269	-87.21	
2	9	1.163	-87.62	
2	10	1.113	-87.73	
2	11	1.065	-87.79	
2	12	0.9749	-87.80	
2	14	0.9290	-87.54	
2	15	0.8797	-87.02	
2	16 17	0.8318	-85.89 -84.89	
2	18	0.7429	-84.62	
2	19	0.6742	-83.63	
2	20	0.5927	-81.18	
2	22	0.3926	-69.42	
2	23	0.2752	-56.10	
2	24	0.8708E-01	21.22	
2	25 26	0.3187E-01	-38.62	
3	1	1.643	-87.20	
3	2	1.562	-87.28	
3	3 4	1.485 1.416	-87.22 -86.98	
3	5	1.360	-86.77	
3	6	1.309	-86.93	
3	7	1.255	-87.21	
3	ช ด	1.201	-87.62	
3	10	1.100	-87.73	
3	11	1.053	-87.79	
3	12 13	1.008 0.9638	-87.74	

_	4
	-

3	14	0.9184	-87.54
3	15	0.8697	-87.02
3	16	0.8223	-85.89
3	17	0.7834	-84.89
3	18	0.7344	-84.62
2	20	0.5859	-03.03
3	21	0.4934	-76.81
3	22	0.3881	-69.42
3	23	0.2720	-56.10
3	24	0.8608E-01	21.22
3	25	0.1238E-01	-72.40
3	26	0.3151E-03	-38.62
4	1	1.612	-87.20
4	2	1.532	-87.28
4	3	1.457	-87.22
4	4	1.389	-86.98
4	5	1.334	-80.//
4	7	1.203	-87 21
4	8	1.231	-87.45
4	9	1.127	-87.62
4	10	1.079	-87.73
4	11	1.033	-87.79
4	12	0.9887	-87.80
4	13	0.9453	-87.74
4	14	0.9008	-87.54
4	15	0.8530	-87.02
4	16	0.8065	-85.89
4	1/	0.7684	-84.89
4 1	10	0.7204	-04.02
4	20	0.5747	-81.18
4	21	0.4839	-76.81
4	22	0.3806	-69.42
4	23	0.2668	-56.10
4	24	0.8443E-01	21.22
4	25	0.1215E-01	-72.40
4 5	26	0.3090E-03	-38.62
5	2	1.300	-87.20
5	3	1.417	-87.22
5	4	1.351	-86.98
5	5	1.298	-86.77
5	6	1.249	-86.93
5	7	1.197	-87.21
5	8	1.140	-87.45
5	10	1.050	-87 73
5	11	1.005	-87.79
5	12	0.9618	-87.80
5	13	0.9196	-87.74
5	14	0.8763	-87.54
5	15	0.8298	-87.02
5	10	0.7846	-85.89
5	18	0.7475	-84.67
5	19	0.6359	-83.63
5	20	0.5591	-81.18
5	21	0.4708	-76.81
5	22	0.3703	-69.42
5	23	0.2596	-56.10
5	24	0.8214E-01	21.22
5	25	0.3006F-03	-38.62
6	1	1.512	-87.20
6	2	1.437	-87.28
6	3	1.367	-87.22
6	4	1.303	-86.98
6	5	1.252	-86.77
6	5	1.204	-80.93
6	8	1.105	-87.45
6	9	1.058	-87.62
6	10	1.012	-87.73
6	11	0.9692	-87.79
6	12	0.9277	-87.80
6	13	0.8869	-87.74
6	14 15	0.8003	-07.34
6	16	0.7567	-85.89
6	17	0.7210	-84.89
6	18	0.6759	-84.62
6	19	0.6133	-83.63
6	20	0.5392	-81.18
o	21	0.4541	-/0.81

6	22	0.3571	-69.42
6 6	23 24	0.2503 0.7922E-01	-56.10
6	25	0.1140E-01	-72.40
6	26	0.2900E-03	-38.62
7	2	1.445	-87.20
7	3	1.306	-87.22
7	4	1.245	-86.98
7	5	1.196	-86.77 -86.93
7	7	1.104	-87.21
7	8	1.056	-87.45
7	9	1.011	-87.62
7	10	0.9874	-87.79
7	12	0.8864	-87.80
7	13	0.8475	-87.74
7	14	0.8076	-87.54 -87.02
7	16	0.7231	-85.89
7	17	0.6889	-84.89
7	18	0.6459	-84.62
7	19 20	0.5861	-83.63 -81.18
7	21	0.4339	-76.81
7	22	0.3413	-69.42
7	23	0.2392	-56.10
7	24 25	0.1089E-01	-72.40
7	26	0.2771E-03	-38.62
8	1	1.367	-87.20
8	2	1.299	-87.28
8	4	1.178	-86.98
8	5	1.131	-86.77
8	6	1.088	-86.93
8	7	1.044	-87.21 -87.45
8	9	0.9560	-87.62
8	10	0.9150	-87.73
8	11	0.8760	-87.79
8 8	12	0.8385	-87.80 -87.74
8	14	0.7639	-87.54
8	15	0.7234	-87.02
8	16	0.6840	-85.89
8	17	0.6516	-84.89 -84.62
8	19	0.5544	-83.63
8	20	0.4874	-81.18
8	21	0.4104	-76.81
8	23	0.2263	-56.10
8	24	0.7160E-01	21.22
8	25	0.1030E-01	-72.40
8 9	26	0.2621E-03 1 278	-38.62 -87.20
9	2	1.215	-87.28
9	3	1.155	-87.22
9	4	1.102	-86.98
9	6	1.018	-86.93
9	7	0.9761	-87.21
9	8	0.9343	-87.45
9	9 10	0.8940	-87.62 -87.73
9	11	0.8192	-87.79
9	12	0.7841	-87.80
9	13	0.7497	-87.74
9	14 15	0.7144	-87.54 -87.02
9	16	0.6396	-85.89
9	17	0.6094	-84.89
9	18 19	0.5713	-84.62 -83.63
9	20	0.4558	-81.18
9	21	0.3838	-76.81
9	22	0.3019	-69.42
9 9	23 24	0.2116 0.6696F-01	-56.10 21.22
9	25	0.9632E-02	-72.40
9	26	0.2451E-03	-38.62
10	1	1.180	-87.20
10	2 3	1.066	-87.22

10	4	1.017	-86.98
10	5	0.9765	-86.77
10	6	0.9396	-86.93
10	/	0.9010	-87.21
10	9	0.8252	-87.62
10	10	0.7899	-87.73
10	11	0.7562	-87.79
10	12	0.7238	-87.80
10	13	0.6920	-87.74
10	14	0.6594	-87.54
10	15	0.6244	-87.02
10	16	0.5904	-85.89
10	18	0.5025	-04.09
10	19	0.4785	-83.63
10	20	0.4207	-81.18
10	21	0.3543	-76.81
10	22	0.2786	-69.42
10	23	0.1953	-56.10
10	24	0.6181E-01	21.22
10	25	0.8891E-02	-72.40
10	26	0.2262E-03	-38.62
11	2	1.075	-87.20
11	3	0.9693	-87.22
11	4	0.9244	-86.98
11	5	0.8877	-86.77
11	6	0.8541	-86.93
11	7	0.8191	-87.21
11	8	0.7840	-87.45
11	9	0.7502	-87.62
11	10	0.7180	-87.73
11	11	0.6874	-87.79
11	12	0.6579	-87.80
11	14	0.5994	-87.54
11	15	0.5676	-87.02
11	16	0.5367	-85.89
11	17	0.5113	-84.89
11	18	0.4794	-84.62
11	19	0.4350	-83.63
11	20	0.3824	-81.18
11	21	0.3220	-/6.82
11	22	0.2555	-09.42
11	24	0.5618E-01	21.22
11	25	0.8082E-02	-72.40
11	26	0.2057E-03	-38.62
12	1	0.9572	-87.20
12	2	0.9097	-87.28
12	3	0.8649	-87.22
12	4	0.8249	-86.98
12	5	0.7921	-86.93
12	7	0.7309	-87.21
12	8	0.6996	-87.45
12	9	0.6694	-87.62
12	10	0.6407	-87.73
12	11	0.6134	-87.79
12	12	0.5871	-87.80
12	13	0.5613	-87.74
12	14	0.5349	-87.54
12	16	0.3003	-85.89
12	17	0.4563	-84.89
12	18	0.4278	-84.62
12	19	0.3882	-83.63
12	20	0.3413	-81.18
12	21	0.2874	-76.81
12	22	0.2260	-69.42
12	23	0.1584	-56.10
12	24	0.5014E-01	21.22
12 12	45 26	0.7212E-02 0.1835E-03	-72.40
13	1	0.8344	-87.20
13	2	0.7930	-87.28
13	3	0.7540	-87.22
13	4	0.7191	-86.98
13	5	0.6905	-86.77
13	6	0.6644	-86.93
13	7	0.6371	-87.21
13 12	б Q	0.5835	-07.45
13 13	9 10	0.5585	-87 73
	-0	0.0000	00

13	12	0.5118	-87.80
13	13	0.4893	-87.74
13	14	0.4663	-87.54
13	15	0.4415	-87.02
13	16	0.4175	-85.89
13	17	0.3978	-84.89
13	18	0.3729	-84.62
13	19	0.3384	-83.63
13	20	0.2975	-81.18
13	21	0.2505	-76.81
13	22	0.1970	-69.42
13	23	0.1381	-56.10
13	24	0.4370E-01	21.22
13	25	0.0207E-02	-72.40
13	1	0.1000E-03	-30.02 97.20
14	2	0.7033	-87.20
14	2	0.6773	-07.20
14	4	0.6078	-86.98
14	5	0 5836	-86 77
14	6	0 5616	-86.93
14	7	0.5385	-87.21
14	8	0.5155	-87.45
14	9	0.4932	-87.62
14	10	0.4721	-87.73
14	11	0.4519	-87.79
14	12	0.4326	-87.80
14	13	0.4136	-87.74
14	14	0.3941	-87.54
14	15	0.3732	-87.02
14	16	0.3529	-85.89
14	17	0.3362	-84.89
14	18	0.3152	-84.62
14	19	0.2860	-83.63
14	20	0.2514	-81.18
14	21	0.2117	-76.81
14	22	0.1665	-69.42
14	23	0.1167	-56.10
14	24	0.3694E-01	21.22
14	25	0.5314E-02	-72.40
14	26	0.1352E-03	-38.62
15	1	0.5708	-87.20
15	2	0.5425	-87.28
15	3	0.5157	-87.22
15	4	0.4919	-86.98
15	5	0.4723	-86.//
15	7	0.4345	-00.95
15	/	0.4358	-87.21
15	0	0.4171	-07.45
15	10	0.3972	-07.02
15	11	0.3657	-87 79
15	12	0.3501	-87.80
15	13	03347	-87 74
15	14	0.3189	-87.54
15	15	0.3020	-87.02
15	16	0.2856	-85.89
15	17	0.2721	-84.89
15	18	0.2551	-84.62
15	19	0.2315	-83.63
15	20	0.2035	-81.18
15	21	0.1714	-76.81
15	22	0.1348	-69.42
15	23	0.9447E-01	-56.10
15	24	0.2990E-01	21.22
15	25	0.4300E-02	-72.40
15	26	0.1094E-03	-38.62
16	1	0.4319	-87.20
16	2	0.4105	-87.28
16	3	0.3903	-87.22
16	4	0.3722	-86.98
16	5	0.3574	-86.77
16	6	0.3439	-86.93
16	7	0.3298	-87.21
16	8	0.3157	-87.45
16	9	0.3021	-87.62
16	10	0.2891	-87.73
10	11	0.2768	-87.79
10 16	12	0.2649	-87.80
10	13	0.2533	-07.74
10	14	0.2414	-07.54
10 16	15 17	0.2280	-07.02
10 16	17	0.2101	-03.09
10 16	10	0.2039	-04.09
16	10 19	0.1950	-83.63
×0		0.1/34	05.05

16	20	0.1540	-81.18
16	21	0.1297	-76.81
16	23	0.7149E-01	-56.10
16	24	0.2262E-01	21.22
16	25	0.3254E-02	-72.40
10	1	0.2898	-30.62
17	2	0.2754	-87.28
17	3	0.2618	-87.22
17	4 5	0.2497	-86.98
17	5	0.2398	-86.93
17	7	0.2213	-87.21
17	8	0.2118	-87.45
17	9 10	0.2027	-87.62
17	10	0.1857	-87.79
17	12	0.1777	-87.80
17	13	0.1699	-87.74
17	14	0.1619	-87.54
17	16	0.1450	-85.89
17	17	0.1381	-84.89
17	18	0.1295	-84.62
17	19	0.1175	-83.63 -81.18
17	21	0.8700E-01	-76.82
17	22	0.6843E-01	-69.42
17	23	0.4796E-01	-56.10
17	24	0.1518E-01	21.22
17	25	0.5556E-04	-38.62
18	1	0.1454	-87.20
18	2	0.1382	-87.28
18	3	0.1314	-87.22
18	4	0.1253	-86.98
18	6	0.1158	-86.93
18	7	0.1111	-87.21
18	8	0.1063	-87.45
10	10	0.1017 0.9736E-01	-87 73
18	11	0.9320E-01	-87.79
18	12	0.8921E-01	-87.80
18	13	0.8529E-01	-87.74
18	14	0.8128E-01 0.7696E-01	-87.54
18	16	0.7277E-01	-85.89
18	17	0.6933E-01	-84.89
18	18	0.6500E-01	-84.62
18	19	0.5898E-01 0.5185E-01	-83.63 -81.18
18	21	0.4367E-01	-76.82
18	22	0.3434E-01	-69.42
18	23	0.2407E-01	-56.10
18	24	0.7618E-02 0.1096E-02	-72.40
18	26	0.2788E-04	-38.62
19	1	0.1022E-15	92.80
19	2	0.9712E-16	92.72
19	- 3 4	0.9233E-16 0.8806E-16	92.78 93.02
19	5	0.8456E-16	93.23
19	6	0.8136E-16	93.07
19	7	0.7802E-16	92.79
19	9	0.7466E-16	92.38
19	10	0.6840E-16	92.27
19	11	0.6548E-16	92.21
19	12	0.6268E-16	92.20
19	13	0.5992E-16 0.5710E-16	92.26
19	15	0.5407E-16	92.98
19	16	0.5113E-16	94.11
19	17	0.4871E-16	95.11
19	10	0.430/E-16 0.4144E-16	96.37
19	20	0.3643E-16	98.82
19	21	0.3068E-16	103.18
19	22	0.2413E-16	110.58
19	23	0.5352E-17	-158.78
19	25	0.7699E-18	107.60
. 19	26	0.1959E-19	141.38
'			

SWAY MOTION TRANSFER FUNCTION	
-------------------------------	--

'			
'idir	ifrea	ampl phas	e
1	1	0.2044E-15	-87.20
1	2	0.1942E-15	-87.28
1	3	0.1847E-15	-87.22
1	4	0.1761E-15	-86.98
1	5	0.1691E-15	-86.77
1	6	0.1627E-15	-86.93
1	7	0.1560E-15	-87.21
1	8	0.1494E-15	-87.45
1	9	0.1429E-15	-87.62
1	10	0.1368E-15	-87.73
1	11	0.1310E-15	-87.79
1	12	0.1254E-15	-87.80
1	13	0.1198E-15	-87.74
1	14	0.1142E-15	-87.54
1	15	0.1081E-15	-87.02
1	16	0.1023E-15	-85.89
1	17	0.9742E-16	-84.89
1	18	0.9133E-16	-84.62
1	19	0.8288E-16	-83.63
1	20	0.7286E-16	-81.18
1	21	0.6136E-16	-76.82
1	22	0.4826E-16	-69.42
1	23	0.3383E-16	-56.10
1	24	0.1070E-16	21.22
1	25	0.1540E-17	-72.40
1	26	0.3918E-19	-38.62
2	1	0.1454	-87.20
2	2	0.1382	-87.28
2	3	0.1314	-87.22
2	4	0.1253	-86.98
2	5	0.1204	-86.77
2	6	0.1158	-86.93
2	7	0.1111	-87.21
2	8	0.1063	-87.45
2	9	0.1017	-87.62
2	10	0.9736E-01	-87.73
2	11	0.9320E-01	-87.79
2	12	0.8921E-01	-87.80
2	13	0.0529E-01	-07.74
2	14	0.0120E-01	-07.34
2	15	0.7090E-01	-07.02
2	10	0.7277E-01	-03.09
2	10	0.6933E-01	-04.09
2	10	0.5898F-01	-04.02
2	20	0.5090E-01	-03.03
2	20	0.4367F-01	-76.82
2	22	0.3434F-01	-69.42
2	23	0.2407E-01	-56.10
2	24	0.7618E-02	21 22
2	25	0.1096E-02	-72.40
2	26	0.2788E-04	-38.62
3	1	0 2898	-87 20
3	2	0.2754	-87.28
3	3	0.2618	-87.22
3	4	0.2497	-86.98
3	5	0.2398	-86.77
3	6	0.2307	-86.93
3	7	0.2213	-87.21
3	8	0.2118	-87.45
3	9	0.2027	-87.62
3	10	0.1940	-87.73
3	11	0.1857	-87.79
3	12	0.1777	-87.80
3	13	0.1699	-87.74
3	14	0.1619	-87.54
3	15	0.1533	-87.02
3	16	0.1450	-85.89
3	17	0.1381	-84.89
3	18	0.1295	-84.62
3	19	0.1175	-83.63
3	20	0.1033	-81.18
3	21	0.8700E-01	-76.82
3	22	0.6843E-01	-69.42
3	23	0.4796E-01	-56.10
3	24	0.1518E-01	21.22
3	25	0.2183E-02	-72.40
3	26	0.5556E-04	-38.62
4	1	0.4319	-87.20
4	2	0.4105	-87.28
4	3	0.3903	-8/.22
4	4	0.3722	-86.98
4	5	0.35/4	-00.//

4	6	0.3439	-86.93
4	8	0.3298	-87.45
4	9	0.3021	-87.62
4 4	10 11	0.2891 0.2768	-87.73 -87.79
4	12	0.2649	-87.80
4	13	0.2533	-87.74
4 4	14 15	0.2414	-87.54
4	16	0.2161	-85.89
4 1	17 18	0.2059	-84.89 -84.62
4	19	0.1752	-83.63
4	20	0.1540	-81.18
4 4	21 22	0.1297 0.1020	-/6.81
4	23	0.7149E-01	-56.10
4 1	24 25	0.2262E-01	21.22
4	26	0.8281E-04	-38.62
5	1	0.5708	-87.20
5	2	0.5425 0.5157	-87.28
5	4	0.4919	-86.98
5	5	0.4723	-86.77
5	7	0.4343	-87.21
5	8	0.4171	-87.45
5	9 10	0.3992	-87.62
5	11	0.3657	-87.79
5	12	0.3501	-87.80
5 5	15 14	0.3347	-87.54
5	15	0.3020	-87.02
5	16 17	0.2856	-85.89 -84.89
5	18	0.2551	-84.62
5	19	0.2315	-83.63
5 5	20 21	0.2035 0.1714	-81.18 -76.81
5	22	0.1348	-69.42
5	23 24	0.9447E-01 0.2990E-01	-56.10 21.22
5	25	0.4300E-02	-72.40
5	26	0.1094E-03	-38.62
6	2	0.6703	-87.20
6	3	0.6373	-87.22
		1 / / I - I - I - I - I - I - I - I - I -	-86.98
6	4	0.6078	-86 77
6 6 6	4 5 6	0.5836 0.5616	-86.77 -86.93
6 6 6 6	4 5 6 7	0.6078 0.5836 0.5616 0.5385	-86.77 -86.93 -87.21
6 6 6 6 6	4 5 6 7 8 9	0.6078 0.5836 0.5616 0.5385 0.5155 0.4932	-86.77 -86.93 -87.21 -87.45 -87.62
6 6 6 6 6 6	4 5 6 7 8 9 10	0.6078 0.5836 0.5616 0.5385 0.5155 0.4932 0.4721	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73
6 6 6 6 6 6 6 6	4 5 6 7 8 9 10 11	0.6078 0.5836 0.5616 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80
6 6 6 6 6 6 6 6	4 5 6 7 8 9 10 11 12 13	0.6078 0.5836 0.5616 0.5385 0.5155 0.4932 0.4721 0.4721 0.4519 0.4326 0.4136	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74
6 6 6 6 6 6 6 6 6 6 6 6 6	4 5 6 7 8 9 10 11 12 13 14	0.5078 0.5836 0.5616 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 87.02
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 5 6 7 8 9 10 11 12 13 14 15 16	0.6078 0.5836 0.5516 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.02 -85.89
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.6078 0.5836 0.5516 0.5385 0.5155 0.4932 0.4721 0.4519 0.4519 0.4326 0.4136 0.3732 0.3732 0.3529 0.3362	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.02 -85.89 -84.89
6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.6078 0.5836 0.5516 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.4136 0.3732 0.3529 0.3362 0.3152 0.2860	-86.77 -86.93 -87.21 -87.45 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.02 -85.89 -84.89 -84.62 -83.63
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.6078 0.5836 0.5516 0.5385 0.5155 0.4932 0.4721 0.4326 0.4136 0.3732 0.3529 0.3362 0.3152 0.2860 0.2514	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.02 -85.89 -84.89 -84.62 -83.63 -81.18
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	0.6078 0.5616 0.5616 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3152 0.2860 0.2514 0.2514 0.2117 0.465	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.70 -87.74 -87.74 -87.74 -87.02 -85.89 -84.89 -84.62 -83.63 -81.18 -76.81 -76.81 -76.81
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0.6078 0.5836 0.5616 0.5385 0.5155 0.4932 0.4721 0.4326 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3152 0.3860 0.2514 0.2860 0.2514 0.2117 0.1665 0.1167	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.74 -87.74 -87.74 -87.74 -87.74 -87.74 -87.74 -87.62 -83.69 -84.62 -84.63 -84.18 -76.81 -76.942 -56.10
6666666666666666666666666	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	0.6078 0.5836 0.5516 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3152 0.2860 0.2514 0.2117 0.1665 0.1167 0.3694E-01	86.77 86.93 87.21 87.45 87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.62 -85.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 21.22 -56.10
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	0.6078 0.5836 0.5516 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3152 0.3152 0.362 0.2514 0.2514 0.2117 0.1665 0.1167 0.3694E-01 0.5314E-02 0.3152E-03	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.70 -87.74 -87.54 -87.74 -87.54 -87.74 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 21.22 -72.40 -38.62
66666666666666666666666667	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1	0.6078 0.5836 0.5516 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3152 0.3524 0.3152 0.2860 0.2514 0.2117 0.1665 0.1167 0.3694E-01 0.5314E-02 0.1352E-03 0.8344	
6666666666666666666666777	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 1 2 2	0.6078 0.5836 0.5516 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3152 0.3362 0.3152 0.2860 0.2514 0.2117 0.1665 0.1167 0.3694E-01 0.5314E-02 0.332E-03 0.8344 0.7540	
66666666666666666666667777	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4	0.6078 0.5836 0.5616 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3152 0.2860 0.2514 0.2117 0.1665 0.1167 0.3694E-01 0.5314E-02 0.332E-03 0.8344 0.7930 0.7540	
666666666666666666666677777	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5	0.6078 0.5836 0.5536 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3152 0.2860 0.2514 0.2117 0.1665 0.1167 0.5314E-02 0.1352E-03 0.8344 0.7540 0.7540 0.7540 0.7540	
6666666666666666666666677777777	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 1 2 3 4 5 6 7	0.6078 0.5836 0.5516 0.5385 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3152 0.2860 0.2514 0.2117 0.1665 0.1167 0.5314E-02 0.1352E-03 0.8344 0.75400000000000000000000000000000000000	
6666666666666666666666677777777777	4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8	0.6078 0.5836 0.5536 0.5385 0.4721 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3152 0.2860 0.2514 0.2117 0.1665 0.1167 0.5314E-02 0.1352E-03 0.8344 0.75400000000000000000000000000000000000	
666666666666666666666667777777777777	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\end{array}$	0.6078 0.5836 0.5536 0.5385 0.4721 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3352 0.3352 0.3352 0.2860 0.2514 0.2117 0.1665 0.1167 0.5314E-02 0.1352E-03 0.8344 0.7930 0.7540 0.7540 0.7191 0.6095 0.6644 0.6371 0.6098 0.5355 0.555 0.555 0.555 0.555 0.555 0.4932 0.3362 0.3352 0.3352 0.2860 0.515 0.515 0.515 0.525 0.3352 0.2860 0.5117 0.5345 0.5514 0.5315 0.5345 0.5515 0.525 0.525 0.555 0.555 0.4932 0.3352 0.3352 0.3352 0.2860 0.5117 0.5345 0.5117 0.5345 0.5214 0.5315 0.5345 0.5515 0.525 0.525 0.525 0.525 0.555 0.555 0.4932 0.3352 0.3352 0.2860 0.5117 0.5345 0.5214 0.5315 0.5352 0.5254 0.5352 0.5254 0.5352 0.5254 0.5352 0.5254 0.5352 0.5352 0.5352 0.5254 0.5352 0.5352 0.5352 0.5352 0.5254 0.5352 0.5352 0.5352 0.5352 0.5554 0.5352 0.5352 0.5352 0.5352 0.5352 0.5352 0.5352 0.5352 0.5352 0.5554 0.5352 0.5554 0.5352 0.5554 0.5352 0.5554 0.5352 0.5554 0.5352 0.5554 0.5574 0.5740 0.5740 0.5740 0.5740 0.5740 0.5740 0.5740 0.5740 0.5740 0.5754 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.575 0.57500 0.57500 0.57500 0.57500 0.57500 0.57500 0.57500 0.57500 0.57500 0.57500 0.57500 0.57500 0.57500 0.57500 0.575000 0.575000 0.5750000000000	-86.77 -86.93 -87.21 -87.45 -87.45 -87.62 -87.73 -87.70 -87.80 -87.80 -87.74 -87.54 -87.54 -87.54 -84.89 -84.62 -83.63 -81.18 -69.42 -72.40 -38.62 -87.20 -87.20 -87.22 -86.98 -86.77 -86.93 -87.21 -87.45 -87.62 -87.21 -87.45 -87.62 -87.21 -87.45 -87.62 -87.21 -87.45 -87.62 -87.21 -87.45 -87.62 -87.21 -87.45 -87.62 -87.21 -87.45 -87.62 -87.21 -87.45 -87.62 -87.21 -87.45 -87.62 -87.21 -87.45 -87.21 -87.45 -87.21 -87.45 -87.21 -87.45 -87.21 -87.20 -87.21 -8
666666666666666666666677777777777777777	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11	0.6078 0.5836 0.5536 0.5385 0.4721 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3352 0.3362 0.3152 0.2860 0.2514 0.2117 0.1665 0.1167 0.5314E-02 0.1352E-03 0.8344 0.7930 0.7540 0.7540 0.7191 0.6605 0.6605 0.6644 0.6371 0.6698 0.5385 0.5585 0.5347	-86.77 -86.93 -87.21 -87.45 -87.45 -87.73 -87.74 -87.54 -87.54 -87.54 -87.54 -85.89 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 21.22 -72.40 -38.62 -87.20 -87.22 -86.98 -86.93 -87.21 -87.45 -87.45 -87.45 -87.73 -87.73 -87.79
666666666666666666666667777777777777777	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 3 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 7 8 9 10 11 12 13 14 5 16 16 17 7 8 9 10 11 12 13 14 5 16 16 17 7 8 9 10 11 12 13 14 5 16 16 17 7 8 9 10 11 12 13 14 5 16 16 17 7 8 9 10 11 12 13 14 5 16 16 17 7 18 9 10 11 12 13 14 5 16 16 17 7 18 9 10 11 12 12 13 14 5 16 16 17 7 18 9 10 20 21 22 23 24 25 5 26 1 2 12 2 3 4 5 26 1 2 1 2 2 3 2 4 5 26 1 2 3 4 5 2 1 2 2 3 2 4 5 2 3 4 5 2 1 2 2 3 2 4 5 2 3 4 5 5 12 2 1 2 2 3 2 4 5 5 2 6 1 2 1 2 2 3 2 4 5 2 5 2 6 11 2 2 3 2 4 5 2 5 2 6 1 2 2 3 2 4 5 2 5 6 12 2 3 4 5 5 7 8 9 10 11 2 2 3 2 4 5 2 5 2 6 1 2 3 4 5 2 3 4 5 5 6 7 8 9 10 12 2 3 2 4 5 2 3 4 5 2 3 4 5 5 6 7 8 9 10 12 1 2 3 2 4 5 5 6 7 8 9 10 1 2 1 2 3 2 4 5 5 7 8 9 10 1 2 1 2 3 2 4 5 5 12 3 1 2 3 4 5 5 7 8 9 10 1 2 1 2 3 1 2 2 3 2 4 5 5 2 5 1 2 2 3 2 4 5 2 3 2 4 5 5 2 5 2 5 2 2 2 3 4 5 5 7 8 9 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.6078 0.5836 0.5536 0.5155 0.4932 0.4721 0.4519 0.4326 0.4136 0.3941 0.3732 0.3529 0.3362 0.3352 0.5355 0.5357 0.5355 0.5347 0.5518 0.5525	-86.77 -86.93 -87.21 -87.45 -87.45 -87.73 -87.74 -87.54 -87.80 -87.74 -87.54 -87.54 -87.89 -84.89 -84.62 -83.63 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -72.40 -38.62 -87.20 -87.22 -87.22 -86.93 -87.21 -87.45 -87.51 -87.73 -87.79 -87.80 -87.79 -87.80 -87.21 -87.79 -87.80 -87.73 -87.79 -87.80 -87.73 -87.79 -87.80 -87.73 -87.79 -87.80 -87.73 -87.79 -87.80 -87.73 -87.79 -87.80 -87.73 -87.79 -87.80 -87.73 -87.79 -87.80 -87.73 -87.79 -87.80 -87.73 -87.79 -87.80 -87.73 -87.79 -87.80 -87.71 -87.90 -87.80 -87.71 -87.80 -87.71 -87.80 -87.71 -87.80 -87.71 -87.80 -87.71 -87.80 -87.71 -87.80 -87.91 -87.80 -87.91 -8

2		11 16 6 7	07 54
	15	0.4405	-07.34
_	15	0.4415	-87.02
7	16	0.4175	-85.89
7	17	0.3978	-84.89
7	18	0.3729	-84.62
7	19	0.3384	-83.63
7	20	0.2975	-81.18
7	21	0.2505	-76.81
7	22	0 1970	-69 42
7	22	0.1201	56.10
,	23	0.1301	-30.10
2	24	0.4370E-01	21.22
_	25	0.6287E-02	-72.40
7	26	0.1600E-03	-38.62
8	1	0.9572	-87.20
8	2	0.9097	-87.28
8	3	0.8649	-87.22
8	4	0.8249	-86.98
8	5	0.7921	-86.77
8	6	0.7622	-86.93
8	7	0 7309	-87 21
g	, g	0.6996	-87.45
0	0	0.6604	97.62
0	10	0.0094	-07.02
8	10	0.6407	-87.73
8	11	0.6134	-87.79
8	12	0.5871	-87.80
8	13	0.5613	-87.74
8	14	0.5349	-87.54
8	15	0.5065	-87.02
8	16	0.4789	-85.89
8	17	0.4563	-84.89
8	18	0 4278	-84 62
8	19	0 3882	-83.63
0	20	0.2412	01.10
0	20	0.3413	-01.10
8	21	0.2874	-/6.81
8	22	0.2260	-69.42
8	23	0.1584	-56.10
8	24	0.5014E-01	21.22
8	25	0.7212E-02	-72.40
8	26	0.1835E-03	-38.62
9	1	1.073	-87.20
9	2	1.019	-87.28
9	3	0.9693	-87 22
_			07.22
9	4	0.9244	-86.98
9 9	4 5	0.9244 0.8877	-86.98 -86.77
9 9 9	4 5 6	0.9244 0.8877 0.8541	-86.98 -86.77 -86.93
9 9 9 9	4 5 6 7	0.9244 0.8877 0.8541 0.8191	-86.98 -86.77 -86.93 -87.21
9 9 9 9 9	4 5 6 7 8	0.9244 0.8877 0.8541 0.8191 0.7840	-86.98 -86.77 -86.93 -87.21 -87.45
9 9 9 9 9 9	4 5 7 8 9	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502	-86.98 -86.77 -86.93 -87.21 -87.45 -87.62
9 9 9 9 9 9 9 9	4 5 7 8 9 10	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502 0.7180	-86.98 -86.77 -86.93 -87.21 -87.45 -87.62 -87.73
9 9 9 9 9 9 9 9 9 9	4 5 7 8 9 10 11	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502 0.7180 0.6874	-86.98 -86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79
9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 7 8 9 10 11 12	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502 0.7180 0.6874 0.6579	-86.98 -86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 7 8 9 10 11 12 13	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290	-86.98 -86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 7 8 9 10 11 12 13 14	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994	-86.98 -86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 7 8 9 10 11 12 13 14 15	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502 0.7180 0.6874 0.6279 0.6290 0.5994 0.5676	-86.98 -86.93 -86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.02
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 7 8 9 10 11 12 13 14 15 16	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367	-86.98 -86.98 -86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.02 -85.89
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 7 8 9 10 11 12 13 14 15 16 17	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5367 0.5367 0.5313	-86.98 -86.98 -86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.62 -87.62 -87.74 -87.54 -87.62 -85.89 -84.89
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794	-86.98 -86.97 -86.93 -87.45 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.54 -85.89 -84.89 -84.62
999999999999999999999	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.9244 0.8877 0.8541 0.7819 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350	86.98 86.98 86.97 886.93 87.45 87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.62 -87.74 -87.54 -87.62 -87.74 -87.54 -87.62 -83.63
999999999999999999999	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824	86.98 86.98 86.97 87.21 87.45 87.62 87.79 -87.80 -87.74 -87.74 -87.54 -87.02 -87.02 -85.89 -84.89 -84.69 -83.63 -81.18
9999999999999999999999	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	0.9244 0.8877 0.8541 0.8191 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5367 0.5367 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220	86.98 86.98 86.97 87.21 87.45 87.45 87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.02 -83.89 -84.89 -84.89 -84.62 -83.63 -81.18 -76.82
9999999999999999999999	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6579 0.6290 0.5994 0.5367 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533	86.98 86.98 86.98 87.21 87.45 87.45 87.62 -87.73 -87.74 -87.80 -87.74 -87.54 -87.84 -85.89 -84.89 -84.62 -83.63 -81.18 -76.82 -69.42
999999999999999999999999	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0.9244 0.8877 0.8541 0.8191 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3824 0.3220 0.2533 0.1775	86.98 86.98 86.98 87.45 87.45 87.45 87.45 87.62 -87.73 -87.73 -87.79 -87.80 -87.54 -87.54 -87.62 -84.89 -84.62 -83.63 -81.18 -76.82 -69.42 -56.10
9999999999999999999999999999	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01	86.98 86.98 86.98 87.21 87.45 87.62 87.79 -87.80 -87.79 -87.80 -87.74 -87.74 -87.54 -87.02 -85.89 -84.69 -84.69 -84.63 -81.18 -76.82 -69.42 -56.10 21.22
999999999999999999999999999	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0.9244 0.8877 0.8541 0.8191 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02	86.98 86.98 86.97 87.21 87.45 87.45 87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.02 -88.89 -84.89 -84.62 -83.63 -84.118 -76.82 -69.42 -56.10 21.22 -72.40
99999999999999999999999999999	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6579 0.6290 0.5994 0.5367 0.5367 0.5313 0.4794 0.3220 0.3220 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03	86.98 86.98 86.97 87.21 87.45 87.45 87.62 -87.73 -87.73 -87.74 -87.54 -87.54 -87.54 -85.89 -84.89 -84.62 -83.63 -81.18 -76.82 -69.42 -56.10 21.22 -72.40 -38.62
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5367 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180	86.98 86.98 86.97 87.21 87.45 87.45 87.62 -87.73 -87.73 -87.74 -87.80 -87.80 -87.80 -87.74 -87.54 -87.62 -84.62 -84.62 -83.63 -81.18 -69.42 -56.10 21.22 -72.40 -38.62 -87.20
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 26 1 2	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121	86.98 86.98 86.97 87.21 87.45 87.62 87.62 87.79 -87.80 -87.79 -87.80 -87.74 -87.54 -87.02 -85.89 -84.69 -84.69 -83.63 -81.18 -76.82 -56.10 21.22 -72.40 -38.62 -87.20 -87.28
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3	0.9244 0.8877 0.8541 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066	86.98 86.98 86.98 87.45 87.45 87.45 87.45 87.45 87.74 -87.80 -87.74 -87.84 -87.02 -88.89 -84.89 -84.62 -83.62 -84.89 -84.62 -83.62 -69.42 21.22 -72.40 -38.62 -87.20 -87.22 -87.22
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 2 3 4	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017	86.98 86.98 86.97 87.21 87.45 87.45 87.45 87.62 -87.73 -87.74 -87.54 -87.54 -87.54 -85.89 -84.62 -83.63 -81.18 -76.82 -69.42 -56.10 21.22 -72.40 -38.62 -87.20 -87.22 -87.22 -86.98
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 23 3 4 5	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5367 0.5367 0.5113 0.4794 0.4350 0.3824 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765	86.98 86.98 86.97 87.21 87.21 87.45 87.62 87.73 -87.79 -87.80 -87.74 -87.54 -87.74 -87.54 -87.02 -85.89 -84.89 -84.62 -83.63 -81.18 -76.82 -69.42 -56.10 21.22 -72.40 -38.62 -87.28 -87.20 87.28 -86.98 -86.98 -86.97
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\end{array}$	0.9244 0.8877 0.8541 0.7802 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765 0.9396	86.98 86.98 86.97 87.21 87.45 87.45 87.62 87.79 -87.80 -87.79 -87.80 -87.74 -87.54 -87.02 -85.89 -84.69 -84.69 -83.63 -81.18 -76.82 -69.42 -56.10 21.22 -72.40 -38.62 87.20 -87.28 87.22 -86.93
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ \end{array}$	0.9244 0.8877 0.8541 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9396 0.9396 0.9301	86.98 86.98 86.97 87.21 87.45 87.45 87.45 87.62 -87.79 -87.80 -87.74 -87.54 -87.02 -88.89 -84.62 -83.63 -84.62 -84.62 -84.62 -69.42 -72.40 -38.62 -87.20 87.22 86.93 -86.93 -87.21
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\end{array}$	0.9244 0.8877 0.8541 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9396 0.9010 0.8624	86.98 86.98 86.97 87.21 87.45 87.45 87.45 87.45 87.45 87.74 87.54 87.74 87.54 87.74 87.54 87.74 87.74 87.54 87.02 83.69 84.69 84.63 84.63 81.18 -76.82 -69.42 1.22 -72.40 -38.62 87.28 87.22 86.98 -87.22 86.98 -87.21 -86.93 -87.21 -87.45 -87.21 -87.21 -87.24 -87.25 -86.93 -87.21 -87.21 -87.25 -87.21 -87.25 -87.21 -87.25 -87.21 -87.25 -87.21 -87.25 -87.21 -87.25 -87.21 -87.25 -87.21 -87.45 -87.21 -87.25 -87.21 -87.45 -87.25 -87.21 -87.45 -87.25 -87.21 -87.45 -87.25 -87.21 -87.45 -87.45 -87.25 -87.
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 9\\ 1\end{array}$	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5367 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765 0.9396 0.9010 0.8624 0.8252 0.5575 0.5624 0.8252 0.5010 0.59100 0.59100 0.59100 0.591000 0.591000 0.591000 0.59100000000000000000000000000000000	86.98 86.98 86.98 87.45 87.45 87.42 87.45 87.62 -87.73 -87.74 -87.54 -87.54 -87.54 -87.54 -85.89 -84.62 -83.63 -81.18 -76.82 -69.42 -56.10 21.22 -72.40 -38.62 87.20 -87.28 87.20 -87.22 -86.98 -87.22 -86.98 -87.21 -87.45 -
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 1\\ 2\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10 \end{array}$	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765 0.9396 0.9010 0.8624 0.8252 0.7899	86.98 86.98 86.97 87.21 87.45 87.62 87.79 -87.80 -87.79 -87.80 -87.74 -87.74 -87.54 -87.02 -85.89 -84.69 -84.69 -84.62 -69.42 -72.40 -38.62 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.21 -86.93 -87.21 -87.62 -87.73
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{cccc} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array}$	0.9244 0.8877 0.8541 0.7802 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765 0.9396 0.9396 0.9010 0.8624 0.8252 0.7562	86.98 86.98 86.97 87.21 87.45 87.45 87.62 87.74 87.70 -87.70 -87.74 -87.50 -87.74 -87.52 -88.89 -84.62 -83.63 -84.89 -84.62 -83.63 -81.18 -76.82 -69.42 -72.40 -38.62 -87.20 -87.20 -87.22 -87.20 -87.22 -86.93 -87.21 -87.62 -87.73 -87.85 -87.25 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.20 -87.21 -87.85 -87.21 -87.62 -87.73 -87.75
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ \end{array}$	0.9244 0.8877 0.8541 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9396 0.9396 0.9010 0.8624 0.9010 0.8624 0.9396 0.9010 0.8624 0.9396 0.97562 0.7238	86.98 86.98 86.97 87.21 87.45 87.45 87.45 87.45 87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.54 -88.89 -84.62 -83.63 -84.62 -84.72 -86.93 -87.72 -87.73 -87.79 -87.79 -87.79 -87.80
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 6\\ 1\\ 2\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ \end{array}$	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765 0.9396 0.9010 0.8624 0.8252 0.7899 0.7562 0.7562 0.7562 0.7562	86.98 86.98 86.97 87.21 87.45 87.62 87.73 -87.79 -87.80 -87.74 -87.54 -87.20 -87.20 -88.89 -84.62 -83.63 -81.18 -76.82 -69.42 -56.10 21.22 -72.40 -38.62 -87.28 -87.28 -86.98 -86.93 -87.73 -87.62 -87.73 -87.80
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ \end{array}$	0.9244 0.8877 0.8541 0.7502 0.7502 0.7502 0.7502 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765 0.9396 0.9010 0.8624 0.8252 0.7899 0.7562 0.7238 0.6920 0.6594	86.98 86.98 86.97 87.21 87.45 87.62 87.79 -87.80 -87.79 -87.80 -87.74 -87.74 -87.54 87.02 -85.89 -84.69 -84.69 -83.63 -81.18 -76.82 -69.42 -56.10 21.22 -72.40 -38.62 87.20 -87.28 -87.22 -86.93 -87.21 -86.93 -87.21 -87.74 -87.54
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{ccccc} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array}$	0.9244 0.8877 0.8541 0.7802 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765 0.9396 0.9396 0.9010 0.8624 0.8252 0.7238 0.7562 0.7238 0.6920 0.6594 0.6244	86.98 86.98 86.97 87.21 87.45 87.45 87.45 87.62 -87.73 -87.79 -87.80 -88.89 -84.89 -84.62 -83.63 -84.89 -84.62 -83.63 -81.18 -76.82 -69.42 -72.40 -38.62 -87.20 -87.20 -87.20 -87.22 -87.20 -87.22 -86.93 -87.21 -87.45 -87.62 -87.73 -87.74 -87.54 -87.73 -87.74 -87.55 -87.55
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ \end{array}$	0.9244 0.8877 0.8541 0.8191 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9396 0.9396 0.9010 0.8624 0.8252 0.7899 0.7562 0.7238 0.6594 0.6244 0.6594 0.6244 0.5904	86.98 86.98 86.97 87.21 87.45 87.45 87.45 87.45 87.62 -87.73 -87.74 -87.54 -87.54 -87.54 -88.89 -84.89 -84.62 -83.63 -84.89 -84.62 -83.62 -84.89 -84.62 -84.72 -86.93 -87.72 -87.73 -87.79 -87.70 -87.74 -87.74 -87.74 -87.74 -87.74 -87.74 -87.74 -87.74 -87.74 -87.72 -87.70 -87.80 -87.74 -87.80 -87.74 -87.80 -87.74 -87.80 -87.74 -87.80 -87.74 -87.80 -87.74 -87.80
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ \end{array}$	0.9244 0.8877 0.8541 0.7840 0.7780 0.77180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2575-03 1.121 1.066 1.017 0.9765 0.9396 0.9010 0.8624 0.8252 0.7899 0.7562 0.7562 0.7562 0.7594 0.6244 0.504 0.5625	86.98 86.98 86.77 -86.93 87.21 -87.45 -87.73 -87.79 -87.80 -87.74 -87.54 -87.74 -87.54 -88.62 -83.63 -81.18 -76.82 -69.42 -56.10 21.22 -72.40 -38.62 -87.28 -87.28 -87.22 -86.98 -87.22 -86.98 -87.22 -86.98 -87.22 -86.98 -87.22 -86.98 -87.25 -87.73 -87.73 -87.73 -87.73 -87.73 -87.73 -87.73 -87.73 -87.73 -87.73 -87.73 -87.73 -87.73 -87.73 -87.73 -87.74 -87.54 -87.54 -87.54 -85.89 -84.89 -84.89
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ \end{array}$	0.9244 0.8877 0.8541 0.7802 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765 0.9396 0.9010 0.8624 0.8252 0.7238 0.6290 0.6594 0.6244 0.5904 0.5625 0.5273	86.98 86.98 86.97 87.21 87.45 87.45 87.62 87.79 -87.80 -87.79 -87.80 -87.74 -87.54 -87.02 -85.89 -84.69 -84.69 -83.63 -81.18 -76.82 -69.42 -56.10 21.22 -72.40 -38.62 87.20 -87.28 87.22 -86.93 -87.21 -86.93 -87.21 -87.25 -86.93 -87.21 -87.22 -86.93 -87.21 -87.25 -87.21 -87.21 -87.25 -87.21 -87.25 -87.21 -87.21 -87.25 -87.21 -87.21 -87.25 -87.21 -87.21 -87.21 -87.25 -87.21 -87.25 -87.21 -87.25 -87.21 -87.25 -87.21 -87.25 -87.27 -87.25 -87.27 -87.25 -87.27 -87.25 -87.27 -87.25 -87.27 -87.54 -87.54 -84.89 -84.89 -84.82 -84.84 -84.84 -84.84 -84.84 -
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{ccccccc} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \end{array}$	0.9244 0.8877 0.8541 0.7802 0.7502 0.7180 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765 0.9396 0.9396 0.9010 0.8624 0.8252 0.7238 0.6920 0.6594 0.6244 0.5625 0.5273 0.4785	86.98 86.98 86.97 87.21 87.45 87.45 87.45 87.62 87.74 87.74 87.74 87.74 87.74 87.74 87.74 87.74 87.74 87.74 87.62 83.63 84.89 84.89 84.62 -83.63 81.18 -76.82 -69.42 -72.40 -38.62 87.20 87.20 87.22 86.98 -87.22 86.93 -87.21 -87.45 -87.22 -86.93 -87.21 -87.80 -87.21 -87.80 -87.73 -87.74 -87.54 -87.62 -87.73 -87.74 -87.55 -87.55 -87
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ \end{array}$	0.9244 0.8877 0.8541 0.7840 0.7502 0.7180 0.6874 0.6579 0.6290 0.5994 0.5676 0.5367 0.5113 0.4794 0.4350 0.3824 0.3220 0.2533 0.1775 0.5618E-01 0.8082E-02 0.2057E-03 1.180 1.121 1.066 1.017 0.9765 0.9396 0.9010 0.8624 0.8252 0.7899 0.7562 0.7238 0.6920 0.6594 0.6525 0.5273 0.4785 0.5273 0.4785 0.4207	86.98 86.98 86.97 87.21 87.45 87.45 87.45 87.45 87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -83.69 -84.89 -84.62 -83.63 -84.89 -84.62 -83.62 -69.42 -72.40 -38.62 -87.20 -87.20 -87.20 -87.22 -86.98 -87.22 -86.93 -87.22 -86.93 -87.21 -87.45 -87.22 -86.93 -87.21 -87.45 -87.22 -86.93 -87.21 -87.45 -87.22 -86.93 -87.21 -87.25 -87.20 -87.80 -87.40

10	22	0.2786	-69.42
10	23 24	0.1953 0.6181E-01	-56.10 21.22
10	25	0.8891E-02	-72.40
10	26	0.2262E-03	-38.62
11	2	1.278	-87.20
11	3	1.155	-87.22
11	4	1.102	-86.98
11 11	5	1.058	-86.77 -86.93
11	7	0.9761	-87.21
11	8	0.9343	-87.45
11	9 10	0.8557	-87.73
11	11	0.8192	-87.79
11	12	0.7841	-87.80
11	13	0.7497	-87.54
11	15	0.6765	-87.02
11	16 17	0.6396	-85.89 -84.89
11	18	0.5713	-84.62
11	19	0.5184	-83.63
11	20 21	0.4558	-81.18 -76.81
11	22	0.3019	-69.42
11	23	0.2116	-56.10
11 11	24 25	0.6696E-01	21.22
11	26	0.2451E-02	-38.62
12	1	1.367	-87.20
12	2	1.299	-87.28 -87.22
12	4	1.178	-86.98
12	5	1.131	-86.77
12	6 7	1.088	-86.93 -87.21
12	8	0.9991	-87.45
12	9	0.9560	-87.62
12	10	0.9150	-87.79
12	12	0.8385	-87.80
12	13	0.8016	-87.74 -87.54
12	15	0.7234	-87.02
12	16	0.6840	-85.89
12	17 18	0.6516	-84.89 -84.62
12	19	0.5544	-83.63
12	20	0.4874	-81.18
12	21	0.4104	-76.81
12	23	0.2263	-56.10
12	24	0.7160E-01	21.22
12	26	0.2621E-03	-38.62
13	1	1.445	-87.20
13	2	1.374	-87.28 -87.22
13	4	1.245	-86.98
13	5	1.196	-86.77
13	6 7	1.151 1.104	-86.93 -87.21
13	8	1.056	-87.45
13	9	1.011	-87.62
13	10	0.9674 0.9261	-87.73
13	12	0.8864	-87.80
13	13 14	0.8475	-87.74 -87.54
13	15	0.7648	-87.02
13	16	0.7231	-85.89
13 13	17 18	0.6889 0.6459	-84.89 -84.62
13	19	0.5861	-83.63
13	20	0.5153	-81.18
13 13	21 22	0.4339	-70.81 -69.42
13	23	0.2392	-56.10
13	24	0.7570E-01	21.22
13 13	25 26	0.1089E-01 0.2771E-03	-72.40 -38.62
14	1	1.512	-87.20
14 14	2	1.437 1.367	-87.28 -87.22
14	5	1.507	07.22

14		1 0 0 0	0000
	4	1.303	-86.98
14	5	1.252	-86.77
14	6	1.204	-86.93
14	/	1.155	-87.21
14	8	1.105	-87.45
14	9	1.058	-87.62
14	10	1.012	-8/./3
14	11	0.9692	-87.79
14	12	0.9277	-87.80
14	13	0.8869	-87.74
14	14	0.8452	-87.54
14	15	0.8003	-87.02
14	16	0.7567	-85.89
14	17	0.7210	-84.89
14	18	0.6759	-84.62
14	19	0.6133	-83.63
14	20	0.5392	-81.18
14	21	0.4541	-76.81
14	22	0.3571	-69.42
14	23	0.2503	-56.10
14	24	0.7922E-0	1 21.22
14	25	0.1140E-0	1 -72.40
14	26	0.2900E-0	3 -38.62
15	1	1.568	-87.20
15	2	1.490	-87.28
15	3	1.417	-87.22
15	4	1.351	-86.98
15	5	1.298	-86.77
15	6	1.249	-86.93
15	7	1.197	-87.21
15	8	1.146	-87.45
15	9	1.097	-87.62
15	10	1.050	-87.73
15	11	1.005	-87.79
15	12	0.9618	-87.80
15	13	0.9196	-87.74
15	14	0.8763	-87.54
15	15	0.8298	-87.02
15	16	0.7846	-85.89
15	17	0.7475	-84.89
15	18	0.7008	-84.62
15	19	0.6359	-83.63
15	20	0.5591	-81.18
15	21	0.4708	-76.81
15	22	0.3703	-69.42
15	23	0.2596	-56.10
15	24	0.8214E-0	1 21.22
15	25	0.1182E-0	1 -72.40
15	26	0.3006E-0	3 -38.62
16	1	1.612	-87.20
16	2	1.532	-87.28
16	3	1.457	-87.22
16		1 200	-86.98
10	4	1.309	-00.70
10 16	4 5	1.334	-86.77
10 16 16	4 5 6	1.334 1.283	-86.77 -86.93
16 16 16 16	4 5 6 7	1.334 1.283 1.231	-86.93 -87.21
16 16 16 16 16	4 5 6 7 8	1.334 1.283 1.231 1.178	-86.77 -86.93 -87.21 -87.45
16 16 16 16 16 16	4 5 6 7 8 9	1.334 1.283 1.231 1.178 1.127	-86.77 -86.93 -87.21 -87.45 -87.62
16 16 16 16 16 16 16	4 5 7 8 9 10	1.389 1.334 1.283 1.231 1.178 1.127 1.079	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73
16 16 16 16 16 16 16 16	4 5 7 8 9 10 11	1.389 1.334 1.283 1.231 1.178 1.127 1.079 1.033	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79
16 16 16 16 16 16 16 16 16	4 5 7 8 9 10 11 12	1.389 1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80
16 16 16 16 16 16 16 16 16 16	4 5 6 7 8 9 10 11 12 13	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74
16 16 16 16 16 16 16 16 16 16	4 5 6 7 8 9 10 11 12 13 14	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54
10 16 16 16 16 16 16 16 16 16 16 16 16	4 5 6 7 8 9 10 11 12 13 14 15	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.02
10 16 16 16 16 16 16 16 16 16 16 16 16 16	4 5 6 7 8 9 10 11 12 13 14 15 16	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8065	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.02 -85.89
16 16 16 16 16 16 16 16 16 16 16 16 16 1	4 5 6 7 8 9 10 11 12 13 14 15 16 17	1.334 1.283 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8655 0.7684	-86.77 -86.93 -87.21 -87.45 -87.62 -87.62 -87.79 -87.80 -87.74 -87.54 -87.54 -87.52 -85.89 -84.89
16 16 16 16 16 16 16 16 16 16 16 16 16 1	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1.334 1.283 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8665 0.7684 0.7204	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.54 -85.89 -84.89 -84.62
16 16 16 16 16 16 16 16 16 16 16 16 16 1	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8065 0.7684 0.7204 0.6537	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.70 -87.80 -87.74 -87.74 -87.54 -87.62 -85.89 -84.89 -84.89 -84.62 -83.63
16 16 16 16 16 16 16 16 16 16 16 16 16 1	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.334 1.283 1.231 1.178 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8065 0.7684 0.7204 0.6537 0.5747	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.74 -87.54 -87.72 -85.89 -84.89 -84.62 -83.63 -81.18
10 16 16 16 16 16 16 16 16 16 16	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8655 0.7684 0.7204 0.6537 0.5747 0.4839	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.80 -87.74 -87.54 -87.02 -85.89 -84.89 -84.62 -83.63 -81.18 -76.81
10 16	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.334 1.283 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9088 0.8530 0.8530 0.8530 0.8655 0.7684 0.7204 0.6537 0.5747 0.4839 0.3806	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.54 -87.54 -87.62 -85.89 -84.62 -83.63 -81.18 -76.81 -69.42
16 16	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1.334 1.283 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8065 0.7684 0.7204 0.6537 0.5747 0.4839 0.3806 0.2668	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.80 -87.74 -87.74 -87.74 -87.54 -87.02 -85.89 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10
10 16	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8065 0.7684 0.7204 0.6537 0.5747 0.4839 0.3806 0.2668 0.8443E-0	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.74 -87.54 -87.72 -85.89 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22
10 16	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8065 0.7684 0.7204 0.6537 0.5747 0.4839 0.3806 0.2668 0.8443E-0 0.1215E-0	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.02 -85.89 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40
10 16	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8655 0.7684 0.7204 0.6537 0.5747 0.4839 0.3806 0.2668 0.8443E-0 0.1215E-0 0.3090E-0	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.74 -87.54 -87.02 -85.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40 3 -38.62
10 16 17	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 1	1.334 1.283 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9088 0.8530 0.8065 0.7684 0.7204 0.6537 0.5747 0.5747 0.4839 0.3806 0.2668 0.8443E-0 0.1215E-0 0.3090E-0 1.643	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.70 -87.80 -87.74 -87.74 -87.74 -87.74 -87.74 -87.74 -87.74 -87.62 -85.89 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40 3 -38.62 -87.20
10 16 17	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 12 22 23 24 25 26 1 2	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8065 0.7684 0.7204 0.6537 0.5747 0.5747 0.4839 0.3806 0.2668 0.8443E-0 0.1215E-0 0.3090E-0 1.643 1.562	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.74 -87.54 -87.02 -85.89 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40 3 -38.62 -87.20 -87.28
10 16 17 17	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8655 0.7684 0.7204 0.6537 0.5747 0.4839 0.3806 0.2668 0.8443E-0 0.3090E-0 1.643 1.562 1.485	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.80 -87.74 -87.54 -87.02 -85.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 11 -72.40 33 -38.62 -87.20 -87.28 -87.22
10 16 17 17	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8655 0.7684 0.7204 0.6537 0.5747 0.4839 0.3806 0.2668 0.8443E-0 0.3090E-0 1.643 1.562 1.485 1.416	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.74 -87.54 -87.62 -83.63 -84.62 -83.63 -84.62 -83.63 -84.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40 3 -38.62 -87.20 -87.28 -87.22 -86.98
10 16 17 17 17 17	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5	1.334 1.283 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9088 0.8653 0.7684 0.7204 0.6537 0.5747 0.5747 0.5747 0.5747 0.5747 0.5747 0.5747 0.5747 0.5204 0.2668 0.2668 0.2668 0.2668 0.2668 0.215E-0 0.3090E-0 1.643 1.562 1.485 1.416 1.360	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.54 -87.54 -87.54 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40 3 -38.62 -87.20 -87.20 -87.20 -87.28 -87.22 -86.98 -86.77
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 26 1 2 3 4 5 6	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8065 0.7684 0.7204 0.6537 0.5747 0.5747 0.4839 0.3806 0.2668 0.2668 0.2668 0.2668 0.2668 0.22668 0.1215E-0 0.3090E-0 1.643 1.562 1.485 1.416 1.309	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.74 -87.54 -87.72 -85.89 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40 3 -38.62 -87.20 -87.22 -86.93
10 16 17 17 17 17 17 17 17 17 17 17	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8065 0.7684 0.7204 0.6537 0.7747 0.4839 0.3806 0.2668 0.8443E-0 0.3090E-0 1.643 1.562 1.485 1.416 1.360 1.255	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.80 -87.74 -87.80 -87.74 -87.84 -87.62 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40 3 -87.20 -87.20 -87.22 -86.93 -86.93 -86.93 -87.21
10 116 117 11	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 12 23 24 25 6 1 2 2 3 4 5 6 7 8	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9008 0.8530 0.8655 0.7684 0.7204 0.6537 0.7747 0.4839 0.3806 0.2668 0.4443E-0 0.3090E-0 1.643 1.562 1.485 1.416 1.360 1.309 1.255 1.201	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.80 -87.74 -87.54 -87.80 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40 3 -38.62 -87.28 -87.28 -87.28 -86.93 -87.21 -87.45
$\begin{array}{c} 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\$	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9	1.334 1.283 1.283 1.231 1.178 1.127 1.079 1.033 0.9887 0.9453 0.9088 0.8530 0.8530 0.8530 0.8653 0.7684 0.7204 0.6537 0.5747 0.5747 0.5747 0.5747 0.5747 0.5747 0.4839 0.3806 0.2668 0.8443E-0 0.1215E-0 0.3090E-0 1.643 1.562 1.485 1.416 1.309 1.255 1.201 1.149	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.54 -87.54 -87.54 -87.54 -83.63 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40 3 -38.62 -87.20 -87.28 -87.22 -86.98 -86.77 -86.93 -87.21 -87.45 -87.62
$\begin{array}{c} 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\$	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 26 1 2 3 4 5 6 7 8 9 10	1.334 1.283 1.231 1.178 1.127 1.079 1.033 0.9453 0.9008 0.8530 0.8065 0.7684 0.7204 0.6537 0.5747 0.5747 0.4839 0.3806 0.2668 0.2668 0.2668 0.2668 0.2668 0.2668 0.1215E-0 0.3090E-0 1.643 1.562 1.485 1.416 1.309 1.255 1.201 1.149 1.100	-86.77 -86.93 -87.21 -87.45 -87.62 -87.73 -87.79 -87.80 -87.74 -87.74 -87.54 -87.72 -85.89 -84.89 -84.62 -83.63 -81.18 -76.81 -69.42 -56.10 1 21.22 1 -72.40 3 -38.62 -87.20 -87.22 -87.22 -86.93 -87.21 -87.45 -86.93 -87.21 -87.45 -87.62 -87.73

17	12	1.008	-87.80
17	13	0.9638	-87.74
17	14	0.9184	-87.54
17	15	0.8697	-87.02
17	16	0.8223	-85.89
17	17	0.7834	-84.89
17	18	0.7344	-84.62
17	19	0.6665	-83.63
17	20	0.5859	-81.18
17	21	0.4934	-76.81
17	22	0.3881	-69.42
17	23	0.2720	-56.10
17	24	0.8608E-01	21.22
17	25	0.1238E-01	-72.40
17	26	0.3151E-03	-38.62
18	1	1.662	-87.20
18	2	1.580	-87.28
18	3	1.502	-87.22
18	4	1.433	-86.98
18	5	1.376	-86.77
18	6	1.324	-86.93
18	7	1.269	-87.21
18	8	1.215	-87.45
18	9	1.163	-87.62
18	10	1.113	-87.73
18	11	1.065	-87.79
18	12	1.020	-87.80
18	13	0.9749	-87.74
18	14	0.9290	-87.54
18	15	0.8797	-87.02
18	16	0.8318	-85.89
18	17	0.7925	-84.89
18	18	0.7429	-84.62
18	19	0.6742	-83.63
18	20	0.5927	-81.18
18	21	0.4991	-76.81
18	22	0.3926	-69.42
18	23	0.2752	-56.10
18	24	0.8708E-01	21.22
18	25	0.1253E-01	-72.40
18	26	0.3187E-03	-38.62
19	1	1.669	-87.20
19	2	1.586	-87.28
19	3	1.508	-87.22
19	4	1.438	-86.98
19	5	1.381	-86.77
19	6	1.329	-86.93
19	7	1.274	-87.21
19	8	1 220	-87.45
19	9	1.167	-87.62
19	10	1.117	-87.73
19	11	1.069	-87.79
19	12	1.024	-87.80
19	13	0.9786	-87 74
19	14	0.9325	-87 54
19	15	0.8831	-87.02
19	16	0.8350	-85.89
19	17	0.7955	-84.89
19	18	0.7458	-84.62
19	19	0.6767	-83.63
19	20	0 5950	-81 18
10	21	0 5010	-76.81
10	21	0 3941	-69.42
19	22 22	0.3741	-07.42
19	23 24	0.2702	-30.10
19	24	0.8/41E-01	21.22
19	25	0.125/E-01	-/2.40
, 19	26	0.3199E-03	-38.62
UEAVE	MOT	ION TRANSFER	FUNCTION
nëAVË	MUT	ION I KANSFER	FUNCTION

idir	ifreq	ampl	phase
1	1	1.028	-0.19
1	2	1.031	-0.22
1	3	1.035	-0.26
1	4	1.040	-0.33
1	5	1.046	-0.41
1	6	1.054	-0.47
1	7	1.064	-0.54
1	8	1.077	-0.67
1	9	1.095	-0.90
1	10	1.120	-1.28
1	11	1.155	-1.94
1	12	1.208	-3.16
1	13	1.288	-5.67
1	14	1.405	-11.24
1	15	1.518	-23.54

1	16	1.451	-45.02
1	17	1.086	-71.28
1	18	0.6098	-93.15
1	20	0.2757	-101.55
1	21	0.2714E-01	-48.73
1	22	0.3003E-01	61.13
1	23	0.4434E-01	92.98
1	24	0.1488E-01	172.36
1	25	0.8410E-03	105.80
1	20	1.028	-0.19
2	2	1.031	-0.22
2	3	1.035	-0.26
2	4	1.040	-0.33
2	5	1.046	-0.41
2	6	1.054	-0.47
2	/	1.064	-0.54
2	9	1.095	-0.90
2	10	1.120	-1.28
2	11	1.155	-1.94
2	12	1.208	-3.16
2	13	1.288	-5.67
2	14	1.403	-23 54
2	16	1.451	-45.02
2	17	1.086	-71.28
2	18	0.6098	-93.15
2	19	0.2757	-101.33
2	20	0.1050 0.2714E-01	-92.95
2	22	0.3003E-01	61.13
2	23	0.4434E-01	92.98
2	24	0.1488E-01	172.36
2	25	0.8410E-03	105.80
2	26	0.1232E-05	173.26
3	2	1.020	-0.22
3	3	1.035	-0.26
3	4	1.040	-0.33
3	5	1.046	-0.41
3	6 7	1.054	-0.47
3	8	1.077	-0.67
3	9	1.095	-0.90
3	10	1.120	-1.28
3	11	1.155	-1.94
3	12	1.208	-3.10
3	14	1.405	-11.24
3	15	1.518	-23.54
3	16	1.451	-45.02
3	17	1.086	-71.28
3	10	0.8098	-95.15
3	20	0.1050	-92.95
3	21	0.2714E-01	-48.73
3	22	0.3003E-01	61.13
3	23	0.4434E-01	92.98
3	25	0.8410E-03	105.80
3	26	0.1232E-05	173.26
4	1	1.028	-0.19
4	2	1.031	-0.22
4 1	3	1.035	-0.26
4	5	1.040	-0.41
4	6	1.054	-0.47
4	7	1.064	-0.54
4	8	1.077	-0.67
4 1	9 10	1.095	-0.90
4	11	1.120	-1.20
4	12	1.208	-3.16
4	13	1.288	-5.67
4	14	1.405	-11.24
4 4	15 16	1.518	-45.02
4	17	1.086	-71.28
4	18	0.6098	-93.15
4	19	0.2757	-101.33
4 4	20	0.1050	-92.95 _18 72
4	21 22	0.2714E-01 0.3003E-01	61.13
4	23	0.4434E-01	92.98

4	24	0.1488E-01	172.36
4	25	0.8410E-03	105.80
4	26	0.1232E-05	173.26
5	1	1.028	-0.19
5	2	1.031	-0.22
5	3	1.035	-0.26
5	4	1.040	-0.33
5	5	1.046	-0.41
5	6	1.054	-0.47
5	7	1.064	-0.54
5	8	1.077	-0.67
5	9	1.095	-0.90
5	10	1.120	-1.28
5	11	1.155	-1.94
5	12	1.208	-3.16
5	13	1.288	-5.67
5	14	1.405	-11.24
5	15	1.518	-23.54
5	16	1.451	-45.02
5	17	1.086	-71.28
5	18	0.6098	-93.15
5	19	0.2757	-101.33
5	20	0.1050	-92.95
5	21	0.2714E-01	-48.73
5	22	0.3003E-01	61.13
5	23	0.4434E-01	92.98
5	24	0.1488E-01	172.36
5	25	0.8410E-03	105.80
5	26	0.1232E-05	173.26
6	1	1.028	-0.19
6	2	1.031	-0.22
6	3	1.035	-0.26
6	4	1.040	-0.33
6	5	1.046	-0.41
6	6	1.010	-0.47
6	7	1.054	-0.54
6	, g	1.004	-0.67
6	0	1.077	-0.07
6	10	1.095	1 20
6	11	1.120	-1.20
6	11	1.155	-1.94
6	12	1.208	-3.10
0	13	1.200	-3.07
6	14	1.405	-11.24
6	15	1.518	-23.54
6	16	1.451	-45.02
6	1/	1.086	-/1.28
6	18	0.6098	-93.15
6	19	0.2/5/	-101.33
6	20	0.1050	-92.95
6	21	0.2/14E-01	-48.73
6	22	0.3003E-01	61.13
6	23	0.4434E-01	92.98
6	24	0.1488E-01	172.36
6	25	0.8410E-03	105.80
6	26	0.1232E-05	1/3.26
7	1	1.028	-0.19
7	2	1.031	-0.22
/	3	1.035	-0.26
2	4	1.040	-0.33
/	5	1.046	-0.41
7	7	1.054	-0.47
/	/	1.064	-0.54
/	8	1.077	-0.67
7	9	1.095	-0.90
7	10	1.120	-1.20
/	11	1.155	-1.94
/	12	1.208	-3.16
/	13	1.288	-5.07
/	14	1.405	-11.24
/	15	1.518	-23.54
/	16	1.451	-45.02
/	1/	1.086	-/1.28
/	18	0.6098	-93.15
7	19	0.2757	-101.33
/	20	0.1050	-92.95
/	21	0.2/14E-01	-48.73
/	22	0.3003E-01	61.13
/	23	0.4434E-01	92.98
7	24	0.1488E-01	1/2.36
/	25	0.8410E-03	105.80
7	26	0.1232E-05	173.26
8	1	1.028	-0.19
8	2	1.031	-0.22
8	3	1.035	-0.26
8	4	1.040	-0.33
8	5	1.046	-0.41

