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Abstract 

 

The aim of this project is to compare some important factors such as safety and environmental 

aspects, life cycle costing, reliability, availability and fabrication for selecting materials for 

flowlines for comparative study between carbon steel as a current practice with respect to 

various corrosion resistance alloys as an alternatives. In order to do that it is necessary to 

address all possible degradation mechanisms and the conditions that intensify the degradation 

process with respect to different types of materials like carbon steel, 316 stainless steel, 6MO 

stainless steel, Duplex stainless steel and titanium in the upstream production flowlines. The 

guidance has been supplemented with practical examples and descriptions of how the 

degradation mitigation measures can be applied to control the major threats experienced 

within the industry. Even though oil and gas industries have implemented mitigation 

measures to reduce the level of degradation, still it is considered to be one of the major 

problems. Therefore it is necessary to analyze the protection measures are effective enough 

with the current material quality. This study examines the degradation issues affecting the 

offshore pipelines in the North Sea and evaluating important factors, which is identified from 

the experience of the various authors and their companies. 
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1.  INTRODUCTION AND BACKGROUND 

Oil and gas industry generally will face many challenges to discover, explore and exploit 

hydrocarbon reserves. In order to meet market demands companies drive to find more 

reserves by exploring globally in remote areas at greater water depths. In addition to that they 

are also forced to obtain more output from existing reservoirs by extending the life of 

facilities and making it capable with greater tolerance. We can foresee that in future there can 

be chances of having many remote fields on both onshore and offshore with vast 

accumulating systems which will bring raw fluids into centralized facilities where to be 

processed and transported to export systems. 

 

Offshore industry not only provide challenge to the engineers who design the structures which 

operates in hostile environments but also in defining systems that assist in protecting those 

structures from the atmospheric conditions that are most destructive to those structures. 

During the initial stages of designing an Integrity Management Planning program, 

identification of degradation mechanisms that are possible in the offshore process systems is 

the vital thing to be carried out. Therefore it is most fundamental to understand the relevant 

mechanisms, their likelihood of occurring in the offshore systems, and the impact that they 

may have on it. Huge investments are directed towards exploration and production of offshore 

oil and gas in remote fields. Therefore cost of protecting the structures cannot be 

compromised by poorly designed applied protective systems. This tendency results in 

numerous challenges to the capital cost (CAPEX) and operating cost (OPEX) of projects. Due 

to the complexity of the topsides processes, piping comprises a significant part of the general 

project costs (CAPEX/OPEX). The material selection can be optimized based on a good 

understanding of the corrosion mechanisms and the fluid partitioning through the production 

systems.  

 

Variations in national standards, legislative prerequisites, operator procedures and risk 

tolerance also play a generous role in the materials selection process. These challenges need 

diverse methodologies to pipelines materials selection, which may strongly fluctuate between 

various nations and operators. While carbon steel pipelines still be choice for most of the 

pipelines designed, but now there is a increased tendency towards the use of corrosion 

resistant alloy (CRA) and flexible pipelines within the European sector, which is determined 

and driven by the use of full life cycle instead of CAPEX evaluation and the standards used. 
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1.1 PROBLEM FORMULATION 

 

The material selection for a flowline obliges a trade-off between optimum corrosion 

resistance, safety, mechanical properties, fabricability, reliability, availability and cost. It 

might regularly be the situation that a last decision must be made between two or more 

alternative materials which might contrast in the degree to which they meet all the desired 

service prerequisites for the expected obliged lifetime of the project. In the compelling 

situations where corrosion risks are either negligible or exceptionally intense, materials 

selection is generally between carbon steel or corrosion resistant alloy respectively. 

 

Corrosion problem have been concerned for many decades hence they are the causes of 

failure in equipment and structure made of metal. These corrosion problems are normally 

found in pipelines, storage vessels and other equipment’s like tubing, casing, valves and 

wellheads which have to operate with corrosive materials. Many researches and studies have 

been going on since this problem has large effect on operation. It is necessary to select the 

material with respect to the operating conditions and degradation mechanisms related to it. 

Various models have been formulated to predict accurate corrosion mechanisms. The main 

aim is not only to understand the phenomenon, but also to formulate effective mitigation 

measure. Therefore, it is more important to know the type of mitigation or protection 

approaches that can be used against the various degradation mechanisms present in the actual 

process system.  

 

To carry out in-service inspection program it is more important to know the material 

properties, operation conditions, environmental conditions and maintenance properties that 

pave ways to promote degradation of materials. Degradation can occur due to Mechanical 

causes, chemical causes and induction by heat and other forms of energy. Some common 

types of degradation mechanisms are Corrosion, Erosion, Fatigue, Hydrogen related 

Cracking, wear, overload, temperature expansion and contraction etc. These mechanisms and 

their causes should be analyzed in detail under various operation conditions.  

 

Material selection for pipelines is one of the most critical decisions to be taken in the early 

project cycle of pipework in oil and gas production systems. It has direct leverage on capital 

cost, operation needs, inspection and maintenance strategy. In future there will be need for 
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exploiting oil from more challenging environments from both geographical and chemistry 

perspectives. Hence there will be a situation to make a productive decision in material 

selection with respect to risk and operational necessities. Carbon steel with corrosion inhibitor 

was chosen for numerous projects because of smaller capital costs. Selecting corrosion 

resistant alloy will considerably increase the capital cost.  The material selection process 

involves in diverse steps to identify the best apt material by investigating the cost, the 

degradation mechanisms, risks and required inhibitors, etc. 

 

Using carbon steel in current practices, chemical protection believed to be one of the effective 

protections. This thesis mainly discusses about whether carbon steel with chemical protection 

is truly an effective or alternative corrosion resistant alloys are effective in terms of various 

factors. Problems related to current chemical injection systems are taken into account to 

analyze more with compared to use of CRA alloys. 

 

1.2 MAIN OBJECTIVES AND SUB OBJECTIVES 

Main Objectives: 

 Explore and understand the fundamental phenomena and technical aspects of the process 

of degradation of materials used in flowlines. 

 Investigate and narrow down the key and potent conditions/technical parameters that form 

the basis or serve as a root cause for the process of degradation.  

 Map and analyze the effects of influential operational conditions such as pressure, 

temperature, flow rate etc. on the characteristics, properties and performance of the 

material.   

 Understand, investigate and exemplify the current industrial practices used by the 

operators in offshore flowlines. 

 Discuss the mitigation measures to overcome the process of degradation. 

 Evaluate the characteristics of corrosion resistant alloys. 

 Identify and discuss about various factors for comparing the alternatives (Corrosion 

resistant alloys). 

 Investigate, discuss and contemplate the impact by comparing the alternatives with respect 

to current practices.  
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PROJECT ACTIVITIES LINK TO EACH SUB-OBJECTIVE AND RESEARCH 

METHODS:  

 Collect and understand the degradation mechanisms of materials in offshore flowlines 

systems through literature survey and experiences gathered from various operators in 

Norwegian continental shelf  

 Understand and systematically compile the current mitigation measures used by the 

operators of NCS. 

 Gather and compare the alternatives with respect to current practices in terms of cost, 

safety, reliability, availability and fabrication.  

 Brainstorm on the collected information to derive a logical and technically feasible 

material as a solution to counter the degrading mechanisms with respect to various factors. 

 

1.3 LIMITATIONS 

 Limited materials and equipment’s are considered in this thesis. 

 Mainly focussed on flowlines compared to other equipment’s. 

 Data mostly obtained from Norwegian Continental  shelf. 

 Hard to cover all aspects of the topic within time limit. 
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2. DEGRADATION MECHANISMS OF OFFSHORE FLOWLINES 

All materials are subjugated to various mechanical and environmental factors during their use. 

Those various factors are mechanical vibration, mechanical loads, chemical attacks, process 

conditions like temperature, pressure etc. Under these various influencing factors materials 

loss their potential which develops develop degradation. Degradation may leads to 

catastrophes if not mitigated or monitored properly. Corrosion and erosion are the two main 

degradation mechanisms which is a big threat in oil & gas industries. If you take offshore 

process systems equipment’s, in production casings, sand production causes erosion and 

produced water & water injection causes corrosion. Corrosion, fatigue and mechanical wear 

are the common problems that occur in drilling equipment’s. This paper mainly focuses on 

corrosion and erosion degradation and mitigation measures in offshore pipelines. 

 

2.1 CORROSION 

Corrosion can be defined in different ways, but generally Corrosion is a process of 

deterioration of materials by chemical interaction with their environment.  The word 

“corrosion” is sometimes also referred to the degradation of plastics, concrete and wood, but 

generally relates to metals. 

Corrosion in metallic materials can be divided into three groups, 

 Wet corrosion – Electrochemical process where corrosive environment is 

water 

 Dry corrosion – Chemical corrosion where corrosive environment is dry gas 

 Corrosion in fluids like fused salts and molten metals. 

Corrosion leads to  

 Reduced metal strength 

 Failure of equipment 

 Leakage of fluids 

 Changes in the surface properties 

 

2.1.1 ATMOSPHERIC CORROSION 

Atmospheric corrosion depends upon the environmental conditions. For example, in 

atmospheric corrosion, the electrolyte is moisture from precipitation, fog or dew etc. There 

are some main factors which have more influence on the corrosivity of the atmosphere. They 

are 
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 Surface exposed for long time in wet conditions  

 The atmospheric pollutants that hits the surface 

 Chlorides from sea that reaches surface 

Due to the presence of excess oxygen in the atmosphere, the corrosion continues rapidly if 

electrolyte is present.  

 

2.1.2 GALVANIC CORROSION  

Galvanic corrosion is also called bimetallic corrosion. It is a localized corrosion mechanism 

which metals can be corroded preferentially. If different types of metals with different 

compositions are plunged in a corrosive solution, each will produce a corrosion potential. If 

the corrosion potential of those different metals is different then they are in the direct contact 

and immersed in an electrolyte, the more noble metal will become cathode and more active 

metal will become anode. The corrosion rate mainly depends on the anode cathode surface 

area which is exposed to the electrolyte. Quantifying current will flow between cathode and 

anode. The corrosion percentage of anode will be increased and cathode will get decreased. 

Galvanic corrosion is nothing but the increased corrosion of the anode. Galvanic corrosion 

will happen when (i) Dissimilar metals come in contact (ii) Metal to metal contact and (iii) 

Metals on the electrolyte.  

 

In case of unavoidable situation using two different metals the following measures can be 

used to decrease the damage they are, selection of material which are close together in 

electromotive force series, orientation of anode-cathode area ratio, Introduction of third metal 

using cathodic protection. 

 

Some anodic materials are Magnesium, Zinc, Galvanized Steel, Aluminum, Mild Steel, Low 

Alloy Steel and Cast Iron. Cathodic materials are Lead, Tin, Muntz Metal, Yellow Brass, 

Aluminum Bronze, Red Brass, Copper Alloy 400, Stainless Steel (430), Stainless Steel (304), 

Stainless Steel (316), Silver and Gold. Figure show below provides overview about galvanic 

corrosion. 
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Figure 1: Galvanic Corrosion 

 (Source – from http://www.ssina.com/corrosion/galvanic.html) 

 

2.1.3 CUI CORROSION (CORROSION UNDER INSULATION) 

Corrosion under insulation is a localized form of external corrosion in a severe form. It is 

considered to be one of the big threats in oil & gas industries. This type of corrosion will 

occur when the water intrudes into insulation. The difficult part in this is it’s too late to find 

the visible evidence as corrosion problem hidden inside with insulation acting as mask. 

Selection of proper insulation, Equipment design, protective paints & coatings, weather 

barriers and scheduled maintenance practices are the most important factors to be focused in 

preventing corrosion under insulation. 

 

2.1.4 MIC (MICROBIOLOGICALLY INDUCED CORROSION) 

Microbiologically induced corrosion is also called bio corrosion. It refers to the influence of 

living microorganisms such as bacteria, algae or fungus which are engaged in promoting 

deterioration of metallic and nonmetallic materials. Aqueous environments are more prone to 

MIC, because the microorganism will grow when water is always present or if there is 

stagnant and low flow conditions. It happens in two processes; the formation of corrosion 

cells on the surface of metal creates sticky biofilms. The parameters such as concentration of 

http://www.ssina.com/corrosion/galvanic.html
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dissolved oxygen, salts, pH value, organic and inorganic compounds are influenced by 

microorganisms at growing interface. The other process is by direct attack of chemicals. MIC 

is more common in heat exchangers, storage tanks and piping’s with slow flow conditions. 

 

2.1.5 CREVICE CORROSION  

It is form of localized corrosion which occurs in similar conditions as pitting. Crevice 

corrosion takes place due to the concentration difference between two regions of same metal 

components. It occurs in the locale that has lower concentration. Generally the attacks will be 

at flange joints and threaded connections. Proper care should be taken in concentration 

difference in order to nullify this corrosion. For example instead opting riveting, welding can 

be chosen.  

 

2.1.6 CAUSTIC CORROSION  

The Exposure of concentrated caustic on metal surface permits to dissolve the protective 

Fe3O4  layer causing metal loss which leads to form cracks in piping’s and other equipment’s. 

Caustic corrosion is also called as a form of stress corrosion cracking. Carbon steel and low 

alloy steels are more sensitive whereas nickel base alloys are more resistant to caustic 

corrosion. 

 

2.1.7 EROSION CORROSION  

Erosion-corrosion is defined as induction of corrosion attack in the metals due to the relative 

motion of corrosive fluid and surface of the metal. Mechanical wear and chemical attack’s 

combination is the main reason behind erosion-corrosion mechanism. Metals are more 

prostrate to this degradation mechanism. It has detrimental effect on metal that passivate and 

forms secure film.  

 

Figure 2: example of turbulence induced erosion near a solder joint 

 (Source- Charles C. Roberts fromhttp://www.croberts.com/erosion-corrosion.htm) 

http://www.croberts.com/erosion-corrosion.htm
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The blue arrow shown in figure 4 is the passive film protecting the copper pipe. Eroded pipe 

material caused by high water velocity due to water turbulence, shown by red arrows, as the 

water flows from left to right in the figure 4. In this case, there is no evidence as the water 

leakage occurred suddenly and without warning. Figure 5 showing the turbulence mechanism 

of erosion-corrosion that was observed in Figure 4.  The turbulent flow of water increases the 

velocity near the pipe surface, wiping the passive protective film which accelerates the 

corrosion mechanism. 

 

Figure 3: Turbulence mechanism of corrosion 

(Source- Charles C. Roberts fromhttp://www.croberts.com/erosion-corrosion.htm) 

 

2.1.8 PITTING CORROSION  

Pitting corrosion is nothing but the formation of small pits and holes or spots on the surface of 

the steel. This type is also a localized form of corrosion. Neutral or acidic solutions containing 

chlorides or halides are main culprits for the formation of pitting corrosion. This type of 

corrosion is highly dangerous as it is difficult to detect until the failure of components. 

Monitoring is also bit difficult, therefore proper care and maintenance like polishing the 

surfaces should be done on regular basis. 

 

Figure 4: Pitting corrosion 

(Source-Cato Torgersen, 2012) 

http://www.croberts.com/erosion-corrosion.htm
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2.1.9 INTER-GRANULAR CORROSION  

The cause for Inter granular corrosion is similar as crevice corrosion i.e due to concentration 

difference, but here it occurs along the grain boundaries. Those boundaries are highly 

sensitive to corrosion. This type of corrosion happens severely on stainless steels. In order to 

protect from this corrosion remedies like possible heat treatments, reducing the carbon 

content, increase the alloying elements which readily form of carbides can be suggested. 

 

2.1.10   SELECTIVE LEACHING  

Selective leaching is a process of dismissal of an element from solid alloy by corrosion 

process. Dezincification i.e. the removal of zinc from brass alloys is the most common 

example of selective leaching. Similarly dealuminification loss of aluminum, 

decobaltification loss of cobalt, iron from cast iron, and nickel from steel alloys can also 

occur. Consequence of this type of corrosion is the mechanical properties of the materials are 

damaged as it becomes porous. The material can be protected by using cathodic protection 

and change of environment. 

 

2.1.11  STRESS CORROSION CRACKING  

Crack development in a corrosive environment is called as stress corrosion cracking. This 

type of corrosion will happen due to combined action of tensile stress that leads to unexpected 

sudden failures. The mitigation measures to be taken for this type is to avoid the external 

stress, Maintain coatings, Avoid salt deposits on hot vessels or pipes, inhibition,  avoid wet 

insulation and change in type of alloy when there is change in stress level. 

 

 

Figure 5: Stress corrosion cracking 

(Source-Cato Torgersen, 2012) 
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           Figure 6: Stress corrosion cracking 

             (Source-Cato Torgersen, 2012) 

 

2.2 EROSION  

Due to mechanical action the material from the surface of the pipe will be removed, often by 

impinging fluid, attrition by slurry, particles suspended in fast moving fluid or gas, is called 

Erosion. Internal erosion is especially very dangerous because there may be no external 

witness. The erosion rate depends upon the piping material, velocity of fluid and fluid type. 

The blue arrow shown in the figure 6  is with normal piping wall thickness. The red arrow 

shown is an excessively less wall area where leaks had occurred. This reduction of the pipe 

wall in new installations is characteristic of the phenomenon called erosion.  Due to 

turbulence and excessive flow rate, the passive corrosion protective film has been removed in 

those red pointed areas, causing accelerated erosion of the pipe wall, reduction of the pipe 

wall and hence water leakage. 

 

Figure 7: Showing the view of a section of the eroded interior pipe surfaces 

(Source- Charles C. Roberts fromhttp://www.croberts.com/erosion-corrosion.htm) 

 

http://www.croberts.com/erosion-corrosion.htm
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2.3 CAVITATION 

The formation of vapor cavities, which means bubbles or voids in the liquid is termed as 

Cavitation. The force acting on the liquid causes bubble formation. Rapid pressure change 

leads to the formation of cavities where low pressure occurs. In case of high pressure the 

voids implode and create an intense shockwave. Cavitation is common in valves, pumps, 

turbines. 

 

2.4 WEAR 

Loss of material or loss of material integrity from the surface of pipe due to erosion and 

corrosion is called wear, erosive wear due to particle and droplet impingement.  

 

2.5 THERMAL FATIGUE 

When the temperature is high, high axial load will be created. If this situation is not 

considered during design, it can lead to unwanted convulsion or lateral buckling within the 

pipelines. “Thermal fatigue” is the main cause which happens due to difference in 

temperature within the pipelines. The operating temperatures ranges from -2000C and 

+800oC. The process of expansion and constrainment happening concurrently causes thermal 

stress which over some period of time leads to fatigue failure. This failure mode causes severe 

damage to piping that result in dangerous situations.  

 

The thermal fatigue problems can overcome by implementing thermal management 

philosophy. The pipeline routing must be done in such a way that the pipe has inherent 

flexibility in its geometry (like snake lay) so that the thermal stresses due to expansion of 

pipes is reduced. The flexibility shall be provided to such an extent considering other effects 

like pressure drop and increase in cost. 

 

2.6 HYDROGEN RELATED CRACKING 

Hydrogen cracking also named as cold or delayed cracking. This type of crack occurs in 

ferritic weldable steels. It occurs immediately on welding or after some time. There are three 

main causes for the hydrogen cracking. They are hydrogen generation from the contamination 

of the weld area and by welding process, Brittle structure suspicious to crack and Residual 

tensile stress acting on weld joints. 
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2.7 ICE AND HYDRATE FORMATION 

Ice and hydrate formation occurs due to flow assurance problems. Ice and hydrate formation 

prevention is considered to be in high priority because the removal is very complicated. The 

one way of solving the flow assurance problem can be done by traditional approach of system 

selection for prevention and remediation that combines sampling, laboratory techniques and 

predictive modelling. The techniques that support continuous flow assurance also benefit 

effective reservoir management and production optimization. More permanent solution can be 

done through systematic data gathering and trends affecting flow efficiency be identified and 

mitigating prognoses be developed. Combination of chemical treatment (injecting Mono 

ethylene glycol) and thermal insulation should be used to prevent the hydrate and ice 

formation. 

 

3. CORROSION IN OFFSHORE PROCESS SYSTEMS 

Corrosion in offshore platforms and production facilities is one of the biggest challenges, both 

on terms of equipment repair or replacement cost and in terms of pollutions likely due to the 

chemical treatments to control corrosion. Carbon dioxide, hydrogen sulphide and free water 

are the main cause for corrosion in offshore process systems. Offshore rigid and flexible 

pipelines and risers are more prone to corrosion issues. Corrosion in these flowlines and 

process facilities can seriously disrupt the production and safety issues to offshore personnel. 

Despite of advances in systems, failures still happens from different kinds of failure modes. 

 

3.1 INTERNAL CORROSION  

We can categorize the occurrence of internal corrosion in water injection pipelines, oil & gas 

production pipelines and oil & gas transport pipelines. 

 

3.1.1 WATER INJECTION PIPELINES 

The two mechanisms which often cause internal corrosion in water injection pipelines are 

oxygen corrosion from poor de-aeration and microbial influenced corrosion from poor hydro 

chlorite & biociding treatment. If you take North Sea, failure of water injection pipelines are 

common. Marsh, Duncan, Kenny & Ian (2009) made comparison from the experience of 

pipelines where oxygen control has been poor and microbial control has been effective, and 

pipelines where microbial control has not been effective. They found one field where the 

oxygen control is not so effective, but the pipeline microbial corrosion control has good 
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results with batch biociding and regular pigging. That field has been operated for 30 years and 

more with only some lesser extent of problems from their water injection lines. But there are 

other fields where microbial control has been worse.  

 

O2 Corrosion 

O2 corrosion is common around the water injection and seawater systems. The chemical 

reaction of O2 corrosion is given below: 

6Fe + 3O2 + 6H2O → 6Fe (OH)2. 

The ferrous oxide oxides further into Fe(OH) 3 by the usage of O2 in the water. When 

Fe(OH) 3 reacts to rust by: 

Fe(OH) 3 → Fe2O3 + 3H2O 

Thus the corrosion rate is limited primarily by the oxygen content, temperature and water 

quality. The temperature will increase the reaction rate, but even in low temperature systems, 

all O2 will eventually be used in a corrosion process. 

 

3.1.2 OIL & GAS PRODUCTION PIPELINES 

Co2 Corrosion 

In production pipelines Co2 corrosion is the most common type corrosion issue. It is also 

called as sweet corrosion. The main reason behind this because of the presence Co2 content in 

the crude oil and gas obtained from the reservoir. The hydration of dissolved carbon dioxide 

gives carbonic acid, carbonic acid then dissociates into bicarbonate and carbonate, and those 

chemical reactions are given below. The pH level reduces due to the carbonic acid which 

leads to corrosive pipelines. 

 CO2 (g)           CO2 (aq) 

CO2 + H2O            H2CO3  (Carbonic acid) 

H2 CO3               H
+ +  HCO3

— 

HCO3
—               H+ +  CO3

2— 

The electrochemical reaction of carbon dioxide corrosion is 

Fe + CO2 + H2O            FeCO3 + H2 

The formations of surface films, consists to iron carbonate (FeCO3) and their effects on the 

corrosion rate has significant role in CO2 (aq). Iron carbonate (FeCO3) mainly depends upon 
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temperature and it plays an important role in formation of protective layer on the surface of 

the metal at higher temperature. 

 

Carbon dioxide corrosion is greatly influenced by following factors, they are temperature, 

CO2 partial pressure, flow rate, pH, acetic acid concentration, water wetting, welds (metal 

microstructure) etc. These factors are closely linked with each other. Their influence is not yet 

completely understood.  

 

For example, let’s consider temperature as 800C, pressure 2 bar, flow rate 4 m/s and pH 5.0 

are kept constant; the amount of water phase varied, then say the corrosion rate ranges from < 

1-20 mm per year. But this can change in the properties of thin layer lines. Therefore layer 

can also have effect which has interaction. Inhibitor plays an important role in this. When the 

corrosion inhibitor availability is maintained, it is possible to have some corrosion control on 

the pipelines. The major problem is lack of systematic dosing of corrosion inhibitor. When the 

pipelines have attained a stage of beyond their lifetime, to maintain the wall thickness it may 

need high corrosion inhibitor in the future. Operator’s cooperation and efforts are needed to 

achieve more control on this issue. 

 

H2S Corrosion 

The natural gas can be corrosive due to the significant content of hydrogen sulfide. Natural 

gas is said to be “sour gas” if it contains more than 5.7 milligrams of hydrogen sulfide per 

cubic meter of natural gas.  Natural gas with less amount of hydrogen sulfide is called as 

“sweet gas”. Sour gas at high temperature, pressure and in mixtures of formic acids which 

typically found in downhole oil well simulations will be more corrosive. Only special surface 

alloys can withstand to that sour gas environments. Amine solutions are generally used to 

remove hydrogen sulfide gas. H2S Corrosion is electrochemical in nature. The chemical 

reaction happens between H2S and iron form iron sulfide films. H2S is non-corrosive in the 

absence of water. 

     Fe + H2S + H2O             FeS + H2  

Depending upon the environment, hydrogen sulfide can form various types of iron sulfide 

form like amorphous ferrous sulfide, cubic ferrous sulfide, pyrrhotite, troilite etc. Finding the 

kinetics of iron sulfide scale formation is difficult because of its close influences and poor 

understanding of mechanisms.  
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3.1.3 OIL & GAS TRANSPORT PIPELINES 

In transport pipelines, we can categorize the pipelines into four divisions depending upon the 

composition of fluids that are transported. They are  

 Dry gas pipelines – Transports gas with dew point less than 40oF 

 Wet gas pipelines – Transports gas with dew point more than 400F 

 Low water- cut oil pipelines – Transport oil with less than 20% water 

 High water - cut oil pipelines – Transport oil with more than 20% water. 

  In these categories, the more critical lines which need continuous corrosion inhibitors 

are wet gas and high water cut oil pipelines.   

 

3.2 EXTERNAL CORROSION 

In external corrosion the main areas to be pertained are corrosion under insulation (CUI), 

firewater and deluge systems, flanges and bolts, valves, pipe supports and pipe coatings, and 

threaded plugs. Anode depletion and coating degradation are the major problems in external 

corrosion. Pipelines are usually coated to provide protection from the surrounding 

environment. The role of coating the structures is to act as physical and dielectric barrier. 

Cathodic protection helps to protect and reduce the corrosion rate to negligible level. 

 

3.2.1 Anode depletion  

When the pipelines become older, the external corrosion of anode depletion forms below the 

water line. Anode depletion considered as integrity threat after operating 30 years and more. 

Many offshore structures need cathodic protection retrofits in next decades to protect the 

structures. Many risers and spool piece anodes got depleted in excess of 75%.  Pipelines 

anode gives more wastage, mainly near pipeline ends.  

 

3.2.2 COATING DEGRADATION  

In spite of the fact that best endeavors are put by the coating technologists, the coating won't 

be available everlastingly. Even in undisturbed situations, Painted pipelines exposed to North 

Sea environment is unlikely to last more than 10 years. The defects in painting cause blisters 

because of contaminations of salt or disbonding due to paint applied in less ideal situations. 

Therefore the paint systems result in coating degradation which it does not last until design 

life. 
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Figure 8: Coating Degradation 

 (Source-Jonathan Marsh and Phil Duncan, J P Kenny and Ionik consulting, and Ian Macleod, MCS, 2009) 
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4. CURRENT PRACTICES OR CURRENT USAGE OF MATERIALS  

4.1 INFORMATION ABOUT PLATFORMS AND FLOWLINE MATEIALS 

The following information about the current practices of flow line material (TR2000, Statoil) 

currently used by the oil & Gas NCF 

Gullfaks-C 

Operator :  Statoil 

Location : 34/10 in the northern part of the north sea 

Production : Oil and Gas 

Flowline Material :  Carbon steel 5L X52 PSL2 S 

Design Parameter :  Pressure rating 1500, Pressure range 255.3/226.1, Temperature range 

29/150 

Statfjord-B 

Operator :  Statoil 

Location : North sea 

Production : Oil and Gas 

Flowline Material :  Carbon steel 5L X52 PSL2 S 

Design Parameter :  Pressure rating 1500, Pressure range 248.0/219.0, Temperature range 

8/121 

Troll-A 

Operator :  Statoil 

Location : 34/10 in the northern part of the north sea,  65 km west of kollsnes near Bergen 

Production : Gas 

Flowline Material :  Carbon steel 5L X52 PSL2 S 

Design Parameter :  Pressure rating 1500, Pressure range 255.3/193.7, Temperature range 

46/300 

Heidrun 

Operator :  Statoil 

Location : North sea 

Production : Oil and Gas 

Flowline Material :  Carbon steel 5L X52 PSL2 S & Duplex A790 S31803 

Design Parameter :  Pressure rating 1500, Pressure range 255.3/226.1, Temperature range -

29/150 
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Snorre-A 

Operator :  Statoil 

Location : North sea 

Production : Oil and Gas 

Flowline Material :  6MO & Super Duplex A790 S32760 

Design Parameter :  Pressure rating 1500, Pressure range 258.6/256.2, Temperature range -

46/110 
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5. EFFECTS OF CORROSION ON CURRENT USAGE OF 

MATERIALS 

5.1 EFFECTS OF CORROSION AND CONDITIONS ENHANCING CORROSION  

The following are various process parameters to be considered to identify the effect of 

degradation mechanisms. All these following parameters have some kind of influence in 

enhancing the corrosion rate. 

 Temperature 

 Pressure 

 pH 

 Flow rate  

 Velocity 

 Dew point 

Also the following content have some specific influence in increasing the corrosion rate. 

 CO2 content 

 H2S content 

 Oxygen 

 Oil, gas & water composition 

 Salinity 

 Water content 

 Sand / Solid particles content 

 Dew point 

 Wax content 

 

Temperature effect  

Generally corrosion rates will increase with increase in temperature. According to De Waard 

and Milliams, there is a significant increase in the corrosion rate as function of the 

temperature. Temperature affects corrosion rate of metals in electrolytes primarily through its 

effect on factors which control the diffusion rate of oxygen. In a closed system, there is no 

possibility for oxygen to escape, therefore the corrosion rate continue to increase indefinitely. 

The corrosion rate can increase by doubling the rate for each 10oC rise of temperature, 

sometimes this dissolution leads to common attack or cracking. By avoiding unnecessary high 

temperature, corrosion formation level will be reduced. 
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Effect of Pressure 

During the well depletion process, carbon dioxide and water are injected for enhancing oil 

recovery. This method helps to maintain the pressure in the reservoir. Under higher partial 

pressure, occurrence of pitting corrosion can obvious, where morphology was different from 

that formed at low temperature. Earlier experiments have proved that the temperature and 

partial pressure will directly affects the morphology and composition of corrosion products, 

which in turn caused the change of corrosion rate and occurrence of localized corrosion. The 

corrosion rate increases at a high rate with increase in carbon dioxide partial pressure at each 

temperature and water cut. 

 

pH effect 

Corrosion will generally increase when pH is less than 5. It increases even more if the oxygen 

enters into the system. H2S and O2 combination is particularly tend to be more problematic 

combination. 

 

Flow rate 

Flow rate is an important factor to be considered which affects the corrosion rate and it 

mainly depends upon various parameters like chemical concentration, type of chemical, 

process conditions etc. Normally the value will be recommended by the chemical 

manufacturers. More often it is highly depends upon the process medium and rate of reaction 

by means of chemical interaction. Injecting the correct level at the recommended dosage rate 

is more critical. Dosing incorrectly can make unexpected reactions and head to equipment 

damage which leads to excessive system downtime. In other way, injecting excessive can 

become even worse added with their assorted costs. To achieve desired flow rate, the 

chemical injection equipment’s should be designed as such to maintain same flow rates even 

after the initial system calibration. 

 

Velocity 

One of the most important factor influencing design and corrosion in process systems is 

velocity. Due to this impact it is necessary to design the pipe by considering allowable design 

velocities. Generally local velocities will be different from design velocity. The process 

system which consists of small features like bends, orifices, valves, flanges that are 

misaligned etc. can create turbulence which in turn generates high velocities and leads to 
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corrosion acceleration. So it is important that the system design and fabrication should focus 

on reducing the occurrence of turbulence 

 

5.2  CARBON AND ELEMENT OF LOW STEEL ALLOYS  

Generally weathering steels is a class of low alloy structural steels which develops protective 

layer when exposed to the atmosphere. These low steel alloys do not require painting as these 

alloys have corrosion protection from the rust layer formation. Therefore it has an advantage 

of avoiding cost due to painting. The addition of other alloys adds strength to these steels. 

Study has been done by Bethlehem Steel Corporation to define the effects of various alloying 

elements and impurities on the corrosion resistance of low alloy steel. Elements are 

Phosphorous (P), Sulphur (S), Carbon (C), Manganese (Mn), Silicon (Si), Copper (Cu), 

Nickel (Ni), Chromium (Cr), Arsenic (As), Molybdenum (Mo), Tin (Sn), Vanadium (V), 

Tungsten (W), Aluminium (Al), and Cobalt (Co). The concentrations of those elements are 

shown in table 1. They tend to determine the corrosion loss on the basis of loss of tensile 

properties. Test specimens are placed on racks which are supported by enamel rods which is 

inserted through hole at each end of the test specimen. The specimens after exposure were 

weighed to calculate the mass loss and the tensile tests were also conducted. They found that 

mass loss is more consistent than the tensile test results after few years of testing. The 

thickness loss were calculated from mass loss by assuming the density of steel as 7.86 g/cm2 

 

 

Table 1: Maximum concentrations of alloying elements (wt %) 

(Source-H.E. Townsend, 2001) 

Set of equations are used to find the corrosion loss. 

   C = ATB 

C = Corrosion Loss 

T = Time of exposure 

A & B are constants 
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Figure 9: Effect of elements on corrosion losses 

 (Source-H.E. Townsend, 2001) 

Negative value indicates less corrosion. From the results of their experiment it is found that  

It shows that P, Si, Cr, C, Cu, Ni, Sn and Mo have good corrosion resistance. V, Mn, Al, co, 

As and W have no significant effect and S has more corrosion losses. 

 

5.3 CARBON STEEL 

Carbon steel is the most commonly used material in offshore flowlines. The carbon steel use 

with inhibitor is still considered to be favourable material when compared to other type of 

materials like duplex stainless steel, nickel alloys because of the lower cost and high strength. 

Various researches have been conducted in order to control the corrosion rate of carbon steel 

by injecting chemicals. 

During design of carbon steel pipelines the corrosion allowance of 3mm as per NORSOK 

standard is generally recommended but however it should be evaluated depending upon the 

each systems corrosion effects.  

Barker, Hu and Neville (2011) conducted an investigation to determine the corrosion rate of 

carbon steel material in normal condition, heat affected zone and Ni-Molybdenum weld 

material in the pipework of an offshore facility. The experiment conducted using a submerged 

impinging jet in CO2 saturated condition. The compositions of carbon steel parent and weld 

material is shown in the table below. 

 

Element Parent Metal Weld Material 

Carbon 0.120 0.200 

Silicon 0.210 0.230 

Manganese 0.960 1.120 

Phosphorus 0.019 0.010 
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Sulphur 0.003 0.012 

Chromium 0.060 0.070 

Molybdenum 0.030 0.180 

Nickel 0.090 0.780 

Aluminium 0.035 <0.010 

Table 2: Showing compositions of carbon steel parent and weld material (wt %) 

(Source- Richard Barker, Xinming Hu and Anne Neville, 2011) 

 

The test was conducted at flow rate 7 m/s and temperature at 450C. The rate has been 

calculated using linear polarization test with corrosion rate as a function of time. The results 

found are the static corrosion rate of heat affected zone is around 2.62 mm/year, carbon steel 

parent material 2.65 mm/year and Weld material is 2.94 mm/year. By comparing the values 

it’s been noticed that the weld material rate is 15% higher when compared with parent and 

heat affected zone corrosion rate. It’s also observed that the protective layer failed to form at 

temperature 450C, as there was no reduction of corrosion rate throughout the experiment 

duration.  
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6.  MITIGATING MEASURES USED ON CURRENT PRACTICES  

6.1 CORROSION & EROSION MITIGATING MEASURES 

The offshore process systems have type of equipment’s installed which is similar to 

equipment installed onshore but in limited space. As each square meter of offshore platform is 

expensive, the equipment’s will be placed very compactly. This compactness makes difficulty 

in corrosion monitoring. The reasons are: 

 Piping’s with smaller radius and more bends 

 Difficulty in painting the system 

 Limited accessibility for inspection and repairing of components 

By considering above factors it is better to take account of these factors in the design stage in 

order to control the corrosion rate. There are many ways to organize and operate successful 

corrosion management systems in the following phases  

a. Design Phase:  

 Materials with excellent corrosion resistance properties shall be recommended to be 

used in design specifications.  

 Design allowances shall be considered to compensate material loss due to corrosion.  

 Passive Corrosion protection systems like cathodic protection shall be installed.  

 Use of dissimilar materials shall be avoided to prevent galvanic erosion.  

b. Operation & Maintenance phase:  

 Corrosion resistance coatings shall be applied at regular intervals as recommended in 

maintenance schedule.  

 Corrosion monitoring shall be done regularly to study the rate of material loss in the 

pipeline.  

 Fluid properties like acidity shall be checked at regular intervals. 

 

Erosion control:  

Choke valve is an important component which helps to control the production rate of the well. 

By seeing the choke valve disc, amount the erosion can be identified. There is some 

prevention methods available to reduce erosion include improving the flow lines within the 

pipe, smoothing out irregularities, allowing elbows to have larger angles, and changing pipe 

diameters gradually rather than sharp changes. Other methods include reducing turbulence by 

slowing the flow rate, changing the pH, reducing the amount of dissolved oxygen, and 

changing the pipe material to a different metal or alloy. The figure below shown is leaking 
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due to erosion. (A) Showing the occurrence of likelihood places for leaks. (B) Redesigned the 

piping system to eliminate or reduce erosion. The pictures shown below are some good 

examples of pipes that are designed to reduce erosion 

 

Figure 10: Shows design of pipe due to Erosion 

(Source- Charles C. Roberts fromhttp://www.croberts.com/erosion-corrosion.htm) 

 

 

Figure 11: Shows design of pipe due to Erosion 

(Source- Charles C. Roberts fromhttp://www.croberts.com/erosion-corrosion.htm) 

 

Typically erosion monitoring is carried out by applying weight loss coupons or ER probes of 

stainless steel, with similar mechanical properties as for the pipe that is the subject for 

monitoring. Hence the erosion probes will not corrode and all material loss and can then be 

attributed to erosion. 

 

http://www.croberts.com/erosion-corrosion.htm
http://www.croberts.com/erosion-corrosion.htm
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6.2 INSPECTION & MONITORING 

Inspection and monitoring is an important philosophy which has to be carried out to ensure 

safe and reliable operation. Assessing risk and formulate proper inspection and mitigation 

measures are considered to be vital part of asset integrity management. Service inspections 

are made to achieve asset integrity management of static process equipment. It will be helpful 

to advice an operator when there is a need for maintenance using the data from service 

inspection. However some of the systems information in most of the time is unreliable or not 

enough which limits the application of many software systems.  

 The purpose of inspection is to prevent, predict and detect the syptoms of failures and 

discharges due to degradation mechanisms. Inspections should be done on regular basis by 

qualified personnel. Some of the activities involved in scheduled inspections are an external 

visual inspection of pipelines, Non destructive test to evaluate integrity of pipelines, thickness 

measurement and some additional assessment when needed.   

 

6.3 PRINCIPLES FOR MATERIALS SELECTION 

There are some important factors that has to be considered during the selection of material 

grades in order to achieve some degree of protection, they are 

• Mechanical properties of the material 

 Temperature resistance 

• Properties of internal fluid 

• Resistance level of corrosion effects 

• Installation methods and procedure 

• Weight requirement 

• Weld ability 

• Fatigue and fracture resistance 

• Surrounding atmospheric and loading conditions 

 

6.4 DESIGN LIMITATIONS 

According to NORSOK M-001, Carbon and low alloy should have minimum design 

temperature -46oC  for pressure retaining purposes.  The sour service design limitations for 

corrosion resistant alloys are given in table below. 
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       Material 

Chloride 

concentration, 

max. (%) 

Min. 

allowed 

in-situ pH 

Temperature, 

max. (°C) 

Partial 

pressure 

H2S, max. 

(bar) 
 

316 SSTL 

 

1 

5 

5 

 

3.5 

3.5 

5 

 

120 

120 

120 

 

0.1 

0.01 

0.1  

6Mo SSTL 

 

5 

5 

 

3.5 

5 

 

150 

150 

 

1.0 

2.0  

22Cr Duplex SSTL 

 

3 

1 

 

3.5 

3.5 

 

150 

150 

 

0.02 

0.1  

25Cr Duplex SSTL 

 

5 

5 

 

3.5 

4.5 

 

150 

150 

 

0.1 

0.4 
 

Titanium 

  

3.5 

  

>> 5 

 

Table 3: H2S limits for CRA 

(Source-NORSOK standard M-001) 

 

6.5 CORROSIVITY EVALUATION AND CORROSION PROTECTION 

According to NORSOK M-001, Corrosivity assessment as a base must incorporate the 

following, They are 

 O2, CO2 & H2S contents 

 Operating pressure, temperature, flow rate,velocity & pH 

 Halides and metal concentration 

 Organic acids 

 Sand production 

 Biological actions 

 Condensing conditions 

 

6.6 CATHODIC PROTECTION 

Cathodic protection is a method used to protect the metal surface due to corrosion by creating 

that exterior surface the cathode of an electrochemical cell. The cathodic protection systems 

are generally designed on the basis of environmental conditions and neighbouring structures. 

History of CP begun in the 1820’s when sir Humphrey Davy enquired the corrosion of copper 
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sheet cladding on the hulls of warships on behalf of the Royal Navy by adhering small 

amounts of metal or zinc to the metal surface. The principle of Cathodic Protection is in 

connecting an external anode to the steel to be defended and passing of an electrical dc 

current so that all areas of the steel surface becomes cathodic with consider to the anode and 

thus do not corrode. By selecting a material more anodic than the other alloys, these alloys 

become protected cathodically. 

 

Pros & Cons of Cathodic Protection: 

 Cathodic Protection is the only method which will reduce corrosion rate near to zero. 

 Corrosion rate reduction can be attained even if total protection is not possible or 

practicable i.e. < -800mV 

 Chances of damaging the protective coatings (cathodic disbondment) are likely when 

improperly applied. 

 Cracking as a result of hydrogen embrittlement 

 Interference of Stray current (Normally onshore) 

 

6.7 PROTECTIVE COATINGS 

Protective coatings are applied for dividing the surfaces that are susceptible to corrosion from 

the components in environment which cause corrosion to happen. although, that protective 

coatings cannot provide 100 percent protection. Protective coatings are generally applied for 

carbon steel pipelines in order to mitigate the corrosion. Coatings can be applied on both 

internal and external.The internal coatings should be compatible with the fluids flow inside 

the pipelines and the external coatings with respect to the environmental conditions.If 

localized corrosion at a outer layer defect is expected to origin failure, Extra corrosion control 

measures should be applied. Poor surface preparation causes majority of  coating failures. 

Coatings are especially useful when used in combination with other methods of corrosion 

command such as cathodic defence or galvanic corrosion . 

 

6.8 CORROSION MONITORING  

Corrosion monitoring  should atleast be carried out to carbon  steel flowlines. There are 

various corrosion monitoring techniques available. 

 

 



39 

 

Weight loss Coupon 

Weight reduction coupons are basic, efficient and sensitive tool for estimating the corrosion 

rates quantitatively. This technique uses small samples of metal exposed to an affected 

environment for a period of time to find out the response of the metal. The coupon is capable 

of determining other problems like erosion scaling, and fouling due to its physical shape and 

location.  

A single coupon can't be used to figure out if the metal loss rate was uniform or changing 

during the introduction period. Introducing more coupons at same time and removing and 

assessing those individual coupons at particular coupons can get info about the erosion rate. 

The coupons are made from the same material of the used pipe or made from a material which 

is similar metallurgically to the pipe. Coupons are mounted with coupon holders. The holders 

are marked so the orientation of the coupon with respect to flow can be adjusted. Corrosion 

rate can be calculated using the formula given below: 

 

CR = (W x 3.65 x 105) / ( A x T x D) 

Where: 

CR = average corrosion rate, mm/y 

W = mass loss, grams 

A = initial exposed surface area of coupon, mm2 

T = exposure time, days 

D = density of coupon metal, gram/cm3 

 

Electrical resistence 

Electric resistance (ER) probes are alike as weight loss coupon aside from it measures the 

change of electrical resistance whereas the weight loss coupons screen the metal wastage. The 

pros of electrical resistance method against the weight loss coupon technique  is that by taking 

progressive metal loss readings, the corrosion rate can be calculated with respect to time in 

real time instead of waiting months for coupon data.  

This technique requires sensors with metal element and a monitoring device. ER sensors 

monitors material loss directly, hence it does not need continuous conductive path. This 

method can be used to monitor corrosion in regions where water wetting is not persistent or 

under deposits where conductive may be restricted.It is used to monitor any material loss 

which is caused by erosion or cavitation etc., in non-corrosive fluid. The figure given below 
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shows ER probes metal loss output over time. The conversion to corrosion rate is the slope of 

the line. 

 

Linear polarization resistence 

This technique is used for monitoring of uniform corrosion and qualitative pitting propensity. 

The method involves polarizing the concerned  metal and measuring the resulting current.  It 

needs a probe which have 2 or 3 electrodes and a monitoring device. The benefit of  using this 

method against WLC and electrical resistence probe is that it provides a fast measure of fluid 

corrosivity. It is more sensitive towards environmental change.  

This technique has limits of operation, which depend on corrosion rate, and electrical 

conductivity of the process media  Thus this method requires a relentless conductive path and 

is generally used only where conductive fluids (water) is present. 

 

Zero Resistance Ammetry 

Zero Resistance Ammetry is not the most routinely corrosion monitoring procedure as it 

needs a good understanding of the electrochemistry method when corrosion happens. ZRA is 

commonly used to measure galvanic effects in a system. ZRA is nothing but a current to 

voltage converter. It gives a voltage output relative to the current streaming between its two 

input terminals while forcing a Zero voltage drop to the external circuit.  

If both the electrodes were similar then very little coupling current would flow. In genuine life 

the two electrodes will be somewhat different, one being more anodic or cathodic than the 

other and a little coupling current will exist. On that point envisage the electrode chopped in 

half and the two parts attached via a ZRA. The ZRA will capture some of the current flowing 

between the (now differentiated) anodic and cathodic regions. 

 

Electrochemical Noise 

Electrochemical noise is a simple technique on micro perspective viewpoint. ECN is 

measurement of potential and electrode between two electrodes. It can be identical material or 

one material vs reference electrode. This method will create huge amount of data at high rate 

generally for every second, which needs computer system to process those obtained data.  

ECN measurements of a passive metal will give corrosion currents and potentials without any 

fluctuations. Although, once the situation change and a corrosion pit begins to form, then 

usual patterns in the corrosion potential and currents can be noted. Further pit propagation 
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will have another pattern and the similar one goes for passivation. A exclusive signature for 

each kind of event should be known to evaluate ECN data. 

 

High sensitive electro ratio metric Techniques 

Two distinct techniques are incorporated in this methods. Bith have similar technical 

capability which is electro radio metric. Two techniques are Ceion and Microcor.  

 

Field signature method 

This technique detects cracking, pitting, metal loss and grooving due to corrosion. It detects 

the changes in the fluid flow through metallic structure. An benefit of the FSM system is, if 

the probability of  severe conditions increases significantly if corrosion is identified during 

inspection, then it can be installed without a system shut down. FSM can also be used in 

subsea, but that is more sophisticated, so proper planning is necessary to make it sucessful. 

 

Water analysis 

Water analysis is generally underrated as corrosion monitoring tool.  Water analysis along 

with some corrosion monitoring techniques provide good data and hence will act as a strong 

corrosion control resource. To get fruitful results some parameters are needed, they are 

• Iron 

• Manganese 

• Bicarbonate 

• pH 

• Sulfide 

• Organic acids 

 

Corrosion monitoring selection systems 

Table below provides information about the technique which can be used with respect to the 

production fluid.  

Technique / Service Water (5% oil) 

oil (<5% 

water) Wet gas Three phase erosion 

Electrical resistence X X X X X 

Weight loss Coupon X X X X X 

Linear Polarisation resistence X         
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Zero Resistence Ammetry X         

Electro chemical Noise X X X X   

Field signature method X X X X X 

High Sensitivity X X X X X 

Water Analysis X X X X   

Table 4: Corrosion monitoring Vs operational service 

(Source- Alabam, Cornetl, Feltoas, Fullejt, Hollied, Jessef, Leim20, Nikamvv, Sadair, 

Onewiki) 

 

6.9 CHEMICAL TREATMENT 

Chemical treatment is one of the effective mitigation measures currently practicing by most of 

the offshore industries. Chemical treatments are considered to be an integral part in pipeline 

integrity program. To prevent degradation and various contaminants, offshore industries need 

different chemical treatments. Selection of injection method plays an important role which 

needs to be cost effective as well as it should provide reliable solution. 

Some common types of problems like chemical corrosion, bacterial corrosion, mineral 

deposits, hydrate formation, water vapor problem, and paraffin problem are found in oil and 

gas production operations. These problems can be treated by chemical injections.  

Carbon dioxide, hydrogen sulphide and oxygen are the main components associated with 

corrosion of produced fluids. The selection criteria of using corrosion inhibitors are generally 

based on type of corrodent, type of production and relevant experience. Corrosion inhibitors 

will mostly work by adsorption process on the exposed metal surface.  

Oxygen normally will not found in unaltered produced fluids. It usually begins to introduce 

when the produced fluids are treated. Corrosion by oxygen is controlled by chemical reaction 

instead of adsorption process. The most common form of scavengers (oxygen inhibitors) is 

sulphites with ammonium bisulphite. Sulphates and their reaction products are water soluble 

and so it will be discharged with the produced water. Scavengers are generally used at less 

than 100ppm concentrations. Injection water is also treated using oxygen scavengers. 

 The most common corrodent is carbon dioxide, where as hydrogen sulphide set to provide 

substantial risk to human, health and environment. Oil soluble corrosion inhibitors are more 

effective as they provide stable and durable film. In case of requirement of more water 

solubility, dispersants or surfactants or quaternary amines can be added.   
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Chemicals injecting on various platforms 

The production rate of oil, water and gas are the basis factor for deciding the amount of most 

of the chemicals that are to be injected.  

 

Scale inhibitor  

Scale inhibitors are added to prevent the formation of scale deposits in pipes and equipment. 

Scale formation mainly depends upon the temperature, pressure and water cut. On the basis of 

water content the amount of scale inhibitor to be injected will be decided. Inappropriate scale 

inhibitor or lack of scale inhibitors will generate back pressure in wells.  

 

Anti-foaming agents 

Foam absorber added to the production flow to prevent the formation of foam in the separator 

that provides better gas / liquid separation. The quantity of anti- foaming agents to be injected 

is based upon the total oil production rate and also depends upon the type of the anti- foaming 

agent. 

 

Emulsion Breaker  

Emulsion breakers are added to prevent the formation of oil / water emulsions in the separator 

which improve oil / water separation. Emulsion breakers injection rate are based upon the oil 

and water production rate. 

 

Corrosion inhibitor  

Corrosion inhibitor will be injected in export pipeline for oil. The quantity to be injected will 

be based on GOR, GLR and Water cut. Inhibitors density is similar or slightly heavier than 

water. It needs to be injected in continuous or batch injection distributed via a nipple with 

check valve. 

Corrosion inhibitors are complex compounds which can be sorted into four groups, they are 

 Amine imidazolines 

 Amines and amine salts 

 Quaternary ammonium salts 

 Nitrogen heterocyclic’s 
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H2S, O2, and CO2 scavengers  

To reduce H2S, O2, and CO2 content, these scavengers are added. Density is to water and must 

be dispersed and distributed thoroughly within the process media for maximum contact time.  

It requires continuous direct injection distributed via an atomizer.  

 

Paraffin inhibitors 

Paraffin inhibitors are injected in crude oil. Paraffin inhibitors change the wax crystal 

structure and it reduces the wax build up in the oil systems. Their densities are slightly lighter 

than water and must be dispersed and distributed thoroughly within the process media for 

maximum contact time. It also requires continuous or batch injection distributed via injection 

quill with check valve.  

 

Hypochlorite  

Hypochlorite is used in water, seawater and firewater system which acts as a disinfectant and 

prevents biological growth in pipes and equipment.  

 

Biocide  

Biocide is added into the oil phase separator to reduce the possibility of formation of 

biological growth in the system. 

 

Gas fields 

Glycol / Methanol 

Glycol / methanol are pressure equalization fluid.  The used glycols can be recycled to 

equalize the pressure across various valves. Methanol mixture is added if there is a risk of 

hydrate formation in the gas treatment system. Characteristics of glycol are Density slightly 

heavier than water. It will be applied to the interior wall of the pipeline or vessel. It requires 

continuous or batch injection distributed via a quill with check valve. Methanol density is 

slightly less than water and must be dispersed and distributed thoroughly within the process 

media for maximum contact time. It requires continuous direct injection distributed via an 

atomizer. In case of distributing in liquid medium the Injection quills should be used.  
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Chemical Injection system 

Chemical injection systems will store, transport and inject chemicals into various process 

systems. The main purpose of the chemical injection system is to prevent corrosion, 

biological growth, hydrate formation, Scales deposition etc. Chemicals are also injected to 

enhance the separation processes and to reduce the friction in export pipelines. Injection 

systems consist of various subsystems which includes batch and continuous injection of 

chemicals to process and utility systems. The storage tanks, injection pumps and their related 

instrumentation devices are the main components in a chemical injection system. 

 

The required injection rate can be calculated on the basis of concentration of water, oxygen 

etc. The ratio calculation is the main component where it calculates the required chemical 

flow rate on the basis of production rate compared to the dosage set point. The graph shown 

below provides overview of production rates of Gas oil ratio (GOR), Gas Liquid ratio (GLR) 

and water cut (WC) from the choke valve. These rates are considered to be the basis for 

calculating the dosage rates. 

 

Graph 1: Shows an overview of production rate of GOR, GLR and WC. 