8	6	1.054	-0.47
о 8	8	1.084	-0.67
8	9	1.095	-0.90
8	10	1.120	-1.28
8 8	11	1.155	-1.94 -3.16
8	13	1.288	-5.67
8	14	1.405	-11.24
8 8	15 16	1.518	-23.54
8	17	1.086	-71.28
8	18	0.6098	-93.15
8	19	0.2757	-101.33
8	20 21	0.1050 0.2714F-01	-92.95
8	22	0.3003E-01	61.13
8	23	0.4434E-01	92.98
8	24	0.1488E-01	172.36
о 8	25 26	0.1232E-05	173.26
9	1	1.028	-0.19
9	2	1.031	-0.22
9	3	1.035	-0.26
9	5	1.046	-0.41
9	6	1.054	-0.47
9	7	1.064	-0.54
9	8 9	1.077	-0.87
9	10	1.120	-1.28
9	11	1.155	-1.94
9	12	1.208	-3.16
9	13	1.405	-11.24
9	15	1.518	-23.54
9	16	1.451	-45.02
9	17 18	1.086 0.6098	-71.28
9	19	0.2757	-101.33
9	20	0.1050	-92.95
9	21	0.2714E-01	-48.73
9	22	0.3003E-01 0.4434E-01	92.98
9	24	0.1488E-01	172.36
9	25	0.8410E-03	105.80
9 10	26 1	0.1232E-05	173.26
10	2	1.023	-0.22
10	3	1.035	-0.26
10	4	1.040	-0.33
10	5 6	1.048	-0.41
10	7	1.064	-0.54
10	8	1.077	-0.67
10	9 10	1.095	-0.90
10	10	1.120	-1.28
10	12	1.208	-3.16
10	13	1.288	-5.67
10	14	1.518	-11.24 -23.54
10	16	1.451	-45.02
10	17	1.086	-71.28
10	18	0.6098	-93.15
10	20	0.1050	-92.95
10	21	0.2714E-01	-48.73
10	22	0.3003E-01	61.13
10	23 24	0.4434E-01 0.1488E-01	172.36
10	25	0.8410E-03	105.80
10	26	0.1232E-05	173.26
11 11	1	1.028	-0.19 -0.22
11	2 3	1.035	-0.26
11	4	1.040	-0.33
11	5	1.046	-0.41
11 11	6 7	1.054	-0.47 -0.54
11	, 8	1.077	-0.67
11	9	1.095	-0.90
11 11	10	1.120	-1.28
11	12	1.208	-3.16
11	13	1.288	-5.67

11 11	14 15	1.405	-11.24
11	16	1.451	-45.02
11	17	1.086	-71.28
11 11	18 19	0.6098	-93.15
11	20	0.1050	-92.95
11	21	0.2714E-01	-48.73
11	22	0.3003E-01 0.4434E-01	92.98
11	24	0.1488E-01	172.36
11 11	25 26	0.8410E-03	105.80 173.26
12	1	1.028	-0.19
12	2	1.031	-0.22
12 12	3 4	1.035	-0.26
12	5	1.046	-0.41
12 12	6 7	1.054	-0.47
12	8	1.077	-0.67
12	9	1.095	-0.90
12 12	10	1.120	-1.28 -1.94
12	12	1.208	-3.16
12 12	13	1.288	-5.67
12	14	1.518	-23.54
12	16	1.451	-45.02
12 12	17 18	1.086 0.6098	-71.28 -93.15
12	19	0.2757	-101.33
12	20	0.1050 0.2714E-01	-92.95
12	21	0.2714E-01 0.3003E-01	-46.73
12	23	0.4434E-01	92.98
12 12	24 25	0.1488E-01 0.8410F-03	172.36 105.80
12	26	0.1232E-05	173.26
13	1	1.028	-0.19
13 13	2	1.031 1.035	-0.22
13	4	1.040	-0.33
13 13	5	1.046	-0.41
13	7	1.064	-0.54
13	8	1.077	-0.67
13	9 10	1.120	-0.90
13	11	1.155	-1.94
13 13	12 13	1.208 1.288	-3.16 -5.67
13	14	1.405	-11.24
13	15	1.518	-23.54
13	10	1.451	-43.02
13	18	0.6098	-93.15
13 13	19 20	0.2757	-101.33 -92.95
13	21	0.2714E-01	-48.73
13	22	0.3003E-01	61.13
13	23	0.1488E-01	172.36
13	25	0.8410E-03	105.80
13 14	26	0.1232E-05 1.028	173.26 -0.19
14	2	1.031	-0.22
14 14	3	1.035	-0.26
14	5	1.046	-0.33
14	6	1.054	-0.47
14 14	/ 8	1.064 1.077	-0.54 -0.67
14	9	1.095	-0.90
14 14	10	1.120	-1.28 -1.94
14 14	12	1.208	-3.16
14	13	1.288	-5.67
14 14	14 15	1.405 1.518	-11.24 -23.54
14	16	1.451	-45.02
14 14	17 18	1.086	-71.28 -93.15
14	19	0.2757	-101.33
14	20	0.1050	-92.95
14	21	0.2/14E-01	-48./3

14	22	0.3003E-01	61.13
14 14	23 24	0.4434E-01 0.1488E-01	92.98 172.36
14	25	0.8410E-03	105.80
14	26	0.1232E-05	173.26
15 15	1	1.028	-0.19
15	3	1.035	-0.26
15	4	1.040	-0.33
15	5	1.046	-0.41
15	7	1.064	-0.47
15	8	1.077	-0.67
15	9	1.095	-0.90
15 15	10	1.120	-1.28 -1.94
15	12	1.208	-3.16
15	13	1.288	-5.67
15	14	1.405	-11.24
15	16	1.451	-45.02
15	17	1.086	-71.28
15	18	0.6098	-93.15
15 15	20	0.2757	-101.33
15	21	0.2714E-01	-48.73
15	22	0.3003E-01	61.13
15	23	0.4434E-01	92.98
15	24	0.8410E-03	105.80
15	26	0.1232E-05	173.26
16	1	1.028	-0.19
16 16	2	1.031	-0.22
16	4	1.040	-0.33
16	5	1.046	-0.41
16	6	1.054	-0.47
16	8	1.064	-0.54
16	9	1.095	-0.90
16	10	1.120	-1.28
16 16	11	1.155	-1.94 -3.16
16	13	1.288	-5.67
16	14	1.405	-11.24
16 16	15	1.518	-23.54
16	17	1.086	-71.28
16	18	0.6098	-93.15
16	19	0.2757	-101.33
16 16	20	0.1050 0.2714E-01	-92.95 -48.73
16	22	0.3003E-01	61.13
16	23	0.4434E-01	92.98
16 16	24 25	0.1488E-01 0.8410F-03	172.36
16	26	0.1232E-05	173.26
17	1	1.028	-0.19
17	2	1.031	-0.22
17 17	3 4	1.035	-0.26
17	5	1.046	-0.41
17	6	1.054	-0.47
17 17	7	1.064	-0.54
17	9	1.095	-0.90
17	10	1.120	-1.28
17	11	1.155	-1.94
17	12	1.288	-5.67
17	14	1.405	-11.24
17	15	1.518	-23.54
17 17	16 17	1.451	-45.02 -71.28
17	18	0.6098	-93.15
17	19	0.2757	-101.33
17	20	0.1050	-92.95
17 17	21 22	0.2/14E-01 0.3003E-01	-48.73 61.13
17	23	0.4434E-01	92.98
17	24	0.1488E-01	172.36
17 17	25	0.8410E-03	105.80
18	20 1	1.028	-0.19
18	2	1.031	-0.22
18	3	1.035	-0.26

18	4	1.040	-0.33
18	5	1.046	-0.41 -0.47
18	7	1.064	-0.54
18	8	1.077	-0.67
18	9 10	1.095	-0.90
18	11	1.155	-1.94
18	12	1.208	-3.16
18 18	13 14	1.288	-5.67 -11 24
18	15	1.518	-23.54
18	16	1.451	-45.02
18 18	17 18	1.086	-71.28
18	19	0.2757	-101.33
18	20	0.1050	-92.95
18	21	0.2714E-01	-48.73
18	23	0.3003E-01 0.4434E-01	92.98
18	24	0.1488E-01	172.36
18	25	0.8410E-03	105.80
18	26 1	1.028	-0.19
19	2	1.031	-0.22
19	3	1.035	-0.26
19	4 5	1.040	-0.33
19	6	1.054	-0.47
19	7	1.064	-0.54
19	8	1.077	-0.67
19	10	1.120	-1.28
19	11	1.155	-1.94
19	12	1.208	-3.16
19	13 14	1.288	-5.67
19	15	1.518	-23.54
19	16	1.451	-45.02
19 19	17 18	1.086 0.6098	-71.28 -93.15
19	19	0.2757	-101.33
19	20	0.1050	-92.95
19	21	0.2714E-01	-48.73
10	22	0 3003E-01	61 13
19 19	22 23	0.3003E-01 0.4434E-01	61.13 92.98
19 19 19	22 23 24	0.3003E-01 0.4434E-01 0.1488E-01	61.13 92.98 172.36
19 19 19 19	22 23 24 25	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E 05	61.13 92.98 172.36 105.80
19 19 19 19 19	22 23 24 25 26	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05	61.13 92.98 172.36 105.80 173.26
19 19 19 19 19 19 	22 23 24 25 26 MOTIO	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05	61.13 92.98 172.36 105.80 173.26 UNCTION
19 19 19 19 ' ROLL I '	22 23 24 25 26 MOTIO ifreq	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F 	61.13 92.98 172.36 105.80 173.26 UNCTION
19 19 19 19 ' ROLL I ' 'idir 1	22 23 24 25 26 MOTIO ifreq 1 2	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 101.86
19 19 19 ' ROLL I ' 'idir 1 1	22 23 24 25 26 MOTIO ifreq 1 2 3	0.3003E-01 0.4434E-01 0.1488E-01 0.1232E-05 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1264E-17	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55
19 19 19 19 ' 'idir 1 1 1 1	22 23 24 25 26 MOTIO ifreq 1 2 3 4	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1637E-17	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93
19 19 19 19 ' 'idir 1 1 1 1 1	22 23 24 25 26 MOTIO ifreq 1 2 3 4 5 6	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1637E-17	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 40.20
19 19 19 19 ' 'idir 1 1 1 1 1 1 1 1	22 23 24 25 26 MOTIO ifreq 1 2 3 4 5 6 7	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1637E-17 0.1486E-17 0.7621E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65
19 19 19 ' ROLL 1 ' 'idir 1 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 MOTIO ifreq 1 2 3 4 5 6 7 8	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1637E-17 0.1645E-17 0.1645E-17 0.7621E-18 0.5602E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67
19 19 19 '	22 23 24 25 26 MOTIO ifreq 1 2 3 4 5 6 7 8 9	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.4734E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93
19 19 19 '	22 23 24 25 26 MOTIO ifreq 1 2 3 4 5 6 7 8 9 10 11	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1288E-17 0.1637E-17 0.1637E-17 0.1637E-17 0.1645E-17 0.7621E-18 0.5602E-18 0.4734E-18 0.4734E-18 0.5109E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -165.67 -151.93 -137.49 -126.27
19 19 19 ' 'idir ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 WOTIO ifreq 1 2 3 4 5 6 7 8 9 10 11 12	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F 0.1102E-17 0.1288E-17 0.1288E-17 0.1637E-17 0.1637E-17 0.1647E-17 0.7621E-18 0.5602E-18 0.5109E-18 0.5871E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -165.67 -151.93 -137.49 -126.27 -118.63
19 19 19 ' 'idir ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 woTIO ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.4734E-18 0.5109E-18 0.509E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62
19 19 19 ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 woTIO ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.5702E-18 0.5109E-18 0.509E-18 0.5871E-18 0.6960E-18 0.854E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80
19 19 19 19 19 19 '	22 23 24 25 26 WOTIO ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.5602E-18 0.5109E-18 0.509E-18 0.5971E-18 0.5871E-18 0.6960E-18 0.584E-18 0.1104E-17 0.1322E-17	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92
19 19 19 19 19 19 19 10 11 11 1 1 1 1 1	22 23 24 25 26 WOTIO ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.7621E-18 0.7621E-18 0.5602E-18 0.4734E-18 0.5602E-18 0.5707E-18 0.509E-18 0.509E-18 0.509E-18 0.509E-18 0.5871E-18 0.6960E-18 0.104E-17 0.1322E-17 0.1322E-17 0.1241E-17	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -110.80 -116.92 -123.16
19 19 19 19 19 19 19 10 11 11 1 1 1 1 1	22 23 24 25 26 WOTIO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.5707E-18 0.5602E-18 0.5707E-18 0.5707E-18 0.5871E-18 0.5871E-18 0.1104E-17 0.1322E-17 0.1322E-17 0.132E-17 0.132E-17 0.132E-17	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.69 -105.97
19 19 19 19 19 19 19 10 11 11 1 1 1 1 1	22 23 24 25 26 WOTIO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.5702E-18 0.5702E-18 0.5871E-18 0.6960E-18 0.5871E-18 0.6960E-18 0.5871E-18 0.104E-17 0.1322E-17 0.1241E-17 0.0392E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.69 -105.97 -99.87
19 19 19 19 ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 MOTIO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.5707E-18 0.5602E-18 0.5707E-18 0.5606E-18 0.5717E-18 0.5871E-18 0.5871E-18 0.1104E-17 0.1322E-17 0.1241E-17 0.132E-17 0.9892E-18 0.9812E-18 0.9912E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -110.80 -116.92 -123.16 -116.69 -105.97 -99.87 -99.87 -94.67
19 19 19 19 19 19 19 10 11 11 1 1 1 1 1	22 23 24 25 26 morTiO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.5702E-18 0.5707E-18 0.5707E-18 0.5871E-18 0.5871E-18 0.104E-17 0.1322E-17 0.132E-17 0.132E-17 0.9892E-18 0.9812E-18 0.9812E-18 0.99105E-18 0.7486E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -110.80 -116.92 -123.16 -116.69 -105.97 -99.87 -99.87 -94.67 -86.17 -86.17 -66.35
19 19 19 19 19 19 19 10 11 11 1 1 1 1 1	22 23 24 25 26 morTiO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.5707E-18 0.5606E-18 0.5707E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5824E-18 0.1104E-17 0.132E-17 0.132E-17 0.132E-17 0.132E-18 0.9912E-18 0.9912E-18 0.9912E-18 0.9105E-18 0.5176E-18 0.2335E-18	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -110.80 -116.92 -123.16 -116.69 -105.97 -99.87 -99.87 -94.67 -86.17 -66.35 23.06
19 19 19 19 19 19 10 10 11 11 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 morTiO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.571E-18 0.5602E-18 0.571E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.104E-17 0.1322E-17 0.132E-17 0.132E-17 0.132E-18 0.9812E-18 0.9812E-18 0.99105E-18 0.2335E-18 0.2335E-18 0.1197E-19	61.13 92.98 172.36 105.80 173.26 UNCTION -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -110.80 -116.92 -123.16 -116.69 -105.97 -99.87 -99.87 -94.67 -86.17 -66.35 23.06 -72.44
19 19 19 19 19 19 10 10 11 11 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.4734E-18 0.5602E-18 0.5707E-18 0.570FE-18 0.570FE-18 0.5871E-18 0.5871E-17 0.1322E-17 0.132E-17 0.132E-17 0.132E-17 0.132E-17 0.132E-18 0.9812E-18 0.9812E-18 0.9812E-18 0.9812E-18 0.9812E-18 0.9105E-18 0.5176E-18 0.2335E-18 0.1107E-19 0.1270E-24 0.7646E-18 0.2335E-18 0.1107E-19 0.1270E-24	61.13 92.98 172.36 105.80 173.26
19 19 19 19 19 19 19 10 10 11 11 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 6 7 8 9 10 11 2 12 13 14 5 12 12 13 14 12 5 26 12 5 12 5	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 N TRANSFER F 0.1102E-17 0.1288E-17 0.1102E-17 0.1504E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.5701E-18 0.5602E-18 0.5707E-18 0.5606E-18 0.5707E-18 0.5871E-18 0.104E-17 0.1322E-17 0.1322E-17 0.132E-17 0.132E-17 0.132E-17 0.9892E-18 0.9812E-18 0.99105E-18 0.5176E-18 0.5176E-18 0.5176E-18 0.2335E-18 0.1197E-19 0.1270E-24 0.7840E-03	61.13 92.98 172.36 105.80 173.26
19 19 19 19 19 19 19 10 10 11 1 1 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 6 7 8 9 10 11 12 13 14 5 16 7 8 9 10 12 2 3 3 4 5 5 3 3 14 5 5 6 7 8 9 10 11 2 5 3 14 5 5 6 7 8 9 10 11 2 5 5 6 7 7 8 9 10 11 2 5 5 6 7 7 8 9 10 11 12 13 14 5 5 6 7 7 8 9 10 11 12 13 14 14 5 14 5 7 7 8 9 10 11 12 13 14 14 15 14 14 14 15 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.5701E-18 0.5602E-18 0.5707E-18 0.5602E-18 0.5707E-18 0.5707E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5872E-18 0.1030E-17 0.1322E-17 0.132E-17 0.132E-17 0.132E-18 0.9812E-18 0.9812E-18 0.9812E-18 0.9812E-18 0.9812E-18 0.9105E-18 0.7486E-18 0.2335E-18 0.1107E-19 0.1270E-24 0.7840E-03 0.9163E-03 0.1070E-02	61.13 92.98 172.36 105.80 173.26
19 19 19 19 19 19 19 10 10 11 11 1 1 1 1 1 1 1 1 1 1	22 23 24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 22 3 4 5 5 6 7 8 9 10 11 2 23 24 5 5 26 7 8 9 10 12 25 26 7 7 8 9 10 11 20 20 20 20 20 20 20 20 20 20 20 20 20	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.4734E-18 0.5602E-18 0.571E-18 0.5602E-18 0.571E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5176E-18 0.9812E-18 0.9912E-18 0.9105E-18 0.1107E-19 0.1270E-24 0.7846E-18 0.1107E-19 0.1270E-24 0.7846E-38 0.9163E-03 0.1070E-02 0.1165E-02 0.1165E-02	61.13 92.98 172.36 105.80 173.26
19 19 19 19 19 19 19 10 10 11 11 11 11 11 11 11 11	22 23 24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 7 8 9 10 11 2 12 13 14 5 6 7 8 9 10 12 12 5 5 6 7 8 9 10 12 12 5 5 6 7 8 9 10 11 12 13 14 5 5 6 7 8 9 10 11 12 13 14 5 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 6 7 8 9 10 11 12 13 14 14 5 6 7 8 9 10 11 12 13 14 14 5 6 6 7 8 9 10 11 12 12 13 14 14 15 16 16 11 12 10 11 12 11 12 12 14 11 12 11 12 12 12 12 12 12 12 11 12 12	0.3003E-01 0.4434E-01 0.1488E-01 0.8410E-03 0.1232E-05 TRANSFER F ampl phase 0.1102E-17 0.1288E-17 0.1504E-17 0.1504E-17 0.1504E-17 0.1637E-17 0.1637E-17 0.1637E-17 0.7621E-18 0.5602E-18 0.4734E-18 0.5602E-18 0.5716E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5871E-18 0.5176E-18 0.9912E-18 0.9912E-18 0.9912E-18 0.9105E-18 0.1107E-19 0.1270E-24 0.7846E-03 0.1070E-02 0.1165E-02 0.7836E-03	61.13 92.98 172.36 105.80 173.26

2	8	0.3987E-03	-165.67
2	9 10	0.3369E-03 0.3325F-03	-151.93
2	11	0.3636E-03	-126.27
2	12	0.4178E-03	-118.63
2	13	0.4953E-03	-113.62
2	14 15	0.6109E-03	-110.60
2	16	0.9406E-03	-116.92
2	17	0.8835E-03	-123.16
2	18	0.7328E-03	-116.69
2	19	0.7040E-03	-105.97
2	20	0.6480E-03	-99.67
2	22	0.5327E-03	-86.17
2	23	0.3684E-03	-66.35
2	24	0.1662E-03	23.06
2	26	0.9040E-10	-107.38
3	1	0.1562E-02	-95.77
3	2	0.1826E-02	-101.86
3	3	0.2133E-02 0.2321E-02	-112.55
3	5	0.2107E-02	-151.73
3	6	0.1561E-02	-168.38
3	7	0.1081E-02	-172.65
3 3	8 9	0.7944E-03 0.6713E-03	-165.67
3	10	0.6625E-03	-137.49
3	11	0.7244E-03	-126.27
3	12	0.8325E-03	-118.63
3	13 14	0.9868E-03 0.1217E-02	-113.62
3	15	0.1566E-02	-110.80
3	16	0.1874E-02	-116.92
3	17	0.1760E-02	-123.16
3	10	0.1400E-02	-105.97
3	20	0.1391E-02	-99.87
3	21	0.1291E-02	-94.67
3	22	0.7339E-03	-86.17
3	24	0.3310E-03	23.06
3	25	0.1697E-04	-72.44
3 4	26 1	0.1801E-09 0.2328E-02	-107.38 -95.77
4	2	0.2721E-02	-101.86
4	3	0.3179E-02	-112.55
4 4	4	0.3459E-02 0.3140E-02	-129.93 -151.73
4	6	0.2327E-02	-168.38
4	7	0.1611E-02	-172.65
4	8	0.1184E-02	-165.67
4	9 10	0.9874E-03	-131.93
4	11	0.1080E-02	-126.27
4	12	0.1241E-02	-118.63
4	13	0.1471E-02 0.1814E-02	-113.62
4	15	0.2333E-02	-110.80
4	16	0.2793E-02	-116.92
4	17	0.2624E-02 0.2176E-02	-123.16
4	19	0.2091E-02	-105.97
4	20	0.2074E-02	-99.87
4 4	21 22	0.1924E-02 0.1582E-02	-94.67 -86.17
4	23	0.1094E-02	-66.35
4	24	0.4934E-03	23.06
4 4	25 26	0.2529E-04 0.2685E-09	-72.44
5	1	0.3076E-02	-95.77
5	2	0.3596E-02	-101.86
5	3	0.4201E-02 0.4571E-02	-112.55
5	5	0.4149E-02	-151.73
5	6	0.3075E-02	-168.38
5	7	0.2128E-02	-172.65
5	0 9	0.1305E-02 0.1322E-02	-105.07
5	10	0.1305E-02	-137.49
5	11	0.1427E-02	-126.27
э 5	12 13	0.1040E-02 0.1944E-02	-118.63 -113.62
5	14	0.2397E-02	-110.60
5	15	0.3084E-02	-110.80

5	16	0.3691E-02	-116.92
5	17	0.3467E-02	-123.16
5	18	0.2876E-02	-116.69
5	19	0.2763E-02	-105.97
5	20	0.2740E-02	-99.87
5	21	0.2543E-02	-94.67
5	22	0.2091E-02	-86.17
5	23	0.1446E-02	-66.35
5	24	0.6520E-03	23.06
5	25	0.3342E-04	-72 44
5	25	0.2547E 00	107.20
6	1	0.33471-07	05 77
0	1	0.3601E-02	-95.77
6	2	0.4443E-02	-101.86
6	3	0.5190E-02	-112.55
6	4	0.5648E-02	-129.93
6	5	0.5127E-02	-151.73
6	6	0.3800E-02	-168.38
6	7	0.2630E-02	-172.65
6	8	0.1933E-02	-165.67
6	9	0.1634E-02	-151.93
6	10	0.1612E-02	-137.49
6	11	0.1763E-02	-126.27
6	12	0.2026E-02	-118.63
6	13	0.2402E-02	-113.62
6	14	0.2962E-02	-110.60
6	15	0.3810E-02	-110.80
6	16	0.4561E-02	-116.92
6	17	0.4284E-02	-123.16
6	18	0.3554E-02	-116.69
6	19	0.3414E-02	-105.97
6	20	0.3386E-02	-99.87
6	21	0.3142E-02	-94.67
6	22	0.2583E-02	-86.17
6	23	0.1786E-02	-66.35
6	24	0.8057E-03	23.06
6	25	0.4130E-04	-72.44
6	26	0.4383E-09	-107 38
7	1	0.1505E 07	-95 77
7	2	0.5257E-02	-101.86
7	2	0.52571-02	112 55
7	1	0.6692E 02	12.55
7	4	0.0002E-02	-129.93
7	6	0.0000E-02	-131.73
7	7	0.4495E-02	-100.30
/	/	0.3111E-02	-1/2.65
7	8	0.2287E-02	-165.67
7	9	0.1933E-02	-151.93
7	10	0.1907E-02	-137.49
7	11	0.2086E-02	-126.27
7	12	0.2397E-02	-118.63
7	13	0.2841E-02	-113.62
7	14	0.3505E-02	-110.60
7	15	0.4508E-02	-110.80
7	16	0.5396E-02	-116.92
7	17	0.5068E-02	-123.16
7	18	0.4204E-02	-116.69
7	19	0.4039E-02	-105.97
7	20	0.4006E-02	-99.87
7	21	0.3717E-02	-94.67
7	22	0.3056E-02	-86.17
7	23	0.2113E-02	-66.35
7	24	0.9532E-03	23.06
7	25	0.4886E-04	-72.44
7	26	0.5186E-09	-107.38
8	1	0.5159E-02	-95.77
8	2	0.6030E-02	-101.86
8	3	0.7045E-02	-112.55
8	4	0.7665E-02	-129.93
8	5	0.6959E-02	-151.73
8	6	0.5157E-02	-168.38
8	7	0.3569E-02	-172.65
8	8	0 2624E-02	-165.67
8	9	0.2217E-02	-151 93
8	10	0.2188E-02	-137 49
8	11	0.2393F-02	-126.27
8	17	0.2750F-02	-118.62
8	12	0.32605-02	-112.62
8	1/	0.32000-02	-110.02
0	15	0.40201-02	-110.00
0	16	0.5171E-02	-116.00
0	10	0.01908-02	-110.92
0	10	0.30146-02	-143.10
0	10	0.46225-02	-110.09
ð o	19	0.4633E-02	-105.97
o o	20	0.43596E-02	-99.8/
ช c	21	0.4264E-02	-94.67
8	22	0.3506E-02	-86.17
8	23	0.2424E-02	-66.35

8	24	0.1093E-02	23.06
8	25	0.5605E-04	-72.44
0 9	20	0.5949E-09	-107.30
9	2	0.6758E-02	-101.86
9	3	0.7895E-02	-112.55
9	4	0.8590E-02	-129.93
9	5	0.7798E-02	-151.73
9	6	0.5779E-02	-168.38
9	7	0.4000E-02	-172.65
9	9	0.2940E=02	-151.07
9	10	0.2452E-02	-137.49
9	11	0.2681E-02	-126.27
9	12	0.3082E-02	-118.63
9	13	0.3653E-02	-113.62
9	14	0.4506E-02	-110.60
9	15	0.5795E-02 0.6937E-02	-116.00
9	17	0.6516E-02	-123.16
9	18	0.5405E-02	-116.69
9	19	0.5192E-02	-105.97
9	20	0.5150E-02	-99.87
9	21	0.4779E-02	-94.67
9	22	0.3929E-02 0.2717F-02	-66.35
9	24	0.1225E-02	23.06
9	25	0.6282E-04	-72.44
9	26	0.6667E-09	-107.38
10	1	0.6360E-02	-95.77
10	2	0.7434E-02	-101.86
10	3	0.8685E-02	-112.55
10	5	0.8578E-02	-120.03
10	6	0.6358E-02	-168.38
10	7	0.4400E-02	-172.65
10	8	0.3235E-02	-165.67
10	9	0.2734E-02	-151.93
10	10	0.2698E-02 0.2950F-02	-137.49
10	12	0.3390E-02	-118.63
10	13	0.4018E-02	-113.62
10	14	0.4956E-02	-110.60
10	15	0.6375E-02	-110.80
10	16	0.7631E-02	-116.92
10	18	0.5946E-02	-116.69
10	19	0.5712E-02	-105.97
10	20	0.5666E-02	-99.87
10	21	0.5257E-02	-94.67
10	22	0.4322E-02	-86.17
10	23 24	0.2989E-02 0.1348E-02	-00.35
10	25	0.6910E-04	-72.44
10	26	0.7334E-09	-107.38
11	1	0.6890E-02	-95.77
11	2	0.8054E-02	-101.86
11 11	3	0.9408E-02	-112.55
11	5	0.9293E-02	-120.00
11	6	0.6887E-02	-168.38
11	7	0.4767E-02	-172.65
11	8	0.3504E-02	-165.67
11	9	0.2961E-02	-151.93
11 11	10	0.2922E-02 0.3196E-02	-137.49
11	12	0.3673E-02	-118.63
11	13	0.4353E-02	-113.62
11	14	0.5370E-02	-110.60
11	15	0.6907E-02	-110.80
11	16	0.8267E-02	-116.92
11	18	0.6441E-02	-116.69
11	19	0.6188E-02	-105.97
11	20	0.6138E-02	-99.87
11	21	0.5695E-02	-94.67
11	22	0.4682E-02	-86.17
11 11	23 71	0.3238E-02	-00.35 23.06
11	25	0.7486E-04	-72.44
11	26	0.7946E-09	-107.38
12	1	0.7368E-02	-95.77
12	2	0.8612E-02	-101.86
12 12	3 4	0.1006E-01 0.1095F-01	-112.55
12	5	0.9938E-02	-151.73

12	6	0.7365E-02	-168.38
12	8	0.3097E-02 0.3747E-02	-172.65
12	9	0.3167E-02	-151.93
12	10	0.3125E-02	-137.49
12 12	11	0.341/E-02 0.3927F-02	-126.27
12	13	0.4655E-02	-113.62
12	14	0.5742E-02	-110.60
12	15	0.7385E-02	-110.80
12	17	0.8303E-02	-123.16
12	18	0.6888E-02	-116.69
12	19	0.6617E-02	-105.97
12 12	20 21	0.6563E-02 0.6090E-02	-99.87 -94.67
12	22	0.5007E-02	-86.17
12	23	0.3462E-02	-66.35
12	24	0.1562E-02	23.06
12	26	0.8496E-09	-107.38
13	1	0.7790E-02	-95.77
13	2	0.9105E-02	-101.86
13 13	3 4	0.1064E-01 0.1157E-01	-112.55
13	5	0.1051E-01	-151.73
13	6	0.7786E-02	-168.38
13 13	7	0.5389E-02 0.3962E-02	-172.65
13	9	0.3348E-02	-151.93
13	10	0.3304E-02	-137.49
13	11	0.3613E-02	-126.27
13	12	0.4922E-02	-113.62
13	14	0.6070E-02	-110.60
13	15	0.7808E-02	-110.80
13 13	16	0.9346E-02 0.8779E-02	-116.92
13	18	0.7282E-02	-116.69
13	19	0.6996E-02	-105.97
13 13	20 21	0.6939E-02 0.6439E-02	-99.87 -94.67
13	22	0.5294E-02	-86.17
13	23	0.3660E-02	-66.35
13	24 25	0.1651E-02 0.8463E-04	23.06
13	26	0.8983E-09	-107.38
14	1	0.8152E-02	-95.77
14 14	2	0.9529E-02	-101.86
14 14	4	0.1211E-01	-129.93
14	5	0.1100E-01	-151.73
14	6	0.8149E-02	-168.38
14 14	8	0.5640E-02 0.4146E-02	-172.65
14	9	0.3504E-02	-151.93
14	10	0.3458E-02	-137.49
14 14	11	0.3781E-02 0.4345E-02	-126.27
14	13	0.5150E-02	-113.62
14	14	0.6353E-02	-110.60
14 14	15 16	0.8171E-02 0.9781E-02	-110.80 -116.92
14	17	0.9187E-02	-123.16
14	18	0.7621E-02	-116.69
14 14	19	0.7321E-02	-105.97
14 14	20	0.6738E-02	-99.67
14	22	0.5540E-02	-86.17
14	23	0.3831E-02	-66.35
14 14	24 25	0.1728E-02 0.8857E-04	-72.44
14	26	0.9400E-09	-107.38
15	1	0.8452E-02	-95.77
15 15	2 3	0.9880E-02 0.1154E-01	-101.86
15	4	0.1256E-01	-129.93
15	5	0.1140E-01	-151.73
15 15	6 7	0.8449E-02 0 5848F-02	-168.38 -172.65
15	8	0.4299E-02	-165.67
15	9	0.3633E-02	-151.93
15 15	10 11	0.3585E-02	-137.49 -126.27
15 15	12	0.3520E-02 0.4505E-02	-120.27
15	13	0.5340E-02	-113.62

+ 0	14	0.658/E-02	-110.60
15	15	0.8472E-02	-110.80
15	16	0.1014E-01	-116.92
15	17	0.9525E-02	-123.16
15	18	0.7901E-02	-116.69
15	19	07591E-02	-105 97
15	20	0 7529E-02	-99.87
15	21	0.6986E-02	-94.67
15	22	0.5744F-02	-86.17
15	22	0.2072E 02	-00.17
15	23	0.3972E-02	-00.33
15	24	0.1791E=02	23.00
15	25	0.9103E-04	-72.44
15	20	0.9/4/E-09	-107.38
10	1	0.0000E-02	-95.77
10	2	0.1016E-01	-101.86
16	3	0.1186E-01	-112.55
16	4	0.1291E-01	-129.93
16	5	0.1172E-01	-151.73
16	6	0.8685E-02	-168.38
16	7	0.6011E-02	-172.65
16	8	0.4419E-02	-165.67
16	9	0.3734E-02	-151.93
16	10	0.3685E-02	-137.49
16	11	0.4029E-02	-126.27
16	12	0.4631E-02	-118.63
16	13	0.5489E-02	-113.62
16	14	0.6771E-02	-110.60
16	15	0.8709E-02	-110.80
16	16	0.1042E-01	-116.92
16	17	0.9791E-02	-123.16
16	18	0.8122E-02	-116.69
16	19	0.7803E-02	-105.97
16	20	0.7739E-02	-99.87
16	21	0.7181E-02	-94.67
16	22	0.5904E-02	-86.17
16	23	0.4083E-02	-66.35
16	24	0.1841E-02	23.06
16	25	0.9440E-04	-72.44
16	26	0.1002E-08	-107.38
17	1	0.8858E-02	-95.77
17	2	0.1035E-01	-101.86
17	3	0.1210E-01	-112.55
17	4	0.1316E-01	-129.93
17	5	0.1195E-01	-151.73
17	6	0 8854E-02	-168 38
17 17	6 7	0.8854E-02 0.6128E-02	-168.38 -172.65
17 17 17	6 7 8	0.8854E-02 0.6128E-02 0.4505E-02	-168.38 -172.65 -165.67
17 17 17 17	6 7 8 9	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02	-168.38 -172.65 -165.67 -151.93
17 17 17 17 17	6 7 8 9	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.3757E-02	-168.38 -172.65 -165.67 -151.93 -137.49
17 17 17 17 17 17	6 7 8 9 10	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4108E-02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27
17 17 17 17 17 17 17	6 7 8 9 10 11	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4108E-02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 118.62
17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 12	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4108E-02 0.4721E-02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 112.62
17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4108E-02 0.4721E-02 0.5597E-02 0.6902E 02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62
17 17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14	0.8854E-02 0.6128E-02 0.3505E-02 0.3807E-02 0.4108E-02 0.4721E-02 0.5597E-02 0.6903E-02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60
17 17 17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15	0.8854E-02 0.6128E-02 0.3807E-02 0.3807E-02 0.4108E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80
17 17 17 17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.4108E-02 0.4108E-02 0.4721E-02 0.6597E-02 0.6903E-02 0.8879E-02 0.1063E-01	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92
17 17 17 17 17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.47018E-02 0.4108E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16
17 17 17 17 17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17 18	0.8854E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4108E-02 0.4721E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.8281E-02 0.8281E-02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.69
17 17 17 17 17 17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4108E-02 0.4721E-02 0.6597E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.8281E-02 0.7955E-02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.69 -105.97
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.4701E-02 0.4721E-02 0.5977E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.8281E-02 0.7891E-02 0.7891E-02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.69 -105.97 -99.87
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	0.8854E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4708E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8797E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7955E-02 0.7891E-02 0.7322E-02	-168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.99 -105.97 -99.87 -94.67 94.17
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22	0.8854E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4108E-02 0.4721E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.8281E-02 0.7851E-02 0.7891E-02 0.7322E-02 0.6020E-02	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.69 -105.97 -99.87 -94.67 -86.17 -66.27
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4702E-02 0.4721E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7955E-02 0.7891E-02 0.7952E-02 0.7891E-02 0.7322E-02 0.6020E-02 0.4162E-02	-168.38 -172.65 -151.93 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.99 -105.97 -99.67 -94.67 -86.17 -66.35 -22.06
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.4705E-02 0.4721E-02 0.4721E-02 0.6597E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.88281E-02 0.7955E-02 0.7891E-02 0.7821E-02 0.6020E-02 0.4162E-02 0.1877E-02	-168.38 -172.65 -151.93 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.69 -105.97 -94.87 -94.87 -86.17 -66.35 23.06
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0.8854E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4708E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.8281E-02 0.7955E-02 0.7955E-02 0.7891E-02 0.7892E-02 0.4162E-02 0.4162E-02 0.9624E-04	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -113.62 -110.60 -110.60 -116.69 -123.16 -116.69 -105.97 -99.87 -99.87 -94.67 -66.17 -66.17 -66.17 -66.23 -23.06 -72.44
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	0.8854E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4708E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.8281E-02 0.7855E-02 0.7855E-02 0.7891E-02 0.7891E-02 0.4162E-02 0.4162E-02	-168.38 -172.65 -155.67 -155.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.92 -123.16 -116.69 -105.97 -99.87 -94.67 -86.17 -66.35 23.06 -72.44 -107.38
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4702E-02 0.4721E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7892E-02 0.4162E-02 0.4162E-02 0.9624E-04 0.1021E-08 0.8961E-02	-168.38 -172.65 -155.67 -155.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.69 -105.97 -99.67 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 1 2 2	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.4705E-02 0.4721E-02 0.4721E-02 0.6597E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9933E-02 0.7955E-02 0.7891E-02 0.7821E-02 0.4162E-02 0.4162E-02 0.1877E-02 0.9624E-04 0.1021E-08 0.8961E-02 0.1047E-01	-168.38 -172.65 -151.93 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.69 -105.97 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3	0.8854E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4708E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.8281E-02 0.7955E-02 0.7891E-02 0.7891E-02 0.4162E-02 0.4162E-02 0.1047E-01 0.1021E-08	-168.38 -172.65 -155.67 -155.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.89 -105.97 -99.87 -99.87 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -102.85
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5	0.8854E-02 0.4505E-02 0.4505E-02 0.3807E-02 0.4708E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.8281E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.4162E-02 0.4162E-02 0.1047E-01 0.1024E-01 0.1224E-01 0.1331E-01	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.92 -123.16 -116.97 -99.87 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 5 26 1 2 3 4 5	0.8854E-02 0.6128E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4702E-02 0.4721E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7892E-02 0.4162E-02 0.4162E-02 0.9624E-04 0.1021E-08 0.8961E-02 0.1047E-01 0.1224E-01 0.1229E-01	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.69 -123.16 -123.16 -116.69 -105.97 -99.67 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -51.73 -51.73
17 17 17 17 17 17 17 17 17 17 17 17 17 1	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6	0.8854E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4708E-02 0.4708E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8797E-02 0.8879E-02 0.8879E-02 0.7891E-02 0.7891E-02 0.7892E-02 0.4162E-02 0.4162E-02 0.1877E-02 0.9624E-04 0.1021E-08 0.8961E-02 0.1047E-01 0.1209E-01 0.8957E-02	-168.38 -172.65 -151.93 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.69 -105.97 -94.67 -166.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.57 -129.93 -151.73 -168.38
17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 1 2 3 4 5 6 7 7	0.8854E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4708E-02 0.47018E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.7955E-02 0.7951E-02 0.7951E-02 0.7952E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.3957E-02 0.6199E-02	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.69 -105.97 -99.87 -99.87 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -142.55
17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 5 6 7 8 6 7 8	0.8854E-02 0.4505E-02 0.4505E-02 0.3807E-02 0.4708E-02 0.4708E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1331E-01 0.8957E-02 0.6199E-02 0.4557E-02	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.92 -123.16 -116.97 -99.87 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -151.73 -168.38
17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 9	0.8854E-02 0.4505E-02 0.4505E-02 0.3807E-02 0.4702E-02 0.4702E-02 0.4702E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7892E-02 0.4162E-02 0.4162E-02 0.4162E-02 0.96624E-04 0.1021E-08 0.8961E-02 0.1047E-01 0.1224E-01 0.1231E-01 0.1209E-01 0.4557E-02 0.4557E-02 0.3851E-02	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -123.16 -116.92 -123.16 -116.97 -99.67 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93
17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10	0.8854E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4708E-02 0.47018E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.7891E-02 0.7891E-02 0.7892E-02 0.4162E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1209E-01 0.8957E-02 0.3800E-02 0.3800E-02	-168.38 -172.65 -151.93 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.69 -105.97 -94.67 -123.16 -116.69 -105.97 -94.87 -94.67 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -151.93 -151.93 -137.49
17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 6 7 8 9 10 11	0.8854E-02 0.4505E-02 0.4505E-02 0.3757E-02 0.4708E-02 0.47012E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.8281E-02 0.7855E-02 0.7891E-02 0.7891E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1257E-02 0.6199E-02 0.3851E-02 0.3851E-02 0.3800E-02 0.4156E-02	-168.38 -172.65 -155.67 -155.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.69 -105.97 -99.87 -99.87 -99.87 -99.87 -99.87 -99.87 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -168.38 -172.65 -165.67 -151.93 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -125.67 -137.49 -126.67 -137.49 -126.67 -137.49 -126.67 -137.49 -126.67 -137.49 -126.67 -137.49 -126.67 -137.49 -13
17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 4 25 26 1 2 3 4 5 6 7 8 9 10 11 12 23 24 25 26 11 23 24 25 26 11 23 24 25 26 11 23 24 25 26 11 22 23 24 25 26 11 22 23 24 25 26 11 22 23 24 25 26 11 22 23 24 25 26 26 11 22 26 26 11 20 20 21 22 22 23 24 25 26 26 11 2 20 20 21 22 23 24 25 26 26 11 2 20 26 26 26 26 26 26 26 26 26 26 26 26 26	0.8854E-02 0.4505E-02 0.4505E-02 0.3757E-02 0.4708E-02 0.4708E-02 0.4721E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.4162E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1331E-01 0.1224E-01 0.1331E-01 0.129E-02 0.6199E-02 0.4557E-02 0.3805E-02 0.4156E-02 0.4156E-02 0.4776E-02	-168.38 -172.65 -155.67 -155.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.92 -123.16 -116.97 -99.87 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63
17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 1 12 21 3 14 12 21 3 24 12 21 3 24 12 21 3 24 12 21 3 24 20 21 22 23 24 25 26 11 2 21 22 22 23 24 25 26 11 2 21 22 22 23 24 25 26 11 2 21 22 23 24 25 26 11 2 21 22 22 23 24 25 26 11 2 12 21 22 22 23 24 25 26 11 2 21 22 22 23 24 25 26 11 2 21 22 22 23 24 25 26 11 2 21 22 22 23 24 25 26 11 2 21 22 23 24 25 26 11 2 21 22 23 24 25 26 11 2 21 22 23 24 25 26 11 2 21 22 23 24 25 26 11 2 21 22 23 24 25 26 11 2 12 2 21 22 23 24 25 26 11 2 3 4 5 5 6 7 8 9 11 2 12 2 2 2 2 3 24 2 5 2 3 4 5 5 6 7 8 9 11 2 1 2 2 1 2 2 2 2 3 2 4 5 5 2 3 2 4 5 5 2 2 1 2 2 3 2 3 2 4 5 5 2 3 2 4 5 5 5 1 2 1 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2	0.8854E-02 0.4505E-02 0.4505E-02 0.3807E-02 0.4702E-02 0.4702E-02 0.4702E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.4162E-02 0.4162E-02 0.462E-02 0.462E-02 0.462E-02 0.4557E-02 0.4557E-02 0.3800E-02 0.4776E-02 0.4776E-02 0.4776E-02 0.45661E-02	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -123.16 -116.92 -123.16 -146.97 -99.67 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -122.55 -129.93 -151.73 -168.38 -172.65 -152.67 -151.93 -137.49 -126.27 -118.63 -132.62
17 17 17 17 17 17 17 17	6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.8854E-02 0.4505E-02 0.3807E-02 0.3757E-02 0.4708E-02 0.47018E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.7995E-02 0.7995E-02 0.7995E-02 0.4162E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.12957E-02 0.4557E-02 0.3801E-02 0.4156E-02 0.4156E-02 0.46983E-02	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.89 -123.16 -116.69 -105.97 -99.87 -94.67 -99.87 -94.67 -66.17 -66.17 -66.17 -66.17 -66.17 -66.35 -33.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -151.93 -135.49 -13
17 17 17 17 17 17 17 17	$\begin{array}{c} 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 20\\ 21\\ 22\\ 23\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ \end{array}$	0.8854E-02 0.4505E-02 0.4505E-02 0.3757E-02 0.4708E-02 0.4708E-02 0.4721E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1331E-01 0.224E-01 0.1331E-01 0.8957E-02 0.6199E-02 0.4557E-02 0.3800E-02 0.4156E-02 0.4776E-02 0.4776E-02 0.4983E-02 0.6983E-02 0.8982E-02	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.92 -123.16 -116.69 -105.97 -99.87 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.94 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -113.62 -113.62 -113.62 -113.62
17 17 17 17 17 17 17 17	$\begin{array}{c} 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ \end{array}$	0.8854E-02 0.4505E-02 0.4505E-02 0.3807E-02 0.4708E-02 0.4708E-02 0.4721E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7895E-02 0.7895E-02 0.7895E-02 0.7895E-02 0.4162E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.12357E-02 0.6199E-02 0.4557E-02 0.3800E-02 0.4156E-02 0.4776E-02 0.45661E-02 0.4776E-02 0.6983E-02 0.8982E-02 0.8982E-02 0.1075E-01	-168.38 -172.65 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.92 -123.16 -116.92 -123.16 -116.92 -123.16 -116.92 -123.16 -116.92 -123.16 -118.63 -12.55 -129.93 -151.73 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92
17 17 17 17 17 17 17 17	$\begin{array}{c} 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 6\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ \end{array}$	0.8854E-02 0.4505E-02 0.4505E-02 0.3807E-02 0.4702E-02 0.4702E-02 0.4702E-02 0.4721E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7322E-02 0.4162E-02 0.4162E-02 0.4624E-04 0.1021E-08 0.8961E-02 0.4624E-01 0.1224E-01 0.1231E-01 0.1224E-01 0.1231E-01 0.1295FE-02 0.4557E-02 0.3801E-02 0.4557E-02 0.3801E-02 0.4756E-02 0.4756E-02 0.4756E-02 0.6983E-02 0.8982E-02 0.8982E-02 0.1075E-01 0.1010E-01	-168.38 -172.65 -151.93 -137.49 -126.77 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.92 -123.16 -116.69 -105.97 -99.67 -94.67 -86.17 -66.35 23.06 -72.44 -107.38 -95.77 -101.86 -72.44 -107.38 -95.77 -101.83 -125.5 -129.93 -151.73 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16
17 17 17 17 17 17 17 17	$\begin{array}{c} 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 21\\ 22\\ 22\\ 22\\ 22\\ 23\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ \end{array}$	0.8854E-02 0.4505E-02 0.4505E-02 0.3757E-02 0.4708E-02 0.47012E-02 0.4721E-02 0.5597E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.8879E-02 0.7993E-02 0.7993E-02 0.7993E-02 0.7993E-02 0.4162E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.38057E-02 0.3805E-02 0.3802E-02 0.4156E-02 0.4156E-02 0.4156E-02 0.4156E-02 0.5661E-02 0.5661E-02 0.5983E-02	-168.38 -172.65 -155.67 -155.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.89 -105.97 -99.87 -94.67 -99.87 -94.67 -98.77 -94.67 -86.17 -66.53 23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.93 -137.49 -126.27 -151.93 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -110.60 -110.80 -100.80 -1
17 17 17 17 17 17 17 17	$\begin{smallmatrix} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 19 \\ 10 \\ 11 \\ 12 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	0.8854E-02 0.4505E-02 0.4505E-02 0.3757E-02 0.4708E-02 0.4708E-02 0.4721E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7891E-02 0.7892E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1331E-01 0.224E-01 0.1331E-01 0.8957E-02 0.4557E-02 0.3800E-02 0.4156E-02 0.45661E-02 0.5661E-02	-168.38 -172.65 -155.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -116.92 -123.16 -116.69 -105.97 -94.67 -96.17 -66.35 -23.06 -72.44 -107.38 -95.77 -101.86 -112.55 -129.93 -151.73 -168.38 -172.65 -165.67 -151.93 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -137.49 -126.27 -118.63 -113.62 -110.80 -110.80 -110.80 -116.92 -123.16 -125.17 -125.12 -125
17 17 17 17 17 17 17 17	$\begin{smallmatrix} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	0.8854E-02 0.4505E-02 0.4505E-02 0.3807E-02 0.4705E-02 0.4708E-02 0.4721E-02 0.6903E-02 0.8879E-02 0.8879E-02 0.1063E-01 0.9983E-02 0.8281E-02 0.7895E-02 0.7895E-02 0.7895E-02 0.4162E-02 0.4162E-02 0.1047E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.1224E-01 0.12357E-02 0.6199E-02 0.4156E-02 0.4156E-02 0.4156E-02 0.4156E-02 0.4156E-02 0.4156E-02 0.4156E-02 0.4156E-02 0.4156E-02 0.4872E-01 0.1010E-01 0.1010E-01 0.1010E-01 0.1010E-01 0.8376E-02 0.887E-02	-168.38 -172.65 -151.93 -151.93 -137.49 -126.27 -118.63 -113.62 -113.62 -113.62 -123.16 -116.92 -123.16 -116.92 -123.16 -116.97 -99.87 -94.67 -86.17 -66.35 -23.46 -72.44 -107.38 -95.77 -101.86 -125.5 -129.93 -151.73 -165.67 -151.93 -137.49 -126.27 -118.63 -113.62 -110.60 -110.80 -116.92 -123.16 -125.17 -125.1

	18	22	0.6089E-02	-86.17
	18	23	0.4210E-02	-66.35
	18	24	0.1899E-02	23.06
	18	25	0.9735E-04	-72.44
	18	26	0.1033E-08	-107.38
	19	1	0.8995E-02	-95.77
	19	2	0.1051E-01	-101.86
	19	3	0.1228E-01	-112.55
	19	4	0.1336E-01	-129.93
	19	5	0.1213E-01	-151.73
	19	6	0.8991E-02	-168.38
	19	7	0.6223E-02	-172.65
	19	8	0.4575E-02	-165.67
	19	9	0.3866E-02	-151.93
	19	10	0.3815E-02	-137.49
	19	11	0.4172E-02	-126.27
	19	12	0.4794E-02	-118.63
	19	13	0.5683E-02	-113.62
	19	14	0.7009E-02	-110.60
	19	15	0.9016E-02	-110.80
	19	16	0.1079E-01	-116.92
	19	17	0.1014E-01	-123.16
	19	18	0.8408E-02	-116.69
	19	19	0.8078E-02	-105.97
	19	20	0.8012E-02	-99.87
	19	21	0.7435E-02	-94.67
	19	22	0.6112E-02	-86.17
	19	23	0.4227E-02	-66.35
	19	24	0.1906E-02	23.06
	19	25	0.9773E-04	-72.44
	19	26	0.1037E-08	-107.38
,				

PITCH MOTION TRANSFER FUNCTION

'idir	ifrea	ampl phase	
1	1	0.89955-02	84.23
1	2	0.09998E 02	78 14
1	2	0.1031E-01	67.45
1	4	0.1226E-01	50.07
1	5	0.1212E 01	20.07
1	5	0.1213E=01	11.67
1	7	0.6991E-02	7.25
1	,	0.0223E-02	14.22
1	8	0.4575E-02	14.33
1	9	0.3000E-02	42 51
1	10	0.3815E-02	42.51
1	11	0.41/2E-02	53./3
1	12	0.4794E-02	61.37
1	13	0.5683E-02	66.38
1	14	0.7009E-02	69.40
1	15	0.9016E-02	69.20
1	16	0.1079E-01	63.08
1	17	0.1014E-01	56.84
1	18	0.8408E-02	63.31
1	19	0.8078E-02	74.03
1	20	0.8012E-02	80.13
1	21	0.7435E-02	85.33
1	22	0.6112E-02	93.83
1	23	0.4227E-02	113.65
1	24	0.1906E-02	-156.94
1	25	0.9773E-04	107.56
1	26	0.1037E-08	72.62
2	1	0.8961E-02	84.23
2	2	0.1047E-01	78.14
2	3	0.1224E-01	67.45
2	4	0.1331E-01	50.07
2	5	0.1209E-01	28.27
2	6	0.8957E-02	11.62
2	7	0.6199E-02	7.35
2	8	0.4557E-02	14.33
2	9	0.3851E-02	28.07
2	10	0.3800E-02	42.51
2	11	0.4156E-02	53.73
2	12	0.4776E-02	61.37
2	13	0.5661E-02	66.38
2	14	0.6983E-02	69.40
2	15	0.8982E-02	69.20
2	16	0.1075E-01	63.08
2	17	0.1010E-01	56.84
2	18	0.8376E-02	63.31
2	19	0.8047E-02	74.03
2	20	0.7982E-02	80.13
2	21	0.7406E-02	85.33
2	22	0.6089E-02	93.83
2	23	0.4210E-02	113.65
2	24	0.1899E-02	-156.94
2	25	0.9735E-04	107.56

2	26	0.1033E-08	72.62
3	1	0.8858E-02	84.23
3	2	0.1035E-01	78.14
3	3	0.1210E-01	67.45
3	4	0.1316E-01	50.07
3	5	0.1195E-01	28.27
3	6	0.8854E-02	11.62
3	7	0.6128E-02	7.35
3	8	0.4505E-02	14.33
3	9	0.3807E-02	28.07
3	10	0.3757E-02	42.51
3	11	0.4108E-02	53.73
3	12	0.4721E-02	61.37
3	13	0.5597E-02	66.38
3	14	0.6903E-02	69.40
3	15	0.8879E-02	69.20
3	16	0.1063E-01	63.08
3	17	0.9983E-02	56.84
3	18	0.8281E-02	63.31
3	19	0.7955E-02	/4.03
3	20	0.7891E-02	80.13
3	21	0./322E-02	85.33
3	22	0.6020E-02	93.83
3	23	0.4162E-02	113.65
3	24	0.1877E-02	-156.94
3	25	0.9624E-04	107.56
3	20	0.1021E-08	/2.62
4	1	0.8688E-02	84.23
4	2	0.1016E-01	/8.14
4	3	0.1186E-01	67.45
4	4	0.1291E-01	20.07
4	5	0.11/2E-01	28.27
4	7	0.0003E-02	7.25
4	/	0.6011E-02	/.35
4	8	0.4419E-02	14.33
4	9	0.3/34E-02	42 E1
4	10	0.3685E-02	42.51
4	12	0.4029E-02	55.75 61.27
4	12	0.4031E-02	66.20
4	14	0.54696-02	60.30
4	14	0.0771E-02	69.40
4	16	0.0709E=02	62.00
т Л	17	0.1042E-01 0.9791E-02	56.84
т Л	18	0.97911-02	63 31
4	19	0.7803F-02	74.03
4	20	0.7739E-02	80.13
4	21	0.7181E-02	85 33
4	22	0.5904F-02	93.83
4	23	0.4083E-02	113.65
4	24	0.1841E-02	-156.94
4	25	0.9440E-04	107.56
4	26	0.1002E-08	72.62
5	1	0.8452E-02	84 23
5	2	0.9880E-02	78.14
5	3	0.1154E-01	67.45
5	4	0.1256E-01	50.07
5	5	0.1140E-01	28.27
5	6	0.8449E-02	11.62
5	7	0.5848E-02	7.35
5	8	0.4299E-02	14.33
5	9	0.3633E-02	28.07
5	10	0.3585E-02	42.51
5	11	0.3920E-02	53.73
5	12	0.4505E-02	61.37
5	13	0.5340E-02	66.38
5	14	0.6587E-02	69.40
5	15	0.8472E-02	69.20
5	16	0.1014E-01	63.08
5	17	0.9525E-02	56.84
5	18	0.7901E-02	63.31
5	19	0.7591E-02	74.03
5	20	0.7529E-02	80.13
5	21	0.6986E-02	85.33
5	22	0.5744E-02	93.83
5	23	0.3972E-02	113.65
5	24	0.1791E-02	-156.94
5	25	0.9183E-04	107.56
5	26	0.9747E-09	72.62
6	1	0.8152E-02	84.23
6	2	0.9529E-02	78.14
6	3	0.1113E-01	67.45
6	4	0.1211E-01	50.07
6	5	0.1100E-01	28.27
6	6	0.8149E-02	11.62
6	7	0 5640E-02	7.35

6	8 9	0.4146E-02 0.3504E-02	14.33 28.07
6	10	0.3458E-02	42.51
6	11	0.3781E-02	53.73
6	12	0.4345E-02 0.5150E-02	66.38
6	14	0.6353E-02	69.40
6	15	0.8171E-02	69.20
6	17	0.9781E-02 0.9187E-02	56.84
6	18	0.7621E-02	63.31
6	19 20	0.7321E-02 0.7262E-02	74.03 80.13
6	21	0.6738E-02	85.33
6	22	0.5540E-02	93.83
6	23 24	0.3831E-02 0.1728E-02	-156.94
6	25	0.8857E-04	107.56
6 7	26 1	0.9400E-09 0.7790E-02	72.62 84.23
, 7	2	0.9105E-02	78.14
7	3	0.1064E-01	67.45
7	4 5	0.1051E-01	28.27
7	6	0.7786E-02	11.62
7	7 8	0.5389E-02	7.35
7	9	0.3348E-02	28.07
7	10	0.3304E-02	42.51
7	11 12	0.3613E-02 0.4152E-02	53.73 61.37
7	13	0.4922E-02	66.38
7	14	0.6070E-02	69.40
7	15	0.9346E-02	63.08
7	17	0.8779E-02	56.84
7	18 19	0.7282E-02	63.31 74.03
7	20	0.6939E-02	80.13
7	21	0.6439E-02	85.33
7	22	0.5294E-02 0.3660E-02	93.83 113.65
7	24	0.1651E-02	-156.94
7	25	0.8463E-04	107.56
8	1	0.7368E-02	84.23
8	2	0.8612E-02	78.14
8 8	3 4	0.1006E-01 0.1095E-01	67.45 50.07
8	5	0.9938E-02	28.27
8 8	6 7	0.7365E-02 0.5097E-02	11.62 7.35
8	8	0.3747E-02	14.33
8	9	0.3167E-02	28.07
8 8	10	0.3125E-02 0.3417E-02	42.51 53.73
8	12	0.3927E-02	61.37
8 8	13	0.4655E-02 0.5742E-02	66.38 69.40
8	15	0.7385E-02	69.20
8	16	0.8841E-02	63.08
8 8	17	0.8303E-02 0.6888E-02	56.84 63.31
8	19	0.6617E-02	74.03
8 8	20 21	0.6563E-02	80.13 85.33
8	22	0.5007E-02	93.83
8	23	0.3462E-02	113.65
8 8	24 25	0.1562E-02 0.8005E-04	-156.94 107.56
8	26	0.8496E-09	72.62
9	1	0.6890E-02	84.23
9	3	0.9408E-02	67.45
9	4	0.1024E-01	50.07
9 9	5 6	0.9293E-02 0.6887E-02	28.27 11.62
9	7	0.4767E-02	7.35
9 0	8	0.3504E-02	14.33
9	10	0.2922E-02	42.51
9	11	0.3196E-02	53.73
9 9	12 13	0.3673E-02 0.4353E-02	61.37 66.38
9	14	0.5370E-02	69.40
9	15	0.6907E-02	69.20

9	16	0.8267E-02	63.08
9	17	0.7765E-02	56.84 62.21
9	19	0.6188E-02	74.03
9	20	0.6138E-02	80.13
9	21	0.5695E-02	85.33
9	22	0.4682E-02	93.83
9	23 24	0.3238E-02 0.1460F-02	-156.94
9	25	0.7486E-04	107.56
9	26	0.7946E-09	72.62
10	1	0.6360E-02	84.23
10	2	0.7434E-02 0.8685E-02	78.14
10	4	0.9450E-02	50.07
10	5	0.8578E-02	28.27
10	6	0.6358E-02	11.62
10	7 8	0.4400E-02 0.3235E-02	7.35
10	9	0.2734E-02	28.07
10	10	0.2698E-02	42.51
10	11	0.2950E-02	53.73
10	12	0.3390E-02	61.37
10	13	0.4956E-02	69.40
10	15	0.6375E-02	69.20
10	16	0.7631E-02	63.08
10	17	0.7168E-02	56.84 62.21
10	19	0.5712E-02	74.03
10	20	0.5666E-02	80.13
10	21	0.5257E-02	85.33
10	22	0.4322E-02	93.83
10 10	23	0.2989E-02 0.1348E-02	-156.94
10	25	0.6910E-04	107.56
10	26	0.7334E-09	72.62
11	1	0.5782E-02	84.23
11 11	2	0.6758E-02 0.7895E-02	78.14 67.45
11	4	0.8590E-02	50.07
11	5	0.7798E-02	28.27
11	6	0.5779E-02	11.62
11 11	8	0.4000E-02 0.2940E-02	7.55
11	9	0.2485E-02	28.07
11	10	0.2452E-02	42.51
11 11	11	0.2681E-02 0.3082E-02	53.73 61 37
11	13	0.3653E-02	66.38
11	14	0.4506E-02	69.40
11	15	0.5795E-02	69.20
11	17	0.6516E-02	56.84
11	18	0.5405E-02	63.31
11	19	0.5192E-02	74.03
11 11	20	0.5150E-02	80.13
11	22	0.3929E-02	93.83
11	23	0.2717E-02	113.65
11	24	0.1225E-02	-156.94
11 11	25	0.6282E-04	107.56
12	1	0.5159E-02	84.23
12	2	0.6030E-02	78.14
12	3	0.7045E-02	67.45
12	4	0.7665E-02 0.6959E-02	28 27
12	6	0.5157E-02	11.62
12	7	0.3569E-02	7.35
12	8 9	0.2624E-02	14.33 28.07
12	10	0.2188E-02	42.51
12	11	0.2393E-02	53.73
12	12	0.2750E-02	61.37
12	13 14	0.3260E-02 0.4020E-02	66.38 69.40
12	15	0.5171E-02	69.20
12	16	0.6190E-02	63.08
12	17	0.5814E-02	56.84
12 12	18 19	0.4823E-02 0.4633E-02	03.31 74 03
12	20	0.4596E-02	80.13
12	21	0.4264E-02	85.33
12 12	22 23	0.3506E-02 0.2424F-02	93.83 113.65
		0.2.12.11.02	110.00

12	24	0.1093E-02	-156.94
12	25	0.5605E-04	107.56
12	26	0.5949E-09	72.62
13	1	0.4497E-02	84.23
13	2	0.5257E-02	78 14
13	2	0.52576=02	/0.14
13	3	0.6141E-02	67.45
13	4	0.6682E-02	50.07
13	5	0.6066E-02	28.27
13	6	0.4495E-02	11.62
13	7	0 3111F-02	7 35
12	ó	0.3207E 02	14.22
15	0	0.2267E-02	14.55
13	9	0.1933E-02	28.07
13	10	0.1907E-02	42.51
13	11	0.2086E-02	53.73
13	12	0.2397E-02	61.37
12	13	0.2841E-02	66.38
10	13	0.2041E-02	00.30
13	14	0.3505E-02	69.40
13	15	0.4508E-02	69.20
13	16	0.5396E-02	63.08
13	17	0.5068E-02	56.84
13	18	0 4204E-02	63 31
12	10	0.4020E 02	74.02
10	1)	0.400/E-02	74.03
13	20	0.4006E-02	80.13
13	21	0.3717E-02	85.33
13	22	0.3056E-02	93.83
13	23	0.2113E-02	113.65
13	24	0.9532E-03	-156 94
12	25	0.1996E 04	10756
15	25	0.40006-04	107.56
13	26	0.5186E-09	72.62
14	1	0.3801E-02	84.23
14	2	0.4443E-02	78.14
14	3	0 5190E-02	67 45
11	4	0.5648E-02	50.07
14	4	0.50401-02	30.07
14	5	0.5127E-02	28.27
14	6	0.3800E-02	11.62
14	7	0.2630E-02	7.35
14	8	0.1933E-02	14.33
14	õ	0 1624E 02	29.07
14	10	0.10341-02	42 51
14	10	0.1612E-02	42.51
14	11	0.1763E-02	53.73
14	12	0.2026E-02	61.37
14	13	0.2402E-02	66.38
14	14	0.2962E-02	69.40
14	15	0 3810F-02	69.20
14	15	0.3010E-02	09.20
14	10	0.4561E-02	63.08
14	17	0.4284E-02	56.84
14	18	0.3554E-02	63.31
14	19	0.3414E-02	74.03
11	20	0 3386F-02	80.13
14	20	0.3300E-02	00.13
14	21	0.51426-02	03.33
14	22	0.2583E-02	93.83
14	23	0.1786E-02	113.65
14	24	0.8057E-03	-156.94
14	25	04130F-04	107 56
11	26	0.1202E 00	72.62
14	20	0.43636-09	72.62
15	1	0.3076E-02	84.23
15	2	0.3596E-02	78.14
15	3	0.4201E-02	67.45
15	4	0.4571E-02	50.07
15	5	0 4149F-02	28.27
15	6	0.20755.02	11.62
15	0	0.3073E-02	11.62
15	/	0.2128E-02	7.35
15	8	0.1565E-02	14.33
15	9	0.1322E-02	28.07
15	10	0.1305E-02	42.51
15	11	0.1427E.02	52 72
15	11	0.14276-02	(1.27
15	12	0.1640E-02	61.37
15	13	0.1944E-02	66.38
15	14	0.2397E-02	69.40
15	15	0.3084E-02	69.20
15	16	0 3691E-02	63.08
15	17	0.3071E-02	5.00
15	17	0.346/E-02	56.84
15	18	0.2876E-02	63.31
15	19	0.2763E-02	74.03
15	20	0.2740E-02	80.13
15	21	0.2543E-02	85.33
15	22	0 2091 5-02	93 83
15	22	0.1446E.02	112 (5
12	23	0.1446E-02	113.65
15	24	0.6520E-03	-156.94
15	25	0.3342E-04	107.56
15	26	0.3547E-09	72.62
16	1	0.2328E-02	84.23
16	-	0.2721E 02	78 1/
	- 2		
10	2	0.27216-02	67.45
16	2	0.3179E-02	67.45
16 16	2 3 4	0.3179E-02 0.3459E-02	67.45 50.07

16	6	0.2327E-02	11.62
16 16	7	0.1611E-02	7.35
16	9	0.1001E-02	28.07
16	10	0.9874E-03	42.51
16	11	0.1080E-02	53.73
16	12	0.1241E-02	61.37
16 16	13	0.14/1E-02 0.1914E-02	60.38
16	14	0.2333E-02	69.20
16	16	0.2793E-02	63.08
16	17	0.2624E-02	56.84
16	18	0.2176E-02	63.31
16 16	19	0.2091E-02	74.03
16	21	0.1924E-02	85.33
16	22	0.1582E-02	93.83
16	23	0.1094E-02	113.65
16	24	0.4934E-03	-156.94
10 16	25 26	0.2529E-04 0.2685E-09	72.62
17	1	0.1562E-02	84.23
17	2	0.1826E-02	78.14
17	3	0.2133E-02	67.45
17	4	0.2321E-02	50.07
17 17	6	0.1561E-02	11.62
17	7	0.1081E-02	7.35
17	8	0.7944E-03	14.33
17	9	0.6713E-03	28.07
17	10	0.6625E-03	42.51
17 17	12	0.8325E-03	53.73 61.37
17	13	0.9868E-03	66.38
17	14	0.1217E-02	69.40
17	15	0.1566E-02	69.20
17	16	0.1874E-02	63.08
17 17	18	0.1460E-02	63.31
17	19	0.1403E-02	74.03
17	20	0.1391E-02	80.13
17	21	0.1291E-02	85.33
17 17	22	0.1061E-02 0.7339E-03	93.83
17	24	0.3310E-03	-156.94
17	25	0.1697E-04	107.56
17	26	0.1801E-09	72.62
18	1	0.7840E-03	84.23
10	2	0.9163E-03 0.1070E-02	67.45
18	4	0.1165E-02	50.07
18	5	0.1057E-02	28.27
18	6	0.7836E-03	11.62
18 18	/	0.5424E-03 0.3987F-03	7.35 14.33
18	9	0.3369E-03	28.07
18	10	0.3325E-03	42.51
18	11	0.3636E-03	53.73
18	12	0.4178E-03	61.37
18	13	0.6109E-03	69.40
18	15	0.7858E-03	69.20
18	16	0.9406E-03	63.08
18	17	0.8835E-03	56.84
18 18	18	0.7328E-03 0.7040E-03	74.03
18	20	0.6983E-03	80.13
18	21	0.6480E-03	85.33
18	22	0.5327E-03	93.83
18	23	0.3684E-03	113.65
10 18	24	0.8517E-05	-136.94
18	26	0.9040E-10	72.62
19	1	0.5508E-18	-95.77
19	2	0.6438E-18	-101.86
19 19	3 4	0.7520E-18 0.8183E-18	-112.55
19	5	0.7429E-18	-151.73
19	6	0.5505E-18	-168.38
19	7	0.3810E-18	-172.65
19 10	8	0.2801E-18	-165.67
19 19	, 10	0.2336E-18	-137.49
19	11	0.2554E-18	-126.27
19	12	0.2936E-18	-118.63
19	13	0.3480E-18	-113.62