(Source-Aker solutions Corrosion Monitoring data, 2012) 
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7. ALTERNATIVES TO CURRENT PRACTICES 

The mitigation measure for corrosion is just not a part of corrosion control strategy for the 

production wells. For new development wells in the future the corrosion control can be 

accomplished mostly through material selection only, thus low alloy tubing is not anticipated 

to have adequate service lifetime without corrosion inhibitor, suitable corrosion resistant alloy 

can be selected. In this paper the following corrosion resistant alloy is considered for 

comparing with current practices of carbon steel they are, 

 Stainless steel 

 316 Stainless Steel 

 6MO Stainless Steel 

 22% Cr Duplex Stainless Steel 

 25% Cr Duplex Stainless Steel 

 Titanium 

 

7.1 STAINLESS STEEL 

No metal, aside from gold and platinum in their characteristic state, are totally corrosion free. 

But stainless iron alloy has proven in thousands of applications, that it is one of the most 

economical solution's to battle the ever present components that origin corrosion. Yes as the 

name suggests - it is stain-less, stain-proof.  

 

Stainless steels are generally iron base alloys which contain approximately 11% cr. The 

presence of chromium helps to prevent the rust formation from the atmosphere. Stainless steel 

alloys material cost is almost 10 times the cost of Carbon steel. Stainless steel is widely used 

material in offshore facilities because of their corrosion resistance at ordinary temperature and 

conditions. But, in hazardous atmosphere and at high temperature the surface of the alloy is 

attacked severely which results in the formation of Cr2O3, NiO or Fe2O3 scales. There are five 

types of stainless steels,  

 Austenitic stainless steel (304, 304L, 316, 316L etc...) 

 Martensitic stainless steel 

 Ferritic stainless steel 

 Duplex stainless steel (22 Cr, 25 Cr) 

 Precipitation hardening 
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The table shown below provides good overview of their strength relative to corrosion. 

* Superior properties 

-  Lower properties 

Property Austenitic Ferritic Duplex Martensitic 
Precipitation 

Hardening 

Strength _ * ** *** *** 

Wear Resistance _ _ * ** ** 

Formability *** ** ** _ * 

Weldability ** _ ** _ _ _ 

Resistance to General Corrosion ** * ** _ * 

Resistance to Pitting Corrosion ** * ** _ * 

Resistance to Stress Corrosion, 

chlorine induced 

_ ** ** _ _ 

Table 5: Showing Properties of stainless steel relative to corrosion 

(Source-Corrosion prevention 316 presentation) 

Stainless steel generally will not corrode as uniform as like corrosion in carbon steel alloys. 

However at some concentrations like hydrochloric acid and sulphuric acid will attack the 

passive layer uniformly. More common forms of corrosion in stainless steel are pitting 

corrosion, Crevice corrosion, Inter granular corrosion, Galvanic corrosion and Stress cracking 

corrosion. Stress corrosion cracking can be susceptible in case of using austenitic stainless 

steels, along with conditions like critical environment and some form of tensile stress 

presence. But duplex stainless steels have improved resistance to stress corrosion cracking. 

 

 

Graph 2: Corrosion resistance of 22 Cr Duplex sstl in CO2/Nacl environments in the absence of oxygen and H2S         

(Source- Corrosion Resistant alloys (CRAs) in the oil and gas industry, 2011) 
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The PREN, CPT, CCT for the corrosion resitant alloys are mentioned in the table below.  

Materials PREN CPT (o C) CCT (o C) 

316 24-26 5-15 <5 

6MO 46 65-80 30-60 

22 Cr Duplex 35 20-42 17.5-25 

25 Cr Duplex 42 55-88 35-43 

Table 6: Typical PREN, CPT, and CCT Numbers for Stainless Steels 

(Source- R.T. Hill, F.A. Ramirez, A.L. Perez, and B.A. Monty, 2012) 

Note:  

PREN - Pitting Resistance Equivalent Number 

CPT - Critical Pitting Corrosion Temperature 

CCT - Critical Crevice Corrosion Temperature 

 

7.1.1 316 STAINLESS STEEL 

Grade UNS C Si Mn P S Cr Ni Mo N 

316 SSTL TP316 0.08 0.75 2 0.045 0.03 18 14 3 0.10 

Table 7: Composition of 316 stainless steel 

7.1.2 6MO STAINLESS STEEL 

Grade UNS C Si Mn P S Cr Ni Mo Cu N 

6Mo S31254 <0.02 0.70 1 0.30 0.010 20 18 6.1 0.75 0.20 

Table 8: Composition of 6Mo stainless steel 

7.1.3 DUPLEX 

Grade UNS C Cr Ni Mo W Cu N 

Duplex 
S31803 0.02 22 5.5 3.0     0.17 

S32205   22.5 5.8 3.2     0.17 

Table 9: Composition of Duplex stainless steel 

7.1.4 SUPER DUPLEX 

Grade UNS C Cr Ni Mo W Cu N 

Super 

Duplex 

S32750 0.02 25 7 4.0   0.5 0.27 

S32760 0.03 25 7 3.5 0.6 0.5 0.25 

Table 10: Composition of Super Duplex stainless steel 
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7.2 TITANIUM 

Titanium metal is highly reactive and has excellent corrosion resistance properties. It has low 

density and high strength to weight ration of any metal. It’s an expensive material. Titanium 

can be available in various grades with different alloy compositions. The most commonly 

used grade with corrosion resistant properties are grade 7 containing 0.15% of palladium and 

grade 12 containing 0.3% Molybdenum and 0.8% nickel. 

 

The oxide film formation provides the material an outstanding corrosion resistance in 

aggressive environments. When titanium is exposed to the atmosphere which contains 

oxygen, it forms a thin consistent film of oxide typically TiO2, may also consists of mixtures 

of Ti2O3, and TiO. It needs sufficient oxygen to be present in order to form the healing layer 

which can reform even if mechanically damaged. If there is no sufficient oxygen then it is 

difficult to regenerate the layer. The oxide film formations even perform well in chlorine and 

organic chlorides containing environments. But it doesn’t provide good resistant to chlorine 

when the temperature is more than 1100C. 

There are various methods available to even increase the resistance in the reducing 

environments. They are, 

 Anodizing and thermal oxidation, the surface oxide film thickness can be increased. 

 Surface coating can be applied 

 In order to allow oxide film stabilization, oxidizing inhibitors can be added to 

reducing environments. 
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8. CHARECTERISTICS FOR COMPARING ALTERNATIVES 

8.1 SAFETY AND ENVIRONMENTAL ASPECTS: 

Safety and environmental aspects is one of the important factor to be analysed when selecting 

material for flow lines. In previous years, the Norwegian Petroleum Directorate (NPD) has 

conveyed worries regarding some situation related to material selection and safety, triggered 

by previous experiences in the North Sea. Numerous gas leakages have been reported in 

Norwegian continental shelf in previous years. Some of the leakages are due to different type 

of failures on subsea pipeline wall fractures. Outcome of these failures are significant. The 

effect on environment and human health and safety has not been significant in these cases. 

Most of those occurrences are smaller topside gas leakages. Luckily none have set on fire. 

Therefore it is necessary to consider in terms of safety as an important factor while selecting 

material quality.  

 

8.2 LIFE CYCLE COSTING 

Life cycle costing is one of the best tools used to select the material with respect to cost.  

Increasingly, material selection is made not blindly selecting the lowest initial installed cost, 

but should also on future perspective view of the costs incurred during the project duration. 

This Life Cycle Costing (LCC) analysis utilizes established diverse activities to compare the 

costs such as selection of various equipment’s, alternative materials selections  for different 

systems, optimization of various production process by calculating the present value of future 

costs associated with the selected materials. LCC study will throw light on major cost drivers 

and based on this data the choice of design alternatives can be made. 

According to NORSOK standard O-CR-002, Life cycle cost is the summation of cost estimate 

that determines the life cycle cost of a product over a period of time. The main objective is to 

select the most cost effective approach from the alternatives. 

In general, Life Cycle Cost = Capital Cost + Operating cost + Cost of deferred production 

Where Capital cost is calculated by adding the following cost elements 

Capital cost 

 Equipment cost 

 Installation cost 

 Non recurring investment cost 

 Design and administration cost 

 Spare units or assembles cost 
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 Commissioning cost 

 Insurance Cost 

Operating cost shall be calculated by adding the following cost elements 

 Man-hour cost 

 Inspection cost  

 Spare parts for operation 

 Energy consumption cost  

 Chemicals/Inhibitors Cost 

All these costs shall be discounted back to the base year  

 

∑
𝑂𝐶

(1+𝑖)𝑛

𝑁

𝑛=1

 

Where, 

 OC = operation & maintenance cost 

 n = year 

 i = discount rate 

  

Cost of deferred production can be calculated by adding following cost elements 

The general formula for cost of deferred production (CDP) is as follows: 

CDP = E p D L CDP 

Where: 

CDP = Cost of Deferred Production. 

E = Average number of critical failures per year. 

p = Probability of production reduction. 

D = Duration of production reduction. 

L = Quantity of production loss per time unit. 

CDP = Cost of one hour downtime per year throughout the lifetime calculated as the 

           difference in Net Present Value between a production profiles with the simulated 

           availability and with one hour lower availability per year. 

 

There are also various methods available for performing the life cycle costing in order to 

choose best from different alternatives. They are  
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1. Internal rate of return (IRR) 

2. Net present value (NPV) or present worth method (PW) 

3. Discounted payback (DPB) 

4. Benefit-cost Ratio (BCR) 

5. Present worth of future revenue requirements (PWRR) 

 

Internal Rate of Return (IRR): 

The IRR is tougher to assess than the NPV. The IRR is defined as the discount rate at which 

the Net present value becomes zero. The IRR comprises of the interest cost or borrowed 

capital in supplement to existing profit or loss. A project is advised financially more favorable 

when the discount rate at which the NPV gives positive value. Once all the cash flows have 

been accounted for over the life of a project then IRR can computed by an iterative procedure. 

 

Present Worth of Future Revenue Requirements (PWRR): 

The PWRR is mainly applicable to regulated public utilities, for which the rate of return is 

more or less fixed by guidelines. The major disadvantage in this PWRR method is that it is 

inadequate where alternatives are vying for restricted amount of capital as it does not identify 

the alternative that produces the utmost return on invested capital. 

 

Discounted Payback (DPB): 

All these methods are mainly based on present worth concept. But each has its own pros & 

cons. The payback period is a somewhat easy and simple concept. It is defined as the amount 

of time required to retrieve its initial project expense. Discounted payback takes the time 

value of money into concern by modifying all future cash flows to time zero, before 

calculating the payback period.  It is a very basic method that can be utilized to screen 

candidate projects. 

 

Benefit-cost Ratio (BCR): 

The benefit-cost ratio method (BCR) is more related to the IRR method in the fact that both 

methods engage assessment options not only for economic measures compared with a “do-

nothing” scenario, but also for incremental measures affiliated with incremental capital 

investments. 
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Present worth (PW): 

The Present worth also referred as Net Present Value (NPV) is considered as the most easiest 

and direct form of the five methods. It consequently has the broadest application to new 

technology decision and engineering economy problems. Many industries mention this 

method as the discounted cash flow method of analysis. 

This generalized equation is developed by Vernik.  

The equation below (NACE 3C194,1994) is generally used in LCC calculations:  

 

                        

Where,  

PW = present worth 

P = Initial investment or Capital cost 

T = tax rate 

S represents salvage value 

A is the equivalent annual cost 

i is the effective interest rate [discount rate] 

n is the number of compounding periods [years] 

X is the operating expense 

F is the future worth of the asset 

The term P represents the project expense during start up at time zero. Therefore it is 

represented in negative value. It is not necessary to convert this value to a future value in 

time, as the PW approach discounts all money values to the present.  Second Term [{t (P-

S)/n}(P/A. I %, n)] in this equation represents the depreciation of a system.  

 

Third Term [-(1-t) (X) (P/A, I %, n)] in this generalized equation consists of two terms. One is 

(X) (P/A, I %, n) that represents the cost of items properly chargeable as expenses such as the 

maintenance cost, inspection cost, and inhibitors cost. As this term involves expenditure of 

money. It comes with a negative sign. The second part t(X) (P/A, I%, n) accounts for the tax 

credit associated with this expense and because it represents a saving it is associated with a 

positive sign.  
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Fourth Term [S (P/, I %, n)] translates the future value of salvage to present value. This is a 

one-time event rather than a uniform series and therefore it involves the single payment 

present worth factors. Many corrosion measures such as coatings and other repetitive 

maintenance measures have no salvage value in which cases this term is zero. Present Worth 

(PW) can be converted to equivalent annual cost A by using the following formula:  

   A = (PW) (A/P. I %. n)                         

It is possible to calculate different options by referring to interest tables or by simply using the 

formula describing the various functions.  

The capital recovery function (P/A,. is 

 

 The capital recovery factor (A/P). or how to find A once given P. is 

 

The LCC analysis is for different material options for the flowlines is done in chapter 9.2. 

 

8.3 RELIABILITY 

Corrosion in a flow line or in general a pipeline significantly affects the strength and thereby 

raises the question of integrity. The corrosion over a period of time, if unattended, circularize 

and disperse with respect to size and quantity. Such an effect on flow line is directly 

proportional to the time the flow line is exposed to conditions that enhance corrosion. The 

highly unavoidable  practicality that corrosion in offshore and especially in Norwegian 

Continental shelf, is random, radically distinctive and without equal propagation and rarified 

offers no direct solutions but serious challenges to encounter the compounding effects.  Hence 

NORSOK standard  M-001 puts forth the reliability characteristic to be evaluated while 

selecting the material for the flow line. The results of such an effect can be quantified using 

the reliability characteristic of the flow line. Reliability can be defined as "The probability 

that an item can perform a required function under given conditions for a given time 

interval"(IEV 191-12-01, 2008).  This means that reliability is measure of the likelihood that 

the flow line will perform the intended functions or probability that a benchmarked quality 

level is maintained in the system during the operational life cycle of the flow line. 

 

The effects of corrosion are in one way or another dependent on the operating and 

environmental conditions surrounding the system and cannot be quantified using the 
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deterministic models suggested by the scholastic literatures or industrial standards. The 

objective of the deterministic models can be envisaged to counter the corrosion effects by 

limiting the unavoidable repairs/damages and calling for replacements. However, the 

deterministic models do not provide an opportunity for optimization of corrosion control 

measures and at the same time not form a complete solution for maintenance and 

replacements. In order to qualify the solutions without significant qualification, the 

probabilistic models  are deemed to be pejorative that offer solutions to quantifying reliability 

especially for a gross finish to corrosion control (Bea, 2000). The models are expressed using 

the statistical distribution functions with practical parameters such as variables of strength and 

load as opposed to coefficient of safety used by the deterministic models. 

 

Taken by the understanding that corrosion  is  inevitable or the effects of corrosion cannot be 

ceased but in turn can be reduced, the probabilistic and deterministic models are used to 

represent the reliability characteristic of flow line materials.  In order to perform reliability 

analysis or quantify reliability, the touchstones that can establish the failure of a pipeline is to 

be determined. The touchstones adapted for defining the limit state function are strength or 

the ability of the flow line material to resist failure and the load or force that can produce 

failure of a flow line. According to Vrijling (2000), the limit state function is represented as  

Z = R-S 

where, 

Z = Limit State Function 

R = Strength 

S = Load 

The values of limit state are evaluated as when it tends to be less than 0, then the system is in 

failure mode and when it is more than 0, then the system is in operation mode. Using the limit 

state function, the probability that the system is in failure mode can be represented as follows. 

Pf = Pr (Z ≤ 0) = Pr (R ≥ S) 

Where, 

Pf =Probability of failure 

Pr (Z ≤ 0) = Probability that the system is in failure mode depending on the limit state 

function 

Pr (R ≥ S) = Probability that the system is in operational mode depending on the limit 

state function 
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The reliability of the system is therefore the probability of the system is not in failure mode 

and can be represented as 

Pr (Z > 0) = 1 – Pf 

 

8.4 AVAILABILITY 

According to M-001, one of the key factors to be evaluated while selecting the material for 

flow lines is the availability of the same the market. However, due to rapid developments in 

the offshore oil & gas (O&G) industry sector, especially in NCS, the management of asset 

availability and asset management offers a series of challenges. Out of the many challenges 

spare parts management, complexities in inventory management, economics of inventory, 

availability of asset management personnel, mismatch between  actual demand, purchasing 

period, stock piling of unnecessary inventory parts  etc. are some of the critical factors that 

can escalate risk and at the same time management cost. Traditionally it is believed that the 

while managing an asset, the more the inventory the less would be the operating cost and 

down time. But the belief is no longer under application due to the changing dynamics of 

offshore asset maintenance and management. 

 

Current trends and developments in technology has enhanced the design and operating life of 

the asset. Additionally, the experiences gained and nourished over the last two decades has 

significantly provided means to have an assets execute their respective functionalities for 

longer life. However, that does not take away the need for incorporating maintenance needs 

and protocols into the system. Such a protocol is driven by laboratory experiments and 

application of suitable remedial measure to ensure that the asset manages to complete the 

years of operation it has been designed for. 

 

Maintenance management philosophies over the last two decades, such as run-to-failure, 

ensured that the offshore asset spend economically on maintenance needs and avoid any 

preventive break downs. Such a philosophy has led to larger costs due to system downtime, 

high labour cost, low production, high inventory costs etc (Mobley, 1990). To satisfy some of 

the core principles and objectives of asset management which are in-line with current 

dynamics of offshore operations, the Availability with respect to market has therefore been 

evaluated with Asset Availability perspective. Such an evaluation encapsulates the core 

principles and objectives of asset management such as reduce the need for inventory 

management and associated inventory costs, undermine the significance of demand and 
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supply, ensure that the assets down time is as low as practically reasonable, optimize the 

value of the asset, reduce inspection requirements, the eventual risk of asset failure due to 

unexpected critical events and reduce operational risk.  In addition, the  Norwegian petroleum 

directorate encourages and expects the operators to adhere to HSE guidelines and regulations such 

that there is zero tolerance for accidents , unexpected chain or events or scenarios that can directly 

or indirectly have significant effect on the availability of the asset. In other words, the more the 

availability of an asset, the more is the technical integrity of the asset. 

 

According to British Standards (BS EN 13306:2010), the Availability of an asset is its ability to 

remain in a state of operation, perform its functional objective for the period and operating 

conditions the asset has been designed for under the assumption that the asset receives all the 

required resources in the form of maintenance needs. Rausand and Høyland (2004), define 

Availability as "The ability of an item (under combined aspects of its reliability, 

maintainability and maintenance support) to perform its required function at a stated instant 

of time or over a stated period of time”. The aforementioned definitions provide an assertive 

direction towards having the system in a state of operation (functional) with some scheduled 

maintenance operations. In other words, the availability can be quantified using the formula, 

 

Where 

A = Average Availability 

MTBF = Mean Time Between Failures 

MTTR = Mean Time To Repair 

With the objective of this research basing on the evaluation of material based on the 

corrosivity property on the hydrocarbon systems,  the availability factor of material selection 

is drawn from the corrosion inhibitor availability perspective.  According to M-001, 

corrosivity  which is a principal component of the degradation mechanism in offshore 

flowline materials, the property of corrosivity has to be evaluated based on the availability of 

the inhibitor. The availability of inhibitor defines and determines the time the inhibitor is 

present during system's operation or functioning at the concentration levels that is above or 

below the required minimum dosage. In order to quantify the Availability characteristics of 

material, the percentage availability formula as discussed in M-001 has been adapted in this 

research and is formulated as 
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Corrosion allowance (CA) = (the inhibited corrosion allowance) + (the uninhibited corrosion 

allowance) 

CA = (CRinhib x A %/100 x lifetime) + (CRuninhib x {1 – A %/100} x lifetime) (3) 

where 

CRinhib = inhibited corrosion rate. 

CRuninhib = uninhibited corrosion rate (from NORSOK M-506). 

 

8.5 FABRICATION 

According to NORSOK standard M-001, one of the perspectives that is required to be 

attended to while selecting the material for oil and gas flow lines is Fabrication. Generally, 

the oil and gas flow lines or any piping for offshore is fabricated onshore in the name of 

fabrication spools depending upon the means of transport and are  installed in offshore 

module.  The fabrication of spools is done is an onshore fabrication yard or shop using the 

recommended industrial standards and techniques. Such standards and techniques govern the 

type of cutting required on the pipe, procedures of welding and types of fitting being used. 

The fabrication yard is equipped with the tools and paraphernalia to cater to the needs and 

demands of the industry and site. Once the spools are fabricated in the shop, they are 

transported to the site for installing using the erection items. The following figure adapted 

from (Song,  Mohamed and AbouRizk, 2009) describes the work process involved in the 

fabrication activity.

 

Flowchart 1: Pipe Module Fabrication Process 

(Source- Song.L, Mohamed.Y, and AbouRizk.S, 2009) 
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9. EVALUATING ALTERNATIVES WITH  RESPECT TO CURRENT       

PRACTICES 

9.1 CARBON STEEL VS CORROSION RESISTANT ALLOYS WRT SAFETY AND 

ENVIRONMENTAL ASPECTS 

Concerns about the safety and environmental aspects in oil & gas industries are increasing in 

public as the environmental nongovernmental organizations keep on forcing the operating 

companies for more transparency and responsibility towards environment. Chemicals are used 

in all aspects of oil and gas industries from discovering, well development, drilling, 

production, transmission and storage.  

 

The main failures of carbon steel X65 pipelines occurs due to corrosion and erosion. Those 

failures have great impact on safety and environment. The table below provides an overview 

of internal corrosion mechanism between carbon steel and corrosion resistant alloy. It is 

necessary to consider the materiasl which are prone to more degradation mechanism and 

whether the mitigation measure to be used are effective enough to counter the degradation 

mechanisms in order to avoid failures and their consequences. 

 

Corrosion Mechanism 
Carbon 

Steel 
Corrosion Resistant Alloy 

CO2 & H2S Corrosion (general mass 

loss) 
Yes No 

H2S Cracking Corrosion (SCC, 

HICC) 
Yes Yes (SCC) 

Chloride Induced/Chloride  

contribution to pitting corrosion 
Yes Yes 

Chloride SCC No Yes 

Corrosion from dissolved oxygen Yes 
Yes (Pitting and cracking in the presence 

of chloride and high temperature) 

 

Microbiologically induced Corrosion 

 

Yes 

 

Yes 

Table 11: Comparison of internal corrosion mechanism between carbon steel and corrosion resistant alloy. 

(Source-R.T. Hill, F.A. Ramirez, A.L. Perez, and B.A. Monty, 2012) 



60 

 

 

Stress cracking corrosion is one of the threat in stainless steel material which causes brittle 

failure of metallic surface by due to stress and localized corrosion. It has been reason behind 

to causefailure of high strength steels. The H2S and chloride environment is the main cause 

for failures due to SCC. In this paper when pipelines are considered, If carbon steel is used, 

chemical treatment is the effective mitigation measure practiced by current oil & gas 

industries. Indefinite chemicals are used with the combination of various chemicals 

manufacturers resulted in availability of hundreds of different chemical products. Due to this 

widespread usage of chemicals, it is necessary to access data regarding their efficiency and 

their likely environmental impacts. 

 

Any chemical that is being introduced in the North-Sea requires to be tested on the following 

environmental properties: 

On organic component level 

 Bioaccumulation 

 Biodegradation 

On Product level 

Toxicity on: 

 Algae 

 Crustacean  

 Sediment reworker  

 Fish  

The environmental problems arise with the discharge. When it comes to production 

chemicals, the chemicals that are mostly used are organic which are used in continuous 

process in small quantities. The chemicals used in production process are emulsion breakers, 

corrosion inhibitors, biocides, scale inhibitors, H2S, O2, and CO2 scavengers, anti-foaming 

agents and other chemicals for specific applications. There is a general assumption that all 

those production chemicals are discharged to the environment. However there is also an 

assumption that the chemicals that ends up in water phase discharged along with the produced 

water and the chemicals ends up in oil phase will transferred to refinery along with the crude 

oil for further processing 

 

Irrespective of material quality there will some kind chemicals are injected into the flowlines 

in order to prevent scale formation and other applications. Chemicals that are used should be 
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handled safely in order to prevent hazardous situations. According to NORSOK S-003, the 

chemical handling system says that, the chemical storage system design should be intended to 

minimize risk of spills (e.g. breakage of sacks) and facilitate accumulation of spills. 

Hazardous chemicals spill that cannot be recycled are stored transported to onshore as 

hazardous waste.  

 

The transfer system between transport and storage tanks ought to be a closed system that 

permits complete draining of transport tanks. Solely distinctive couplings ought to be used on 

transfer systems so as to cut back risk of unintentional transfer to a wrong tank. 

A separate drain to a chemical spill tank ought to be provided from the chemical injection 

package/system. It ought to be doable to modify from the hazardous drain system to the 

current system throughout filling and maintenance operations. According to Norsok S-002, 

The following substances and products are prohibited. They are asbestos and asbestos-

containing materials, mercury compounds, cadmium compounds, polychlorinated biphenyl 

and polychlorinated biphenyl-containing materials, halon type chemicals, chlorofluorocarbon 

type chemicals, tetrachloromethane, 1,1,1-Trichloroethane. 

 

9.2 CARBON STEEL VS CORROSION RESISTANT ALLOYS WRT LCC 

LCC Analysis for material selection for flowlines 

The LCC analysis is done to investigate different material options for the flowlines and 

provide the future recommendation of the best option for the Final Engineering stage. The 

various options selected for evaluation are 

 Bare Carbon steel 

 316 stainless steel 

 6MO stainless steel 

 22 Cr Duplex stainless steel 

 25 Cr Duplex Stainless steel 

 Titanium 

The production fluids flows through the flowlines consists of high concentrations of CO2 and 

H2S which are highly corrosive to carbon steel material. Therefore corrosion inhibition is 

required to control the corrosion rate. Bare carbon steel flowlines with corrosion inhibition via 

chemical injections are assumed to be the base case for flowlines. Pipeline grade is assumed 

to be API-5L GR X65. Chemical inhibition is assumed to be continuous process.  Even 
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though when film forming corrosion Inhibitor type is injected, the internal corrosion cannot 

be completely eliminated. Therefore regular inspections, repairs and replacements will be 

required throughout the service life. 

 

Carbon steel with internal coating can also be used but these coating systems are seen as the 

next increment above bare carbon steel in terms of initial cost and corrosion protection. 

Disadvantages concerned with these internal coating is the inadequate adhesion on the wall of 

the pipe with the coating will leads to peeling or flaking of the coated layer, Erosion problem 

in coated carbon steel also is one of cause for potential failure. Due to these problems it is 

necessary to have similar corrosion inhibition systems used in bare carbon steel. 

 

The capital expenditure of Carbon steel and corrosion resistant alloys will vary depending 

upon the various operating project conditions and external factors. Therefore the economic 

incentive of carbon steel pipeline should be analyzed for each specific project.  Cost of 

Carbon steel material is less, but to take care of material loss due to corrosion we must 

provide corrosion allowance, coating and inhibitor protection. In general, carbon steel with 

corrosion inhibitor option is considered for long distance and larger pipelines of moderate 

design life.  

 

Duplex stainless steel has high yield strength which permits thin wall thickness and retains the 

pressure existing and load bearing capability, 22% Cr has 450MPa and 25% Cr has 550Mpa 

in annealed condition. In requirement of high sour service tolerance 25% Cr Super duplex are 

preferred. This duplex type of stainless steel has high resistance to corrosion and erosion, and 

tolerate up to temperature of 232oC with sour service. 