19	14	0.4292	2E-18	-110.60	
19	15	0.552	LE-18	-110.80	
19	16	0.6608	3E-18 7E-19	-116.92	
19	17	0.5149	E-18	-125.10	
19	19	0.4946	5E-18	-105.97	
19	20	0.4906	5E-18	-99.87	
19	21	0.4552	2E-18	-94.67	
19	22	0.3743	3E-18	-86.17	
19	23	0.2588	3E-18 7F-18	-66.35	
19	25	0.5984	1E-20	-72.44	
19	26	0.635	LE-25	-107.38	
'					-
YAW N	лотіс	N TRANS	FER FUN	CTION	
'idir	ifrea	ampl	phase		-
1	1	0.000	0.0	0	
1	2	0.000	0.0	0	
1	3	0.000	0.0	0	
1	4	0.000	0.0	0	
1	5	0.000	0.0	0	
1	7	0.000	0.0	0	
1	8	0.000	0.0	0	
1	9	0.000	0.0	0	
1	10	0.000	0.	00	
1	11	0.000	0.	00	
1	12	0.000	0.	00	
1	14	0.000	0.	00	
1	15	0.000	0.	00	
1	16	0.000	0.	00	
1	17	0.000	0.	00	
1	18	0.000	0.	00	
1	19 20	0.000	0.	00	
1	21	0.000	0.	00	
1	22	0.000	0.	00	
1	23	0.000	0.	00	
1	24	0.000	0.	00	
1	25	0.000	0.	00	
1	26	0.000	0.	00	
2	2	0.000	0.0	0	
2	3	0.000	0.0	0	
2	4	0.000	0.0	0	
2	5	0.000	0.0	0	
2	6	0.000	0.0	0	
2	7	0.000	0.0	0	
2	9	0.000	0.0	0	
2	10	0.000	0.	00	
2	11	0.000	0.	00	
2	12	0.000	0.	00	
2	13	0.000	0.	00	
2	14 15	0.000	0.	00	
2	16	0.000	0.	00	
2	17	0.000	0.	00	
2	18	0.000	0.	00	
2	19	0.000	0.	00	
2	20	0.000	0.	00	
2	21	0.000	0.	00	
2	23	0.000	0.	00	
2	24	0.000	0.	00	
2	25	0.000	0.	00	
2	26	0.000	0.	00	
3	1	0.000	0.0	0	
3	2	0.000	0.0	0	
3	4	0.000	0.0	0	
3	5	0.000	0.0	0	
3	6	0.000	0.0	0	
3	7	0.000	0.0	0	
3 2	а С	0.000	0.0	0	
3	10	0.000	0.0	00	
3	11	0.000	0.	00	
3	12	0.000	0.	00	
3	13	0.000	0.	00	
3	14	0.000	0.	00	
3 2	15 16	0.000	0. 0	00	
3	17	0.000	0.	00	

3	18	0.000	0.00
3	19 20	0.000	0.00
3	21	0.000	0.00
3	22	0.000	0.00
3	23	0.000	0.00
3	25	0.000	0.00
3	26	0.000	0.00
4	1	0.000	0.00
4	2	0.000	0.00
4	4	0.000	0.00
4	5	0.000	0.00
4	6 7	0.000	0.00
4	8	0.000	0.00
4	9	0.000	0.00
4	10	0.000	0.00
4	11	0.000	0.00
4	13	0.000	0.00
4	14	0.000	0.00
4	15 16	0.000	0.00
4	17	0.000	0.00
4	18	0.000	0.00
4	19	0.000	0.00
4	20	0.000	0.00
4	22	0.000	0.00
4	23	0.000	0.00
4	24	0.000	0.00
4	26	0.000	0.00
5	1	0.000	0.00
5	2	0.000	0.00
5 5	3 4	0.000	0.00
5	5	0.000	0.00
5	6	0.000	0.00
5	7 8	0.000	0.00
5	9	0.000	0.00
5	10	0.000	0.00
5	11	0.000	0.00
5	12	0.000	0.00
5	14	0.000	0.00
5	15	0.000	0.00
5	16 17	0.000	0.00
5	18	0.000	0.00
5	19	0.000	0.00
5	20	0.000	0.00
5	21	0.000	0.00
5	23	0.000	0.00
5	24	0.000	0.00
5	25 26	0.000	0.00
6	1	0.000	0.00
6	2	0.000	0.00
6	3	0.000	0.00
6	5	0.000	0.00
6	6	0.000	0.00
6	7	0.000	0.00
6	8 9	0.000	0.00
6	10	0.000	0.00
6	11	0.000	0.00
6	12 13	0.000	0.00
6	14	0.000	0.00
6	15	0.000	0.00
6	16	0.000	0.00
ь 6	17 18	0.000	0.00
6	19	0.000	0.00
6	20	0.000	0.00
6	21 22	0.000	0.00
6	23	0.000	0.00
6	24	0.000	0.00
6	25	0.000	0.00
6	26	0.000	0.00
----------	----------	-------	--------------
7	1	0.000	0.00
7	3	0.000	0.00
7	4	0.000	0.00
7	5	0.000	0.00
7	7	0.000	0.00
7	8	0.000	0.00
7	9	0.000	0.00
7	10	0.000	0.00
7	12	0.000	0.00
7	13	0.000	0.00
7	14	0.000	0.00
7	16	0.000	0.00
7	17	0.000	0.00
7	18	0.000	0.00
7	20	0.000	0.00
7	21	0.000	0.00
7	22	0.000	0.00
7	23	0.000	0.00
7	25	0.000	0.00
7	26	0.000	0.00
8	1	0.000	0.00
8	3	0.000	0.00
8	4	0.000	0.00
8	5	0.000	0.00
8	6 7	0.000	0.00
8	8	0.000	0.00
8	9	0.000	0.00
8 8	10	0.000	0.00
8	12	0.000	0.00
8	13	0.000	0.00
8	14	0.000	0.00
о 8	15	0.000	0.00
8	17	0.000	0.00
8	18	0.000	0.00
8	19 20	0.000	0.00
8	21	0.000	0.00
8	22	0.000	0.00
8	23	0.000	0.00
8	25	0.000	0.00
8	26	0.000	0.00
9	1	0.000	0.00
9	2	0.000	0.00
9	4	0.000	0.00
9	5	0.000	0.00
9	6 7	0.000	0.00
9	8	0.000	0.00
9	9	0.000	0.00
9	10	0.000	0.00
9	12	0.000	0.00
9	13	0.000	0.00
9	14	0.000	0.00
9	16	0.000	0.00
9	17	0.000	0.00
9	18	0.000	0.00
9	20	0.000	0.00
9	21	0.000	0.00
9	22	0.000	0.00
9 9	23 24	0.000	0.00 0.00
9	25	0.000	0.00
9	26	0.000	0.00
10 10	1	0.000	0.00
10	3	0.000	0.00
10	4	0.000	0.00
10	5	0.000	0.00
10	7	0.000	0.00

10	8 9	0.000	0.00
10	10	0.000	0.00
10	11	0.000	0.00
10 10	12	0.000	0.00
10	14	0.000	0.00
10	15	0.000	0.00
10	16	0.000	0.00
10	18	0.000	0.00
10	19 20	0.000	0.00
10	20	0.000	0.00
10	22	0.000	0.00
10 10	23 24	0.000	0.00
10	25	0.000	0.00
10 11	26 1	0.000	0.00
11	2	0.000	0.00
11	3	0.000	0.00
11 11	4 5	0.000	0.00
11	6	0.000	0.00
11	7	0.000	0.00
11	9	0.000	0.00
11	10	0.000	0.00
11 11	11 12	0.000	0.00
11	13	0.000	0.00
11	14	0.000	0.00
11 11	15	0.000	0.00
11	17	0.000	0.00
11 11	18 19	0.000	0.00
11	20	0.000	0.00
11	21	0.000	0.00
11 11	22 23	0.000	0.00
11	24	0.000	0.00
11 11	25 26	0.000	0.00
12	1	0.000	0.00
12	2	0.000	0.00
12 12	3 4	0.000	0.00
12	5	0.000	0.00
12	6 7	0.000	0.00
12	8	0.000	0.00
12	9	0.000	0.00
12 12	10	0.000	0.00
12	12	0.000	0.00
12	13	0.000	0.00
12	15	0.000	0.00
12	16	0.000	0.00
12 12	17 18	0.000	0.00
12	19	0.000	0.00
12	20	0.000	0.00
12	21	0.000	0.00
12	23	0.000	0.00
12 12	24 25	0.000	0.00
12	26	0.000	0.00
13	1	0.000	0.00
13	3	0.000	0.00
13	4	0.000	0.00
13 13	5 6	0.000 0.000	0.00 0.00
13	7	0.000	0.00
13 12	8	0.000	0.00
13 13	9 10	0.000	0.00
13	11	0.000	0.00
13 13	12 13	0.000 0.000	0.00 0.00
13	14	0.000	0.00
13	15	0.000	0.00

13	16	0.000	0.00
13	17	0.000	0.00
13	10	0.000	0.00
13	20	0.000	0.00
13	21	0.000	0.00
13	22	0.000	0.00
13	23	0.000	0.00
13	24	0.000	0.00
13	25	0.000	0.00
14	1	0.000	0.00
14	2	0.000	0.00
14	3	0.000	0.00
14	4	0.000	0.00
14	5	0.000	0.00
14	7	0.000	0.00
14	8	0.000	0.00
14	9	0.000	0.00
14	10	0.000	0.00
14	11	0.000	0.00
14	12	0.000	0.00
14	13	0.000	0.00
14	15	0.000	0.00
14	16	0.000	0.00
14	17	0.000	0.00
14	18	0.000	0.00
14	20	0.000	0.00
14	21	0.000	0.00
14	22	0.000	0.00
14	23	0.000	0.00
14	24	0.000	0.00
14	25	0.000	0.00
14	20	0.000	0.00
15	2	0.000	0.00
15	3	0.000	0.00
15	4	0.000	0.00
15	5	0.000	0.00
15	7	0.000	0.00
15	8	0.000	0.00
15	9	0.000	0.00
15	10	0.000	0.00
15	11	0.000	0.00
15	12	0.000	0.00
15	14	0.000	0.00
15	15	0.000	0.00
15	16	0.000	0.00
15	17	0.000	0.00
15	18	0.000	0.00
15	20	0.000	0.00
15	21	0.000	0.00
15	22	0.000	0.00
15	23	0.000	0.00
15	24	0.000	0.00
15	25	0.000	0.00
16	1	0.000	0.00
16	2	0.000	0.00
16	3	0.000	0.00
16	4	0.000	0.00
16	5	0.000	0.00
16	7	0.000	0.00
16	8	0.000	0.00
16	9	0.000	0.00
16	10	0.000	0.00
16	11	0.000	0.00
10 16	12 12	0.000	0.00
16	14	0.000	0.00
16	15	0.000	0.00
16	16	0.000	0.00
16	17	0.000	0.00
16 16	18	0.000	0.00
10 16	20	0.000	0.00
16	21	0.000	0.00
16	22	0.000	0.00
16	23	0.000	0.00

16	24	0.000	0,00	
16	25	0.000	0,00	
16	26	0.000	0.00	
17	1	0,000	0.00	
17	2	0.000	0.00	
17	3	0.000	0.00	
17	4	0.000	0.00	
17	5	0.000	0.00	
17	6	0.000	0.00	
17	0	0.000	0.00	
17	0	0.000	0.00	
17	8	0.000	0.00	
17	9	0.000	0.00	
17	10	0.000	0.00	
17	11	0.000	0.00	
17	12	0.000	0.00	
17	13	0.000	0.00	
17	14	0.000	0.00	
17	15	0.000	0.00	
17	16	0.000	0.00	
17	17	0.000	0.00	
17	18	0.000	0.00	
17	19	0.000	0.00	
17	20	0.000	0.00	
17	21	0.000	0.00	
17	21	0.000	0.00	
17	22	0.000	0.00	
17	23 74	0.000	0.00	
17	24	0.000	0.00	
17	25	0.000	0.00	
17	26	0.000	0.00	
18	1	0.000	0.00	
18	2	0.000	0.00	
18	3	0.000	0.00	
18	4	0.000	0.00	
18	5	0.000	0.00	
18	6	0.000	0.00	
18	7	0.000	0.00	
18	8	0.000	0.00	
18	9	0.000	0.00	
18	10	0.000	0.00	
18	11	0.000	0.00	
18	12	0.000	0.00	
18	13	0.000	0.00	
18	14	0.000	0.00	
18	15	0.000	0.00	
19	16	0.000	0.00	
10	17	0.000	0.00	
10	10	0.000	0.00	
10	10	0.000	0.00	
10	20	0.000	0.00	
10	20	0.000	0.00	
18	21	0.000	0.00	
18	22	0.000	0.00	
18	23	0.000	0.00	
18	24	0.000	0.00	
18	25	0.000	0.00	
18	26	0.000	0.00	
19	1	0.000	0.00	
19	2	0.000	0.00	
19	3	0.000	0.00	
19	4	0.000	0.00	
19	5	0.000	0.00	
19	6	0.000	0.00	
19	7	0.000	0.00	
19	8	0.000	0.00	
19	9	0.000	0.00	
19	10	0.000	0.00	
10	11	0.000	0.00	
10	17	0.000	0.00	
19	12	0.000	0.00	
19	13	0.000	0.00	
19	15	0.000	0.00	
19	15	0.000	0.00	
19	16	0.000	0.00	
19	17	0.000	0.00	
19	18	0.000	0.00	
19	19	0.000	0.00	
19	20	0.000	0.00	
19	21	0.000	0.00	
19	22	0.000	0.00	
19	23	0.000	0.00	
19	24	0.000	0.00	
19	25	0.000	0.00	
19	26	0.000	0.00	
'=====	=====			
SECON	D ORI)ER WAVE D	RIFT	
'==	==			

'txwadr, 2 lines

'nfodir	nfofre	ifosym	itypin
19	26	2	

19	26	2	

WAVE DIRECTIONS DRIFT COEFFICIENTS

	Difficulture Difficient Contra
'	
'ifodir	fodir
1	0.00000
2	5.00000
3	10.0000
4	15.0000
5	20.0000
6	25.0000
7	30.0000
8	35.0000
9	40.0000
10	45.0000
11	50.0000
12	55.0000
13	60.0000
14	65.0000
15	70.0000
16	75.0000
17	80.0000
18	85.0000
19	90.0000
'	

WAVE FREQUENCIES DRIFT COEFFICIENTS

'-----'ifofre fofre
 one

 1
 0.2209440

 2
 0.216662

 3
 0.224399

 4
 0.232711

 5
 0.241661

 6
 0.251327

 7
 0.261799

 8
 0.273182

 9
 0.285599

 10
 0.299199

 11
 0.340066

 14
 0.369599

 15
 0.349066

 14
 0.369599

 16
 0.418879

 17
 0.448799

 18
 0.483322

 19
 0.523599

 20
 0.571199

 21
 0.628319

 22
 0.698132

 23
 0.785398

 24
 1.04720

 25
 1.57080

26 3.14159

SURGE WAVE DRIFT COEFFICIENTS

'		
'idir	ifreq	ampl
1	1	1.643
1	2	1.620
1	3	1.591
1	4	1.577
1	5	1.645
1	6	1.790
1	7	2.000
1	8	2.303
1	9	2.763
1	10	3.512
1	11	4.836
1	12	7.432
1	13	13.18
1	14	27.47
1	15	61.16
1	16	106.5
1	17	113.8
1	18	83.52
1	19	65.39
1	20	75.89
1	21	128.9
1	22	225.1
1	23	254.7
1	24	238.8
1	25	226.7
1	26	183.3

2	1	1.637
2	2	1.614
2	3	1.585
2	4	1.571
2	5	1.639
2	6	1.783
2	/	1.992
2	8	2.294
2	9 10	2./53
2	11	4.818
2	12	7 404
2	13	13.13
2	14	27.37
2	15	60.93
2	16	106.0
2	17	113.3
2	18	83.21
2	19	65.14
2	20	75.60
2	21	128.4
2	22	224.3
2	23	233./
2	24	237.9
2	26	182.6
3	1	1.618
3	2	1.596
3	3	1.567
3	4	1.553
3	5	1.620
3	6	1.762
3	7	1.969
3	8	2.268
3	9	2.721
3	10	3.458
3	11	4.763
3	12	7.319
3	13	12.98
3	14	27.05
3	16	104.8
3	17	112.0
3	18	82.26
3	19	64.39
3	20	74.73
3	21	126.9
3	22	221.7
3	23	250.8
3	24	235.2
3	25	223.2
3	26	180.6
4	1	1.587
4	2	1.565
4	3	1.537
4	4	1.523
4	5	1.589
4	7	1.727
4	8	2.225
4	9	2.669
4	10	3.392
4	11	4.671
4	12	7.179
4	13	12.73
4	14	26.53
4	15	59.08
4	16	102.8
4 1	1/ 10	2020
+ 4	10 10	63.16
4	20	73.30
4	21	124.5
4	22	217.5
4	23	246.0
4	24	230.7
4	25	219.0
4	26	177.1
5	1	1.544
5	2	1.523
5	3	1.495
5	4 5	1.482
5	6	1.540
5	-	1.002
5	7	1879

5	9	2.596
5	10	3.300
5	11	4.545
5	13	12.39
5	14	25.81
5	15	57.48
5	16 17	100.0
5	18	78.49
5	19	61.44
5	20	71.31
5	21 22	121.1
5	23	239.3
5	24	224.4
5	25	213.0
5	26 1	1/2.3
6	2	1.469
6	3	1.442
6	4	1.429
6	5	1.622
6	7	1.812
6	8	2.087
6	9	2.504
6	10	3.183 4 383
6	12	6.736
6	13	11.95
6	14	24.90
6	16	96.48
6	17	103.1
6	18	75.70
6	19 20	59.26 68.78
6	20	116.8
6	22	204.0
6	23	230.8
6	24	210.4
6	26	166.2
7	1	1.423
7	2	1.403
7	4	1.366
7	5	1.425
7	6	1.550
7	8	1.732
7	9	2.393
7	10	3.041
7	11 12	4.188
7	13	11.42
7	14	23.79
7	15	52.97
7	17	98.53
7	18	72.33
7	19	56.63
7	20 21	111.6
7	22	195.0
7	23	220.6
7	24 25	206.8
7	26	158.8
8	1	1.346
8	2	1.327
о 8	з 4	1.303
8	5	1.348
8	6	1.466
8	7 8	1.638 1.897
8	9	2.263
8	10	2.877
8 8	11 12	3.962
8	13	10.80
8	14	22.50
8 8	15 16	50.10 87.20
0	10	57.20

8	17	93.20
8	18	68.42
8	19	53.56
8	20	62.16
8	21	105.6
8	22	184.4
8	23	208.6
8	24	195.6
8	25	185.7
8	26	150.2
9	1	1.259
9	2	1.241
9	3	1.219
9	4	1.208
9	5	1.260
9	6	1.371
9	7	1.532
9	8	1.764
9	9	2.117
9	10	2.690
9	11	3.705
9	12	5.693
9	13	10.10
9	14	21.04
9	15	46.85
9	16	81.55
9	17	87.16
9	18	63.98
9	19	50.09
9	20	58.13
9	21	98.72
9	22	172.5
9	23	195.1
9	24	182.9
9	25	173.6
9	26	140.4
10	1	1.162
10	2	1.146
10	3	1.125
10	4	1.115
10	5	1.163
10	6	1.265
10	7	1.414
10	8	1.629
10	9	1.954
10	10	2.483
10	11	3.420
10	12	5.255
10	13	9.322
10	14	19.42
10	15	43.25
10	16	/5.28
10	1/	80.45
10	18	59.06
10	19	46.23
10	20	53.66
10	21	91.13
10	22	159.2
10	23	160.1
10	24	160.9
10	25	120.5
11	1	1056
11	2	1.030
11	2	1.042
11	1	1.023
11	5	1.014
11	6	1.057
11	7	1 285
11	8	1.205
11	a	1.400
11	10	2 257
11	11	3 109
11	17	4 777
11	13	8 474
11	14	17.66
11	15	39.32
11	16	68.43
11	17	73.13
11	18	53.69
11	19	42.03
11	20	48.78
11	21	82.84
11	22	144.7
11	23	163.7
11	24	153.5

11	25	145.7
11	26	117.8
12	2	0.9426
12	3	0.9124
12	4	0.9045
12	5	0.9436
12	6	1.026
12	7	1.147
12	8	1.321
12	10	2 014
12	11	2.014
12	12	4.263
12	13	7.562
12	14	15.76
12	15	35.08
12	16	61.06
12	10	65.26
12	10	37.50
12	20	43.53
12	21	73.92
12	22	129.1
12	23	146.1
12	24	137.0
12	25	130.0
13	1	0.8217
13	2	0.8102
13	3	0.7954
13	4	0.7885
13	5	0.8226
13	6	0.8948
13	7	0.9998
13	8	1.152
13	10	1.302
13	11	2.418
13	12	3.716
13	13	6.592
13	14	13.74
13	15	30.58
13	16	53.23
13	17	56.89 41.76
13	19	32.69
13	20	37.94
13	21	64.44
13	22	112.6
13	23	127.3
13	24	119.4
13	25	91.67
14	1	0.6945
14	2	0.6848
14	3	0.6723
14	4	0.6665
14	5	0.6953
14	6	0.7563
14	8	0.0431
14	9	1.168
14	10	1.484
14	11	2.044
14	12	3.141
14	13	5.571
14	14	11.61
14	15	23.03 11.00
14	17	48.08
14	18	35.30
14	19	27.63
14	20	32.07
14	21	54.46
14	22	95.15
14 11	23	107.6
14	25	95.80
14	26	77.48
15	1	0.5620
15	2	0.5542
15	3	0.5441
15	4	0.5394
15 15	6	0.5627

15	7	0.6839	
15	8	0.7877	
15	10	1.201	
15	11	1.654	
15	12	2.542	
15 15	13 14	4.509 9 396	
15	15	20.92	
15	16	36.41	
15	17	38.91	
15 15	18	28.57	
15	20	25.96	
15	21	44.08	
15	22	77.00	
15 15	23 24	87.10	
15	25	77.53	
15	26	62.71	
16 16	1	0.4253	
16	3	0.4194	
16	4	0.4082	
16	5	0.4258	
16 16	6 7	0.4632	
16	8	0.5961	
16	9	0.7151	
16	10	0.9089	
16	11	1.252	
16	13	3.412	
16	14	7.110	
16 16	15 16	15.83	
16	17	29.45	
16	18	21.62	
16	19	16.92	
16	20	33.35	
16	22	58.27	
16	23	65.91	
16	24	61.80	
16	26	47.45	
17	1	0.2854	
17	2	0.2814	
17	3	0.2762	
17	5	0.2857	
17	6	0.3108	
17	7	0.3472	
17	9	0.3999	
17	10	0.6098	
17	11	0.8398	
17	12	2.289	
17	14	4.770	
17	15	10.62	
17 17	16 17	18.49 19.76	
17	18	14.50	
17	19	11.35	
17 17	20 21	13.18 22.20	
17	22	39.10	
17	23	44.22	
17	24	41.47	
17 17	25 26	39.36 31.84	
18	1	0.1432	
18	2	0.1412	
18 18	3	0.1386	
18	5	0.1374	
18	6	0.1560	
18	7	0.1743	
18 18	в 9	0.2007	
18	10	0.3061	
18	11	0.4215	
18 19	12	0.6477	
10 18	13 14	2.394	

18	15	5.331
18	16	9.278
18	17	9.916
18	18	7.280
18	19	5.699
18	20	6.614
18	21	11.23
18	22	19.62
18	23	22.20
18	24	20.81
18	25	19.76
18	26	15.98
19	1	-0.1006E-15
19	2	-0.9922E-16
19	3	-0.9741E-16
19	4	-0.9656E-16
19	5	-0.1007E-15
19	6	-0.1096E-15
19	7	-0.1224E-15
19	8	-0.1410E-15
19	9	-0.1692E-15
19	10	-0.2150E-15
19	11	-0.2961E-15
19	12	-0.4551E-15
19	13	-0.8072E-15
19	14	-0.1682E-14
19	15	-0.3745E-14
19	16	-0.6518E-14
19	17	-0.6967E-14
19	18	-0.5114E-14
19	19	-0.4004E-14
19	20	-0.4647E-14
19	21	-0.7891E-14
19	22	-0.1379E-13
19	23	-0.1559E-13
19	24	-0.1462E-13
19	25	-0.1388E-13

19	24	-0.1462E-13
19	25	-0.1388E-13
19	26	-0.1123E-13
'		
SWAY	WAVE	DRIFT COEFFICIENTS
'		
'idir	ifreq	ampl
1	1	0.2012E-15
1	2	0.1984E-15
1	3	0.1948E-15
1	4	0.1931E-15
1	5	0.2015E-15
1	6	0.2192E-15
1	7	0 2449E-15
1	8	0.2821E-15
1	9	0 3384F-15
1	10	0.4300F-15
1	11	0.5923E-15
1	12	0.0102E 15
1	12	0.9102E-13
1	13	0.2264E 14
1	14	0.3304E-14
1	15	0.1204E 12
1	10	0.13046-13
1	17	0.1393E-13
1	18	0.1023E-13
1	19	0.800/E-14
1	20	0.9294E-14
1	21	0.1578E-13
1	22	0.2757E-13
1	23	0.3119E-13
1	24	0.2924E-13
1	25	0.2776E-13
1	26	0.2245E-13
2	1	0.1432
2	2	0.1412
2	3	0.1386
2	4	0.1374
2	5	0.1434
2	6	0.1560
2	7	0.1743
2	8	0.2007
2	9	0.2408
2	10	0.3061
2	11	0.4215
2	12	0.6477
2	13	1.149
2	14	2.394
2	15	5.331
2	16	9.278
2	17	9.916
2	18	7.280

2	19	5.699	
2	20	6.614	
2	21	11.23	
2	22	22.20	
2	24	20.81	
2	25	19.76	
2	26	15.98	
3	1	0.2854	
3	3	0.2814	
3	4	0.2738	
3	5	0.2857	
3	6	0.3108	
3	7	0.3472	
3	9	0.3999	
3	10	0.6098	
3	11	0.8398	
3	12	1.291	
3	13	2.289	
3	15	10.62	
3	16	18.49	
3	17	19.76	
3	18	14.50	
3	20	11.35	
3	20	22.38	
3	22	39.10	
3	23	44.22	
3	24	41.47	
3	25	39.36	
4	1	0.4253	
4	2	0.4194	
4	3	0.4117	
4	4	0.4082	
4	5	0.4258	
4	6 7	0.4632	
4	8	0.5961	
4	9	0.7151	
4	10	0.9089	
4	11	1.252	
4	12	1.924	
4	14	7.110	
4	15	15.83	
4	16	27.55	
4	17	29.45	
4	18	21.62	
4	20	19.64	
4	21	33.35	
4	22	58.27	
4	23	65.91	
4	24 25	58.67	
4	26	47.45	
5	1	0.5620	
5	2	0.5542	
5	3	0.5441	
5	5	0.5627	
5	6	0.6121	
5	7	0.6839	
5	8	0.7877	
5	9 10	0.9450	
5	10	1.201	
5	12	2.542	
5	13	4.509	
5	14	9.396	
55	15 16	20.92	
5	17	38.91	
5	18	28.57	
5	19	22.36	
5	20	25.96	
55	21 22	44.08 77.00	
5	23	87.10	
5	24	81.67	
5	25	77.53	
5	26	62.71	

6	1	0.6945
6	2	0.6848
6	3	0.6723
6	4	0.6665
6	5	0.6953
6	6	0.7563
6	7	0.8451
6	8	0.9734
6	9	1.168
6	10	1.484
6	11	2.044
6	12	3.141
6	13	5.571
6	14	11.61
6	15	25.85
6	16	44.99
6	17	48.08
6	18	35.30
6	19	27.63
6	20	32.07
6	21	54.46
6	22	95.15
6	23	107.6
6	24	100.9
6	25	95.80
6	26	77.48
7	1	0.8217
7	2	0.8102
7	3	0.7954
7	4	0.7885
7	5	0.8226
7	6	0.8948
7	7	0.9998
7	8	1.152
7	9	1.382
7	10	1.756
7	11	2.418
7	12	3.716
7	13	6.592
7	14	13.74
7	15	30.58
7	16	53.23
7	17	56.89
7	18	41.76
7	19	32.69
7	20	37.94
7	21	64.44
7	22	112.6
7	23	127.3
7	24	119.4
7	25	113.3
/	26	91.67
8	1	0.9426
8	2	0.9294
8	3	0.9124
0	4	0.9045
0	5	1.026
0	7	1.020
8	, д	1 3 2 1
8	9	1 585
8	10	2.014
8	11	2.774
8	12	4.263
8	13	7.562
8	14	15.76
8	15	35.08
8	16	61.06
8	17	65.26
8	18	47.91
8	19	37.50
8	20	43.53
8	21	73.92
8	22	129.1
8	23	146.1
8	24	137.0
8	25	130.0
8	26	105.2
9	1	1.056
9	2	1.042
9	3	1.023
9	4	1.014
9	5	1.057
9	6	1.150
9	7	1.285
9	8	1.480

9	9	1.776
9	10	2.257
9	11	3.109
9	12	4./// 8.474
9	14	17.66
9	15	39.32
9	16	68.43
9	17	73.13
9	18	53.69
9 0	20	42.03
9	21	82.84
9	22	144.7
9	23	163.7
9	24	153.5
9	25	145.7
9 10	26	117.8
10	2	1.146
10	3	1.125
10	4	1.115
10	5	1.163
10	6	1.265
10	2	1.414
10	9	1.954
10	10	2.483
10	11	3.420
10	12	5.255
10	13	9.322
10	14 15	19.42
10	16	75.28
10	17	80.45
10	18	59.06
10	19	46.23
10	20	53.66
10	21	91.13 159.2
10	23	180.1
10	24	168.9
10	25	160.3
10	26	129.6
11	1	1.259
11	3	1.241
11	4	1.208
11	5	1.260
11	6	1.371
11	7	1.532
11	9	2 117
11	10	2.690
11	11	3.705
11	12	5.693
11	13	10.10
11	14	21.04 46.85
11	16	81.55
11	17	87.16
11	18	63.98
11	19	50.09
11	20	58.13
11	21	96.72
11	23	195.1
11	24	182.9
11	25	173.6
11	26	140.4
12	1	1.346
12	2	1.327
12	4	1.292
12	5	1.348
12	6	1.466
12	7	1.638
12 12	ช ด	1.887
12	10	2.877
12	11	3.962
12	12	6.088
12	13	10.80
12	14 1	22.50
12 12	16	87.20

12	17	93.20
12	18	68.42
12	19	53 56
12	20	62.16
12	20	105 6
12	21	103.0
12	22	184.4
12	23	208.6
12	24	195.6
12	25	185.7
12	26	150.2
13	1	1.423
13	2	1.403
13	3	1.378
13	4	1.366
13	5	1 4 2 5
12	6	1 550
10	7	1.330
13	<i>'</i>	1./32
13	8	1.995
13	9	2.393
13	10	3.041
13	11	4.188
13	12	6.436
13	13	11.42
13	14	23.79
13	15	52.97
13	16	92.19
13	17	9853
12	18	77 22
12	10	56.67
10 12	20	20.03
12	20	111 /
12	21	105.0
13	22	195.0
13	23	220.6
13	24	206.8
13	25	196.3
13	26	158.8
14	1	1.489
14	2	1.469
14	3	1.442
14	4	1.429
14	5	1.491
14	6	1.622
14	7	1.812
14	8	2.087
14	9	2.504
14	10	3.183
14	11	4.383
14	12	6.736
14	13	11.95
14	14	24.90
14	15	55.43
14	16	96.48
14	17	103.1
14	18	75.70
14	19	59.26
14	20	68 78
14	21	116.8
14	22	204.0
14	22	201.0
14	24	216.0
11	25	210.4
11	26	166.7
15	1	1 544
	1	1.544
15	2	1 5 2 2
15	2	1.523
15 15 15	2 3	1.523 1.495
15 15 15	2 3 4	1.523 1.495 1.482
15 15 15 15	2 3 4 5	1.523 1.495 1.482 1.546
15 15 15 15 15 15	2 3 4 5 6	1.523 1.495 1.482 1.546 1.682
15 15 15 15 15 15 15	2 3 4 5 6 7	1.523 1.495 1.482 1.546 1.682 1.879
15 15 15 15 15 15 15 15	2 3 4 5 6 7 8	1.523 1.495 1.482 1.546 1.682 1.879 2.164
15 15 15 15 15 15 15 15 15	2 3 4 5 6 7 8 9	1.523 1.495 1.482 1.546 1.682 1.879 2.164 2.596
15 15 15 15 15 15 15 15 15 15	2 3 4 5 6 7 8 9 10	1.523 1.495 1.482 1.546 1.682 1.879 2.164 2.596 3.300
15 15 15 15 15 15 15 15 15 15 15	2 3 4 5 6 7 8 9 10 11	1.523 1.495 1.482 1.546 1.682 1.879 2.164 2.596 3.300 4.545
15 15 15 15 15 15 15 15 15 15 15 15	2 3 4 5 6 7 8 9 10 11 12	1.523 1.495 1.482 1.546 1.682 1.879 2.164 2.596 3.300 4.545 6.984
15 15 15 15 15 15 15 15 15 15 15 15 15	2 3 4 5 6 7 8 9 10 11 12 13	1.523 1.495 1.482 1.546 1.682 1.879 2.164 2.596 3.300 4.545 6.984 12.39
15 15 15 15 15 15 15 15 15 15 15 15 15 1	2 3 4 5 6 7 8 9 10 11 12 13 14	1.523 1.495 1.482 1.546 1.682 1.879 2.164 2.596 3.300 4.545 6.984 12.39 25.81
15 15 15 15 15 15 15 15 15 15 15 15 15 1	2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.523 1.495 1.482 1.546 1.682 1.879 2.164 2.596 3.300 4.545 6.984 12.39 25.81 57.48
15 15 15 15 15 15 15 15 15 15 15 15 15 1	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{c} 1.523\\ 1.495\\ 1.482\\ 1.546\\ 1.682\\ 1.879\\ 2.164\\ 2.596\\ 3.300\\ 4.545\\ 6.984\\ 12.39\\ 25.81\\ 57.48\\ 100.0\end{array}$
15 15 15 15 15 15 15 15 15 15 15 15 15 1	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c} 1.523\\ 1.495\\ 1.482\\ 1.546\\ 1.682\\ 1.879\\ 2.164\\ 2.596\\ 3.300\\ 4.545\\ 6.984\\ 12.39\\ 25.81\\ 57.48\\ 100.0\\ 106.9\end{array}$
15 15 15 15 15 15 15 15 15 15 15 15 15 1	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} 1.523\\ 1.495\\ 1.482\\ 1.546\\ 1.682\\ 1.879\\ 2.164\\ 2.596\\ 3.300\\ 4.545\\ 6.984\\ 12.39\\ 25.81\\ 57.48\\ 100.0\\ 106.9\\ 78.49\end{array}$
15 15 15 15 15 15 15 15 15 15 15 15 15 1	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	$\begin{array}{c} 1.523\\ 1.495\\ 1.482\\ 1.546\\ 1.682\\ 1.879\\ 2.164\\ 2.596\\ 3.300\\ 4.545\\ 6.984\\ 12.39\\ 25.81\\ 57.48\\ 100.0\\ 106.9\\ 78.49\\ 61.44\\ \end{array}$
15 15 15 15 15 15 15 15 15 15 15 15 15 1	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	$\begin{array}{c} 1.523\\ 1.495\\ 1.482\\ 1.546\\ 1.682\\ 1.879\\ 2.164\\ 2.596\\ 3.300\\ 4.545\\ 6.984\\ 12.39\\ 25.81\\ 57.48\\ 100.0\\ 106.9\\ 78.49\\ 61.44\\ 71.31\end{array}$
15 15 15 15 15 15 15 15 15 15 15 15 15 1	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	$\begin{array}{c} 1.523\\ 1.495\\ 1.482\\ 1.582\\ 1.596\\ 3.300\\ 4.545\\ 6.984\\ 12.39\\ 25.81\\ 57.48\\ 100.0\\ 106.9\\ 78.49\\ 61.44\\ 71.31\\ 121.1 \end{array}$
15 15	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 20 21 22	1.523 1.495 1.485 1.546 1.682 1.879 2.164 2.596 3.300 4.545 6.984 12.39 25.81 57.84 100.0 106.9 78.49 61.44 71.31 121.1 211.6
15 15	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	$\begin{array}{c} 1.523\\ 1.495\\ 1.482\\ 1.546\\ 1.682\\ 1.879\\ 2.164\\ 2.596\\ 3.300\\ 4.545\\ 6.984\\ 12.39\\ 25.81\\ 57.48\\ 100.0\\ 106.9\\ 78.49\\ 61.44\\ 71.31\\ 121.1\\ 211.6\\ 239.3\end{array}$

15	25	213.0
15	26	172.3
16	1	1.587
16	2	1.565
16	3	1.537
16	4	1.523
16	5	1.369
16	7	1.727
16	8	2.225
16	9	2.669
16	10	3.392
16	11	4.671
16	12	7.179
16	13	12.73
16	14	26.53
16	15	59.08
16	16	102.8
10	10	109.9
10	10	62.16
16	20	73 30
16	21	124 5
16	22	217.5
16	23	246.0
16	24	230.7
16	25	219.0
16	26	177.1
17	1	1.618
17	2	1.596
17	3	1.567
17	4	1.553
17	5	1.620
17	6	1./62
17	/	1.969
17	0	2.200
17	10	2.721
17	11	4.763
17	12	7.319
17	13	12.98
17	14	27.05
17	15	60.24
17	16	104.8
17	17	112.0
17	18	82.26
17	19	64.39
17	20	/4./3
17	21	221.9
17	23	250.8
17	24	235.2
17	25	223.2
17	26	180.6
18	1	1.637
18	2	1.614
18	3	1.585
18	4	1.571
18	5	1.639
18	6	1.783
18 10	/ 8	2.992
10	0	2.294
18	10	3 498
18	11	4.818
18	12	7.404
18	13	13.13
18	14	27.37
18	15	60.93
18	16	106.0
18	17	113.3
18	18	83.21
18	19	65.14
18	20	75.60
18	21	128.4
10 19	22 23	224.3
18	23 24	237.0
18	25	225.8
18	26	182.6
19	1	1.643
19	2	1.620
19	3	1.591
19	4	1.577
19	5	1.645
4.0	~	4 500

19 19 19 19 19 19 19	7 8 9 10 11 12 13 14	2.000 2.303 2.763 3.512 4.836 7.432 13.18 27.47
19 19 19 19 19	15 16 17 18 19	61.16 106.5 113.8 83.52 65.39
19 19 19 19 19	20 21 22 23 24	75.89 128.9 225.1 254.7 238.8
19 19 ' YAW V	25 26 VAVE	226.7 183.3 DRIFT COEFF
'	ifroa	ampl
1	1	0.000
1 1	2 3	0.000 0.000
1	4 5	0.000
1	6	0.000
1	8	0.000 0.000
1	9 10	0.000
1	11	0.000
1 1	12 13	0.000 0.000
1	14	0.000
1	16	0.000
1 1	17 18	0.000
1	19	0.000
1	20 21	0.000 0.000
1	22 23	0.000
1	24	0.000
1 1	25 26	0.000 0.000
2	1	0.000
2	2 3	0.000
2	4 5	0.000
2	6	0.000
2 2	7 8	0.000 0.000
2	9 10	0.000
2	11	0.000
2 2	12 13	0.000 0.000
2	14 15	0.000
2	16	0.000
2 2	17 18	0.000 0.000
2	19	0.000
2	20	0.000
2 2	22 23	0.000 0.000
2	24	0.000
2	25 26	0.000
3 3	1 2	0.000 0.000
3	3	0.000
3 3	4 5	0.000
3 3	6 7	0.000 0.000
3	8	0.000
3 3	9 10	0.000

COEFFICIENTS

C-**51**

2	11	0.000
2	11	0.000
2	12	0.000
2	14	0.000
3	15	0.000
2	16	0.000
2	17	0.000
2	10	0.000
3	10	0.000
3	19	0.000
3	20	0.000
3	21	0.000
3	22	0.000
3	23	0.000
3	24	0.000
3	25	0.000
3	26	0.000
4	1	0.000
4	2	0.000
4	3	0.000
4	4	0.000
4	5	0.000
4	6	0.000
4	7	0.000
4	8	0.000
4	9	0.000
4	10	0.000
4	11	0.000
4	12	0.000
4	13	0.000
4	14	0.000
4	15	0.000
4	16	0.000
4	17	0.000
4	18	0.000
4	19	0.000
4	20	0.000
4	21	0.000
4	22	0.000
4	22	0.000
1	24	0.000
1	25	0.000
1	26	0.000
5	1	0.000
5	2	0.000
5	2	0.000
5	3	0.000
5	4	0.000
5	5	0.000
5	6	0.000
5	7	0.000
5	8	0.000
5	9	0.000
5	10	0.000
5	11	0.000
5	12	0.000
5	13	0.000
5	14	0.000
5	15	0.000
5	16	0.000
5	17	0.000
5		0.000
5	18	0.000
5	18 19	0.000
5	18 19 20	0.000 0.000 0.000 0.000
5 5 5	18 19 20 21	0.000 0.000 0.000 0.000 0.000
5 5 5 5	18 19 20 21 22	0.000 0.000 0.000 0.000 0.000
5 5 5 5 5 5	18 19 20 21 22 23	0.000 0.000 0.000 0.000 0.000 0.000
5 5 5 5 5 5 5	18 19 20 21 22 23 24	0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 5 5 5 5 5 5 5 5	18 19 20 21 22 23 24 25	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 5 5 5 5 5 5 5 5 5 5 5 5	18 19 20 21 22 23 24 25 26	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 5 5 5 5 5 5 5 5 6	18 19 20 21 22 23 24 25 26 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 5 5 5 5 5 5 5 5 6 6	18 19 20 21 22 23 24 25 26 1 2	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
555555666	18 19 20 21 22 23 24 25 26 1 2 3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5555556666	18 19 20 21 22 23 24 25 26 1 2 3 4	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
55555566666	18 19 20 21 22 23 24 25 26 1 2 3 4 5	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5555556666666	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5555556666666	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 5 5 5 5 5 5 6 6 6 6 6 6 6	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 5 5 5 5 5 5 6 6 6 6 6 6 6 6	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
555555566666666666666	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
55555556666666666666666	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13	0.000 0.000
55555556666666666666666666	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 101 12 13 14	0.000 0.000
55555556666666666666666666	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.000 0.000
55555556666666666666666666666	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.000 0.000
5555555666666666666666666666666	18 19 20 21 22 23 24 25 26 1 2 3 4 5 6 7 8 9 101 12 13 14 15 16 17	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000

6	10	0.000
6	20	0.000
6	20	0.000
0	21	0.000
6	22	0.000
0	23	0.000
6	24	0.000
6	25	0.000
6	26	0.000
7	1	0.000
7	2	0.000
7	3	0.000
7	4	0.000
7	5	0.000
7	6	0.000
7	7	0.000
7	8	0.000
7	9	0.000
7	10	0.000
7	11	0.000
7	12	0.000
7	13	0.000
7	14	0.000
7	15	0.000
7	15	0.000
/	16	0.000
7	17	0.000
7	18	0.000
7	19	0.000
7	20	0.000
7	21	0.000
7	22	0.000
7	23	0.000
7	24	0.000
7	25	0.000
7	26	0.000
8	1	0.000
8	2	0.000
8	3	0.000
0	1	0.000
0	4	0.000
8	5	0.000
8	6	0.000
8	7	0.000
8	8	0.000
8	9	0.000
8	10	0.000
8	11	0.000
8	12	0.000
8	13	0.000
8	14	0.000
8	15	0.000
8	16	0.000
8	17	0.000
8	18	0.000
8	19	0.000
8	20	0.000
8	21	0.000
8	22	0.000
g	22	0.000
g	2.5	0.000
0	25	0.000
0	25	0.000
0	1	0.000
9	2	0.000
9	2	0.000
9	3	0.000
9	4	0.000
9	5	0.000
9	6	0.000
9	7	0.000
9	8	0.000
9	9	0.000
9	10	0.000
9	11	0.000
9	12	0.000
9	13	0.000
9	14	0.000
9	15	0.000
9	16	0.000
9	17	0,000
9	18	0.000
ģ	19	0.000
Ģ	20	0.000
, 0	20	0.000
9	21	0.000
9	22	0.000
9	23	0.000
9	24	0.000
9	25	0.000
-	<i>c</i> -	c -

10	1	0.000
10	3	0.000
10	4	0.000
10	5	0.000
10	7	0.000
10	8	0.000
10	9	0.000
10	10	0.000
10	12	0.000
10	13	0.000
10	15	0.000
10	16	0.000
10	17	0.000
10	19	0.000
10	20	0.000
10	21 22	0.000
10	23	0.000
10	24	0.000
10	25	0.000
11	1	0.000
11	2	0.000
11 11	3	0.000
11	5	0.000
11	6	0.000
11	7	0.000
11	9	0.000
11	10	0.000
11	11	0.000
11	12	0.000
11	14	0.000
11	15	0.000
11	16	0.000
11	18	0.000
11	19	0.000
11	20 21	0.000
11	22	0.000
11	23	0.000
11	24 25	0.000
11	26	0.000
12	1	0.000
12	2	0.000
12	4	0.000
12	5	0.000
12	7	0.000
12	8	0.000
12	9 10	0.000
12	11	0.000
12	12	0.000
12	13	0.000
12	15	0.000
12	16	0.000
12	17	0.000
12	19	0.000
12	20	0.000
12	21 22	0.000
12	23	0.000
12	24	0.000
12 12	25 26	0.000
13	1	0.000
13	2	0.000
13 12	3 4	0.000
13	5	0.000
13	6	0.000
13 13	7 8	0.000 0.000
-	-	

1	13	9	0.000
1	13 :	10 11	0.000
1	13 :	12	0.000
1	13	13	0.000
1	13 1	14	0.000
1	L3 . 3 '	15 16	0.000
1	13 :	17	0.000
1	13	18	0.000
1	13 1	19	0.000
1	13 2	20 21	0.000
1	13 2	22	0.000
1	13 2	23	0.000
1	13 1	24	0.000
1	13 1	25	0.000
1	L3 . L4	1	0.000
1	14	2	0.000
1	14	3	0.000
1	L4	4 r	0.000
1	4	5 6	0.000
1	14	7	0.000
1	14	8	0.000
1	14	9	0.000
1	L4: . I/L '	10	0.000
1	14	12	0.000
1	14	13	0.000
1	14	14	0.000
1	L4 :	15	0.000
1	14 . 14 [.]	10	0.000
1	14	18	0.000
1	14	19	0.000
1	14	20	0.000
1	14 : 14 :	21	0.000
1	4 1	22	0.000
1	14	24	0.000
1	14	25	0.000
1	14 :	26	0.000
1	15	1	0.000
1	15	3	0.000
1	15	4	0.000
1	15	5	0.000
1	15	6	0.000
1	15	7 8	0.000
1	15	9	0.000
1	15 :	10	0.000
1	15 :	11	0.000
1	15 1	12	0.000
1	15 1	13	0.000
1	15	15	0.000
1	15	16	0.000
1	15 1	17	0.000
1	15	19	0.000
1	15 1	20	0.000
1	15 2	21	0.000
1	15 2	22	0.000
1	15 2	23	0.000
1	15 1	24 25	0.000
1	15 2	26	0.000
1	16	1	0.000
1	16	2	0.000
1	16	3 4	0.000
1	16	5	0.000
1	16	6	0.000
1	16	7	0.000
1	16	ช ด	0.000 0.000
1	16 :	10	0.000
1	16	11	0.000
1	16	12	0.000
1	16 1 16 1	13 14	0.000
1	10 . 16 [.]	15 15	0.000
1	16	16	0.000

16	17	0.000
10	10	0.000
16	18	0.000
16	19	0.000
16	20	0.000
16	21	0.000
16	22	0.000
16	23	0.000
16	24	0.000
10	27	0.000
16	25	0.000
16	26	0.000
17	1	0.000
17	2	0.000
17	3	0.000
17	4	0.000
17	5	0.000
17	6	0.000
17	6	0.000
17	7	0.000
17	8	0.000
17	9	0.000
17	10	0.000
17	11	0.000
17	12	0.000
17	12	0.000
17	13	0.000
17	14	0.000
17	15	0.000
17	16	0.000
17	17	0.000
17	18	0.000
17	10	0.000
17	19	0.000
1/	20	0.000
17	21	0.000
17	22	0.000
17	23	0.000
17	24	0.000
17	25	0.000
17	26	0.000
10	1	0.000
18	1	0.000
18	2	0.000
18	3	0.000
18	4	0.000
18	5	0.000
18	6	0.000
18	7	0.000
18	8	0.000
10	0	0.000
10	9	0.000
18	10	0.000
18	11	0.000
18	12	0.000
18	13	0.000
18	14	0.000
18	15	0.000
18	16	0.000
10	17	0.000
18	17	0.000
18	18	0.000
18	19	0.000
18	20	0.000
18	21	0.000
18	22	0.000
18	23	0.000
18	24	0.000
18	25	0.000
10	26	0.000
10	1	0.000
19	1	0.000
19	2	0.000
19	3	0.000
19	4	0.000
19	5	0.000
19	6	0.000
19	7	0.000
10	, g	0.000
10	0	0.000
19	9	0.000
19	10	0.000
19	11	0.000
19	12	0.000
19	13	0.000
19	14	0.000
10	15	0.000
10	1.0	0.000
17	10	0.000
19	17	0.000
19	18	0.000
19	19	0.000
19	20	0.000
19	21	0.000
19	22	0.000
19	23	0.000
13	2.5	0.000
10	/4	11,10,00

19250.00019260.000 '-----POSITIONING SYSTEM DATA ' _____ 12 mooring lines ' ======= CATENARY SYSTEM DATA '=======' 'Cluster 1. N (N-E) ' '======================== LINE DATA ' iline lichar imeth iwirun icpro $\begin{array}{cccc} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & x & y & z \\ 31.2 & -18.0 \\ 1 & \text{dir preten xwinch} \end{array}$ -9.35 342.0 1750.0 .00000E+00 ' ifail ftime btens 0 0. 6000. LINE DATA ' iline lichar imeth iwirun icpro $\begin{array}{cccc}
 & 1 & 1 & 0 & 1 \\
 & 2 & 1 & 1 & 0 & 1 \\
 & x & y & z \\
 & 31.2 & -18.0 \\
 & dir preten xwinch \\
 & 1 & 1 & 1 & 1 \\
\end{array}$ -9.35 340.0 1750.0 .00000E+00 ' ifail ftime btens 0 0. 6000. LINE DATA ' iline lichar imeth iwirun icpro 3 1 1 0 1 'x y z 31.2 -18.0 -9.35 ' dir preten xwinch 330.0 1750.0 .00000E+00 ' ifail ftime btens 0 0. 6000. LINE DATA LINE DATA ' iline lichar imeth iwirun icpro 4 1 1 0 1 ' x y z 31.2 -18.0 -9.35 ' dir preten xwinch 328.0 1750.0 .0000E+00 ' ifail ftime btens 0 0 0 000 -9.35 0 0. 6000. '====== ' Cluster 2. S (S-E) ' '======' LINE DATA $\begin{array}{cccc} \text{Line DATA} \\ \text{'iline lichar imeth iwirun icpro} \\ 5 & 1 & 1 & 0 & 1 \\ \text{'x} & y & z \\ -31.2 & -18.0 & -9.35 \end{array}$ -9.35 ' dir preten xwinch 212.0 1750.0 .00000E+00 ' ifail ftime btens 0 0. 6000. 0 0.6000. LINE DATA ' iline lichar imeth iwirun icpro 6 1 1 0 1 ' x y z -31.2 -18.0 -9.35 ' dir preten xwinch 210.0 1750.0 .00000E+00 ' ifail frime btens 0 0.6000 -9.35 0 0. 6000. 0 0.6000. LINE DATA ' iline lichar imeth iwirun icpro 7 1 1 0 1 ' x y z -31.2 -18.0 -9.35 ' dir preten xwinch 200.0 1750.0 .00000E+00 ' ifail ftime btens 0 0. 6000. LINE DATA ' iline lichar imeth iwirun icpro 8 1 1 0 1 'x y z -31.2 -18.0 -9.35 ' dir preten xwinch 198.0 1750.0 .00000E+00

' ifail ftime btens 0 0. 6000. '======' 'Cluster 3 West ' '-----' LINE DATA ' iline lichar imeth iwirun icpro 9 1 1 0 1 'x y z 0.0 36.0 0.0 36.0 dir preten xwinch -9.35 97.0 1500.0 .00000E+00 ' ifail ftime btens 0 0. 6000. LINE DATA ' iline lichar imeth iwirun icpro -9.35 ' dir preten xwinch 95.0 1500.0 .00000E+00 ' ifail ftime btens 0 0. 6000. LINE DATA $\begin{array}{ccccc} \text{Line DATA} \\ \text{'iline lichar imeth iwirun icpro} \\ 11 & 1 & 0 & 1 \\ \text{'x} & y & z \\ 0.0 & 36.0 & -9.35 \\ \end{array}$ -9.35 ' dir preten xwinch 85.0 1500.0 .00000E+00 ' ifail ftime btens 0 0. 6000. LINE DATA LINE DATA ' iline lichar imeth iwirun icpro 12 1 1 0 1 ' x y z 0.0 36.0 -9.35 -9.35 ' dir preten xwinch 83.0 1500.0 .00000E+00 ' ifail ftime btens 0 0. 6000. LINE CHARACTERISTICS DATA ' lichar type npth nptv vrange
 1 2 50 5 25. ' nseg ibotco slope zglb tmax thmin 5 1 0. -160. 15000. 0. ' iseg ityp nel ibuoy sleng fric nea itynea
 See fryp
 Her housy
 steng firth
 Her housy
 Her housy

 5
 0
 30
 0
 125.
 0.
 0
 2

 'iseg dia
 emod emfac uwia watfac cdn cdl
 1
 0.155
 0.46E08
 2.
 4.714
 0.87
 2.5
 0.

 2
 0.260
 0.87E07
 1.
 0.56
 0.27
 1.5
 0.

 3
 0.155
 0.46E08
 1.
 25.000
 -1.00
 2.5
 0.

 4
 0.260
 0.87E07
 1.
 0.56
 0.27
 1.5
 0.

 5
 0.155
 0.46E08
 2.
 4.714
 0.87
 2.5
 0.

 END

APPENDIX

D

RIFLEX DECOUPLED INPUT

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

A. SIMA INPMOD RIFLEX (INP)

TRIDMON THENTTERATION TEVT 2 7 0
INFNOT IDENIIFICATION IEAT 33
·
UNIT NAMES SPECIFICATION
·
'ut ul um ul grav gcons
S m Mg KN 9.81.00000 1.0000000
NEW CINCLE DICED
NEW SINGLE KIEK
'atvos idris
AR ARSYS

ARBITRARY SYSTEM AR

'nsnod nlin nsnfix nves nricon nspr nack
4 2 4 1 0 0 0
'ibtang zbot ibot3d
'B 6.5: LINE TOPOLOGY DEFINITION
linela lintyp-la snoal-la snoal-la
line itypi nodel nodel
TIME2 TOYP2 HOUES HOUES
Isnol-id ipos iz iz iz izz izz chego chupro
nodel 0 1 1 1 1 1 GLOBAL NO
x_0 y_0 z_0 x_1 y_1 z_1 rot dir
270.0000000 0.0000000 -170.0000000 220.0000000 0.0000000 -170.0000000 0.0000000 0.0000000
'snod-id ipos ix iy iz irx iry irz chcoo chupro
node2 0 1 1 1 1 1 1 GLOBAL NO
'x0 y0 z0 x1 y1 z1 rot dir
0.0000000 0.0000000 0.0000000 33.5000000 0.0000000 -16.3200000 84.0000000 0.0000000
'snod-id ipos ix iy iz irx iry irz chcoo chupro
node3 0 1 1 1 1 1 GLOBAL NO
'x0 y0 z0 x1 y1 z1 rot dir
270.00000000000000000000000000000000000
Snoa-1a ipos ix iy iz irx iry irz cneoo cnupro
NOTE THE TELEDEAL NO
'FREE NODES

'ives idwftr xg
 ives
 idwftr xg
 yg
 zg
 dirx

 1
 su36
 0.0000000
 0.0000000
 0.0000000
 0.0000000
 dirx 'B.10 Line and segment specification NEW LINE DATA ***** 'lintyp-id nseg ncmpty2 flutyp ltyp1 4 0 fluid1 'crstyp ncmptyl exwtyp nelseg slgth nstrps nstrpd slgth0 isoity
 csl
 0
 50
 25.0000000 3
 5
 25.0000000 0

 csl
 0
 0
 10
 30.000000 3
 5
 30.000000 0

 cs2
 0
 0
 50
 215.0000000 3
 5
 50.000000 0

 cs1
 0
 0
 50
 215.0000000 3
 5
 215.000000 0
 **** ***** NEW LINE DATA ****** 'lintyp-id nseg ncmpty2 flutyp ltyp2 4 0 fluid1 'crstyp ncmptyl exwtyp nelseg slgth nstrps nstrpd slgth0 isoity

 cs4
 0
 0
 50
 25.0000000 3
 5
 25.0000000 0

 cs6
 0
 0
 10
 40.0000000 3
 5
 40.000000 0

 cs5
 0
 0
 50
 55.0000000 3
 5
 55.000000 0

 cs4
 0
 0
 50
 20.000000 3
 5
 200.00000 0

 ****** ****** NEW COMPONENT CRS1 'cmptyp-id temp alpha beta cs1 20.0000000 0.0000000 0.0000000 ams ae ai rgyr 0.1450000 5.060000e-02 1.9360000e-02 0.0000000 'iea iej igt ipress imf harpar 1 1 1 0 0 0.000000 'ea 500000.0000000 'еју mf 33.000000 0.000000 gtminus 5000.0000000 'cqx cqy cax cay clx cly icode 'tb ycurmx 1000000.000000 0.4000000 ***** NEW COMPONENT CRS1 cs2 20.0000000 0.0000000 0.0000000 'ams ae ai rgyr 0.1600000 0.3000000 5.0600000e-02 0.0000000 'iea iej igt ipress imf harpar 1 1 1 0 0 0.0000000 'ea 500000.0000000 'еју mf 33.000000 0.000000 'atminus 5000.0000000 'cqx cqy cax cay clx cly icode 0.2500000 0.2000000 0.2000000 0.2000000 0.0000000 0.0000000 1 ycurmx 'tb 1000000.0000000 0.4000000 ********* NEW COMPONENT CRS1 'cmptyp-id temp alpha beta cs3 20.0000000 0.0000000 0.0000000 'ams ae ai rgyr 0.1000000 0.2500000 1.9360000e-02 0.0000000 'iea iej igt ipress imf harpar 0 0.000000 1 1 1 0 'ea 500000.0000000 'ejy mf 37.000000 0.000000

```
'gtminus
5000.0000000

        SUUD.UUUUUUU

        'cqx
        cqy
        cax
        cay
        clx
        cly
        icode

        0.2500000
        0.2000000
        0.0000000
        0.0000000
        0.0000000
        1

'tb ycurmx
1000000.000000 0.4000000
                 NEW COMPONENT CRS1
                        ******
**********
'cmptyp-id temp alpha beta
cs4 20.000000 0.000000 0.000000
'ams ae ai rgyr
0.1500000 7.6300000e-02 3.4130000e-02 0.0000000
'ams
'iea iej igt ipress imf harpar
1 1 1 0 0 0.000000
'ea
500000.0000000
'еју
        mf
40.000000 0.0000000
'qtminus
5000.0000000
'cqx cqy cax cay clx
                                        cly
                                                icode
0.2000000 0.2000000 0.0000000 0.0000000 0.0000000 1
            ycurmx
'tb
1000000.0000000 0.4000000
                      NEW COMPONENT CRS1
'cmptyp-id temp alpha beta
cs5 20.0000000 0.0000000 0.0000000
'ams ae ai rgyr
'ams
0.1600000 0.3000000 7.6300000e-02 0.0000000
'iea iej igt ipress imf harpar
            0 0.0000000
1 1 1 0
'ea
500000.0000000
'ejy
        mf
33.0000000 0.0000000
'gtminus
5000.0000000
'cqx cqy cax cay clx
                                        cly
                                             icode
0.2500000 0.2000000 0.2000000 0.2000000 0.0000000 0.0000000 1
'th
            ycurmx
100000.000000 0.400000
NEW COMPONENT CRS1
*****
'cmptyp-id temp alpha beta

        Case
        20.0000000
        0.0000000
        0.0000000

        Tams
        ae
        ai
        rgyr

        0.1000000
        0.2500000
        7.6300000e-02
        0.0000000

'ams
'iea iej igt ipress imf harpar
1 1 1 0 0 0.000000
'ea
500000.0000000
'ejy mf
37.0000000 0.0000000
'gtminus
5000.0000000
                     cay clx
                                     clv
                                                 icode
'cqx cqy
                cax
0.2500000 0.2000000 0.0000000 0.0000000 0.0000000 1
'tb
           ycurmx
1000000.0000000 0.4000000
                        *****
*****
NEW COMPONENT FLUID
******
'cmptyp-id
fluid1
        vveli pressi dpress idir
'rhoi
0.8000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 1
*****
                                         SUPPORT VESSEL IDENTIFICATION
```

'idhft su36	r			
' HFTRA	NSFER RE	FERENCE	POSITION	
'zg 0.000	0000			
HFTRA	NSFER CC	NTROL D	 ATA	
' 'ndhft 19	r nwhftr 26	isymhf 2	itypin 2	
' WAVE	DIRECTIC	NS		
'				
1	0.00000	00		
2	5.00000	00		
3 4	15 0000			
5	20.0000	0000		
6	25.0000	000		
7	30.0000	000		
8	35.0000	0000		
9 10	40.0000	0000		
11	50.0000	000		
12	55.0000	000		
13	60.0000	000		
14 15	70 0000			
16	75.0000	000		
17	80.0000	000		
18	85.0000	000		
19 '	90.0000	000		
WAVE	FREQUENC	IES		
'ifrec	whftr			
1	0.20944	00		
2	0.21666	20		
3	0.22439	10		
4 5	0.23271	10 510		
6	0.25132	270		
7	0.26179	90		
8	0.27318	20		
9	0.28559	90		
11	0.31415	90 90		
12	0.33069	40		
13	0.34906	60		
14	0.36959	90		
16	0.41887	'90 '90		
17	0.44879	90		
18	0.48332	20		
19	0.52359	90		
20	0.62831	90		
22	0.69813	20		
23	0.78539	80		
24 25	1.04720	000		
⊿⊃ 26	3.14159	00		
'				
HFTRA	NSFER FU	NCTION	SURGE	
'idir	ifreq an	plitude	phase[deg]	
_ 1	1 · · · · · · · · · · · · · · · · · · ·	5860000	-87.2800000	
1	3 1.	5080000	-87.2200000	
1	4 1.	4380000	-86.9800000	

1 5 1.3810000 -86.7700000

1	6	1.3290000 -86.9300000
1	7	1.2740000 -87.2100000
1	8	1.2200000 -87.4500000
1	9	1.1670000 -87.6200000
1	10	1.1170000 -87.7300000
1	11	1.0690000 -87.7900000
1	12	1.0240000 -87.8000000
1	13	0.9786000 -87.7400000
1	14	0.9325000 -87.5400000
1	15	0.8831000 -87.0200000
1	16	0.8350000 -85.8900000
1 1	17 18	0.7955000 -84.8900000
1	19	0.6767000 -83.6300000
1	20 21	0.5950000 -81.1800000
1	22	0.3941000 -69.4200000
1	23	0.2762000 -56.1000000
1	24	8.7410000e-02 21.2200000
1	25	1.2570000e-02 -72.4000000
1	26	3.1990000e-04 -38.6200000
2	2	1.5800000 -87.2800000
2	3	1.5020000 -87.2200000
2	4	1.4330000 -86.9800000
2	5	1.3760000 -86.7700000
2	6	1.3240000 -86.9300000
2	7	1.2690000 -87.2100000
2	9	1.1630000 -87.6200000
2	10	1.1130000 -87.7300000
2	11	1.0650000 -87.7900000
2	12	1.0200000 -87.8000000
2	13	0.9749000 -87.7400000
2	14 15	0.9290000 -87.5400000
2	16	0.8318000 -85.8900000
2 2	17 18	0.7925000 -84.8900000
2	19	0.6742000 -83.6300000
2	20	0.5927000 -81.1800000
2	21	0.4991000 -76.8100000
2	22	0.3926000 -69.4200000
2	23	0.2752000 -56.1000000
2	25	1.2530000e-02 -72.400000
2	26	3.1870000e-04 -38.6200000
3	1	1.6430000 -87.2000000
3	2	1.5620000 -87.2800000
3	3	1.4850000 -87.2200000
3	4	1.4160000 -86.9800000
3	5	1.3600000 -86.7700000
3	6	1.3090000 -86.9300000
3	8	1.2010000 -87.4500000
3	9	1.1490000 -87.6200000
3	10	1.1000000 -87.7300000
3	11	1.0530000 -87.7900000
3	12	1.0080000 -87.8000000
3	13 14	0.9638000 - 87.7400000 0.9184000 - 87.5400000
3	15	0.8697000 -87.0200000
3	16	0.8223000 -85.8900000
3	17	0.7834000 -84.8900000
3	18	0.7344000 -84.6200000
3	19	0.6665000 -83.6300000
3	20	0.5859000 -81.1800000
3	21	0.4934000 -76.8100000
3	22	0.3881000 - 69.4200000 0.2720000 - 56.1000000
3	24	8.6080000e-02 21.2200000
3	25	1.2380000e-02 -72.4000000
3	26	3.1510000e-04 -38.6200000
4	1	1.6120000 -87.2000000

4	2	1.5320000 -87.2800000
4	3	1.4570000 -87.2200000
4	4	1.3890000 -86.9800000
4	5	1.3340000 -86.7700000
4	0 7	1.2830000 - 80.9300000 1.2310000 - 87.2100000
4	8	1.1780000 -87.4500000
4	9	1.1270000 -87.6200000
4	10	1.0790000 -87.7300000
4	11	1.0330000 -87.7900000
4	12	0.9887000 -87.8000000
4	13 14	0.9453000 - 87.7400000
4	15	0.8530000 -87.0200000
4	16	0.8065000 -85.8900000
4	17	0.7684000 -84.8900000
4	18	0.7204000 -84.6200000
4	19	0.6537000 -83.6300000
4	20	0.5747000 -81.1800000
4	21	0.4839000 - 76.8100000
4	22	0.3808000 = 59.4200000
4	24	8.4430000e-02 21.2200000
4	25	1.2150000e-02 -72.4000000
4	26	3.0900000e-04 -38.6200000
5	1	1.5680000 -87.2000000
5	2	1.4900000 -87.2800000
5	3	1.4170000 - 87.2200000 1.3510000 - 86.9800000
5	5	1.2980000 -86.7700000
5	6	1.2490000 -86.9300000
5	7	1.1970000 -87.2100000
5	8	1.1460000 -87.4500000
5	9	1.0970000 -87.6200000
5	10 11	1.0500000 -87.7300000
5	12	0.9618000 - 87.800000
5	13	0.9196000 -87.7400000
5	14	0.8763000 -87.5400000
5	15	0.8298000 -87.0200000
5	16	0.7846000 -85.8900000
5	17	0.7475000 -84.8900000
5	18	0.7008000 - 84.6200000
5	2.0	0.5591000 -81.1800000
5	21	0.4708000 -76.8100000
5	22	0.3703000 -69.4200000
5	23	0.2596000 -56.1000000
5	24	8.2140000e-02 21.2200000
5	25	1.1820000e-02 - 72.4000000
6	20	1.5120000 -87.200000
6	2	1.4370000 -87.2800000
б	3	1.3670000 -87.2200000
б	4	1.3030000 -86.9800000
6	5	1.2520000 -86.7700000
6	6 7	1.2040000 -86.9300000
6	7 8	1.1050000 - 87.2100000
6	9	1.0580000 -87.6200000
6	10	1.0120000 -87.7300000
б	11	0.9692000 -87.7900000
6	12	0.9277000 -87.8000000
6	13 14	0.8869000 -87.7400000
6	14 15	0.8003000 - 87 0200000
6	16	0.7567000 -85.8900000
6	17	0.7210000 -84.8900000
6	18	0.6759000 -84.6200000
6	19	0.6133000 -83.6300000
6	20	0.5392000 -81.1800000
о 6	⊿⊥ 22	U.4541000 -/0.8100000 0 3571000 -60 4200000
6	23	0.2503000 -56.1000000

6	24	7.9220000e-02 21.2200000
6	25	1.140000e-02 -72.4000000
б 7	26 1	2.9000000e-04 -38.6200000 1.4450000 -87.2000000
7	2	1.3740000 -87.2800000
7	3	1.3060000 -87.2200000
7	4 F	1.2450000 -86.9800000
7	5	1.1510000 -86.9300000
7	7	1.1040000 -87.2100000
7	8	1.0560000 -87.4500000
'/ 7	9 10	1.0110000 - 87.6200000 0.9674000 - 87.7300000
, 7	11	0.9261000 -87.7900000
7	12	0.8864000 -87.8000000
7	13	0.8475000 -87.7400000
7	14 15	0.8076000 - 87.5400000 0.7648000 - 87.0200000
, 7	16	0.7231000 -85.8900000
7	17	0.6889000 -84.8900000
7	18	0.6459000 -84.6200000
7	20	0.5861000 - 83.6300000
7	21	0.4339000 -76.8100000
7	22	0.3413000 -69.4200000
7	23	0.2392000 -56.1000000
7	24	1.0890000e-02 -72.4000000
7	26	2.7710000e-04 -38.6200000
8	1	1.3670000 -87.2000000
8 8	2	1.2990000 - 87.2800000 1.2350000 - 87.2200000
8	4	1.1780000 -86.9800000
8	5	1.1310000 -86.7700000
8	6	1.0880000 -86.9300000
8	7 8	1.0440000 - 87.2100000 0.9991000 - 87.4500000
8	9	0.9560000 -87.620000
8	10	0.9150000 -87.7300000
8	11	0.8760000 -87.7900000
o 8	13	0.8016000 -87.7400000
8	14	0.7639000 -87.5400000
8	15	0.7234000 -87.0200000
8 8	16 17	0.6840000 - 85.8900000
8	18	0.6109000 -84.620000
8	19	0.5544000 -83.6300000
8	20	0.4874000 -81.1800000
8	21 22	0.4104000 - 76.8100000 0.3228000 - 69.4200000
8	23	0.2263000 -56.1000000
8	24	7.1600000e-02 21.2200000
8	25	1.0300000e-02 -72.4000000
8 9	20 1	2.8210000e-04 - 38.8200000 1.2780000 - 87.2000000
9	2	1.2150000 -87.2800000
9	3	1.1550000 -87.2200000
9 0	4 5	1.1020000 - 86.9800000 1.0580000 - 86.7700000
9	6	1.0180000 -86.9300000
9	7	0.9761000 -87.2100000
9	8	0.9343000 -87.4500000
у 9	у 10	0.8940000 -87.6200000
9	11	0.8192000 -87.7900000
9	12	0.7841000 -87.8000000
9	13	0.7497000 -87.7400000
9 9	14 15	0.6765000 -87.020000
9	16	0.6396000 -85.8900000
9	17	0.6094000 -84.8900000
9 0	18 19	0.5713000 - 84.6200000
2	19	0.0104000 -03.0300000

9	20	0.4558000 -81.1800000
9 0	21 22	0.3838000 - 76.8100000 0.3019000 - 69.4200000
9	23	0.2116000 -56.1000000
9	24	6.6960000e-02 21.2200000
9	25	9.6320000e-03 -72.4000000
9	26	2.4510000e-04 -38.6200000
10	1	1.1800000 - 87.2000000
10	3	1.0660000 -87.2200000
10	4	1.0170000 -86.9800000
10	5	0.9765000 -86.7700000
10	6	0.9396000 -86.9300000
10	./	0.9010000 -87.2100000
10	9	0.8252000 - 87.6200000
10	10	0.7899000 -87.7300000
10	11	0.7562000 -87.7900000
10	12	0.7238000 -87.8000000
10	13 14	0.6920000 - 87.7400000
10	⊥4 15	0.6394000 - 87.020000
10	16	0.5904000 -85.8900000
10	17	0.5625000 -84.8900000
10	18	0.5273000 -84.6200000
10	19	0.4785000 -83.6300000
10	20 21	0.4207000 - 81.1800000 0.3543000 - 76.8100000
10	22	0.2786000 -69.4200000
10	23	0.1953000 -56.1000000
10	24	6.1810000e-02 21.2200000
10	25	8.8910000e-03 -72.4000000
10 11	26 1	2.2620000e - 04 - 38.6200000 1 0730000 - 87 2000000
11	2	1.0190000 -87.2800000
11	3	0.9693000 -87.2200000
11	4	0.9244000 -86.9800000
11	5	0.8877000 -86.7700000
11 11	6 7	0.8541000 - 86.9300000 0.8191000 - 87 2100000
11	8	0.7840000 -87.4500000
11	9	0.7502000 -87.6200000
11	10	0.7180000 -87.7300000
11	11	0.6874000 -87.7900000
11 11	12 13	0.6579000 - 87.8000000
11	14	0.5994000 -87.5400000
11	15	0.5676000 -87.0200000
11	16	0.5367000 -85.8900000
11	17	0.5113000 -84.8900000
11 11	18 19	0.4794000 - 84.6200000 0 4350000 - 83 6300000
11	20	0.3824000 -81.1800000
11	21	0.3220000 -76.8200000
11	22	0.2533000 -69.4200000
11	23	0.1775000 -56.1000000
11 11	∠4 25	8 0820000e-03 -72 4000000
11	26	2.0570000e-04 -38.620000
12	1	0.9572000 -87.2000000
12	2	0.9097000 -87.2800000
12	3	0.8649000 - 87.2200000
12 12	- 5	0.7921000 -86.7700000
12	6	0.7622000 -86.9300000
12	7	0.7309000 -87.2100000
12	8	0.6996000 -87.4500000
12 12	9 10	U.6694UUU -87.62UUUUU 0 6407000 -87 7300000
12	11	0.6134000 -87.7900000
12	12	0.5871000 -87.8000000
12	13	0.5613000 -87.7400000
12	14	0.5349000 -87.5400000
ТZ	15	0.5065000 -87.0200000

12	16	0.4789000 -85.8900000
12	17	0.4563000 -84.8900000
12	18	0.4278000 -84.6200000
12	20	0.3882000 -83.8300000
12	21	0.2874000 -76.8100000
12	22	0.2260000 -69.4200000
12	23	0.1584000 -56.1000000
12	24	5.0140000e-02 21.2200000
12	25	7.2120000e-03 -72.4000000
13	20 1	1.8350000e-04 - 38.0200000 0 8344000 -87 2000000
13	2	0.7930000 -87.2800000
13	3	0.7540000 -87.2200000
13	4	0.7191000 -86.9800000
13	5	0.6905000 -86.7700000
13	6	0.6644000 -86.9300000
13	8	0.6371000 - 87.2100000
13	9	0.5835000 -87.6200000
13	10	0.5585000 -87.7300000
13	11	0.5347000 -87.7900000
13	12	0.5118000 -87.8000000
13	13	0.4893000 -87.7400000
13 12	14 15	0.4663000 - 87.5400000
13	16	0.4415000 - 85.8900000
13	17	0.3978000 -84.8900000
13	18	0.3729000 -84.6200000
13	19	0.3384000 -83.6300000
13	20	0.2975000 -81.1800000
13 13	21	0.2505000 - 76.8100000
13	23	0.1381000 -56.1000000
13	24	4.3700000e-02 21.2200000
13	25	6.2870000e-03 -72.4000000
13	26	1.6000000e-04 -38.6200000
14	1	0.7053000 -87.2000000
14	∠ 3	0.6703000 - 87.2800000
14	4	0.6078000 -86.9800000
14	5	0.5836000 -86.7700000
14	6	0.5616000 -86.9300000
14	7	0.5385000 -87.2100000
14 14	8	0.5155000 - 87.4500000
14	10	0.4721000 - 87.7300000
14	11	0.4519000 -87.7900000
14	12	0.4326000 -87.8000000
14	13	0.4136000 -87.7400000
14	14	0.3941000 -87.5400000
14	16	0.3732000 -87.0200000
14	17	0.3362000 -84.8900000
14	18	0.3152000 -84.6200000
14	19	0.2860000 -83.6300000
14	20	0.2514000 -81.1800000
14 14	∠⊥ 22	0.2117000 - 76.8100000
14	23	0.1167000 -56.1000000
14	24	3.6940000e-02 21.2200000
14	25	5.3140000e-03 -72.4000000
14	26	1.3520000e-04 -38.6200000
15 15	⊥ ว	0.5708000 -87.2000000
15 15	∠ 3	0.5157000 -87.2200000
15	4	0.4919000 -86.9800000
15	5	0.4723000 -86.7700000
15	6	0.4545000 -86.9300000
15	7	0.4358000 - 87.2100000
⊥⊃ 15	0 9	0.3992000 -87.6200000
15	10	0.3820000 -87.7300000
15	11	0.3657000 -87.7900000

15	12	0.3501000 -87.8000000
15	13	0.3347000 -87.7400000
15	14	0.3189000 -87.5400000
15 15	15	0.3020000 - 87.0200000
15	17	0 2721000 -84 8900000
15	18	0.2551000 -84.6200000
15	19	0.2315000 -83.6300000
15	20	0.2035000 -81.1800000
15	21	0.1714000 -76.8100000
15	22	0.1348000 -69.4200000
15	23	9.4470000e-02 -56.1000000
15	24	2.9900000e-02 21.2200000
15	25	4.3000000e - 03 - 72.4000000
16	20	1.0940000e-04 - 38.0200000 0 4319000 -87 2000000
16	2	0.4105000 - 87.2800000
16	3	0.3903000 -87.2200000
16	4	0.3722000 -86.9800000
16	5	0.3574000 -86.7700000
16	6	0.3439000 -86.9300000
16	7	0.3298000 -87.2100000
16	8	0.3157000 -87.4500000
16	9	0.3021000 -87.6200000
16	11	0.2891000 - 87.7300000
16	12	0.2649000 - 87.8000000
16	13	0.2533000 -87.7400000
16	14	0.2414000 -87.5400000
16	15	0.2286000 -87.0200000
16	16	0.2161000 -85.8900000
16	17	0.2059000 -84.8900000
16	18	0.1930000 -84.6200000
16 16	19	0.1752000 - 83.6300000
16	20	0.1297000 - 768100000
16	22	0.1020000 - 69.4200000
16	23	7.1490000e-02 -56.1000000
16	24	2.2620000e-02 21.2200000
16	25	3.2540000e-03 -72.4000000
16	26	8.2810000e-05 -38.6200000
17	1	0.2898000 -87.2000000
17	2	0.2754000 -87.2800000
17	3	0.2618000 -87.2200000
17	4 5	0.2497000 - 86.9800000
17	6	0.2307000 -86.9300000
17	7	0.2213000 -87.2100000
17	8	0.2118000 -87.4500000
17	9	0.2027000 -87.6200000
17	10	0.1940000 -87.7300000
17	11	0.1857000 -87.7900000
17	12	0.1777000 -87.8000000
17	14	0.1699000 -87.7400000
17	15	0.1519000 - 87.5400000 0 1533000 - 87 0200000
17	16	0.1450000 -85.8900000
17	17	0.1381000 -84.8900000
17	18	0.1295000 -84.6200000
17	19	0.1175000 -83.6300000
17	20	0.1033000 -81.1800000
17	21	8.7000000e-02 -76.8200000
17 17	22	6.8430000e-02 - 69.4200000
⊥/ 17	∠ 3 24	4.79000000-02 - 50.1000000 1 5180000e-02 21 2200000
17	24 25	2.1830000e-03 -72 400000
17	2.6	5.5560000e-05 -38.620000
18	1	0.1454000 -87.2000000
18	2	0.1382000 -87.2800000
18	3	0.1314000 -87.2200000
18	4	0.1253000 -86.9800000
18 10	5	0.1204000 - 86.7700000
⊥8 1.9	о 7	0.1111000 -87 2100000
тo	/	0.1111000 -0/.2100000

10	0	0 1062000 87 460000	E 0
10	0	0.1063000 -87.4500000	50
18	9	0.1017000 -87.6200000	20
18	10	9.7360000e-02 -87.7300000	87
18	11	9.3200000e-02 -87.7900000	87
18	12	8,9210000e-02,-87,800000	87
1.8	12	8 52900000-02 -87 740000	87
10	14		07
18	14	8.1280000e-02 -87.5400000	8 /
18	15	7.6960000e-02 -87.0200000	87
18	16	7.2770000e-02 -85.8900000	85
18	17	6.9330000e-02 -84.8900000	84
18	1.8		84
10	10		01
18	19	5.898000000-02 -83.6300000	83
18	20	5.1850000e-02 -81.1800000	8 T
18	21	4.3670000e-02 -76.8200000	76
18	22	3.4340000e-02 -69.4200000	69
18	23	2.4070000e-02 -56.1000000	56
18	24	7 61800000-03 21 2200000	1
10	25		
10	25	1.0900000e - 03 - 72.4000000	20
18	26	2.7880000e-05 -38.6200000	38
19	1	1.0220000e-16 92.8000000	2.
19	2	9.7120000e-17 92.7200000	2.
19	3	9.2330000e-17 92.7800000	2.
19	4	8 806000e-17 93 020000	3
10	5		2. ว
19	5	8.4560000e=17 95.2500000	<u>د</u>
ТЭ	6	8.1360000e-17 93.0700000	3.
19	7	7.8020000e-17 92.7900000	2.
19	8	7.4680000e-17 92.5500000	2.
19	9	7.1460000e-17 92.3800000	2.
19	10	6 8400000 = 17 92 2700000	2
10	11	6.6400000e = 17 92.2700000	2.
19	11	6.548000000-17 92.2100000	2.
19	12	6.2680000e-17 92.2000000	2.
19	13	5.9920000e-17 92.2600000	2.
19	14	5.7100000e-17 92.4600000	2.
19	15	5.4070000e-17 92.9800000	2.
19	16	5 1130000e - 17 94 1100000	Δ.
10	17	4 9710000c 17 91.1100000	
19	1/	4.8/1000000-1/ 95.1100000	5.
19	18	4.5670000e-17 95.3800000	5.
19	19	4.1440000e-17 96.3700000	б.
19	20	3.6430000e-17 98.8200000	8.
19	21	3.0680000e-17 103.1800000	03
19	22	2 4130000e-17 110 5800000	10
10	22	1.69100000 = 17.122.9000000	22
19	23		23
19	24	5.3520000e-18 -158.7800000	15
19	25	7.6990000e-19 107.6000000	07
19	26	1.9590000e-20 141.3800000	41
'			
HFTR	NICEED		
!	ANOLPU	FUNCTION SWAY	
		FUNCTION SWAY	
'idir	ifrea	FUNCTION SWAY amplitude phase[deg]	 [d
'idir 1	ifreq	FUNCTION SWAY 	 [d 87
'idir 1 1	ifreq 2	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1 9420000e-16 -87.2800000	 [d 87 87
'idir 1 1	ifreq 2 3	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000	 [d 87 87
'idir 1 1 1	ifreq 1 2 3	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.8470000e-16 -87.2200000	 [d 87 87 87
'idir 1 1 1 1	ifreq 1 2 3 4	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000	 [d 87 87 87 86
'idir 1 1 1 1 1	ifreq 1 2 3 4 5	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.7700000	 [d 87 87 87 86
'idir 1 1 1 1 1 1	ifreq 1 2 3 4 5 6	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.7700000 1.6270000e-16 -86.9300000	 [d 87 87 86 86 86
'idir 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9700000 1.6270000e-16 -87.2100000	 [d 87 87 86 86 86
'idir 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.7700000 1.6270000e-16 -86.9300000 1.5600000e-16 -87.2100000 1.4940000e-16 -87.4500000	 [d 87 87 87 86 86 86 87 87
'idir 1 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8 9	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.7700000 1.6270000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4940000e-16 -87.4500000	 [d 87 87 86 86 86 87 87
'idir 1 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8 9	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9700000 1.6270000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4920000e-16 -87.6200000 1.4290000e-16 -87.2200000	 [d 87 87 87 86 86 87 87 87
'idir 1 1 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8 9 10	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9800000 1.6270000e-16 -86.9300000 1.5600000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4290000e-16 -87.6200000 1.3680000e-16 -87.7300000	 [d 87 87 87 86 86 87 87 87
'idir 1 1 1 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8 9 10 11	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.7700000 1.6270000e-16 -86.9300000 1.5600000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4290000e-16 -87.7300000 1.3680000e-16 -87.7900000	 [d 87 87 87 86 86 87 87 87 87
'idir 1 1 1 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8 9 10 11 12	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9800000 1.6270000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4290000e-16 -87.6200000 1.3680000e-16 -87.7300000 1.3100000e-16 -87.7900000 1.2540000e-16 -87.8800000	 [d 87 87 87 86 87 87 87 87 87
'idir 1 1 1 1 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9800000 1.6270000e-16 -86.9300000 1.5600000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.3680000e-16 -87.7300000 1.310000e-16 -87.7900000 1.2540000e-16 -87.7400000	 [d 87 87 87 87 87 87 87 87 87
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.6470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6270000e-16 -86.9800000 1.6270000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4940000e-16 -87.6200000 1.3100000e-16 -87.7900000 1.2540000e-16 -87.7400000 1.1980000e-16 -87.7400000 1.1420000e-16 -87.5400000	 [d 87 87 87 86 87 87 87 87 87 87
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9700000 1.6270000e-16 -87.2100000 1.5600000e-16 -87.4500000 1.4290000e-16 -87.4500000 1.3680000e-16 -87.7300000 1.310000e-16 -87.7900000 1.2540000e-16 -87.7400000 1.1420000e-16 -87.5400000 1.0810000e-16 -87.5400000	 [d 87 87 87 87 87 87 87 87 87 87 87
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9800000 1.6910000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4290000e-16 -87.6200000 1.3100000e-16 -87.7300000 1.310000e-16 -87.7900000 1.2540000e-16 -87.7400000 1.1420000e-16 -87.5400000 1.0810000e-16 -87.0200000	 [d 87 87 87 87 87 87 87 87 87 87 87
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9800000 1.6270000e-16 -87.2100000 1.4290000e-16 -87.4500000 1.4290000e-16 -87.6200000 1.3680000e-16 -87.7900000 1.2540000e-16 -87.7900000 1.2540000e-16 -87.7400000 1.1980000e-16 -87.5400000 1.0810000e-16 -87.5400000 1.0230000e-16 -85.8900000	 [d7 87 87 87 87 87 87 87 87 87 87 87 87
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq ifreq 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9800000 1.6270000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.3680000e-16 -87.6200000 1.310000e-16 -87.7900000 1.2540000e-16 -87.7900000 1.2540000e-16 -87.7400000 1.1420000e-16 -87.5400000 1.0810000e-16 -87.0200000 1.0230000e-17 -84.8900000	 [d7 87 87 87 87 87 87 87 87 87 87 87 87 87
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9700000 1.5600000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4290000e-16 -87.4500000 1.3680000e-16 -87.7300000 1.310000e-16 -87.7900000 1.2540000e-16 -87.7400000 1.1980000e-16 -87.5400000 1.0230000e-16 -87.5400000 1.0230000e-17 -84.8900000 9.1330000e-17 -84.6200000	 [d7 87 87 86 87 87 87 87 87 87 87 87 87 87 87 84 84
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9800000 1.6910000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4290000e-16 -87.6200000 1.310000e-16 -87.7300000 1.310000e-16 -87.7900000 1.2540000e-16 -87.7400000 1.1980000e-16 -87.5400000 1.0230000e-16 -87.0200000 1.0230000e-17 -84.8900000 9.1330000e-17 -84.6200000 8.2880000e-17 -83.6300000	 [377888888777788788788488888888888888888
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq ifreq 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9800000 1.6270000e-16 -86.9300000 1.4940000e-16 -87.2100000 1.4290000e-16 -87.4500000 1.3680000e-16 -87.7300000 1.310000e-16 -87.7900000 1.2540000e-16 -87.7400000 1.1980000e-16 -87.5400000 1.0810000e-16 -87.900000 1.0310000e-17 -84.8900000 9.1330000e-17 -84.6200000 8.2880000e-17 -84.620000	 [d7788888877 876888877 877888888 87778787 8788888888
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2200000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9300000 1.6270000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.3680000e-16 -87.6200000 1.310000e-16 -87.7900000 1.2540000e-16 -87.7900000 1.2540000e-16 -87.5400000 1.1980000e-16 -87.5400000 1.0230000e-16 -85.8900000 9.7420000e-17 -84.8900000 9.1330000e-17 -84.6200000 8.2880000e-17 -81.1800000 6.1360000e-17 -76.8200000	d 877888888888888888888888888888888888
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22 22 22 22 22 22 22	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2800000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6270000e-16 -86.9700000 1.6270000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4290000e-16 -87.7300000 1.310000e-16 -87.7900000 1.2540000e-16 -87.7900000 1.1420000e-16 -87.7400000 1.1420000e-16 -87.5400000 1.0810000e-16 -87.5400000 1.0230000e-16 -85.8900000 9.7420000e-17 -84.8900000 9.1330000e-17 -84.6200000 8.2880000e-17 -81.1800000 6.1360000e-17 -76.8200000	- d 2 2 2 2 2 2 2 2 2 2 2 2 2
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22 22 22	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.200000 1.9420000e-16 -87.280000 1.8470000e-16 -87.220000 1.7610000e-16 -86.980000 1.6910000e-16 -86.980000 1.6910000e-16 -86.930000 1.5600000e-16 -87.2100000 1.4940000e-16 -87.450000 1.4290000e-16 -87.450000 1.3680000e-16 -87.730000 1.310000e-16 -87.790000 1.2540000e-16 -87.740000 1.1980000e-16 -87.540000 1.0230000e-16 -87.90000 1.0230000e-17 -84.890000 9.1330000e-17 -84.620000 8.2880000e-17 -81.180000 6.1360000e-17 -69.420000	- [d777666877777777778488887697
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.200000 1.9420000e-16 -87.280000 1.8470000e-16 -87.220000 1.7610000e-16 -86.980000 1.6910000e-16 -86.980000 1.6270000e-16 -86.930000 1.4940000e-16 -87.210000 1.4290000e-16 -87.450000 1.3680000e-16 -87.7300000 1.310000e-16 -87.790000 1.2540000e-16 -87.740000 1.1980000e-16 -87.540000 1.081000e-16 -87.90000 1.0230000e-17 -84.890000 9.7420000e-17 -84.890000 9.1330000e-17 -84.620000 8.2880000e-17 -81.180000 6.1360000e-17 -69.420000 3.3830000e-17 -56.100000	- [d7 77 66 88 87 77 77 77 77 88 88 88 88 88 88 88
'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ifreq ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	FUNCTION SWAY amplitude phase[deg] 2.0440000e-16 -87.2000000 1.9420000e-16 -87.2200000 1.8470000e-16 -87.2200000 1.7610000e-16 -86.9800000 1.6910000e-16 -86.9800000 1.6270000e-16 -87.2100000 1.4940000e-16 -87.4500000 1.4290000e-16 -87.6200000 1.3680000e-16 -87.7900000 1.2540000e-16 -87.7900000 1.2540000e-16 -87.5400000 1.1420000e-16 -87.5400000 1.0810000e-16 -85.8900000 9.7420000e-17 -84.890000 9.1330000e-17 -84.620000 8.2880000e-17 -81.1800000 6.1360000e-17 -69.420000 3.3830000e-17 -56.1000000 1.0700000e-17 21.2200000	- [d77766687777777777548888876961.

1 0.1454000 -87.200000 2 0.1332000 -87.200000 3 0.1314000 -87.200000 4 0.1253000 -86.980000 5 0.1204000 -86.7700000 6 0.1158000 -86.9300000 7 0.1111000 -87.4500000 2 9 0.10000e-02 -87.7300000 1 9.320000e-02 -87.7400000 11 9.320000e-02 -87.7400000 13 8.529000e-02 -87.7400000 14 8.1280000e-02 -87.7400000 15 7.6960000e-02 -84.620000 2 14 8.1280000e-02 -84.620000 2 16 -9330000e-02 -81.180000 2 17 6.9330000e-02 -81.1800000 2 18 6.50000e-03 -1.2200000 2 10 5.00000e-03 -1.2200000 2 1.056000e-05 -38.6200000 2 1.058000 -72.400000	1	26	3.9180000e-20 -38.6200000
2 2 0.1382000 -87.2800000 2 3 0.1314000 -87.2200000 2 4 0.1253000 -86.980000 2 5 0.1204000 -86.9700000 2 6 0.111000 -87.4500000 2 7 0.1111000 -87.4500000 2 9 0.107000 -87.7300000 2 10 9.7360000e-02 -87.7400000 2 12 8.9210000e-02 -87.7400000 2 15 7.6960000e-02 -87.7400000 2 15 7.6960000e-02 -88.90000 2 15 7.6960000e-02 -84.800000 2 18 6.500000e-02 -81.800000 2 23 2.4070000e-03 21.220000 2 24 7.618000e-03 21.220000 2 24 7.618000e-37 7.2.4000000 2 2 2.788000 8.6200000 3 0.2218000 -87.2200000	2	1	0.1454000 -87.2000000
2 3 0.1314000 -87.220000 2 4 0.1253000 -86.980000 2 5 0.1204000 -86.7700000 2 6 0.1158000 -86.930000 2 7 0.1111000 -87.210000 2 9 0.1017000 -87.4500000 2 9 0.1017000 -87.7300000 2 10 9.7360000e-02 -87.7400000 2 12 8.9210000e-02 -87.7400000 2 14 8.1280000e-02 -87.5400000 2 16 7.2770000e-02 -85.890000 2 16 7.2770000e-02 -84.6200000 2 17 6.630000e-03 -12.400000 2 10 9.60000e-03 -12.400000 2 10 0.278000 84.220000 2 2 7.860000e-03 -72.400000 3 0.2618000 -87.2200000 3 0.2618000 -87.200000 3 </td <td>2</td> <td>2</td> <td>0.1382000 -87.2800000</td>	2	2	0.1382000 -87.2800000
2 4 0.1253000 -86.980000 2 5 0.1204000 -86.930000 2 7 0.1111000 -87.210000 2 7 0.1111000 -87.450000 2 9 0.1017000 -87.450000 2 10 9.7360000e-02 -87.7300000 2 10 9.7360000e-02 -87.7400000 2 12 8.9210000e-02 -87.7400000 2 14 8.1280000e-02 -87.540000 2 14 8.1280000e-02 -88.5800000 2 14 8.1280000e-02 -84.620000 2 17 6.9330000e-02 -84.620000 2 18 6.500000e-02 -75.800000 2 20 5.1850000e-02 -75.800000 2 21 4.3670000e-03 -72.400000 2 23 4.407000e-03 -72.400000 2 24 7.6180000e-73 -88.620000 3 0.2618000 -87.200000 3 0.2627000 -87.280000 3 0.2627000 -87.450000 3 0.2618000 -87.7300000 3 0.2274000 -87.7400000<	2	3	0.1314000 -87.2200000
2 5 0.1204000 -86.700000 2 6 0.1158000 -87.2100000 2 8 0.1063000 -87.450000 2 9 0.117000 -87.620000 2 10 9.736000e-02 -87.7300000 2 11 9.320000e-02 -87.740000 2 12 8.529000e-02 -87.740000 2 13 8.529000e-02 -87.5400000 2 15 7.696000e-02 -87.5400000 2 15 7.696000e-02 -87.800000 2 16 7.277000e-02 -88.890000 2 18 6.500000e-02 -81.80000 2 18 6.50000e-02 -81.80000 2 2 3.434000e-02 -65.100000 2 2 3.434000e-03 2 1.096000e-03 21.220000 2 2 7.88000 2 1.096000e-87.2200000 3 0.2618000 -87.2200000 3 0.2618000 -87.2200000 3 0.2618000 -87.2200000 3 0.2027000 -86.9300000 3	2	4	0.1253000 -86.9800000
2 6 0.1158000 -86.930000 2 7 0.111000 -87.450000 2 9 0.107000 -87.450000 2 9 0.1017000 -87.620000 2 9 0.1017000 -87.620000 2 10 9.320000e-02 -87.730000 2 12 8.9210000e-02 -87.7400000 2 12 8.9210000e-02 -87.7400000 2 14 8.1280000e-02 -87.540000 2 16 7.2770000e-02 -85.890000 2 16 7.2770000e-02 -84.620000 2 17 6.9330000e-02 -76.820000 2 19 5.898000e-02 -76.820000 2 14 3.67000e-02 -76.820000 2 2 3.434000e-02 -69.420000 2 2 3.434000e-02 -76.820000 2 1 9.6000e-03 -72.400000 2 1 9.62000e-87.2200000 3 0.2618000 -87.2200000 3 0.2618000 -87.2100000 3 0.2137000 -87.800000 3 0.2127000 -87.800	2	5	0.1204000 -86.7700000
2 7 0.1111000 -87.450000 2 8 0.1063000 -87.450000 2 10 9.736000e-02 -87.7300000 2 11 9.320000e-02 -87.7400000 2 13 8.529000e-02 -87.5400000 2 14 8.1280000e-02 -87.5400000 2 15 7.6960000e-02 -87.5400000 2 16 7.2770000e-02 -84.6200000 2 18 6.500000e-02 -84.6200000 2 20 5.1850000e-02 -84.6200000 2 21 4.3670000e-02 -56.1000000 2 23 2.4070000e-03 -72.4000000 2 24 7.6180000e-03 -72.400000 3 0.2618000 -87.2200000 3 3 0.2618000 -87.200000 3 0.261800 -87.200000 3 0.218000 -87.700000 3 0.227500 -87.400000 3 0.227	2	6	0.1158000 -86.9300000
2 8 0.1063000 -87.450000 2 9 0.1017000 -87.620000 2 10 9.7360000e-02 -87.7300000 2 11 9.320000e-02 -87.7400000 2 12 8.9210000e-02 -87.7400000 2 14 8.1280000e-02 -87.7400000 2 14 8.1280000e-02 -87.7400000 2 15 7.6660000e-02 -87.800000 2 16 7.2770000e-02 -84.620000 2 18 6.500000e-02 -84.620000 2 18 6.50000e-02 -69.4200000 2 22 3.434000e-02 -69.4200000 2 24 7.6180000e-03 -72.400000 2 26 2.7880000 -87.200000 3 0.2618000 -87.220000 3 0.2618000 -87.220000 3 0.2618000 -87.420000 3 0.2618000 -87.200000 3 0.2027000 -86.980000 3 0.2027000 -87.620000 3 0.2027000 -87.740000 3 0.2027000 -87.6200000 3 0.20270	2	7	0.1111000 -87.2100000
2 9 0.1017000-87.3200000 2 10 9.3300000-02-87.7300000 2 11 9.3200000-02-87.7400000 2 12 8.92100000-02-87.5400000 2 15 7.69600000-02-87.5400000 2 15 7.69600000-02-85.8900000 2 15 7.69600000-02-85.8900000 2 15 7.69600000-02-85.8900000 2 18 6.5000000-02-81.800000 2 19 5.8960000-02-76.8200000 2 23 2.4070000-02-76.8200000 2 24 7.6180000-03 1.2200000 2 26 2.7880000-87.200000 3 3 0.2618000 87.200000 3 0.2618000 87.200000 3 0.2618000 87.2100000 3 0.2213000 86.7700000 3 0.2213000 87.7300000 3 0.2027000 87.620000 3 0.2027000 87.930000 3 0.1699000 87.740000 <td>2</td> <td>8</td> <td>0.1063000 -87.4500000</td>	2	8	0.1063000 -87.4500000
2 10 9.7300000e-02 -87.7900000 2 12 8.9210000e-02 -87.7400000 2 13 8.5290000e-02 -87.7400000 2 14 8.1280000e-02 -87.7400000 2 16 7.2770000e-02 -85.890000 2 16 7.2770000e-02 -84.8200000 2 16 5.890000e-02 -84.6200000 2 20 5.1850000e-02 -81.1800000 2 21 4.3670000e-02 -56.1000000 2 23 2.4070000e-03 -72.4000000 2 24 7.6180000e-03 -72.400000 2 24 7.6180000e-03 -86.20000 3 0.2198000 -87.280000 3 2 0.2754000 -87.280000 3 0.2198000 -87.200000 3 0.2213000 -87.450000 3 0.2213000 -87.450000 3 0.2213000 -87.450000 3 0.2213000	2	9	0.101/000 -8/.6200000
11 0.110000000000000000000000000000000000	2	11	9.3200000e-02 - 87.7300000
2 13 8.5290000e-02 -87.7400000 2 14 8.1280000e-02 -87.7400000 2 14 8.1280000e-02 -87.0200000 2 16 7.2770000e-02 -85.8900000 2 18 6.500000e-02 -84.6200000 2 19 5.880000e-02 -83.6300000 2 20 5.1850000e-02 -66.8200000 2 22 3.4340000e-02 -69.4200000 2 22 3.4340000e-03 -72.400000 2 26 2.7880000e-05 -38.6200000 3 0.2618000 -87.2200000 3 3 0.2618000 -87.2200000 3 3 0.2618000 -87.2200000 3 3 0.2213000 -86.7700000 3 3 0.2213000 -87.450000 3 4 0.2497000 -86.930000 3 5 0.133000 -87.450000 3 6 0.2307000 -87.450000 <td>2</td> <td>12</td> <td>8,9210000e-02 -87,800000</td>	2	12	8,9210000e-02 -87,800000
2 14 8.1280000e-02 -87.5400000 2 15 7.6960000e-02 -87.0200000 2 15 7.6960000e-02 -84.8900000 2 17 6.9330000e-02 -84.8900000 2 19 5.8980000e-02 -84.6200000 2 19 5.8980000e-02 -69.4200000 2 23 2.4070000e-02 -56.1000000 2 23 2.4070000e-03 -72.4000000 2 24 7.6180000e-03 -72.4000000 2 25 1.0960000e-03 -72.400000 3 0.2618000 -87.2800000 3 3 0.2618000 -87.220000 3 3 0.227000 -87.450000 3 4 0.2497000 -86.930000 3 5 0.239800 -87.730000 3 6 0.230700 -87.620000 3 7 0.221300 -87.730000 3 10 0.194000 -87.730000	2	13	8.5290000e-02 -87.7400000
2 15 7.6960000e-02 -87.0200000 2 16 7.2770000e-02 -84.8900000 2 17 6.9330000e-02 -84.8200000 2 19 5.8980000e-02 -84.6200000 2 20 5.1850000e-02 -81.1800000 2 21 4.3670000e-02 -69.4200000 2 23 2.4340000e-03 21.220000 2 24 7.6180000e-03 -72.4000000 2 24 7.6180000e-05 -38.620000 3 0.2618000 -87.2200000 3 0.21754000 -87.2800000 3 0.2618000 -87.200000 3 0.2138000 -87.700000 3 0.2213000 -87.450000 3 0.2118000 -87.7300000 3 10 0.1940000 -87.740000 3 10 1.1699000 -87.7400000 3 10 0.1699000 -84.6200000 3 14 0.1619000	2	14	8.1280000e-02 -87.5400000
2 16 7.2770000e-02 -85.8900000 2 17 6.933000e-02 -84.6200000 2 18 6.500000e-02 -84.6200000 2 19 5.8880000e-02 -84.6200000 2 20 5.1850000e-02 -81.1800000 2 21 4.3670000e-02 -56.1000000 2 23 2.4070000e-03 -72.4000000 2 25 1.0960000e-03 -72.400000 2 26 2.7880000e-87.200000 3 3 0.2618000 -87.2200000 3 4 0.2497000 -86.980000 3 5 0.2398000 -86.7700000 3 6 0.2307000 -87.450000 3 7 0.2213000 -87.7400000 3 10 0.1940000 -87.7400000 3 11 0.1857000 -87.7400000 3 12 0.177000 -87.800000 3 12 0.177000 -87.450000	2	15	7.6960000e-02 -87.0200000
2 17 6.9330000e-02 -84.6200000 2 19 5.8980000e-02 -83.6300000 2 0 5.1850000e-02 -83.6300000 2 21 4.3670000e-02 -76.8200000 2 22 3.4340000e-02 -56.1000000 2 23 2.4070000e-03 -72.4000000 2 24 7.6180000e-03 -72.400000 2 25 1.0960000e-03 -72.400000 3 0.2618000 -87.280000 -87.280000 3 0.2618000 -87.2200000 -86.980000 3 0.219000 -86.9300000 -87.7200000 3 0.2213000 -87.4500000 -87.7300000 3 10 0.1940000 -87.7400000 3 11 0.1857000 -87.5400000 3 12 0.1777000 -87.800000 3 13 0.1699000 -87.7400000 3 14 0.619000 -87.5400000 3 15	2	16	7.2770000e-02 -85.8900000
2 18 6.5000000000000000000000000000000000000	2	17	6.9330000e-02 -84.8900000
2 19 5.8898000e-02 -83.630000 2 20 5.1850000e-02 -81.1800000 2 21 4.3670000e-02 -68.200000 2 23 2.4070000e-02 -56.1000000 2 23 2.4070000e-03 -72.4000000 2 25 1.0960000e-05 -38.6200000 3 1 0.2898000 -87.200000 3 2 0.2754000 -87.280000 3 0.2618000 -87.220000 3 0.2618000 -87.210000 3 0.2497000 -86.930000 3 0.2118000 -87.450000 3 0.2213000 -87.7450000 3 0 0.1940000 -87.730000 3 10 0.199000 -87.7400000 3 11 0.1857000 -87.800000 3 12 0.177000 -87.800000 3 15 0.1533000 -87.240000 3 16 0.4450000 <t< td=""><td>2</td><td>18</td><td>6.5000000e-02 -84.6200000</td></t<>	2	18	6.5000000e-02 -84.6200000
2 20 5.1850000e-02 -81.1800000 2 21 4.3670000e-02 -76.8200000 2 23 2.4470000e-02 -56.1000000 2 23 2.4470000e-03 21.2200000 2 24 7.6180000e-03 -72.4000000 2 25 1.0960000e-05 -38.6200000 3 0.2618000 -87.2800000 -87.2200000 3 0.2618000 -87.2200000 -86.980000 3 0.2618000 -87.2100000 -86.980000 3 0.213000 -87.4500000 -87.740000 3 0.2118000 -87.4500000 -87.7900000 3 10 0.1940000 -87.7300000 3 11 0.1857000 -87.7400000 3 12 0.177000 -87.4500000 3 14 0.1619000 -87.7400000 3 14 0.1619000 -87.400000 3 15 0.133000 -81.8000000 3 16 <td>2</td> <td>19</td> <td>5.8980000e-02 -83.6300000</td>	2	19	5.8980000e-02 -83.6300000
2 21 4.3670000e-02 -76.8200000 2 22 3.4340000e-02 -69.4200000 2 23 2.4070000e-03 21.2200000 2 25 1.0960000e-03 -72.4000000 2 25 1.0960000e-03 -72.4000000 3 0.2754000 -87.2800000 3 0.2754000 -87.2800000 3 0.2618000 -87.2200000 3 0.219000 -86.930000 3 0.2298000 -86.7700000 3 0.2213000 -87.2100000 3 0.2027000 -87.6200000 3 10 0.1940000 -87.7300000 3 11 0.185700 -87.7400000 3 12 0.177700 -87.800000 3 15 0.1533000 -87.7400000 3 16 0.4450000 -83.630000 3 17 0.138100 -84.6200000 3 18 0.129500 -84.6200000 <tr< td=""><td>2</td><td>20</td><td>5.1850000e-02 -81.1800000</td></tr<>	2	20	5.1850000e-02 -81.1800000
2 22 3.4340000e-02 -69.4200000 2 23 2.4070000e-02 -56.1000000 2 24 7.6180000e-03 21.2200000 2 25 1.096000e-03 -72.4000000 3 1 0.2898000 -87.2800000 3 1 0.2898000 -86.980000 3 3 0.2618000 -87.2200000 3 4 0.2497000 -86.980000 3 5 0.2398000 -86.7700000 3 6 0.2027000 -87.450000 3 10 0.1940000 -87.7300000 3 10 0.1940000 -87.7400000 3 11 0.1857000 -87.620000 3 12 0.177000 -87.800000 3 14 0.619000 -87.7400000 3 16 0.1450000 -85.8900000 3 17 0.138100 -84.8900000 3 18 0.1295000 -84.6200000	2	21	4.3670000e-02 -76.8200000
2 24 7.6180000e-03 21.2200000 2 25 1.096000e-03 -72.4000000 2 26 2.7880000e-05 -38.6200000 3 0.2618000 -87.200000 3 0.2618000 -87.2200000 3 0.2618000 -87.2200000 3 0.2618000 -87.2200000 3 0.2213000 -86.9300000 3 0.2213000 -87.2100000 3 0.2213000 -87.2100000 3 0.2027000 -87.6200000 3 10 0.1940000 -87.7900000 3 12 0.1777000 -87.8000000 3 14 0.1619000 -87.7400000 3 14 0.1619000 -87.200000 3 15 0.1533000 -88.6300000 3 18 0.1295000 -84.6200000 3 19 0.1175000 -83.6300000 3 20 0.1033000 -87.24000000 3	2	22	3.4340000e-02 - 69.4200000
2247.0100000000000000000000000000000000000	2	23	7.6180000e-02.21.2200000
2262.7880000e-05-38.62000031 $0.2898000 - 87.200000$ 32 $0.2754000 - 87.2800000$ 33 $0.2618000 - 87.2200000$ 34 $0.2497000 - 86.9800000$ 35 $0.2398000 - 86.7700000$ 36 $0.2307000 - 86.9300000$ 37 $0.2213000 - 87.2100000$ 38 $0.2118000 - 87.4500000$ 39 $0.2027000 - 87.6200000$ 310 $0.1940000 - 87.7300000$ 311 $0.1857000 - 87.7400000$ 312 $0.1777000 - 87.8000000$ 314 $0.1619000 - 87.7400000$ 315 $0.1533000 - 87.0200000$ 316 $0.1450000 - 84.8900000$ 318 $0.1295000 - 84.6200000$ 319 $0.1175000 - 83.6300000$ 320 $0.1033000 - 81.1800000$ 321 $8.700000e-02 - 76.8200000$ 322 $6.843000e-02 - 76.8200000$ 323 $4.796000e-02 - 76.8200000$ 324 $1.518000e-02 - 72.400000$ 325 $2.1830000e-37.2800000$ 4 $0.372200 - 86.9800000$ 4 $0.3298000 - 87.2800000$ 4 $0.3298000 - 87.200000$ 4 $0.3157000 - 87.6200000$ 4 $0.3298000 - 87.7300000$ 4 $0.3298000 - 87.7300000$ 4 $0.3298000 - 87.7400000$ 4 $0.3298000 - 87.7400000$ 4 $0.3298000 - 87.7400000$ 4 $0.3298000 - 87.700000$	2	24	1.0960000e-03 -72 400000
310.2898000 -87.200000 320.2754000 -87.280000 330.2618000 -87.220000 340.2497000 -86.980000 350.2398000 -86.770000 360.2307000 -86.9300000 370.2213000 -87.2100000 380.2118000 -87.4500000 390.2027000 -87.6200000 3100.1940000 -87.7300000 3110.1857000 -87.7400000 3120.1777000 -87.8000000 3150.1533000 -87.7400000 3160.1450000 -85.8900000 3160.1450000 -84.8900000 3180.1295000 -84.8900000 3200.175000 -83.6300000 3218.700000e-02 -76.8200000 3226.843000e-02 -76.8200000 3234.796000e-02 -76.8200000 3241.518000e-02 -72.400000 3252.183000e-03 -72.400000 3265.556000e-05 -38.6200000 40.3722000 -86.9300000 420.3617000 -87.7300000 420.3617000 -87.7300000 430.3993000 -87.2200000 430.3921000 -87.7300000 430.3574000 -86.9300000 410 </td <td>2</td> <td>26</td> <td>2.7880000e-05 -38.6200000</td>	2	26	2.7880000e-05 -38.6200000
32 $0.2754000 - 87.280000$ 33 $0.2618000 - 86.720000$ 34 $0.2497000 - 86.980000$ 35 $0.2398000 - 86.770000$ 36 $0.2307000 - 87.2100000$ 37 $0.2213000 - 87.4500000$ 39 $0.2027000 - 87.620000$ 310 $0.1940000 - 87.7300000$ 311 $0.1857000 - 87.7900000$ 312 $0.1777000 - 87.8000000$ 313 $0.1699000 - 87.7400000$ 314 $0.1619000 - 87.5400000$ 315 $0.1533000 - 87.0200000$ 316 $0.1450000 - 85.8900000$ 317 $0.1381000 - 84.6200000$ 318 $0.1295000 - 84.6200000$ 320 $0.1033000 - 81.1800000$ 321 $8.700000e-02 - 76.8200000$ 322 $6.8430000e-02 - 69.4200000$ 323 $4.7960000e-02 - 76.8200000$ 324 $1.518000e-02 - 56.1000000$ 325 $2.183000e-03 - 72.4000000$ 326 $5.5560000e-05 - 38.6200000$ 41 $0.4319000 - 87.2800000$ 42 $0.3923000 - 87.2000000$ 43 $0.3903000 - 87.2000000$ 44 $0.3722000 - 86.9300000$ 410 $0.2891000 - 87.800000$ 410 $0.2891000 - 87.800000$ 410 $0.2891000 - 87.900000$ 410 $0.289000 - 87.900000$ 410 $0.2286000 - 87.7000000$ 410<	3	1	0.2898000 -87.2000000
3 3 0.2618000 -87.2200000 3 4 0.2497000 -86.9800000 3 5 0.2398000 -86.7700000 3 6 0.2307000 -86.9300000 3 7 0.2213000 -87.2100000 3 8 0.2118000 -87.4500000 3 9 0.2027000 -87.6200000 3 10 0.1940000 -87.7300000 3 12 0.1777000 -87.800000 3 12 0.1777000 -87.740000 3 14 0.1619000 -87.7400000 3 15 0.1533000 -87.0200000 3 16 0.145000 -85.8900000 3 18 0.1295000 -84.6200000 3 18 0.129500 -84.6200000 3 20 0.1033000 -81.180000 3 21 8.700000e-02 -76.8200000 3 22 6.8430000e-03 -72.4000000 3 23 4.7960000e-05 -38.6200000 4<	3	2	0.2754000 -87.2800000
3 4 0.2497000 -86.9800000 3 5 0.2398000 -86.7700000 3 6 0.2307000 -86.9300000 3 7 0.2213000 -87.4500000 3 9 0.2027000 -87.6200000 3 10 0.1940000 -87.7300000 3 11 0.1857000 -87.7400000 3 12 0.1777000 -87.800000 3 12 0.1777000 -87.7400000 3 14 0.1699000 -87.7400000 3 14 0.1699000 -87.7400000 3 15 0.1533000 -87.0200000 3 15 0.1533000 -87.0200000 3 18 0.1295000 -84.6200000 3 19 0.1175000 -83.6300000 3 20 0.1033000 -81.1800000 3 21 8.700000e-02 -76.8200000 3 22 6.843000e-03 -72.4000000 3 24 1.5180000e-03 -72.4000000 <	3	3	0.2618000 -87.2200000
3 5 0.2398000 -86.7700000 3 6 0.2307000 -86.9300000 3 7 0.2213000 -87.2100000 3 8 0.2118000 -87.4500000 3 9 0.2027000 -87.6200000 3 10 0.1940000 -87.7300000 3 11 0.1857000 -87.7400000 3 12 0.1777000 -87.800000 3 13 0.1699000 -87.7400000 3 14 0.1619000 -87.540000 3 15 0.1533000 -87.020000 3 16 0.1450000 -85.890000 3 17 0.1381000 -84.890000 3 18 0.1295000 -84.620000 3 19 0.1175000 -83.630000 3 20 0.1033000 -81.180000 3 21 8.700000e-02 -76.8200000 3 22 6.843000e-02 -21.2200000 3 23 4.7960000e-03 -72.4000000 4 1.5180000e-05 -38.6200000 4 0.3722000 -86.9800000 4 0.3293	3	4	0.2497000 -86.9800000
3 6 0.2307000 -86.9300000 3 7 0.2213000 -87.2100000 3 8 0.2118000 -87.4500000 3 9 0.2027000 -87.6200000 3 10 0.1940000 -87.7300000 3 11 0.1857000 -87.7400000 3 12 0.1777000 -87.800000 3 13 0.1699000 -87.7400000 3 14 0.1619000 -87.540000 3 15 0.1533000 -87.020000 3 16 0.1450000 -85.890000 3 17 0.1381000 -84.890000 3 18 0.1295000 -84.620000 3 19 0.1175000 -83.630000 3 20 0.1033000 -81.180000 3 21 8.700000e-02 -76.8200000 3 22 6.843000e-02 -21.2200000 3 24 1.518000e-03 -72.4000000 3 25 2.183000e-05 -38.6200000 4 0.3722000 -86.980000 4 0.3722000 -87.2200000 4 0.329800	3	5	0.2398000 -86.7700000
37 $0.2213000 - 87.2100000$ 38 $0.2118000 - 87.4500000$ 39 $0.2027000 - 87.6200000$ 310 $0.1940000 - 87.7300000$ 311 $0.1857000 - 87.7900000$ 312 $0.1777000 - 87.8000000$ 313 $0.1699000 - 87.7400000$ 314 $0.1619000 - 87.5400000$ 315 $0.1533000 - 87.0200000$ 316 $0.1450000 - 85.8900000$ 317 $0.1381000 - 84.8900000$ 318 $0.1295000 - 84.6200000$ 320 $0.1033000 - 81.1800000$ 321 $8.7000000e-02 - 76.8200000$ 322 $6.8430000e-02 - 69.4200000$ 323 $4.7960000e-02 - 56.1000000$ 324 $1.5180000e-03 - 72.4000000$ 325 $2.1830000e-03 - 72.4000000$ 41 $0.4319000 - 87.2200000$ 42 $0.4105000 - 87.2200000$ 43 $0.390300 - 87.2200000$ 44 $0.3722000 - 86.9800000$ 40 $3021000 - 87.4500000$ 40 $3021000 - 87.7300000$ 410 $0.22891000 - 87.7300000$ 410 $0.228000 - 87.7400000$ 410 $0.228000 - 87.7400000$ 410 $0.2286000 - 87.7900000$ 410 $0.2286000 - 87.0200000$ 410 $0.2286000 - 87.0200000$ 412 $0.2286000 - 87.0200000$ 413 $0.2286000 - 87.0200000$ 4 <t< td=""><td>3</td><td>6</td><td>0.2307000 -86.9300000</td></t<>	3	6	0.2307000 -86.9300000
3 8 0.2118000 -87.450000 3 9 0.2027000 -87.620000 3 10 0.1940000 -87.730000 3 11 0.1857000 -87.790000 3 12 0.1777000 -87.800000 3 14 0.1699000 -87.740000 3 14 0.1619000 -87.540000 3 15 0.1533000 -87.020000 3 16 0.1450000 -84.890000 3 17 0.1381000 -84.890000 3 18 0.1295000 -84.620000 3 19 0.1175000 -83.630000 3 20 0.1033000 -81.1800000 3 21 8.700000e-02 -76.8200000 3 22 6.843000e-02 -69.4200000 3 23 4.796000e-03 -72.4000000 3 24 1.518000e-03 -72.4000000 4 1 0.4319000 -87.2200000 4 1 0.4319000 -87.2200000 4 3 0.3903000 -87.2200000 4 0.3722000 -86.9800000 4 0.3021000 -87.4500000 4 0.3021000 -87.7300000	3	7	0.2213000 -87.2100000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	8	0.2118000 -87.4500000
310 $0.1940000 - 87.7300000$ 311 $0.1857000 - 87.800000$ 312 $0.1777000 - 87.800000$ 313 $0.1699000 - 87.7400000$ 314 $0.1619000 - 87.7400000$ 315 $0.1533000 - 87.0200000$ 316 $0.1450000 - 85.8900000$ 316 $0.1450000 - 84.8900000$ 318 $0.1295000 - 84.6200000$ 319 $0.1175000 - 83.6300000$ 320 $0.1033000 - 81.1800000$ 321 $8.700000e-02 - 76.8200000$ 322 $6.8430000e-02 - 69.4200000$ 323 $4.7960000e-02 - 56.1000000$ 324 $1.5180000e-02 - 56.1000000$ 325 $2.1830000e-03 - 72.4000000$ 41 $0.4319000 - 87.2800000$ 41 $0.3903000 - 87.2800000$ 43 $0.392000 - 87.2800000$ 44 $0.3722000 - 86.9800000$ 44 $0.3157000 - 87.4500000$ 46 $0.3439000 - 87.7300000$ 410 $0.2891000 - 87.7300000$ 410 $0.2286000 - 87.7900000$ 411 $0.2286000 - 87.7400000$ 413 $0.2286000 - 87.0200000$ 414 $0.2161000 - 85.8900000$ 415 $0.2286000 - 87.0200000$ 416 $0.2161000 - 85.8900000$ 419 $0.1752000 - 83.6300000$ 419 $0.1752000 - 83.6300000$ 410 $0.1930000 - 84.6200000$ 4 </td <td>3</td> <td>9</td> <td>0.2027000 -87.6200000</td>	3	9	0.2027000 -87.6200000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	11	0.1940000 - 87.7300000
3 13 0.1699000 -87.7400000 3 14 0.1619000 -87.5400000 3 15 0.1533000 -87.0200000 3 16 0.1450000 -85.8900000 3 17 0.1381000 -84.8900000 3 17 0.1381000 -84.6200000 3 19 0.1175000 -83.6300000 3 20 0.1033000 -81.1800000 3 21 8.700000e-02 -76.8200000 3 22 6.843000e-02 -69.4200000 3 23 4.7960000e-02 -56.1000000 3 24 1.5180000e-02 -72.4000000 3 25 2.1830000e-03 -72.4000000 4 1 0.4319000 -87.2800000 4 1 0.4319000 -87.2100000 4 3 0.3923000 -87.2100000 4 0.3157000 -87.4500000 4 0.3157000 -87.4500000 4 0.3021000 -87.7400000 4 10 0.286	3	12	0 1777000 -87 8000000
3 14 0.1619000 -87.5400000 3 15 0.1533000 -87.5400000 3 16 0.1450000 -87.5400000 3 16 0.1450000 -84.8900000 3 17 0.1381000 -84.8900000 3 19 0.1175000 -83.6300000 3 19 0.1175000 -83.6300000 3 20 0.1033000 -81.1800000 3 21 8.700000e-02 -76.8200000 3 22 6.843000e-02 -69.4200000 3 23 4.7960000e-02 -56.1000000 3 24 1.5180000e-02 -72.4000000 3 25 2.1830000e-03 -72.4000000 4 1 0.4319000 -87.2800000 4 1 0.4319000 -87.2000000 4 3 0.3903000 -87.2200000 4 0.3157400 -86.9300000 4 5 0.3298000 -87.4500000 4 10 0.2891000 -87.7300000 4 <td>3</td> <td>13</td> <td>0.1699000 - 87.7400000</td>	3	13	0.1699000 - 87.7400000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	14	0.1619000 -87.5400000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	15	0.1533000 -87.0200000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	16	0.1450000 -85.8900000
318 $0.1295000 - 84.6200000$ 319 $0.1175000 - 83.630000$ 320 $0.1033000 - 81.1800000$ 321 $8.7000000 - 02 - 76.8200000$ 322 $6.8430000 - 02 - 69.4200000$ 323 $4.7960000 - 02 - 55.1000000$ 324 $1.5180000 - 02 - 21.2200000$ 325 $2.1830000 - 03 - 72.4000000$ 326 $5.5560000 - 05 - 38.6200000$ 41 $0.4319000 - 87.2000000$ 42 $0.4105000 - 87.2800000$ 43 $0.3903000 - 87.22000000$ 44 $0.3722000 - 86.9800000$ 45 $0.3574000 - 86.7700000$ 46 $0.3439000 - 87.2100000$ 47 $0.3298000 - 87.2100000$ 48 $0.3157000 - 87.4500000$ 410 $0.2768000 - 87.7300000$ 411 $0.2768000 - 87.7900000$ 412 $0.2649000 - 87.8000000$ 413 $0.22533000 - 87.7400000$ 414 $0.2161000 - 85.8900000$ 415 $0.2286000 - 87.0200000$ 416 $0.2161000 - 84.8900000$ 418 $0.1930000 - 84.6200000$ 412 $0.1520000 - 83.6300000$	3	17	0.1381000 -84.8900000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	18	0.1295000 -84.6200000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	19	0.1175000 -83.6300000
321 $8.7000000 = -02 - 76.8200000$ 322 $6.8430000 = -02 - 69.4200000$ 323 $4.7960000 = -02 - 56.1000000$ 324 $1.5180000 = -02 - 21.2200000$ 325 $2.1830000 = -03 - 72.4000000$ 326 $5.5560000 = -05 - 38.6200000$ 41 $0.4319000 - 87.200000$ 42 $0.4105000 - 87.2200000$ 43 $0.3903000 - 87.2200000$ 44 $0.3722000 - 86.9800000$ 45 $0.3574000 - 86.9700000$ 46 $0.3439000 - 87.2100000$ 47 $0.3298000 - 87.2100000$ 48 $0.3157000 - 87.4500000$ 49 $0.3021000 - 87.7300000$ 410 $0.2891000 - 87.7300000$ 412 $0.2649000 - 87.7400000$ 413 $0.2286000 - 87.7400000$ 414 $0.2161000 - 85.8900000$ 415 $0.2286000 - 87.0200000$ 416 $0.2161000 - 84.800000$ 417 $0.2059000 - 84.800000$ 418 $0.1930000 - 84.6200000$ 420 $0.1540000 - 81.1800000$	3	20	0.1033000 -81.1800000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	21	8.7000000e-02 -76.8200000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	22	6.8430000e-02 - 69.4200000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	23	1.5180000e-02.21.2200000
3 26 5.5560000e-05 -38.6200000 4 1 0.4319000 -87.2000000 4 2 0.4105000 -87.2800000 4 3 0.3903000 -87.2200000 4 3 0.3722000 -86.9800000 4 4 0.3722000 -86.9800000 4 5 0.3574000 -86.7700000 4 6 0.3439000 -86.9300000 4 6 0.3298000 -87.2100000 4 7 0.3298000 -87.74500000 4 8 0.3157000 -87.4500000 4 9 0.3021000 -87.7300000 4 10 0.2891000 -87.7300000 4 10 0.2649000 -87.7900000 4 12 0.2649000 -87.7400000 4 13 0.2233000 -87.7400000 4 13 0.2286000 -87.0200000 4 14 0.2414000 -87.5400000 4 15 0.2286000 -87.0200000 4	3	25	2.1830000e-03 -72.4000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	26	5.5560000e-05 -38.6200000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	0.4319000 -87.2000000
4 3 0.3903000 -87.2200000 4 4 0.3722000 -86.9800000 4 5 0.3574000 -86.7700000 4 6 0.3439000 -86.9300000 4 7 0.3298000 -87.2100000 4 7 0.3298000 -87.2100000 4 8 0.3157000 -87.4500000 4 9 0.3021000 -87.6200000 4 10 0.2891000 -87.7300000 4 10 0.2649000 -87.7900000 4 12 0.2649000 -87.7400000 4 13 0.2533000 -87.7400000 4 13 0.2286000 -87.0200000 4 14 0.2414000 -87.5400000 4 15 0.2286000 -87.0200000 4 16 0.2161000 -85.8900000 4 16 0.2161000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4	4	2	0.4105000 -87.2800000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4	3	0.3903000 -87.2200000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	4	0.3722000 -86.9800000
4 6 0.3439000 -86.9300000 4 7 0.3298000 -87.2100000 4 8 0.3157000 -87.4500000 4 9 0.3021000 -87.6200000 4 10 0.2891000 -87.7300000 4 10 0.2891000 -87.7300000 4 12 0.2649000 -87.7900000 4 13 0.2533000 -87.7400000 4 14 0.2414000 -87.5400000 4 15 0.2286000 -87.0200000 4 16 0.2161000 -85.8900000 4 17 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -81.1800000	4	5	0.3574000 -86.7700000
4 7 0.3298000 -87.2100000 4 8 0.3157000 -87.4500000 4 9 0.3021000 -87.6200000 4 10 0.2891000 -87.7300000 4 10 0.2891000 -87.7300000 4 10 0.2649000 -87.7900000 4 12 0.2649000 -87.7400000 4 13 0.2533000 -87.7400000 4 14 0.2414000 -87.5400000 4 15 0.2286000 -87.0200000 4 16 0.2161000 -85.8900000 4 16 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -81.1800000 4 21 0.1297000 -76.8100000	4	6	0.3439000 -86.9300000
4 8 0.3157000 -87.450000 4 9 0.3021000 -87.6200000 4 10 0.2891000 -87.7300000 4 10 0.2768000 -87.7300000 4 12 0.2649000 -87.7900000 4 13 0.2533000 -87.7400000 4 14 0.2414000 -87.5400000 4 15 0.2286000 -87.0200000 4 16 0.2161000 -85.8900000 4 17 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -81.1800000	4	7	0.3298000 -87.2100000
4 10 0.2891000 -87.7300000 4 10 0.2891000 -87.7300000 4 11 0.2768000 -87.7900000 4 12 0.2649000 -87.8000000 4 13 0.2533000 -87.7400000 4 14 0.2414000 -87.5400000 4 15 0.2286000 -87.0200000 4 16 0.2161000 -85.8900000 4 17 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -76.8100000	4 1	d Q	0.315/000 - 8/.4500000
4 11 0.2768000 -87.7900000 4 12 0.2649000 -87.800000 4 13 0.2533000 -87.7400000 4 14 0.2414000 -87.5400000 4 15 0.2286000 -87.0200000 4 16 0.2161000 -85.8900000 4 17 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -76.8100000	- 4	ء 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4 12 0.2649000 -87.8000000 4 13 0.2533000 -87.7400000 4 14 0.2414000 -87.5400000 4 15 0.2286000 -87.0200000 4 16 0.2161000 -85.8900000 4 17 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -76.8100000	4	11	0.2768000 -87.7900000
4 13 0.2533000 -87.7400000 4 14 0.2414000 -87.5400000 4 15 0.2286000 -87.0200000 4 16 0.2161000 -85.8900000 4 17 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -76.8100000	4	12	0.2649000 -87.8000000
4 14 0.2414000 -87.5400000 4 15 0.2286000 -87.0200000 4 16 0.2161000 -85.8900000 4 17 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -81.1800000 4 21 0.1297000 -76.8100000	4	13	0.2533000 -87.7400000
4 15 0.2286000 -87.0200000 4 16 0.2161000 -85.8900000 4 17 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -81.1800000 4 21 0.1297000 -76.8100000	4	14	0.2414000 -87.5400000
4 16 0.2161000 -85.8900000 4 17 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -81.1800000 4 21 0.1297000 -76.8100000	4	15	0.2286000 -87.0200000
4 17 0.2059000 -84.8900000 4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -81.1800000 4 21 0.1297000 -76.8100000	4	16	0.2161000 -85.8900000
4 18 0.1930000 -84.6200000 4 19 0.1752000 -83.6300000 4 20 0.1540000 -81.1800000 4 21 0.1297000 -76.8100000	4	17	0.2059000 -84.8900000
4 20 0.1540000 -83.6300000 4 21 0.1297000 -76.8100000	4 4	⊥8 10	U.1930000 -84.6200000 0 1752000 -82 6200000
4 21 0.1297000 -76.8100000	- 4	19 20	0.1732000 = 03.0300000 0 1540000 = 81 1800000
	4	21	0.1297000 -76.8100000
4	22	0.1020000 -69.4200000	
--------	---------	---------------------------	
1	22	7 1400000-02 -56 100000	
4	23	2.2620000=02.21.2200000	
4	24	2.262000000-02 21.2200000	
4	25	3.2540000e-03 -72.4000000	
4	26	8.28100000-05 -38.6200000	
5	1	0.5708000 -87.2000000	
5	2	0.5425000 -87.2800000	
5	3	0.5157000 -87.2200000	
5	4	0.4919000 -86.9800000	
5	5	0.4723000 -86.7700000	
5	6	0.4545000 -86.9300000	
5	7	0.4358000 -87.2100000	
5	8	0.4171000 -87.4500000	
5	9	0.3992000 -87.6200000	
5	10	0 3820000 -87 7300000	
5	11	0 3657000 -87 7900000	
5	10	0.2501000 -97 9000000	
5	12	0.3301000 87.7400000	
5	14	0.334/000 -87.7400000	
5	14	0.3189000 -87.5400000	
5	15	0.3020000 -87.0200000	
5	16	0.2856000 -85.8900000	
5	17	0.2721000 -84.8900000	
5	18	0.2551000 -84.6200000	
5	19	0.2315000 -83.6300000	
5	20	0.2035000 -81.1800000	
5	21	0.1714000 -76.8100000	
5	22	0.1348000 -69.4200000	
5	23	9.4470000e-02 -56.1000000	
5	24	2.9900000e-02 21.2200000	
5	25	4 3000000e-03 -72 400000	
5	25	1 00400000 03 72.1000000	
6	20 1		
6	1	0.7053000 -87.2000000	
6	2	0.6703000 -87.2800000	
6	3	0.6373000 -87.2200000	
6	4	0.6078000 -86.9800000	
6	5	0.5836000 -86.7700000	
6	6	0.5616000 -86.9300000	
6	7	0.5385000 -87.2100000	
б	8	0.5155000 -87.4500000	
6	9	0.4932000 -87.6200000	
6	10	0.4721000 -87.7300000	
6	11	0.4519000 -87.7900000	
6	12	0.4326000 -87.8000000	
6	13	0.4136000 -87.7400000	
6	14	0 3941000 -87 5400000	
6	15	0 3732000 -87 0200000	
6	16	0.252000 -95 900000	
6	17	0.3323000 -83.8300000	
6	10	0.3302000 -84.8900000	
6	18	0.3152000 -84.6200000	
6	19	0.2860000 -83.6300000	
6	20	0.2514000 -81.1800000	
6	21	0.2117000 -76.8100000	
6	22	0.1665000 -69.4200000	
6	23	0.1167000 -56.1000000	
6	24	3.6940000e-02 21.2200000	
6	25	5.3140000e-03 -72.4000000	
6	26	1.3520000e-04 -38.6200000	
7	1	0.8344000 -87.2000000	
7	2	0.7930000 -87.2800000	
7	3	0.7540000 -87.2200000	
7	4	0.7191000 -86.9800000	
7	5	0.6905000 -86 7700000	
7	6	0.6644000 -86 9300000	
7	7	0 6371000 -87 2100000	
, 7	, 8	0.6098000 - 87.4500000	
, 7	9	0.5835000 - 07.4300000	
7	9 10		
/	11		
1	11	0.5347000 -87.7900000	
.7	12	U.5118UUU -87.8000000	
7	13	0.4893000 -87.7400000	
7	14	0.4663000 -87.5400000	
7	15	0.4415000 -87.0200000	
7	16	0.4175000 -85.8900000	
7	17	0.3978000 -84.8900000	