 

These Corrosion resistant alloys material costs are expensive but we need not provide coating 

and inhibitor protection as corrosion allowance is not necessary for this material type. 

Therefore the operation and inspection costs are minimal, and unscheduled maintenance is 

negligible. Welding is more difficult for duplex stainless steel. Fabrication cost is less due to 

thinner walls and lesser weight.  

Assumptions:   

The following assumptions are made in for each option.  

 The flowline material type and the standards assumed are mentioned in the table 

given below: 
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Flowline Material Material standard Size(inch) 
Diameter 

(mm) 

Pressure 

Class 

Wall 

Thickness 

(mm) 

SCH 

Carbon steel A333 Gr 6 API 5L X52 10 273.1 1500 28.58 160 

316 SSTL A312 TP 316 10 273.1 1500 28.58 160 

6MO SSTL A312 S31254 10 273.1 1500 21.44 120 

22 CR Duplex SSTL A790 S32750/760 10 273.1 1500 21.44 120 

25 CR Duplex SSTL A790 S31803 10 273.1 1500 18.26 100 

Titanium B861 Gr 2 10 273.1 1500 18.26 100 

Table 12: Assumptions of Flowline Material 

 Length of flowline will vary considerably; assumption of 100 m length is taken for 

this LCC calculation.  

 The expected life time is assumed to be 25 years. 

 50% loss in wall thickness is considered as the end of life of a flowline. The time 

required to corrode 50% of the wall thickness at the above corrosion rates are 10 

15 and 20 years. 

 Efficiency of inhibitor is assumed to be 80% for carbon steel, therefore the 

corrosion rate will be only 0.4 mm/y which consume 10mm of carbon steel over 

25 years of project life. 

 LCC for 20 years and 25 years is also calculated for comparative purposes. 

 Tax on Capital expenditure is assumed to be 48% for this calculation.  

 The Uncertainty factor (inflation) assumed to be 2% for Components and the 

discount rate is 10 % assumed for Present worth calculation. 

 Cost of deferred production is not considered in this analysis. 

 

Oil and Gas Flowlines a full description of the cost factors (capital and operating) involved in 

LCC analysis of offshore pipelines is given below: 
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Follwing cost elements are assumed for this analysis:  

 

9.2.1 COST ELEMENTS - BARE CARBON STEEL MATERIAL WITH CORROSION 

INHIBITOR (OPTION 1) 

 

Capital cost 

Elements 

Nok per 

meter/ weld 

100m length 

(NOK) 

Operating cost 

elements 
Nok 

Pipe Material 5200 520 000 Inhibitor cost 800 000 

Flanges & Fittings   180 000 Inspection 110 000 

Fabrication 10000 700 000 Man hour 1 000 000 

Installation 500 50 000 Energy 75 000 

Commisioning 500 50 000 Spares 47 000 

Design & Admin 500 50 000 

 

  

Capital cost   1 550 000 Operating cost 2 032 000 

Table 13: Life cycle Cost elements for carbon steel 

To deal with the uncertainties due to inflation 2% with discount rate 10%, Table have been 

prepared below for 25 years.  

Operation & Maintenance Cost for Carbon steel (MNOK) 

Year 
Corrosion 

Inhibitor  
Inspection  

Man 

hour  
Energy  

Spare 

parts  
Total 

Present 

worth 

PW 

Cummula-

tive 

1 0.800 0.110 1.000 0.075 0.047 2.032 2.032 2.03 

2 0.816 0.112 1.020 0.077 0.048 2.073 1.713 3.74 

3 0.832 0.114 1.040 0.078 0.049 2.114 1.588 5.33 

4 0.849 0.117 1.061 0.080 0.050 2.156 1.473 6.81 

5 0.866 0.119 1.082 0.081 0.051 2.200 1.366 8.17 

6 0.883 0.121 1.104 0.083 0.052 2.243 1.266 9.44 

7 0.901 0.124 1.126 0.084 0.053 2.288 1.174 10.61 

8 0.919 0.126 1.149 0.086 0.054 2.334 1.089 11.70 

9 0.937 0.129 1.172 0.088 0.055 2.381 1.010 12.71 

10 0.956 0.131 1.195 0.090 0.056 2.428 0.936 13.65 

11 0.975 0.134 1.219 0.091 0.057 2.477 0.868 14.52 

12 0.995 0.137 1.243 0.093 0.058 2.527 0.805 15.32 

13 1.015 0.140 1.268 0.095 0.060 2.577 0.746 16.07 
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14 1.035 0.142 1.294 0.097 0.061 2.629 0.692 16.76 

15 1.056 0.145 1.319 0.099 0.062 2.681 0.642 17.40 

16 1.077 0.148 1.346 0.101 0.063 2.735 0.595 18.00 

17 1.098 0.151 1.373 0.103 0.065 2.790 0.552 18.55 

18 1.120 0.154 1.400 0.105 0.066 2.845 0.512 19.06 

19 1.143 0.157 1.428 0.107 0.067 2.902 0.475 19.53 

20 1.165 0.160 1.457 0.109 0.068 2.960 0.440 19.97 

21 1.189 0.163 1.486 0.111 0.070 3.019 0.408 20.38 

22 1.213 0.167 1.516 0.114 0.071 3.080 0.378 20.76 

23 1.237 0.170 1.546 0.116 0.073 3.141 0.351 21.11 

24 1.262 0.173 1.577 0.118 0.074 3.204 0.325 21.44 

25 1.287 0.177 1.608 0.121 0.076 3.268 0.302 21.74 

Table 14: Operation & Maintenance cost of  Carbon steel for 25 years 

 

9.2.2 COST ELEMENTS – 316 STAINLESS STEEL MATERIAL (OPTION 2) 

 

Capital cost 

Elements 

Nok per 

meter/ weld 

100m length 

(NOK) 

Operating cost 

elements Nok 

Pipe Material 26000 2 600 000 Inhibitor cost 0 

Flanges & Fittings 

 

725 000 Inspection 75 000 

Fabrication 13000 910 000 Man hour 1 000 000 

Installation 500 50 000 Energy 50 000 

Commisioning 500 50 000 Spares 124 000 

Design & Admin 500 50 000 

 

  

Capital cost   4 385 000 Operating cost 1 249 000 

Table 15: Life cycle Cost elements for 316 Stainless Steel 

To deal with the uncertainties due to inflation 2% with discount rate 10%, Table have been 

prepared below for 25 years.  

Operation & Maintenance Cost for 316 stainless steel (MNOK) 

Year 
Corrosion 

Inhibitor  
Inspection  

Man 

hour  
Energy  

Spare 

parts  
Total 

Present 

worth 

PW 

Cummula-

tive 

1 0.000 0.075 1.000 0.050 0.124 1.249 1.249 1.25 

2 0.000 0.077 1.020 0.051 0.126 1.274 1.053 2.30 

3 0.000 0.078 1.040 0.052 0.129 1.299 0.976 3.28 
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4 0.000 0.080 1.061 0.053 0.132 1.325 0.905 4.18 

5 0.000 0.081 1.082 0.054 0.134 1.352 0.839 5.02 

6 0.000 0.083 1.104 0.055 0.137 1.379 0.778 5.80 

7 0.000 0.084 1.126 0.056 0.140 1.407 0.722 6.52 

8 0.000 0.086 1.149 0.057 0.142 1.435 0.669 7.19 

9 0.000 0.088 1.172 0.059 0.145 1.463 0.621 7.81 

10 0.000 0.090 1.195 0.060 0.148 1.493 0.575 8.39 

11 0.000 0.091 1.219 0.061 0.151 1.523 0.534 8.92 

12 0.000 0.093 1.243 0.062 0.154 1.553 0.495 9.42 

13 0.000 0.095 1.268 0.063 0.157 1.584 0.459 9.88 

14 0.000 0.097 1.294 0.065 0.160 1.616 0.425 10.30 

15 0.000 0.099 1.319 0.066 0.164 1.648 0.395 10.70 

16 0.000 0.101 1.346 0.067 0.167 1.681 0.366 11.06 

17 0.000 0.103 1.373 0.069 0.170 1.715 0.339 11.40 

18 0.000 0.105 1.400 0.070 0.174 1.749 0.315 11.72 

19 0.000 0.107 1.428 0.071 0.177 1.784 0.292 12.01 

20 0.000 0.109 1.457 0.073 0.181 1.820 0.270 12.28 

21 0.000 0.111 1.486 0.074 0.184 1.856 0.251 12.53 

22 0.000 0.114 1.516 0.076 0.188 1.893 0.233 12.76 

23 0.000 0.116 1.546 0.077 0.192 1.931 0.216 12.98 

24 0.000 0.118 1.577 0.079 0.196 1.970 0.200 13.18 

25 0.000 0.121 1.608 0.080 0.199 2.009 0.185 13.36 

Table 16: Operation & Maintenance cost of  316 Stainless steel for 25 year 

 

9.2.3 COST ELEMENTS – 6MO STAINLESS STEEL MATERIAL (OPTION 3) 

 

Capital cost 

Elements 

Nok per 

meter/ weld 

100m length 

(NOK) 

Operating cost 

elements Nok 

Pipe Material 35000 3 500 000 Inhibitor cost 0 

Flanges & Fittings   2 200 000 Inspection 50 000 

Fabrication 13000 910 000 Man hour 1 000 000 

Installation 500 50 000 Energy 50 000 

Commisioning 500 50 000 Spares 350 000 

Design & Admin 500 50 000 

 

  

Capital cost   6 760 000 Operating cost 1 450 000 

Table 17: Life cycle Cost elements for 6Mo Stainless Steel 
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To deal with the uncertainties due to inflation 2% with discount rate 10%, Table have been 

prepared below for 25 years.  

 

Operation & Maintenance Cost for 6MO stainless steel (MNOK) 

Year 
Corrosion 

Inhibitor  
Inspection  

Man 

hour  
Energy  

Spare 

parts  
Total 

Present 

worth 

PW 

Cummula-

tive 

1 0.000 0.050 1.000 0.050 0.350 1.450 1.450 1.45 

2 0.000 0.051 1.020 0.051 0.357 1.479 1.222 2.67 

3 0.000 0.052 1.040 0.052 0.364 1.509 1.133 3.81 

4 0.000 0.053 1.061 0.053 0.371 1.539 1.051 4.86 

5 0.000 0.054 1.082 0.054 0.379 1.570 0.975 5.83 

6 0.000 0.055 1.104 0.055 0.386 1.601 0.904 6.73 

7 0.000 0.056 1.126 0.056 0.394 1.633 0.838 7.57 

8 0.000 0.057 1.149 0.057 0.402 1.666 0.777 8.35 

9 0.000 0.059 1.172 0.059 0.410 1.699 0.721 9.07 

10 0.000 0.060 1.195 0.060 0.418 1.733 0.668 9.74 

11 0.000 0.061 1.219 0.061 0.427 1.768 0.620 10.36 

12 0.000 0.062 1.243 0.062 0.435 1.803 0.574 10.93 

13 0.000 0.063 1.268 0.063 0.444 1.839 0.533 11.47 

14 0.000 0.065 1.294 0.065 0.453 1.876 0.494 11.96 

15 0.000 0.066 1.319 0.066 0.462 1.913 0.458 12.42 

16 0.000 0.067 1.346 0.067 0.471 1.952 0.425 12.84 

17 0.000 0.069 1.373 0.069 0.480 1.991 0.394 13.24 

18 0.000 0.070 1.400 0.070 0.490 2.030 0.365 13.60 

19 0.000 0.071 1.428 0.071 0.500 2.071 0.339 13.94 

20 0.000 0.073 1.457 0.073 0.510 2.112 0.314 14.25 

21 0.000 0.074 1.486 0.074 0.520 2.155 0.291 14.54 

22 0.000 0.076 1.516 0.076 0.530 2.198 0.270 14.81 

23 0.000 0.077 1.546 0.077 0.541 2.242 0.250 15.06 

24 0.000 0.079 1.577 0.079 0.552 2.287 0.232 15.30 

25 0.000 0.080 1.608 0.080 0.563 2.332 0.215 15.51 

Table 18: Operation & Maintenance cost of  6Mo Stainless steel for 25 year 
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9.2.4 COST ELEMENTS – 22 CR DUPLEX STAINLESS STEEL MATERIAL   

(OPTION 4) 

Capital cost 

Elements 

Nok per 

meter/weld 

100m length 

(NOK) 

Operating cost 

elements Nok 

Pipe Material 29000 2 900 000 Inhibitor cost 0 

Flanges & Fittings   800 000 Inspection 50 000 

Fabrication 13000 910 000 Man hour 1 000 000 

Installation 500 50 000 Energy 50 000 

Commisioning 500 50 000 Spares 175 000 

Design & Admin 500 50 000 

 

  

Capital cost 

 

4 760 000 Operating cost 1 275 000 

Table 19: Life cycle Cost elements for 22 Cr Duplex Stainless Steel 

To deal with the uncertainties due to inflation 2% with discount rate 10%, Table have been 

prepared below for 25 years.  

 

Operation & Maintenance Cost for 22 CR Duplex stainless steel (MNOK) 

Year 
Corrosion 

Inhibitor  
Inspection  

Man 

hour  
Energy  

Spare 

parts  
Total 

Present 

worth 

PW 

Cummula-

tive 

1 0.000 0.050 1.000 0.050 0.175 1.275 1.275 1.28 

2 0.000 0.051 1.020 0.051 0.179 1.301 1.075 2.35 

3 0.000 0.052 1.040 0.052 0.182 1.327 0.997 3.35 

4 0.000 0.053 1.061 0.053 0.186 1.353 0.924 4.27 

5 0.000 0.054 1.082 0.054 0.189 1.380 0.857 5.13 

6 0.000 0.055 1.104 0.055 0.193 1.408 0.795 5.92 

7 0.000 0.056 1.126 0.056 0.197 1.436 0.737 6.66 

8 0.000 0.057 1.149 0.057 0.201 1.465 0.683 7.34 

9 0.000 0.059 1.172 0.059 0.205 1.494 0.634 7.98 

10 0.000 0.060 1.195 0.060 0.209 1.524 0.587 8.56 

11 0.000 0.061 1.219 0.061 0.213 1.554 0.545 9.11 

12 0.000 0.062 1.243 0.062 0.218 1.585 0.505 9.61 

13 0.000 0.063 1.268 0.063 0.222 1.617 0.468 10.08 

14 0.000 0.065 1.294 0.065 0.226 1.649 0.434 10.52 

15 0.000 0.066 1.319 0.066 0.231 1.682 0.403 10.92 

16 0.000 0.067 1.346 0.067 0.236 1.716 0.373 11.29 
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17 0.000 0.069 1.373 0.069 0.240 1.750 0.346 11.64 

18 0.000 0.070 1.400 0.070 0.245 1.785 0.321 11.96 

19 0.000 0.071 1.428 0.071 0.250 1.821 0.298 12.26 

20 0.000 0.073 1.457 0.073 0.255 1.857 0.276 12.53 

21 0.000 0.074 1.486 0.074 0.260 1.895 0.256 12.79 

22 0.000 0.076 1.516 0.076 0.265 1.932 0.237 13.03 

23 0.000 0.077 1.546 0.077 0.271 1.971 0.220 13.25 

24 0.000 0.079 1.577 0.079 0.276 2.011 0.204 13.45 

25 0.000 0.080 1.608 0.080 0.281 2.051 0.189 13.64 

Table 20: Operation & Maintenance cost of  22 Cr Duplex Stainless steel for 25 year 

 

9.2.5 COST ELEMENTS – 25 CR DUPLEX STAINLESS STEEL MATERIAL      

(OPTION 5) 

Capital cost 

Elements 

Nok per 

meter/ weld 

100m length 

(NOK) 

Operating cost 

elements Nok 

Pipe Material 30000 3 000 000 Inhibitor cost 0 

Flanges & Fittings   1 200 000 Inspection 50 000 

Fabrication 13000 910 000 Man hour 1 000 000 

Installation 500 50 000 Energy 50 000 

Commisioning 500 50 000 Spares 250 000 

Design & Admin 500 50 000 

 

  

Capital cost   5 260 000 Operating cost 1 350 000 

Table 21: Life cycle Cost elements for 25 Cr Duplex Stainless Steel 

 

To deal with the uncertainties due to inflation 2% with discount rate 10%, Table have been 

prepared below for 25 years.  

 

Operation & Maintenance Cost for 25 CR Duplex stainless steel (MNOK) 

Year 
Corrosion 

Inhibitor  
Inspection  

Man 

hour  
Energy  

Spare 

parts  
Total 

Present 

worth 

PW 

Cummula-

tive 

1 0.000 0.050 1.000 0.050 0.250 1.350 1.350 1.35 

2 0.000 0.051 1.020 0.051 0.255 1.377 1.138 2.49 

3 0.000 0.052 1.040 0.052 0.260 1.405 1.055 3.54 

4 0.000 0.053 1.061 0.053 0.265 1.433 0.979 4.52 
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5 0.000 0.054 1.082 0.054 0.271 1.461 0.907 5.43 

6 0.000 0.055 1.104 0.055 0.276 1.491 0.841 6.27 

7 0.000 0.056 1.126 0.056 0.282 1.520 0.780 7.05 

8 0.000 0.057 1.149 0.057 0.287 1.551 0.723 7.77 

9 0.000 0.059 1.172 0.059 0.293 1.582 0.671 8.44 

10 0.000 0.060 1.195 0.060 0.299 1.613 0.622 9.07 

11 0.000 0.061 1.219 0.061 0.305 1.646 0.577 9.64 

12 0.000 0.062 1.243 0.062 0.311 1.679 0.535 10.18 

13 0.000 0.063 1.268 0.063 0.317 1.712 0.496 10.67 

14 0.000 0.065 1.294 0.065 0.323 1.746 0.460 11.13 

15 0.000 0.066 1.319 0.066 0.330 1.781 0.426 11.56 

16 0.000 0.067 1.346 0.067 0.336 1.817 0.395 11.96 

17 0.000 0.069 1.373 0.069 0.343 1.853 0.367 12.32 

18 0.000 0.070 1.400 0.070 0.350 1.890 0.340 12.66 

19 0.000 0.071 1.428 0.071 0.357 1.928 0.315 12.98 

20 0.000 0.073 1.457 0.073 0.364 1.967 0.292 13.27 

21 0.000 0.074 1.486 0.074 0.371 2.006 0.271 13.54 

22 0.000 0.076 1.516 0.076 0.379 2.046 0.251 13.79 

23 0.000 0.077 1.546 0.077 0.386 2.087 0.233 14.03 

24 0.000 0.079 1.577 0.079 0.394 2.129 0.216 14.24 

25 0.000 0.080 1.608 0.080 0.402 2.171 0.200 14.44 

Table 22: Operation & Maintenance cost of  25 Cr Duplex Stainless steel for 25 year 

 

9.2.6 COST ELEMENTS – TITANIUM  MATERIAL  (OPTION 6) 

 

Capital cost 

Elements 

Nok per 

meter/ weld 

100m length 

(NOK) 

Operating cost 

elements Nok 

Pipe Material 52000 5 200 000 Inhibitor cost 0 

Flanges & Fittings   4 500 000 Inspection 0 

Fabrication 15000 1 050 000 Man hour 1 000 000 

Installation 500 50 000 Energy 50 000 

Commisioning 500 50 000 Spares 800 000 

Design & Admin 500 50 000 

 

  

Capital cost   10 900 000 Operating cost 1 850 000 

Table 23: Life cycle Cost elements for Titanium 
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To deal with the uncertainties due to inflation 2% with discount rate 10%, Table have been 

prepared below for 25 years.  

 

Operation & Maintenance Cost for Titanium (MNOK) 

Year 
Corrosion 

Inhibitor  
Inspection  

Man 

hour  
Energy  

Spare 

parts  
Total 

Present 

worth 

PW 

Cummula-

tive 

1 0.000 0.000 1.000 0.050 0.800 1.850 1.850 1.85 

2 0.000 0.000 1.020 0.051 0.816 1.887 1.560 3.41 

3 0.000 0.000 1.040 0.052 0.832 1.925 1.446 4.86 

4 0.000 0.000 1.061 0.053 0.849 1.963 1.341 6.20 

5 0.000 0.000 1.082 0.054 0.866 2.002 1.243 7.44 

6 0.000 0.000 1.104 0.055 0.883 2.043 1.153 8.59 

7 0.000 0.000 1.126 0.056 0.901 2.083 1.069 9.66 

8 0.000 0.000 1.149 0.057 0.919 2.125 0.991 10.65 

9 0.000 0.000 1.172 0.059 0.937 2.168 0.919 11.57 

10 0.000 0.000 1.195 0.060 0.956 2.211 0.852 12.43 

11 0.000 0.000 1.219 0.061 0.975 2.255 0.790 13.22 

12 0.000 0.000 1.243 0.062 0.995 2.300 0.733 13.95 

13 0.000 0.000 1.268 0.063 1.015 2.346 0.680 14.63 

14 0.000 0.000 1.294 0.065 1.035 2.393 0.630 15.26 

15 0.000 0.000 1.319 0.066 1.056 2.441 0.584 15.84 

16 0.000 0.000 1.346 0.067 1.077 2.490 0.542 16.38 

17 0.000 0.000 1.373 0.069 1.098 2.540 0.502 16.89 

18 0.000 0.000 1.400 0.070 1.120 2.590 0.466 17.35 

19 0.000 0.000 1.428 0.071 1.143 2.642 0.432 17.78 

20 0.000 0.000 1.457 0.073 1.165 2.695 0.401 18.19 

21 0.000 0.000 1.486 0.074 1.189 2.749 0.371 18.56 

22 0.000 0.000 1.516 0.076 1.213 2.804 0.344 18.90 

23 0.000 0.000 1.546 0.077 1.237 2.860 0.319 19.22 

24 0.000 0.000 1.577 0.079 1.262 2.917 0.296 19.52 

25 0.000 0.000 1.608 0.080 1.287 2.976 0.275 19.79 

Table 24: Operation & Maintenance cost Titanium for 25 year 
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Capital cost (MNOK) 

Carbon steel 316 sstl 6MO sstl 22Cr Dup 25Cr Dup Titanium 

1.550 4.385 6.760 4.760 5.260 10.900 

Table 25: Summary of Capital cost for different material selection 

 

 

Operation cost  (MNOK) 

Years 
Carbon 

steel 
316 sstl 6MO sstl 

22Cr 

Dup 

25Cr 

Dup 
Titanium 

1 2.03 1.25 1.45 1.28 1.35 1.85 

5 8.17 5.02 5.83 5.13 5.43 7.44 

10 13.65 8.39 9.74 8.56 9.07 12.43 

15 17.40 10.70 12.42 10.92 11.56 15.84 

20 19.97 12.28 14.25 12.53 13.27 18.19 

25 21.74 13.36 15.51 13.64 14.44 19.79 

Table 26: Summary of Operational cost for different material selection 

 

 

LCC (MNOK) 

Years 
Carbon 

steel 
316 sstl 6MO sstl 

22Cr 

Dup 

25Cr 

Dup 
Titanium 

1 3.58 5.63 8.21 6.04 6.61 12.75 

2 5.29 6.69 9.43 7.11 7.75 14.31 

3 6.88 7.66 10.57 8.11 8.80 15.76 

4 8.36 8.57 11.62 9.03 9.78 17.10 

5 9.72 9.41 12.59 9.89 10.69 18.34 

6 10.99 10.19 13.49 10.68 11.53 19.49 

7 12.16 10.91 14.33 11.42 12.31 20.56 

8 13.25 11.58 15.11 12.10 13.03 21.55 

9 14.26 12.20 15.83 12.74 13.70 22.47 

10 15.20 12.77 16.50 13.32 14.33 23.33 

11 16.07 13.31 17.12 13.87 14.90 24.12 

12 16.87 13.80 17.69 14.37 15.44 24.85 

13 17.62 14.26 18.23 14.84 15.93 25.53 

14 18.31 14.69 18.72 15.28 16.39 26.16 

15 18.95 15.08 19.18 15.68 16.82 26.74 
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16 19.55 15.45 19.60 16.05 17.22 27.28 

17 20.10 15.79 20.00 16.40 17.58 27.79 

18 20.61 16.10 20.36 16.72 17.92 28.25 

19 21.08 16.39 20.70 17.02 18.24 28.68 

20 21.52 16.66 21.01 17.29 18.53 29.09 

21 21.93 16.91 21.30 17.55 18.80 29.46 

22 22.31 17.15 21.57 17.79 19.05 29.80 

23 22.66 17.36 21.82 18.01 19.29 30.12 

24 22.99 17.56 22.06 18.21 19.50 30.42 

25 23.29 17.75 22.27 18.40 19.70 30.69 

Table 27: Summary of Life cycle cost for different material selection 

 

 

 

Graph 3: Graphical representation for comparison of LCC of Various materials 
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The graph above shows that carbon steel is considered to economical for first five years. After 

five years due to high operating cost the life cycle cost start increasing crosses 6MO stainless 

steel cost after 20 years. 316 stainless steel is lowest but because of high tendency towards 

stress cracking corrosion in flowlines it is not recommended. Titanium and 6Mo stainless 

steel and carbon steel has high life cycle cost for 25 years service life. With moderate life 

cycle cost and good corrosion properties 25% Cr Duplex stainless steel is considered to be 

best option for flowlines. 

 

9.2.7 PW using Sensitivity analysis 

Capital cost and operating cost year 1 from the table above is considered for calculating 

present worth using the equation mentioned below. 

PW = -P  + { t( P - S )}(P / A..i%. n) - (1- t) (X ) (P / A..i%. n) +  S(P / F.i%. n)  

                        n  

         

Option 1: Carbon steel with inhibitor 

Tax = 48% 

Discount rate = 10% 

Salvage value = 0 

Using the capital recovery function (P/A) mentioned in chapter 8.2, the Value of Capital 

factor (P/A) is calculated as 

Year (P/A. i%. n) 

5 3.792 

10 6.153 

15 7.604 

20 8.525 

25 9.09 

Table 28: Capital recovery function (P/A) 

 

By substituting the value of capital cost (P) as 1.55 Mnok (From table 25 ) and Operating cost 

(X) as 2.03 Mnok (From table 26) in the given equation.  

 

Therefore, 

PW 5 Y =  - 1.55 + ((0.48(1.55-0)/5))(3.792) – (1-0.48)(2.03)(3.792) + 0 
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 =  -4.99 MNOK 

PW10 Y = -7.59 MNOK 

PW15 Y = -9.21 MNOK 

PW20 Y = -10.24 MNOK 

PW 25Y = -10.88 MNOK 

 

Annualized cost: 

A = (PW) (A/P. i%. n) 

The A/P factor for 10% interest rate is calculated for 5, 10, 15, 20 & 25 years are given in the 

table below. 