19 0.3384000 -83.630000 7 20 0.3584000 -76.8100000 7 21 0.2505000 -81.1800000 7 22 0.1381000 -56.1000000 7 23 0.1381000 -56.1000000 7 24 4.3700000 -72.400000 7 26 1.600000 -87.2200000 8 1 0.9572000 -87.2200000 8 1 0.9572000 -87.2200000 8 1 0.8249000 -87.220000 8 0.6996000 -87.450000 8 0.6996000 -87.450000 8 0.6996000 -87.740000 8 10 0.6407000 -87.740000 8 10 0.6407000 -87.540000 8 10 5430000 81 10 0.6407000 -87.540000 8 10 0.453000 -84.890000 8 14 0.5349000 -85.890000	7	18	0.3729000 -84.6200000
7 21 0.2505000 -76.8100000 7 23 0.1381000 -66.1000000 7 24 4.370000e-02 21.2200000 7 25 6.2870000e-03 -72.4000000 8 1 0.9572000 -87.2800000 8 1 0.9572000 -87.280000 8 1 0.9572000 -87.280000 8 1 0.997000 -87.220000 8 1 0.8249000 -86.9800000 8 0.7221000 -86.7700000 8 0.6996000 -87.450000 8 0.6996000 -87.740000 8 1 0.6134000 -87.730000 8 1 0.513000 -87.740000 8 14 0.5349000 -83.630000 8 15 0.5055000 -84.620000 8 19 0.382000 -83.630000 8 18 0.4278000 -84.620000 8 18 0.4278000 -87.2200000 8 18 0.4278000 -87.220000	7	20	0.3384000 -83.8300000
7 22 0.13970000 -9.4200000 7 23 0.1381000 -56.1000000 7 24 4.3700000e-02 21.2200000 7 25 6.2870000e-03 -72.4000000 8 1 0.9572000 -87.2200000 8 1 0.9572000 -87.220000 8 0.8649000 -86.9800000 8 0.849000 -86.970000 8 0.722000 -86.7700000 8 0.6996000 -87.450000 8 0.6996000 -87.450000 8 0.6996000 -87.740000 8 10 6134000 -87.730000 8 11 0.6134000 -87.740000 8 13 0.5613000 -87.740000 8 14 0.5349000 -84.620000 8 19 0.382000 -84.620000 8 19 0.382000 -84.620000 8 19 0.382000 -87.2200000 8 21 0.2874000 -76.8100000 8 <td< td=""><td>7</td><td>21</td><td>0.2505000 -76.8100000</td></td<>	7	21	0.2505000 -76.8100000
7 24 4.370000e-02 21.2200000 7 25 6.2870000e-03 -72.4000000 8 1.600000e-04 -38.620000 8 0.997000 -87.280000 8 0.8649000 -87.220000 8 0.8649000 -86.980000 8 0.7921000 -86.980000 8 0.6996000 -87.450000 8 0.6996000 -87.450000 8 0.6996000 -87.700000 8 0.6996000 -87.450000 8 0.6996000 -87.450000 8 0.6996000 -87.700000 8 10 0.6417000 -87.700000 8 12 0.5871000 -87.400000 8 12 0.5813000 -87.400000 8 14 0.5349000 -84.8900000 8 15 0.5065000 -87.020000 8 16 0.4789000 -84.6200000 8 16 0.4789000 -85.490000 8 17 0.4563000 -72.400000	7	22	0.1970000 - 69.4200000 0.1381000 - 56.1000000
7 25 6.2870000e-03 -72.4000000 8 1.600000e-04 -38.620000 8 2 0.997000 -87.2800000 8 2 0.997000 -87.280000 8 2 0.997000 -87.280000 8 0.6649000 -87.280000 8 0.752200 -86.980000 8 0.6996000 -87.450000 8 0.6996000 -87.450000 8 0.6694000 -87.730000 8 10 0.6407000 -87.730000 8 12 0.5871000 -87.740000 8 12 0.5871000 -87.940000 8 12 0.565000 -87.020000 8 14 0.534900 -85.890000 8 14 0.534900 -85.890000 8 14 0.534900 -83.630000 8 14 0.534900 -83.620000 8 14 0.5347000 -84.6200000 <t< td=""><td>7</td><td>24</td><td>4.3700000e-02 21.2200000</td></t<>	7	24	4.3700000e-02 21.2200000
1 1 0.9572000 87.2000000 8 2 0.9097000 87.200000 8 3 0.8649000 -87.200000 8 4 0.8249000 -87.200000 8 5 0.7921000 -86.9300000 8 5 0.7921000 -86.9300000 8 0.6996000 -87.450000 8 0.6996000 -87.7300000 8 10 0.6494000 -87.7900000 8 10 0.6594000 -87.7400000 8 13 0.5513000 -87.7400000 8 14 0.5349000 -87.200000 8 16 0.4789000 -87.200000 8 17 0.4563000 -84.6200000 8 17 0.4563000 -84.6200000 8 19 0.382000 -81.1800000 8 19 0.382000 -87.2000000 8 20 0.2674000 -78.6200000 8 11	7 7	25	6.2870000e-03 -72.4000000
8 2 0.997000 -87.280000 8 3 0.8649000 -87.220000 8 4 0.8249000 -86.980000 8 5 0.7921000 -86.980000 8 6 0.7622000 -87.450000 8 9 0.6694000 -87.450000 8 9 0.6694000 -87.730000 8 10 0.6407000 -87.740000 8 13 0.5513000 -87.740000 8 14 0.5349000 -87.920000 8 16 0.4789000 -83.630000 8 16 0.478900 -84.620000 8 17 0.4563000 -84.620000 8 18 0.4278000 -81.180000 8 19 0.382000 -81.800000 8 20 0.2874000 -81.800000 8 21 0.260000 -72.400000 8 22 0.226000 -72.400000 8	8	1	0.9572000 -87.2000000
8 3 0.8649000 -81.2200000 8 4 0.8249000 -86.980000 8 5 0.7921000 -86.980000 8 6 0.7622000 -86.980000 8 0.6694000 -87.450000 8 9 0.6694000 -87.7300000 8 10 0.6407000 -87.7400000 8 12 0.5871000 -87.540000 8 13 0.5613000 -87.540000 8 14 0.5349000 -87.540000 8 15 0.5065000 -87.620000 8 17 0.4563000 -84.890000 8 17 0.4563000 -84.620000 8 19 0.382000 -83.630000 8 19 0.382000 -83.630000 8 20 0.2647400 -76.810000 8 21 0.226000 -72.400000 8 0.730000 87.220000 9 1.073000	8	2	0.9097000 -87.2800000
8 5 0.7921000 -86.930000 8 6 0.7622000 -87.2100000 8 8 0.6694000 -87.450000 8 9 0.6694000 -87.730000 8 10 0.6407000 -87.7300000 8 12 0.5871000 -87.7400000 8 13 0.5613000 -87.7400000 8 14 0.5349000 -87.540000 8 15 0.5065000 -87.540000 8 17 0.4563000 -84.890000 8 17 0.4563000 -84.620000 8 19 0.382000 -83.630000 8 20 0.3413000 -81.1800000 8 21 0.2260000 -65.100000 8 22 0.1264000 -76.810000 8 25 7.2120000e -72.400000 8 25 7.2120000e -87.200000 9 1.0190000 -87.2200000 9	8 8	3 4	0.8649000 - 87.2200000 0.8249000 - 86.9800000
8 6 0.7622000 -87.2100000 8 0.6996000 -87.4500000 8 9 0.6694000 -87.7300000 8 10 0.6407000 -87.7300000 8 11 0.6134000 -87.7300000 8 12 0.5871000 -87.840000 8 14 0.5349000 -87.540000 8 14 0.5349000 -87.840000 8 15 0.5065000 -87.020000 8 16 0.4789000 -84.890000 8 18 0.4278000 -84.620000 8 19 0.3882000 -83.630000 8 21 0.2260000 -69.420000 8 22 0.226000 -69.420000 8 23 0.1584000 -87.2400000 8 24 5.0140000 -87.2200000 9 1 0.73000 -72.4000000 9 1 0.730000 -72.4000000 9	8	5	0.7921000 -86.7700000
8 0.1996000 -87.4500000 8 9 0.6694000 -87.4500000 8 10 0.6407000 -87.7300000 8 11 0.6134000 -87.7400000 8 12 0.5871000 -87.840000 8 13 0.5613000 -87.7400000 8 14 0.5349000 -87.540000 8 14 0.5349000 -87.840000 8 16 0.4789000 -85.890000 8 17 0.4563000 -84.890000 8 18 0.4278000 -84.620000 8 19 0.382000 -83.630000 8 20 0.3413000 -81.180000 8 21 0.2874000 -76.810000 8 22 0.226000 -94.220000 8 23 0.1584000 -87.200000 9 1.0730000 -87.200000 9 1.0730000 -87.2200000 9 1.074000 -	8 8	6 7	0.7622000 - 86.9300000 0.7309000 - 87.2100000
8 9 0.6694000 -87.7200000 8 10 0.6407000 -87.7300000 8 12 0.5871000 -87.800000 8 13 0.5613000 -87.7400000 8 14 0.5349000 -87.540000 8 14 0.5349000 -87.620000 8 16 0.4789000 -84.620000 8 18 0.4278000 -84.620000 8 19 0.388200 -83.630000 8 20 0.3413000 -81.180000 8 21 0.2874000 -76.8100000 8 22 0.2260000 -69.420000 8 23 0.1584000 -57.2400000 8 23 0.1584000 -87.280000 9 1 1.073000 -87.2200000 9 1 0.969300 -87.2200000 9 1 0.73000 -87.4200000 9 0.750200 -87.6200000 9	8	8	0.6996000 -87.4500000
a 10 0.6134000 -87.790000 8 11 0.6134000 -87.7400000 8 13 0.5613000 -87.7400000 8 14 0.5349000 -87.7400000 8 14 0.5349000 -87.5400000 8 15 0.5065000 -87.620000 8 16 0.4789000 -85.890000 8 16 0.4789000 -84.890000 8 19 0.3882000 -83.630000 8 19 0.3882000 -83.630000 8 20 0.3413000 -81.180000 8 21 0.2260000 -69.4200000 8 23 0.1584000 -87.200000 8 23 0.1584000 -87.200000 9 1 1.073000 -87.200000 9 1 1.073000 -87.200000 9 1 0.9693000 -87.200000 9 1 0.750200 87.420000	8	9	0.6694000 -87.6200000
8 12 0.5871000 -87.800000 8 13 0.5613000 -87.7400000 8 14 0.5349000 -87.5400000 8 15 0.5065000 -87.020000 8 16 0.4789000 -85.890000 8 17 0.4563000 -84.620000 8 19 0.3882000 -83.630000 8 19 0.3874000 -76.810000 8 20 0.2260000 -69.420000 8 21 0.2874000 -76.8100000 8 22 0.2260000 -87.2400000 8 23 0.1584000 -87.2400000 8 24 5.014000e=-02 21.2200000 9 1 1.0730000 -87.2800000 9 1 1.0730000 -87.2800000 9 1 1.0730000 -87.200000 9 0 .7502000 -87.4500000 9 0 .7502000 87.7400000 <	8 8	11	0.6134000 -87.7900000
813 $0.5613000 - 87.7400000$ 814 $0.5349000 - 87.5400000$ 815 $0.5065000 - 87.0200000$ 817 $0.4563000 - 84.620000$ 817 $0.4563000 - 84.620000$ 819 $0.3882000 - 83.630000$ 820 $0.3413000 - 81.1800000$ 821 $0.2874000 - 76.8100000$ 822 $0.2260000 - 69.4200000$ 823 $0.1584000 - 56.1000000$ 824 $5.0140000e-02 21.2200000$ 825 $7.2120000e-03 - 72.400000$ 826 $1.8350000e-04 - 38.6200000$ 91 $0.730000 - 87.2800000$ 92 $1.019000 - 87.2800000$ 93 $0.9693000 - 87.2200000$ 94 $0.9244000 - 86.9300000$ 95 $0.8877000 - 87.4500000$ 96 $0.8541000 - 87.4500000$ 97 $0.819100 - 87.4200000$ 910 $0.7180000 - 87.4500000$ 910 $0.7502000 - 87.6200000$ 911 $0.6874000 - 87.7400000$ 912 $0.6579000 - 87.5400000$ 913 $0.6290000 - 87.5400000$ 914 $0.5994000 - 87.5400000$ 915 $0.5676000 - 87.0200000$ 916 $0.3220000 - 76.8200000$ 910 $0.3220000 - 76.8200000$ 910 $0.3220000 - 76.8200000$ 910 $0.3220000 - 77.400000$ 910 $0.3220000 - 76.8200000$ 910<	8	12	0.5871000 -87.8000000
8150.506500087.0200008160.4789000-85.89000008170.4563000-84.6200008190.3882000-83.63000008190.3882000-83.6300008200.3413000-81.18000008210.2874000-76.81000008220.2260000-69.42000008230.1584000-56.10000008245.014000e-0221.22000008257.2120000e-03-72.4000008261.835000e-04-38.620000911.073000-87.280000921.019000-87.280000930.969300-87.2200000940.9244000-86.930000950.8877000-87.4500000970.8191000-87.2100000980.784000-87.4500000990.750200-87.62000009100.7180000-87.74000009130.6290000-87.74000009140.599400-87.5400009150.5676000-87.62000009160.5367000-83.63000009100.382000-83.6300009100.382000-83.6300009100.382000-83.6300009100.382000-83.6300009100.382000-83.630000910 </td <td>8 8</td> <td>13 14</td> <td>0.5613000 - 87.7400000 0.5349000 - 87.5400000</td>	8 8	13 14	0.5613000 - 87.7400000 0.5349000 - 87.5400000
8 16 0.4789000 -85.8900000 8 17 0.4563000 -84.8900000 8 18 0.4278000 -84.6200000 8 19 0.3882000 -83.630000 8 20 0.3413000 -81.1800000 8 21 0.2874000 -76.8100000 8 22 0.2260000 -69.4200000 8 23 0.1584000 -56.1000000 8 24 5.0140000e-02 21.2200000 8 25 7.2120000e-03 -72.400000 8 26 1.835000e-04 -38.6200000 9 1 1.0730000 -87.280000 9 1 0.969300 -87.200000 9 1 0.969300 -87.200000 9 1 0.87400 -87.450000 9 0.750200 -87.450000 9 9 0.750200 -87.7400000 9 9 1.667400 -87.540000 9<	8	15	0.5065000 -87.0200000
817 $0.4258000 - 84.8900000$ 819 $0.382200 - 83.630000$ 820 $0.3413000 - 81.1800000$ 821 $0.2874000 - 76.8100000$ 822 $0.2260000 - 69.4200000$ 823 $0.1584000 - 56.1000000$ 824 $5.0140000e-02 21.2200000$ 825 $7.2120000e-03 - 72.4000000$ 826 $1.8350000e-04 - 38.6200000$ 91 $1.0730000 - 87.2800000$ 92 $1.019000 - 87.2800000$ 93 $0.9693000 - 87.2200000$ 94 $0.9244000 - 86.9800000$ 95 $0.8877000 - 86.7700000$ 96 $0.8541000 - 87.4200000$ 97 $0.8191000 - 87.2100000$ 98 $0.784000 - 87.7300000$ 910 $0.7180000 - 87.7300000$ 910 $0.7180000 - 87.7400000$ 912 $0.6579000 - 87.8000000$ 913 $0.629000 - 87.7400000$ 914 $0.599400 - 87.5400000$ 915 $0.5676000 - 87.0200000$ 916 $0.3320000 - 76.8200000$ 910 $0.3220000 - 76.8200000$ 910 $0.3220000 - 72.4000000$ 910 $0.3220000 - 87.200000$ 910 $0.567000 - 87.200000$ 910 $0.567000 - 87.200000$ 910 $0.5253000 - 87.200000$ 910 $0.520000 - 76.8200000$ 910 $0.3824000 - 81.1800000$ 910 $0.$	8	16	0.4789000 -85.8900000
8 19 0.3882000 -83.630000 8 20 0.3413000 -81.1800000 8 21 0.2874000 -76.8100000 8 22 0.2260000 -69.4200000 8 23 0.1584000 -56.1000000 8 24 5.0140000e-02 21.2200000 8 25 7.2120000e-03 -72.4000000 8 26 1.8350000e-04 -38.6200000 9 1 1.0730000 -87.280000 9 2 1.019000 -87.280000 9 3 0.9693000 -87.200000 9 3 0.9244000 -86.930000 9 5 0.8871000 -87.450000 9 7 0.8191000 -87.4500000 9 7 0.8191000 -87.4500000 9 10 0.718000 -87.7400000 9 10 0.679000 -87.5400000 9 14 0.5994000 -87.6200000 <td>8 8</td> <td>18</td> <td>0.4278000 -84.6200000</td>	8 8	18	0.4278000 -84.6200000
8 20 0.3413000 -81.180000 8 21 0.2874000 -76.8100000 8 22 0.2260000 -69.4200000 8 23 0.1584000 -56.1000000 8 25 7.2120000e-03 -72.4000000 8 26 1.835000e-04 -38.6200000 9 1 1.0730000 -87.2800000 9 2 1.0190000 -87.2200000 9 3 0.9693000 -87.2200000 9 4 0.9244000 -86.9800000 9 5 0.8877000 -86.7700000 9 6 0.8541000 -87.2100000 9 7 0.8191000 -87.2100000 9 8 0.784000 -87.7400000 9 1 0.6874000 -87.7400000 9 10 0.7180000 -87.7400000 9 13 0.6290000 -87.7400000 9 14 0.5994000 -87.5400000 9 15 0.5676000 -87.7400000 9 16 0.5367000 -85.8900000 9 17 0.5113000 -84.8900000	8	19	0.3882000 -83.6300000
822 $0.2260000 - 69.4200000$ 823 $0.1584000 - 56.1000000$ 824 $5.0140000e-02 21.2200000$ 825 $7.2120000e-03 - 72.4000000$ 926 $1.835000e-04 - 38.6200000$ 92 $1.0190000 - 87.2800000$ 92 $1.0190000 - 87.2200000$ 93 $0.9693000 - 87.2200000$ 94 $0.9244000 - 86.9800000$ 95 $0.8877000 - 86.7700000$ 96 $0.8541000 - 87.2100000$ 97 $0.8191000 - 87.2100000$ 98 $0.7840000 - 87.4500000$ 99 $0.7502000 - 87.6200000$ 910 $0.7180000 - 87.7300000$ 911 $0.6874000 - 87.7400000$ 912 $0.6579000 - 87.800000$ 913 $0.6290000 - 87.7400000$ 914 $0.5994000 - 87.5400000$ 915 $0.5676000 - 87.0200000$ 916 $0.5367000 - 83.6300000$ 917 $0.5113000 - 84.8900000$ 918 $0.4794000 - 84.6200000$ 920 $0.3220000 - 76.8200000$ 921 $0.3220000 - 77.2400000$ 922 $0.2533000 - 69.4200000$ 923 $0.1775000 - 56.1000000$ 924 $5.6180000e-02 21.2200000$ 925 $8.082000e-03 - 72.4000000$ 926 $2.057000e-04 - 38.6200000$ 926 $2.057000e-86.9300000$ 101 $1.1800000 - 87.200000$ 10 <t< td=""><td>8 8</td><td>20 21</td><td>0.3413000 -81.1800000</td></t<>	8 8	20 21	0.3413000 -81.1800000
8 23 0.1584000 -56.1000000 8 24 5.014000e-02 21.2200000 8 25 7.2120000e-03 -72.4000000 8 26 1.8350000e-04 -38.6200000 9 1 1.0730000 -87.2800000 9 2 1.019000 -87.2200000 9 3 0.9693000 -87.2200000 9 4 0.9244000 -86.9800000 9 5 0.8877000 -86.7700000 9 6 0.8541000 -87.2100000 9 7 0.8191000 -87.7300000 9 9 0.7502000 -87.7400000 9 10 0.718000 -87.7400000 9 11 0.679000 -87.5400000 9 12 0.6576000 -87.0200000 9 13 0.629000 -87.7400000 9 14 0.5994000 -81.8800000 9 15 0.5676000 -87.200000	8	22	0.2260000 -69.4200000
824 $5.0140000e-02$ 21.2200000 825 $7.2120000e-03$ -72.4000000 91 1.0730000 -87.2000000 91 1.0730000 -87.2200000 92 1.0190000 -87.2200000 93 0.9693000 -87.2200000 94 0.9244000 -86.9800000 95 0.8877000 -86.7700000 96 0.8541000 -87.4500000 97 0.8191000 -87.4500000 98 0.7840000 -87.4500000 910 0.7180000 -87.7300000 910 0.7180000 -87.7300000 911 0.6874000 -87.7400000 912 0.6579000 -87.7400000 913 0.6290000 -87.7400000 914 0.5994000 -87.5400000 915 0.5676000 -87.2200000 916 0.5367000 -83.6300000 917 0.5113000 -84.8900000 918 0.4794000 -84.6200000 920 0.3824000 -81.1800000 921 0.3220000 -72.4000000 922 0.2533000 -69.42200000 923 0.1775000 -56.10000000 924 $5.6180000e-03$ -72.4000000 925 $8.0820000e-03$ -72.4000000 101 1.1800000 -87.2200000 10 <td>8</td> <td>23</td> <td>0.1584000 -56.1000000</td>	8	23	0.1584000 -56.1000000
826 $1.8350000e-04$ -38.620000 91 1.0730000 -87.2000000 92 1.0190000 -87.2800000 93 0.9693000 -87.2200000 94 0.9244000 -86.9800000 95 0.8877000 -86.9300000 96 0.8541000 -86.9300000 97 0.8191000 -87.2100000 98 0.7840000 -87.4500000 99 0.7502000 -87.6200000 910 0.7180000 -87.7300000 911 0.6874000 -87.7300000 912 0.6579000 -87.7400000 913 0.6290000 -87.7400000 914 0.5994000 -87.0200000 915 0.5676000 -87.0200000 916 0.5367000 -83.6300000 917 0.5113000 -84.8900000 918 0.4794000 -84.6200000 920 0.3220000 -76.8200000 921 0.3220000 -72.4000000 922 0.2533000 -69.4200000 923 0.1775000 -56.10000000 925 $8.0820000e-03$ -72.4000000 926 $2.0570000e-04$ -38.6200000 101 1.1800000 -87.2200000 102 1.210000 -86.9800000 103 1.0660000 -87.2200000 10	8	24 25	7.2120000e-03 -72.400000
91 $1.0730000 - 87.200000$ 92 $1.0190000 - 87.2800000$ 93 $0.9693000 - 87.2200000$ 94 $0.9244000 - 86.9800000$ 95 $0.8877000 - 86.97700000$ 96 $0.8541000 - 87.2100000$ 97 $0.8191000 - 87.2100000$ 98 $0.7840000 - 87.4500000$ 99 $0.7502000 - 87.6200000$ 910 $0.7180000 - 87.7300000$ 911 $0.6874000 - 87.7300000$ 912 $0.6579000 - 87.8000000$ 913 $0.6290000 - 87.7400000$ 914 $0.5994000 - 87.5400000$ 915 $0.5676000 - 87.0200000$ 916 $0.5367000 - 83.6300000$ 917 $0.5113000 - 84.8900000$ 918 $0.4794000 - 84.6200000$ 920 $0.3824000 - 81.1800000$ 921 $0.3220000 - 76.8200000$ 922 $0.2533000 - 69.4200000$ 923 $0.1775000 - 56.1000000$ 924 $5.6180000e - 02 - 21.2200000$ 925 $8.082000e - 03 - 72.4000000$ 926 $2.0570000e - 04 - 38.6200000$ 101 $1.1800000 - 87.2200000$ 102 $1.210000 - 87.2100000$ 103 $1.0660000 - 87.2100000$ 104 $0.9396000 - 86.9300000$ 105 $0.9765000 - 86.7700000$ 106 $0.9396000 - 87.7400000$ 1010 $0.7238000 - 87.7300000$ 10 <td>8</td> <td>26</td> <td>1.8350000e-04 -38.6200000</td>	8	26	1.8350000e-04 -38.6200000
93 $0.9693000 - 87.2200000$ 94 $0.9244000 - 86.9800000$ 95 $0.8877000 - 86.7700000$ 96 $0.8541000 - 87.2100000$ 97 $0.8191000 - 87.2100000$ 99 $0.7502000 - 87.6200000$ 99 $0.7502000 - 87.6200000$ 910 $0.7180000 - 87.7300000$ 911 $0.6874000 - 87.7300000$ 912 $0.6579000 - 87.7300000$ 913 $0.6290000 - 87.7400000$ 913 $0.6290000 - 87.7400000$ 914 $0.5994000 - 87.5400000$ 915 $0.5676000 - 87.0200000$ 916 $0.5367000 - 85.8900000$ 917 $0.5113000 - 84.8900000$ 918 $0.4794000 - 84.6200000$ 919 $0.4350000 - 83.6300000$ 920 $0.3824000 - 81.1800000$ 921 $0.3220000 - 76.8200000$ 922 $0.2533000 - 69.4200000$ 923 $0.1775000 - 56.1000000$ 924 $5.6180000e-02 - 21.2200000$ 925 $8.082000e-03 - 72.4000000$ 926 $2.0570000e-04 - 38.6200000$ 101 $1.1800000 - 87.2200000$ 102 $1.210000 - 86.9300000$ 103 $0.8624000 - 87.4500000$ 103 $0.8624000 - 87.4500000$ 100 $0.789900 - 87.7300000$ 1010 $0.789900 - 87.7300000$ 1010 $0.782000 - 87.7900000$ 10	9	⊥ 2	1.0130000 -87.2000000
94 $0.9244000 - 86.9800000$ 95 $0.8877000 - 86.7700000$ 96 $0.8541000 - 87.2100000$ 97 $0.8191000 - 87.2100000$ 98 $0.7840000 - 87.4500000$ 99 $0.7502000 - 87.6200000$ 910 $0.7180000 - 87.7300000$ 911 $0.6874000 - 87.7300000$ 912 $0.6579000 - 87.8000000$ 913 $0.6290000 - 87.7400000$ 914 $0.5994000 - 87.5400000$ 915 $0.5676000 - 87.200000$ 916 $0.5367000 - 83.6300000$ 917 $0.5113000 - 84.8900000$ 918 $0.4794000 - 84.6200000$ 919 $0.4350000 - 83.6300000$ 920 $0.3824000 - 81.1800000$ 921 $0.3220000 - 76.8200000$ 922 $0.2533000 - 69.4200000$ 923 $0.1775000 - 56.1000000$ 924 $5.618000e-02$ 925 $8.082000e-03 - 72.400000$ 926 $2.057000e-04 - 38.620000$ 101 $1.1800000 - 87.2200000$ 102 $1.210000 - 87.2200000$ 103 $1.0660000 - 87.2200000$ 104 $1.0170000 - 86.9800000$ 104 $0.9396000 - 86.7700000$ 105 $0.9396000 - 87.4500000$ 106 $0.9396000 - 87.7400000$ 1010 $0.7899000 - 87.7300000$ 1010 $0.7238000 - 87.800000$ 1011 0.7	9	3	0.9693000 -87.2200000
96 $0.8541000 - 86.9300000$ 96 $0.8541000 - 87.2100000$ 98 $0.7840000 - 87.4500000$ 99 $0.7502000 - 87.6200000$ 910 $0.7180000 - 87.7300000$ 911 $0.6874000 - 87.7300000$ 912 $0.6579000 - 87.7300000$ 912 $0.6579000 - 87.7400000$ 913 $0.6290000 - 87.7400000$ 914 $0.5994000 - 87.5400000$ 915 $0.5676000 - 87.0200000$ 916 $0.5367000 - 85.8900000$ 917 $0.5113000 - 84.8900000$ 918 $0.4794000 - 84.6200000$ 918 $0.4794000 - 84.6200000$ 910 $0.3220000 - 76.8200000$ 920 $0.3220000 - 76.8200000$ 921 $0.3220000 - 76.8200000$ 922 $0.2533000 - 69.4200000$ 923 $0.1775000 - 56.10000000$ 924 $5.6180000e - 02 21.2200000$ 925 $8.082000e - 03 - 72.4000000$ 926 $2.057000e - 04 - 38.6200000$ 101 $1.1800000 - 87.2200000$ 102 $1.210000 - 86.9800000$ 102 $0.9765000 - 86.9300000$ 103 $0.8624000 - 87.4500000$ 104 $0.7738000 - 87.7300000$ 1010 $0.7899000 - 87.7300000$ 1011 $0.7562000 - 87.7900000$ 1012 $0.7238000 - 87.800000$ 1013 $0.6920000 - 87.7400000$	9 0	4	0.9244000 -86.9800000
9 7 0.8191000 -87.2100000 9 8 0.7840000 -87.4500000 9 9 0.7502000 -87.6200000 9 10 0.7180000 -87.7300000 9 11 0.6874000 -87.7300000 9 12 0.6579000 -87.800000 9 12 0.6579000 -87.7400000 9 13 0.6290000 -87.7400000 9 14 0.5994000 -87.5400000 9 15 0.5676000 -87.5400000 9 15 0.5676000 -87.0200000 9 16 0.5367000 -85.8900000 9 17 0.5113000 -84.8900000 9 18 0.4794000 -84.6200000 9 20 0.3824000 -81.1800000 9 21 0.3220000 -76.8200000 9 22 0.2533000 -69.4200000 9 23 0.1775000 -56.1000000 9 24 5.6180000e-02 21.2200000 9<	9	6	0.8541000 -86.9300000
9 8 0.7840000 -87.4500000 9 9 0.7502000 -87.6200000 9 10 0.7180000 -87.7300000 9 11 0.6874000 -87.7900000 9 12 0.6579000 -87.7400000 9 13 0.6290000 -87.7400000 9 14 0.5994000 -87.5400000 9 15 0.5676000 -87.0200000 9 16 0.5367000 -85.8900000 9 17 0.5113000 -84.6200000 9 18 0.4794000 -84.6200000 9 19 0.4350000 -83.630000 9 20 0.3824000 -81.1800000 9 21 0.322000 -76.8200000 9 23 0.1775000 -56.1000000 9 24 5.618000e-02 21.2200000 9 25 8.082000e-03 -72.400000 10 1 1.180000 87.200000 10 1 1.180000 87.200000 10 1 1.180000 87.200000 10 1 1.180000 87.200000 10 1 0.6920	9	7	0.8191000 -87.2100000
910 $0.7180000 - 87.7300000$ 911 $0.6874000 - 87.7900000$ 912 $0.6579000 - 87.8000000$ 913 $0.6290000 - 87.7400000$ 914 $0.5994000 - 87.7400000$ 915 $0.5676000 - 87.0200000$ 916 $0.5367000 - 85.8900000$ 917 $0.5113000 - 84.8900000$ 918 $0.4794000 - 84.6200000$ 919 $0.4350000 - 83.6300000$ 920 $0.3824000 - 81.1800000$ 921 $0.3220000 - 76.8200000$ 922 $0.2533000 - 69.4200000$ 923 $0.1775000 - 56.1000000$ 924 $5.618000e-02 21.2200000$ 925 $8.082000e-03 - 72.4000000$ 926 $2.0570000e-04 - 38.6200000$ 101 $1.1800000 - 87.2200000$ 103 $1.0660000 - 87.2200000$ 104 $1.0170000 - 86.9800000$ 105 $0.9765000 - 86.7700000$ 108 $0.8624000 - 87.4500000$ 109 $0.8252000 - 87.4500000$ 1010 $0.7899000 - 87.7300000$ 1011 $0.7562000 - 87.7900000$ 1012 $0.7238000 - 87.8000000$	9 9	8 9	0.7840000 - 87.4500000 0.7502000 - 87.6200000
9 11 0.6874000 -87.7900000 9 12 0.6579000 -87.8000000 9 13 0.6290000 -87.7400000 9 14 0.5994000 -87.5400000 9 14 0.5994000 -87.5400000 9 15 0.5676000 -87.0200000 9 16 0.5367000 -85.8900000 9 17 0.5113000 -84.8900000 9 18 0.4794000 -84.6200000 9 19 0.4350000 -83.6300000 9 20 0.3824000 -81.1800000 9 21 0.3220000 -76.8200000 9 22 0.2533000 -69.4200000 9 23 0.1775000 -56.1000000 9 25 8.0820000e-03 -72.4000000 9 26 2.0570000e-04 -38.6200000 10 1 1.800000 -87.2200000 10 1 1.0660000 -87.2200000 10 2 1.210000 -86.9800000	9	10	0.7180000 -87.7300000
913 $0.6290000 - 87.7400000$ 914 $0.5994000 - 87.7400000$ 915 $0.5676000 - 87.0200000$ 915 $0.5676000 - 87.0200000$ 916 $0.5367000 - 85.8900000$ 917 $0.5113000 - 84.8900000$ 917 $0.5113000 - 84.8900000$ 918 $0.4794000 - 84.6200000$ 919 $0.4350000 - 83.6300000$ 920 $0.3824000 - 81.1800000$ 921 $0.3220000 - 76.8200000$ 922 $0.2533000 - 69.4200000$ 923 $0.1775000 - 56.1000000$ 924 $5.6180000e - 02 - 21.2200000$ 925 $8.082000e - 03 - 72.4000000$ 926 $2.057000e - 04 - 38.6200000$ 101 $1.1800000 - 87.2800000$ 102 $1.1210000 - 87.2800000$ 103 $1.0660000 - 87.2200000$ 104 $1.0170000 - 86.9300000$ 105 $0.9765000 - 86.7700000$ 106 $0.9396000 - 87.4500000$ 108 $0.8624000 - 87.4500000$ 109 $0.8252000 - 87.7300000$ 1011 $0.7562000 - 87.7300000$ 1012 $0.7238000 - 87.8000000$ 1012 $0.7238000 - 87.7400000$	9 9	11 12	0.6874000 -87.7900000
9 14 0.5994000 -87.5400000 9 15 0.5676000 -87.0200000 9 16 0.5367000 -85.8900000 9 17 0.5113000 -84.8900000 9 18 0.4794000 -84.6200000 9 19 0.4350000 -83.630000 9 19 0.3220000 -76.8200000 9 20 0.3220000 -76.8200000 9 21 0.3220000 -69.4200000 9 23 0.1775000 -56.1000000 9 24 5.6180000e-02 21.2200000 9 25 8.082000e-03 -72.4000000 9 26 2.0570000e-04 -38.6200000 10 1 1.1800000 -87.2200000 10 1 1.1800000 -87.2200000 10 2 1.2110000 -86.9800000 10 3 1.0660000 -87.2100000 10 5 0.9765000 -86.770000	9	13	0.6290000 -87.7400000
9 15 0.5570000 -87.020000 9 16 0.5367000 -87.020000 9 17 0.5113000 -84.8900000 9 17 0.5113000 -84.8900000 9 19 0.4350000 -83.630000 9 19 0.4350000 -83.630000 9 20 0.3824000 -81.1800000 9 20 0.3220000 -76.8200000 9 21 0.3220000 -69.4200000 9 23 0.1775000 -56.1000000 9 23 0.1775000 -56.1000000 9 24 5.6180000e-02 21.2200000 9 25 8.082000e-03 -72.400000 9 26 2.0570000e-04 -38.6200000 10 1 1.1800000 -87.2200000 10 1 1.1800000 -87.2200000 10 2 1.210000 -87.2200000 10 3 1.0660000 -87.2200000 10 4 1.0170000 -86.9300000 <	9	14	0.5994000 -87.5400000
917 $0.5113000 - 84.890000$ 918 $0.4794000 - 84.620000$ 919 $0.4350000 - 83.630000$ 920 $0.3824000 - 81.180000$ 921 $0.3220000 - 76.8200000$ 922 $0.2533000 - 69.4200000$ 923 $0.1775000 - 56.1000000$ 924 $5.6180000e-02 21.2200000$ 925 $8.0820000e-03 - 72.4000000$ 926 $2.0570000e-04 - 38.6200000$ 101 $1.180000 - 87.2800000$ 102 $1.026000 - 86.9800000$ 103 $1.066000 - 87.2200000$ 104 $1.017000 - 86.9300000$ 105 $0.9765000 - 86.9300000$ 106 $0.9396000 - 87.4500000$ 108 $0.8624000 - 87.4500000$ 109 $0.8252000 - 87.6200000$ 1010 $0.7789000 - 87.7300000$ 1011 $0.7562000 - 87.7900000$ 1012 $0.7238000 - 87.7400000$	9	15 16	0.5367000 -85.8900000
9 18 0.4794000 -84.620000 9 19 0.4350000 -83.630000 9 20 0.3824000 -81.1800000 9 21 0.3220000 -76.8200000 9 21 0.3220000 -76.8200000 9 22 0.2533000 -69.4200000 9 23 0.1775000 -56.1000000 9 24 5.6180000e-02 21.2200000 9 25 8.0820000e-03 -72.4000000 9 26 2.0570000e-04 -38.6200000 10 1 1.180000 -87.200000 10 2 1.1210000 -87.2800000 10 3 1.0660000 -87.2200000 10 4 1.0170000 -86.9800000 10 5 0.9765000 -86.7700000 10 6 0.9396000 -87.2100000 10 7 0.9010000 -87.2100000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.7300000 10 10 0.7899000 -87.7300000 10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.8000000 10<	9	17	0.5113000 -84.8900000
9 20 0.3824000 -81.1800000 9 21 0.3220000 -76.8200000 9 22 0.2533000 -69.4200000 9 23 0.1775000 -56.1000000 9 23 0.1775000 -56.1000000 9 24 5.618000e-02 21.2200000 9 25 8.082000e-03 -72.4000000 9 26 2.057000e-04 -38.6200000 10 1 1.1800000 -87.2800000 10 2 1.1210000 -87.2800000 10 3 1.0660000 -87.2200000 10 3 1.066000 -87.2100000 10 4 .017000 -86.980000 10 5 0.9765000 -86.7700000 10 6 0.9396000 -87.2100000 10 7 0.9010000 -87.4500000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.7300000 <td>9 9</td> <td>18 19</td> <td>0.4794000 - 84.6200000 0.4350000 - 83.6300000</td>	9 9	18 19	0.4794000 - 84.6200000 0.4350000 - 83.6300000
9 21 0.3220000 -76.8200000 9 22 0.2533000 -69.4200000 9 23 0.1775000 -56.1000000 9 24 5.6180000e-02 21.2200000 9 25 8.0820000e-03 -72.4000000 9 26 2.0570000e-04 -38.6200000 10 1 1.1800000 -87.200000 10 2 1.121000 -87.2200000 10 3 1.0660000 -86.9800000 10 4 1.0170000 -86.9800000 10 5 0.9765000 -86.7700000 10 6 0.9396000 -87.2100000 10 7 0.9010000 -87.4500000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.7300000 10 10 0.7899000 -87.7300000 10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.800000 10 13 0.692000 -87.7400000	9	20	0.3824000 -81.1800000
9 22 0.233000 -03.420000 9 23 0.1775000 -56.1000000 9 24 5.618000e-02 21.2200000 9 25 8.082000e-03 -72.4000000 9 26 2.057000e-04 -38.6200000 10 1 1.180000 -87.2800000 10 2 1.1210000 -87.2200000 10 3 1.0660000 -87.2200000 10 4 1.0170000 -86.980000 10 5 0.9765000 -86.7700000 10 6 0.9396000 -87.2100000 10 7 0.9010000 -87.4500000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.6200000 10 10 0.7789000 -87.7300000 10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.800000 10 12 0.7238000 -87.7400000	9	21	0.3220000 - 76.8200000
9 24 5.6180000e-02 21.2200000 9 25 8.0820000e-03 -72.4000000 9 26 2.0570000e-04 -38.6200000 10 1 1.180000 -87.200000 10 2 1.1210000 -87.2800000 10 3 1.0660000 -87.2200000 10 4 1.0170000 -86.980000 10 5 0.9765000 -86.7700000 10 6 0.9396000 -87.2100000 10 7 0.9010000 -87.2100000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.6200000 10 10 0.7899000 -87.7300000 10 10 0.7562000 -87.7300000 10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.800000 10 13 0.6920000 -87.7400000	9	23	0.1775000 -56.1000000
9 25 8.0820000e-03 -72.4000000 9 26 2.0570000e-03 -72.4000000 10 1 1.1800000 -87.2000000 10 2 1.1210000 -87.2200000 10 2 1.0660000 -87.2200000 10 3 1.0660000 -86.9800000 10 4 1.0170000 -86.9800000 10 5 0.9765000 -86.7700000 10 6 0.9396000 -86.9300000 10 7 0.9010000 -87.2100000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.76200000 10 10 0.7899000 -87.7300000 10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.8000000 10 13 0.692000 -87.7400000	9	24	5.6180000e-02 21.2200000
10 1 1.1800000 -87.2000000 10 2 1.1210000 -87.2800000 10 3 1.0660000 -87.2200000 10 3 1.0660000 -87.2200000 10 4 1.0170000 -86.9800000 10 5 0.9765000 -86.7700000 10 6 0.9396000 -87.2100000 10 7 0.9010000 -87.2100000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.6200000 10 10 0.7899000 -87.7300000 10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.8000000 10 12 0.692000 -87.7400000	9 9	25 26	2.0570000e-04 -38.6200000
10 2 1.1210000 -87.2800000 10 3 1.0660000 -87.2200000 10 4 1.0170000 -86.9800000 10 5 0.9765000 -86.7700000 10 6 0.9396000 -87.2100000 10 7 0.9010000 -87.2100000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.6200000 10 10 0.7899000 -87.7300000 10 11 0.7562000 -87.800000 10 12 0.7238000 -87.800000 10 13 0.692000 -87.7400000	10	1	1.1800000 -87.2000000
10 4 1.0170000 -86.9800000 10 5 0.9765000 -86.7700000 10 6 0.9396000 -86.9300000 10 7 0.9010000 -87.2100000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.6200000 10 10 0.7899000 -87.7300000 10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.7400000 10 13 0.692000 -87.7400000	10 10	2 3	1.1210000 - 87.2800000 1.0660000 - 87.2200000
10 5 0.9765000 -86.7700000 10 6 0.9396000 -86.9300000 10 7 0.9010000 -87.2100000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.6200000 10 10 0.7899000 -87.7300000 10 11 0.7562000 -87.800000 10 12 0.7238000 -87.7400000 10 13 0.692000 -87.7400000	10	4	1.0170000 -86.9800000
10 7 0.9390000 -88.930000 10 7 0.9010000 -87.2100000 10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.6200000 10 10 0.7899000 -87.7300000 10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.7400000 10 13 0.6920000 -87.7400000	10	5 6	0.9765000 -86.7700000
10 8 0.8624000 -87.4500000 10 9 0.8252000 -87.6200000 10 10 0.7899000 -87.7300000 10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.8000000 10 13 0.6920000 -87.7400000	10	0 7	0.9010000 -80.9300000
10 9 0.8252000 -87.620000 10 10 0.7899000 -87.7300000 10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.8000000 10 13 0.692000 -87.7400000	10	8	0.8624000 -87.4500000
10 11 0.7562000 -87.7900000 10 12 0.7238000 -87.8000000 10 13 0.6920000 -87.7400000	10 10	9 10	0.8252000 -87.6200000 0.7899000 -87.7300000
10 12 0.7238000 -87.8000000 10 13 0.6920000 -87.7400000	10	11	0.7562000 -87.7900000
	10 10	12 13	0.7238000 -87.8000000 0.6920000 -87.7400000

10	14	0.6594000 -87.5400000
10	15	0.6244000 -87.0200000
10	15 17	0.5904000 - 85.8900000
10	18	0.5273000 -84.620000
10	19	0.4785000 -83.6300000
10	20	0.4207000 -81.1800000
10	21	0.3543000 -76.8100000
10	22	0.2786000 -69.4200000
10	23	0.1953000 -56.1000000
10	24	6.1810000e-02 21.2200000 8 8010000c 03 72 4000000
10	25 26	2 2620000e - 04 - 38 6200000
11	1	1.2780000 -87.2000000
11	2	1.2150000 -87.2800000
11	3	1.1550000 -87.2200000
11	4	1.1020000 -86.9800000
11	5	1.0580000 -86.7700000
11	6	1.0180000 -86.9300000
⊥⊥ 11	8	0.9761000 -87.2100000
11	9	0.8940000 - 87.6200000
11	10	0.8557000 -87.7300000
11	11	0.8192000 -87.7900000
11	12	0.7841000 -87.8000000
11	13	0.7497000 -87.7400000
11	14	0.7144000 - 87.5400000
⊥⊥ 11	15 16	0.6765000 -87.0200000
11	17	0.6094000 -84.8900000
11	18	0.5713000 -84.6200000
11	19	0.5184000 -83.6300000
11	20	0.4558000 -81.1800000
11	21	0.3838000 -76.8100000
⊥⊥ 11	22	0.3019000 - 69.4200000
11	23	6.6960000 = 38.1000000
11	25	9.6320000e-03 -72.4000000
11	26	2.4510000e-04 -38.6200000
12	1	1.3670000 -87.2000000
12	2	1.2990000 -87.2800000
12	3	1.2350000 -87.2200000
⊥∠ 12	4	1.1780000 - 86.9800000
12	6	1.0880000 -86.9300000
12	7	1.0440000 -87.2100000
12	8	0.9991000 -87.4500000
12	9	0.9560000 -87.6200000
12	10	0.9150000 -87.7300000
12		0.8760000 -87.7900000
⊥∠ 12	13	0.8385000 - 87.8000000 0.8016000 - 87.7400000
12	14	0.7639000 -87.5400000
12	15	0.7234000 -87.0200000
12	16	0.6840000 -85.8900000
12	17	0.6516000 -84.8900000
12	18	0.6109000 -84.6200000
12 12	20	0.5544000 - 83.6300000 0.4874000 - 81 1800000
12	21	0.4104000 -76.8100000
12	22	0.3228000 -69.4200000
12	23	0.2263000 -56.1000000
12	24	7.1600000e-02 21.2200000
12	25	1.030000e - 02 - 72.4000000
⊥∠ 1 २	⊿b 1	2.02100000-04 -38.6200000 1 4450000 -87 2000000
13 13	⊥ 2	1.3740000 -87.2800000
13	3	1.3060000 -87.2200000
13	4	1.2450000 -86.9800000
13	5	1.1960000 -86.7700000
13	6	1.1510000 -86.9300000
13 12	./	1.1040000 -87.2100000
⊥3 13	0 9	1.0110000 -87.4500000
	-	

13	10	0.9674000 -87.7300000
13	11	0.9261000 -87.7900000
⊥3 13	13	0.8884000 - 87.8000000 0.8475000 - 87.7400000
13	14	0.8076000 -87.5400000
13	15	0.7648000 -87.0200000
13	16	0.7231000 -85.8900000
13	17	0.6889000 -84.8900000
13	19	0.5861000 - 83.6300000
13	20	0.5153000 -81.1800000
13	21	0.4339000 -76.8100000
13	22	0.3413000 -69.4200000
⊥3 12	23	0.2392000 - 56.1000000
13	24	1.0890000e-02 -72.4000000
13	26	2.7710000e-04 -38.6200000
14	1	1.5120000 -87.2000000
14	2	1.4370000 -87.2800000
14 14	3	1 3030000 -86 9800000
14	5	1.2520000 -86.7700000
14	6	1.2040000 -86.9300000
14	7	1.1550000 -87.2100000
14	8	1.1050000 -87.4500000
14 14	9 10	1.0380000 - 87.6200000 1.0120000 - 87.7300000
14	11	0.9692000 -87.7900000
14	12	0.9277000 -87.8000000
14	13	0.8869000 -87.7400000
⊥4 14	14 15	0.8452000 - 87.5400000
14^{-14}	16	0.7567000 -85.8900000
14	17	0.7210000 -84.8900000
14	18	0.6759000 -84.6200000
14	19	0.6133000 -83.6300000
14 14	20 21	0.5392000 - 81.1800000 0 4541000 - 76 8100000
14	22	0.3571000 -69.4200000
14	23	0.2503000 -56.1000000
14	24	7.9220000e-02 21.2200000
14 14	25	1.1400000e - 02 - 72.4000000
15	20	1.5680000 -87.2000000
15	2	1.4900000 -87.2800000
15	3	1.4170000 -87.2200000
15	4	1.3510000 -86.9800000
15	5	1,2490000 -86,930000
15	7	1.1970000 -87.2100000
15	8	1.1460000 -87.4500000
15	9	1.0970000 -87.6200000
15 15	11	1.050000 - 87.7300000
15	12	0.9618000 -87.8000000
15	13	0.9196000 -87.7400000
15	14	0.8763000 -87.5400000
15 15	15 16	0.8298000 -87.0200000
15	17	0.7475000 -84.8900000
15	18	0.7008000 -84.6200000
15	19	0.6359000 -83.6300000
15	20	0.5591000 -81.1800000
15 15	⊿⊥ 22	0.3703000 -69.4200000
15	23	0.2596000 -56.1000000
15	24	8.2140000e-02 21.2200000
15 15	25	1.1820000e-02 -72.4000000
16	∠o 1	1.6120000 -87 2000000
16	2	1.5320000 -87.2800000
16	3	1.4570000 -87.2200000
16	4	1.3890000 -86.9800000
16	5	1.3340000 -86.7700000

16 16	6 7	1.2830000 -86.9300000 1.2310000 -87.2100000
16 16	8 9	1.1780000 -87.4500000 1.1270000 -87.6200000
16	10	1.0790000 -87.7300000
16 16	11 12	0.9887000 -87.8000000
16	13	0.9453000 -87.7400000
16 16	14 15	0.8530000 -87.0200000
16 16	16	0.8065000 -85.8900000
16 16	18	0.7204000 -84.6200000
16 16	19 20	0.6537000 -83.6300000
16	20 21	0.4839000 -76.8100000
16 16	22 23	0.3806000 - 69.4200000 0.2668000 - 56.1000000
16	24	8.4430000e-02 21.2200000
16 16	25 26	1.2150000e-02 -72.4000000
17	1	1.6430000 -87.2000000
17 17	2 3	1.5620000 -87.2800000 1.4850000 -87.2200000
17	4	1.4160000 -86.9800000
17 17	5 6	1.3600000 -86.7700000 1.3090000 -86.9300000
17	7	1.2550000 -87.2100000
17 17	8 9	1.2010000 - 87.4500000 1.1490000 - 87.6200000
17	10	1.1000000 -87.7300000
17 17	11 12	1.0080000 -87.8000000
17 17	13	0.9638000 -87.7400000
17 17	15	0.8697000 -87.0200000
17 17	16 17	0.8223000 - 85.8900000 0.7834000 - 84.8900000
17	18	0.7344000 -84.6200000
17 17	19 20	0.6665000 -83.6300000
17	21	0.4934000 -76.8100000
17 17	22 23	0.3881000 -69.4200000 0.2720000 -56.1000000
17	24	8.6080000e-02 21.2200000
17 17	25 26	1.2380000e-02 - 72.4000000 3.1510000e-04 - 38.6200000
18	1	1.6620000 -87.2000000
18 18	2 3	1.5020000 -87.2200000
18	4 F	1.4330000 -86.9800000
18	6	1.3240000 -86.9300000
18 18	7 8	1.2690000 - 87.2100000 1 2150000 - 87 4500000
18	9	1.1630000 -87.6200000
18 18	10 11	1.1130000 - 87.7300000 1.0650000 - 87.7900000
18	12	1.0200000 -87.8000000
18 18	13 14	0.9749000 - 87.7400000 0.9290000 - 87.5400000
18	15	0.8797000 -87.0200000
18 18	16 17	0.7925000 -84.8900000
18	18	0.7429000 -84.6200000
18	20	0.5927000 -81.1800000
18 18	21 22	0.4991000 -76.8100000 0.3926000 -69 4200000
18	23	0.2752000 -56.1000000
18 18	24 25	8.7080000e-02 21.2200000 1.2530000e-02 -72.4000000
18	26	3.1870000e-04 -38.620000
19	1	1.6690000 -87.2000000

<pre>19 2 1.5800000 -87.2200000 19 3 1.500000 -87.220000 19 4 1.4380000 -86.770000 19 5 1.3810000 -86.770000 19 6 1.3290000 -87.450000 19 7 1.2740000 -87.620000 19 8 1.2200000 -87.620000 19 10 1.1170000 -87.7300000 19 11 1.0690000 -87.7900000 19 12 1.0240000 -87.740000 19 14 0.9325000 -87.740000 19 15 0.8831000 -87.020000 19 16 0.8350000 -87.640000 19 17 0.7955000 -84.890000 19 18 0.7458000 -81.800000 19 19 0.6767000 -81.800000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.810000 19 23 0.2762000 -56.100000 19 24 8.741000e-02 21.220000 19 25 1.257000e-04 -38.6200000 19 26 3.199000e-04 -38.620000 19 27 1.027000 -61.90000 19 21 1.028000 -0.190000 19 21 1.028000 -0.190000 19 21 1.028000 -0.190000 19 21 1.028000 -0.190000 19 21 1.028000 -0.220000 19 25 1.057000-0.260000 19 26 3.1990000e-04 -38.6200000 19 11 1.028000 -0.3300000 1 3 1.035000 -0.280000 1 4 1.040000 -0.3300000 1 5 1.064000 -0.4700000 1 5 1.046000 -0.4700000 1 6 1.0540000 -0.4700000 1 7 1.064000 -0.4700000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.9400000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.150000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.120000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1.155000 -1.280000 1 1 1 1 1.155000 -1.280000 1 1 1 1 1.155000 -1.280000 1 1 1 1 1.1550000 -1.280000 1 1 1 1 1.1550000 -1.280000 1 1 1 1 1.155000 -1.280000 1 1 1 1 1.1550000 -1.280000 1 1 1 1 1.1550000 -1.280000 1 1 1 1 1.1550000 -1.280000 1 1 1 1 1.1550000 -1.2800000 1 1 1 1 1.1550000 -3.160000 1 1 1 1 1.1550000 -3.160000 1 1 1 1 1.200000 -3.1600000 1 1 1 1 1200000 -3.1600000 1 1 1 12 1.200000 -3.1600000</pre>	
<pre>19 3 1.508000 -87.220000 19 4 1.4380000 -86.980000 19 5 1.3810000 -86.930000 19 6 1.329000 -86.930000 19 7 1.2740000 -87.210000 19 8 1.2200000 -87.450000 19 9 1.670000 -87.730000 19 10 1.1170000 -87.730000 19 11 1.0240000 -87.7400000 19 12 1.0240000 -87.840000 19 13 0.9786000 -87.7400000 19 14 0.9325000 -87.540000 19 15 0.8831000 -87.020000 19 16 0.8350000 -88.890000 19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.620000 19 19 0.6767000 -83.630000 19 20 0.595000 -81.180000 19 21 0.501000 -76.8100000 19 21 0.501000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.100000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.620000 19 27 1.0280000 -0.2200000 1 2 1.0310000 -0.2200000 1 4 1.0400000 -0.300000 1 5 1.0460000 -0.4700000 1 4 1.0400000 -0.300000 1 5 1.0460000 -0.4700000 1 5 1.0460000 -0.4700000 1 6 1.05400000 1 9 1.0280000 -0.4700000 1 1 1.1550000 -1.2800000 1 1 1.1550000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.208</pre>	
<pre>19 4 1.4380000 -86.9800000 19 5 1.320000 -86.930000 19 6 1.3290000 -87.450000 19 7 1.2740000 -87.450000 19 8 1.2200000 -87.450000 19 10 1.1170000 -87.730000 19 10 1.1170000 -87.790000 19 11 1.0690000 -87.790000 19 12 1.0240000 -87.800000 19 14 0.9325000 -87.400000 19 15 0.8831000 -87.020000 19 15 0.8831000 -87.020000 19 16 0.8350000 -84.890000 19 17 0.7955000 -84.890000 19 18 0.7458000 -84.620000 19 19 0.6767000 -83.630000 19 20 0.5950000 -81.180000 19 21 0.5010000 -76.810000 19 23 0.2762000 -56.1000000 19 24 8.741000e-02 21.220000 19 25 1.2570000e-02 -72.400000 19 26 3.1990000e-04 -38.620000 19 26 3.1990000e-04 -38.620000 19 21 0.3050000 -0.220000 11 1 0.0350000 -0.220000 12 3 1.0350000 -0.220000 13 3 1.0350000 -0.220000 14 4 1.0400000 -0.330000 15 1.0460000 -0.4700000 16 4 1.0400000 -0.4700000 17 1 0.540000 18 8 1.0770000 -0.540000 19 10 1.1200000 -1.940000 11 11 1.1550000 -1.940000 12 1 0.510000 -1.940000 13 10 1.2200000 -1.940000 14 1.0280000 -0.900000 15 1.0280000 -0.900000 16 1 11 1.1550000 -1.9400000 17 12 1.2280000 -1.9400000 18 10 1.2080000 -0.900000 19 12 1.2280000 -0.900000 10 12 1.2280000 -0.900000 10 12 1.2280000 -0.900000 10 12 1.2280000 -0.900000 10 12 1.2280000 -0.900000 10 10 1.22800000 10 10 1.2280000 10 10 1.22800000 10 10 1.22800000 10 10 1.228000</pre>	
<pre>19 5 1.3810000 -86.7700000 19 6 1.3290000 -86.930000 19 7 1.2740000 -87.210000 19 8 1.2200000 -87.450000 19 9 1.1670000 -87.7300000 19 10 1.1170000 -87.7300000 19 11 1.0690000 -87.7900000 19 12 1.0240000 -87.800000 19 13 0.9786000 -87.5400000 19 14 0.9325000 -87.5400000 19 15 0.8831000 -87.900000 19 16 0.8350000 -84.8900000 19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.6200000 19 19 0.6767000 -83.6300000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.100000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 19 26 3.1990000e-04 -38.6200000 1 1 1.0280000 -0.1900000 1 3 1.0350000 -0.260000 1 4 1.040000 -0.3300000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.4700000 1 1 1.11550000 -1.980000 1 1 1.1550000 -1.9800000 1 1 11.1550000 -1.9800000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 12 1.2080000 -3.1600000 1 1 12 1.2080000 -3.16000</pre>	
<pre>19 6 1.3290000 -86.9300000 19 7 1.2740000 -87.2100000 19 8 1.2200000 -87.4500000 19 9 1.1670000 -87.620000 19 10 1.1170000 -87.7300000 19 11 1.0690000 -87.7900000 19 11 1.0690000 -87.7400000 19 12 1.0240000 -87.5400000 19 14 0.9325000 -87.5400000 19 15 0.8831000 -87.0200000 19 16 0.8350000 -85.8900000 19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.6200000 19 19 0.6767000 -83.6300000 19 20 0.5950000 -81.1800000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.199000e-04 -38.620000 19 26 3.199000e-04 -38.620000 19 26 1.030000 -0.1900000 1 2 1.0310000 -0.200000 1 3 1.0350000 -0.1900000 1 4 1.0400000 -0.3300000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.4700000 1 8 1.0770000 -0.6700000 1 9 1.0310000 -0.5900000 1 1 1.1550000 -1.2800000 1 2 1.2280000 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 2 1.2080000 -3.1600000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 2 1.2080000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1.1550000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1 1 1 1.1550000 -1.9400000 1 1</pre>	
<pre>19 7 1.2740000 -87.2100000 19 8 1.2200000 -87.4500000 19 9 1.1670000 -87.6200000 19 10 1.1170000 -87.7300000 19 11 1.0690000 -87.7900000 19 12 1.0240000 -87.7400000 19 13 0.9786000 -87.7400000 19 14 0.9325000 -87.7400000 19 15 0.8831000 -87.0200000 19 16 0.8350000 -87.0200000 19 17 0.7955000 -84.8900000 19 17 0.7955000 -84.6200000 19 19 0.6767000 -83.6300000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 19 26 3.1990000e-04 -38.6200000 14 1 0.0280000 -0.1900000 15 2 1.0310000 -0.2200000 16 1 1 0.0310000 -0.2200000 17</pre>	
<pre>19 / 1.2740000 -87.2100000 19 8 1.220000 -87.4500000 19 9 1.1670000 -87.6200000 19 10 1.1170000 -87.7300000 19 11 1.0690000 -87.7900000 19 12 1.0240000 -87.7400000 19 12 0.9786000 -87.7400000 19 14 0.9325000 -87.5400000 19 15 0.8831000 -87.0200000 19 16 0.8350000 -84.8900000 19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.6200000 19 19 0.6767000 -83.6300000 19 20 0.5950000 -81.1800000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 21.2200000 19 24 8.7410000e-02 -72.4000000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 19 26 3.1990000e-04 -38.6200000 1 2 1.0310000 -0.2200000 1 3 1.0350000 -0.2600000 1 4 1.0400000 -0.3300000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.4700000 1 8 1.0770000 -0.6700000 1 1 1.1200000 -1.2800000 1 2 1.2080000 -1.9400000 1 12 1.2080000 -1.9400000</pre>	
<pre>19 8 1.220000 -87.450000 19 9 1.167000 -87.620000 19 10 1.117000 -87.730000 19 11 1.0690000 -87.790000 19 12 1.024000 -87.800000 19 13 0.978600 -87.740000 19 14 0.932500 -87.740000 19 15 0.8831000 -87.020000 19 16 0.835000 -85.890000 19 17 0.7955000 -84.890000 19 18 0.7458000 -84.620000 19 19 0.6767000 -83.630000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.810000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.100000 19 24 8.741000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.199000e-04 -38.620000 1 1 0.0280000 -0.190000 1 2 1.0310000 -0.2200000 1 3 1.0350000 -0.260000 1 4 1.040000 -0.330000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4100000 1 7 1.0640000 -0.5400000 1 8 1.0770000 -0.5400000 1 9 1.0280000 -1.2800000 1 1 1 1.1200000 -1.2800000 1 2 1.0310000 -0.2400000 1 2 1.0310000 -0.5400000 1 2 1.0260000 -0.4100000 1 3 1.0350000 -0.4100000 1 4 1.0460000 -0.4100000 1 5 1.0460000 -0.4100000 1 1 1 1.1200000 -1.2800000 1 2 1.0250000 -0.9000000 1 2 1.0250000 -0.9000000 1 3 1.0250000 -0.9000000 1 4 1.040000 -0.5400000 1 5 1.0460000 -0.4100000 1 2 1.0260000 -0.4100000 1 4 1.040000 -0.5400000 1 5 1.0460000 -0.4100000 1 5 1.0460000 -0.4100000 1 2 1.0260000 -0.4100000 1 2 1.0260000 -0.4100000 1 2 1.0260000 -0.4100000 1 2 1.0260000 -0.4100000 1 4 1.040000 -0.5400000 1 5 1.0460000 -0.4100000 1 5 1.0460000 -0.4100000 1 2 1.0260000 -0.4100000 1 4 1.0260000 -0.4100000 1 5 1.0460000 -0.4100000 1 5 1.0460000 -0.4100000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4100000 1 7 1.0640000 -0.5400000 1 1 1 1.1200000 -1.2800000 1 1 1 1.1200000 -1.2800000 1 1 1 1.12080000 -1.2800000 1 1 1 1.12080000 -1.2800000 1 1 1 1.12080000 -1.2800000 1 1 1 1.12080000 -1.400000 1 1 1 1.12080000000 1 1 1 1 1.2080000 -1.400000 1 1 1 1.12080000 -1.400</pre>	
<pre>19 9 1.1670000 -87.620000 19 10 1.1170000 -87.7300000 19 11 1.0690000 -87.790000 19 12 1.0240000 -87.800000 19 13 0.9786000 -87.7400000 19 14 0.9325000 -87.5400000 19 14 0.9325000 -87.5400000 19 15 0.8831000 -87.8900000 19 16 0.8350000 -84.8900000 19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.6200000 19 19 0.6767000 -83.6300000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 21 0.5010000 -69.4200000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 21.2200000 19 24 8.7410000e-02 -72.4000000 19 25 1.2570000e-04 -38.6200000 '</pre>	
19 10 1.1170000 -87.7300000 19 11 1.0690000 -87.7900000 19 12 1.024000 -87.7400000 19 13 0.9786000 -87.7400000 19 14 0.9325000 -87.5400000 19 14 0.9325000 -87.5400000 19 15 0.8831000 -87.0200000 19 16 0.8350000 -88.8900000 19 16 0.7955000 -84.8900000 19 17 0.7955000 -84.890000 19 18 0.7458000 -84.6200000 19 20 0.595000 -81.1800000 19 21 0.5010000 -76.8100000 19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 -72.4000000 19 25 1.257000e-02 -72.4000000 19 26 3.199000e-04 -38.6200000 19 2 1.0310000 -0.2200000 1 1 0.2800000 1	
<pre>19 11 1.0690000 -87.7900000 19 12 1.0240000 -87.800000 19 13 0.9786000 -87.7400000 19 14 0.9325000 -87.5400000 19 15 0.8831000 -87.0200000 19 16 0.8350000 -85.8900000 19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.6200000 19 19 0.6767000 -83.6300000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-04 -38.6200000 19 26 3.1990000e-04 -38.6200000 1 2 1.0310000 -0.2200000 1 3 1.035000 -0.2200000 1 4 1.0400000 -0.300000 1 5 1.0460000 -0.300000 1 6 1.0540000 -0.4100000 1 7 1.0640000 -0.5400000 1 8 1.0770000 -0.6700000 1 9 1.0200000 -1.2800000 1 10 1.1200000 -1.2800000 1 12 1.2080000 -3.1600000</pre>	
<pre>19 11 1.0090000 -87.800000 19 12 1.0240000 -87.800000 19 13 0.9786000 -87.7400000 19 14 0.9325000 -87.5400000 19 15 0.8831000 -87.0200000 19 15 0.8831000 -87.0200000 19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.6200000 19 19 0.6767000 -83.6300000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-04 -38.6200000 19 26 3.1990000e-04 -38.6200000 1</pre>	
19 12 1.0240000 -87.8000000 19 13 0.9786000 -87.7400000 19 14 0.9325000 -87.5400000 19 15 0.8831000 -87.0200000 19 16 0.8350000 -85.8900000 19 16 0.8350000 -84.8900000 19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.6200000 19 19 0.6767000 -83.630000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 21 0.5010000 -69.4200000 19 23 0.2762000 -56.1000000 19 23 0.2762000 -56.1000000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 19 2 1.0310000 -0.2200000 1 1 1.0280000 -0.1900000 1 3 1.0350000 -0.2200000	
19 13 0.9786000 -87.7400000 19 14 0.9325000 -87.5400000 19 15 0.8831000 -87.0200000 19 16 0.8350000 -85.8900000 19 16 0.8350000 -84.890000 19 17 0.7955000 -84.620000 19 18 0.7458000 -84.620000 19 19 0.6767000 -83.630000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 21 0.5010000 -69.4200000 19 23 0.2762000 -56.1000000 19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 -72.4000000 19 25 1.2570000e-02 -72.4000000 19 26 3.199000e-04 -38.6200000 19 1.0280000 -0.1900000 1 1 1.0280000 -0.2600000 1 1 1.031000 -0.2600000 1	
<pre>19 14 0.9325000 -87.5400000 19 15 0.8831000 -87.0200000 19 16 0.8350000 -85.8900000 19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.6200000 19 19 0.6767000 -83.6300000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.1000000 19 24 8.741000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 '</pre>	
<pre>19 15 0.8831000 -87.020000 19 16 0.8350000 -85.890000 19 17 0.7955000 -84.890000 19 18 0.7458000 -84.620000 19 19 0.6767000 -83.630000 19 20 0.5950000 -81.180000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 '</pre>	
19 13 0.8351000 -87.020000 19 16 0.8350000 -85.8900000 19 17 0.7955000 -84.890000 19 18 0.7458000 -84.6200000 19 19 0.6767000 -83.630000 19 20 0.5950000 -81.1800000 19 21 0.501000 -76.8100000 19 21 0.501000 -69.4200000 19 23 0.2762000 -56.1000000 19 23 0.2762000 -56.1000000 19 24 8.741000e-02 21.2200000 19 25 1.257000e-02 -72.4000000 19 26 3.199000e-04 -38.6200000 19 26 3.1990000e-04 -38.6200000 1 1 0.280000 -0.1900000 19 26 3.1990000e -72.4000000 1 1 1.0280000 -0.2600000 1 1 1.0280000 -0.2600000 1 1 1.0310000 -0.2600000 <t< td=""><td></td></t<>	
19 16 0.8350000 -85.8900000 19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.620000 19 19 0.6767000 -83.630000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 21 0.5010000 -69.4200000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.100000 19 24 8.741000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.199000e-04 -38.6200000 19 26 3.1990000e-04 -38.6200000 19 26 3.1990000e-04 -38.6200000 19 26 3.1990000e-04 -38.6200000 1 1 1.0280000 -0.1900000 1 1 1.0310000 -0.2200000 1 1 1.0350000 -0.200000 1 3 1.0350000 -0.3300000 1 3 1.0460000 -0.4700000 1 5 1.0460000 -0.5400000 1 5 1.0950000 -0.9000000	
19 17 0.7955000 -84.8900000 19 18 0.7458000 -84.620000 19 19 0.6767000 -83.630000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 21 0.5010000 -76.100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.100000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 '	
19 18 0.7458000 -84.6200000 19 19 0.6767000 -83.630000 19 20 0.5950000 -81.180000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.1000000 19 23 0.2762000 -22.1.2200000 19 26 3.199000e-02 -72.4000000 19 26 3.199000e-04 -38.6200000 'HFTRANSFER FUNCTION HEAVE '	
<pre>19 19 0.6767000 -83.6300000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 '</pre>	
19 19 0.0.5950000 -83.050000 19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 'HFTRANSFER FUNCTION HEAVE '.dir ifreq amplitude phase[deg] 1 1 0.280000 -0.1900000 1 2 1.031000 -0.2200000 1 3 1.0350000 -0.2600000 1 3 1.0350000 -0.2600000 1 4 1.0400000 -0.3300000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.540000 1 8 1.0770000 -0.6700000 1 9 1.0950000 -0.9000000 1 1 1.1550000 -1.9400000 1 1 1.50000 -3.1600000	
19 20 0.5950000 -81.1800000 19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.100000 19 24 8.741000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 'HFTRANSFER FUNCTION HEAVE '	
19 21 0.5010000 -76.8100000 19 22 0.3941000 -69.420000 19 23 0.2762000 -56.1000000 19 24 8.741000e-02 21.2200000 19 25 1.257000e-02 -72.4000000 19 26 3.199000e-04 -38.6200000 '	
19 22 0.3941000 -69.4200000 19 23 0.2762000 -56.100000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 '	
<pre>19 23 0.2762000 -56.1000000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 '</pre>	
19 23 0.2702000 -36.100000 19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.199000e-04 -38.6200000 'HFTRANSFER FUNCTION HEAVE '	
19 24 8.7410000e-02 21.2200000 19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 '''''''''''''''''''''''''''''''''''	
<pre>19 25 1.2570000e-02 -72.4000000 19 26 3.1990000e-04 -38.6200000 '</pre>	
19 26 3.1990000e-04 -38.6200000 HFTRANSFER FUNCTION HEAVE 'idir ifreq amplitude phase[deg] 1 1 1.0280000 -0.1900000 1 2 1.0310000 -0.2200000 1 3 1.0350000 -0.2600000 1 4 1.0400000 -0.2600000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.5400000 1 8 1.0770000 -0.6700000 1 9 1.0950000 -0.9000000 1 10 1.1200000 -1.2800000 1 11 .1550000 -3.1600000	
HFTRANSFER FUNCTION HEAVE 'idir ifreq amplitude phase[deg] 1 1 1.0280000 -0.1900000 1 2 1.0310000 -0.2200000 1 3 1.0350000 -0.2600000 1 3 1.0350000 -0.3300000 1 4 1.0400000 -0.3300000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.5400000 1 8 1.0770000 -0.6700000 1 9 1.0950000 -0.12800000 1 10 1.1200000 -1.2800000 1 1 1.550000 -1.9400000 1 1 1.2080000 -3.1600000	
HFTRANSFER FUNCTION HEAVE ' idir ifreq amplitude phase[deg] 1 1 1.0280000 -0.1900000 1 2 1.0310000 -0.2200000 1 3 1.0350000 -0.2600000 1 4 1.0400000 -0.3300000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.5400000 1 8 1.0770000 -0.6700000 1 9 1.09500000 -0.9000000 1 10 1.1200000 -1.2800000 1 11 1.1550000 -3.1600000	
HFTRANSFER FUNCTION HEAVE 'idir ifreq amplitude phase[deg] 1 1.0280000 -0.1900000 1 2 1.0310000 -0.2200000 1 3 1.0350000 -0.2600000 1 4 1.0460000 -0.3300000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.540000 1 8 1.0770000 -0.6700000 1 9 1.0950000 -0.9000000 1 1.1200000 -1.2800000 1 1.1550000 -1.9400000 1 12 1.2080000 -3.1600000	
<pre>'' 'idir ifreq amplitude phase[deg] 1 1 1 1.0280000 -0.1900000 1 2 1.0310000 -0.2200000 1 3 1.0350000 -0.2600000 1 4 1.0400000 -0.2600000 1 4 1.0400000 -0.4100000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.5400000 1 7 1.0640000 -0.6700000 1 8 1.0770000 -0.6700000 1 9 1.0950000 -0.9000000 1 10 1.1200000 -1.2800000 1 11 1.1550000 -1.9400000 1 12 1.2080000 -3.1600000</pre>	
<pre>'idir ifreq amplitude phase[deg] 1</pre>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 4 1.0400000 -0.3300000 1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.5400000 1 8 1.0770000 -0.6700000 1 9 1.0950000 -0.9000000 1 10 1.1200000 -1.2800000 1 11 1.550000 -1.9400000 1 12 1.2080000 -3.1600000	
1 5 1.0460000 -0.4100000 1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.540000 1 8 1.0770000 -0.6700000 1 9 1.0950000 -0.9000000 1 10 1.1200000 -1.2800000 1 11 1.1550000 -1.9400000 1 12 1.2080000 -3.1600000	
1 6 1.0540000 -0.4700000 1 7 1.0640000 -0.5400000 1 8 1.0770000 -0.6700000 1 9 1.0950000 -0.9000000 1 10 1.1200000 -1.2800000 1 11 1.1550000 -1.9400000 1 12 1.2080000 -3.1600000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 7 1.0640000 -0.540000 1 8 1.0770000 -0.6700000 1 9 1.0950000 -0.9000000 1 10 1.1200000 -1.2800000 1 11 1.1550000 -1.9400000 1 12 1.2080000 -3.1600000	
1 8 1.0770000 -0.6700000 1 9 1.0950000 -0.9000000 1 10 1.1200000 -1.2800000 1 11 1.1550000 -1.9400000 1 12 1.2080000 -3.1600000	
1 9 1.0950000 -0.9000000 1 10 1.1200000 -1.2800000 1 11 1.1550000 -1.9400000 1 12 1.2080000 -3.1600000	
1 10 1.1200000 -1.2800000 1 11 1.1550000 -1.9400000 1 12 1.2080000 -3.1600000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 12 1.2080000 -3.1600000	
1 12 1.2080000 -3.1600000	
1 13 1.2880000 -5.6700000	
1 14 1 4050000 -11 2400000	
1 15 1.5180000 -23.540000	
1 16 1.4510000 - 45.0200000	
1 17 1.0860000 -71.2800000	
1 18 0.6098000 -93.1500000	
1 19 0 2757000 -101 3300000	
1 20 0.1050000 -92.9500000	
1 21 2.7140000e-02 -48.7300000	
1 22 3.0030000e-02 61.1300000	
1 23 4.4340000e-02 92.9800000	
$1 24 1 4880000_{-0.2} 172 3600000$	
⊥ ∠5 8.410000e-04 105.8000000	
1 26 1.2320000e-06 173.2600000	
2 1 1.0280000 -0.1900000	
2 2 1 0310000 -0 2200000	
2 4 1.0400000 -0.3300000	
2 5 1.0460000 -0.4100000	
2 6 1.0540000 -0.4700000	
2 7 1 0640000 - 0.5400000	
∠ σ ⊥.U//UUUU -U.6/UUUUU	
2 9 1.0950000 -0.9000000	
2 9 1.0950000 -0.9000000 2 10 1.1200000 -1.2800000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2 9 1.0950000 -0.9000000 2 10 1.1200000 -1.2800000 2 11 1.1550000 -1.9400000 2 12 1.2000000 2 1600000	
2 9 1.0950000 -0.9000000 2 10 1.1200000 -1.2800000 2 11 1.1550000 -1.9400000 2 12 1.2080000 -3.1600000 2 12 1.0000000 -3.1600000	
2 9 1.0950000 -0.9000000 2 10 1.1200000 -1.2800000 2 11 1.1550000 -1.9400000 2 12 1.2080000 -3.1600000 2 13 1.2880000 -5.6700000	
2 9 1.0950000 -0.9000000 2 10 1.1200000 -1.2800000 2 11 1.1550000 -1.9400000 2 12 1.2080000 -3.1600000 2 13 1.2880000 -5.6700000 2 14 1.4050000 -11.2400000	
2 9 1.0950000 -0.9000000 2 10 1.1200000 -1.2800000 2 11 1.1550000 -1.9400000 2 12 1.2080000 -3.1600000 2 13 1.2880000 -5.6700000 2 14 1.4050000 -11.2400000 2 15 1.5180000 -23.5400000	
2 9 1.0950000 -0.9000000 2 10 1.1200000 -1.2800000 2 11 1.1550000 -1.9400000 2 12 1.2080000 -3.1600000 2 13 1.2880000 -5.6700000 2 14 1.4050000 -11.2400000 2 15 1.5180000 -23.5400000 2 16 1.4510000 -45.0200000	
2 9 1.0950000 -0.9000000 2 10 1.1200000 -1.2800000 2 11 1.1550000 -1.9400000 2 12 1.2080000 -3.1600000 2 13 1.2880000 -5.6700000 2 14 1.4050000 -11.2400000 2 15 1.5180000 -23.5400000 2 16 1.4510000 -45.0200000 2 17 1.0960000 71 2000000	
2 9 1.0950000 -0.9000000 2 10 1.1200000 -1.2800000 2 11 1.1550000 -1.9400000 2 12 1.2080000 -3.1600000 2 13 1.2880000 -5.6700000 2 14 1.4050000 -11.2400000 2 15 1.5180000 -23.5400000 2 16 1.4510000 -45.0200000 2 17 1.0860000 -71.2800000	
2 9 1.0950000 -0.9000000 2 10 1.1200000 -1.2800000 2 11 1.1550000 -1.9400000 2 12 1.2080000 -3.1600000 2 13 1.2880000 -5.6700000 2 14 1.4050000 -11.2400000 2 15 1.5180000 -23.5400000 2 16 1.4510000 -45.0200000 2 17 1.0860000 -71.2800000 2 18 0.6098000 -93.1500000	