Year (A/P. i%. n) 

5 0.2637 

10 0.1625 

15 0.1315 

20 0.1173 

25 0.1102 

Table 29: The capital recovery factor (A/P) 

  A5 y = -4.99 (0.2637) 

        = -1.32 MNOK 

 A10y = -1.23 MNOK 

 A 15y = -1.21 MNOK 

 A20 y = -1.20 MNOK 

 A25 y = -1.20 MNOK 

 

Similarly PW & A for other options are calculated. The values of PW and A for all options 

are summarized in table given below: 

 

Present worth (PW) (MNOK) 

Year 

Carbon 

steel 
316 sstl 6MO sstl 22Cr Dup 25Cr Dup Titanium 

5 4,99 5,25 7,16 5,54 6,01 10,58 

10 7,59 7,09 9,40 7,43 8,03 13,60 

15 9,21 8,26 10,85 8,64 9,32 15,56 

20 10,24 9,02 11,80 9,44 10,17 16,87 

25 10,88 9,52 12,43 9,96 10,72 17,74 

Table 30: Summary of Present worth for various options 



76 

 

Similarly Annualized cost for various options are calculated and summarized in table given 

below: 

 

Table : Annualized cost (A) (MNOK) 

Year 

Carbon 

steel 
316 sstl 6MO sstl 22Cr Dup 25Cr Dup Titanium 

5 1,32 1,38 1,89 1,46 1,58 2,79 

10 1,23 1,15 1,53 1,21 1,30 2,21 

15 1,21 1,09 1,43 1,14 1,23 2,05 

20 1,20 1,06 1,38 1,11 1,19 1,98 

25 1,20 1,05 1,37 1,10 1,18 1,96 

Table 31: Summary of Annualized cost for various options 

 

 

Graph 4: Graphical representation for comparison of PW of Various materials 
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Graph 5:  Graphical representation for comparison of Annualized cost of Various materials 
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Graph 6: Graphical representation for comparison of Life cycli cost between carbon steel & 25 Cr Duplex Stainless Steel 

 

 

 

Graph 7: Carbon steel vs 22Cr Duplex Stainless Steel 

                   (Source- L.M.Smith, M.Celant. Mac, 1995) 
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9.3 CARBON STEEL VS CORROSION RESISTANT ALLOYS WRT RELIABILITY 

 

Over a period of years, in-line instrumentation has evolved for the assessing the real time 

reliability measurements of flow lines that can provide information to the asset management 

personnel with the paraphernalia to meet the maintenance needs of the flow line system. One of 

such characteristic is intelligent pig or smart pig that can quantify flow line characteristics and 

integrity using parameters such as burst pressure. Such an assessment of the pipeline is done using 

the following work process. 

 

Flowchart 2: Calculating the probability of failure 

 (Source-Bea, et.al., 1998) 

However, since corrosivity property in a pipeline is a function of time and the probability of 

failure is dependent on the time or in other words the amount of pipe corroded in a measured 

amount of time, the thickness of the flow line lost is dependent on the rate of corrosion. 

Therefore the performance of the flow line has to be evaluated for the elastic and plastic 

properties by characterizing wall thickness, corrosion rate through the calculation of internal 

pressure or in other words burst pressure. The probabilistic or deterministic model can then be 

used to calculate the probability of failure and therefore the reliability of the flow line. The 

following figure shows the probabilistic model of calculating the probability of failure. 
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Figure 12: Probabilistic model of calculating the probability of failure  

(Source-Bea, et.al., 1998) 

 

The reliability assessment and management relies on the last step (calculation of probability 

of failure) for quantifying the status of the flow line and the necessary actions to be put forth. 

Such calculation take into account both the deterministic as well as probabilistic models as 

stated by (Bea, et.al., 1998).  For the probabilistic model, reliability measure or in other words 

the safety index (β) can be calculated using  

 

 

 

Where, 

β = Safety Index 

R =  Median Capacity 

S = Median Demand 

R/S = median or central Factor of Safety  

σlnR = Standard Deviation of the logarithms of the capacity (R)  

σlnS = Standard Deviation of the logarithms of the demand (S)  

The probability of failure for the  standard Cumulative Normal Distribution probability of the 

variables is given by  
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Φ(β) = Cumulative Normal Distribution probability of the variables 

Since the research involves in the selection of material for the flow line by excluding 

the possibility of using piggable operations, the corrosion or loss of pipe wall thickness as a 

result of corrosion must be calculated. For such an effort, the research adapted the equation 

suggested by Bea, et.al., (1998) which is based on the assumption that the flow line is subject 

to internal corrosion only as stated below.  

Tci = αi * Vi * (Ls-Lp) 

 

Where, 

Tci =loss of wall thickness due to internal corrosion 

αi =effectiveness of the inhibitor or protection 

Vi=average corrosion rate  

Ls=average service life of the pipeline  

Lp = life of the initial protection provided to the pipeline 

The loss of pipe wall thickness is analyzed for three scenarios 

 

The following are the conditions or cases under which the corrosion effect or loss of pipe wall 

thickness is evaluated for: 

CASE Quantity of Wall Thickness Loss 

A 

Loss of internal pipe wall thickness = 30% of 

the wall thickness at the beginning of 

operation 

 

B 

Loss of internal pipe wall thickness = 60% of 

the wall thickness at the beginning of 

operation 

 

C 

Loss of internal pipe wall thickness = 90% of 

the wall thickness at the beginning of 

operation 

 

Table 32: Conditions for corrosion effect or loss of pipe wall thickness 
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The efficiency of the inhibitor to as an important source for the mitigation of internal 

corrosion or ensure that there is no loss of flow line wall thickness are distributed 

qualitatively and represented quantitatively as described by Bea, et.al., (OTC, 1998). Even 

though, the flow lines are considered to be designed for operation for 25 years life, to 

demonstrate the operational service life effectiveness the researcher adapted the quantitative 

mapping of qualitative service life as shown in the table below. 

Qualitative Inhibitor Efficiency Quantitative Inhibitor Efficiency 

Very Low 10 

Low 8 

Moderate 5 

High 2 

Very High 1 

Table 33: Qualitative and Quantitative Inhibitor efficiency 

 

Service Life Description 

Average service life of the pipeline 

Or 

Life of the initial protection provided to 

the pipeline 

 

Very Short 1 

Short 5 

Moderate 10 

Long 15 

Very Long 25 

Table 34: Service life description 

 

The NORSOK standard M-001 recommends the use of corrosion rate of the order 0.1mm/yr. 

for design purposes when there is no field or test data available, the researcher instead put 

forth a practical approach based on the calculated corrosion allowances for the material used 

for flowlines in different facilities. The corrosion rate for a service design life of 25 years is 

therefore calculated as shown in the table below for different materials. 
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Material Service Life 
Corrosion 

Allowance (mm) 

Corrosion 

Rate 

(mm/yr.) 

M-001 

Recommended 

Corrosion 

Rate 

(mm/yr.) 

Carbon Steel 25 Years 3 0.12 0.1 

Stainless Steel 25 Years 1 0.04 0.1 

6MO 25 Years 1 0.04 0.1 

Duplex 25 Years 1 0.04 0.1 

Super Duplex 25 Years 1 0.04 0.1 

Titanium 25 Years 0 0.003 0.1 

Table 35: Corrosion rate and allowance with respect to material 

 

9.3.1 LOSS OF INTERNAL PIPE WALL THICKNESS FOR CARBON 

STEEL 

The calculation results for the loss of internal pipe wall thickness for Carbon Steel is 

presented below for the 3 cases discussed earlier. 

Case-A: 

Loss of internal pipe wall thickness = 30% of the wall thickness at the beginning of operation 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Carbon Steel 

Corrosion Rate = 0.12 mm/yr. 

Corrosion 

Rate 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss Of 

Wall 

Thickness 

30% Of 

Actual 

Wall 

Thickness 

Percentage 

Loss 

0,12 10 25 0 30 7,62 393,70 % 

0,12 8 25 0 24 7,62 314,96 % 

0,12 5 25 0 15 7,62 196,85 % 

0,12 2 25 0 6 7,62 78,74 % 
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0,12 1 25 0 3 7,62 39,37 % 

0,12 10 25 5 24 7,62 314,96 % 

0,12 8 25 5 19,2 7,62 251,97 % 

0,12 5 25 5 12 7,62 157,48 % 

0,12 2 25 5 4,8 7,62 62,99 % 

0,12 1 25 5 2,4 7,62 31,50 % 

0,12 10 25 10 18 7,62 236,22 % 

0,12 8 25 10 14,4 7,62 188,98 % 

0,12 5 25 10 9 7,62 118,11 % 

0,12 2 25 10 3,6 7,62 47,24 % 

0,12 1 25 10 1,8 7,62 23,62 % 

0,12 10 25 15 12 7,62 157,48 % 

0,12 8 25 15 9,6 7,62 125,98 % 

0,12 5 25 15 6 7,62 78,74 % 

0,12 2 25 15 2,4 7,62 31,50 % 

0,12 1 25 15 1,2 7,62 15,75 % 

0,12 10 25 20 6 7,62 78,74 % 

0,12 8 25 20 4,8 7,62 62,99 % 

0,12 5 25 20 3 7,62 39,37 % 

0,12 2 25 20 1,2 7,62 15,75 % 

0,12 1 25 20 0,6 7,62 7,87 % 

Table 36: Loss of wall thickness Carbon steel Case A 

Case-B: 

Loss of internal pipe wall thickness = 60% of the wall thickness at the beginning of operation 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Carbon Steel 

Corrosion Rate = 0.12 mm/yr. 
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Corrosion 

Rate 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of 

The Initial 

Protection 

Provided 

To The 

Pipeline 

Loss Of 

Wall 

Thickness 

60% Of 

Actual 

Wall 

Thickness 

Percentage 

Loss 

0,12 10 25 0 30 15,24 196,85 % 

0,12 8 25 0 24 15,24 157,48 % 

0,12 5 25 0 15 15,24 98,43 % 

0,12 2 25 0 6 15,24 39,37 % 

0,12 1 25 0 3 15,24 19,69 % 

0,12 10 25 5 24 15,24 157,48 % 

0,12 8 25 5 19,2 15,24 125,98 % 

0,12 5 25 5 12 15,24 78,74 % 

0,12 2 25 5 4,8 15,24 31,50 % 

0,12 1 25 5 2,4 15,24 15,75 % 

0,12 10 25 10 18 15,24 118,11 % 

0,12 8 25 10 14,4 15,24 94,49 % 

0,12 5 25 10 9 15,24 59,06 % 

0,12 2 25 10 3,6 15,24 23,62 % 

0,12 1 25 10 1,8 15,24 11,81 % 

0,12 10 25 15 12 15,24 78,74 % 

0,12 8 25 15 9,6 15,24 62,99 % 

0,12 5 25 15 6 15,24 39,37 % 

0,12 2 25 15 2,4 15,24 15,75 % 

0,12 1 25 15 1,2 15,24 7,87 % 

0,12 10 25 20 6 15,24 39,37 % 

0,12 8 25 20 4,8 15,24 31,50 % 

0,12 5 25 20 3 15,24 19,69 % 

0,12 2 25 20 1,2 15,24 7,87 % 

0,12 1 25 20 0,6 15,24 3,94 % 

Table 37: Loss of wall thickness Carbon steel Case B 
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Case-C: 

Loss of internal pipe wall thickness = 90% of the wall thickness at the beginning of operation 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Carbon Steel 

Corrosion Rate = 0.12 mm/yr. 

Corrosion 

Rate 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of 

The Initial 

Protection 

Provided 

To The 

Pipeline 

Loss Of 

Wall 

Thickness 

90% Of 

Actual 

Wall 

Thickness 

Percentage 

Loss 

0,12 10 25 0 30 22,86 131,23 % 

0,12 8 25 0 24 22,86 104,99 % 

0,12 5 25 0 15 22,86 65,62 % 

0,12 2 25 0 6 22,86 26,25 % 

0,12 1 25 0 3 22,86 13,12 % 

0,12 10 25 5 24 22,86 104,99 % 

0,12 8 25 5 19,2 22,86 83,99 % 

0,12 5 25 5 12 22,86 52,49 % 

0,12 2 25 5 4,8 22,86 21,00 % 

0,12 1 25 5 2,4 22,86 10,50 % 

0,12 10 25 10 18 22,86 78,74 % 

0,12 8 25 10 14,4 22,86 62,99 % 

0,12 5 25 10 9 22,86 39,37 % 

0,12 2 25 10 3,6 22,86 15,75 % 

0,12 1 25 10 1,8 22,86 7,87 % 

0,12 10 25 15 12 22,86 52,49 % 

0,12 8 25 15 9,6 22,86 41,99 % 

0,12 5 25 15 6 22,86 26,25 % 

0,12 2 25 15 2,4 22,86 10,50 % 
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0,12 1 25 15 1,2 22,86 5,25 % 

0,12 10 25 20 6 22,86 26,25 % 

0,12 8 25 20 4,8 22,86 21,00 % 

0,12 5 25 20 3 22,86 13,12 % 

0,12 2 25 20 1,2 22,86 5,25 % 

0,12 1 25 20 0,6 22,86 2,62 % 

Table 38: Loss of wall thickness Carbon steel Case C 

 

9.3.2 LOSS OF INTERNAL PIPE WALL THICKNESS FOR 316 / 6MO/ 

DUPLEX/ SUPER DUPLEX STAINLESS STEEL 

The calculation results for the loss of internal pipe wall thickness for corrosion resistant alloys 

Stainless Steel, Duplex, Super Duplex is presented below for the 3 cases discussed earlier. 

Case-A: 

Loss of internal pipe wall thickness = 30% of the wall thickness at the beginning of operation 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Stainless Steel/Duplex/Super Duplex 

Corrosion Rate = 0.04 mm/yr. 

Corrosion 

Rate 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of 

The Initial 

Protection 

Provided 

To The 

Pipeline 

Loss Of 

Wall 

Thickness 

30% Of 

Actual 

Wall 

Thickness 

Percentage 

Loss 

0,04 10 25 0 10 7,62 131,23 % 

0,04 8 25 0 8 7,62 104,99 % 

0,04 5 25 0 5 7,62 65,62 % 

0,04 2 25 0 2 7,62 26,25 % 

0,04 1 25 0 1 7,62 13,12 % 

0,04 10 25 5 8 7,62 104,99 % 

0,04 8 25 5 6,4 7,62 83,99 % 

0,04 5 25 5 4 7,62 52,49 % 
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0,04 2 25 5 1,6 7,62 21,00 % 

0,04 1 25 5 0,8 7,62 10,50 % 

0,04 10 25 10 6 7,62 78,74 % 

0,04 8 25 10 4,8 7,62 62,99 % 

0,04 5 25 10 3 7,62 39,37 % 

0,04 2 25 10 1,2 7,62 15,75 % 

0,04 1 25 10 0,6 7,62 7,87 % 

0,04 10 25 15 4 7,62 52,49 % 

0,04 8 25 15 3,2 7,62 41,99 % 

0,04 5 25 15 2 7,62 26,25 % 

0,04 2 25 15 0,8 7,62 10,50 % 

0,04 1 25 15 0,4 7,62 5,25 % 

0,04 10 25 20 2 7,62 26,25 % 

0,04 8 25 20 1,6 7,62 21,00 % 

0,04 5 25 20 1 7,62 13,12 % 

0,04 2 25 20 0,4 7,62 5,25 % 

0,04 1 25 20 0,2 7,62 2,62 % 

Table 39: Loss of wall thickness 316/Duplex/Super Duplex stainless steel Case A 

Case-B: 

Loss of internal pipe wall thickness = 60% of the wall thickness at the beginning of operation 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Stainless Steel/Duplex/Super Duplex 

Corrosion Rate = 0.04 mm/yr. 

Corrosion 

Rate 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of 

The Initial 

Protection 

Provided 

To The 

Pipeline 

Loss Of 

Wall 

Thickness 

60% Of 

Actual 

Wall 

Thickness 

Percentage 

Loss 

0,04 10 25 0 10 15,24 65,62 % 

0,04 8 25 0 8 15,24 52,49 % 
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0,04 5 25 0 5 15,24 32,81 % 

0,04 2 25 0 2 15,24 13,12 % 

0,04 1 25 0 1 15,24 6,56 % 

0,04 10 25 5 8 15,24 52,49 % 

0,04 8 25 5 6,4 15,24 41,99 % 

0,04 5 25 5 4 15,24 26,25 % 

0,04 2 25 5 1,6 15,24 10,50 % 

0,04 1 25 5 0,8 15,24 5,25 % 

0,04 10 25 10 6 15,24 39,37 % 

0,04 8 25 10 4,8 15,24 31,50 % 

0,04 5 25 10 3 15,24 19,69 % 

0,04 2 25 10 1,2 15,24 7,87 % 

0,04 1 25 10 0,6 15,24 3,94 % 

0,04 10 25 15 4 15,24 26,25 % 

0,04 8 25 15 3,2 15,24 21,00 % 

0,04 5 25 15 2 15,24 13,12 % 

0,04 2 25 15 0,8 15,24 5,25 % 

0,04 1 25 15 0,4 15,24 2,62 % 

0,04 10 25 20 2 15,24 13,12 % 

0,04 8 25 20 1,6 15,24 10,50 % 

0,04 5 25 20 1 15,24 6,56 % 

0,04 2 25 20 0,4 15,24 2,62 % 

0,04 1 25 20 0,2 15,24 1,31 % 

Table 40: Loss of wall thickness 316/Duplex/Super Duplex stainless steel Case B 

 

Case-C: 

Loss of internal pipe wall thickness = 90% of the wall thickness at the beginning of operation 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Stainless Steel/Duplex/Super Duplex 

Corrosion Rate = 0.04 mm/yr. 

 



90 

 

Corrosion 

Rate 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of 

The Initial 

Protection 

Provided 

To The 

Pipeline 

Loss Of 

Wall 

Thickness 

90% Of 

Actual 

Wall 

Thickness 

Percentage 

Loss 

0,04 10 25 0 10 22,86 43,74 % 

0,04 8 25 0 8 22,86 35,00 % 

0,04 5 25 0 5 22,86 21,87 % 

0,04 2 25 0 2 22,86 8,75 % 

0,04 1 25 0 1 22,86 4,37 % 

0,04 10 25 5 8 22,86 35,00 % 

0,04 8 25 5 6,4 22,86 28,00 % 

0,04 5 25 5 4 22,86 17,50 % 

0,04 2 25 5 1,6 22,86 7,00 % 

0,04 1 25 5 0,8 22,86 3,50 % 

0,04 10 25 10 6 22,86 26,25 % 

0,04 8 25 10 4,8 22,86 21,00 % 

0,04 5 25 10 3 22,86 13,12 % 

0,04 2 25 10 1,2 22,86 5,25 % 

0,04 1 25 10 0,6 22,86 2,62 % 

0,04 10 25 15 4 22,86 17,50 % 

0,04 8 25 15 3,2 22,86 14,00 % 

0,04 5 25 15 2 22,86 8,75 % 

0,04 2 25 15 0,8 22,86 3,50 % 

0,04 1 25 15 0,4 22,86 1,75 % 

0,04 10 25 20 2 22,86 8,75 % 

0,04 8 25 20 1,6 22,86 7,00 % 

0,04 5 25 20 1 22,86 4,37 % 

0,04 2 25 20 0,4 22,86 1,75 % 

0,04 1 25 20 0,2 22,86 0,87 % 

Table 41: Loss of wall thickness 316/Duplex/Super Duplex stainless steel Case C 
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9.3.3 LOSS OF INTERNAL PIPE WALL THICKNESS FOR TITANIUM 

The calculation results for the loss of internal pipe wall thickness for corrosion resistant alloy 

titanium is presented below for the 3 cases discussed earlier. 

Case-A: 

Loss of internal pipe wall thickness = 30% of the wall thickness at the beginning of operation 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Titanium 

Corrosion Rate = 0.003 mm/yr. 

Corrosion 

Rate 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of 

The Initial 

Protection 

Provided 

To The 

Pipeline 

Loss Of 

Wall 

Thickness 

30% Of 

Actual 

Wall 

Thickness 

Percentage 

Loss 

0,003 10 25 0 0,75 7,62 9,84 % 

0,003 8 25 0 0,6 7,62 7,87 % 

0,003 5 25 0 0,375 7,62 4,92 % 

0,003 2 25 0 0,15 7,62 1,97 % 

0,003 1 25 0 0,075 7,62 0,98 % 

0,003 10 25 5 0,6 7,62 7,87 % 

0,003 8 25 5 0,48 7,62 6,30 % 

0,003 5 25 5 0,3 7,62 3,94 % 

0,003 2 25 5 0,12 7,62 1,57 % 

0,003 1 25 5 0,06 7,62 0,79 % 

0,003 10 25 10 0,45 7,62 5,91 % 

0,003 8 25 10 0,36 7,62 4,72 % 

0,003 5 25 10 0,225 7,62 2,95 % 

0,003 2 25 10 0,09 7,62 1,18 % 

0,003 1 25 10 0,045 7,62 0,59 % 

0,003 10 25 15 0,3 7,62 3,94 % 

0,003 8 25 15 0,24 7,62 3,15 % 
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0,003 5 25 15 0,15 7,62 1,97 % 

0,003 2 25 15 0,06 7,62 0,79 % 

0,003 1 25 15 0,03 7,62 0,39 % 

0,003 10 25 20 0,15 7,62 1,97 % 

0,003 8 25 20 0,12 7,62 1,57 % 

0,003 5 25 20 0,075 7,62 0,98 % 

0,003 2 25 20 0,03 7,62 0,39 % 

0,003 1 25 20 0,015 7,62 0,20 % 

Table 42: Loss of wall thickness  Titanium Case A 

Case-B: 

Loss of internal pipe wall thickness = 60% of the wall thickness at the beginning of operation 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Titanium 

Corrosion Rate = 0.003 mm/yr. 

Corrosion 

Rate 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of 

The Initial 

Protection 

Provided 

To The 

Pipeline 

Loss Of 

Wall 

Thickness 

60% Of 

Actual 

Wall 

Thickness 

Percentage 

Loss 

0,003 10 25 0 0,75 15,24 4,92 % 

0,003 8 25 0 0,6 15,24 3,94 % 

0,003 5 25 0 0,375 15,24 2,46 % 

0,003 2 25 0 0,15 15,24 0,98 % 

0,003 1 25 0 0,075 15,24 0,49 % 

0,003 10 25 5 0,6 15,24 3,94 % 

0,003 8 25 5 0,48 15,24 3,15 % 

0,003 5 25 5 0,3 15,24 1,97 % 

0,003 2 25 5 0,12 15,24 0,79 % 

0,003 1 25 5 0,06 15,24 0,39 % 

0,003 10 25 10 0,45 15,24 2,95 % 
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0,003 8 25 10 0,36 15,24 2,36 % 

0,003 5 25 10 0,225 15,24 1,48 % 

0,003 2 25 10 0,09 15,24 0,59 % 

0,003 1 25 10 0,045 15,24 0,30 % 

0,003 10 25 15 0,3 15,24 1,97 % 

0,003 8 25 15 0,24 15,24 1,57 % 

0,003 5 25 15 0,15 15,24 0,98 % 

0,003 2 25 15 0,06 15,24 0,39 % 

0,003 1 25 15 0,03 15,24 0,20 % 

0,003 10 25 20 0,15 15,24 0,98 % 

0,003 8 25 20 0,12 15,24 0,79 % 

0,003 5 25 20 0,075 15,24 0,49 % 

0,003 2 25 20 0,03 15,24 0,20 % 

0,003 1 25 20 0,015 15,24 0,10 % 

Table 43: Loss of wall thickness Titanium Case B 

 

Case-C: 

Loss of internal pipe wall thickness = 90% of the wall thickness at the beginning of operation 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Titanium 

Corrosion Rate = 0.003 mm/yr. 

Corrosion 

Rate 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of 

The Initial 

Protection 

Provided 

To The 

Pipeline 

Loss Of 

Wall 

Thickness 

90% Of 

Actual 

Wall 

Thickness 

Percentage 

Loss 

0,003 10 25 0 0,75 22,86 3,28 % 

0,003 8 25 0 0,6 22,86 2,62 % 

0,003 5 25 0 0,375 22,86 1,64 % 

0,003 2 25 0 0,15 22,86 0,66 % 
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0,003 1 25 0 0,075 22,86 0,33 % 

0,003 10 25 5 0,6 22,86 2,62 % 

0,003 8 25 5 0,48 22,86 2,10 % 

0,003 5 25 5 0,3 22,86 1,31 % 

0,003 2 25 5 0,12 22,86 0,52 % 

0,003 1 25 5 0,06 22,86 0,26 % 

0,003 10 25 10 0,45 22,86 1,97 % 

0,003 8 25 10 0,36 22,86 1,57 % 

0,003 5 25 10 0,225 22,86 0,98 % 

0,003 2 25 10 0,09 22,86 0,39 % 

0,003 1 25 10 0,045 22,86 0,20 % 

0,003 10 25 15 0,3 22,86 1,31 % 

0,003 8 25 15 0,24 22,86 1,05 % 

0,003 5 25 15 0,15 22,86 0,66 % 

0,003 2 25 15 0,06 22,86 0,26 % 

0,003 1 25 15 0,03 22,86 0,13 % 

0,003 10 25 20 0,15 22,86 0,66 % 

0,003 8 25 20 0,12 22,86 0,52 % 

0,003 5 25 20 0,075 22,86 0,33 % 

0,003 2 25 20 0,03 22,86 0,13 % 

0,003 1 25 20 0,015 22,86 0,07 % 

Table 44: Loss of wall thickness Titanium Case C 

 

In order to calculate the safety index and thereafter the probability of failure of the material 

exposed to corrosion, both deterministic as well as probabilistic has been adapted in this 

research. The following governing equations from the work of Bea (2000 ) have been adapted 

in this research for calculating the probabilistic burst pressure. For probabilistic burst pressure 

calculations the RAM pipe equation by Bea and Xu (1999) has been adapted. 

 

Where, 

Pb = Burst Pressure 

SMTS= Specified Minimum Tensile Strength 
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t = wall thickness 

R = Radius 

 

Where, 

Pbd = Burst Pressure of Corroded Pipe 

Tnom = Noninal Pipe Wall Thickness 

SMYS = Specified Minimum Yield Strength of the Pipeline Material 

SCF = Stress Concentration factor = 1 + 2*(d/R)^0.5 

R = Radius of the Pipe 

The following table presents the minimum yield strength and minimum tensile strength of the 

materials considered in this research for evaluation. 