2	20	0.1050000 -92.9500000
2	21	27140000e-02-487300000
2	22	2 0020000 02 10.7500000
2	22	4.4240000= 02.02.0200000
2	23	4.434000000-02 92.9800000
2	24	1.48800000000000000000000000000000000000
2	25	8.4100000e-04 105.8000000
2	26	1.2320000e-06 173.2600000
3	1	1.0280000 -0.1900000
3	2	1.0310000 -0.2200000
3	3	1.0350000 -0.2600000
3	4	1.0400000 -0.3300000
3	5	1.0460000 -0.4100000
3	6	1.0540000 -0.4700000
3	7	1 0640000 -0 5400000
3	, Q	1 0770000 -0 6700000
2	0	1 0950000 -0 9000000
2	10	1 120000 1 280000
2	11	1.1200000 -1.2800000
3	11	1.1550000 -1.9400000
3	12	1.2080000 -3.1600000
3	13	1.2880000 -5.6700000
3	14	1.4050000 -11.2400000
3	15	1.5180000 -23.5400000
3	16	1.4510000 -45.0200000
3	17	1.0860000 -71.2800000
3	18	0.6098000 -93.1500000
3	19	0.2757000 -101.3300000
3	20	0 1050000 -92 9500000
3	21	27140000 - 02 - 48 7300000
2	21	2.020000-02 61 120000
2	22	
2	23	4.434000000-02 92.9800000
3	24	1.4880000e-02 172.3600000
3	25	8.4100000e-04 105.8000000
3	26	1.2320000e-06 173.2600000
4	1	1.0280000 -0.1900000
4	2	1.0310000 -0.2200000
4	3	1.0350000 -0.2600000
4	4	1.0400000 -0.3300000
4	5	1.0460000 -0.4100000
4	6	1.0540000 -0.4700000
4	7	1.0640000 - 0.5400000
4	8	1.0770000 - 0.6700000
4	9	1 0950000 = 0 9000000
1	10	1 1200000 -1 2800000
	11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	10	1.1550000 -1.9400000
4	12	1.2080000 -3.1600000
4	13	1.2880000 -5.6700000
4	14	1.4050000 -11.2400000
4	15	1.5180000 -23.5400000
4	16	1.4510000 -45.0200000
4	17	1.0860000 -71.2800000
4	18	0.6098000 -93.1500000
4	19	0.2757000 -101.3300000
4	20	0.1050000 -92.9500000
4	21	2.7140000e-02 -48.7300000
4	22	3.0030000e-02 61.1300000
4	23	4.4340000e-02 92.9800000
4	2.4	1.4880000e-02 172.3600000
4	25	8 4100000e-04 105 800000
1	25	1 22200000-06 172 2600000
-	1	1.232000000-00 1/3.2000000
5	1	1.0280000 -0.1900000
5	2	1.0310000 -0.2200000
5	3	1.0350000 -0.2600000
5	4	1.0400000 -0.3300000
5	5	1.0460000 -0.4100000
5	6	1.0540000 -0.4700000
5	7	1.0640000 -0.5400000
5	8	1.0770000 -0.6700000
5	9	1.0950000 -0.9000000
5	10	1.1200000 -1.2800000
5	11	1.1550000 -1.9400000
5	12	1.2080000 -3.1600000
5	13	1.2880000 -5.6700000
5	14	1 4050000 -11 2400000
5	15	15180000 -235400000
5	10	T.2100000 22.9100000

5	16	1.4510000 -45.0200000
5	17	1.0860000 -71.2800000
5	10	0.6098000 - 93.1500000 0.2757000 - 101.3300000
5	20	0.1050000 - 92.9500000
5	21	2.7140000e-02 -48.7300000
5	22	3.0030000e-02 61.1300000
5	23	4.4340000e-02 92.9800000
5	24	1.4880000e-02 172.3600000
5	25	8.4100000e-04 105.8000000
5	20 1	1.2320000e-06 1/3.2600000
6	2	1.0310000 -0.2200000
6	3	1.0350000 -0.2600000
6	4	1.0400000 -0.3300000
б	5	1.0460000 -0.4100000
6	6	1.0540000 -0.4700000
6	7	1.0640000 -0.5400000
6	8	1.0770000 = 0.8700000
6	9 10	1.1200000 - 1.2800000
6	11	1.1550000 -1.9400000
6	12	1.2080000 -3.1600000
б	13	1.2880000 -5.6700000
6	14	1.4050000 -11.2400000
6	15	1.5180000 -23.5400000
6	15 17	1.4510000 - 45.0200000
6	18	1.0800000 - 71.2800000
6	19	0.2757000 -101.3300000
6	20	0.1050000 -92.9500000
б	21	2.7140000e-02 -48.7300000
6	22	3.0030000e-02 61.1300000
6	23	4.4340000e-02 92.9800000
6	24	1.4880000e-02 172.3600000
6	25 26	1 2320000e-06 173 2600000
7	1	1.0280000 -0.1900000
7	2	1.0310000 -0.2200000
7	3	1.0350000 -0.2600000
7	4	1.0400000 -0.3300000
7	5	1.0460000 -0.4100000
./ 7	6	1.0540000 - 0.4700000
7	8	1.0770000 - 0.5400000
, 7	9	1.0950000 -0.9000000
7	10	1.1200000 -1.2800000
7	11	1.1550000 -1.9400000
7	12	1.2080000 -3.1600000
7	13	1.2880000 -5.6700000
7	14 15	1.4050000 - 11.2400000 1.5180000 - 23.5400000
, 7	16	1.4510000 -45.0200000
7	17	1.0860000 -71.2800000
7	18	0.6098000 -93.1500000
7	19	0.2757000 -101.3300000
7	20	0.1050000 -92.9500000
7	21	2.7140000e-02 -48.7300000
7	22	4 4340000e-02 92 9800000
, 7	24	1.4880000e-02 172.3600000
7	25	8.4100000e-04 105.8000000
7	26	1.2320000e-06 173.2600000
8	1	1.0280000 -0.1900000
8	2	1.0310000 -0.2200000
х Q	3 4	1.0350000 -0.2200000
8	5	1.0460000 -0.410000
8	6	1.0540000 -0.4700000
8	7	1.0640000 -0.5400000
8	8	1.0770000 -0.6700000
8	9	1.0950000 -0.9000000
8	10 11	1.1200000 -1.2800000
ö	ΤT	1.100000 -1.9400000

8	12	1.2080000 -3.1600000
8 8	13 14	1.2880000 - 5.6700000 1.4050000 - 11.2400000
8	15	1.5180000 -23.5400000
8 8	16 17	1.4510000 - 45.0200000 1.0860000 - 71.2800000
8	18	0.6098000 -93.1500000
8	19	0.2757000 -101.3300000
8 8	20 21	0.1050000 - 92.9500000 2.7140000e - 02 - 48.7300000
8	22	3.0030000e-02 61.1300000
8 8	23 24	4.4340000e-0292.9800000 1 4880000e-021723600000
8	25	8.4100000e-04 105.8000000
8	26	1.2320000e-06 173.2600000
9 9	1 2	1.0280000 - 0.1900000 1.0310000 - 0.2200000
9	3	1.0350000 -0.2600000
9	4 5	1.0400000 - 0.3300000 1.0460000 - 0.4100000
9	6	1.0540000 -0.4700000
9	7	1.0640000 -0.5400000
9	o 9	1.0950000 -0.9000000
9	10	1.1200000 -1.2800000
9 9	11 12	1.1550000 - 1.9400000 1.2080000 - 3.1600000
9	13	1.2880000 -5.6700000
9	14 15	1.4050000 - 11.2400000
9	16	1.4510000 -45.0200000
9	17	1.0860000 -71.2800000
9 9	18 19	0.6098000 - 93.1500000 0.2757000 - 101.3300000
9	20	0.1050000 -92.9500000
9 9	21 22	2.7140000e-02 -48.7300000
9	23	4.4340000e-02 92.9800000
9	24	1.4880000e-02 172.3600000
9	25	1.2320000e-06 173.2600000
10	1	1.0280000 -0.1900000
10 10	2	1.0310000 - 0.2200000 1.0350000 - 0.2600000
10	4	1.0400000 -0.3300000
10 10	5 6	1.0460000 - 0.4100000 1.0540000 - 0.4700000
10	7	1.0640000 -0.5400000
10	8	1.0770000 -0.6700000
10	9 10	1.1200000 - 1.2800000
10	11	1.1550000 -1.9400000
10 10	12 13	1.2080000 - 3.1600000 1.2880000 - 5.6700000
10	14	1.4050000 -11.2400000
10	15 16	1.5180000 - 23.5400000
10	17	1.0860000 -71.2800000
10	18	0.6098000 -93.1500000
10	19 20	0.2757000 -101.3300000 0.1050000 -92.9500000
10	21	2.7140000e-02 -48.7300000
10 10	22 23	3.0030000e-02 $61.13000004.4340000e-02$ 92.9800000
10	24	1.4880000e-02 172.3600000
10 10	25 26	8.4100000e-04 105.8000000
11	1	1.0280000 -0.1900000
11	2	1.0310000 -0.2200000
⊥⊥ 11	3 4	1.0400000 -0.3300000
11	5	1.0460000 -0.4100000
11 11	6 7	⊥.∪540000 -0.4700000 1.0640000 -0.5400000

11	8	1.0770000 -0.6700000
11	9 10	1.0950000 - 0.9000000 1.1200000 - 1.2800000
11	11	1.1550000 -1.9400000
11	12	1.2080000 -3.1600000
11 11	13 14	1.2880000 - 5.6700000 1 4050000 -11 2400000
11	15	1.5180000 -23.5400000
11	16	1.4510000 -45.0200000
11	17	1.0860000 -71.2800000
11	18 19	0.2757000 -101.3300000
11	20	0.1050000 -92.9500000
11	21	2.7140000e-02 -48.7300000
11 11	22	4.4340000e-02 92.9800000
11	24	1.4880000e-02 172.3600000
11	25	8.4100000e-04 105.8000000
12^{11}	20 1	1.0280000 = 0.1900000
12	2	1.0310000 -0.2200000
12	3	1.0350000 -0.2600000
12 12	4 5	1.0400000 - 0.3300000 1.0460000 - 0.4100000
12	6	1.0540000 -0.4700000
12	7	1.0640000 -0.5400000
12 12	8 9	1.0770000 - 0.6700000 1.0950000 - 0.9000000
12	10	1.1200000 -1.2800000
12	11	1.1550000 -1.9400000
12	12	1.2080000 - 3.1600000
12	14	1.4050000 -11.2400000
12	15	1.5180000 -23.5400000
12 12	16 17	1.4510000 - 45.0200000
12	18	0.6098000 -93.1500000
12	19	0.2757000 -101.3300000
12	20	0.1050000 - 92.9500000
12	22	3.0030000e-02 61.1300000
12	23	4.4340000e-02 92.9800000
12	24	1.4880000e-02 172.3600000
12	25	1.2320000e-06 173.2600000
13	1	1.0280000 -0.1900000
13	2	1.0310000 -0.2200000
13 13	4	1.0350000 - 0.2800000 1.0400000 - 0.3300000
13	5	1.0460000 -0.4100000
13	6	1.0540000 -0.4700000
⊥3 13	7 8	1.0640000 - 0.5400000 1.0770000 - 0.6700000
13	9	1.0950000 -0.9000000
13	10	1.1200000 -1.2800000
⊥3 13	11 12	1.1550000 - 1.9400000 1.2080000 - 3.1600000
13	13	1.2880000 -5.6700000
13	14	1.4050000 -11.2400000
⊥3 13	15 16	1.5180000 - 23.5400000 1 4510000 - 45 0200000
13	17	1.0860000 -71.2800000
13	18	0.6098000 -93.1500000
⊥3 13	19 20	0.2757000 - 101.3300000 0.1050000 - 92.9500000
13	21	2.7140000e-02 -48.7300000
13	22	3.0030000e-02 61.1300000
⊥3 13	23 24	4.4340000e-02 92.9800000 1.4880000e-02 172 3600000
13	25	8.4100000e-04 105.8000000
13	26	1.2320000e-06 173.2600000
⊥4 14	⊥ 2	1.0310000 -0.1900000 1.0310000 -0.2200000
14	3	1.0350000 -0.2600000

14	4	1.0400000 -0.3300000
14 14	5	1.0460000 - 0.4100000 1.0540000 - 0.4700000
14^{14}	7	1.0640000 -0.5400000
14	8	1.0770000 -0.6700000
14	9	1.0950000 -0.9000000
14 14	11 11	1.1200000 - 1.2800000 1.1550000 - 1.9400000
14	12	1.2080000 -3.1600000
14	13	1.2880000 -5.6700000
14	14	1.4050000 -11.2400000
14 14	15 16	1.5180000 - 23.5400000 1.4510000 - 45.0200000
14	17	1.0860000 -71.2800000
14	18	0.6098000 -93.1500000
14	19	0.2757000 -101.3300000
14 14	20 21	2.7140000 - 92.9500000
14	22	3.0030000e-02 61.1300000
14	23	4.4340000e-02 92.9800000
14	24	1.4880000e-02 172.3600000
14 14	25 26	1.2320000e-06 173.2600000
15	1	1.0280000 -0.1900000
15	2	1.0310000 -0.2200000
15	3	1.0350000 -0.2600000
15 15	4 5	1.0460000 - 0.3300000 1.0460000 - 0.4100000
15	6	1.0540000 -0.4700000
15	7	1.0640000 -0.5400000
15	8	1.0770000 -0.6700000
15	9 10	1.1200000 - 1.2800000
15	11	1.1550000 -1.9400000
15	12	1.2080000 -3.1600000
15	13	1.2880000 -5.6700000
15 15	14 15	1.4050000 - 11.2400000 1.5180000 - 23.5400000
15	16	1.4510000 -45.0200000
15	17	1.0860000 -71.2800000
15	18	0.6098000 -93.1500000
15	20	0.1050000 -92.9500000
15	21	2.7140000e-02 -48.7300000
15	22	3.0030000e-02 61.1300000
15	23	4.4340000e-02 92.9800000
15	24	8.4100000e-04 105.8000000
15	26	1.2320000e-06 173.2600000
16	1	1.0280000 -0.1900000
16 16	2	1.0310000 - 0.2200000 1.0350000 - 0.2600000
16	4	1.0400000 -0.3300000
16	5	1.0460000 -0.4100000
16	6	1.0540000 -0.4700000
16 16	/ 8	1.0640000 - 0.5400000 1.0770000 - 0.6700000
16	9	1.0950000 -0.9000000
16	10	1.1200000 -1.2800000
16	11	1.1550000 -1.9400000
16 16	⊥∠ 13	1.2080000 - 3.1600000 1.2880000 - 5.6700000
16	14	1.4050000 -11.2400000
16	15	1.5180000 -23.5400000
16 16	16	1.4510000 - 45.0200000
16	⊥/ 18	0.6098000 -93.1500000
16	19	0.2757000 -101.3300000
16	20	0.1050000 -92.9500000
16 16	21 22	2.7140000e-02 -48.7300000
16	∠∠ 23	4.4340000e-02 92.9800000
16	24	1.4880000e-02 172.3600000
16	25	8.4100000e-04 105.8000000

16	26	1.2320000e-06 173.2600000
17	1	1.0280000 -0.1900000
17	2 3	1.0350000 - 0.2200000
17	4	1.0400000 -0.3300000
17	5	1.0460000 -0.4100000
17	6 7	1.0540000 - 0.4700000
17	8	1.0770000 -0.6700000
17	9	1.0950000 -0.9000000
17	10	1.1200000 -1.2800000
17 17	11 12	1.1550000 - 1.9400000 1 2080000 - 3 1600000
17	13	1.2880000 -5.6700000
17	14	1.4050000 -11.2400000
17	15	1.5180000 -23.5400000
17 17	10 17	1.4510000 - 45.0200000 1.0860000 - 71.2800000
17	18	0.6098000 -93.1500000
17	19	0.2757000 -101.3300000
17	20	0.1050000 -92.9500000
17	21	3.0030000e-02 61.1300000
17	23	4.4340000e-02 92.9800000
17	24	1.4880000e-02 172.3600000
17	25	8.4100000e-04 105.8000000
18	1	1.0280000 -0.1900000
18	2	1.0310000 -0.2200000
18	3	1.0350000 -0.2600000
18 18	4	1.0400000 - 0.3300000 1.0460000 - 0.4100000
18	6	1.0540000 -0.4700000
18	7	1.0640000 -0.5400000
18	8	1.0770000 -0.6700000
18 18	9 10	1.0950000 - 0.9000000 1.1200000 - 1.2800000
18	11	1.1550000 -1.9400000
18	12	1.2080000 -3.1600000
18	13	1.2880000 -5.6700000
18 18	14 15	1.5180000 - 23.5400000
18	16	1.4510000 -45.0200000
18	17	1.0860000 -71.2800000
18	18	0.6098000 -93.1500000
18	20	0.1050000 -92.9500000
18	21	2.7140000e-02 -48.7300000
18	22	3.0030000e-02 61.1300000
18	23	$4.4340000e-02\ 92.9800000$
18	24	8.4100000e-04 105.800000
18	26	1.2320000e-06 173.2600000
19	1	1.0280000 -0.1900000
19 19	2	1.0310000 - 0.2200000 1.0350000 - 0.2600000
19	4	1.0400000 -0.3300000
19	5	1.0460000 -0.4100000
19	6	1.0540000 -0.4700000
19 19	7 8	1.0840000 - 0.5400000
19	9	1.0950000 -0.9000000
19	10	1.1200000 -1.2800000
19 10	11 12	1.1550000 - 1.9400000
19 19	13	1.2880000 -5.6700000
19	14	1.4050000 -11.2400000
19	15	1.5180000 -23.5400000
19 19	⊥6 17	1.4510000 -45.0200000 1.0860000 -71 2800000
19	18	0.6098000 -93.1500000
19	19	0.2757000 -101.3300000
19	20	0.1050000 -92.9500000
т9	∠⊥	2./140000e-02 -48./300000

19	22	3.0030000e-02 61.1300000					
19	23	4.4340000e-02 92.9800000					
19	24	1.4880000e-02 172.3600000					
19	25	8.4100000e-04 105.8000000					
19	26	1.2320000e-06 173.2600000					
HFTRA	ANSFER	FUNCTION ROLL					
·							
1 1 1	11req	amplitude phase[deg] 2 46387196-16 -95 7700000					
1	1 2	2.4030/19e-10 -95.7/00000 2 6912798e-16 -101 8600000					
1	3	2 9298461e-16 -112 5500000					
1	4	2.9653089e-16 -129.9300000					
1	5	2.4961393e-16 -151.7300000					
1	6	1.7099201e-16 -168.3800000					
1	7	1.0907978e-16 -172.6500000					
1	8	7.3638975e-17 -165.6700000					
1	9	5.6935592e-17 -151.9300000					
1	10	5.1197830e-17 -137.4900000					
1	11	5.0781543e-17 -126.2700000					
1	12	5.2665772e-17 -118.6300000					
1	13	5.6035487e-17 -113.6200000					
1	14	6.1644898e-17 -110.6000000					
1	15	7.0229324e-17 -110.8000000					
1	16	7.3913418e-17 -116.9200000					
1	10	6.0441750e-17 -123.1600000					
1	10	4.32540800 - 17 - 110.0900000					
1	20	$2 9502014_{-17} - 99 8700000$					
1	21	2.2624999e-17 -94.6700000					
1	22	1.5067588e-17 -86.1700000					
1	23	8.2315893e-18 -66.3500000					
1	24	2.0887989e-18 23.0600000					
1	25	4.7590621e-20 -72.4400000					
1	26	1.2623324e-25 -107.3800000					
2	1	0.1752882 -95.7700000					
2	2	0.1914612 -101.8600000					
2	3	0.2084398 -112.5500000					
2	4	0.2110315 -129.9300000					
2	5	0.1216070 168 2800000					
2	0 7	$7.7634003_{0-0}2 - 172.6500000$					
2	8	5 2409603e-02 = 165 670000					
2	9	4.0518802e-02 -151.9300000					
2	10	3.6436812e-02 -137.4900000					
2	11	3.6140476e-02 -126.2700000					
2	12	3.7478725e-02 -118.6300000					
2	13	3.9876978e-02 -113.6200000					
2	14	4.3871002e-02 -110.6000000					
2	15	4.9987503e-02 -110.8000000					
2	10	5.2589229e-02 -116.9200000					
2	10	4.3030045e-02 -123.1600000					
2	19	$25190921_{P} - 02 - 105 9700000$					
2	20	2.0995981e-02 -99.8700000					
2	21	1.6102141e-02 -94.6700000					
2	22	1.0722020e-02 -86.1700000					
2	23	5.8588050e-03 -66.3500000					
2	24	1.4867596e-03 23.0600000					
2	25	3.3862099e-05 -72.4400000					
2	26	8.9854209e-11 -107.3800000					
3	1	0.3492348 -95.7700000					
3	2	0.3815432 -101.8600000					
3	3						
3	4 5	0.4204326 - 129.9300000 0.2520277 - 151 7200000					
2	5	0 2424328 -168 3800000					
3	7	0.1547241 -172.6500000					
3	8	0.1044249 -165.6700000					
3	9	8.0736931e-02 -151.9300000					
3	10	7.2599663e-02 -137.4900000					
3	11	7.2002643e-02 -126.2700000					
3	12	7.4679365e-02 -118.6300000					
3	13	7.9448015e-02 -113.6200000					

3	14	8.7397299e-02 -110.6000000
3	15	9.9618770e-02 -110.8000000
3	16	0.1047759 -116.9200000
3	17	8.5719161e-02 -123.1600000
с С	10 19	5.1312459e-02 -110.0900000
3	20	4.1823585e-02 -99.8700000
3	21	3.2080037e-02 -94.6700000
3	22	2.1355478e-02 -86.1700000
3	23	1.1671490e-02 -66.3500000
3	24	2.9609954e-03 23.0600000
3	25	6.7469744e-05 -72.4400000
3	26 1	1.7901264e-10 -107.3800000
4	1 2	0.5204985 - 95.7700000 0.5685538 -101 8600000
4	3	0.6192806 -112.5500000
4	4	0.6265732 -129.9300000
4	5	0.5274480 -151.7300000
4	б	0.3613973 -168.3800000
4	7	0.2305833 -172.6500000
4	8	0.1556382 -165.6700000
4	9	0.1203898 -151.9300000
4 4	11	0.1082036 - 137.4900000 0 1073479 - 126 2700000
4	12	0.1113238 - 118 6300000
4	13	0.1184313 -113.6200000
4	14	0.1302701 -110.6000000
4	15	0.1484103 -110.8000000
4	16	0.1561575 -116.9200000
4	17	0.1277995 -123.1600000
4	18	9.1380761e-02 -116.6900000
4	19	7.4821330e-02 -105.9700000
4	20 21	4 7809444e - 02 - 99.8700000
4	22	3.1842004e-02 - 86.1700000
4	23	1.7398297e-02 -66.3500000
4	24	4.4137617e-03 23.0600000
4	25	1.0054861e-04 -72.4400000
4	26	2.6687893e-10 -107.3800000
5	1	0.6877377 -95.7700000
5	2	0.7513853 - 101.8600000
5	4	0.8280041 = 1299300000
5	5	0.6969369 -151.7300000
5	6	0.4775662 -168.3800000
5	7	0.3045818 -172.6500000
5	8	0.2057212 -165.6700000
5	9	0.1589963 -151.9300000
5	10	0.1430076 - 137.4900000
5	11 12	0.1418384 - 126.2700000 0.1471161 - 118 6300000
5	13	0.1565129 -113.6200000
5	14	0.1721375 -110.6000000
5	15	0.1961841 -110.8000000
5	16	0.2063649 -116.9200000
5	17	0.1688570 -123.1600000
5	18	0.1207771 -116.6900000
5	19	9.886/2090-02 -105.9/00000
5	20	6.3190964e = 02 = 99.8700000
5	22	4.2086998e-02 -86.1700000
5	23	2.2996287e-02 -66.3500000
5	24	5.8325348e-03 23.0600000
5	25	1.3287206e-04 -72.4400000
5	26	3.5255850e-10 -107.3800000
ь 6	⊥ 2	0.8498346 - 95.7700000
0 6	∠ 3	0.9203002 -IUI.8000000 1 0110307 -112 5500000
6	4	1.0230950 -129.9300000
6	5	0.8612185 -151.7300000
б	6	0.5901632 -168.3800000
б	7	0.3764333 -172.6500000
6	8	0.2540952 -165.6700000
6	9	0.1965204 -151.9300000

б	10	0.1766500 -137.4900000
6	11	0.1752356 -126.2700000
6	12	0.1817422 -118.6300000
6	13 14	0.1933868 - 113.6200000
6	15	0.2423675 -110.8000000
6	16	0.2550069 -116.9200000
6	17	0.2086482 -123.1600000
6	18	0.1492496 -116.6900000
6	19	0.1221617 -105.9700000
6	20	0.1018078 -99.8700000
6	21	7.8075505e-02 -94.6700000
6	22	5.1989821e-02 -86.1700000
6	23	2.8403436e - 02 - 66.3500000
6	25	1.6420156e - 04 - 72.4400000
6	26	4.3565376e-10 -107.3800000
7	1	1.0054475 -95.7700000
7	2	1.0984517 -101.8600000
7	3	1.1962889 -112.5500000
7	4	1.2103967 -129.9300000
7	5	1.0189489 -151.7300000
·/	6	0.6981009 -168.3800000
7	/	0.4452/91 - 1/2.6500000
7	9	0.324810 - 151 9300000
7	10	0.2089774 - 137.4900000
7	11	0.2073406 -126.2700000
7	12	0.2150227 -118.6300000
7	13	0.2287311 -113.6200000
7	14	0.2517071 -110.6000000
7	15	0.2867697 -110.8000000
7	16	0.3016920 - 116.9200000
7	10	0.2468322 - 123.1600000 0.1765462 - 116 6000000
7	19	0.1445258 - 1059700000
7	20	0.1204495 -99.8700000
7	21	9.2363670e-02 -94.6700000
7	22	6.1510218e-02 -86.1700000
7	23	3.3603841e-02 -66.3500000
7	24	8.5269511e-03 23.0600000
7	25	1.9425879e-04 -72.4400000
0	26	5.1546895e-10 -107.3800000
0 8	1 2	1.2599703 - 101 8600000
8	3	1.3723913 -112.5500000
8	4	1.3884601 -129.9300000
8	5	1.1689525 -151.7300000
8	б	0.8009135 -168.3800000
8	7	0.5108329 -172.6500000
8	8	0.3449280 -165.6700000
8	9 10	0.2666375 - 151.9300000
8	11	0.2397707 - 137.4900000 0.2378552 - 126.2700000
8	12	0.2466886 -118 6300000
8	13	0.2624651 -113.6200000
8	14	0.2886912 -110.6000000
8	15	0.3289455 -110.8000000
8	16	0.3460848 -116.9200000
8	17	0.2831655 -123.1600000
8	18	0.2025411 -116.6900000
8 Q	70 TA	U.1381802 -00 0700000
8	20 21	0.1059561 - 94 6700000
8	22	7.0567678e-02 -86.1700000
8	23	3.8549792e-02 -66.3500000
8	24	9.7775468e-03 23.0600000
8	25	2.2284497e-04 -72.4400000
8	26	5.9130829e-10 -107.3800000
9	1	1.2927502 - 95.7700000
ד 9	∠ 3	1 5379744 -112 5500000
9	4	1.5560173 -129.9300000
9	5	1.3098852 -151.7300000

9	6	0.8975139 -168.3800000
9	7	0.5725221 -172.6500000
9	8	0.3864666 - 165.6700000
9	9 10	0.2988098 - 131.9300000 0.2687009 - 137.4900000
9	11	0.2664813 -126.2700000
9	12	0.2764706 -118.6300000
9	13	0.2941058 -113.6200000
9	14	0.3235926 -110.6000000
9	15	0.3686403 -110.8000000
9	16	0.3878498 -116.9200000
9	19	0.31/355/-123.1600000
9	19	0.1857830 -105.9700000
9	20	0.1548465 -99.8700000
9	21	0.1187533 -94.6700000
9	22	7.9081691e-02 -86.1700000
9	23	4.3209482e-02 -66.3500000
9	24	1.0958367e-02 23.0600000
9	25	2.4976130e - 04 - 72.4400000
9 10	20 1	1 4219805 - 95 7700000
10	2	1.5533365 -101.8600000
10	3	1.6918692 -112.5500000
10	4	1.7118002 -129.9300000
10	5	1.4409073 -151.7300000
10	6	0.9874361 -168.3800000
10	7	0.6297744 - 172.6500000
10	8 9	0.4252447 - 165.6700000 0.3288169 - 151 9300000
10	10	0.2956587 = 137.4900000
10	11	0.2932189 -126.2700000
10	12	0.3040998 -118.6300000
10	13	0.3234922 -113.6200000
10	14	0.3559088 -110.6000000
10	15	0.4055362 -110.8000000
10	16 17	0.4266515 - 116.9200000
10	18	0.3491108 - 123.1600000 0.2497013 - 116 6900000
10	19	0.2043900 -105.9700000
10	20	0.1703612 -99.8700000
10	21	0.1306311 -94.6700000
10	22	8.6991873e-02 -86.1700000
10	23	4.7535202e-02 -66.3500000
10	24	1.2058676e - 02 23.0600000
10	25	7.2897209e-10 -107.3800000
11	1	1.5404789 -95.7700000
11	2	1.6828857 -101.8600000
11	3	1.8327122 -112.5500000
11	4	1.8549030 -129.9300000
11	5	1.5610109 -151.7300000
11	6 7	1.0095931 - 108.3800000 0 6823033 - 172 6500000
11	8	0.4606051 - 165.6700000
11	9	0.3561181 -151.9300000
11	10	0.3202056 -137.4900000
11	11	0.3176704 -126.2700000
11	12	0.3294863 -118.6300000
11	13 14	0.3504633 - 113.6200000
11	⊥ 4 15	0.3030397 - 110.000000000000000000000000000000000
11	16	0.4622105 -116.9200000
11	17	0.3781871 -123.1600000
11	18	0.2704887 -116.6900000
11	19	0.2214225 -105.9700000
11	20	0.1845530 -99.8700000
⊥⊥ 11	⊿⊥ 22	0.1415150 -94.6/00000 9 4237841e-02 -86 1700000
11	23	5.1495143e-02 -66.350000
11	24	1.3060584e-02 23.0600000
11	25	2.9763023e-04 -72.4400000
11	26	7.8980260e-10 -107.3800000
12	1	1.6473510 -95.7700000

12	2	1.7994800 -101.8600000
12	3	1.9597242 -112.5500000
12	4	1.9835145 - 129.9300000
12 12	5	1.0093502 - 151.7300000 1.1438294 - 168.3800000
12	7	0.7295363 -172.6500000
12	8	0.4925477 -165.6700000
12	9	0.3808936 -151.9300000
12	10	0.3424512 -137.4900000
12	11	0.3396370 -126.2700000
12	12 12	0.3522713 - 118.6300000
12	14	0.3747776 - 113.6200000 0 4123544 - 110 6000000
12	15	0.4697858 -110.8000000
12	16	0.4943030 -116.9200000
12	17	0.4043899 -123.1600000
12	18	0.2892604 -116.6900000
12	19	0.2367732 -105.9700000
12	∠0 21	0.19/3316 -99.8/00000
12	∠⊥ 22	0 1007793 -86 1700000
12	23	5.5057500e-02 -66.3500000
12	24	1.3973036e-02 23.0600000
12	25	3.1826476e-04 -72.4400000
12	26	8.4447053e-10 -107.3800000
13	1	1.7417025 -95.7700000
13 13	2	1.9024925 - 101.8600000 2.0727103 - 112 5500000
13	4	2.0958231 -129.9300000
13	5	1.7654390 -151.7300000
13	6	1.2092132 -168.3800000
13	7	0.7713305 -172.6500000
13	8	0.5208097 -165.6700000
13 12	9	0.4026624 - 151.9300000
13 13	11	0.3591186 - 126.2700000
13	12	0.3724549 -118.6300000
13	13	0.3962739 -113.6200000
13	14	0.4359093 -110.6000000
13	15	0.4966944 -110.8000000
13 12	16 17	0.5225377 - 116.9200000
13	18	0.4275730 - 125.1600000 0.3058064 -116 6900000
13	19	0.2503348 -105.9700000
13	20	0.2086369 -99.8700000
13	21	0.1600026 -94.6700000
13	22	0.1065560 -86.1700000
13	23	5.8206369e - 02 - 66.3500000
13 13	24 25	3 3647404e - 04 - 72 4400000
13	26	8.9287651e-10 -107.3800000
14	1	1.8226392 -95.7700000
14	2	1.9910874 -101.8600000
14	3	2.1681640 -112.5500000
14	4	2.1936402 -129.9300000
14 14	5	1.8477478 - 151.7300000 1.2655894 - 168.3800000
14	7	0.8072562 -172.6500000
14	8	0.5449968 -165.6700000
14	9	0.4214244 -151.9300000
14	10	0.3789428 -137.4900000
14	11	0.3758172 -126.2700000
⊥4 14	⊥∠ 1 २	0.3897880 -II8.6300000 0.4146304 -113 6200000
14	14	0.4562326 -110.6000000
14	15	0.5197861 -110.8000000
14	16	0.5468587 -116.9200000
14	17	0.4474443 -123.1600000
14	18	0.3200426 -116.6900000
⊥4 14	19 19	U.∠0I904I -IU5.9/UUUUU 0 2183486 -99 8700000
14	21	0.1674324 -94.6700000
14	22	0.1115074 -86.1700000
14	23	6.0925847e-02 -66.3500000

14 25 3.5213879e-04 -72.4400000 15 1.8897137 -95.7700000 15 2.2480335 -112.5500000 15 2.2480335 -12.5500000 15 4.2.2751545 -129.9300000 15 1.3121812 -168.3800000 15 6 1.3121812 -168.0000 15 1.3121812 -168.0000 15 0.352801 -137.490000 15 0.389633 -126.270000 15 10 -3896337 -110.600000 15 11 0.4369937 -113.620000 15 13 0.4299274 -113.620000 15 15 0.538937 -110.600000 15 16 0.56935 -16.90000 15 10 0.2263765 -99.870000 15 20 0.2263765 -99.870000 15 21 0.1735950 -94.670000 15 23 6.505988e-04 -72.440000 15<	14	24	1.5458006e-02 23.0600000
14 26 9.3432474e-10 -107.3800000 15 1 1.8897137 -95.7700000 15 2 2.0644289 -101.8600000 15 3 2.2480335 -112.550000 15 1 9.9300000 15 15 1.9149386 -151.7300000 15 6 1.3121812 -168.380000 15 0 0.8370274 -172.650000 15 0 .3928601 -137.490000 15 1 0.3928601 -137.490000 15 1 0.3928633 -126.2700000 15 1 0.4299274 -113.620000 15 1 0.4299274 -13.600000 15 1 0.4299274 -10.800000 15 1 0.4299274 -13.600000 15 1 0.429963 -12.920000 15 1 0.4297063 -12.31600000 15 2 0.1156134 -86.1700000	14	25	3.5213879e-04 -72.4400000
151 1.8897137 -95.7700000 153 2.2480335 -112.550000 154 2.2751545 -129.930000 155 1.919366 -15.730000 156 1.3121812 -168.380000 157 0.8370274 -172.650000 158 0.5551088 -165.6700000 159 0.4369392 -151.930000 1510 0.3928601 -137.490000 1511 0.3896333 -126.2700000 1512 0.4041208 -118.6300000 1513 0.4299274 -113.6200000 1514 0.473070 -110.6000000 1516 0.569305 -16.9200000 1517 0.4639063 -123.1600000 1518 0.3318012 -116.6900000 1520 0.2263765 -99.8700000 1521 0.1735950 -94.6700000 1522 0.1156134 -86.1700000 1523 $6519988e-04$ -72.4400000 16 2.21229350 -101.8600000 16 1.9424790 -95.7703000 16 2.3103707 -112.5500000 16 2.3103707 -112.500000 16 2.3103707 -112.500000 16 1.9424790 -95.7700000 16 2.3103707 -112.500000 16 1.9424790 -95.7700000 16 1.9429864 -151.9300000 16 <td< td=""><td>14</td><td>26</td><td>9.3432474e-10 -107.3800000</td></td<>	14	26	9.3432474e-10 -107.3800000
132 2.0047239 -101.800000 154 2.2751545 -129.9300000 155 1.9149386 -151.7300000 156 1.312142 -168.3800000 157 0.8370274 -172.6500000 158 0.5651088 -165.6700000 1510 0.3928601 -137.4900000 1510 0.3928601 -137.4900000 1511 0.3896333 -126.2700000 1512 0.4041208 -118.6300000 1513 0.4299274 -113.6200000 1514 0.4730370 -110.6000000 1515 0.5389337 -110.8000000 1516 0.5669305 -116.9200000 1517 0.4639063 -123.1600000 1520 0.126254 -105.9700000 1520 0.1263765 -99.8700000 1520 0.1263765 -99.8700000 1521 0.1735950 -94.6700000 1523 $6.3168224e-02$ -66.3500000 1524 $1.6021579e-02$ 23.060000 1525 $3.650998e-04$ -72.4400000 1524 $1.6021579e-02$ 23.060000 161 $.9424790$ -95.7700000 162 2.1229350 -10.860000 161 $.948334$ -151.930000 161 $.968043$ -151.930000 161 $.968043$ -151.93000	15 1E	1	1.8897137 -95.7700000
15 4 2.2751545 -129.930000 15 5 1.9149386 -151.7300000 15 6 1.3121812 -168.380000 15 7 0.8370274 -172.650000 15 8 0.5651088 -165.6700000 15 9 0.4369392 -151.930000 15 10 0.3928601 -137.490000 15 11 0.389633 -126.2700000 15 11 0.4399274 -113.620000 15 10 0.569305 -116.920000 15 17 0.4639063 -123.1600000 15 18 0.3318012 -116.920000 15 19 0.2716254 -105.9700000 15 20 0.1263765 -99.8700000 15 21 0.1735950 -94.6700000 15 22 0.1156134 -86.1700000 15 24 1.6021579 -02.3.060000 15 24 1.6021579 -02	15	∠ 3	2.0644289 - 101.8600000 2 2480335 -112 5500000
15 5 1.9149386 -151.7300000 15 6 1.3121812 -168.3800000 15 7 0.8370274 -172.6500000 15 9 0.4369392 -151.9300000 15 10 0.3928601 -137.4900000 15 11 0.3896333 -126.2700000 15 12 0.4041208 -118.6300000 15 13 0.4299274 -113.600000 15 14 0.4730370 -110.6000000 15 15 0.5389337 -110.8000000 15 16 0.5669305 -116.9200000 15 17 0.463963 -125.460000 15 10 0.1735950 -94.6700000 15 22 0.1156134 -86.1700000 15 23 6.510998e-04 -72.4400000 15 25 3.6509998e-04 -72.4400000 16 1 .9424790 -95.7700000 16 1 .9424790	15	4	2.2751545 -129.9300000
15 6 1.3121812 -168.3800000 15 7 0.8370274 -172.650000 15 8 0.6551088 -165.670000 15 10 0.3928601 -137.4900000 15 11 0.389633 -126.270000 15 12 0.4041208 -118.630000 15 13 0.4299274 -113.6200000 15 15 0.5389337 -110.800000 15 16 0.5669305 -116.9200000 15 16 0.4639063 -123.1600000 15 18 0.318012 -116.690000 15 20 0.17550 -94.670000 15 20 0.1755134 -86.1700000 15 22 0.1156134 -86.1700000 15 24 1.6021579e-02 23.060000 16 1 .9424700 -95.7700000 16 2 2.1229350 -101.860000 16 1 .9424790 -95.770	15	5	1.9149386 -151.7300000
15 7 0.8370274 -172.6500000 15 8 0.5651088 -165.6700000 15 10 0.3928601 -137.4900000 15 11 0.389633 -126.2700000 15 12 0.4041208 -118.6300000 15 12 0.4041208 -118.6300000 15 14 0.4730370 -110.600000 15 15 0.5389337 -116.920000 15 17 0.4639063 -123.1600000 15 19 0.276254 -105.970000 15 20 0.2263765 -99.8700000 15 21 0.1735950 -94.6700000 15 22 0.1156134 -86.1700000 15 24 1.6021579e-02 23.060000 15 24 1.6021579e-02 23.060000 16 1 .9424790 -95.7700000 16 1 .9424790 -95.7700000 16 1 .9429864	15	6	1.3121812 -168.3800000
15 8 0.5651088 -165.6700000 15 9 0.4369392 -151.930000 15 10 0.3928601 -137.490000 15 11 0.389633 -126.270000 15 12 0.4041208 -118.630000 15 13 0.4299274 -113.620000 15 14 0.4730370 -110.600000 15 15 0.5389337 -110.800000 15 16 0.5669305 -16.920000 15 17 0.4639063 -123.160000 15 18 0.3318012 -116.6900000 15 20 0.2263765 -99.8700000 15 22 0.1156134 -86.1700000 15 22 0.1156134 -86.1700000 15 23 .6509998e-04 -72.4400000 15 26 9.6881524e 10 -107.3800000 16 1 .9424790 -57.770000 16 1 .9424790<	15	7	0.8370274 -172.6500000
159 $0.4369392 - 151.930000$ 1510 $0.3928601 - 137.490000$ 1512 $0.4041208 - 118.630000$ 1512 $0.4041208 - 113.620000$ 1514 $0.4730370 - 110.600000$ 1516 $0.569305 - 116.920000$ 1516 $0.5669305 - 116.920000$ 1517 $0.4639063 - 123.160000$ 1518 $0.3318012 - 116.690000$ 1520 $0.2263765 - 99.8700000$ 1521 $0.1735950 - 94.670000$ 1522 $0.1156134 - 86.1700000$ 1523 $6.3168224e - 02 - 66.3500000$ 1524 $1.6021579e - 02.23.060000$ 1525 $3.650998e - 04 - 72.4400000$ 1526 $9.6881524e - 10 - 107.3800000$ 161 $1.9424790 - 95.7700000$ 162 $2.1229350 - 101.860000$ 163 $2.313707 - 112.5500000$ 164 $2.338545 - 129.9300000$ 165 $1.9686913 - 151.7300000$ 166 $1.348034 - 168.3800000$ 1610 $0.4490864 - 151.9300000$ 1610 $0.4490864 - 151.9300000$ 1610 $0.4490864 - 110.600000$ 1611 $0.4402507 - 110.600000$ 1612 $0.4154236 - 118.6300000$ 1613 $0.4419235 - 113.6200000$ 1614 $0.4862507 - 99.8700000$ 1615 $0.5540101 - 10.800000$ 1616 $0.582583 - 116.9200000$ 1610 0.4398	15	8	0.5651088 -165.6700000
1510 0.3928001 -137.4900000 1512 0.4041208 -118.6300000 1513 0.4299274 -113.6200000 1514 0.4730370 -110.6000000 1515 0.5389337 -110.800000 1516 0.5669305 -116.9200000 1517 0.4639063 -123.1600000 1518 0.3318012 -116.6900000 1520 0.2263765 -99.8700000 1520 0.1735950 -94.6700000 1521 0.1735950 -94.6700000 1522 0.1156134 -86.1700000 1523 $6.3168224e$ $0.2-66.3500000$ 1524 $1.6021579e-02$ 23.0600000 1525 $3.6509998e-04$ -72.4400000 162 2.1229350 -101.8600000 161 1.9424790 -95.7700000 162 2.1229350 -101.8600000 161 1.9424790 -95.7700000 162 2.3185545 -129.9300000 161 0.404675 -126.2700000 161 0.4490864 -151.9300000 161 0.4490864 -151.9300000 1610 0.404675 -126.2700000 1610 0.404675 -126.2700000 1610 0.4490864 -113.6200000 1610 0.2792113 -105.9700000 1612 0.1792435 <td< td=""><td>15</td><td>9</td><td>0.4369392 - 151.9300000</td></td<>	15	9	0.4369392 - 151.9300000
1311 $0.339333 - 112.270000$ 1512 $0.441208 - 118.630000$ 1514 $0.4730370 - 110.600000$ 1515 $0.5389337 - 110.800000$ 1516 $0.5669305 - 116.9200000$ 1517 $0.4639063 - 123.1600000$ 1518 $0.3318012 - 116.6900000$ 1519 $0.2716254 - 105.9700000$ 1521 $0.1735950 - 94.670000$ 1522 $0.1735950 - 94.670000$ 1523 $6.3168224e - 02 - 66.3500000$ 1523 $6.509998e - 04 - 72.4400000$ 1525 $3.650998e - 04 - 72.4400000$ 162 $2.1229350 - 101.860000$ 162 $2.1229350 - 101.860000$ 163 $2.3103707 - 112.5500000$ 163 $2.3103707 - 112.5500000$ 164 $2.385545 - 129.9300000$ 165 $1.9686913 - 151.7300000$ 166 $1.348334 - 168.3800000$ 167 $0.8603577 - 172.6500000$ 1610 $0.4490864 - 151.9300000$ 1610 $0.4038185 - 137.4900000$ 1611 $0.4004755 - 126.2700000$ 1612 $0.4490867 - 110.6000000$ 1613 $0.449235 - 113.6200000$ 1614 $0.4862507 - 110.600000$ 1615 $0.5540101 - 110.800000$ 1616 $0.522693 - 116.9200000$ 1617 $0.4768615 - 123.1600000$ 1619 $0.2792113 - 105.9700000$ 1610 0.17	15	11	0.3928001 - 137.4900000
1513 0.4299274 -113.620000 1514 0.4730370 -110.600000 1516 0.5389337 -110.800000 1516 0.569305 -116.920000 1517 0.4639063 -123.160000 1518 0.3318012 -116.690000 1519 0.2716254 -105.9700000 1521 0.1735950 -94.670000 1522 0.1156334 -86.1700000 1523 $6.3168224e-02$ 23.6600000 1524 $1.6021579e-02$ 23.6600000 1525 $3.6509998e-04$ -72.4400000 1526 $9.6881524e-10$ -107.3800000 161 1.9424790 -95.7700000 162 2.129350 -101.860000 163 2.3103707 -112.5500000 164 2.388545 -129.9300000 165 1.9686913 -151.7300000 164 2.388545 -129.9300000 167 0.8603577 -172.6500000 168 0.5808830 -165.6700000 1610 0.4490864 -151.9300000 1610 0.4492365 -113.6200000 1611 0.404675 -126.2700000 1612 0.4154236 -113.6200000 1613 0.4419235 -113.6200000 1614 0.4862507 -110.6000000 1615 0.5540101 $-$	15	12	0.4041208 - 118.6300000
1514 0.4730370 -110.600000 1515 0.5389337 -110.800000 1516 0.5669305 -116.920000 1517 0.4639063 -123.160000 1519 0.2716254 -105.970000 1520 0.2263765 -99.870000 1521 0.1735950 -94.670000 1523 $6.3168224e-02$ -66.3500000 1523 $6.3168224e-10$ -107.3800000 1524 $1.6021579e-02$ 23.0600000 1525 $3.6509998e-04$ -72.4400000 1526 $9.6881524e-10$ -107.3800000 161 1.9424790 -95.7700000 162 2.1229350 -101.860000 163 2.3103707 -112.5500000 164 2.3385545 -129.9300000 165 1.9686913 -151.7300000 165 1.9686913 -151.7300000 166 1.348834 -168.3800000 1610 0.4038185 -137.4900000 1611 0.4004675 -126.2700000 1612 0.4154236 -118.6300000 1613 0.4419235 -113.6200000 1614 0.4862507 -110.6000000 1615 0.5540101 -110.8000000 1614 0.4862507 -99.8700000 1615 0.526997 -99.8700000 1614 0.4768615 <td>15</td> <td>13</td> <td>0.4299274 -113.6200000</td>	15	13	0.4299274 -113.6200000
15 15 0.5389337 -110.800000 15 16 0.5669305 -116.920000 15 17 0.4639063 -123.160000 15 19 0.2716254 -105.970000 15 20 0.2263765 -99.870000 15 21 0.1735950 -94.670000 15 23 6.3168224e-02 -66.3500000 15 23 6.509998e-04 -72.4400000 15 24 1.6021579e-02 23.0600000 16 1 1.9424790 -95.7700000 16 2 .1229350 -101.860000 16 2 .1229350 -101.860000 16 1 1.9424790 -95.770000 16 2 .1229350 -101.860000 16 1 0.968913 -151.730000 16 5 1.9686913 -151.730000 16 1 0.400467 -126.270000 16 1 0.4490864 -151.930	15	14	0.4730370 -110.6000000
1516 $0.5669305 - 116.920000$ 1517 $0.4639063 - 123.160000$ 1518 $0.3318012 - 116.690000$ 1520 $0.2263765 - 99.870000$ 1521 $0.1735950 - 94.670000$ 1522 $0.1156134 - 86.1700000$ 1523 $6.3168224e-02 - 66.3500000$ 1524 $1.6021579e-02 23.0600000$ 1525 $3.6509998e-04 - 72.4400000$ 1526 $9.6881524e-10 - 107.3800000$ 161 $1.9424790 - 95.7700000$ 162 $2.1229350 - 101.860000$ 163 $2.3103707 - 112.5500000$ 164 $2.385545 - 129.9300000$ 165 $1.9686913 - 151.7300000$ 166 $1.348834 - 168.3800000$ 167 $0.8603577 - 172.6500000$ 168 $0.5808830 - 165.6700000$ 1610 $0.4490864 - 151.9300000$ 1611 $0.404675 - 126.2700000$ 1612 $0.4154236 - 118.6300000$ 1613 $0.4419235 - 113.6200000$ 1614 $0.4862507 - 110.600000$ 1615 $0.5540101 - 110.800000$ 1616 $0.3226907 - 99.8700000$ 1616 $0.2326907 - 99.8700000$ 1620 $0.2326907 - 99.8700000$ 1621 $0.1784405 - 94.6700000$ 1622 $0.1188339 - 86.1700000$ 1623 $0.5931785e-04 - 72.4400000$ 171 $0.9804879 - 95.7700000$ 172 2.162635	15	15	0.5389337 -110.8000000
1517 $0.4639063 - 123.160000$ 1518 $0.3318012 - 116.690000$ 1519 $0.2716254 - 105.970000$ 1521 $0.1735950 - 94.670000$ 1522 $0.1156134 - 86.170000$ 1523 $6.3168224e - 02 - 66.3500000$ 1524 $1.6021579e - 02.23.060000$ 1525 $3.6509998e - 04 - 72.4400000$ 1526 $9.6881524e - 10 - 107.3800000$ 161 $1.9424790 - 95.7700000$ 162 $2.1229350 - 101.860000$ 163 $2.3103707 - 112.5500000$ 164 $2.3385545 - 129.9300000$ 165 $1.9686913 - 151.7300000$ 166 $1.348334 - 168.3800000$ 166 $1.348334 - 165.6700000$ 168 $0.5808830 - 165.6700000$ 169 $0.4490864 - 151.9300000$ 1610 $0.403185 - 137.4900000$ 1611 $0.4004675 - 126.2700000$ 1613 $0.4419235 - 113.6200000$ 1614 $0.4862507 - 110.6000000$ 1615 $0.5540101 - 110.8000000$ 1616 $0.582583 - 116.9200000$ 1610 $0.2722113 - 105.9700000$ 1610 $0.2726907 - 99.8700000$ 1610 $0.27326907 - 99.8700000$ 1620 $0.2326907 - 99.8700000$ 1621 $0.1784405 - 94.6700000$ 1622 $0.1188339 - 86.1700000$ 1623 $6.4933499e - 02 - 66.3500000$ 171	15	16	0.5669305 -116.9200000
1518 0.3318012 -116.6900000 1519 0.2716254 -105.9700000 1521 0.1735950 -94.6700000 1522 0.1156134 -86.1700000 1523 $6.3168224e-02$ -66.3500000 1524 $1.6021579e-02$ 23.0600000 1526 $9.6881524e-10$ -107.3800000 161 1.9424790 -95.7700000 162 2.1229350 -101.8600000 163 2.3103707 -112.5500000 164 2.3385545 -129.9300000 165 1.9686913 -151.7300000 166 1.348834 -168.3800000 167 0.8603577 -172.6500000 168 0.5808830 -165.6700000 1610 0.4038185 -137.4900000 1611 0.4004675 -126.2700000 1612 0.4154236 -118.6300000 1613 0.4419235 -113.6200000 1614 0.4862507 -110.6000000 1615 0.5540101 -110.800000 1616 0.5825853 -116.9200000 1618 0.3410821 -116.6900000 1619 0.2722113 -105.9700000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1620 0.2326907 -99.8700000 1621 0.1784405	15	17	0.4639063 -123.1600000
1519 $0.2710234 - 103.9700000$ 1520 $0.2263765 - 99.8700000$ 1521 $0.1735950 - 94.6700000$ 1522 $0.1156134 - 86.1700000$ 1523 $6.3168224e - 02 - 266.3500000$ 1524 $1.6021579e - 02 - 23.0600000$ 1526 $9.6881524e - 10 - 107.3800000$ 161 $1.9424790 - 95.7700000$ 162 $2.1229350 - 101.8600000$ 163 $2.3103707 - 112.5500000$ 164 $2.3385545 - 129.9300000$ 165 $1.9686913 - 151.7300000$ 166 $1.3488334 - 168.3800000$ 167 $0.8603577 - 172.6500000$ 168 $0.5808830 - 165.6700000$ 169 $0.4490864 - 151.9300000$ 1610 $0.4038185 - 137.4900000$ 1611 $0.4004675 - 126.2700000$ 1612 $0.4154236 - 118.6300000$ 1613 $0.4419235 - 113.6200000$ 1614 $0.4862507 - 110.6000000$ 1615 $0.5540101 - 110.8000000$ 1616 $0.5825853 - 116.9200000$ 1617 $0.4768615 - 123.1600000$ 1618 $0.3410821 - 116.6900000$ 1619 $0.2792113 - 105.9700000$ 1620 $0.2326907 - 99.8700000$ 1621 $0.1784405 - 94.6700000$ 1622 $0.118839 - 86.1700000$ 1623 $6.4933499e - 02 - 66.3500000$ 1624 $1.6468860e - 02 2.3.0600000$ 17 <td>15 1E</td> <td>18</td> <td>0.3318012 -116.6900000</td>	15 1E	18	0.3318012 -116.6900000
1521 $0.1735950 - 94.6700000$ 1522 $0.1156134 - 86.1700000$ 1523 $6.3168224e-02 - 66.3500000$ 1524 $1.6021579e-02$ 23.0600000 1524 $1.6021579e-02$ 23.0600000 1526 $9.6881524e-10 - 107.3800000$ 161 $1.9424790 - 95.7700000$ 162 $2.1229350 - 101.8600000$ 163 $2.3103707 - 112.5500000$ 164 $2.3385545 - 129.9300000$ 165 $1.9686913 - 151.7300000$ 166 $1.3488334 - 168.3800000$ 166 $1.3488334 - 168.3800000$ 167 $0.8603577 - 172.6500000$ 168 $0.5808830 - 165.6700000$ 1610 $0.4490864 - 151.9300000$ 1611 $0.4004675 - 126.2700000$ 1612 $0.4154236 - 118.6300000$ 1613 $0.4419235 - 113.6200000$ 1614 $0.4862507 - 110.6000000$ 1615 $0.5540101 - 110.8000000$ 1616 $0.5825853 - 116.9200000$ 1617 $0.4768615 - 123.1600000$ 1618 $0.3410821 - 116.6900000$ 1619 $0.2722113 - 105.9700000$ 1620 $0.2326907 - 99.8700000$ 1621 $0.1784405 - 94.6700000$ 1622 $0.118839 - 86.1700000$ 1623 $6.4933499e-02 - 66.3500000$ 171 $.9804879 - 95.7700000$ 1624 $1.6468860e-02$ 23.06000000	15	20	0.2710254 - 105.9700000 0.2263765 - 99.8700000
15220.1156134-86.170000015236.3168224e-02-66.350000015241.6021579e-0223.06000015253.650998e-04-72.440000015269.6881524e-10-107.38000001611.9424790-95.77000001622.1229350-101.86000001632.3103707-112.55000001642.338545-129.9300001651.9686913-151.73000001661.3488334-168.38000001670.8603577-172.65000001680.5808830-165.670000016100.4038185-137.490000016100.4038185-137.490000016110.4004675-126.270000016120.4154236-118.630000016130.4419235-113.620000016140.4862507-110.600000016150.5540101-110.80000016160.5825853-116.92000016170.4768615-123.160000016180.3410821-116.69000016190.2792113-105.970000016200.138339-86.170000016210.1784405-94.670000016220.118339-86.170000016236.4933499e-02-66.35000001711.9804879-95.770000016<	15	21	0.1735950 - 94.6700000
1523 $6.3168224e-02-66.350000$ 1524 $1.6021579e-02-23.060000$ 1525 $3.650998e-04-72.440000$ 1526 $9.6881524e-10-107.380000$ 16 $1.9424790-95.7700000$ 162 $2.1229350-101.860000$ 163 $2.3103707-112.5500000$ 164 $2.338545-129.930000$ 164 $2.338545-129.930000$ 166 $1.348334-168.3800000$ 166 $1.348334-165.6700000$ 167 $0.8603577-172.6500000$ 168 $0.5808830-165.6700000$ 169 $0.4490864-151.9300000$ 1610 $0.4038185-137.4900000$ 1611 $0.4004675-126.2700000$ 1612 $0.4154236-118.6300000$ 1613 $0.4419235-113.6200000$ 1614 $0.4862507-110.6000000$ 1615 $0.5540101-110.8000000$ 1616 $0.5825853-116.9200000$ 1617 $0.4768615-123.1600000$ 1619 $0.2792113-105.9700000$ 1620 $0.2326907-99.8700000$ 1621 $0.1784405-94.6700000$ 1623 $6.4933499e-02-66.3500000$ 1624 $1.6468860e-02-23.0600000$ 171 $1.9804879-95.7700000$ 1625 $3.7531785e-04-72.4400000$ 1626 $9.9595042e-10-107.3800000$ 171 $1.9804879-95.7700000$ 172 $2.1626356-101.8600000$ 174 2.383	15	22	0.1156134 -86.1700000
1524 $1.6021579e-02$ 23.060000 1525 $3.650998e-04$ -72.4400000 1526 $9.6881524e-10$ -107.3800000 161 1.9424790 -95.770000 162 2.1229350 -101.8600000 163 2.3103707 -112.5500000 164 2.3385545 -129.9300000 165 1.9686913 -151.7300000 166 1.3488334 -168.3800000 166 1.3488330 -165.6700000 168 0.5808830 -165.6700000 169 0.4490864 -151.9300000 1610 0.4038185 -137.4900000 1611 0.404675 -126.2700000 1612 0.4154236 -118.6300000 1613 0.4419235 -113.6200000 1614 0.4862507 -110.6000000 1615 0.5540101 -110.800000 1616 0.5825853 -116.9200000 1617 0.4768615 -123.1600000 1618 0.3410821 -116.6900000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 172 1.626356 -101.3600000 171 1.9804879 -95.7700000 172 2.1626356	15	23	6.3168224e-02 -66.3500000
1525 $3.650998e-04$ -72.4400000 1526 $9.6881524e-10$ -107.3800000 161 1.9424790 -95.7700000 162 2.1229350 -101.8600000 163 2.3103707 -112.5500000 164 2.3385545 -129.9300000 165 1.9686913 -151.7300000 166 1.3488334 -168.3800000 166 1.3488334 -165.6700000 168 0.5808830 -165.6700000 169 0.4490864 -151.9300000 1610 0.4038185 -137.4900000 1611 0.4004675 -126.2700000 1612 0.4154236 -118.6300000 1613 0.4419235 -113.6200000 1614 0.4862507 -110.6000000 1615 0.5540101 -110.8000000 1616 0.5825853 -116.9200000 1617 0.4768615 -123.1600000 1618 0.3410821 -116.6900000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 171 $0.9959542e-10$ -107.3800000 172 2.1626356 -101.8600000 173 2.3571235	15	24	1.6021579e-02 23.0600000
1526 $9.6881524e-10$ -107.3800000 161 1.9424790 -95.7700000 162 2.1229350 -101.8600000 163 2.3103707 -112.5500000 164 2.3385545 -129.9300000 165 1.9686913 -151.7300000 166 1.3488334 -168.3800000 166 1.348834 -168.3800000 167 0.8603577 -172.6500000 168 0.5808830 -165.6700000 1610 0.4490864 -151.9300000 1610 0.4490864 -151.9300000 1611 0.4004675 -126.2700000 1612 0.4154236 -118.6300000 1613 0.4419235 -113.6200000 1613 0.4419235 -113.6200000 1614 0.4862507 -10.6000000 1615 0.5540101 -110.8000000 1616 0.5825853 -116.9200000 1617 0.4768615 -123.1600000 1618 0.3410821 -116.6900000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 171 1.9804879 -95.7700000 172 2.1626356 <t< td=""><td>15</td><td>25</td><td>3.6509998e-04 -72.4400000</td></t<>	15	25	3.6509998e-04 -72.4400000
161 1.9424790 -95.7700000 162 2.1229350 -101.8600000 163 2.3103707 -112.5500000 164 2.3385545 -129.9300000 165 1.9686913 -151.7300000 166 1.3488334 -168.3800000 166 1.348834 -168.3800000 166 1.348834 -168.3800000 1610 0.8603577 -172.6500000 1610 0.4490864 -151.9300000 1610 0.4490864 -151.9300000 1611 0.4004675 -126.2700000 1612 0.4154236 -118.6300000 1612 0.4154236 -118.6300000 1613 0.4419235 -113.6200000 1613 0.4419235 -113.6200000 1614 0.4862507 -10.6000000 1615 0.5540101 -110.8000000 1616 0.5825853 -116.9200000 1617 0.4768615 -123.1600000 1618 0.3410821 -116.6900000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1622 0.1188339 -86.1700000 1623 $6.7531785e-04$ -72.4400000 1625 $3.7531785e-04$ -72.4400000 17 1.9804879 -95.77000	15	26	9.6881524e-10 -107.3800000
1622.122350 -101.800000 1632.3103707 -112.5500000 1642.338545 -129.9300000 165 1.9686913 -151.7300000 166 1.3488334 -168.3800000 167 0.8603577 -172.6500000 168 0.5808830 -165.6700000 169 0.4490864 -151.9300000 1610 0.4038185 -137.4900000 1611 0.404675 -126.2700000 1612 0.4154236 -118.6300000 1613 0.4419235 -113.6200000 1614 0.4862507 -110.6000000 1615 0.5540101 -110.8000000 1616 0.5828853 -116.9200000 1617 0.4768615 -123.1600000 1618 0.3410821 -116.6900000 1619 0.2792113 -105.9700000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 171 0.9804879 -95.7700000 172 2.1626356 -101.8600000 171 0.8771235 -112.5500000 174 2.3838402 -129.9300000 175 2.0073260 -151.73000	16	1	1.9424790 - 95.7700000
1011	16	2	2.1229350 - 101.00000000000000000000000000000000
165 1.9686913 -151.730000 166 1.3488334 -168.380000 167 0.8603577 -172.650000 168 0.5808830 -165.6700000 169 0.4490864 -151.930000 1610 0.4038185 -137.4900000 1611 0.4004675 -126.2700000 1612 0.4419235 -113.6200000 1613 0.4419235 -113.6200000 1614 0.4862507 -110.6000000 1615 0.5540101 -110.8000000 1616 0.5825853 -116.9200000 1617 0.4768615 -123.1600000 1618 0.3410821 -116.6900000 1619 0.2792113 -105.9700000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1623 $3.7531785e-04$ -72.4400000 1624 $1.6468860e-02$ 23.0600000 171 1.9804879 -95.7700000 172 2.1626356 -101.8600000 173 2.3571235 -112.5500000 174 2.3838402 -129.9300000 175 2.0073260 -151.7300000 176 1.3750801 -168.3800000 179 0.4578661	16	4	2.3385545 -129.9300000
166 1.3488334 -168.380000 167 0.8603577 -172.650000 168 0.5808830 -165.670000 169 0.4490864 -151.930000 1610 0.4038185 -137.4900000 1611 0.4004675 -126.2700000 1612 0.4419235 -113.6200000 1613 0.4419235 -113.6200000 1614 0.4862507 -110.6000000 1615 0.5540101 -110.8000000 1616 0.5825853 -116.9200000 1617 0.4768615 -123.1600000 1618 0.3410821 -116.6900000 1619 0.2792113 -105.9700000 1620 0.2326907 -99.870000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 1625 $3.7531785e-04$ -72.4400000 171 1.9804879 -95.7700000 172 2.1626356 -101.8600000 173 2.3571235 -112.5500000 174 2.3838402 -129.9300000 175 2.0073260 -151.7300000 176 1.3750801 -168.3800000 179 0.4578661 -151.9300000 179 0.4506187 $-$	16	5	1.9686913 -151.7300000
167 0.8603577 -172.6500000 168 0.5808830 -165.6700000 169 0.4490864 -151.930000 1610 0.4038185 -137.4900000 1611 0.4004675 -126.2700000 1612 0.4419235 -113.6200000 1613 0.4419235 -113.6200000 1614 0.4862507 -110.6000000 1615 0.5540101 -110.8000000 1616 0.5825853 -116.9200000 1617 0.4768615 -123.1600000 1618 0.3410821 -116.6900000 1619 0.2792113 -105.9700000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 1625 $3.7531785e-04$ -72.4400000 171 1.9804879 -95.7700000 172 2.1626356 -101.8600000 173 2.3571235 -112.5500000 174 2.3838402 -129.9300000 175 2.0073260 -151.7300000 176 1.3750801 -168.3800000 177 0.8771039 -172.6500000 179 0.4528673 -113.6200000 1710 0.493198 <t< td=""><td>16</td><td>б</td><td>1.3488334 -168.3800000</td></t<>	16	б	1.3488334 -168.3800000
168 0.5808830 -165.6700000 169 0.4490864 -151.930000 1610 0.4038185 -137.4900000 1611 0.4004675 -126.2700000 1612 0.4154236 -118.630000 1613 0.4419235 -113.6200000 1614 0.4862507 -110.6000000 1614 0.4862507 -110.600000 1615 0.5540101 -110.8000000 1616 0.5825853 -116.9200000 1617 0.4768615 -123.1600000 1618 0.3410821 -116.6900000 1619 0.2792113 -105.9700000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 1625 $3.7531785e-04$ -72.4400000 171 1.9804879 -95.7700000 172 2.1626356 -101.8600000 173 2.3571235 -112.5500000 173 2.0073260 -151.7300000 174 2.3838402 -129.9300000 175 2.0073260 -151.7300000 176 1.3750801 -168.3800000 179 0.4578661 -151.9300000 1710 0.4597301 <t< td=""><td>16</td><td>7</td><td>0.8603577 -172.6500000</td></t<>	16	7	0.8603577 -172.6500000
169 0.4490864 -151.930000 1610 0.4038185 -137.490000 1611 0.4004675 -126.270000 1612 0.4154236 -118.630000 1613 0.4419235 -113.620000 1614 0.4862507 -110.600000 1614 0.4862507 -110.600000 1615 0.5540101 -110.800000 1616 0.5825853 -116.9200000 1617 0.4768615 -123.160000 1618 0.3410821 -116.6900000 1619 0.2792113 -105.9700000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 1624 $1.6468860e-02$ 23.0600000 171 1.9804879 -95.7700000 172 2.1626356 -101.8600000 172 2.0073260 -151.7300000 173 2.3571235 -112.5500000 174 2.3838402 -129.9300000 175 2.0073260 -151.7300000 176 1.3750801 -168.3800000 177 0.8771039 -172.6500000 179 0.4578661 -151.9300000 1710 0.4957301 -110	16	8	0.5808830 -165.6700000
1610 $0.4038185 - 137.4900000$ 1611 $0.4004675 - 126.2700000$ 1612 $0.4154236 - 118.6300000$ 1613 $0.4419235 - 113.6200000$ 1614 $0.4862507 - 110.6000000$ 1615 $0.5540101 - 110.8000000$ 1616 $0.5825853 - 116.9200000$ 1617 $0.4768615 - 123.1600000$ 1618 $0.3410821 - 116.6900000$ 1619 $0.2792113 - 105.9700000$ 1620 $0.2326907 - 99.8700000$ 1621 $0.1784405 - 94.6700000$ 1622 $0.1188339 - 86.1700000$ 1623 $6.4933499e-02 - 66.3500000$ 1624 $1.6468860e-02 23.0600000$ 1625 $3.7531785e-04 - 72.4400000$ 1626 $9.9595042e-10 - 107.3800000$ 171 $1.9804879 - 95.7700000$ 172 $2.1626356 - 101.8600000$ 173 $2.3571235 - 112.5500000$ 174 $2.3838402 - 129.9300000$ 175 $2.0073260 - 151.7300000$ 176 $1.3750801 - 168.3800000$ 177 $0.8771039 - 172.6500000$ 179 $0.4578661 - 151.9300000$ 1710 $0.4117086 - 137.4900000$ 1710 $0.4234970 - 118.6300000$ 1711 $0.4083198 - 126.2700000$ 1712 $0.5943265 - 116.9200000$ 1713 $0.4506187 - 113.6200000$ 1714 $0.4957301 - 110.6000000$ 1715 </td <td>16</td> <td>9</td> <td>0.4490864 -151.9300000</td>	16	9	0.4490864 -151.9300000
1011 $0.403079 - 120.20000$ 1612 $0.403079 - 120.20000$ 1613 $0.4419235 - 113.620000$ 1614 $0.4862507 - 110.600000$ 1615 $0.5540101 - 110.800000$ 1615 $0.5540101 - 110.800000$ 1616 $0.5825853 - 116.920000$ 1617 $0.4768615 - 123.160000$ 1618 $0.3410821 - 116.690000$ 1619 $0.2792113 - 105.9700000$ 1620 $0.2326907 - 99.870000$ 1621 $0.1784405 - 94.670000$ 1622 $0.1188339 - 86.1700000$ 1623 $6.4933499e-02 - 66.3500000$ 1624 $1.6468860e-02 23.0600000$ 1625 $3.7531785e-04 - 72.4400000$ 1626 $9.9595042e-10 - 107.3800000$ 171 $1.9804879 - 95.7700000$ 172 $2.1626356 - 101.8600000$ 173 $2.3571235 - 112.5500000$ 174 $2.3838402 - 129.9300000$ 175 $2.0073260 - 151.7300000$ 176 $1.3750801 - 168.3800000$ 177 $0.8771039 - 172.6500000$ 179 $0.4578661 - 151.9300000$ 1710 $0.4117086 - 137.4900000$ 1710 $0.4234970 - 118.6300000$ 1713 $0.4506187 - 113.6200000$ 1714 $0.4957301 - 110.6000000$ 1715 $0.5648244 - 110.8000000$ 1716 $0.5943265 - 116.9200000$ 1717 0.34775	16	11	0.4038185 - 137.4900000 0.4004675 - 126.2700000
1613 $0.4419235 -113.620000$ 1614 $0.4862507 -110.600000$ 1615 $0.5540101 -110.800000$ 1616 $0.5825853 -116.920000$ 1617 $0.4768615 -123.160000$ 1618 $0.3410821 -116.690000$ 1619 $0.2792113 -105.970000$ 1620 $0.2326907 -99.870000$ 1621 $0.1784405 -94.670000$ 1622 $0.1188339 -86.170000$ 1623 $6.4933499e-02 -66.350000$ 1623 $6.4933499e-02 -66.3500000$ 1624 $1.6468860e-02 23.0600000$ 1625 $3.7531785e-04 -72.4400000$ 1626 $9.9595042e-10 -107.3800000$ 171 $1.9804879 -95.7700000$ 172 $2.1626356 -101.8600000$ 173 $2.3571235 -112.5500000$ 174 $2.3838402 -129.9300000$ 175 $2.0073260 -151.7300000$ 176 $1.3750801 -168.3800000$ 177 $0.8771039 -172.6500000$ 179 $0.4578661 -151.9300000$ 1710 $0.4117086 -137.4900000$ 1710 $0.4117086 -137.4900000$ 1711 $0.4083198 -126.2700000$ 1713 $0.4506187 -113.6200000$ 1714 $0.4957301 -110.6000000$ 1715 $0.5648244 -110.8000000$ 1716 $0.5943265 -116.9200000$ 1718 $0.3477592 -116.6900000$ 1719 $0.2846503 -105.9700000$ </td <td>16</td> <td>12</td> <td>0.4154236 -118.6300000</td>	16	12	0.4154236 -118.6300000
1614 0.4862507 -110.600000 1615 0.5540101 -110.800000 1616 0.5825853 -116.920000 1617 0.4768615 -123.160000 1618 0.3410821 -116.690000 1619 0.2792113 -105.9700000 1620 0.2326907 -99.870000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 1625 $3.7531785e-04$ -72.4400000 1626 $9.9595042e-10$ -107.3800000 171 1.9804879 -95.7700000 172 2.1626356 -101.8600000 173 2.3571235 -112.5500000 174 2.3838402 -129.9300000 175 2.0073260 -151.7300000 176 1.3750801 -168.3800000 177 0.8771039 -172.6500000 178 0.5921878 -165.6700000 1710 0.4117086 -137.4900000 1711 0.4083198 -126.2700000 1712 0.4234970 -118.6300000 1713 0.4506187 -113.6200000 1714 0.4957301 -110.6000000 1715 0.5648244 -110.8000000 1716 0.5943265 <td>16</td> <td>13</td> <td>0.4419235 -113.6200000</td>	16	13	0.4419235 -113.6200000
1615 0.5540101 -110.800000 1616 0.5825853 -116.920000 1617 0.4768615 -123.160000 1618 0.3410821 -116.690000 1619 0.2792113 -105.9700000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 1625 $3.7531785e-04$ -72.4400000 1626 $9.9595042e-10$ -107.3800000 171 1.9804879 -95.7700000 172 2.1626356 -101.8600000 173 2.3571235 -112.5500000 174 2.3838402 -129.9300000 175 2.0073260 -151.7300000 176 1.3750801 -168.3800000 177 0.8771039 -172.6500000 178 0.5921878 -165.6700000 1710 0.4117086 -137.4900000 1711 0.4083198 -126.2700000 1712 0.4234970 -118.6300000 1713 0.4506187 -113.6200000 1714 0.4957301 -110.6000000 1715 0.5648244 -110.8000000 1716 0.5943265 -16.9200000 1717 0.3477592 <td>16</td> <td>14</td> <td>0.4862507 -110.6000000</td>	16	14	0.4862507 -110.6000000
1616 0.5825853 -116.9200000 1617 0.4768615 -123.160000 1618 0.3410821 -116.690000 1619 0.2792113 -105.9700000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 1624 $1.6468860e-02$ 23.0600000 1624 $1.6468860e-04$ -72.4400000 1626 $9.9595042e-10$ -107.3800000 17 1.9804879 -95.7700000 17 2 2.1626356 -101.8600000 17 2 2.0073260 -151.7300000 17 4 2.3838402 -129.9300000 17 5 2.0073260 -151.7300000 17 6 1.3750801 -168.3800000 17 7 0.8771039 -172.6500000 17 8 0.5921878 -165.6700000 17 10 0.4117086 -137.4900000 17 10 0.4117086 -137.4900000 17 12 0.4234970 -118.6300000 17 13 0.4506187 -113.6200000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 1	16	15	0.5540101 -110.8000000
1617 $0.4768615 - 123.160000$ 1618 $0.3410821 - 116.690000$ 1619 $0.2792113 - 105.970000$ 1620 $0.2326907 - 99.870000$ 1621 $0.1784405 - 94.670000$ 1622 $0.1784405 - 94.670000$ 1622 $0.1188339 - 86.170000$ 1623 $6.4933499e-02 - 66.3500000$ 1624 $1.6468860e-02 \ 23.0600000$ 1625 $3.7531785e-04 - 72.4400000$ 1626 $9.9595042e-10 - 107.3800000$ 171 $1.9804879 - 95.7700000$ 172 $2.1626356 - 101.8600000$ 173 $2.3571235 - 112.5500000$ 174 $2.3838402 - 129.9300000$ 175 $2.0073260 - 151.7300000$ 176 $1.3750801 - 168.3800000$ 177 $0.8771039 - 172.6500000$ 179 $0.4578661 - 151.9300000$ 1710 $0.4117086 - 137.4900000$ 1711 $0.4083198 - 126.2700000$ 1712 $0.4234970 - 118.6300000$ 1713 $0.4506187 - 113.6200000$ 1714 $0.4957301 - 110.6000000$ 1715 $0.5648244 - 110.8000000$ 1716 $0.5943265 - 116.9200000$ 1718 $0.3477592 - 116.690000$ 1719 $0.2846503 - 105.9700000$	16	16	0.5825853 -116.9200000
1618 0.3410821 -116.8900000 1619 0.2792113 -105.9700000 1620 0.2326907 -99.8700000 1621 0.1784405 -94.6700000 1622 0.1188339 -86.1700000 1623 $6.4933499e-02$ -66.3500000 1624 $1.6468860e-02$ 23.0600000 1625 $3.7531785e-04$ -72.4400000 1626 $9.9595042e-10$ -107.3800000 171 1.9804879 -95.7700000 172 2.1626356 -101.8600000 173 2.3571235 -112.5500000 174 2.3838402 -129.9300000 175 2.0073260 -151.7300000 176 1.3750801 -168.3800000 177 0.8771039 -172.6500000 178 0.5921878 -165.6700000 1710 0.4117086 -137.4900000 1711 0.4083198 -126.2700000 1712 0.4234970 -118.6300000 1713 0.4506187 -113.6200000 1714 0.4957301 -110.8000000 1715 0.5648244 -110.8000000 1716 0.5943265 -16.9200000 1717 0.4862127 -123.1600000 1718 0.3477592 -116.6900000	16	17	0.4768615 - 123.1600000
1015 $0.2326907 - 99.8700000$ 1620 $0.2326907 - 99.8700000$ 1621 $0.1784405 - 94.6700000$ 1622 $0.1188339 - 86.1700000$ 1623 $6.4933499e-02 - 66.3500000$ 1624 $1.6468860e-02$ 23 0.600000 1624 $1.6468860e-02$ 23 0.600000 1625 $3.7531785e-04 - 72.4400000$ 1626 $9.9595042e-10 - 107.3800000$ 171 $1.9804879 - 95.7700000$ 172 $1.626356 - 101.8600000$ 173 $2.3571235 - 112.5500000$ 174 $2.3838402 - 129.9300000$ 175 $2.0073260 - 151.7300000$ 176 $1.3750801 - 168.3800000$ 177 $0.8771039 - 172.6500000$ 178 $0.5921878 - 165.6700000$ 179 $0.44578661 - 151.9300000$ 1710 $0.4117086 - 137.4900000$ 1711 $0.4083198 - 126.2700000$ 1712 $0.4234970 - 118.6300000$ 1713 $0.4506187 - 113.6200000$ 1714 $0.4957301 - 110.6000000$ 1715 $0.5648244 - 110.8000000$ 1716 $0.5943265 - 116.9200000$ 1717 $0.3477592 - 116.6900000$ 1718 $0.3477592 - 116.6900000$	16	10 10	0.3410821 - 116.6900000 0.2792113 -105.9700000
1621 $0.1784405 - 94.670000$ 1622 $0.1188339 - 86.170000$ 1623 $6.4933499e-02 - 66.350000$ 1624 $1.6468860e-02$ 23.0600001624 $1.6468860e-02$ 23.06000016253.7531785e-04 -72.4400000 16269.9595042e-10 -107.3800000 1711.9804879 -95.7700000 1721.626356 -101.8600000 1732.3571235 -112.5500000 1742.3838402 -129.9300000 1752.0073260 -151.7300000 1761.3750801 -168.3800000 1770.8771039 -172.6500000 1780.5921878 -165.6700000 1790.4578661 -151.9300000 17101710171018 0.4506187 113 0.4506187 123 0.600000 17140.495730117160.5943265116.920000017180.347759216.690000017190.2846503-105.9700000	16	20	0.2326907 -99.8700000
1622 $0.1188339 - 86.1700000$ 1623 $6.4933499e-02 - 66.3500000$ 1624 $1.6468860e-02$ 23.0600000 1625 $3.7531785e-04 - 72.4400000$ 1626 $9.9595042e-10 - 107.3800000$ 171 $1.9804879 - 95.7700000$ 172 $2.1626356 - 101.8600000$ 173 $2.3571235 - 112.5500000$ 174 $2.3838402 - 129.9300000$ 175 $2.0073260 - 151.7300000$ 176 $1.3750801 - 168.3800000$ 177 $0.8771039 - 172.6500000$ 178 $0.5921878 - 165.6700000$ 179 $0.44578661 - 151.9300000$ 1710 $0.4117086 - 137.4900000$ 1711 $0.4083198 - 126.2700000$ 1712 $0.4234970 - 118.6300000$ 1713 $0.4506187 - 113.6200000$ 1714 $0.4957301 - 110.6000000$ 1715 $0.5648244 - 110.8000000$ 1716 $0.5943265 - 116.9200000$ 1717 $0.4862127 - 123.1600000$ 1718 $0.3477592 - 116.6900000$	16	21	0.1784405 -94.6700000
1623 $6.4933499e-02 - 66.3500000$ 1624 $1.6468860e-02$ 23.0600000 1625 $3.7531785e-04$ -72.4400000 1626 $9.9595042e-10$ -107.3800000 171 1.9804879 -95.7700000 172 2.1626356 -101.8600000 172 2.1626356 -101.8600000 173 2.3571235 -112.5500000 174 2.3838402 -129.9300000 175 2.0073260 -151.7300000 176 1.3750801 -168.3800000 177 0.8771039 -172.6500000 178 0.5921878 -165.6700000 179 0.4578661 -151.9300000 1710 0.4117086 -137.4900000 1711 0.4083198 -126.2700000 1712 0.4234970 -118.6300000 1713 0.4506187 -113.6200000 1714 0.4957301 -110.8000000 1715 0.5648244 -110.8000000 1716 0.5943265 -116.9200000 1717 0.4862127 -123.1600000 1718 0.3477592 -116.6900000 1719 0.2846503 -105.9700000	16	22	0.1188339 -86.1700000
1624 $1.6468860e-02$ 23.0600000 1625 $3.7531785e-04$ -72.4400000 1626 $9.9595042e-10$ -107.3800000 171 1.9804879 -95.7700000 172 2.1626356 -101.8600000 172 2.3571235 -112.5500000 174 2.3838402 -129.9300000 175 2.0073260 -151.7300000 176 1.3750801 -168.3800000 177 0.8771039 -172.6500000 178 0.5921878 -165.6700000 179 0.4578661 -151.9300000 1710 0.4117086 -137.4900000 1712 0.4234970 -118.6300000 1713 0.4506187 -113.6200000 1714 0.4957301 -110.6000000 1715 0.5648244 -110.8000000 1716 0.5943265 -116.9200000 1718 0.3477592 -116.6900000 1719 0.2846503 -105.9700000	16	23	6.4933499e-02 -66.3500000
16 25 3.7531785e-04 -72.4400000 16 26 9.9595042e-10 -107.3800000 17 1 1.9804879 -95.7700000 17 2 2.1626356 -101.8600000 17 2 2.3571235 -112.5500000 17 3 2.3571235 -112.5500000 17 4 2.3838402 -129.9300000 17 5 2.0073260 -151.7300000 17 6 1.3750801 -168.3800000 17 7 0.8771039 -172.6500000 17 8 0.5921878 -165.6700000 17 9 0.4578661 -151.9300000 17 10 0.4117086 -137.4900000 17 10 0.4117086 -137.4900000 17 12 0.4234970 -118.6300000 17 12 0.4234970 -118.6300000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 </td <td>16</td> <td>24</td> <td>1.6468860e-02 23.0600000</td>	16	24	1.6468860e-02 23.0600000
16 2.6 9.9939342e-10 -10'.3800000 17 1 1.9804879 -95.7700000 17 2 2.1626356 -101.8600000 17 3 2.3571235 -112.5500000 17 4 2.3838402 -129.9300000 17 5 2.0073260 -151.7300000 17 6 1.3750801 -168.3800000 17 7 0.8771039 -172.6500000 17 8 0.5921878 -165.6700000 17 9 0.4578661 -151.9300000 17 10 0.4117086 -137.4900000 17 10 0.4117086 -137.4900000 17 11 0.4083198 -126.2700000 17 12 0.4234970 -118.6300000 17 13 0.4506187 -113.6200000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 <td>16</td> <td>25</td> <td>3.7531785e-04 -72.4400000</td>	16	25	3.7531785e-04 -72.4400000
17 2 2.1626356 -101.860000 17 3 2.3571235 -112.5500000 17 4 2.3838402 -129.9300000 17 4 2.3838402 -129.9300000 17 5 2.0073260 -151.730000 17 6 1.3750801 -168.380000 17 7 0.8771039 -172.6500000 17 8 0.5921878 -165.6700000 17 9 0.4578661 -151.930000 17 10 0.4117086 -137.4900000 17 11 0.4083198 -126.2700000 17 12 0.4234970 -118.6300000 17 12 0.4234970 -118.6300000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000	10 17	20 1	9.95950420-10 -107.3800000
17 3 2.3571235 -112.5500000 17 4 2.3838402 -129.9300000 17 5 2.0073260 -151.7300000 17 5 2.0073260 -151.7300000 17 6 1.3750801 -168.3800000 17 7 0.8771039 -172.6500000 17 8 0.5921878 -165.6700000 17 9 0.4578661 -151.9300000 17 10 0.4117086 -137.4900000 17 11 0.4083198 -126.2700000 17 12 0.4234970 -118.6300000 17 12 0.4234970 -118.6300000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.97000000	17	2	2.1626356 -101.8600000
17 4 2.3838402 -129.9300000 17 5 2.0073260 -151.7300000 17 6 1.3750801 -168.380000 17 7 0.8771039 -172.650000 17 8 0.5921878 -165.6700000 17 9 0.4578661 -151.930000 17 10 0.4117086 -137.490000 17 11 0.4083198 -126.2700000 17 12 0.4234970 -118.6300000 17 12 0.4234970 -113.6200000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	3	2.3571235 -112.5500000
17 5 2.0073260 -151.7300000 17 6 1.3750801 -168.3800000 17 7 0.8771039 -172.650000 17 8 0.5921878 -165.6700000 17 9 0.4578661 -151.930000 17 10 0.4117086 -137.490000 17 10 0.4117086 -137.490000 17 12 0.4234970 -118.6300000 17 12 0.4234970 -113.6200000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	4	2.3838402 -129.9300000
17 6 1.3750801 -168.3800000 17 7 0.8771039 -172.6500000 17 8 0.5921878 -165.6700000 17 9 0.4578661 -151.9300000 17 10 0.4117086 -137.4900000 17 10 0.4417086 -137.4900000 17 12 0.4234970 -118.6300000 17 12 0.4234970 -113.6200000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	5	2.0073260 -151.7300000
17 7 0.8771039 -172.6500000 17 8 0.5921878 -165.6700000 17 9 0.4578661 -151.9300000 17 10 0.4117086 -137.4900000 17 10 0.4117086 -137.4900000 17 11 0.4083198 -126.2700000 17 12 0.4234970 -118.6300000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	6	1.3750801 -168.3800000
17 8 0.5921878 -165.6700000 17 9 0.4578661 -151.9300000 17 10 0.4117086 -137.4900000 17 11 0.4083198 -126.2700000 17 12 0.4234970 -118.6300000 17 12 0.4234970 -118.6300000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	7	0.8771039 -172.6500000
17 10 0.4117086 -137.4900000 17 11 0.4083198 -126.2700000 17 12 0.4234970 -118.630000 17 12 0.4234970 -118.630000 17 13 0.4506187 -113.620000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	⊥/ 17	8 9	0.39218/8 -105.6/00000 0 4578661 -151 9300000
17 11 0.4083198 -126.2700000 17 12 0.4234970 -118.630000 17 13 0.4506187 -113.620000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.800000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	10	0.4117086 -137.4900000
17 12 0.4234970 -118.6300000 17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	11	0.4083198 -126.2700000
17 13 0.4506187 -113.6200000 17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	12	0.4234970 -118.6300000
17 14 0.4957301 -110.6000000 17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	13	0.4506187 -113.6200000
17 15 0.5648244 -110.8000000 17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	14	0.4957301 -110.6000000
17 16 0.5943265 -116.9200000 17 17 0.4862127 -123.1600000 17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	17	15	0.5648244 -110.8000000
17 18 0.3477592 -116.6900000 17 19 0.2846503 -105.9700000	⊥/ 17	⊥o 17	0.3943205 -110.9200000 0 4862127 -123 1600000
17 19 0.2846503 -105.9700000	17	18	0.3477592 -116.6900000
	17	19	0.2846503 -105.9700000