Material 

Specified Minimum Yield 

Strength of the Pipeline 

Material (SMYS) 

(Psi) 

Specified Minimum Tensile 

Strength (SMTS) 

(Psi) 

Carbon Steel (Gr.B) 42000 52000 

Stainless Steel (Gr.316) 29732 74694 

6MO( UNS N08367) 55000 107000 

Duplex (UNS S31803) 65000 95000 

Super Duplex(UNS S33750) 80000 116000 

Titanium (UNS R50250) 25000 35000 

Table 45: Shows minimum yield strength and minimum tensile strength of the materials 

 

9.3.4 PROBABILITY OF FAILURE FOR CARBON STEEL 

The calculation results for the probability of failure for carbon steel material underusing the 

deterministic and probabilistic models is presented below. 
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Inhibitor 

Efficiency 

Average 

service 

life of the 

pipeline 

Life of the 

initial 

protection 

provided to 

the pipeline 

Specified 

Minimum 

Yield 

Strength 

(SMYS) 

(KPSI) 

Depth Of 

Corrosion 

Stress 

Concentration 

Factor 

Probabilistic 

Burst Pressure 

Corroded 

(PBD)  (KPsi) 

Specified 

Minimum 

Tensile 

Strength of 

pipeline 

material 

(SMTS) (KPsi) 

Deterministic 

Burst 

Pressure 

(PB) (KPsi) 

Standard 

Variance 

 Safety 

Index 

(β ) 

Probability 

of Failure 

10 25 0 42,00 30 1,86 8,37 52 8,16 0,48 0,05 0,48 

8 25 0 42,00 24 1,77 8,80 52 8,16 0,48 0,16 0,44 

5 25 0 42,00 15 1,61 9,69 52 8,16 0,48 0,36 0,36 

2 25 0 42,00 6 1,38 11,25 52 8,16 0,48 0,67 0,25 

1 25 0 42,00 3 1,27 12,25 52 8,16 0,48 0,84 0,20 

10 25 5 42,00 24 1,77 8,80 52 8,16 0,48 0,16 0,44 

8 25 5 42,00 19,2 1,69 9,23 52 8,16 0,48 0,26 0,40 

5 25 5 42,00 12 1,54 10,09 52 8,16 0,48 0,44 0,33 

2 25 5 42,00 4,8 1,34 11,59 52 8,16 0,48 0,73 0,23 

1 25 5 42,00 2,4 1,24 12,53 52 8,16 0,48 0,89 0,19 

10 25 10 42,00 18 1,67 9,35 52 8,16 0,48 0,28 0,39 

8 25 10 42,00 14,4 1,60 9,76 52 8,16 0,48 0,37 0,36 

5 25 10 42,00 9 1,47 10,59 52 8,16 0,48 0,54 0,29 

2 25 10 42,00 3,6 1,30 12,00 52 8,16 0,48 0,80 0,21 

1 25 10 42,00 1,8 1,21 12,87 52 8,16 0,48 0,94 0,17 
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10 25 15 42,00 12 1,54 10,09 52 8,16 0,48 0,44 0,33 

8 25 15 42,00 9,6 1,49 10,48 52 8,16 0,48 0,52 0,30 

5 25 15 42,00 6 1,38 11,25 52 8,16 0,48 0,67 0,25 

2 25 15 42,00 2,4 1,24 12,53 52 8,16 0,48 0,89 0,19 

1 25 15 42,00 1,2 1,17 13,29 52 8,16 0,48 1,01 0,16 

10 25 20 42,00 6 1,38 11,25 52 8,16 0,48 0,67 0,25 

8 25 20 42,00 4,8 1,34 11,59 52 8,16 0,48 0,73 0,23 

5 25 20 42,00 3 1,27 12,25 52 8,16 0,48 0,84 0,20 

2 25 20 42,00 1,2 1,17 13,29 52 8,16 0,48 1,01 0,16 

1 25 20 42,00 0,6 1,12 13,89 52 8,16 0,48 1,10 0,14 

Table 46: Showing probability of failure for carbon steel material
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Case-A: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

30% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Carbon Steel 

Corrosion Rate = 0.12 mm/yr. 

 

Inhibitor 

Efficiency 

Average 

Service Life 

Of The 

Pipeline 

Life Of The 

Initial Protection 

Provided To The 

Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall 

Thickness Loss 

(%) 

Probability 

of Failure 

2 25 0 6 23,6 % 0,25 

1 25 0 3 11,8 % 0,20 

2 25 5 4,8 18,9 % 0,23 

1 25 5 2,4 9,4 % 0,19 

2 25 10 3,6 14,2 % 0,21 

1 25 10 1,8 7,1 % 0,17 

5 25 15 6 23,6 % 0,25 

2 25 15 2,4 9,4 % 0,19 

1 25 15 1,2 4,7 % 0,16 

10 25 20 6 23,6 % 0,25 

8 25 20 4,8 18,9 % 0,23 

5 25 20 3 11,8 % 0,20 

2 25 20 1,2 4,7 % 0,16 

1 25 20 0,6 2,4 % 0,14 

Table 47: Carbon steel case A - Shows the correlation between the efficiency of inhibitor required and the life of initial 

protection required 

Case-B: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than  

60% loss of wall thickness of the pipe. 
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Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Carbon Steel 

Corrosion Rate = 0.12 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall 

Thickness 

Loss (%) 

Probability of 

Failure 

5 25 0 15 59,1 % 0,36 

2 25 0 6 23,6 % 0,25 

1 25 0 3 11,8 % 0,20 

5 25 5 12 47,2 % 0,33 

2 25 5 4,8 18,9 % 0,23 

1 25 5 2,4 9,4 % 0,19 

8 25 10 14,4 56,7 % 0,36 

5 25 10 9 35,4 % 0,29 

2 25 10 3,6 14,2 % 0,21 

1 25 10 1,8 7,1 % 0,17 

10 25 15 12 47,2 % 0,33 

8 25 15 9,6 37,8 % 0,30 

5 25 15 6 23,6 % 0,25 

2 25 15 2,4 9,4 % 0,19 

1 25 15 1,2 4,7 % 0,16 

10 25 20 6 23,6 % 0,25 

8 25 20 4,8 18,9 % 0,23 

5 25 20 3 11,8 % 0,20 

2 25 20 1,2 4,7 % 0,16 

1 25 20 0,6 2,4 % 0,14 

Table 48: Carbon steel Case B - Shows the correlation between the efficiency of inhibitor required and the life of 

initial protection required 
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Case-C: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

90% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Carbon Steel 

Corrosion Rate = 0.12 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall 

Thickness 

Loss (%) 

Probability of 

Failure 

5 25 0 15 59,1 % 0,36 

2 25 0 6 23,6 % 0,25 

1 25 0 3 11,8 % 0,20 

8 25 5 19,2 75,6 % 0,40 

5 25 5 12 47,2 % 0,33 

2 25 5 4,8 18,9 % 0,23 

1 25 5 2,4 9,4 % 0,19 

10 25 10 18 70,9 % 0,39 

8 25 10 14,4 56,7 % 0,36 

5 25 10 9 35,4 % 0,29 

2 25 10 3,6 14,2 % 0,21 

1 25 10 1,8 7,1 % 0,17 

10 25 15 12 47,2 % 0,33 

8 25 15 9,6 37,8 % 0,30 

5 25 15 6 23,6 % 0,25 

2 25 15 2,4 9,4 % 0,19 

1 25 15 1,2 4,7 % 0,16 

10 25 20 6 23,6 % 0,25 

8 25 20 4,8 18,9 % 0,23 
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5 25 20 3 11,8 % 0,20 

2 25 20 1,2 4,7 % 0,16 

1 25 20 0,6 2,4 % 0,14 

Table 49: Carbon steel Case C - Shows the correlation between the efficiency of inhibitor required and the life of 

initial protection required 
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9.3.5 PROBABILITY OF FAILURE FOR 316 STAINLESS STEEL 

The calculation results for the probability of failure for Stainless Steel material underusing the deterministic and probabilistic models is presented 

below. 

Inhibitor 

Efficiency 

Average 

service 

life of the 

pipeline 

Life of the 

initial 

protection 

provided to 

the pipeline 

Specified 

Minimum 

Yield 

Strength 

(SMYS) 

(KPSI) 

Depth Of 

Corrosion 

Stress 

Concentration 

Factor 

Probabilistic 

Burst Pressure 

Corroded 

(PBD)  (KPsi) 

Specified 

Minimum 

Tensile 

Strength of 

pipeline 

material 

(SMTS) 

(KPsi) 

Deterministic 

Burst Pressure 

(PB) (KPsi) 

Standard 

Variance 

 Safety 

Index 

(β ) 

Probability 

of Failure 

10 25 0 29,73 10 1,50 7,37 74,69 11,71 0,48 -0,96 0,83 

8 25 0 29,73 8 1,44 7,64 74,69 11,71 0,48 -0,89 0,81 

5 25 0 29,73 5 1,35 8,16 74,69 11,71 0,48 -0,75 0,77 

2 25 0 29,73 2 1,22 9,02 74,69 11,71 0,48 -0,54 0,71 

1 25 0 29,73 1 1,16 9,53 74,69 11,71 0,48 -0,43 0,67 

10 25 5 29,73 8 1,44 7,64 74,69 11,71 0,48 -0,89 0,81 

8 25 5 29,73 6,4 1,40 7,89 74,69 11,71 0,48 -0,82 0,79 

5 25 5 29,73 4 1,31 8,39 74,69 11,71 0,48 -0,69 0,75 

2 25 5 29,73 1,6 1,20 9,20 74,69 11,71 0,48 -0,50 0,69 

1 25 5 29,73 0,8 1,14 9,67 74,69 11,71 0,48 -0,40 0,65 

10 25 10 29,73 6 1,38 7,96 74,69 11,71 0,48 -0,80 0,79 
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8 25 10 29,73 4,8 1,34 8,21 74,69 11,71 0,48 -0,74 0,77 

5 25 10 29,73 3 1,27 8,67 74,69 11,71 0,48 -0,62 0,73 

2 25 10 29,73 1,2 1,17 9,41 74,69 11,71 0,48 -0,45 0,67 

1 25 10 29,73 0,6 1,12 9,83 74,69 11,71 0,48 -0,36 0,64 

10 25 15 29,73 4 1,31 8,39 74,69 11,71 0,48 -0,69 0,75 

8 25 15 29,73 3,2 1,28 8,61 74,69 11,71 0,48 -0,64 0,74 

5 25 15 29,73 2 1,22 9,02 74,69 11,71 0,48 -0,54 0,71 

2 25 15 29,73 0,8 1,14 9,67 74,69 11,71 0,48 -0,40 0,65 

1 25 15 29,73 0,4 1,10 10,03 74,69 11,71 0,48 -0,32 0,63 

10 25 20 29,73 2 1,22 9,02 74,69 11,71 0,48 -0,54 0,71 

8 25 20 29,73 1,6 1,20 9,20 74,69 11,71 0,48 -0,50 0,69 

5 25 20 29,73 1 1,16 9,53 74,69 11,71 0,48 -0,43 0,67 

2 25 20 29,73 0,4 1,10 10,03 74,69 11,71 0,48 -0,32 0,63 

1 25 20 29,73 0,2 1,07 10,31 74,69 11,71 0,48 -0,26 0,60 

Table 50: Shows the probability of failure for 316 Stainless Steel 

 

 



104 

 

Case-A: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

30% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = 316 Stainless Steel 

Corrosion Rate = 0.04 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service Life 

Of The 

Pipeline 

Life Of The 

Initial Protection 

Provided To The 

Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall 

Thickness Loss 

(%) 

Probability 

of Failure 

5 25 0 5 19,7 % 0,77 

2 25 0 2 7,9 % 0,71 

1 25 0 1 3,9 % 0,67 

8 25 5 6,4 25,2 % 0,79 

5 25 5 4 15,7 % 0,75 

2 25 5 1,6 6,3 % 0,69 

1 25 5 0,8 3,1 % 0,65 

10 25 10 6 23,6 % 0,79 

8 25 10 4,8 18,9 % 0,77 

5 25 10 3 11,8 % 0,73 

2 25 10 1,2 4,7 % 0,67 

1 25 10 0,6 2,4 % 0,64 

10 25 15 4 15,7 % 0,75 

8 25 15 3,2 12,6 % 0,74 

5 25 15 2 7,9 % 0,71 

2 25 15 0,8 3,1 % 0,65 

1 25 15 0,4 1,6 % 0,63 

10 25 20 2 7,9 % 0,71 

8 25 20 1,6 6,3 % 0,69 

5 25 20 1 3,9 % 0,67 
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2 25 20 0,4 1,6 % 0,63 

1 25 20 0,2 0,8 % 0,60 

Table 51: 316 Stainless steel Case A - Shows the correlation between the efficiency of inhibitor required and the life of 

initial protection required 

 

Case-B: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

60% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = 316 Stainless Steel 

Corrosion Rate = 0.04 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service 

Life Of The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

10 25 0 10 39,4 % 0,83 

8 25 0 8 31,5 % 0,81 

5 25 0 5 19,7 % 0,77 

2 25 0 2 7,9 % 0,71 

1 25 0 1 3,9 % 0,67 

10 25 5 8 31,5 % 0,81 

8 25 5 6,4 25,2 % 0,79 

5 25 5 4 15,7 % 0,75 

2 25 5 1,6 6,3 % 0,69 

1 25 5 0,8 3,1 % 0,65 

10 25 10 6 23,6 % 0,79 

8 25 10 4,8 18,9 % 0,77 

5 25 10 3 11,8 % 0,73 

2 25 10 1,2 4,7 % 0,67 
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1 25 10 0,6 2,4 % 0,64 

10 25 15 4 15,7 % 0,75 

8 25 15 3,2 12,6 % 0,74 

5 25 15 2 7,9 % 0,71 

2 25 15 0,8 3,1 % 0,65 

1 25 15 0,4 1,6 % 0,63 

10 25 20 2 7,9 % 0,71 

8 25 20 1,6 6,3 % 0,69 

5 25 20 1 3,9 % 0,67 

2 25 20 0,4 1,6 % 0,63 

1 25 20 0,2 0,8 % 0,60 

Table 52:  316 Stainless steel Case B - Shows the correlation between the efficiency of inhibitor required and the life of 

initial protection required 

 

Case-C: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

90% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = 316 Stainless Steel 

Corrosion Rate = 0.04 mm/yr. 

 

Inhibitor 

Efficiency 

Average 

Service Life 

Of The 

Pipeline 

Life Of The 

Initial Protection 

Provided To The 

Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall 

Thickness Loss 

(%) 

Probability 

of Failure 

10 25 0 10 39,4 % 0,83 

8 25 0 8 31,5 % 0,81 

5 25 0 5 19,7 % 0,77 

2 25 0 2 7,9 % 0,71 
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1 25 0 1 3,9 % 0,67 

10 25 5 8 31,5 % 0,81 

8 25 5 6,4 25,2 % 0,79 

5 25 5 4 15,7 % 0,75 

2 25 5 1,6 6,3 % 0,69 

1 25 5 0,8 3,1 % 0,65 

10 25 10 6 23,6 % 0,79 

8 25 10 4,8 18,9 % 0,77 

5 25 10 3 11,8 % 0,73 

2 25 10 1,2 4,7 % 0,67 

1 25 10 0,6 2,4 % 0,64 

10 25 15 4 15,7 % 0,75 

8 25 15 3,2 12,6 % 0,74 

5 25 15 2 7,9 % 0,71 

2 25 15 0,8 3,1 % 0,65 

1 25 15 0,4 1,6 % 0,63 

10 25 20 2 7,9 % 0,71 

8 25 20 1,6 6,3 % 0,69 

5 25 20 1 3,9 % 0,67 

2 25 20 0,4 1,6 % 0,63 

1 25 20 0,2 0,8 % 0,60 

Table 53: 316 Stainless steel Case C - Shows the correlation between the efficiency of inhibitor required and the life of 

initial protection required 

 

 

9.3.6 PROBABILITY OF FAILURE FOR 6MO STEEL 

The calculation results for the probability of failure for 6Mo Steel material underusing the 

deterministic and probabilistic models is presented below. 



108 

 

Inhibitor 

Efficiency 

Average 

service 

life of the 

pipeline 

Life of the 

initial 

protection 

provided to 

the pipeline 

Specified 

Minimum 

Yield 

Strength 

(SMYS) 

(KPSI) 

Depth Of 

Corrosion 

Stress 

Concentration 

Factor 

Probabilistic 

Burst Pressure 

Corroded 

(PBD)  (KPsi) 

Specified 

Minimum 

Tensile 

Strength of 

pipeline 

material 

(SMTS) 

(KPsi) 

Deterministic 

Burst Pressure 

(PB) (KPsi) 

Standard 

Variance 

 Safety 

Index 

(β ) 

Probability 

of Failure 

10 25 0 55,00 10 1,50 13,63 107 16,78 0,48 -0,43 0,67 

8 25 0 55,00 8 1,44 14,13 107 16,78 0,48 -0,36 0,64 

5 25 0 55,00 5 1,35 15,10 107 16,78 0,48 -0,22 0,59 

2 25 0 55,00 2 1,22 16,70 107 16,78 0,48 -0,01 0,50 

1 25 0 55,00 1 1,16 17,63 107 16,78 0,48 0,10 0,46 

10 25 5 55,00 8 1,44 14,13 107 16,78 0,48 -0,36 0,64 

8 25 5 55,00 6,4 1,40 14,60 107 16,78 0,48 -0,29 0,61 

5 25 5 55,00 4 1,31 15,53 107 16,78 0,48 -0,16 0,56 

2 25 5 55,00 1,6 1,20 17,02 107 16,78 0,48 0,03 0,49 

1 25 5 55,00 0,8 1,14 17,89 107 16,78 0,48 0,13 0,45 

10 25 10 55,00 6 1,38 14,73 107 16,78 0,48 -0,27 0,61 

8 25 10 55,00 4,8 1,34 15,18 107 16,78 0,48 -0,21 0,58 

5 25 10 55,00 3 1,27 16,04 107 16,78 0,48 -0,09 0,54 

2 25 10 55,00 1,2 1,17 17,41 107 16,78 0,48 0,08 0,47 
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1 25 10 55,00 0,6 1,12 18,19 107 16,78 0,48 0,17 0,43 

10 25 15 55,00 4 1,31 15,53 107 16,78 0,48 -0,16 0,56 

8 25 15 55,00 3,2 1,28 15,93 107 16,78 0,48 -0,11 0,54 

5 25 15 55,00 2 1,22 16,70 107 16,78 0,48 -0,01 0,50 

2 25 15 55,00 0,8 1,14 17,89 107 16,78 0,48 0,13 0,45 

1 25 15 55,00 0,4 1,10 18,56 107 16,78 0,48 0,21 0,42 

10 25 20 55,00 2 1,22 16,70 107 16,78 0,48 -0,01 0,50 

8 25 20 55,00 1,6 1,20 17,02 107 16,78 0,48 0,03 0,49 

5 25 20 55,00 1 1,16 17,63 107 16,78 0,48 0,10 0,46 

2 25 20 55,00 0,4 1,10 18,56 107 16,78 0,48 0,21 0,42 

1 25 20 55,00 0,2 1,07 19,07 107 16,78 0,48 0,26 0,40 

Table 54: Shows the probability of failure for 6Mo stainless Steel
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Case-A: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

30% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = 6Mo Steel 

Corrosion Rate = 0.04 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

5 25 0 5 19,7 % 0,59 

2 25 0 2 7,9 % 0,50 

1 25 0 1 3,9 % 0,46 

8 25 5 6,4 25,2 % 0,61 

5 25 5 4 15,7 % 0,56 

2 25 5 1,6 6,3 % 0,49 

1 25 5 0,8 3,1 % 0,45 

10 25 10 6 23,6 % 0,61 

8 25 10 4,8 18,9 % 0,58 

5 25 10 3 11,8 % 0,54 

2 25 10 1,2 4,7 % 0,47 

1 25 10 0,6 2,4 % 0,43 

10 25 15 4 15,7 % 0,56 

8 25 15 3,2 12,6 % 0,54 

5 25 15 2 7,9 % 0,50 

2 25 15 0,8 3,1 % 0,45 

1 25 15 0,4 1,6 % 0,42 

10 25 20 2 7,9 % 0,50 

8 25 20 1,6 6,3 % 0,49 
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5 25 20 1 3,9 % 0,46 

2 25 20 0,4 1,6 % 0,42 

1 25 20 0,2 0,8 % 0,40 

Table 55: 6Mo Stainless steel Case A- the correlation between the efficiency of inhibitor required and the life of initial 

protection required 

Case-B: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

60% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = 6Mo Steel 

Corrosion Rate = 0.04 mm/yr. 

 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

10 25 0 10 39,4 % 0,67 

8 25 0 8 31,5 % 0,64 

5 25 0 5 19,7 % 0,59 

2 25 0 2 7,9 % 0,50 

1 25 0 1 3,9 % 0,46 

10 25 5 8 31,5 % 0,64 

8 25 5 6,4 25,2 % 0,61 

5 25 5 4 15,7 % 0,56 

2 25 5 1,6 6,3 % 0,49 

1 25 5 0,8 3,1 % 0,45 

10 25 10 6 23,6 % 0,61 

8 25 10 4,8 18,9 % 0,58 

5 25 10 3 11,8 % 0,54 
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2 25 10 1,2 4,7 % 0,47 

1 25 10 0,6 2,4 % 0,43 

10 25 15 4 15,7 % 0,56 

8 25 15 3,2 12,6 % 0,54 

5 25 15 2 7,9 % 0,50 

2 25 15 0,8 3,1 % 0,45 

1 25 15 0,4 1,6 % 0,42 

10 25 20 2 7,9 % 0,50 

8 25 20 1,6 6,3 % 0,49 

5 25 20 1 3,9 % 0,46 

2 25 20 0,4 1,6 % 0,42 

1 25 20 0,2 0,8 % 0,40 

Table 56: 6Mo Stainless steel Case B- the correlation between the efficiency of inhibitor required and the life of initial 

protection required 

 

Case-C: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

90% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = 6Mo Steel 

Corrosion Rate = 0.04 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

10 25 0 10 39,4 % 0,67 

8 25 0 8 31,5 % 0,64 

5 25 0 5 19,7 % 0,59 

2 25 0 2 7,9 % 0,50 
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1 25 0 1 3,9 % 0,46 

10 25 5 8 31,5 % 0,64 

8 25 5 6,4 25,2 % 0,61 

5 25 5 4 15,7 % 0,56 

2 25 5 1,6 6,3 % 0,49 

1 25 5 0,8 3,1 % 0,45 

10 25 10 6 23,6 % 0,61 

8 25 10 4,8 18,9 % 0,58 

5 25 10 3 11,8 % 0,54 

2 25 10 1,2 4,7 % 0,47 

1 25 10 0,6 2,4 % 0,43 

10 25 15 4 15,7 % 0,56 

8 25 15 3,2 12,6 % 0,54 

5 25 15 2 7,9 % 0,50 

2 25 15 0,8 3,1 % 0,45 

1 25 15 0,4 1,6 % 0,42 

10 25 20 2 7,9 % 0,50 

8 25 20 1,6 6,3 % 0,49 

5 25 20 1 3,9 % 0,46 

2 25 20 0,4 1,6 % 0,42 

1 25 20 0,2 0,8 % 0,40 

Table 57: 6Mo Stainless steel Case C- the correlation between the efficiency of inhibitor required and the life of initial 

protection required 

 

9.3.7 PROBABILITY OF FAILURE FOR DUPLEX STEEL 

The calculation results for the probability of failure for Duplex Steel material underusing the 

deterministic and probabilistic models is presented below. 
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Inhibitor 

Efficiency 

Average 

service 

life of the 

pipeline 

Life of the 

initial 

protection 

provided to 

the pipeline 

Specified 

Minimum 

Yield 

Strength 

(SMYS) 

(KPSI) 

Depth Of 

Corrosion 

Stress 

Concentration 

Factor 

Probabilistic 

Burst Pressure 

Corroded 

(PBD)  (KPsi) 

Specified 

Minimum 

Tensile 

Strength of 

pipeline 

material 

(SMTS) 

(KPsi) 

Deterministic 

Burst Pressure 

(PB) (KPsi) 

Standard 

Variance 

 Safety 

Index 

(β ) 

Probability 

of Failure 

10 25 0 65,00 10 1,50 16,11 65 10,19 0,48 0,95 0,17 

8 25 0 65,00 8 1,44 16,69 65 10,19 0,48 1,02 0,15 

5 25 0 65,00 5 1,35 17,84 65 10,19 0,48 1,16 0,12 

2 25 0 65,00 2 1,22 19,73 65 10,19 0,48 1,37 0,09 

1 25 0 65,00 1 1,16 20,84 65 10,19 0,48 1,48 0,07 

10 25 5 65,00 8 1,44 16,69 65 10,19 0,48 1,02 0,15 

8 25 5 65,00 6,4 1,40 17,26 65 10,19 0,48 1,09 0,14 

5 25 5 65,00 4 1,31 18,35 65 10,19 0,48 1,22 0,11 

2 25 5 65,00 1,6 1,20 20,12 65 10,19 0,48 1,41 0,08 

1 25 5 65,00 0,8 1,14 21,14 65 10,19 0,48 1,51 0,07 

10 25 10 65,00 6 1,38 17,41 65 10,19 0,48 1,11 0,13 

8 25 10 65,00 4,8 1,34 17,94 65 10,19 0,48 1,17 0,12 

5 25 10 65,00 3 1,27 18,96 65 10,19 0,48 1,28 0,10 

2 25 10 65,00 1,2 1,17 20,57 65 10,19 0,48 1,45 0,07 
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1 25 10 65,00 0,6 1,12 21,50 65 10,19 0,48 1,54 0,06 

10 25 15 65,00 4 1,31 18,35 65 10,19 0,48 1,22 0,11 

8 25 15 65,00 3,2 1,28 18,82 65 10,19 0,48 1,27 0,10 

5 25 15 65,00 2 1,22 19,73 65 10,19 0,48 1,37 0,09 

2 25 15 65,00 0,8 1,14 21,14 65 10,19 0,48 1,51 0,07 

1 25 15 65,00 0,4 1,10 21,94 65 10,19 0,48 1,58 0,06 

10 25 20 65,00 2 1,22 19,73 65 10,19 0,48 1,37 0,09 

8 25 20 65,00 1,6 1,20 20,12 65 10,19 0,48 1,41 0,08 

5 25 20 65,00 1 1,16 20,84 65 10,19 0,48 1,48 0,07 

2 25 20 65,00 0,4 1,10 21,94 65 10,19 0,48 1,58 0,06 

1 25 20 65,00 0,2 1,07 22,53 65 10,19 0,48 1,64 0,05 

Table 58: Shows the probability of failure for Duplex stainless steel
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Case-A: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

30% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Duplex Steel 

Corrosion Rate = 0.04 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

5 25 0 5 19,7 % 0,35 

2 25 0 2 7,9 % 0,28 

1 25 0 1 3,9 % 0,24 

8 25 5 6,4 25,2 % 0,38 

5 25 5 4 15,7 % 0,33 

2 25 5 1,6 6,3 % 0,27 

1 25 5 0,8 3,1 % 0,23 

10 25 10 6 23,6 % 0,37 

8 25 10 4,8 18,9 % 0,35 

5 25 10 3 11,8 % 0,31 

2 25 10 1,2 4,7 % 0,25 

1 25 10 0,6 2,4 % 0,22 

10 25 15 4 15,7 % 0,33 

8 25 15 3,2 12,6 % 0,31 

5 25 15 2 7,9 % 0,28 

2 25 15 0,8 3,1 % 0,23 

1 25 15 0,4 1,6 % 0,21 

10 25 20 2 7,9 % 0,28 

8 25 20 1,6 6,3 % 0,27 
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5 25 20 1 3,9 % 0,24 

2 25 20 0,4 1,6 % 0,21 

1 25 20 0,2 0,8 % 0,20 

Table 59: Duplex Stainless steel Case A- the correlation between the efficiency of inhibitor required and the life of 

initial protection required 

 

Case-B: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

60% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Duplex Steel 

Corrosion Rate = 0.04 mm/yr. 

 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

10 25 0 10 39,4 % 0,44 

8 25 0 8 31,5 % 0,41 

5 25 0 5 19,7 % 0,35 

2 25 0 2 7,9 % 0,28 

1 25 0 1 3,9 % 0,24 

10 25 5 8 31,5 % 0,41 

8 25 5 6,4 25,2 % 0,38 

5 25 5 4 15,7 % 0,33 

2 25 5 1,6 6,3 % 0,27 

1 25 5 0,8 3,1 % 0,23 

10 25 10 6 23,6 % 0,37 

8 25 10 4,8 18,9 % 0,35 
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5 25 10 3 11,8 % 0,31 

2 25 10 1,2 4,7 % 0,25 

1 25 10 0,6 2,4 % 0,22 

10 25 15 4 15,7 % 0,33 

8 25 15 3,2 12,6 % 0,31 

5 25 15 2 7,9 % 0,28 

2 25 15 0,8 3,1 % 0,23 

1 25 15 0,4 1,6 % 0,21 

10 25 20 2 7,9 % 0,28 

8 25 20 1,6 6,3 % 0,27 

5 25 20 1 3,9 % 0,24 

2 25 20 0,4 1,6 % 0,21 

1 25 20 0,2 0,8 % 0,20 

Table 60: Duplex Stainless steel Case B- the correlation between the efficiency of inhibitor required and the life of 

initial protection required 

 

Case-C: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

90% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Duplex Steel 

Corrosion Rate = 0.04 mm/yr. 

 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

10 25 0 10 39,4 % 0,44 

8 25 0 8 31,5 % 0,41 
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5 25 0 5 19,7 % 0,35 

2 25 0 2 7,9 % 0,28 

1 25 0 1 3,9 % 0,24 

10 25 5 8 31,5 % 0,41 

8 25 5 6,4 25,2 % 0,38 

5 25 5 4 15,7 % 0,33 

2 25 5 1,6 6,3 % 0,27 

1 25 5 0,8 3,1 % 0,23 

10 25 10 6 23,6 % 0,37 

8 25 10 4,8 18,9 % 0,35 

5 25 10 3 11,8 % 0,31 

2 25 10 1,2 4,7 % 0,25 

1 25 10 0,6 2,4 % 0,22 

10 25 15 4 15,7 % 0,33 

8 25 15 3,2 12,6 % 0,31 

5 25 15 2 7,9 % 0,28 

2 25 15 0,8 3,1 % 0,23 

1 25 15 0,4 1,6 % 0,21 

10 25 20 2 7,9 % 0,28 

8 25 20 1,6 6,3 % 0,27 

5 25 20 1 3,9 % 0,24 

2 25 20 0,4 1,6 % 0,21 

1 25 20 0,2 0,8 % 0,20 

Table 61: Duplex Stainless steel Case C- the correlation between the efficiency of inhibitor required and the life of 

initial protection required 

 

9.3.8 PROBABILITY OF FAILURE FOR SUPER DUPLEX STEEL 

The calculation results for the probability of failure for Super Duplex Steel material 

underusing the deterministic and probabilistic models is presented below. 
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Inhibitor 

Efficiency 

Average 

service 

life of the 

pipeline 

Life of the 

initial 

protection 

provided to 

the pipeline 

Specified 

Minimum 

Yield 

Strength 

(SMYS) 

(KPSI) 

Depth Of 

Corrosion 

Stress 

Concentration 

Factor 

Probabilistic 

Burst Pressure 

Corroded 

(PBD)  (KPsi) 

Specified 

Minimum 

Tensile 

Strength of 

pipeline 

material 

(SMTS) 

(KPsi) 

Deterministic 

Burst Pressure 

(PB) (KPsi) 

Standard 

Variance 

 Safety 

Index 

(β ) 

Probability 

of Failure 

10 25 0 80,00 10 1,50 19,83 116 18,19 0,48 0,18 0,43 

8 25 0 80,00 8 1,44 20,55 116 18,19 0,48 0,25 0,40 

5 25 0 80,00 5 1,35 21,96 116 18,19 0,48 0,39 0,35 

2 25 0 80,00 2 1,22 24,28 116 18,19 0,48 0,60 0,28 

1 25 0 80,00 1 1,16 25,65 116 18,19 0,48 0,71 0,24 

10 25 5 80,00 8 1,44 20,55 116 18,19 0,48 0,25 0,40 

8 25 5 80,00 6,4 1,40 21,24 116 18,19 0,48 0,32 0,37 

5 25 5 80,00 4 1,31 22,58 116 18,19 0,48 0,45 0,33 

2 25 5 80,00 1,6 1,20 24,76 116 18,19 0,48 0,64 0,26 

1 25 5 80,00 0,8 1,14 26,02 116 18,19 0,48 0,74 0,23 

10 25 10 80,00 6 1,38 21,43 116 18,19 0,48 0,34 0,37 

8 25 10 80,00 4,8 1,34 22,08 116 18,19 0,48 0,40 0,34 

5 25 10 80,00 3 1,27 23,33 116 18,19 0,48 0,51 0,30 

2 25 10 80,00 1,2 1,17 25,32 116 18,19 0,48 0,68 0,25 
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1 25 10 80,00 0,6 1,12 26,46 116 18,19 0,48 0,77 0,22 

10 25 15 80,00 4 1,31 22,58 116 18,19 0,48 0,45 0,33 

8 25 15 80,00 3,2 1,28 23,17 116 18,19 0,48 0,50 0,31 

5 25 15 80,00 2 1,22 24,28 116 18,19 0,48 0,60 0,28 

2 25 15 80,00 0,8 1,14 26,02 116 18,19 0,48 0,74 0,23 

1 25 15 80,00 0,4 1,10 27,00 116 18,19 0,48 0,82 0,21 

10 25 20 80,00 2 1,22 24,28 116 18,19 0,48 0,60 0,28 

8 25 20 80,00 1,6 1,20 24,76 116 18,19 0,48 0,64 0,26 

5 25 20 80,00 1 1,16 25,65 116 18,19 0,48 0,71 0,24 

2 25 20 80,00 0,4 1,10 27,00 116 18,19 0,48 0,82 0,21 

1 25 20 80,00 0,2 1,07 27,73 116 18,19 0,48 0,87 0,19 

Table 62: Shows the probability of failure for Super Duplex Steel
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Case-A: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

30% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Super Duplex Steel 

Corrosion Rate = 0.04 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

5 25 0 5 19,7 % 0,35 

2 25 0 2 7,9 % 0,28 

1 25 0 1 3,9 % 0,24 

8 25 5 6,4 25,2 % 0,37 

5 25 5 4 15,7 % 0,33 

2 25 5 1,6 6,3 % 0,26 

1 25 5 0,8 3,1 % 0,23 

10 25 10 6 23,6 % 0,37 

8 25 10 4,8 18,9 % 0,34 

5 25 10 3 11,8 % 0,30 

2 25 10 1,2 4,7 % 0,25 

1 25 10 0,6 2,4 % 0,22 

10 25 15 4 15,7 % 0,33 

8 25 15 3,2 12,6 % 0,31 

5 25 15 2 7,9 % 0,28 

2 25 15 0,8 3,1 % 0,23 

1 25 15 0,4 1,6 % 0,21 

10 25 20 2 7,9 % 0,28 

8 25 20 1,6 6,3 % 0,26 
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5 25 20 1 3,9 % 0,24 

2 25 20 0,4 1,6 % 0,21 

1 25 20 0,2 0,8 % 0,19 

Table 63: Super Duplex Case A - the correlation between the efficiency of inhibitor required and the life of initial 

protection required 

Case-B: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

60% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Super Duplex Steel 

Corrosion Rate = 0.04 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

10 25 0 10 39,4 % 0,43 

8 25 0 8 31,5 % 0,40 

5 25 0 5 19,7 % 0,35 

2 25 0 2 7,9 % 0,28 

1 25 0 1 3,9 % 0,24 

10 25 5 8 31,5 % 0,40 

8 25 5 6,4 25,2 % 0,37 

5 25 5 4 15,7 % 0,33 

2 25 5 1,6 6,3 % 0,26 

1 25 5 0,8 3,1 % 0,23 

10 25 10 6 23,6 % 0,37 

8 25 10 4,8 18,9 % 0,34 

5 25 10 3 11,8 % 0,30 

2 25 10 1,2 4,7 % 0,25 
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1 25 10 0,6 2,4 % 0,22 

10 25 15 4 15,7 % 0,33 

8 25 15 3,2 12,6 % 0,31 

5 25 15 2 7,9 % 0,28 

2 25 15 0,8 3,1 % 0,23 

1 25 15 0,4 1,6 % 0,21 

10 25 20 2 7,9 % 0,28 

8 25 20 1,6 6,3 % 0,26 

5 25 20 1 3,9 % 0,24 

2 25 20 0,4 1,6 % 0,21 

1 25 20 0,2 0,8 % 0,19 

Table 64: Super Duplex Case B - the correlation between the efficiency of inhibitor required and the life of initial 

protection required 

 

Case-C: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

90% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Super Duplex Steel 

Corrosion Rate = 0.04 mm/yr. 

 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

10 25 0 10 39,4 % 0,43 

8 25 0 8 31,5 % 0,40 

5 25 0 5 19,7 % 0,35 

2 25 0 2 7,9 % 0,28 
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1 25 0 1 3,9 % 0,24 

10 25 5 8 31,5 % 0,40 

8 25 5 6,4 25,2 % 0,37 

5 25 5 4 15,7 % 0,33 

2 25 5 1,6 6,3 % 0,26 

1 25 5 0,8 3,1 % 0,23 

10 25 10 6 23,6 % 0,37 

8 25 10 4,8 18,9 % 0,34 

5 25 10 3 11,8 % 0,30 

2 25 10 1,2 4,7 % 0,25 

1 25 10 0,6 2,4 % 0,22 

10 25 15 4 15,7 % 0,33 

8 25 15 3,2 12,6 % 0,31 

5 25 15 2 7,9 % 0,28 

2 25 15 0,8 3,1 % 0,23 

1 25 15 0,4 1,6 % 0,21 

10 25 20 2 7,9 % 0,28 

8 25 20 1,6 6,3 % 0,26 

5 25 20 1 3,9 % 0,24 

2 25 20 0,4 1,6 % 0,21 

1 25 20 0,2 0,8 % 0,19 

Table 65: Super Duplex Case C - the correlation between the efficiency of inhibitor required and the life of initial 

protection required 

 

9.3.9 PROBABILITY OF FAILURE FOR TITANIUM 

The calculation results for the probability of failure for Titanium material underusing the 

deterministic and probabilistic models is presented below. 
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Inhibitor 

Efficiency 

Average 

service 

life of the 

pipeline 

Life of the 

initial 

protection 

provided to 

the pipeline 

Specified 

Minimum 

Yield 

Strength 

(SMYS) 

(KPSI) 

Depth Of 

Corrosion 

Stress 

Concentration 

Factor 

Probabilistic 

Burst Pressure 

Corroded 

(PBD)  (KPsi) 

Specified 

Minimum 

Tensile 

Strength of 

pipeline 

material 

(SMTS) 

(KPsi) 

Deterministic 

Burst Pressure 

(PB) (KPsi) 

Standard 

Variance 

 Safety 

Index 

(β ) 

Probability 

of Failure 

10 25 0 25,00 0,75 1,14 8,16 35 5,49 0,48 0,82 0,21 

8 25 0 25,00 0,6 1,12 8,27 35 5,49 0,48 0,85 0,20 

5 25 0 25,00 0,375 1,10 8,46 35 5,49 0,48 0,89 0,19 

2 25 0 25,00 0,15 1,06 8,74 35 5,49 0,48 0,96 0,17 

1 25 0 25,00 0,075 1,04 8,89 35 5,49 0,48 1,00 0,16 

10 25 5 25,00 0,6 1,12 8,27 35 5,49 0,48 0,85 0,20 

8 25 5 25,00 0,48 1,11 8,36 35 5,49 0,48 0,87 0,19 

5 25 5 25,00 0,3 1,09 8,54 35 5,49 0,48 0,91 0,18 

2 25 5 25,00 0,12 1,05 8,80 35 5,49 0,48 0,98 0,16 

1 25 5 25,00 0,06 1,04 8,93 35 5,49 0,48 1,01 0,16 

10 25 10 25,00 0,45 1,11 8,39 35 5,49 0,48 0,88 0,19 

8 25 10 25,00 0,36 1,09 8,48 35 5,49 0,48 0,90 0,18 

5 25 10 25,00 0,225 1,07 8,63 35 5,49 0,48 0,94 0,17 

2 25 10 25,00 0,09 1,05 8,86 35 5,49 0,48 0,99 0,16 
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1 25 10 25,00 0,045 1,03 8,98 35 5,49 0,48 1,02 0,15 

10 25 15 25,00 0,3 1,09 8,54 35 5,49 0,48 0,91 0,18 

8 25 15 25,00 0,24 1,08 8,61 35 5,49 0,48 0,93 0,18 

5 25 15 25,00 0,15 1,06 8,74 35 5,49 0,48 0,96 0,17 

2 25 15 25,00 0,06 1,04 8,93 35 5,49 0,48 1,01 0,16 

1 25 15 25,00 0,03 1,03 9,03 35 5,49 0,48 1,03 0,15 

10 25 20 25,00 0,15 1,06 8,74 35 5,49 0,48 0,96 0,17 

8 25 20 25,00 0,12 1,05 8,80 35 5,49 0,48 0,98 0,16 

5 25 20 25,00 0,075 1,04 8,89 35 5,49 0,48 1,00 0,16 

2 25 20 25,00 0,03 1,03 9,03 35 5,49 0,48 1,03 0,15 

1 25 20 25,00 0,015 1,02 9,10 35 5,49 0,48 1,05 0,15 

Table 66: Shows the probability of failure for Titanium
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Case-A: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

30% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Titanium 

Corrosion Rate = 0.003 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

10 25 0 0,75 3,0 % 0,21 

8 25 0 0,6 2,4 % 0,20 

5 25 0 0,375 1,5 % 0,19 

2 25 0 0,15 0,6 % 0,17 

1 25 0 0,075 0,3 % 0,16 

10 25 5 0,6 2,4 % 0,20 

8 25 5 0,48 1,9 % 0,19 

5 25 5 0,3 1,2 % 0,18 

2 25 5 0,12 0,5 % 0,16 

1 25 5 0,06 0,2 % 0,16 

10 25 10 0,45 1,8 % 0,19 

8 25 10 0,36 1,4 % 0,18 

5 25 10 0,225 0,9 % 0,17 

2 25 10 0,09 0,4 % 0,16 

1 25 10 0,045 0,2 % 0,15 

10 25 15 0,3 1,2 % 0,18 

8 25 15 0,24 0,9 % 0,18 

5 25 15 0,15 0,6 % 0,17 

2 25 15 0,06 0,2 % 0,16 
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1 25 15 0,03 0,1 % 0,15 

10 25 20 0,15 0,6 % 0,17 

8 25 20 0,12 0,5 % 0,16 

5 25 20 0,075 0,3 % 0,16 

2 25 20 0,03 0,1 % 0,15 

1 25 20 0,015 0,1 % 0,15 

Table 67: Titanium Case A - the correlation between the efficiency of inhibitor required and the life of initial 

protection required 

 

Case-B: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

60% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Titanium 

Corrosion Rate = 0.003 mm/yr. 

Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

10 25 0 0,75 3,0 % 0,21 

8 25 0 0,6 2,4 % 0,20 

5 25 0 0,375 1,5 % 0,19 

2 25 0 0,15 0,6 % 0,17 

1 25 0 0,075 0,3 % 0,16 

10 25 5 0,6 2,4 % 0,20 

8 25 5 0,48 1,9 % 0,19 

5 25 5 0,3 1,2 % 0,18 

2 25 5 0,12 0,5 % 0,16 

1 25 5 0,06 0,2 % 0,16 
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10 25 10 0,45 1,8 % 0,19 

8 25 10 0,36 1,4 % 0,18 

5 25 10 0,225 0,9 % 0,17 

2 25 10 0,09 0,4 % 0,16 

1 25 10 0,045 0,2 % 0,15 

10 25 15 0,3 1,2 % 0,18 

8 25 15 0,24 0,9 % 0,18 

5 25 15 0,15 0,6 % 0,17 

2 25 15 0,06 0,2 % 0,16 

1 25 15 0,03 0,1 % 0,15 

10 25 20 0,15 0,6 % 0,17 

8 25 20 0,12 0,5 % 0,16 

5 25 20 0,075 0,3 % 0,16 

2 25 20 0,03 0,1 % 0,15 

1 25 20 0,015 0,1 % 0,15 

Table 68: Titanium Case B - the correlation between the efficiency of inhibitor required and the life of initial 

protection required 

 

Case-C: 

The following table describes the correlation between the efficiency of inhibitor required and 

the life of initial protection required to be provided to the pipe in order to maintain less than 

90% loss of wall thickness of the pipe. 

Size of Pipe = 12" or DN 300 

Wall Thickness = 25.4mm 

Schedule = 120 

Material = Titanium 

Corrosion Rate = 0.003 mm/yr. 
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Inhibitor 

Efficiency 

Average 

Service 

Life Of 

The 

Pipeline 

Life Of The 

Initial 

Protection 

Provided To 

The Pipeline 

Loss of wall 

Thickness 

Percentage of 

Wall Thickness 

Loss (%) 

Probability of 

Failure 

10 25 0 0,75 3,0 % 0,21 

8 25 0 0,6 2,4 % 0,20 

5 25 0 0,375 1,5 % 0,19 

2 25 0 0,15 0,6 % 0,17 

1 25 0 0,075 0,3 % 0,16 

10 25 5 0,6 2,4 % 0,20 

8 25 5 0,48 1,9 % 0,19 

5 25 5 0,3 1,2 % 0,18 

2 25 5 0,12 0,5 % 0,16 

1 25 5 0,06 0,2 % 0,16 

10 25 10 0,45 1,8 % 0,19 

8 25 10 0,36 1,4 % 0,18 

5 25 10 0,225 0,9 % 0,17 

2 25 10 0,09 0,4 % 0,16 

1 25 10 0,045 0,2 % 0,15 

10 25 15 0,3 1,2 % 0,18 

8 25 15 0,24 0,9 % 0,18 

5 25 15 0,15 0,6 % 0,17 

2 25 15 0,06 0,2 % 0,16 

1 25 15 0,03 0,1 % 0,15 

10 25 20 0,15 0,6 % 0,17 

8 25 20 0,12 0,5 % 0,16 

5 25 20 0,075 0,3 % 0,16 

2 25 20 0,03 0,1 % 0,15 

1 25 20 0,015 0,1 % 0,15 

Table 69:  Titanium Case C - the correlation between the efficiency of inhibitor required and the life of initial 

protection required 
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9.4 CARBON STEEL VS CORROSION RESISTANT ALLOYS WRT AVAILABILITY 

Carbon Steel Availability 

According to the definition adapted for Availability in chapter 8.5, the availability factor of 

material selection is drawn from the corrosion inhibitor availability perspective. When 

evaluating corrosivity in flowlines or hydrocarbon systems, M-001 suggests to include the 

parameters such as amount of CO2, H2S and O2, operating temperature and pressure, amount 

of organic acids or in other words pH, velocity of the flow, kind of flow regime, metallic ion 

concentration, biological activity and condensing conditions. 

Carbon steel is an acceptable material for the use in flowlines where a nominal corrosion 

allowance is deemed necessary for dehydration process upsets. Such a scenario recommends 

corrosion allowance to be limited to 3mm. However, when selecting carbon steel for wet gas 

circuits, it is recommended to make use of parameters such as corrosion allowance and 

corrosion allowance with the application of corrosion inhibitors. The idea behind such a 

selection is that when an appropriate inhibitor is used, the resulting corrosion rate henceforth 

is kept low irrespective of the natural corrosion rate or in other words uninhibited corrosion 

rates for the hydrocarbons in the system.  

There are significant number of methodologies or packages available practically in the market 

for corrosion modelling. The type of selection of corrosion modelling is operators choice of 

selection which are either available commercially in the market or been developed in-house. 

Examples of in-house developed are Hydrocorr by Shell, Cassandra by British Petroleum. In 

addition there are some commercially available corrosion modelling packages such as 

Honeywell/Intercorr Predict 4.0, Multicorp developed by University of Ohio etc (Marsh and 

The, 2007). Since the objective of the research is to focus more on the material selection 

characteristics rather than corrosion modelling of hydrocarbons, the national standard adapted 

in the North Sea in the form of NORSOK Standard M-506 has been adapted.  Majority of the 

packages available are in one way or the other depict their base on the technique and 

philosophies recommended by DeWaard and Milliams using the nomograph as shown in 

figure . An example of a model that stands on the work of DeWaard and Milliams is the 

NORSOK M-506 corrosion model. 
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Figure 13: CO2 Corrosion rate 

(Source: http://webwormcpt.blogspot.no/2008/10/quick-estimation-of-co2-corrosion-rate.html) 

In order to illustrate the significance of inhibitor availability the researcher adapted the 

results of the corrosion allowance results of a theoretical pipeline by the work done by Marsh 

and Teh (2007), with significant input parameters. The corrosion allowance has been 

evaluated using the Cassandra model used by the operator British Petroleum and NORSOK 

M-506 model and the results are distributed in the following four cases. With the available 

experimental results limited to 20 years of design life, the researcher used the conservative 

extrapolation technique to reach the corrosion allowances for 25 years in order to demonstrate 

the availability characteristic. 

 

Case 1 : 

Model : NORSOK M-506 

Design life period = 25 Years 

Availability Upper limit = 95% 

Corrosion Rate = 0.1 mm/yr.  

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 



134 

 

Percentage CO2 = 1 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 

Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

1A 65 degrees Celsius 1.5 3.4 4.25 

Table 70: Carbon steel availability NORSOK M-506 Model, Case 1 

Case 2: 

Model : NORSOK M-506 

Design life period = 25 Years 

Availability Upper limit = 95% 

Corrosion Rate = 0.1   mm/yr.  

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 1 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 

Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr.) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

2A 100 degrees 

Celsius 

0.4 2.3 4.25 

Table 71: Carbon steel availability NORSOK M-506 Model, Case 2 

Case 3: 

Model : NORSOK M-506 

Design life period = 25 Years 

Availability Upper limit = 95% 

Corrosion Rate = 0.1   mm/yr.  

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 5 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 
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Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr.) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

3A 100 degrees 

Celsius 

2.3 4.2 5.25 

Table 72: Carbon steel availability NORSOK M-506 Model, Case 3 

 

Case 4 : 

Model : NORSOK M-506 

Design life period = 25 Years 

Availability Upper limit = 99% 

Corrosion Rate = 0.05/0.1   mm/yr. 

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 1 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 

Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

4A 65 degrees Celsius 1.5 1.3 1.625 

Table 73: Carbon steel availability NORSOK M-506 Model, Case 4 

 

Case 5: 

Model : NORSOK M-506 

Design life period = 25 Years 

Availability Upper limit = 99% 

Corrosion Rate = 0.05/0.1   mm/yr.  

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 1 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 



136 

 

Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr.) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

5A 100 degrees 

Celsius 

0.4 2.1 2.625 

Table 74: Carbon steel availability NORSOK M-506 Model, Case 5 

 

Case 6: 

Model : NORSOK M-506 

Design life period = 25 Years 

Availability Upper limit = 99% 

Corrosion Rate = 0.05/0.1   mm/yr.  

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 5 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 

Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr.) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

6A 100 degrees 

Celsius 

2.3 2.5 3.125 

Table 75: Carbon steel availability NORSOK M-506 Model, Case 6 

 

Case 7 : 

Model : BP CASSANDRA 

Design life period = 25 Years 

Availability Upper limit = 95% 

Corrosion Rate = 0.1 mm/yr.  

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 1 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 
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Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

1A 65 degrees Celsius 2.5 4.4 5.5 

Table 76: Carbon steel availability BP Cassandra Model, Case 7 

 

Case 8: 

Model : BP CASSANDRA 

Design life period = 25 Years 

Availability Upper limit = 95% 

Corrosion Rate = 0.1   mm/yr.  

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 1 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 

Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr.) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

2A 100 degrees 

Celsius 

4.8 6.7 8.375 

Table 77: Carbon steel availability BP Cassandra Model, Case 8 

 

Case 9: 

Model : BP CASSANDRA 

Design life period = 25 Years 

Availability Upper limit = 95% 

Corrosion Rate = 0.1   mm/yr.  

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 5 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 
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Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr.) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

3A 100 degrees 

Celsius 

10.9 12.8 16 

Table 78: Carbon steel availability BP Cassandra Model, Case 9 

 

Case 10 : 

Model : BP CASSANDRA 

Design life period = 25 Years 

Availability Upper limit = 99% 

Corrosion Rate = 0.05/0.1   mm/yr. 

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 1 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 

Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

4A 65 degrees Celsius 2.5 1.5 1.875 

Table 79: Carbon steel availability BP Cassandra Model, Case 10 

 

Case 11: 

Model : BP CASSANDRA 

Design life period = 25 Years 

Availability Upper limit = 99% 

Corrosion Rate = 0.05/0.1   mm/yr.  

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 1 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 
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Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr.) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

5A 100 degrees 

Celsius 

4.8 2.9 3.625 

Table 80: Carbon steel availability BP Cassandra Model, Case 11 

 

Case 12: 

Model : BP CASSANDRA 

Design life period = 25 Years 

Availability Upper limit = 99% 

Corrosion Rate = 0.05/0.1   mm/yr.  

NaCl = 100000 ppm 

Bicarbonate Ions = 500 ppm 

Percentage CO2 = 5 % in the gas phase 

No pH stabilization as recommended by NORSOK M-001 and Flow effects Ignored 

Results: 

Model Temperature Uninhibited 

Corrosion 

Rate (mm/yr.) 

Corrosion 

Allowance (mm) 

Extrapolated 

Corrosion 

Allowance (mm) 

6A 100 degrees 

Celsius 

10.9 4.2 5.25 

Table 81: Carbon steel availability BP Cassandra Model, Case 12 

 

According to TR2000, the maximum corrosion allowance for carbon steel grade materials 

flowline and piping from wellhead to separator is 3mm and for that for corrosion resistant 

alloys the corrosion allowance is 1mm. While selecting the material for flow lines, M-001, 

suggests that when the predicted corrosion rates are low enough, the service life corrosion can 

be accommodated by a practical corrosion allowance. But when the service life corrosion 

exceeds the maximum corrosion allowance practically possible, then the possibility of 

reducing corrosion rate to an acceptable level is considered by the application of corrosion 

inhibition philosophy. The philosophy is based on the use of appropriate inhibitor so that the 

resulting corrosion rate is practically kept as low as possible despite the fact inevitable natural 
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corrosion in the system. The service life corrosion for the models described above can 

therefore be calculated as table below. 

 

Model Service Life Uninhibited 

Corrosion 

Rate (mm/yr) 

Uninhibited 

Service Life Corrosion 

(mm) 

1A 25 Years 1.5 37.5 

2A 25 Years 0.4 10 

3A 25 Years 2.3 57.5 

4A 25 Years 1.5 37.5 

5A 25 Years 0.4 10 

6A 25 Years 2.3 57.5 

7A 25 Years 2.5 62.5 

8A 25 Years 4.8 120 

9A 25 Years 10.9 272.5 

10A 25 Years 2.5 62.5 

11A 25 Years 4.8 120 

12A 25 Years 10.9 272.5 

Table 82: Shows Summarised Uninhibited corrosion rate and service life 

 

The NORSOK standard recommends the use of corrosion rate of the order 0.1mm/yr. for 

design purposes when there is no field or test data available, the researcher instead put forth a 

practical approach based on the calculated corrosion allowances for the material used for 

flowlines in different facilities. The corrosion rate for a service design life of 25 years is 

therefore calculated as shown in the table below for different materials. 

 

Material Service Life 
Corrosion 

Allowance (mm) 

Corrosion 

Rate 

(mm/yr.) 