	17	20	0.2372609 -99.8700000
	17	21	0.1819443 -94.6700000
	17	22	0.1211687 -86.1700000
	17	23	6.6189866e-02 -66.3500000
	17	24	1.6790901e-02 23.0600000
	17	25	3.8263336e-04 -72.4400000
	17	26	1.0148357e-09 -107.3800000
	18	1	2.0035169 -95.7700000
	18	2	2.1877096 -101.8600000
	18	3	2.3843960 -112.5500000
	18	4	2.4110117 -129.9300000
	18	5	2.0308428 -151.7300000
	18	б	1.3910767 -168.3800000
	18	7	0.8872662 -172.6500000
	18	8	0.5990232 -165.6700000
	18	9	0.4631579 -151.9300000
	18	10	0.4164207 -137.4900000
	18	11	0.4130908 -126.2700000
	18	12	0.4284308 -118.6300000
	18	13	0.4557714 -113.6200000
	18	14	0.5014752 -110.6000000
	18	15	0.5713766 -110.8000000
	18	16	0.6010357 -116.9200000
	18	17	0.4919111 -123.1600000
	18	18	0.3517487 -116.6900000
	18	19	0.2879422 -105.9700000
	18	20	0.2399970 -99.8700000
	18	21	0.1840316 -94.6700000
	18	22	0.1225575 -86.1700000
	18	23	6.6953228e-02 -66.3500000
	18	24	1.6987705e-02 23.0600000
	18	25	3.8704653e-04 -72.4400000
	18	26	1.0267633e-09 -107.3800000
	19	1	2.0111187 -95.7700000
	19	2	2.1960676 -101.8600000
	19	3	2.3921882 -112.5500000
	19	4	2.4200688 -129.9300000
	19	5	2.0375619 -151.7300000
	19	6	1.3963571 -168.3800000
	19	7	0.8907013 -172.6500000
	19	8	0.6013893 -165.6700000
	19	9	0.4649620 -151.9300000
	19	10	0.4180645 -137.4900000
	19	11	0.4146811 -126.2700000
	19	12	
	19	13 14	
	19	14	0.5033424 -110.6000000
	10	15 16	0.5755555 -110.0000000
	19 10	10 17	0.0032721 -110.3200000
	10	18	0.3530926 -116 6900000
	19	19	0.3333320 = 110.0900000
	19	20	0 2408990 -99 8700000
	1.2	<u> </u>	
	19	21	0.1847522 -94.6700000
	19 19	21 22	0.1847522 -94.6700000 0.1230204 -86.1700000
	19 19 19	21 22 23	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000
	19 19 19 19	21 22 23 24	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000
	19 19 19 19 19	21 22 23 24 25	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72 4400000
	19 19 19 19 19 19	21 22 23 24 25 26	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107 3800000
	19 19 19 19 19 19 19	21 22 23 24 25 26	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000
,	19 19 19 19 19 19 19	21 22 23 24 25 26 NNSFER	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH
	19 19 19 19 19 19 HFTRA	21 22 23 24 25 26 	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH
,	19 19 19 19 19 19 19 HFTRA	21 22 23 24 25 26 WNSFER ifreq	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg]
	19 19 19 19 19 19 19 HFTR2 idir 1	21 22 23 24 25 26 MNSFER ifreq 1	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg] 2.0111187 84.2300000
	19 19 19 19 19 19 19 HFTR/ idir 1	21 22 23 24 25 26 	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg] 2.0111187 84.2300000 2.1960676 78.1400000
	19 19 19 19 19 19 HFTR/ idir 1 1	21 22 23 24 25 26 ifreq 1 2 3	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg] 2.0111187 84.2300000 2.1960676 78.1400000 2.3921882 67.4500000
	19 19 19 19 19 19 HFTR/ I idir 1 1 1	21 22 23 24 25 26 MNSFER 1 2 3 4	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg] 2.0111187 84.2300000 2.1960676 78.1400000 2.3921882 67.4500000 2.4200688 50.0700000
	19 19 19 19 19 HFTR2 idir 1 1 1 1	21 22 23 24 25 26 	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg] 2.0111187 84.2300000 2.1960676 78.1400000 2.3921882 67.4500000 2.4200688 50.0700000 2.0375619 28.2700000
	19 19 19 19 19 idir 1 1 1 1 1	21 22 23 24 25 26 ifreq 1 2 3 4 5 6	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg] 2.0111187 84.2300000 2.1960676 78.1400000 2.3921882 67.4500000 2.4200688 50.0700000 2.0375619 28.2700000 1.3963571 11.6200000
	19 19 19 19 19 idir 1 1 1 1 1 1	21 22 23 24 25 26 ifreq 1 2 3 4 5 6 7	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg] 2.011187 84.2300000 2.1960676 78.1400000 2.3921882 67.4500000 2.4200688 50.0700000 2.0375619 28.2700000 1.3963571 11.6200000 0.8807013 7.3500000
	19 19 19 19 19 idir 1 1 1 1 1 1 1	21 22 23 24 25 26 ifreq 1 2 3 4 5 6 7 8	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg] 2.0111187 84.2300000 2.1960676 78.1400000 2.3921882 67.4500000 2.4200688 50.0700000 2.0375619 28.2700000 1.3963571 11.6200000 0.8907013 7.3500000 0.6013893 14.330000
	19 19 19 19 19 idir 1 1 1 1 1 1 1 1	21 22 23 24 25 26 ifreq 1 2 3 4 5 6 7 8 9	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 3.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg] 2.0111187 84.230000 2.1960676 78.1400000 2.3921882 67.4500000 2.4200688 50.0700000 2.0375619 28.2700000 1.3963571 11.6200000 0.8907013 7.3500000 0.6013893 14.3300000 0.4649620 28.0700000
	19 19 19 19 19 idir 1 1 1 1 1 1 1 1 1	21 22 23 24 25 26 ifreq 1 2 3 4 5 5 6 7 8 9 10	0.1847522 -94.6700000 0.1230204 -86.1700000 6.7223586e-02 -66.3500000 1.7050324e-02 23.0600000 1.8855734e-04 -72.4400000 1.0307391e-09 -107.3800000 FUNCTION PITCH amplitude phase[deg] 2.0111187 84.230000 2.1960676 78.1400000 2.3921882 67.4500000 2.4200688 50.0700000 2.0375619 28.2700000 1.3963571 11.620000 0.8907013 7.3500000 0.6013893 14.3300000 0.4180645 42.5100000

1	12	0.4300455 61.3700000
1	13	0.4575426 66.3800000
1	14	0.5033424 69.4000000
1	15	0.5735395 69.2000000
1	16	0.6032721 63.0800000
1	17	0.4938593 56.8400000
1	18	0.3530926 63.3100000
1	19	0.2890515 74.0300000
1	20	0.2408990 80.1300000
1	21	0.1847522 85.3300000
1	22	0.1230204 93.8300000
1	23	6.72235860 - 02 113.6500000
1	24	1.70505240-02 - 150.9400000
1	25	1 0207201 - 00 72 6200000
1 2	20	2 0035169 84 2300000
2	2	2 1877096 78 140000
2	3	2.3843960 67.4500000
2	4	2.4110117 50.0700000
2	5	2.0308428 28.2700000
2	б	1.3910767 11.6200000
2	7	0.8872662 7.3500000
2	8	0.5990232 14.3300000
2	9	0.4631579 28.0700000
2	10	0.4164207 42.5100000
2	11	0.4130908 53.7300000
2	12	0.4284308 61.3700000
2	13	0.4557714 66.3800000
2	14	0.5014752 69.4000000
2	15	0.5713766 69.2000000
2	16	0.6010357 63.0800000
2	17	0.4919111 56.8400000
2	10	0.351/48/ 63.3100000
2	19	0.287942274.0300000
2	20	0.2399970 80.1300000
2	21	0 1225575 93 8300000
2	22	6 6953228 = 02 113 6500000
2	2.4	1.6987705e-02 - 156.9400000
2	25	3.8704653e-04 107.5600000
2	26	1.0267633e-09 72.6200000
3	1	1.9804879 84.2300000
3	2	2.1626356 78.1400000
3	3	2.3571235 67.4500000
3	4	2.3838402 50.0700000
3	5	2.0073260 28.2700000
3	6	1.3750801 11.6200000
3	7	0.8771039 7.3500000
3	8	0.5921878 14.3300000
3	9	0.4578661 28.0700000
3	10	0.4117086 42.5100000
2	10	0.4083198 53.7300000
2	13	0 4506187 66 3800000
2	14	0 4957301 69 400000
3	15	0.5648244 69.2000000
3	16	0.5943265 63.0800000
3	17	0.4862127 56.8400000
3	18	0.3477592 63.3100000
3	19	0.2846503 74.0300000
3	20	0.2372609 80.1300000
3	21	0.1819443 85.3300000
3	22	0.1211687 93.8300000
3	23	6.6189866e-02 113.6500000
3	24	1.6790901e-02 -156.9400000
3	25	3.8263336e-04 107.5600000
3	26	1.0148357e-09 72.6200000
4	Ţ	1.9424790 84.2300000
4 1	2	2.1229350 /8.1400000 2.2102707 67 4500000
+ 4	5 4	2.3103/07 07.4300000 2 3385545 50 0700000
ч 4	- 5	1.9686913 28 2700000
4	6	1.3488334 11 6200000
4	7	0.8603577 7.3500000

4	8	0.5808830 14.3300000
4	9	0.4490864 28.0700000
4	10	0.4038185 42.5100000
4	11	0.4004675 53.7300000
4	12	0.4154236 61.3700000
4	13	0.4419235 66.3800000
4	14	0.4862507 69.4000000
4	15	0.5540101 69.2000000
4	16	0.5825853 63.0800000
4	17	0.4768615 56.8400000
4	18	0.3410821 63.3100000
4	19	0.2792113 74.0300000
4	20	0.2326907 80.1300000
4	21	0.1784405 85.3300000
4	22	0 1188339 93 8300000
4	23	6 4933499e - 02 113 6500000
4	24	1 6468860e - 02 - 156 9400000
4	25	3 7531785e-04 107 5600000
4	26	9 9595042e-10 72 6200000
5	1	1 8897137 84 2300000
5	2	2 0644289 78 1400000
5	2	2 2480335 67 4500000
5	4	2 2751545 50 0700000
5	5	1 9149386 28 2700000
5	5	1 2121912 11 620000
5	7	0 9270274 7 2500000
5	0	0.85/02/4 7.5500000
5	0	0.3651088 14.3300000
5	9	0.4309392 28.0700000
5	11	0.3926001 42.5100000
5	10	0.3896333 53.7300000
5	12	0.4041208 61.3700000
5	14	0.4299274 66.3800000
5	14	0.4730370 69.4000000
5	15	0.5389337 69.2000000
5	17	
5	10	0.4639063 56.8400000
5	10	0.3318012 63.3100000
5	19	0.2716254 74.0300000
5	20	0.2263765 80.1300000
5	21	0.1735950 85.3300000
5	22	0.1156134 93.8300000
5	23	6.3168224e-02 113.6500000
5	24	1.6021579e-02 -156.9400000
5	25	3.6509998e-04 107.5600000
5	20 1	9.68815240-10 /2.6200000
6	1	1.8226392 84.2300000
6	2	1.99108/4 /8.1400000
6	3	2.1081040 67.4500000
6	4	2.1936402 50.0700000
6	5	1.84/74/8 28.2/00000
6	0	1.2055094 11.0200000
6	0	0.80/2502 / .5500000
6	0	0.4214244 28 070000
6	10	0.3788428 42 5100000
6	11	0.3759123 52 7200000
6	12	0.3897680 61 3700000
6	12	0.4146304 66 3800000
6	14	0.4140304 00.3800000
6	15	0 5197861 69 200000
6	16	0.5157801 05.2000000
6	17	0 4474443 56 9400000
6	1.2	0 3200426 62 2100000
6	19	0 2619641 74 0300000
6	20	0 2183486 80 1300000
6	20 21	0 1674324 85 3300000
6	⊿⊥ 22	0.1115074 02 0200000
6	22 23	6 0025847 = 02.0200000
6	∠ 3 24	1.54580066=02 = 156.000000000000000000000000000000000000
6	⊿⊐ 25	35213879 = 04 107 5600000
6	26	9 $3432474 = 10$ 72 6200000
7	1	1 7417025 84 2300000
, 7	- 2	1 9024925 78 1400000
, 7	2	2 0727103 67 /E00000
'	J	2.0/2/103 0/.4300000

7	4	2 0958231 50 0700000
7	5	1 7654390 28 2700000
7	c	1 2002122 11 6200000
/	6	1.2092132 11.6200000
7	7	0.7713305 7.3500000
.7	8	0.5208097 14.3300000
7	9	0.4026624 28.0700000
7	10	0.3620668 42.5100000
7	11	0.3591186 53.7300000
7	12	0.3724549 61.3700000
7	13	0.3962739 66.3800000
7	14	0 4359093 69 4000000
7	15	0 4966944 69 200000
, 7	16	0 5225277 62 0800000
/	10	0.5225377 63.0800000
.7	1.7	0.4275730 56.8400000
7	18	0.3058064 63.3100000
7	19	0.2503348 74.0300000
7	20	0.2086369 80.1300000
7	21	0.1600026 85.3300000
7	22	0.1065560 93.8300000
7	23	5 8206369e-02 113 6500000
7	24	1 47691959 - 02 - 156 9400000
7	27	2.2647404 = 04.107
/	25	3.364/4040-04 10/.5600000
7	26	8.9287651e-10 72.6200000
8	1	1.6473510 84.2300000
8	2	1.7994800 78.1400000
8	3	1.9597242 67.4500000
8	4	1.9835145 50.0700000
8	5	1.6693562 28.2700000
8	6	1.1438294 11.6200000
8	7	0 7295363 7 3500000
0	0	0.4025477 14 2200000
0	0	0.4925477 14.5500000
8	9	0.3808936 28.0700000
8	10	0.3424512 42.5100000
8	11	0.3396370 53.7300000
8	12	0.3522713 61.3700000
8	13	0.3747776 66.3800000
8	14	0.4123544 69.4000000
8	15	0.4697858 69.2000000
8	16	0 4943030 63 0800000
0	17	0.1012000 56 9400000
0	10	0.4043899 50.8400000
8	18	0.2892604 63.3100000
8	19	0.2367732 74.0300000
8	20	0.1973316 80.1300000
8	21	0.1513303 85.3300000
8	22	0.1007793 93.8300000
8	23	5.5057500e-02 113.6500000
8	24	1.3973036e-02 -156.9400000
8	25	3.1826476e-04 107.5600000
8	26	8 4447053e-10 72 6200000
0	1	1 5404789 84 2200000
9	1 1	1 (000057 70 1400000
9	2	1.6828857 /8.1400000
9	3	1.832/122 6/.4500000
9	4	1.8549030 50.0700000
9	5	1.5610109 28.2700000
9	6	1.0695931 11.6200000
9	7	0.6823033 7.3500000
9	8	0.4606051 14.3300000
9	9	0.3561181 28.0700000
9	10	0 3202056 42 5100000
à	11	0 3176704 53 7300000
9	10	0.31/0/04 33./300000
9	12	U.3294883 01.3/UUUUU
9	13	0.3504633 66.3800000
9	14	0.3856397 69.4000000
9	15	0.4393786 69.2000000
9	16	0.4622105 63.0800000
9	17	0.3781871 56.8400000
9	18	0.2704887 63.3100000
9	19	0.2214225 74.0300000
9	20	0.1845530 80.1300000
9	21	0 1415150 85 3300000
0	21 22	0.11270/10_00 00.000000
9	22 22	5.425/041E-U2 93.8300000
9	23	5.14951430-02 113.6500000
9	24	1.3060584e-02 -156.9400000
9	25	2.9763023e-04 107.5600000

9	26	7.8980260e-10 72.6200000
10	1	1.4219805 84.2300000
10	2	1.5533365 78.1400000
10	4	1.7118002 50.0700000
10	5	1.4409073 28.2700000
10	б	0.9874361 11.6200000
10	7	0.6297744 7.3500000
10	8 9	0.4252447 14.3300000 0.3288169 28 0700000
10	10	0.2956587 42.5100000
10	11	0.2932189 53.7300000
10	12	0.3040998 61.3700000
10	13 14	0.3234922 66.3800000 0.3559088 69 400000
10	15	0.4055362 69.2000000
10	16	0.4266515 63.0800000
10	17	0.3491108 56.8400000
10	18	0.2497013 63.3100000
10	20	0.1703612 80.1300000
10	21	0.1306311 85.3300000
10	22	8.6991873e-02 93.8300000
10	23	4.7535202e-02 113.6500000
10	24	1.2058676e - 02 - 156.9400000 2.7472948e - 04.107.5600000
10	26	7.2897209e-10 72.6200000
11	1	1.2927502 84.2300000
11	2	1.4120861 78.1400000
11	3	1.5379744 67.4500000
11	4 5	1.3098852 28.2700000
11	6	0.8975139 11.6200000
11	7	0.5725221 7.3500000
11	8	0.3864666 14.3300000
11 11	9 10	0.2988698 28.0700000
11	11	0.2664813 53.7300000
11	12	0.2764706 61.3700000
11	13	0.2941058 66.3800000
11 11	14 15	0.3235926 69.4000000
11	16	0.3878498 63.0800000
11	17	0.3173557 56.8400000
11	18	0.2269821 63.3100000
11 11	19	0.185783074.0300000 0.1548465801300000
11	20	0.1187533 85.3300000
11	22	7.9081691e-02 93.8300000
11	23	4.3209482e-02 113.6500000
11	24 25	1.0958367e - 02 - 156.9400000
11	25	6.6267479e-10 72.6200000
12	1	1.1534587 84.2300000
12	2	1.2599703 78.1400000
12	3	1.3723913 67.4500000
12 12	4 5	1 1689525 28 2700000
12	6	0.8009135 11.6200000
12	7	0.5108329 7.3500000
12	8	0.3449280 14.3300000
12 12	9 10	0.2397707 42 5100000
12	11	0.2378552 53.7300000
12	12	0.2466886 61.3700000
12 12	13	U.2624651 66.3800000
12	15	0.3289455 69.200000
12	16	0.3460848 63.0800000
12	17	0.2831655 56.8400000
⊥2 12	⊥8 19	0.2025411 63.3100000 0.1657806 74.0300000
12	20	0.1381892 80.1300000
12	21	0.1059561 85.3300000

12	22	7.0567678e-02 93.8300000
12 12	23 24	3.8549792e-02 113.6500000 9 7775468e-03 -156 9400000
12	25	2.2284497e-04 107.5600000
12	26	5.9130829e-10 72.6200000
13 13	⊥ 2	1.0054475 84.2300000 1.0984517 78 1400000
13	3	1.1962889 67.4500000
13	4	1.2103967 50.0700000
13 13	5	1.0189489 28.2700000 0.6981009 11.6200000
13	7	0.4452791 7.3500000
13	8	0.3006289 14.3300000
13 13	9 10	0.2324810 28.0700000 0.2089774 42.5100000
13	11	0.2073406 53.7300000
13	12	0.2150227 61.3700000
13	13 14	0.228/311 68.3800000
13	15	0.2867697 69.2000000
13 12	16 17	0.3016920 63.0800000
13	18	0.1765463 63.3100000
13	19	0.1445258 74.0300000
13 13	20 21	$0.1204495 \ 80.1300000$ $9.2363670 = 02.85 \ 3300000$
13	22	6.1510218e-02 93.8300000
13	23	3.3603841e-02 113.6500000
13 13	24 25	8.5269511e-03 -156.9400000 1 9425879e-04 107 5600000
13	26	5.1546895e-10 72.6200000
14	1	0.8498346 84.2300000
14 14	2 3	0.928366278.1400000 1.0110307674500000
14	4	1.0230950 50.0700000
14	5	0.8612185 28.2700000
14 14	6 7	0.3764333 7.3500000
14	8	0.2540952 14.3300000
14	9	0.1965204 28.0700000
$14 \\ 14$	10	0.1752356 53.7300000
14	12	0.1817422 61.3700000
14 14	13	0.1933868 66.3800000
14	15	0.2423675 69.2000000
14	16	0.2550069 63.0800000
14 14	17 18	0.208648256.8400000 0.1492496633100000
14	19	0.1221617 74.0300000
14	20	0.1018078 80.1300000
14 14	21 22	7.8075505e-02 85.3300000 5.1989821e-02 93.8300000
14	23	2.8403436e-02 113.6500000
14	24	7.2074743e-03 -156.9400000
$14 \\ 14$	25 26	4.3565376e-10 72.6200000
15	1	0.6877377 84.2300000
15 15	2	0.7513853 78.1400000
15	4	0.8280041 50.0700000
15	5	0.6969369 28.2700000
15 15	ь 7	0.4//5662 11.6200000 0.3045818 7.3500000
15	8	0.2057212 14.3300000
15 15	9 10	0.1589963 28.0700000
15	11	0.1418384 53.7300000
15	12	0.1471161 61.3700000
15 15	13 14	U.1565129 66.3800000 0.1721375 69 4000000
15	15	0.1961841 69.2000000
15	16	0.2063649 63.0800000
15	1.7	∪.⊥688570 56.8400000

15	18	0.1207771 63.3100000
15 15	19 20	9.8867209e-02 74.0300000 8 2384345e-02 80 1300000
15	21	6.3190964e-02 85.3300000
15	22	4.2086998e-02 93.8300000
15 15	23 24	2.2996287e-02 113.6500000 5 8325348e-03 -156 9400000
15	25	1.3287206e-04 107.5600000
15	26	3.5255850e-10 72.6200000
16 16	1	0.5204985 84.2300000
16	3	0.6192806 67.4500000
16	4	0.6265732 50.0700000
16	5	0.5274480 28.2700000
16 16	6 7	0.2305833 7.3500000
16	8	0.1556382 14.3300000
16	9	0.1203898 28.0700000
16 16	10 11	0.1082036 42.5100000 0.1073479 53 7300000
16	12	0.1113238 61.3700000
16	13	0.1184313 66.3800000
16 16	14 15	0.1302701 69.4000000 0 1484103 69 2000000
16	16	0.1561575 63.0800000
16	17	0.1277995 56.8400000
16 16	18	9.1380761e-02 63.3100000 7 4821330e-02 74 0300000
16	20	6.2359537e-02 80.1300000
16	21	4.7809444e-02 85.3300000
16	22	3.1842004e-02 93.8300000
16 16	23 24	4.4137617e-03 -156.9400000
16	25	1.0054861e-04 107.5600000
16	26	2.6687893e-10 72.6200000
17	1 2	0.3815432 78.140000
17	3	0.4155161 67.4500000
17	4	0.4204326 50.0700000
17	5	0.2424328 11.6200000
17	7	0.1547241 7.3500000
17	8	0.1044249 14.3300000
17	9 10	8.0736931e-02 28.0700000 7.2599663e-02 42.5100000
17	11	7.2002643e-02 53.7300000
17	12	7.4679365e-02 61.3700000
17 17	13 14	7.9448015e-02 66.3800000
17	15	9.9618770e-02 69.2000000
17	16	0.1047759 63.0800000
17 17	17 18	8.5719161e-02 56.8400000 6 1312459e-02 63 3100000
17	19	5.0202930e-02 74.0300000
17	20	4.1823585e-02 80.1300000
17 17	21	3.2080037e-02 85.3300000
17	23	1.1671490e-02 113.650000
17	24	2.9609954e-03 -156.9400000
17	25	6.7469744e-05 107.5600000
18	26 1	0.1752882 84.2300000
18	2	0.1914612 78.1400000
18	3	0.2084398 67.4500000
18 18	4 5	0.1775518 28.2700000
18	6	0.1216979 11.6200000
18	7	7.7634003e-02 7.3500000
⊥8 18	8 9	5.2409603e-02 14.3300000 4.0518802e-02 28 0700000
18	10	3.6436812e-02 42.5100000
18	11	3.6140476e-02 53.7300000
18 18	12 13	3.7478725e-02 61.3700000 3.9876978e-02 66 200000
тo	сı	5.50105108-02 00.3800000

18	14	4.3871002e-02 69.4000000
18	15	4.9987503e-02 69.2000000
18	16	5.2589229e-02.63.0800000
18	17	4 3030045e-02 56 8400000
10	10	
18	18	3.07/38152-02 83.310000
18	19	2.5190921e-02 74.0300000
18	20	2.0995981e-02 80.1300000
18	21	1.6102141e-02 85.3300000
18	22	1.0722020e-02 93.8300000
18	23	5 8588050e-03 113 6500000
10	2.5	1 49675960-02 -156 9400000
10	24	
18	25	3.3862099e-05 107.5600000
18	26	8.9854209e-11 72.6200000
19	1	1.2314888e-16 -95.7700000
19	2	1.3452220e-16 -101.8600000
19	3	1.4649231e-16 -112.5500000
19	4	1,4822922e-16,-129,9300000
19	5	1 24790176-16 -151 7300000
10	c	
19	0	8.34960048-17 -168.3800000
19	.7	5.4532734e-17 -172.6500000
19	8	3.6819488e-17 -165.6700000
19	9	2.8467796e-17 -151.9300000
19	10	2.5598915e-17 -137.4900000
19	11	2.5385802e-17 -126.2700000
19	12	2 63373716-17 -118 6300000
19	13	2 8017743e-17 -113 6200000
10	14	2.000//432-17 -113.0200000
19	14	3.0822449e-17 -110.6000000
19	15	3.5121024e-17 -110.8000000
19	16	3.6945527e-17 -116.9200000
19	17	3.0230616e-17 -123.1600000
19	18	2.1623141e-17 -116.6900000
19	19	1.7698053e-17 -105.9700000
19	20	1 4751007e - 17 - 99 8700000
10	21	1 12112570-17 -04 6700000
19	21	1.131125/E-1/ -94.0700000
19	22	7.5337941e-18 -86.1700000
19	23	4.1157946e-18 -66.3500000
10		
19	24	1.0439522e-18 23.0600000
19 19	24 25	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000
19 19 19	24 25 26	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000
19 19 19 '	24 25 26	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000
19 19 19 '	24 25 26 	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000
19 19 19 ' HFTR <i>I</i>	24 25 26 ANSFER	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW
19 19 ' 'HFTRA '	24 25 26 ANSFER 	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg]
19 19 ' 'HFTRA ' 'idir	24 25 26 ANSFER ifreq	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000
19 19 ' 'HFTRA ' 'idir 1	24 25 26 NNSFER ifreq 1 2	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000
19 19 ' 'HFTR# ' 'idir 1	24 25 26 ANSFER ifreq 1 2	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
19 19 ' 'HFTR# ' 'idir 1 1	24 25 26 NSFER ifreq 1 2 3	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
19 19 ' 'HFTRA ' 'idir 1 1 1	24 25 26 NSFER ifreq 1 2 3 4	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
19 19 ' 'idir 1 1 1 1	24 25 26 ifreq 1 2 3 4 5	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
19 19 ' 'idir 1 1 1 1 1	24 25 26 ifreq 1 2 3 4 5 6	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
19 19 ' 'idir 1 1 1 1 1 1	24 25 26 ifreq 1 2 3 4 5 6 7	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
19 19 ' HFTRA ' 'idir 1 1 1 1 1 1 1 1	24 25 26 MNSFER 1 2 3 4 5 6 7 8	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000
19 19 ' 'idir 1 1 1 1 1 1 1	24 25 26 MNSFER 1 2 3 4 5 6 7 8 9	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000
19 19 ' 'idir 1 1 1 1 1 1 1 1	24 25 26 MNSFER 1 2 3 4 5 6 7 8 9 10	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000
19 19 ' 'idir 1 1 1 1 1 1 1 1	24 25 26 ANSFER 1 2 3 4 5 6 7 8 9 10	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000
19 19 ' 'idir 1 1 1 1 1 1 1 1	24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000
19 19 ' 'idir 1 1 1 1 1 1 1 1 1 1 1	24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000
<pre>19 19 19 ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 MNSFER 1 2 3 4 5 6 7 8 9 10 11 12 13	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000
<pre>'' 19 '' 'idir '' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000
<pre>'' 19 '' 'idir '' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.000000
19 19 ' 'idir ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24 25 26 MNSFER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
<pre>19 19 19 ' 'idir ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 MNSFER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.0000000 0.0000000 0.0000000
<pre>19 19 19 ' 'idir ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 ANSFER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000
<pre>19 19 19 ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 ANSFER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.0000000000
<pre>19 19 19 ' 'idir ' ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 INSFER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.0000000000
<pre>19 19 19 ' 'idir ' ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000
<pre>19 19 19 ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.0000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.0000000000
<pre>19 19 19 ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.0000000000
<pre>19 19 19 ' 'idir ' ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000
<pre>19 19 19 ' 'idir ' ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.0000000000
<pre>19 19 19 ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 I I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 26 26 26 26 26 26 26 26	1.0439522e-18 23.0600000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.0000000000
<pre>'' 19 '' 'HFTRZ'' '' '' '' '' '' '' '' '' '' '' '' ''</pre>	24 25 26 Inner for a second	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.0000000000
<pre>'' 19 19 '' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	24 25 26 ANNSFER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.0000000000
<pre>19 19 19 ' 'idir ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	24 25 26 INSFER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.0000000000
<pre>19 19 19 ' 'idir ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	24 25 26 INSFER ifreq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000
19 19 19 ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1	24 25 26 NNSFER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 22 3	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW amplitude phase[deg] 0.0000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.00000
19 19 19 HFTRZ ' 'idir 1 1 1 1 1 1 1 1 1 1 1 1 1	24 25 26 Inverse and the second se	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000 FUNCTION YAW
<pre>19 19 19 ' 'idir ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	24 25 26 Inverse and the second se	1.0439522e-18 23.060000 2.3791335e-20 -72.4400000 6.3126558e-26 -107.3800000

2	б	0.0000000	0.000000
2	7	0.000000	0.000000
2	8	0.0000000	0.0000000
2	9 10	0.0000000	0.0000000
2	11	0.0000000	0.0000000
2	12	0.000000	0.000000
2	13	0.000000	0.000000
2	14	0.0000000	0.0000000
2	16	0.0000000	0.0000000
2	17	0.0000000	0.0000000
2	18	0.000000	0.000000
2	19	0.000000	0.000000
2	20	0.0000000	0.0000000
2	∠⊥ 22	0.0000000	0.0000000
2	23	0.0000000	0.0000000
2	24	0.000000	0.000000
2	25	0.000000	0.000000
2	26	0.0000000	0.0000000
3	2	0.0000000	0.0000000
3	3	0.0000000	0.0000000
3	4	0.000000	0.000000
3	5	0.000000	0.000000
3	6 7	0.0000000	0.0000000
3	8	0.0000000	0.0000000
3	9	0.0000000	0.0000000
3	10	0.000000	0.000000
3	11	0.000000	0.000000
3 2	12 13	0.0000000	0.0000000
3	14	0.0000000	0.0000000
3	15	0.0000000	0.000000
3	16	0.000000	0.000000
3	17	0.0000000	0.0000000
3	10 19	0.0000000	0.0000000
3	20	0.0000000	0.0000000
3	21	0.000000	0.000000
3	22	0.000000	0.000000
3	23	0.0000000	0.0000000
3	25	0.0000000	0.0000000
3	26	0.0000000	0.000000
4	1	0.000000	0.000000
4	2	0.0000000	0.0000000
4	4	0.0000000	0.0000000
4	5	0.000000	0.000000
4	6	0.000000	0.000000
4	7	0.0000000	0.0000000
4	8 9	0.0000000	0.0000000
4	10	0.0000000	0.0000000
4	11	0.000000	0.000000
4	12	0.000000	0.000000
4 4	14	0.0000000	0.0000000
4	15	0.0000000	0.0000000
4	16	0.0000000	0.000000
4	17	0.0000000	0.0000000
4 4	⊥8 19	0.0000000	0.0000000
± 4	20	0.0000000	0.0000000
4	21	0.0000000	0.0000000
4	22	0.0000000	0.0000000
4	23	0.0000000	0.0000000
4 4	⊿4 25	0.0000000	0.0000000
4	26	0.0000000	0.0000000
5	1	0.0000000	0.0000000

5	2	0.0000000	0.0000000
5	3	0.0000000	0.0000000
5	4	0.0000000	0.0000000
5	5	0.000000	0.000000
5	6	0.0000000	0.0000000
5	7	0.000000	0.000000
5	8	0.0000000	0.0000000
5	9	0.0000000	0.0000000
5	10	0.0000000	0.0000000
5	12	0.0000000	0.0000000
5	13	0.0000000	0.0000000
5	14	0.0000000	0.0000000
5	15	0.0000000	0.000000
5	16	0.0000000	0.0000000
5	17	0.0000000	0.0000000
5	18	0.000000	0.000000
5	19	0.000000	0.000000
5	20	0.000000	0.000000
5	21	0.0000000	0.0000000
5 F	22	0.0000000	0.0000000
5	23 24	0.0000000	0.0000000
5	25 25	0.0000000	0.0000000
5	26	0.0000000	0.0000000
6	1	0.0000000	0.0000000
6	2	0.0000000	0.0000000
6	3	0.0000000	0.0000000
б	4	0.000000	0.000000
6	5	0.0000000	0.0000000
6	6	0.000000	0.000000
6	./	0.0000000	0.0000000
6	8 Q	0.0000000	0.0000000
6	10	0.0000000	0.0000000
6	11	0.0000000	0.0000000
б	12	0.0000000	0.0000000
6	13	0.0000000	0.000000
б	14	0.000000	0.000000
6	15	0.000000	0.000000
6	16	0.0000000	0.0000000
6	1/ 10	0.0000000	0.0000000
6	10 19	0.0000000	0.0000000
6	20	0.0000000	0.0000000
6	21	0.0000000	0.0000000
б	22	0.0000000	0.0000000
б	23	0.000000	0.000000
6	24	0.000000	0.000000
6	25	0.000000	0.000000
6	26	0.0000000	0.0000000
7	2	0.0000000	0.0000000
7	3	0.0000000	0.0000000
7	4	0.0000000	0.0000000
7	5	0.0000000	0.000000
7	6	0.0000000	0.000000
7	7	0.000000	0.000000
7	8	0.000000	0.000000
./	9	0.0000000	0.0000000
7	10	0.0000000	0.0000000
7	12	0.0000000	0.0000000
7	13	0.0000000	0.0000000
7	14	0.0000000	0.0000000
7	15	0.0000000	0.000000
7	16	0.0000000	0.000000
7	17	0.000000	0.000000
7	18	0.000000	0.000000
'/ 7	70 13	0.0000000	0.0000000
/ 7	∠∪ 21	0.0000000	0.0000000
, 7	22	0.0000000	0.0000000
7	23	0.0000000	0.0000000

7	24	0.000000	0.000000
7	25	0.000000	0.000000
7	26	0.0000000	0.0000000
о 8	1 2	0.0000000	0.0000000
8	3	0.0000000	0.0000000
8	4	0.000000	0.000000
8	5	0.000000	0.000000
8	6	0.000000	0.000000
8	7	0.0000000	0.0000000
8	8 9	0.0000000	0.0000000
8	10	0.0000000	0.0000000
8	11	0.000000	0.000000
8	12	0.000000	0.000000
8	13	0.0000000	0.0000000
о 8	14 15	0.0000000	0.0000000
8	16	0.0000000	0.0000000
8	17	0.000000	0.000000
8	18	0.000000	0.000000
8	19	0.000000	0.000000
8	20 21	0.0000000	0.0000000
8	22	0.0000000	0.0000000
8	23	0.0000000	0.0000000
8	24	0.000000	0.000000
8	25	0.000000	0.000000
8	26 1	0.0000000	0.0000000
9	1 2	0.0000000	0.0000000
9	3	0.0000000	0.0000000
9	4	0.000000	0.000000
9	5	0.000000	0.000000
9	6 7	0.0000000	0.0000000
9	7 8	0.0000000	0.0000000
9	9	0.0000000	0.0000000
9	10	0.000000	0.000000
9	11	0.000000	0.000000
9	12 12	0.0000000	0.0000000
9	14	0.0000000	0.0000000
9	15	0.0000000	0.0000000
9	16	0.000000	0.000000
9	17	0.000000	0.000000
9 0	18 19	0.0000000	0.0000000
9	20	0.0000000	0.0000000
9	21	0.0000000	0.0000000
9	22	0.000000	0.000000
9	23	0.000000	0.000000
9 0	24	0.0000000	0.0000000
9	25	0.0000000	0.0000000
10	1	0.0000000	0.0000000
10	2	0.000000	0.000000
10	3	0.000000	0.000000
10	4 5	0.0000000	0.0000000
10	6	0.0000000	0.0000000
10	7	0.000000	0.000000
10	8	0.0000000	0.0000000
10	9	0.0000000	0.0000000
10 10	11	0.0000000	0.0000000
10	12	0.0000000	0.0000000
10	13	0.000000	0.0000000
10	14	0.000000	0.0000000
10	15	0.000000	0.0000000
10	⊥o 17	0.0000000	0.0000000
10	18	0.0000000	0.0000000
10	19	0.0000000	0.0000000

10	20	0.000000	0.000000
10	21	0.000000	0.000000
10	22	0.0000000	0.0000000
10	23 24	0.0000000	0.0000000
10	25	0.0000000	0.0000000
10	26	0.0000000	0.0000000
11	1	0.000000	0.000000
11	2	0.000000	0.000000
11	3	0.000000	0.000000
⊥⊥ 11	4 F	0.0000000	0.0000000
11	5	0.0000000	0.0000000
11	7	0.0000000	0.0000000
11	8	0.000000	0.000000
11	9	0.000000	0.000000
11	10	0.000000	0.000000
11 11		0.0000000	0.0000000
11	13	0.0000000	0.0000000
11	14	0.0000000	0.0000000
11	15	0.0000000	0.0000000
11	16	0.000000	0.000000
11	17	0.000000	0.000000
11	18	0.0000000	0.000000
11 11	19	0.0000000	0.0000000
11	21	0.0000000	0.0000000
11	22	0.0000000	0.0000000
11	23	0.0000000	0.000000
11	24	0.000000	0.000000
11	25	0.0000000	0.0000000
11 12	26 1	0.0000000	0.0000000
12	2	0.0000000	0.0000000
12	3	0.000000	0.000000
12	4	0.000000	0.000000
12	5	0.000000	0.000000
12	6 7	0.0000000	0.0000000
12	8	0.0000000	0.0000000
12	9	0.0000000	0.0000000
12	10	0.0000000	0.000000
12	11	0.000000	0.000000
12	12	0.0000000	0.0000000
12	14	0.0000000	0.0000000
12	15	0.0000000	0.0000000
12	16	0.000000	0.000000
12	17	0.000000	0.000000
12	18	0.0000000	0.0000000
⊥∠ 12	20	0.0000000	0.0000000
12	21	0.0000000	0.0000000
12	22	0.000000	0.000000
12	23	0.000000	0.000000
12	24	0.000000	0.000000
12 12	25	0.0000000	0.0000000
13	20	0.0000000	0.0000000
13	2	0.0000000	0.0000000
13	3	0.000000	0.000000
13	4	0.000000	0.000000
⊥3 12	5	0.0000000	0.0000000
13	7	0.0000000	0.0000000
13	8	0.0000000	0.0000000
13	9	0.0000000	0.0000000
13	10	0.000000	0.000000
⊥3 12	11 12	0.000000	0.0000000
13 13	⊥∠ 13	0.0000000	0.0000000
13	14	0.0000000	0.0000000
13	15	0.0000000	0.0000000

13	16	0.000000	0.000000
13	17	0.000000	0.000000
13 12	18	0.0000000	0.0000000
13 13	20	0.0000000	0.0000000
13	21	0.0000000	0.0000000
13	22	0.0000000	0.0000000
13	23	0.0000000	0.000000
13	24	0.000000	0.000000
13	25	0.000000	0.000000
13	26	0.0000000	0.0000000
14	1 2	0.0000000	0.0000000
14	3	0.0000000	0.0000000
14	4	0.000000	0.000000
14	5	0.000000	0.000000
14	6	0.000000	0.000000
14 14	.7	0.0000000	0.0000000
14	o Q	0.0000000	0.0000000
14	10	0.0000000	0.0000000
14	11	0.0000000	0.0000000
14	12	0.0000000	0.000000
14	13	0.000000	0.000000
14	14	0.0000000	0.000000
14 14	15 16	0.0000000	0.0000000
14	17	0.0000000	0.0000000
14	18	0.0000000	0.0000000
14	19	0.000000	0.000000
14	20	0.000000	0.000000
14	21	0.0000000	0.0000000
14 14	22	0.0000000	0.0000000
14	24	0.0000000	0.0000000
14	25	0.000000	0.000000
14	26	0.000000	0.000000
15	1	0.000000	0.000000
15 15	2	0.0000000	0.0000000
15	4	0.0000000	0.0000000
15	5	0.000000	0.000000
15	6	0.000000	0.000000
15	7	0.000000	0.000000
15	8	0.0000000	0.0000000
15 15	9 10	0.0000000	0.0000000
15	11	0.0000000	0.0000000
15	12	0.000000	0.000000
15	13	0.000000	0.000000
15	14	0.0000000	0.0000000
15 15	15 16	0.0000000	0.0000000
15	17	0.0000000	0.0000000
15	18	0.000000	0.000000
15	19	0.000000	0.000000
15	20	0.000000	0.000000
15 15	21	0.0000000	0.0000000
15	23	0.0000000	0.0000000
15	24	0.000000	0.0000000
15	25	0.000000	0.000000
15	26	0.000000	0.0000000
⊥6 16	⊥ 2	0.0000000	0.0000000
16	∠ 3	0.0000000	0.0000000
16	4	0.0000000	0.0000000
16	5	0.000000	0.000000
16	6	0.000000	0.0000000
⊥6 16	7 8	0.0000000	0.0000000
16	9	0.0000000	0.0000000
16	10	0.0000000	0.0000000
16	11	0.000000	0.0000000

16	12	0.000000	0.000000
16	13	0.0000000	0.000000
16	14	0.0000000	0.000000
16	15	0.0000000	0.0000000
16	17	0.0000000	0.0000000
16	18	0.0000000	0.0000000
16	19	0.0000000	0.0000000
16	20	0.0000000	0.0000000
16	21	0.0000000	0.000000
16	22	0.000000	0.000000
16	23	0.000000	0.000000
16	24	0.0000000	0.000000
16	25	0.0000000	0.0000000
17	∠0 1	0.0000000	0.0000000
17	2	0.0000000	0.0000000
17	3	0.0000000	0.0000000
17	4	0.0000000	0.000000
17	5	0.0000000	0.000000
17	б	0.0000000	0.000000
17	7	0.000000	0.000000
17	8	0.0000000	0.0000000
17	9	0.0000000	0.0000000
17	11	0.0000000	0.0000000
17	12	0.0000000	0.0000000
17	13	0.0000000	0.0000000
17	14	0.0000000	0.000000
17	15	0.0000000	0.000000
17	16	0.0000000	0.000000
17	17	0.000000	0.000000
17	18	0.0000000	0.0000000
17	20	0.0000000	0.0000000
17	21	0.0000000	0.0000000
17	22	0.0000000	0.0000000
17	23	0.0000000	0.000000
17	24	0.000000	0.000000
17	25	0.000000	0.000000
17	26	0.0000000	0.000000
18	1	0.0000000	0.0000000
18	∠ 3	0.0000000	0.0000000
18	4	0.0000000	0.0000000
18	5	0.0000000	0.0000000
18	6	0.0000000	0.000000
18	7	0.0000000	0.000000
18	8	0.000000	0.000000
18	9	0.0000000	0.000000
10	11	0.0000000	0.0000000
18	12	0.0000000	0.0000000
18	13	0.0000000	0.0000000
18	14	0.0000000	0.000000
18	15	0.0000000	0.000000
18	16	0.000000	0.000000
18	17	0.000000	0.000000
18	18	0.0000000	0.000000
10	19	0.0000000	0.0000000
⊥¤ 1 8	∠∪ 21	0.0000000	0.0000000
18	∠⊥ 22	0.0000000	0.0000000
18	23	0.0000000	0.0000000
18	24	0.000000	0.000000
18	25	0.0000000	0.000000
18	26	0.000000	0.000000
19	1	0.000000	0.000000
19	2	0.000000	0.000000
19 10	3 4	0.0000000	0.0000000
19	- <u>+</u> 5	0.0000000	0.0000000
19	6	0.0000000	0.0000000
19	7	0.0000000	0.0000000

```
19
   8
       0.000000 0.000000
       0.0000000 0.0000000
19
   9
   10
       0.0000000 0.0000000
19
       0.000000 0.000000
19
   11
19
   12
       0.0000000 0.0000000
19
   13
       0.0000000 0.0000000
19
   14
       0.0000000 0.0000000
       0.0000000 0.0000000
19
   15
19
   16
       0.0000000 0.0000000
19
   17
       0.0000000 0.0000000
19
   18
       0.0000000 0.0000000
       0.0000000 0.0000000
19
   19
      0.0000000 0.0000000
19
   20
19
   21
       0.0000000 0.0000000
      0.0000000 0.0000000
19
   22
19
   23
       0.0000000 0.0000000
       0.0000000 0.0000000
19
   24
19
   25
      0.000000 0.0000000
19
   26
       0.0000000 0.0000000
*********
                        ******
ENVIRONMENT IDENTIFICATION
'idenv
env1
WATERDEPTH AND WAVETYPE
'wdepth noirw norw ncusta
1000.000000 1 0 1
!_____
ENVIRONMENT CONSTANTS
·-----
                       _____
     watden wakivi airkivi
'airden
1.2500000e-03 1.0250000 1.1880000e-06 1.8240000e-05
1
NEW IRREGULAR SEASTATE
·-----
                       _____
'nirwc iwaspl iwadrl iwasp2 iwadr2
1
   10 1 0 0
._____
WAVE SPECTRUM WIND
,______
'siwahe tpeak
15.600000 15.5000000
DIRECTION PARAMETERS
! _____
                _____
'wadrl
      expol
180.000000 4.0000000
·-----
                _____
NEW CURRENT STATE
_____
'icusta nculev l_ext
        0
1
    3
'curlev curdir
              curvel
0.0000000 180.0000000 0.6700000
-100.0000000 180.0000000 0.6700000
-170.0000000 180.0000000 0.490000
. * * * * * * * * * * * * *
                     ************************************
END
```

B. SIMA STAMOD RIFLEX (INP)

'A1 '*****	'A1 STAMOD IDENTIFICATION TEXT							* * * * * * * * * * *	
STAMOD	STAMOD CONTROL INFORMATION 3.7.9								
*****	* * * * * * *	* * * * * *	*****	* * * * * * * *	* * * * * * * *	* * * * * * * *	******	* * * * * * *	* * * * * * * * * * *
'A1.3	OPTION	AND F	RINT SV	VITCHES					
'irunco 1	idris ARSYS	ianal 1	iprdat 2	iprcat 1	iprfem 1	ipform 1	iprnor 1	ifilm 2	ifilco O
'									
'		ATTON 							
'idres SIMA									
ENVIRO	NMENT R	EFEREN	ICE IDEI	NTIFIER					
'idenv envl									
STORE	VISUALI	SATION	I RESPOI	ISES					
·	******	*****	*****	*****	******	******	*****	******	****
STATIC '*****	CONDIT ******	ION IN *****	IPUT ******	* * * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * *	* * * * * * * * * * *
'lcomp 0	icurin 1	curfac	iso 000 2	olvr					
COMPUT.	****** ATIONAL ******	PROCE	DURE	*****	* * * * * * * * * *	*******	******	* * * * * * * *	*****
'ameth FEM									
FEM AN	ALYSIS	PARAME	TERS						
·									
LOAD G	ROUP DA 								
'nstep 1 2000 'lotype VOLU	maxit r 10 1 ispec 0	acu .00000	100e-06						
' LOAD GI	 ROUP DA	 ТА						• • • • • • •	
'nstep 1 2000 'lotype DISP	 maxit r 10 1 ispec 0	 acu .00000	 100e-06						
'***** END	* * * * * * *	*****	*****	******	* * * * * * * *	******	******	* * * * * * *	* * * * * * * * * * *
! * * * * * *	******	* * * * * *	*****	******	* * * * * * * *	******	******	* * * * * * *	******

C. SIMA DYNMOD RIFLEX (INP)

```
'A1 DYNMOD CONTROL INFORMATION
DYNMOD CONTROL INFORMATION 3.7.9
***********
'irunco ianal idris idenv idstat idirr idres
ANAL IRREGULAR ARSYS envl SIMA XX SIMA
      DATA GROUP D, IRREGULAR RESPONSE ANALYSIS
IRREGULAR TIMESERIES PARAMETERS
'irand timgen dtgen chmeth iopamp
1 11800.000000 1.0000000 FFT 0
· _____
IRREGULAR RESPONSE ANALYSIS
'ircno time dt chwav chmot chlmf tbeg iscale
1 11800.0000000 1.0000000 NEW STAT NONE 0.0000000 0
!_____
TRREGULAR WAVE PROCEDURE
'iuppos icosim kinoff chstep nodstp zlower zupper iopdif
1 1 0 NODE 1 -170.0000000 0.0000000 0
      DATA GROUP E
' Time domain procedure and file storage parameters
TIME DOMAIN PROCEDURE
'itdmet inewil idisst iforst icurst
2
    1 1 1
               1
'E1.3 TIME INTEGRATION
'betin gamma theta al a2 alt alto alb
    a2t0
a2t
          a2b
4.0000000 0.5000000 1.0000000 0.0000000 0.3000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
'E1.4 NONLINEAR FORCE MODEL
'indint indhyd maxhit epshyd
                  tramp indrel iconre istepr ldamp
1 1 5 1.000000e-02 / 0 0 0
·_____
NONLINEAR INTEGRATION PROCEDURE
· _____
'itfreq isolit maxit daccu icocod ivarst itstat
1
   1 10 1.000000e-05 1 2 1
DISPLACEMENT RESPONSE STORAGE
·_____
'idisp nodisp idisfm cfndis
1 1 0
'line-id iseg inod
linel 1 ALL
!_____
          _____
FORCE RESPONSE STORAGE
·_____
'ifor noforc iforfm cfnfor
```

```
1
 1
     0
'line-id iseg iel
linel 1 ALL
·-----
         _____
CURVATURE RESPONSE STORAGE
! _____
                ______
'icurv nocurv icurfm cfncur
1 1 0
'line-id iseg iel
linel 1 ALL
'E6.1
·-----
           -----
ENVELOPE CURVE SPECIFICATION
·------
'ienvd ienvf ienvc tenvs tenve nprend nprenf nprenc ifilmp
1 1 1 0.0000000 1.000000e+07 1 1
                            2
                        1
! _____
       _____
                     _____
STORE VISUALISATION RESPONSES
·------
'tconds tconde delt chform
/ 11800.000000 0.5000000 VIS
END
```


SIMA (RIFLEX+SIMO) COUPLED INPUT

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

A. SIMA INPMOD RIFLEX (INP)

• * * * * * * * * * * * * * * * * * * *	
INPMOD IDENTIFICATION TEXT 3.7.9	

UNIT NAMES SPECIFICATION '															_	
'ut ul um uf grav gcons s m Mg kN 9.8100000 1.0000000 '******************************	UNIT NAM	IES SI	PECI	FIC	CATI	ION									_	
<pre>'atyps idris AR ARSYS '***********************************</pre>	'ut ul um s m Mg '******** NEW SING	uf g kN 9 **** LE RJ	grav 9.81 **** ISER	7 _000 * * * *)00	gcon 1.0(ns 00000 ****	00	* * * * * * *	* * * * * *	* * * * *	* * * * * * *	* * * * *	* * * * * * *	*	
<pre>'nsnod nlin nsnfix nves nricon nspr nack 4 2 4 0 0 0 0 'ibtang zbot ibot3d 0 -170.0000000 0 'B 6.5: LINE TOPOLOGY DEFINITION 'lineid lintyp-id snodl-id snod2-id line1 ltyp1 node1 node2 line2 ltyp2 node3 node4 'FIXED NODES 'snod-id ipos ix iy iz irx iry irz chcoo chupro node1 0 1 1 1 1 1 1 GLOBAL NO 'x0 y0 z0 x1 y1 z1 rot dir 270.0000000 0.0000000 -170.0000000 220.0000000 0.0000000 -170.0000000 0.0000000 0.0000000 'snod-id ipos ix iy iz irx iry irz chcoo chupro node2 0 1 1 1 1 1 1 GLOBAL NO 'x0 y0 z0 x1 y1 z1 rot dir 0.0000000 0.0000000 0.0000000 33.5000000 0.0000000 -16.3200000 84.0000000 0.0000000 'snod-id ipos ix iy iz irx iry irz chcoo chupro</pre>	'atyps id AR AR '******** ARBITRAR	ris SYS **** Y SYS	* * * * * * * * STEM	* * * * * * * * 1 AR	<*** <***	* * * * * :	* * * * * *	* * * * *	* * * * * * * * *	* * * * * * * *	* * * * * :	* * * * * * * * *	*****	******	*	
'snod-id ipos ix iy iz irx iry irz chcoo chupro nodel 0 1 1 1 1 1 1 GLOBAL NO 'x0 y0 z0 x1 y1 z1 rot dir 270.0000000 0.0000000 -170.0000000 220.0000000 0.0000000 -170.0000000 0.0000000 0.0000000 'snod-id ipos ix iy iz irx iry irz chcoo chupro node2 0 1 1 1 1 1 1 GLOBAL NO 'x0 y0 z0 x1 y1 z1 rot dir 0.000000 0.0000000 0.000000 33.5000000 0.0000000 -16.3200000 84.0000000 'snod-id ipos ix iy iz irx iry irz chcoo chupro	'nsnod nl 4 2 'ibtang z 0 - 'B 6.5: L 'lineid l line1 l line2 l	in ns 4 bot 170.(INE 1 intyp typ1 typ2	snfi)000 ropc p-id	x r 0000 DLOG l sr nc nc	ives ik 0 0 GY I nod1 ode1 ode3	oot30 DEFII L-id B	icon d NITI(snoo node node	nsp: 0 DN d2-id e2 e4	r nack O							
0.0000000 'snod-id ipos ix iy iz irx iry irz chcoo chupro node2 0 1 1 1 1 1 1 GLOBAL NO 'x0 y0 z0 x1 y1 z1 rot dir 0.0000000 0.0000000 0.0000000 33.5000000 0.0000000 -16.3200000 84.0000000 0.0000000 'snod-id ipos ix iy iz irx iry irz chcoo chupro	'snod-id node1 'x0 dir 270.0000	ipos 0 0000 (ix 1 70	iy 1	iz 1	irx 1 z0 -170	iry 1	irz 1	chcoo GLOBAL x1 0 220.0	chupro NO	y1 0.00	00000	z1 -170.	0000000	rot 0.0(00000
0.0000000 0.0000000 0.0000000 33.5000000 0.0000000 -16.3200000 84.0000000 0.0000000	0.0000000 'snod-id node2	ipos 0	ix 1	iy 1	iz 1	irx 1	iry 1	irz 1 v1	chcoo GLOBAL	chupro NO v1	D	71		rot		dir
	0.000000 0.0000000 /snod-id	0 0.0	0000 ix	0000 iv) 0.	.0000	0000 irv	33.	5000000	0.000	0000	-16.32	200000	84.000	0000	~++

node3 0 1 1 1 1 1 1 GLOBAL NO yl z1 'x0 rot v07.0 x1 dir 270.0000000 5.0000000 -170.0000000 220.0000000 5.0000000 -170.0000000 0.0000000 0.000000 'snod-id ipos ix iy iz irx iry irz chcoo chupro node4 0 1 1 1 1 1 1 GLOBAL NO x0 y0 z0 x1 y1 zl rot dir 'x0 0.0000000 0.0000000 0.0000000 33.5000000 5.0000000 -16.3200000 84.0000000 0.0000000 'FREE NODES 'B.10 Line and segment specification NEW LINE DATA 'lintyp-id nseg ncmpty2 flutyp ltyp1 4 0 fluid1 'crstyp ncmptyl exwtyp nelseg slgth nstrps nstrpd slgth0 isoitv

 cs1
 0
 0
 50
 25.0000000 3
 5
 25.0000000 0

 cs3
 0
 0
 10
 30.0000000 3
 5
 30.000000 0

 cs2
 0
 0
 50
 215.0000000 3
 5
 50.000000 0

 cs1
 0
 0
 50
 50.0000000 3
 5
 50.000000 0

 cs1
 0
 0
 50
 215.0000000 3
 5
 215.000000 0

 NEW LINE DATA 'lintyp-id nseg ncmpty2 flutyp ltyp2 4 0 fluid1 'crstyp ncmptyl exwtyp nelseg slgth nstrps nstrpd slgth0 isoity

 cs4
 0
 0
 50
 25.0000000 3
 5
 25.0000000 0

 cs6
 0
 10
 40.0000000 3
 5
 40.000000 0

 CS5
 0
 0
 10
 40.0000000 5
 5
 10.000000 0

 Cs5
 0
 0
 50
 55.0000000 3
 5
 55.0000000 0

 cs4
 0
 0
 50
 200.000000 3
 5
 200.000000 0
 NEW COMPONENT CRS1 'cmptyp-id temp alpha beta cs1 20.0000000 0.0000000 0.0000000 ae ai 'ams rqvr 0.1450000 5.060000e-02 1.9360000e-02 0.0000000 'iea iej igt ipress imf harpar 1 1 1 0 0 0.000000 'ea 500000.0000000 'eiv mf 33.0000000 0.0000000 'atminus 5000.0000000 'cqx cqy cax cay clx cly icode 'tb ycurmx 1000000.0000000 0.4000000 ********** NEW COMPONENT CRS1 'cmptyp-id temp alpha beta cs2 20.000000 0.000000 0.0000000 ae ai rgyr 'ams 0.1600000 0.3000000 5.0600000e-02 0.0000000 'iea iej igt ipress imf harpar 1 1 1 0 0 0.000000 'ea 500000.0000000 'eiv mf 33.0000000 0.0000000 'gtminus

```
5000.0000000
'cqx cqy cax cay clx cly
                                   icode
0.2500000 0.2000000 0.2000000 0.2000000 0.0000000 1
'tb
         ycurmx
1000000.0000000 0.4000000
NEW COMPONENT CRS1
'cmptyp-id temp alpha beta
cs3 20.000000 0.000000 0.0000000
      ae ai rgyr
'ams
0.1000000 0.2500000 1.9360000e-02 0.0000000
'iea iej igt ipress imf harpar
1 1 1 0 0 0.000000
'ea
500000.0000000
'ejy mf
37.0000000 0.0000000
'atminus
5000.0000000
'cqx cqy
           cax cay clx
                             cly icode
'tb
         ycurmx
1000000.000000 0.4000000
               NEW COMPONENT CRS1
'cmptyp-id temp alpha beta
cs4 20.000000 0.000000 0.0000000
'ams ae ai rgyr
0.1500000 7.6300000e-02 3.4130000e-02 0.0000000
'iea iej igt ipress imf harpar
1 1 1 0 0 0.000000
'ea
500000.0000000
'eiv
      mf
40.000000 0.000000
'atminus
5000.0000000
'cqx cqy cax cay clx cly icode
0.2000000 0.2000000 0.0000000 0.0000000 0.0000000 1
'tb ycurmx
1000000.000000 0.4000000
************
NEW COMPONENT CRS1
************
'cmptyp-id temp alpha beta
cs5 20.000000 0.000000 0.0000000
      ae ai
'amg
                 rqyr
0.1600000 0.3000000 7.6300000e-02 0.0000000
'iea iej igt ipress imf harpar
1 1 1 0 0 0.000000
'ea
500000.0000000
'eiv
      mf
33.0000000 0.0000000
'atminus
5000.0000000
'cqx cqy cax cay clx cly icode
0.2500000 0.2000000 0.2000000 0.2000000 0.0000000 0.0000000 1
'tb
         ycurmx
1000000.0000000 0.4000000
**********
NEW COMPONENT CRS1
```

```
'cmptyp-id temp
          alpha
               beta
cs6 20.000000 0.000000 0.0000000
'ams
     ae ai
                  rgyr
0.1000000 0.2500000 7.6300000e-02 0.0000000
'iea iej igt ipress imf harpar
1 1 1 0
        0 0.000000
'ea
500000.0000000
'ejy
     mf
37.0000000 0.0000000
'gtminus
5000.0000000
'cqx cqy cax cay clx cly
                               icode
0.2500000 0.2000000 0.0000000 0.0000000 0.0000000 1
'tb
        ycurmx
1000000.0000000 0.4000000
NEW COMPONENT FLUID
'cmptyp-id
fluid1
'rhoi
     vveli pressi dpress
                    idir
0.8000000 0.0000000 0.0000000 0.0000000 1
FLOATER FORCE MODEL
'nsbody
1
'chbody
s400
'line-id iseg iel iend rotx roty rotz
                         ist
line1 4 50 1 0.0000000 0.0000000 0.0000000 0
END
```

B. SIMA STAMOD RIFLEX (INP)

'A1 STAMOD IDENTIFICATION TEXT STAMOD CONTROL INFORMATION 3.7.9 'A1.3 OPTION AND PRINT SWITCHES 'irunco idris ianal iprdat iprcat iprfem ipform iprnor ifilm ifilco ARSYS 1 2 1 1 1 1 2 0 1 RUN IDENTIFICATION -----'idres STMA ! _ _ _ _ _ _____ ENVIRONMENT REFERENCE IDENTIFIER _____ 'idenv env1 1 - - - - - -STORE VISUALISATION RESPONSES _____ STATIC CONDITION INPUT 'lcomp icurin curfac isolvr 1 1.0000000 1 0 COMPUTATIONAL PROCEDURE 'ameth FEM ! _ _ _ _ _____ FEM ANALYSIS PARAMETERS ·.... LOAD GROUP DATA 'nstep maxit racu 2000 10 1.0000000e-06 'lotype ispec VOLU 0 ' LOAD GROUP DATA ۰.... 'nstep maxit racu 2000 10 1.0000000e-06 'lotype ispec DISP 0 END ***********

C. SIMA DYNMOD RIFLEX (INP)

'A1 DYNMOD CONTROL INFORMATION ***** DYNMOD CONTROL INFORMATION 3.7.9 'irunco ianal idris idenv idstat idirr idres ANAL IRREGULAR ARSYS env1 SIMA XX SIMA DATA GROUP D, IRREGULAR RESPONSE ANALYSIS IRREGULAR TIMESERIES PARAMETERS 'irand timgen dtgen chmeth iopamp 1 2048.0000000 1.0000000 FFT 0 1_____ _____ IRREGULAR RESPONSE ANALYSIS ------'ircno time dt chwav chmot chlmf tbeg iscale 1 11800.000000 1.000000 NEW STAT NONE 0.0000000 0 IRREGULAR WAVE PROCEDURE ------'iuppos icosim kinoff chstep nodstp zlower zupper iopdif 1 1 0 NODE 1 -100.0000000 0.0000000 0 * * * * * * * DATA GROUP E ' Time domain procedure and file storage parameters TIME DOMAIN PROCEDURE 'itdmet inewil idisst iforst icurst 1 1 1 1 2 'E1.3 TIME INTEGRATION 'betin gamma theta a2 alt al alto alb a2t0 a2b a2t 4.0000000 0.5000000 1.0000000 0.0000000 0.3000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 'E1.4 NONLINEAR FORCE MODEL 'indint indhyd maxhit epshyd tramp indrel iconre istepr ldamp 1 1 5 1.000000e-02 / 0 0 0 0 *_____ NONLINEAR INTEGRATION PROCEDURE ·_____ _____ 'itfreq isolit maxit daccu icocod ivarst itstat 1 1 10 1.000000e-05 1 2 1 !_____ DISPLACEMENT RESPONSE STORAGE · _____ 'idisp nodisp idisfm cfndis 1 2 0 'line-id iseg inod linel 1 ALL line2 1 ALL '_____ _____ FORCE RESPONSE STORAGE ·_____ 'ifor noforc iforfm cfnfor

```
1
 2
     0
'line-id iseg iel
line1 1 ALL
line2 1
     ALL
1_____
CURVATURE RESPONSE STORAGE
·_____
               _____
'icurv nocurv icurfm cfncur
1 2 0
'line-id iseg iel
line1 1 ALL
line2 1 ALL
'E6.1
·_____
ENVELOPE CURVE SPECIFICATION
·_____
'ienvd ienvf ienvc tenvs tenve nprend nprenf nprenc ifilmp
1 1 1 0.0000000 1.0000000e+07 1 1 1
                         2
·-----
STORE VISUALISATION RESPONSES
!_____
               _____
'tconds tconde delt chform
/
  72.0000000 0.5000000 VIS
END
```


F

Hydro D Model

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

// HydroD V4.4-05 started 31-Jan-2011 17:28:06 // HydroD V4.4-05 ended 31-Jan-2011 17:28:06 // HydroD V4.4-05 started 31-Jan-2011 17:28:06 WaveHeightSurfaceH25 = WaveHeightSurface(2 s, 28 s, 2, 180 deg, 1 deg, 1); WaveHeightSurfaceH25.set(2 s, 180 deg, 25 m); WaveHeightSurfaceH25.set(30 s, 180 deg, 25 m); DirectionSet1 = DirectionSet(Array(0 deg,45 deg,90 deg,135 deg,180 deg)); WaveSpectrum1 = Torsethaugen(15.6 m, 15.5 s); FrequencySet1 = FrequencySet(FrequencyTypePeriod, Array(2 s,4 s,6 s,8 s,9 s,10 s,11 s,12 s,13 s,14 s,15 s,16 s,17 s,18 s,19 s,20 s,21 s,22 s,23 s,24 s,25 s,26 s,27 s,28 s,29 s,30 s)); WaveHeightSurfaceH6 = WaveHeightSurface(2 s, 28 s, 2, 180 deg, 1 deg, 1); WaveHeightSurfaceH6.set(2 s, 180 deg, 6 m); WaveHeightSurfaceH6.set(30 s, 180 deg, 6 m); WaveSpectrum2 = Jonswap5Para(14 m, 13.5 s, 5, 0.07, 0.09); Location1 = Location(); Location1.setDepth(170 m); Location1.gravity = 9.80665 m/s^2; Location1.air().density = 1.226 Kg/m^3; Location1.air().kinematicViscosity = 1.462e-005 m²/s; Location1.water().density = 1025 Kg/m^3; Location1.water().kinematicViscosity = 1.19e-006 m²/s; Location1.seabed().normaldirection = Vector3d(0 m,0 m,1 m); Condition5 = FrequencyDomain(Location1); Condition5.waterSurface().directionSet = DirectionSet1; Condition5.waterSurface().frequencySet = FrequencySet1; Condition5.water().setNoCurrent();

RegWaveH25 = StochasticSeaState(Location1); RegWaveH25.setNoSpreading(): RegWaveH25.waveHeightEvaluator = WaveHeightSurfaceH25; RegWaveH25.randomSeed = 1; RegWaveH6 = StochasticSeaState(Location1); RegWaveH6.setNoSpreading(): RegWaveH6.waveHeightEvaluator = WaveHeightSurfaceH6; RegWaveH6.randomSeed = 1; SeaStateTor = StochasticSeaState(Location1); SeaStateTor.addDirectionalSpectrum(180 deg, WaveSpectrum1); SeaStateTor.setNoSpreading(); SeaStateTor.setNoWaveHeightEvaluator(); SeaStateTor.duration = 3; SeaStateTor.randomSeed = 1; HydroModel1 = HydroModel(HydroModelFloating); HydroModel1.setColumnStabilized(false); HydroModel1.setBaselineZPos(0 m); HydroModel1.setAPXPos(0 m); HydroModel1.setFPXPos(100 m); HydroModel1.clearReportMetaCenterRotationAxisAzim(); HydroModel1.addReportMetaCenterRotationAxisAzim(0 deg); HydroModel1.addReportMetaCenterRotationAxisAzim(90 deg); HydroModel1.clearReportHeelTrimCombinations(); HydroModel1.addReportHeelTrimCombination(0 deg, 0 deg); HydroModel1.clearReportZWaterlines(); HydroModel1.addReportZWaterline(0 m); HydroModel1.addReportZWaterline(0.5 m); HydroModel1.addReportZWaterline(1 m); HydroModel1.addReportZWaterline(1.5 m); HydroModel1.addReportZWaterline(2 m); HydroModel1.addReportZWaterline(2.5 m); HydroModel1.addReportZWaterline(3 m): HydroModel1.addReportZWaterline(3.5 m); HydroModel1.addReportZWaterline(4 m); HydroModel1.addReportZWaterline(4.5 m); HydroModel1.addReportZWaterline(5 m); HydroModel1.addReportZWaterline(5.5 m); HydroModel1.addReportZWaterline(6 m); HydroModel1.addReportZWaterline(6.5 m); HvdroModel1.addReportZWaterline(7 m); HydroModel1.addReportZWaterline(7.5 m); HydroModel1.addReportZWaterline(8 m); HydroModel1.addReportZWaterline(8.5 m); HvdroModel1.addReportZWaterline(9 m); HvdroModel1.addReportZWaterline(9.5 m); HydroModel1.addReportZWaterline(10 m); HydroModel1.addReportZWaterline(10.5 m); HydroModel1.addReportZWaterline(11 m);

HydroModel1.addReportZWaterline(11.5 m); HydroModel1.addReportZWaterline(12 m); HydroModel1.addReportZWaterline(12.5 m); HydroModel1.addReportZWaterline(13 m); HydroModel1.addReportZWaterline(13.5 m); HydroModel1.addReportZWaterline(14 m); HydroModel1.addReportZWaterline(14.5 m); HvdroModel1.addReportZWaterline(15 m); HydroModel1.addReportZWaterline(15.5 m); HydroModel1.addReportZWaterline(16 m); HydroModel1.addReportZWaterline(16.5 m); HydroModel1.addReportZWaterline(17 m); HydroModel1.addReportZWaterline(17.5 m); HydroModel1.addReportZWaterline(18 m); HydroModel1.addReportZWaterline(18.5 m); HydroModel1.addReportZWaterline(19 m); HydroModel1.addReportZWaterline(19.5 m); HydroModel1.addReportZWaterline(20 m); HydroModel1.addReportZWaterline(20.5 m); HydroModel1.addReportZWaterline(21 m); HydroModel1.addReportZWaterline(21.5 m); HydroModel1.addReportZWaterline(22 m); HydroModel1.addReportZWaterline(22.5 m); HydroModel1.addReportZWaterline(23 m); HydroModel1.addReportZWaterline(23.5 m); HydroModel1.addReportZWaterline(24 m); HydroModel1.addReportZWaterline(24.5 m); HydroModel1.addReportZWaterline(25 m); HydroModel1.addReportZWaterline(25.5 m); HydroModel1.addReportZWaterline(26 m); HydroModel1.addReportZWaterline(26.5 m); HydroModel1.addReportZWaterline(27 m); HydroModel1.addReportZWaterline(27.5 m); HydroModel1.addReportZWaterline(28 m); HydroModel1.addReportZWaterline(28.5 m); HydroModel1.addReportZWaterline(29 m); HydroModel1.addReportZWaterline(29.5 m); HydroModel1.addReportZWaterline(30 m); HydroModel1.addReportZWaterline(30.5 m); HydroModel1.addReportZWaterline(31 m); HydroModel1.addReportZWaterline(31.5 m); HydroModel1.addReportZWaterline(32 m); HydroModel1.addReportZWaterline(32.5 m); HydroModel1.addReportZWaterline(33 m); HydroModel1.addReportZWaterline(33.5 m); HydroModel1.addReportZWaterline(34 m); HydroModel1.addReportZWaterline(34.5 m); HydroModel1.addReportZWaterline(35 m); HvdroModel1.addReportZWaterline(35.5 m); HydroModel1.addReportZWaterline(36 m); HydroModel1.addReportZWaterline(36.5 m); HydroModel1.addReportZWaterline(37 m);

HydroModel1.addReportZWaterline(37.5 m); HydroModel1.addReportZWaterline(38 m); HydroModel1.addReportZWaterline(38.5 m); HydroModel1.addReportZWaterline(39 m); HydroModel1.addReportZWaterline(39.5 m); HydroModel1.addReportZWaterline(40 m); HydroModel1.addReportZWaterline(40.5 m); HvdroModel1.addReportZWaterline(41 m); HydroModel1.addReportZWaterline(41.5 m); HydroModel1.addReportZWaterline(42 m); HydroModel1.addReportZWaterline(42.5 m); HydroModel1.addReportZWaterline(43 m); HydroModel1.addReportZWaterline(43.5 m); HydroModel1.setKidTag("17f01e80-e62b-4487-8e02-48a9067b9007"); PIPE1 = MorisonSection(HydroModel1); PIPE1.drySection(false); PIPE1.setSectionName("PIPE1"); PIPE1.retainedDiameter(false); PIPE1.setDiameter(0.02 m); PIPE1.setDragCoefficientY(1); PIPE1.setDragCoefficientZ(5000); PIPE1.setAddedMassCoefficientY(1); PIPE1.setAddedMassCoefficientZ(1); PIPE1.partOfDualModel(true); PIPE1.retainedMass(true); PIPE1.setNoSubElements(1); PIPE1.setKidTag("131b06dc-324b-443d-b8c6-9a91032b05d0"); PanelModel1 = PanelModel(HydroModel1, ElementEnumsFEMFile, "T1.FEM", false, false); PanelModel1.setKidTag("9e484fa1-937c-43cd-82c7-2565ed585db9"); MorisonModel1 = MorisonModel(HydroModel1, ElementEnumsFEMFile, "T2.FEM"); MorisonModel1.refreshMorisonSections(); MorisonModel1.setKidTag("e85094e3-c518-4158-be95-2528fe813d28"); LoadingCondition1ball = LoadingCondition(HydroModel1, 16.35 m, 0 deg, 0 deg); LoadingCondition1ball.interpolateDampingMatrices(false); LoadingCondition1ball.addDampingMatricesToWadam(true); LoadingCondition1ball.setKidTag("127ba402-18c4-4862-af78-9839f695a320"); DampingMatrix3 = AdditionalDampingMatrix(LoadingCondition1ball); DampingMatrix3.setTranslationalTerm(1, 1, 800000 N*s/m); DampingMatrix3.setTranslationalTerm(1, 2, 0 N*s/m); DampingMatrix3.setTranslationalTerm(1, 3, 0 N*s/m); DampingMatrix3.setCoupledTerm(1, 4, 0 N*s); DampingMatrix3.setCoupledTerm(1, 5, 0 N*s); DampingMatrix3.setCoupledTerm(1, 6, 0 N*s); DampingMatrix3.setTranslationalTerm(2, 1, 0 N*s/m); DampingMatrix3.setTranslationalTerm(2, 2, 800000 N*s/m); DampingMatrix3.setTranslationalTerm(2, 3, 0 N*s/m); DampingMatrix3.setCoupledTerm(2, 4, 0 N*s);

DampingMatrix3.setCoupledTerm(2, 5, 0 N*s); DampingMatrix3.setCoupledTerm(2, 6, 0 N*s); DampingMatrix3.setTranslationalTerm(3, 1, 0 N*s/m); DampingMatrix3.setTranslationalTerm(3, 2, 0 N*s/m); DampingMatrix3.setTranslationalTerm(3, 3, 0 N*s/m); DampingMatrix3.setCoupledTerm(3, 4, 0 N*s); DampingMatrix3.setCoupledTerm(3, 5, 0 N*s); DampingMatrix3.setCoupledTerm(3, 6, 0 N*s); DampingMatrix3.setCoupledTerm(4, 1, 0 N*s); DampingMatrix3.setCoupledTerm(4, 2, 0 N*s); DampingMatrix3.setCoupledTerm(4, 3, 0 N*s); DampingMatrix3.setRotationalTerm(4, 4, 0 N*s*m); DampingMatrix3.setRotationalTerm(4, 5, 0 N*s*m); DampingMatrix3.setRotationalTerm(4, 6, 0 N*s*m); DampingMatrix3.setCoupledTerm(5, 1, 0 N*s); DampingMatrix3.setCoupledTerm(5, 2, 0 N*s); DampingMatrix3.setCoupledTerm(5, 3, 0 N*s); DampingMatrix3.setRotationalTerm(5, 4, 0 N*s*m); DampingMatrix3.setRotationalTerm(5, 5, 0 N*s*m); DampingMatrix3.setRotationalTerm(5, 6, 0 N*s*m); DampingMatrix3.setCoupledTerm(6, 1, 0 N*s); DampingMatrix3.setCoupledTerm(6, 2, 0 N*s); DampingMatrix3.setCoupledTerm(6, 3, 0 N*s); DampingMatrix3.setRotationalTerm(6, 4, 0 N*s*m); DampingMatrix3.setRotationalTerm(6, 5, 0 N*s*m); DampingMatrix3.setRotationalTerm(6, 6, 1e+010 N*s*m); DampingMatrix3.setKidTag("3c92e764-a475-41a2-83d2-a44b01c48865"); RestoringMatrix2 = AdditionalRestoringMatrix(LoadingCondition1ball); RestoringMatrix2.setTranslationalTerm(1, 1, 900000 N/m); RestoringMatrix2.setTranslationalTerm(1, 2, 0 N/m); RestoringMatrix2.setTranslationalTerm(1, 3, 0 N/m); RestoringMatrix2.setCoupledTerm(1, 4, 0 N); RestoringMatrix2.setCoupledTerm(1, 5, 0 N); RestoringMatrix2.setCoupledTerm(1, 6, 0 N); RestoringMatrix2.setTranslationalTerm(2, 1, 0 N/m); RestoringMatrix2.setTranslationalTerm(2, 2, 900000 N/m); RestoringMatrix2.setTranslationalTerm(2, 3, 0 N/m); RestoringMatrix2.setCoupledTerm(2, 4, 12000000 N); RestoringMatrix2.setCoupledTerm(2, 5, 0 N); RestoringMatrix2.setCoupledTerm(2, 6, 0 N); RestoringMatrix2.setTranslationalTerm(3, 1, 0 N/m); RestoringMatrix2.setTranslationalTerm(3, 2, 0 N/m); RestoringMatrix2.setTranslationalTerm(3, 3, 0 N/m); RestoringMatrix2.setCoupledTerm(3, 4, 0 N); RestoringMatrix2.setCoupledTerm(3, 5, 0 N); RestoringMatrix2.setCoupledTerm(3, 6, 0 N); RestoringMatrix2.setCoupledTerm(4, 1, 0 N); RestoringMatrix2.setCoupledTerm(4, 2, 12000000 N); RestoringMatrix2.setCoupledTerm(4, 3, 0 N); RestoringMatrix2.setRotationalTerm(4, 4, 650000000 N*m); RestoringMatrix2.setRotationalTerm(4, 5, 0 N*m);

```
RestoringMatrix2.setRotationalTerm(4, 6, 0 N*m);
RestoringMatrix2.setCoupledTerm(5, 1, 0 N);
RestoringMatrix2.setCoupledTerm(5, 2, 0 N);
RestoringMatrix2.setCoupledTerm(5, 3, 0 N);
RestoringMatrix2.setRotationalTerm(5, 4, 0 N*m);
RestoringMatrix2.setRotationalTerm(5, 5, 650000000 N*m);
RestoringMatrix2.setRotationalTerm(5, 6, 0 N*m);
RestoringMatrix2.setCoupledTerm(6, 1, 0 N);
RestoringMatrix2.setCoupledTerm(6, 2, 0 N);
RestoringMatrix2.setCoupledTerm(6, 3, 0 N);
RestoringMatrix2.setRotationalTerm(6, 4, 0 N*m);
RestoringMatrix2.setRotationalTerm(6, 5, 0 N*m);
RestoringMatrix2.setRotationalTerm(6, 6, 0 N*m);
RestoringMatrix2.setKidTag("3ad94d6f-15b6-4644-bc1d-587d41d718f3");
MassModel1 = MassModel(LoadingCondition1ball, MassModelSpecified);
MassModel1.setUserMassCoordinateSystem(MixedCoordinateSystem);
MassModel1.setTotalMass(70687500 Kg);
MassModel1.setCOG(Point(0 m,0 m,18.23 m));
MassModel1.setRadiusGyration(Vector3d(22 m,22 m,32 m));
MassModel1.setSpecificProductInertia(0 m, 0 m, 0 m);
MassModel1.addTankMass(false);
MassModel1.updateStiffnessWithFreeSurfaceEffect(true);
MassModel1.setKidTag("caac3eae-b8b5-4eea-aebd-eea0399d5428");
LoadingCondition2Loa = LoadingCondition(HydroModel1, 20.72 m, 0 deg, 0 deg);
LoadingCondition2Loa.interpolateDampingMatrices(false);
LoadingCondition2Loa.addDampingMatricesToWadam(true);
LoadingCondition2Loa.setKidTag("fdd251df-53d0-44e6-b2ff-7846067ed809");
RestoringMatrix1 = AdditionalRestoringMatrix(LoadingCondition2Loa);
RestoringMatrix1.setTranslationalTerm(1, 1, 900000 N/m);
RestoringMatrix1.setTranslationalTerm(1, 2, 0 N/m);
RestoringMatrix1.setTranslationalTerm(1, 3, 0 N/m);
RestoringMatrix1.setCoupledTerm(1, 4, 0 N);
RestoringMatrix1.setCoupledTerm(1, 5, 0 N);
RestoringMatrix1.setCoupledTerm(1, 6, 0 N);
RestoringMatrix1.setTranslationalTerm(2, 1, 0 N/m);
RestoringMatrix1.setTranslationalTerm(2, 2, 900000 N/m);
RestoringMatrix1.setTranslationalTerm(2, 3, 0 N/m);
RestoringMatrix1.setCoupledTerm(2, 4, 17000000 N);
RestoringMatrix1.setCoupledTerm(2, 5, 0 N);
RestoringMatrix1.setCoupledTerm(2, 6, 0 N);
RestoringMatrix1.setTranslationalTerm(3, 1, 0 N/m);
RestoringMatrix1.setTranslationalTerm(3, 2, 0 N/m);
RestoringMatrix1.setTranslationalTerm(3, 3, 0 N/m);
RestoringMatrix1.setCoupledTerm(3, 4, 0 N);
RestoringMatrix1.setCoupledTerm(3, 5, 0 N);
RestoringMatrix1.setCoupledTerm(3, 6, 0 N);
RestoringMatrix1.setCoupledTerm(4, 1, 0 N);
RestoringMatrix1.setCoupledTerm(4, 2, 17000000 N);
RestoringMatrix1.setCoupledTerm(4, 3, 0 N);
```

RestoringMatrix1.setRotationalTerm(4, 4, 900000000 N*m); RestoringMatrix1.setRotationalTerm(4, 5, 0 N*m); RestoringMatrix1.setRotationalTerm(4, 6, 0 N*m); RestoringMatrix1.setCoupledTerm(5, 1, 0 N); RestoringMatrix1.setCoupledTerm(5, 2, 0 N); RestoringMatrix1.setCoupledTerm(5, 3, 0 N); RestoringMatrix1.setRotationalTerm(5, 4, 0 N*m); RestoringMatrix1.setRotationalTerm(5, 5, 90000000 N*m); RestoringMatrix1.setRotationalTerm(5, 6, 0 N*m); RestoringMatrix1.setCoupledTerm(6, 1, 0 N); RestoringMatrix1.setCoupledTerm(6, 2, 0 N); RestoringMatrix1.setCoupledTerm(6, 3, 0 N); RestoringMatrix1.setRotationalTerm(6, 4, 0 N*m); RestoringMatrix1.setRotationalTerm(6, 5, 0 N*m); RestoringMatrix1.setRotationalTerm(6, 6, 0 N*m); RestoringMatrix1.setKidTag("3ad94d6f-15b6-4644-bc1d-587d41d718f3"); DampingMatrix1 = AdditionalDampingMatrix(LoadingCondition2Loa); DampingMatrix1.setTranslationalTerm(1, 1, 800000 N*s/m); DampingMatrix1.setTranslationalTerm(1, 2, 0 N*s/m); DampingMatrix1.setTranslationalTerm(1, 3, 0 N*s/m); DampingMatrix1.setCoupledTerm(1, 4, 0 N*s); DampingMatrix1.setCoupledTerm(1, 5, 0 N*s); DampingMatrix1.setCoupledTerm(1, 6, 0 N*s); DampingMatrix1.setTranslationalTerm(2, 1, 0 N*s/m); DampingMatrix1.setTranslationalTerm(2, 2, 800000 N*s/m); DampingMatrix1.setTranslationalTerm(2, 3, 0 N*s/m); DampingMatrix1.setCoupledTerm(2, 4, 0 N*s); DampingMatrix1.setCoupledTerm(2, 5, 0 N*s); DampingMatrix1.setCoupledTerm(2, 6, 0 N*s); DampingMatrix1.setTranslationalTerm(3, 1, 0 N*s/m): DampingMatrix1.setTranslationalTerm(3, 2, 0 N*s/m); DampingMatrix1.setTranslationalTerm(3, 3, 0 N*s/m); DampingMatrix1.setCoupledTerm(3, 4, 0 N*s); DampingMatrix1.setCoupledTerm(3, 5, 0 N*s); DampingMatrix1.setCoupledTerm(3, 6, 0 N*s); DampingMatrix1.setCoupledTerm(4, 1, 0 N*s); DampingMatrix1.setCoupledTerm(4, 2, 0 N*s); DampingMatrix1.setCoupledTerm(4, 3, 0 N*s); DampingMatrix1.setRotationalTerm(4, 4, 0 N*s*m); DampingMatrix1.setRotationalTerm(4, 5, 0 N*s*m); DampingMatrix1.setRotationalTerm(4, 6, 0 N*s*m); DampingMatrix1.setCoupledTerm(5, 1, 0 N*s); DampingMatrix1.setCoupledTerm(5, 2, 0 N*s); DampingMatrix1.setCoupledTerm(5, 3, 0 N*s); DampingMatrix1.setRotationalTerm(5, 4, 0 N*s*m); DampingMatrix1.setRotationalTerm(5, 5, 0 N*s*m); DampingMatrix1.setRotationalTerm(5, 6, 0 N*s*m); DampingMatrix1.setCoupledTerm(6, 1, 0 N*s); DampingMatrix1.setCoupledTerm(6, 2, 0 N*s); DampingMatrix1.setCoupledTerm(6, 3, 0 N*s); DampingMatrix1.setRotationalTerm(6, 4, 0 N*s*m);

DampingMatrix1.setRotationalTerm(6, 5, 0 N*s*m); DampingMatrix1.setRotationalTerm(6, 6, 1e+010 N*s*m); DampingMatrix1.setKidTag("ce6284b7-16f3-4aeb-a5dd-21420782a6fa"); MassModel2 = MassModel(LoadingCondition2Loa, MassModelSpecified); MassModel2.setUserMassCoordinateSystem(MixedCoordinateSystem); MassModel2.setTotalMass(87907200 Kg); MassModel2.setCOG(Point(0 m,0 m,18.23 m)); MassModel2.setRadiusGyration(Vector3d(22 m,22 m,32 m)); MassModel2.setSpecificProductInertia(0 m, 0 m, 0 m); MassModel2.addTankMass(true); MassModel2.updateStiffnessWithFreeSurfaceEffect(true); MassModel2.setKidTag("fa56a61a-877c-4b72-82b0-6b8f67ea8f57"); WadamBalH25 = WadamRun(); WadamBalH25.useMultiBody(false); WadamBalH25.setHydroModel(HydroModel1); WadamBalH25.setLoadingCondition(LoadingCondition1ball); WadamBalH25.setEnvironmentData(Condition5); WadamBalH25.useSeaState(true); WadamBalH25.setSeaState(RegWaveH25); WadamBalH25.dataCheck(false); WadamBalH25.setAnalysisType(WadamRunGlobalResponse); WadamBalH25.setDragType(WadamRunWaveHeigtsDrag); WadamBalH25.setDragTranslationalConvergenceCriteria(0.1); WadamBalH25.setDragRotationalConvergenceCriteria(0.1); WadamBalH25.setDragMaxNoIterations(10); WadamBalH25.setWaveType(WadamRunIncidentWave); WadamBalH25.calculateDrift(false); WadamBalH25.driftByPressureIntegration(true); WadamBalH25.driftBvFarFieldIntegration(true): WadamBalH25.waveDriftDamping(false); WadamBalH25.setSolverType(WadamRunDirectSolver); WadamBalH25.setMaxMatrixDimension(3000); WadamBalH25.setSingularityType(WadamRunAnalyticalSingularity); WadamBalH25.setIntegrationType(WadamRunOneNodeGauss); WadamBalH25.setPanelDimensionType(WadamRunMaximumDiagonalPanelDimension); WadamBalH25.removeIrrFrequencies(false); WadamBalH25.saveTempWamitFiles(false); WadamBalH25.stopBeforePotenExecution(false); WadamBalH25.bypassPotenExecution(false); WadamBalH25.stopBeforeFirstForceExecution(false); WadamBalH25.bypassFirstForceExecution(false); WadamBalH25.useWadamMassCalculation(false); WadamBalH25.stopBeforeSecondForceExecution(false); WadamBalH25.bypassSecondForceExecution(false); WadamBalH25.useSaveRestart(false); WadamBalH25.setPrintType(WadamRunNormalPrint); WadamBalH25.setResponseFileType(WadamRunSIFFormatted); WadamBalH25.calculateEigenvalues(true); WadamBalH25.setWaterlinePanelMethod(WadamRunNoPanelPressureAdjustment); WadamBalH25.sumFrequencyResults(false);

WadamBalH25.differenceFrequencyResults(false); WadamBalH25.setToleranceWaterLine(0.1); WadamBalH25.setToleranceCOG(0.1); WadamBalH25.setCharacteristicLength(1 m); WadamBalH25.calculateRollDamping(false); WadamBalH25.specifyOutputDirectory(true); WadamBalH25.setOutputDirectory("C:/DNV/Workspaces/Dana/30_HydroD/"); WadamBalH25.setOutputPrefix("BalH25"); WadamBalH25.autoOwerwriteExistingResultFiles(true); WadamBalH25.setKidTag("02f9799d-896a-4896-bfa6-884573fa3feb"); WadamBalH6 = WadamRun(); WadamBalH6.useMultiBody(false); WadamBalH6.setHydroModel(HydroModel1); WadamBalH6.setLoadingCondition(LoadingCondition1ball); WadamBalH6.setEnvironmentData(Condition5); WadamBalH6.useSeaState(true); WadamBalH6.setSeaState(RegWaveH6); WadamBalH6.dataCheck(false); WadamBalH6.setAnalysisType(WadamRunGlobalResponse); WadamBalH6.setDragType(WadamRunWaveHeigtsDrag); WadamBalH6.setDragTranslationalConvergenceCriteria(0.1); WadamBalH6.setDragRotationalConvergenceCriteria(0.1); WadamBalH6.setDragMaxNoIterations(10); WadamBalH6.setWaveType(WadamRunIncidentWave); WadamBalH6.calculateDrift(false); WadamBalH6.driftByPressureIntegration(true); WadamBalH6.driftByFarFieldIntegration(true); WadamBalH6.waveDriftDamping(false); WadamBalH6.setSolverType(WadamRunDirectSolver); WadamBalH6.setMaxMatrixDimension(3000); WadamBalH6.setSingularityType(WadamRunAnalyticalSingularity); WadamBalH6.setIntegrationType(WadamRunOneNodeGauss); WadamBalH6.setPanelDimensionType(WadamRunMaximumDiagonalPanelDimension); WadamBalH6.removeIrrFrequencies(false); WadamBalH6.saveTempWamitFiles(false); WadamBalH6.stopBeforePotenExecution(false); WadamBalH6.bypassPotenExecution(false); WadamBalH6.stopBeforeFirstForceExecution(false); WadamBalH6.bypassFirstForceExecution(false); WadamBalH6.useWadamMassCalculation(false): WadamBalH6.stopBeforeSecondForceExecution(false); WadamBalH6.bypassSecondForceExecution(false); WadamBalH6.useSaveRestart(false); WadamBalH6.setPrintType(WadamRunNormalPrint); WadamBalH6.setResponseFileType(WadamRunSIFFormatted); WadamBalH6.calculateEigenvalues(true); WadamBalH6.setWaterlinePanelMethod(WadamRunNoPanelPressureAdjustment); WadamBalH6.sumFrequencyResults(false); WadamBalH6.differenceFrequencyResults(false); WadamBalH6.setToleranceWaterLine(0.1); WadamBalH6.setToleranceCOG(0.1);

WadamBalH6.setCharacteristicLength(1 m); WadamBalH6.calculateRollDamping(false); WadamBalH6.specifyOutputDirectory(true); WadamBalH6.setOutputDirectory("C:/DNV/Workspaces/Dana/30_HydroD/"); WadamBalH6.setOutputPrefix("BalH6"); WadamBalH6.autoOwerwriteExistingResultFiles(false); WadamBalH6.setKidTag("f2db880a-1d69-4313-80ca-5fd143d9f688"); WadamBalIR = WadamRun(); WadamBalIR.useMultiBody(false); WadamBalIR.setHydroModel(HydroModel1); WadamBallR.setLoadingCondition(LoadingCondition1ball); WadamBalIR.setEnvironmentData(Condition5); WadamBallR.useSeaState(true); WadamBalIR.setSeaState(SeaStateTor); WadamBallR.dataCheck(false); WadamBalIR.setAnalysisType(WadamRunGlobalResponse); WadamBalIR.setDragType(WadamRunStochasticDrag); WadamBalIR.setDragTranslationalConvergenceCriteria(0.1); WadamBalIR.setDragRotationalConvergenceCriteria(0.1); WadamBalIR.setDragMaxNoIterations(10); WadamBallR.setWaveType(WadamRunIncidentWave); WadamBalIR.calculateDrift(true); WadamBallR.driftByPressureIntegration(true); WadamBallR.driftByFarFieldIntegration(true); WadamBallR.waveDriftDamping(false); WadamBalIR.setSolverType(WadamRunDirectSolver); WadamBalIR.setMaxMatrixDimension(3000); WadamBallR.setSingularityType(WadamRunAnalyticalSingularity); WadamBalIR.setIntegrationType(WadamRunOneNodeGauss); WadamBallR.setPanelDimensionType(WadamRunMaximumDiagonalPanelDimension); WadamBallR.removeIrrFrequencies(false); WadamBalIR.saveTempWamitFiles(false); WadamBallR.stopBeforePotenExecution(false); WadamBallR.bypassPotenExecution(false); WadamBalIR.stopBeforeFirstForceExecution(false); WadamBallR.bypassFirstForceExecution(false); WadamBallR.useWadamMassCalculation(false); WadamBalIR.stopBeforeSecondForceExecution(false); WadamBallR.bypassSecondForceExecution(false); WadamBalIR.useSaveRestart(false); WadamBalIR.setPrintType(WadamRunNormalPrint); WadamBalIR.setResponseFileType(WadamRunSIFFormatted); WadamBalIR.calculateEigenvalues(true); WadamBalIR.setWaterlinePanelMethod(WadamRunNoPanelPressureAdjustment); WadamBalIR.sumFrequencyResults(false); WadamBallR.differenceFrequencyResults(false); WadamBalIR.setToleranceWaterLine(0.1); WadamBallR.setToleranceCOG(0.1); WadamBallR.setCharacteristicLength(1 m); WadamBalIR.calculateRollDamping(false); WadamBalIR.specifyOutputDirectory(true);

WadamBallR.setOutputDirectory("C:/DNV/Workspaces/Dana/30_HydroD/WadamRunBallR/"); WadamBalIR.setOutputPrefix("BalIR"); WadamBallR.autoOwerwriteExistingResultFiles(true); WadamBalIR.setKidTag("653a2ca1-bb4f-4ee4-8b0a-693cb13cc5b9"); WadamLoaH25 = WadamRun(); WadamLoaH25.useMultiBody(false); WadamLoaH25.setHydroModel(HydroModel1); WadamLoaH25.setLoadingCondition(LoadingCondition2Loa); WadamLoaH25.setEnvironmentData(Condition5); WadamLoaH25.useSeaState(true); WadamLoaH25.setSeaState(RegWaveH25); WadamLoaH25.dataCheck(false); WadamLoaH25.setAnalysisType(WadamRunGlobalResponse); WadamLoaH25.setDragType(WadamRunWaveHeigtsDrag); WadamLoaH25.setDragTranslationalConvergenceCriteria(0.1); WadamLoaH25.setDragRotationalConvergenceCriteria(0.1); WadamLoaH25.setDragMaxNoIterations(10); WadamLoaH25.setWaveType(WadamRunIncidentWave); WadamLoaH25.calculateDrift(true); WadamLoaH25.driftByPressureIntegration(true); WadamLoaH25.driftByFarFieldIntegration(true); WadamLoaH25.waveDriftDamping(false); WadamLoaH25.setSolverType(WadamRunDirectSolver); WadamLoaH25.setMaxMatrixDimension(3000); WadamLoaH25.setSingularityType(WadamRunAnalyticalSingularity); WadamLoaH25.setIntegrationType(WadamRunOneNodeGauss); WadamLoaH25.setPanelDimensionType(WadamRunMaximumDiagonalPanelDimension); WadamLoaH25.removeIrrFrequencies(false); WadamLoaH25.saveTempWamitFiles(false); WadamLoaH25.stopBeforePotenExecution(false); WadamLoaH25.bypassPotenExecution(false); WadamLoaH25.stopBeforeFirstForceExecution(false); WadamLoaH25.bypassFirstForceExecution(false); WadamLoaH25.useWadamMassCalculation(false); WadamLoaH25.stopBeforeSecondForceExecution(false); WadamLoaH25.bypassSecondForceExecution(false); WadamLoaH25.useSaveRestart(false); WadamLoaH25.setPrintType(WadamRunNormalPrint); WadamLoaH25.setResponseFileType(WadamRunSIFFormatted); WadamLoaH25.calculateEigenvalues(true); WadamLoaH25.setWaterlinePanelMethod(WadamRunNoPanelPressureAdjustment); WadamLoaH25.sumFrequencyResults(false); WadamLoaH25.differenceFrequencyResults(false); WadamLoaH25.setToleranceWaterLine(0.1); WadamLoaH25.setToleranceCOG(0.1); WadamLoaH25.setCharacteristicLength(1 m); WadamLoaH25.calculateRollDamping(false); WadamLoaH25.specifyOutputDirectory(true); WadamLoaH25.setOutputDirectory("C:/DNV/Workspaces/Dana/30_HydroD/WadamRunLoaH25/"); WadamLoaH25.setOutputPrefix("LoaH25"); WadamLoaH25.autoOwerwriteExistingResultFiles(true);

WadamLoaH25.setKidTag("1c63f368-c217-4ef5-9013-141f90b5dbad"); WadamLoaH6 = WadamRun(); WadamLoaH6.useMultiBody(false); WadamLoaH6.setHydroModel(HydroModel1); WadamLoaH6.setLoadingCondition(LoadingCondition2Loa); WadamLoaH6.setEnvironmentData(Condition5); WadamLoaH6.useSeaState(true); WadamLoaH6.setSeaState(RegWaveH6); WadamLoaH6.dataCheck(false); WadamLoaH6.setAnalysisType(WadamRunGlobalResponse); WadamLoaH6.setDragType(WadamRunWaveHeigtsDrag); WadamLoaH6.setDragTranslationalConvergenceCriteria(0.1); WadamLoaH6.setDragRotationalConvergenceCriteria(0.1); WadamLoaH6.setDragMaxNoIterations(10); WadamLoaH6.setWaveType(WadamRunIncidentWave); WadamLoaH6.calculateDrift(false); WadamLoaH6.driftByPressureIntegration(true); WadamLoaH6.driftByFarFieldIntegration(true); WadamLoaH6.waveDriftDamping(false); WadamLoaH6.setSolverType(WadamRunDirectSolver); WadamLoaH6.setMaxMatrixDimension(3000); WadamLoaH6.setSingularityType(WadamRunAnalyticalSingularity); WadamLoaH6.setIntegrationType(WadamRunOneNodeGauss); WadamLoaH6.setPanelDimensionType(WadamRunMaximumDiagonalPanelDimension); WadamLoaH6.removeIrrFrequencies(false); WadamLoaH6.saveTempWamitFiles(false); WadamLoaH6.stopBeforePotenExecution(false); WadamLoaH6.bypassPotenExecution(false); WadamLoaH6.stopBeforeFirstForceExecution(false); WadamLoaH6.bypassFirstForceExecution(false); WadamLoaH6.useWadamMassCalculation(false); WadamLoaH6.stopBeforeSecondForceExecution(false); WadamLoaH6.bypassSecondForceExecution(false); WadamLoaH6.useSaveRestart(false); WadamLoaH6.setPrintType(WadamRunNormalPrint); WadamLoaH6.setResponseFileType(WadamRunSIFFormatted); WadamLoaH6.calculateEigenvalues(true); WadamLoaH6.setWaterlinePanelMethod(WadamRunNoPanelPressureAdjustment); WadamLoaH6.sumFrequencyResults(false); WadamLoaH6.differenceFrequencyResults(false); WadamLoaH6.setToleranceWaterLine(0.1); WadamLoaH6.setToleranceCOG(0.1); WadamLoaH6.setCharacteristicLength(1 m); WadamLoaH6.calculateRollDamping(false); WadamLoaH6.specifyOutputDirectory(true); WadamLoaH6.setOutputDirectory("C:/DNV/Workspaces/Dana/30_HydroD/"); WadamLoaH6.setOutputPrefix("LoaH6"); WadamLoaH6.autoOwerwriteExistingResultFiles(true); WadamLoaH6.setKidTag("36839d3d-513c-497d-aea0-5f10b09f70da"); WadamLoaIR = WadamRun();

WadamLoaIR.useMultiBody(false); WadamLoaIR.setHydroModel(HydroModel1); WadamLoaIR.setLoadingCondition(LoadingCondition2Loa); WadamLoaIR.setEnvironmentData(Condition5); WadamLoaIR.useSeaState(true); WadamLoaIR.setSeaState(SeaStateTor); WadamLoaIR.dataCheck(false); WadamLoaIR.setAnalysisType(WadamRunGlobalResponse); WadamLoaIR.setDragType(WadamRunStochasticDrag); WadamLoaIR.setDragTranslationalConvergenceCriteria(0.1); WadamLoaIR.setDragRotationalConvergenceCriteria(0.1); WadamLoaIR.setDragMaxNoIterations(10); WadamLoaIR.setWaveType(WadamRunIncidentWave); WadamLoaIR.calculateDrift(true); WadamLoaIR.driftByPressureIntegration(true); WadamLoaIR.driftByFarFieldIntegration(true); WadamLoalR.waveDriftDamping(false); WadamLoaIR.setSolverType(WadamRunDirectSolver); WadamLoaIR.setMaxMatrixDimension(3000); WadamLoaIR.setSingularityType(WadamRunAnalyticalSingularity); WadamLoaIR.setIntegrationType(WadamRunOneNodeGauss); WadamLoaIR.setPanelDimensionType(WadamRunMaximumDiagonalPanelDimension); WadamLoaIR.removeIrrFrequencies(false); WadamLoaIR.saveTempWamitFiles(false); WadamLoaIR.stopBeforePotenExecution(false); WadamLoaIR.bypassPotenExecution(false); WadamLoaIR.stopBeforeFirstForceExecution(false); WadamLoaIR.bypassFirstForceExecution(false); WadamLoaIR.useWadamMassCalculation(false); WadamLoaIR.stopBeforeSecondForceExecution(false); WadamLoaIR.bypassSecondForceExecution(false); WadamLoaIR.useSaveRestart(false); WadamLoaIR.setPrintType(WadamRunNormalPrint); WadamLoaIR.setResponseFileType(WadamRunSIFFormatted); WadamLoaIR.calculateEigenvalues(true); WadamLoaIR.setWaterlinePanelMethod(WadamRunNoPanelPressureAdjustment); WadamLoaIR.sumFrequencyResults(false); WadamLoaIR.differenceFrequencyResults(false); WadamLoaIR.setToleranceWaterLine(0.1); WadamLoaIR.setToleranceCOG(0.1); WadamLoaIR.setCharacteristicLength(1 m); WadamLoaIR.calculateRollDamping(false); WadamLoaIR.specifyOutputDirectory(true); WadamLoaIR.setOutputDirectory("C:/DNV/Workspaces/Dana/30_HydroD/WadamRunLoaIR/"); WadamLoaIR.setOutputPrefix("LoaIR"); WadamLoaIR.autoOwerwriteExistingResultFiles(false); WadamLoaIR.setKidTag("a6fedb2b-dfdf-4745-acd6-7169346065ce"); Delete(WadamBalH25); Delete(WadamBalH6); Delete(WadamBalIR); Delete(WadamLoaH25); Delete(WadamLoaH6);

Delete(WadamLoaIR); Delete(LoadingCondition2Loa); HvdroModel1.setActiveFolder(); PanelModel1.setFileName("C:/Documents and Settings/raf/My Documents/Projects/Western Isles/Sesam/WI/HullT1.FEM"); PanelModel1.setSymmetry(true,true); PanelModel1.regenerateGeometry(); MorisonModel1.setFileName("C:/Documents and Settings/raf/My Documents/Projects/Western Isles/Sesam/WI/RingT2.FEM"); MorisonModel1.regenerateGeometry(); LoadingCondition1ball.setLoadingCondition(16.35 m,0 deg,0 deg); LoadingCondition1ball.setByDraft(false); Rename(LoadingCondition1ball,"Ballast"); PanelPressures1 = PressurePanels(PanelModel1); PanelPressures1.addPanelElementPressure(1,10); PanelPressures1.addPanelElementPressure(1,20); PanelPressures1.addPanelElementPressure(1,30); PanelPressures1.addPanelElementPressure(1,40); PanelPressures1.addPanelElementPressure(1,50); PanelPressures1.addPanelElementPressure(1,60); PanelPressures1.addPanelElementPressure(1,70); PanelPressures1.addPanelElementPressure(1,80); PanelPressures1.addPanelElementPressure(1,90); PanelPressures1.addPanelElementPressure(1,100); PanelPressures1.addPanelElementPressure(1,110); PanelPressures1.addPanelElementPressure(1,120); PanelPressures1.addPanelElementPressure(1,130); PanelPressures1.addPanelElementPressure(1,140); PanelPressures1.addPanelElementPressure(1,150); PanelPressures1.addPanelElementPressure(1,160); PanelPressures1.addPanelElementPressure(1,221); PanelPressures1.addPanelElementPressure(1,241); PanelPressures1.addPanelElementPressure(1,261); PanelPressures1.addPanelElementPressure(1,262); PanelPressures1.addPanelElementPressure(1,263); PanelPressures1.addPanelElementPressure(1,264); PanelPressures1.addPanelElementPressure(1,341); PanelPressures1.addPanelElementPressure(1,361); PanelPressures1.addPanelElementPressure(1,381); PanelPressures1.addPanelElementPressure(1,401); PanelPressures1.addPanelElementPressure(1,421); PanelPressures1.addPanelElementPressure(1,441); PanelPressures1.addPanelElementPressure(1,461); PanelPressures1.addPanelElementPressure(1,481); PanelPressures1.addPanelElementPressure(1,501); PanelPressures1.addPanelElementPressure(1,521); PanelPressures1.addPanelElementPressure(1,541); WadamRun1 = WadamRun(); // Start Input ********* WadamRun1.setHydroModel(HydroModel1); WadamRun1.useMultiBody(false); WadamRun1.setLoadingCondition(Ballast);

WadamRun1.setEnvironmentData(Condition5); WadamRun1.useSeaState(true); WadamRun1.setSeaState(SeaStateTor); // End Input ********* // Start Execution Directives ********* WadamRun1.dataCheck(false); WadamRun1.setAnalysisType(WadamRunGlobalResponse); // Start Constants ********* WadamRun1.setToleranceWaterLine(0.01); WadamRun1.setToleranceCOG(0.01); WadamRun1.setCharacteristicLength(1); // End Constants ********* // Start Wave ********* WadamRun1.setDragType(WadamRunStochasticDrag); WadamRun1.setWaveType(WadamRunIncidentWave); WadamRun1.setDragTranslationalConvergenceCriteria(0.1); WadamRun1.setDragRotationalConvergenceCriteria(0.1); WadamRun1.setDragMaxNoIterations(10); // End Wave ********* // Start Drift Forces ********* WadamRun1.calculateDrift(true); WadamRun1.driftByPressureIntegration(true); WadamRun1.driftByFarFieldIntegration(true); WadamRun1.waveDriftDamping(false); // End Drift Forces ********* // Start Roll Damping ********* WadamRun1.calculateRollDamping(false); // End Roll Damping ********* // Start Equation Solver ********* WadamRun1.setSolverType(WadamRunDirectSolver); WadamRun1.setMaxMatrixDimension(3000); // End Equation Solver ********* // Start Print ******** WadamRun1.setPrintType(WadamRunNormalPrint); // End Print ********* // Start Result Files ********* // Start Global Response ********* WadamRun1.setResponseFileType(WadamRunSIFFormatted); WadamRun1.calculateEigenvalues(true); WadamRun1.sumFrequencyResults(false); WadamRun1.differenceFrequencyResults(false); // End Global Response ********* // Start Load Transfer ********* // End Load Transfer ********* // End Result Files ********* // Start Advanced ********* WadamRun1.setSingularityType(WadamRunNumericalSingularity); WadamRun1.setIntegrationType(WadamRunOneNodeGauss); WadamRun1.setPanelDimensionType(WadamRunAreaPanelDimension); WadamRun1.useWadamMassCalculation(false); WadamRun1.removeIrrFrequencies(false); WadamRun1.saveTempWamitFiles(false);

WadamRun1.stopBeforePotenExecution(false); WadamRun1.bypassPotenExecution(false); WadamRun1.stopBeforeFirstForceExecution(false); WadamRun1.bypassFirstForceExecution(false); WadamRun1.stopBeforeSecondForceExecution(false); WadamRun1.bypassSecondForceExecution(false); WadamRun1.useSaveRestart(false); // End Advanced ********* // End Execution Directives ********* // Start Output Directory ********* WadamRun1.specifyOutputDirectory(false); WadamRun1.autoOwerwriteExistingResultFiles(false); // End Output Directory ********* DirectionSet1.removeAll(); DirectionSet1.add(180 deg); // HydroD V4.4-05 ended 31-Jan-2011 17:53:11 // HydroD V4.4-05 started 01-Feb-2011 14:40:57 RestoringMatrix2.setTranslationalTerm(1,1,1.14E+06); RestoringMatrix2.setTranslationalTerm(1,2,0); RestoringMatrix2.setTranslationalTerm(1,3,0); RestoringMatrix2.setCoupledTerm(1,4,0); RestoringMatrix2.setCoupledTerm(1,5,-1.85E+07); RestoringMatrix2.setCoupledTerm(1,6,0); RestoringMatrix2.setTranslationalTerm(2,1,0); RestoringMatrix2.setTranslationalTerm(2,2,1.14E+06); RestoringMatrix2.setTranslationalTerm(2,3,0); RestoringMatrix2.setCoupledTerm(2,4,1.85E+07); RestoringMatrix2.setCoupledTerm(2,5,0); RestoringMatrix2.setCoupledTerm(2,6,0); RestoringMatrix2.setTranslationalTerm(3,1,0); RestoringMatrix2.setTranslationalTerm(3,2,0); RestoringMatrix2.setTranslationalTerm(3,3,0); RestoringMatrix2.setCoupledTerm(3,4,0); RestoringMatrix2.setCoupledTerm(3,5,0); RestoringMatrix2.setCoupledTerm(3,6,0); RestoringMatrix2.setCoupledTerm(4,1,0); RestoringMatrix2.setCoupledTerm(4,2,5.93E+06); RestoringMatrix2.setCoupledTerm(4,3,0); RestoringMatrix2.setRotationalTerm(4,4,4.69E+08); RestoringMatrix2.setRotationalTerm(4,5,0); RestoringMatrix2.setRotationalTerm(4,6,0); RestoringMatrix2.setCoupledTerm(5,1,-5.93E+06); RestoringMatrix2.setCoupledTerm(5,2,0); RestoringMatrix2.setCoupledTerm(5,3,0); RestoringMatrix2.setRotationalTerm(5,4,0); RestoringMatrix2.setRotationalTerm(5,5,4.69E+08); RestoringMatrix2.setRotationalTerm(5,6,0); RestoringMatrix2.setCoupledTerm(6,1,0); RestoringMatrix2.setCoupledTerm(6,2,0); RestoringMatrix2.setCoupledTerm(6,3,0); RestoringMatrix2.setRotationalTerm(6,4,0); RestoringMatrix2.setRotationalTerm(6,5,0);

RestoringMatrix2.setRotationalTerm(6,6,0); Rename(WadamRun1,"ULS"); $ULS_1 = ULS.copy();$ remapRelations(); Rename(ULS_1,"FLS"); // Start Input ********* FLS.setSeaState(RegWaveH6); // End Input ********* // Start Execution Directives ********* // Start Constants ********* // End Constants ********* // Start Wave ******** // End Wave ********* // Start Drift Forces ********* // End Drift Forces ********* // Start Roll Damping ********* // End Roll Damping ********* // Start Equation Solver ********* // End Equation Solver ********* // Start Print ********* // End Print ********* // Start Result Files ******** // Start Global Response ********* // End Global Response ********* // Start Load Transfer ********* // End Load Transfer ********* // End Result Files ********* // Start Advanced ********* // End Advanced ********* // End Execution Directives ********* // Start Output Directory ********* FLS.specifyOutputDirectory(true); FLS.setOutputDirectory("C:/Documents Settings/ebg/My Documents/Projects/Western and Isles/Sesam/WI/"); FLS.setOutputPrefix("BalFLS"); // End Output Directory ********** // Start Input ********* // End Input ********* // Start Execution Directives ********* // Start Constants ********* // End Constants ********* // Start Wave ********* // End Wave ********* // Start Drift Forces ********* // End Drift Forces ********* // Start Roll Damping ******** // End Roll Damping ********* // Start Equation Solver ********* // End Equation Solver ********* // Start Print ******** // End Print ********* // Start Result Files *********

// Start Global Response ********* // End Global Response ********* // Start Load Transfer ********* // End Load Transfer ********* // End Result Files ********* // Start Advanced ********* // End Advanced ********* // End Execution Directives ********* // Start Output Directory ********* ULS.specifyOutputDirectory(true); ULS.setOutputDirectory("C:/Documents Settings/ebg/My Documents/Projects/Western and Isles/Sesam/WI/"); ULS.setOutputPrefix("BalULS"); // End Output Directory ********* // Start Input ********* // End Input ********* // Start Execution Directives ********* // Start Constants ********* // End Constants ********* // Start Wave ********* FLS.setDragType(WadamRunWaveHeigtsDrag); // End Wave ********* // Start Drift Forces ********* // End Drift Forces ********* // Start Roll Damping ********* // End Roll Damping ********* // Start Equation Solver ********* // End Equation Solver ********* // Start Print ******** // End Print ********* // Start Result Files ********* // Start Global Response ********* // End Global Response ********* // Start Load Transfer ********* // End Load Transfer ********* // End Result Files ********* // Start Advanced ********* // End Advanced ********* // End Execution Directives ********* // Start Output Directory ********* // End Output Directory ********* // HydroD V4.4-05 ended 01-Feb-2011 15:25:13 // HydroD V4.4-05 started 01-Feb-2011 15:25:13 // HydroD V4.4-05 ended 01-Feb-2011 15:25:14

G

Panel Model and Morison Model (PREFEM)

M.S.c. Thesis

Coupled Dynamic Analysis of Cylindrical FPSO, Moorings and Riser

Based on Numerical Simulation

A. Panel Model

```
%%
%% PROGRAM: SESAM PREFEM
                              VERSION: 7.1-05 13-MAY-2003
%%
GENERATE SURFACE A1 1 2 1 16 1 2 1 20 END
CYLINDRICAL 0 0 0 0 0 1 0 1 0
000
43.75 0 0 END
0.0 -90 0 END
%
%
CHECK ELEMENT-SHAPE ALL-ELEMENTS-INCLUDED END
CHANGE NORMAL-OF-SURFACE -Z-GLOBAL-INFINITY ALL-SURFACES-INCLUDED
NORMAL-OF-SURFACE -Z-GLOBAL-INFINITY ALL-SURFACES-INCLUDED
END
%
%%
%%
%%%
GENERATE SURFACE B 1 2 1 20 1 2 1 2 END
CYLINDRICAL 0 0 0 0 0 1 1 0 0
43.75 0 0
0.0 90 0 END
```

```
0.0 0 2.5 END
%%
%%
GENERATE SURFACE C 1 2 1 4 1 2 1 20 END
CYLINDRICAL 0 0 0 0 0 1 1 0 0
37.5 0 2.5
6.25 0 0 END
0 90 0 END
%%
%%%
GENERATE SURFACE D 1 2 1 20 1 2 1 2 END
CYLINDRICAL 0 0 0 0 0 1 1 0 0
37.5 0 2.5
0 90 0 END
-2.5 0 2.5 END
%%
%%%
GENERATE SURFACE E 1 2 1 20 1 2 1 15 END
CYLINDRICAL 0 0 0 0 0 1 1 0 0
35.0 0 5.0
0 90 0 END
0 0 27.0 END
%%
% CHANGE NORMAL-OF-SURFACE -Z-GLOBAL-INFINITY
%%%
%%
%%
SET ELEMENT-TYPE SURFACE ALL-SURFACES-INCLUDED SHELL-4NODES END
END
MESH ALL
%
,
SET GRAPHICS DEVICE WINDOWS
...
,
SET GRAPHICS INPUT ON
PROPERTY LOAD 1 HYDRO-PRESSURE ALL-SURFACES-INCLUDED OUTSIDE
OUTSIDE-SURFACE
END
END
```

B. Morison Model

```
%
% PROGRAM: SESAM PREFEM
                            VERSION:
                                          7.1-05 13-MAY-2003
%
DEFINE POINT OR 0.000 0.000 1.25
            E1 39.375 0.000 1.25
                0.000 39.375 1.25
            E2
            E3 -39.375 0.000 1.25
            E4 0.000 -39.375 1.25
       END
       ARC AR1 E1 E2 OR 10
            AR2 E2 E3 OR 10
            AR3 E3 E4 OR 10
             AR4 E4 E1 OR 10
       END
END
SET ELEMENT-TYPE LINE ALL-LINES-INCLUDED BEAM-2NODES END
END
PROPERTY SECTION Pipel PIPE 0.01 0.001 1.0 1.0
. .
CONNECT SECTION Pipel ALL-LINES-INCLUDED
. .
%
MESH ALL
%
SET GRAPHICS DEVICE WINDOWS
. .
SET GRAPHICS INPUT ON
. .
```