M-001 

Recommended 

Corrosion 

Rate 

(mm/yr.) 

Carbon Steel 25 Years 3 0.12 0.1 

Stainless Steel 25 Years 1 0.04 0.1 
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6MO 25 Years 1 0.04 0.1 

Duplex 25 Years 1 0.04 0.1 

Super Duplex 25 Years 1 0.04 0.1 

Titanium 25 Years 0 0.003 0.1 

Table 83: Shows corrosion rate for various materials for a design life of 25 years 

 

The following table demonstrates the required availability of the corrosion inhibitor or in other 

words the time the inhibitor is required to be present during system's operation or functioning 

at the concentration levels that is above or below the required minimum dosage for carbon 

steel. 

 

Model 

M-001 

Recommended 

Corrosion Rate 

(mm/yr.) 

Experimental 

Uninhibited 

Corrosion rate 

Experimental 

Corrosion 

Allowance 

Required 

Corrosion 

Allowance 

Required 

Inhibitor 

Availability 

1A 0.1 1.5 4.25 3 > 95% 

2A 0.1 0.4 4.25 3 > 95% 

3A 0.1 2.3 5.25 3 > 95% 

4A 0.1 1.5 1.625 3 < 95% 

5A 0.1 0.4 2.625 3 < 95% 

6A 0.1 2.3 3.125 3 > 95% 

7A 0.1 2.5 5.5 3 > 95% 

8A 0.1 4.8 8.375 3 > 95% 

9A 0.1 10.9 16 3 > 95% 

10A 0.1 2.5 1.875 3 < 95% 

11A 0.1 4.8 3.625 3 > 95% 

12A 0.1 10.9 5.25 3 > 95% 

Table 84: Shows the required  availability of the corrosion inhibitor for carbon steel 

 

The NORSOK standard suggests the use of inhibitor availability of 90% with a maximum 

inhibitor availability not exceeding 95%. The aforementioned results of the model NORSOK M-

506 and BP's CASSANDRA demonstrate the need for having the inhibitor available for more than 

95% in 4 cases with accordance to model M-506 and 5 cases with accordance to model 

CASSANDRA. This means that a qualified inhibitor is deemed to be present and put in use from 
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day one of the material's operating life and there is a need for a participating corrosion monitoring 

program and inhibitor injection. 

 The results henceforth suggest the use of corrosion resistant alloys in majority of the with a 

maximum inhibitor availability not exceeding 95% in any of the 12 cases for stainless steel grade 

materials as shown in the table below. 

 

Model 

M-001 

Recommended 

Corrosion Rate 

(mm/yr.) 

Experimental 

Uninhibited 

Corrosion rate 

Experimental 

Corrosion 

Allowance 

Required 

Corrosion 

Allowance 

Required 

Inhibitor 

Availability 

1A 0.1 1.5 4.25 1 < 95% 

2A 0.1 0.4 4.25 1 < 95% 

3A 0.1 2.3 5.25 1 < 95% 

4A 0.1 1.5 1.625 1 < 95% 

5A 0.1 0.4 2.625 1 < 95% 

6A 0.1 2.3 3.125 1 < 95% 

7A 0.1 2.5 5.5 1 < 95% 

8A 0.1 4.8 8.375 1 < 95% 

9A 0.1 10.9 16 1 < 95% 

10A 0.1 2.5 1.875 1 < 95% 

11A 0.1 4.8 3.625 1 < 95% 

12A 0.1 10.9 5.25 1 < 95% 

Table 85: Shows the required  availability of the corrosion inhibitor for stainless steel 

 

The results henceforth suggest the use of corrosion resistant alloys in majority of the with a 

maximum inhibitor availability not exceeding 95% in any of the 12 cases for Duplex, Super 

duplex and titanium grade materials as shown in the table below. 

Model 

M-001 

Recommended 

Corrosion Rate 

(mm/yr.) 

Experimental 

Uninhibited 

Corrosion rate 

Experimental 

Corrosion 

Allowance 

Required 

Corrosion 

Allowance 

Required 

Inhibitor 

Availability 

1A 0.1 1.5 4.25 1 < 95% 

2A 0.1 0.4 4.25 1 < 95% 

3A 0.1 2.3 5.25 1 < 95% 
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4A 0.1 1.5 1.625 1 < 95% 

5A 0.1 0.4 2.625 1 < 95% 

6A 0.1 2.3 3.125 1 < 95% 

7A 0.1 2.5 5.5 1 < 95% 

8A 0.1 4.8 8.375 1 < 95% 

9A 0.1 10.9 16 1 < 95% 

10A 0.1 2.5 1.875 1 < 95% 

11A 0.1 4.8 3.625 1 < 95% 

12A 0.1 10.9 5.25 1 < 95% 

Table 86: Shows the required  availability of the corrosion inhibitor for Duplex, super duplex and titanium 

 

9.5 CARBON STEEL VS CORROSION RESISTANT ALLOYS WRT FABRICATION 

9.5.1 PIPE FABRICATION PROCESS 

The offshore industry in general uses various materials such as carbon steel, stainless steel, 

Duplex, titanium etc. for fabricating the pipes for flow lines. Due to the diverse characteristics 

of each material, the standards, techniques and fabrication means change accordingly. The 

selection of material and therefore the construction methods significantly affects the cost in a 

project and at the same time governs the key characteristics such as availability, 

maintainability and reliability. The activities in fabrication can be summarized into welding, 

pipe spools/fitting handling, testing, pipe supports welded to the pipe spool , marking the 

spools for identification, storage , handling of the valves etc.. 

Welding which stands as one of the core activities is mainly used by the offshore industry as a 

means to join the pipes and fitting cost effectively. Since the objective of this research is to 

evaluate the materials based on corrosion resistance, importance is therefore given to the 

critical factors of welding that affect corrosion resistance. Welding generally administers an 

electric arc as a heat source between the electrode and the two elements or components to be 

welded. In order to produce a weld the quintessential are the thermal electrons and positive 

ions. While the thermal electrons are generated from the arc, the electrode forms the source 

for the positive ions. The combination of electrons and positive ions are thereby converted to 

kinetic energy by collision thereby producing a weld.  Such weld can be classified as shown 

in figure below. 
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Flowchart 3: Classification of welding and allied process 

(Source: http://sumitshrivastva.blogspot.no/2012/03/manufacturing-process-welding-its.html) 

 

The weld can, depending upon the type of weld can consist of a consumable or a non-

consumable electrode. While consumable consist of a metal or an alloy, the non-consumable 

electrodes consist of either carbon or tungsten. The non-consumable electrodes  are employed 

when there is a need for protection against oxidation through the use of inert gas to shield the 

weld atmosphere. 

It is general practice that the carbon steel material used for the flow lines undergo some of the 

heat treatment procedures such as annealing, normalizing, autenizing etc. . But because of 

welding of materials within the carbon steel family, there is an impending probability that 

hard regions are created.  The effect henceforth is the possibility of sulphide stress cracking.  

According to RP0472 “Methods and Controls to Prevent In-Service Environmental Cracking 

of Carbon Steel weldments in Corrosive Petroleum Refining Environments", the carbon steel 

weldments have to go through the process of softening to resist failure under cracking by 

limiting the hardness to 200 HBW (Don, Jeff and Keith, 2004).  The cracks as a result of 

welding can be either cold cracks or hot cracks. While hot cracks come into existence during 

the process of cooling the weld, cold cracks are a result of delayed formation of cracks once 

the cooling of the weld is complete.  The softening process is achieved through controlling the 

http://sumitshrivastva.blogspot.no/2012/03/manufacturing-process-welding-its.html
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heat affect zone of the weldment joint using post weld heat treatment, the base metal 

chemistry and keeping a check on the hardness of the heat affected zone during the 

qualification of the weld procedure.  

 

9.5.2 HOT CRACKS 

Hot cracks can  primarily occur when there is low affinity of alloying compounds during the 

initial stages of cooling once the fabrication through welding is complete.  Further, hot cracks 

can also be observed when the strength of the weld between two components is too weak 

(Girish, 2013). The initiation of hot cracks can start at the throat of the weld and progressively 

migrates to the length of the weld leading to longitudinal failure of the weld.  One of the 

influencing factors while selecting duplex and super duplex grade materials over austenitic 

stainless steel material is that the probability of hot cracking is less. 

 

Figure 14: Schematic showing location of typical hot cracks in weld 

(Source- Girish, P.K,2013) 

It is a general phenomenon that the amount of sulphur in the material dictates the tendency 

towards hot cracking. Carbon steel materials especially with high sulphur content are more 

prone to hot cracking and require the need to have substantial amounts of manganese in its 

composition to mitigate the effects of high sulphur. The stainless steel grade materials, upon 

the use the fabrication methods such as laser welding as means of creating weldments, the hot 

cracks come into existence. In addition, any presence of zinc or copper can significantly affect 

the possibility of hot cracking in stainless steel materials but is usually taken care through the 

use of meager amount of ferrite during the weld. 
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The cracking as a result of increased hardness occurs when the percentage of carbon the 

material is at least 0.25%.  So, majority of the materials from the carbon steel grades, 

including the low carbon steels are significantly hardened during the cooling of the weld. 

With low percentage of carbon in austenitic, duplex and super duplex steels, the effect as a 

result of hardening is less as compared to carbon steel. However, the presence of alloys such 

as manganese, molybdenum and importantly chromium can increase the hardness beyond the 

recommended levels upon cooling. The amount of heat input therefore should be sufficient 

enough so as to avoid the precipitation of the alloying elements. 

 

9.5.3 COLD CRACKS 

Contrary to hot cracks, cold cracks are a result of failure of the weld once the weld has 

cooled. Two important reasons can be attributed to the formation of cold cracks. The primary 

reason for cold cracks is due to the process of diffusion of hydrogen. Diffused hydrogen 

travels through the weldment and settles down as pockets that create significant pressure for 

the expansion of the weld defect and thus form a cold crack.  It is therefore important that the 

material is preheated before welding so as to avoid hydrogen diffusion. Another reason for 

cold cracks is due to the high stress in the weld and is a common phenomenon in pipe where 

the thickness of the pipe is high.  In such situations the cracks propagate in the traverse 

direction at the heat affected zone of the weld as shown in figure below (Girish, 2013). When 

using duplex and super duplex grade materials, preheating is not a necessary action to prevent 

col cracks unless it is used to prevent condensation. However, when creating a weldment 

between a light component and a heavy component, preheating is administered for duplex and 

super duplex grade materials.  

For austenitic stainless steel, the amount of harness as result of cooling after the weld is very 

low and hence as a result do not demand the preheat requirements unlike carbon steel grade 

materials. In addition, such an effort to preheat stainless steel grade materials can be 

detrimental. The scenario holds good even for post weld heat treatment wherein, the stainless 

steel grade materials tend to lose the corrosion resistance characteristics once they are post 

heated to more than 600 degrees.  The same is contrary to the needs of carbon steel which 

requires stress relieving through post weld heat treatment at temperatures between 550 and 

650 degrees. 
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Figure 15: Schematic showing location of  typical cold cracks in weld 

(Source- Girish, P.K,2013) 

 

9.5.4 FATIGUE CRACKS AND CORROSION CRACKS 

The cracks due to fatigue is a result of cracks propagating beyond the heat affected area of the 

weldment region where the inclemency of residual tensile stresses is generated during the 

cooling of the weld as shown in following figure. On the other hand, corrosion cracks are a 

result of high welding temperatures that is required during welding. In general practice fusion 

welding is used for creating weldments in corrosion resistant alloys. However, the fusion 

welding demands high temperatures of the order more than 500 degrees. The presence of 

chromium in corrosion resistant alloys to prevent rust, transform into chromium carbides 

when they chemically react with the carbon composite at high temperatures. Once the 

chromium carbides are formed, the material loses the important characteristic of corrosion 

resistance. The corrosion crack as a result can propagate along the grain structure of the 

material, thereby affecting the longitudinal cross section of the pipe. Even though post weld 

treatment offers in itself a solution for corrosion cracks, the use of carbon steel material grade 

offer excellent solution when it comes to avoiding corrosion cracks as a result of formation of 

chromium carbides. When it comes to super austenitic stainless steel grade materials, with the 

use of filler materials with high compounds of molybdenum, the welds offer more retaliation 

to corrosion than the material itself. 

 



148 

 

 

Figure 16: Schematic showing location of  fatigue and corrosion crack  in and near welds 

(Source- Girish, P.K,2013) 

 

9.5.5 SURFACE PREPARATION 

In order to create weldments on carbon steel materials, it is steel weld filler material with 

compositions of manganese and silicon is used to provide the necessary deoxidizing. The use 

of manganese and silicon allows the weld slag to stay afloat on the surface of the weld. 

Because of blue or black colored oxides melt at a lower temperature, of the order 1300 

degrees, than the temperature of the carbon steel material, the weld is free from formation of 

scale or iron oxide. The same is not the case with stainless steel grade materials. When 

creating weldments on stainless steel materials, the surface must be clean or in other words 

free from any scales or oxides. The presence of chromium in stainless steel material in order 

to counter corrosion allows the formation of undesired chromium oxide during the weld. This 

is due the melting temperature of stainless steel being lower than the melting temperature of 

chromium dioxide. Unlike carbon steel, where the steel weld filler material with compositions 

of manganese and silicon can be used, the stainless steel material cannot avoid scales 

formation. Hence, the stainless steel grade materials demand significant amount of cleaning 

and the weld must be kept clean from formation of black scales. This makes temperature of 

the weld in stainless steel material to be less than 650 degrees for limiting the scale formation 

and 816 degrees for avoiding oxidation. 
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The following tables summarizes the selection of aforementioned characteristics for each of 

the materials used for oil and gas flow lines according to their pros and cons.  Since the 

characteristics of fabrication discussed earlier do not necessarily form the necessary 

composites for selecting the material, the researcher also mentioned some additional 

characteristics that are required to be considered while selecting the materials. The researcher 

user the information from the supplier SANDVIK Materials Technology and NICKEL 

Institute for deriving the additional properties of material to be considered during fabrication. 

 

9.5.6 PROS AND CONS OF MATERIALS 

 

316 STAINLESS STEEL 

 

MATERIAL WELD CONSUMABLE 

316L/316 

Grade S31603 

and S31600 

 Enhanced Molybdenum and Chromium 

 Sulphur Content ≤0.015% 

Material Chemical Composition 

Carbon Silicon Manganese Phosphor Sulphur Chromium Nickel Molybdenum 

≤0.030 ≤0.75 ≤2.00 ≤0.040 ≤0.030 16.5 11 2.1 

 

PROS: 

 With carbon content less than 0.25%, the material offers good resistance to 

intergranular corrosion 

 Provides good corrosion resistance to organic acids at higher concentrations 

 Offers good corrosion resistance to organic acids at high temperatures 

 Provides good corrosion resistance to inorganic acids at concentrations higher than 

the minimum 

 Offers good corrosion resistance to higher concentrations of sulphuric acids at low 

temperatures 

 Not prone to attacks from sulphides 

 Maintains corrosion resistance characteristic in severe caustic environments 

 Welding can be performed without preheating 

 Do not require accurate processing in heat treatment  
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 Post weld heat treatment not necessary 

 Excellent for bending with good tolerance to bending radius 

 Good machinability 

 Because of the low strength, tougher inserts are not required for cutting  

CONS: 

 Prone to stress corrosion cracking at temperatures greater than 70 degrees when in the 

proximity of chlorides 

 Prone to impurities such as sodium and vanadium during welding 

 Lower impact strength of the material after welding 

 Requires extensive cleaning to maintain the corrosion resistance properties of 

weldment and heat affected zone. 

 Higher heat Input ( 1.6 KJ/mm) 

 Must use bead Welding technique and requires the need for welding filler material to 

maintain the corrosion resistance properties of the parent material 

 When performing multiple welds the difference between the weld temperatures 

should not exceed 100 degrees 

 When the weldment is under stress, there is a possibility of hot cracking. 

 Requires extensive cleaning to maintain avoid hot cracking. 

 Limits the weldability to copper alloys as they enhance the failure of the weld due to 

formation of cracks 

 Possess low thermal conductivity 

 Requires extensive planning as the weldments are prone to high thermal expansion 

rates and thereby enhance the property of distortion. 

 Possibility of residual stresses and hence requires the need to go through further heat 

treatment process.  

 

AUSTENITIC STAINLESS STEEL ALLOY 6MO 

 

MATERIAL WELD CONSUMABLE 

6Mo 

Grade S31254 

 Enhanced Molybdenum and Chromium 

 Sulphur Content ≤0.015% 

Material Chemical Composition 
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Carbon Silicon Manganese Phosphor Sulphur Chromium Nickel Molybdenum 

≤0.020 ≤0.8 ≤1.00 ≤0.030 ≤0.010 20 18 6.1 

PROS: 

 Welding can be performed without preheating 

 Provides good corrosion resistance to organic acids at higher concentrations 

 Offers good corrosion resistance to organic acids at high temperatures 

 Provides good corrosion resistance to inorganic acids at concentrations higher than 

the minimum 

 Offers good corrosion resistance to higher concentrations of sulphuric acids at low 

temperatures 

 Not prone to attacks from sulphides 

 Maintains corrosion resistance characteristic in severe caustic environments 

 Post weld heat treatment not necessary 

 Do not require accurate processing in heat treatment  

 Excellent for bending with good tolerance to bending radius 

 Good machinability 

CONS: 

 Requires extensive cleaning to maintain the corrosion resistance properties of 

weldment and heat affected zone. 

 Higher heat Input ( 1.5 KJ/mm) 

 Lower impact strength of the material after welding 

 Must use bead Welding technique and requires the need for welding filler material to 

maintain the corrosion resistance properties of the parent material 

 When performing multiple welds the difference between the weld temperatures 

should not exceed 100 degrees 

 When the weldment is under stress, there is a possibility of hot cracking. 

 Requires extensive cleaning to maintain avoid hot cracking. 

 Limits the weldability to copper alloys as they enhance the failure of the weld due to 

formation of cracks 

 Possess low thermal conductivity 

 Requires extensive planning as the weldments are prone to high thermal expansion 

rates and thereby enhance the property of distortion. 
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 Possibility of residual stresses and hence requires the need to go through further heat 

treatment process. 

 Because of the high strength, tougher inserts are required for cutting when compared 

to stainless steel grade materials 

 Prone to stress corrosion cracking at temperatures greater than 90 degrees when in the 

proximity of chlorides 

 Prone to impurities such as sodium and vanadium during welding 

 

SUPER DUPLEX STEEL 

 

MATERIAL WELD CONSUMABLE 

Super Duplex 

Grade S32750 

 Enhanced Nickel 

 Sulphur Content ≤0.015% 

Material Chemical Composition 

Carbon Silicon Manganese Phosphor Sulphur Chromium Nickel Molybdenum 

≤0.030 ≤0.8 ≤1.2 ≤0.035 ≤0.015 25 7 4 

PROS: 

 Maintains high proof strength when compared to austenitic and super austenitic steel 

grades 

 With maximum harness requirements of the order 32 HRC, the weldment can be 

cooled rapidly 

 The impact strength before and after welding is more or less the same 

 Requires less heat Input and must not exceed a maximum of 1.5 KJ/mm and must be 

atleast 0.2 KJ/mm 

 Does not requires extensive cleaning to maintain avoid hot cracking. 

 Welding can be performed without preheating 

 Provides good corrosion resistance to organic acids at higher concentrations 

 Offers good corrosion resistance to organic acids at high temperatures 

 Provides good corrosion resistance to inorganic acids at concentrations higher than 

the minimum 

 When performing multiple welds the difference between the weld temperatures can  

exceed 150 degrees 
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 Offers good corrosion resistance to higher concentrations of sulphuric acids at low 

temperatures 

 Do not require extensive planning as the weldments are not prone to high thermal 

expansion rates and thereby negating the property of distortion. 

 Not prone to attacks from sulphides 

 Does not mandate the need for welding filler material to maintain the corrosion 

resistance properties of the parent material 

 Maintains corrosion resistance characteristic in severe caustic environments 

 Post weld heat treatment not necessary 

 Not prone to impurities such as sodium and vanadium during welding 

 Does not requires extensive cleaning to maintain the corrosion resistance properties of 

weldment and heat affected zone. 

 Does not induce stress corrosion cracking at temperatures below 300 degrees when in 

the proximity of chlorides 

 Less probability of failure of the weld under stress due to hot cracking 

 Good resistance to intergranular corrosion due to the ability to maintain the chemical 

composition at higher temperatures. 

 Possess high thermal conductivity 

 Less residual stresses and hence does not require the need to go through further heat 

treatment process.  

CONS: 

 Mandates the need for similar filler materials for maintain the corrosion resistance 

characteristics. 

 Obligates similar filler material when required to maintain the high mechanical 

strength properties 

 Limits the weldability to copper alloys as they enhance the failure of the weld due to 

formation of cracks 

 Because of the high strength, tougher inserts are required for cutting when compared 

to stainless steel grade materials 

 Requires high forces for performing the bending activities 

 Requires heat treatment after bending in cold conditions to maintain stress corrosion 

resistance. 
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 The pipe has to be annealed if subjected to hot bending formation. 

 High strength of the materials limits the machinability 

 Inaccurate processing in heat treatment leads to loss of impact toughness 

 Prone to formation of sigma phase when the cooling rate is not fast enough 

 Inaccurate composition can lead to sigma phase formation 

 

 

DUPLEX STEEL 

 

MATERIAL WELD CONSUMABLE 

Duplex 

Grade 

S31803/S32205 

 Enhanced Nickel 

 Sulphur Content ≤0.015% 

Material Chemical Composition 

Carbon Silicon Manganese Phosphor Sulphur Chromium Nickel Molybdenum 

≤0.030 ≤1 ≤2 ≤0.03 ≤0.015 22.5 5 3.2 

PROS: 

 Maintains high proof strength when compared to austenitic and super austenitic steel 

grades 

 Good impact strength after welding 

 With maximum harness requirements of the order 36 HRC, the weldment can be 

cooled rapidly 

 Requires less heat Input and must not exceed a maximum of 2.5 KJ/mm and must be 

atleast 0.5 KJ/mm 

 Does not requires extensive cleaning to maintain avoid hot cracking. 

 Welding can be performed without preheating 

 Provides good corrosion resistance to organic acids at higher concentrations 

 Offers good corrosion resistance to organic acids at high temperatures 

 Provides good corrosion resistance to inorganic acids at concentrations higher than 

the minimum 

 Covered electrodes can be used when welding with carbon steel and stainless steel 

materials 

 When performing multiple welds the difference between the weld temperatures can  
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exceed 250 degrees 

 Offers good corrosion resistance to higher concentrations of sulphuric acids at low 

temperatures 

 Do not require extensive planning as the weldments are not prone to high thermal 

expansion rates and thereby negating the property of distortion. 

 Not prone to attacks from sulphides 

 Does not mandate the need for welding filler material to maintain the corrosion 

resistance properties of the parent material 

 Maintains corrosion resistance characteristic in severe caustic environments 

 Post weld heat treatment not necessary 

 Not prone to impurities such as sodium and vanadium during welding 

 Does not requires extensive cleaning to maintain the corrosion resistance properties of 

weldment and heat affected zone. 

 Does not induce stress corrosion cracking at temperatures below 300 degrees when in 

the proximity of chlorides 

 Less probability of failure of the weld under stress due to hot cracking 

 Good resistance to intergranular corrosion due to the ability to maintain the chemical 

composition at higher temperatures. 

 Possess high thermal conductivity 

 Less residual stresses and hence does not require the need to go through further heat 

treatment process. 

 Does not requires heat treatment after bending in cold conditions to maintain stress 

corrosion resistance( up to 25% deformation).  

CONS: 

 Mandates the need for similar filler materials for maintain the corrosion resistance 

characteristics. 

 Obligates similar filler material when required to maintain the high mechanical 

strength properties 

 Limits the weldability to copper alloys as they enhance the failure of the weld due to 

formation of cracks 

 Because of the high strength, tougher inserts are required for cutting when compared 

to stainless steel grade materials 
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 Requires high forces for performing the bending activities 

 The pipe has to be annealed if subjected to hot bending formation. 

 High strength of the materials limits the machinability 

 Inaccurate processing in heat treatment leads to loss of impact toughness 

 Prone to formation of sigma phase when the cooling rate is not fast enough 

 Inaccurate composition can lead to sigma phase formation 

 

TITANIUM 
MATERIAL WELD CONSUMABLE 

Titanium 

Grade 2 

 According to ASME Section II, Part C, SFA 5.16 

 Classification ERTi-1 or ERTi-2 or equivalent 

Material Chemical Composition 

Carbon Fe H N 0 Ti 

≤0.1 ≤0.3 ≤0.015 ≤0.03 ≤0.25 99.2 

PROS: 

 Lighter in weight and hence handling is easier 

 Can resist oxidation effects up to 600 degrees 

 With the oxide film distributing evenly on the weldment and the heat affected zone of 

the parent metal, resistance to corrosion is excellent 

 High ductility and hence high formability 

 Excellent immunity to weld cracks  

 The composition of parent material can be used as filler material 

 Welding can be done in any position 

 Less prone to weld spatter 

 Distortion properties of the parent material is lower than austenitic stainless steels 

 Does not require stress relief through post weld heat treatment 

 Less coefficient of thermal expansion than stainless steel grade materials 

 Greater thermal conductivity when compared to austenitic steels 

 Maintains high proof strength when compared to austenitic and super austenitic steel 

grades 

 The impact strength before and after welding is more or less the same 

 Welding can be performed without preheating 



157 

 

 Provides good corrosion resistance to organic acids at higher concentrations 

 Offers good corrosion resistance to organic acids at high temperatures 

 Provides good corrosion resistance to inorganic acids at concentrations higher than 

the minimum 

 Offers good corrosion resistance to higher concentrations of sulphuric acids at high 

temperatures 

 Not prone to attacks from sulphides 

 Does not mandate the need for welding filler material to maintain the corrosion 

resistance properties of the parent material 

 Maintains corrosion resistance characteristic in severe caustic environments 

 Post weld heat treatment not necessary 

 Does not requires extensive cleaning to maintain the corrosion resistance properties of 

weldment and heat affected zone. 

 Does not induce stress corrosion cracking at temperatures below 300 degrees when in 

the proximity of chlorides 

 Less probability of failure of the weld under stress due to hot cracking 

 Good resistance to intergranular corrosion due to the ability to maintain the chemical 

composition at higher temperatures. 

 Less residual stresses and hence does not require the need to go through further heat 

treatment process. 

 High tolerences to pipe bends 

CONS: 

 Welding requires stringent requirements especially with respect to gas welding 

 Possibility of embrittlement when using fusion welding due to contamination with air 

 Demands the presence of an inert gas when welding 

 Requires specialist orbital welding equipment 

 No possibility of greater depth of welds 

 Less productivity due to specialization needs 

 Requires extensive cleaning to maintain avoid hot cracking 

 Demands extensive inspection on welds 

 Requires extensive shielding mechanism during welding 

 Do not require extensive planning as the weldments are not prone to high thermal 
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expansion rates and thereby negating the property of distortion. 

 Requires the surfaces to be dry before welding 

 Cannot be heat treated in a reducing atmosphere 

 Prone to impurities such as sodium and vanadium during welding 

 Possibility of rippling during forming 

 Cannot be welded with other materials 

 

CARBON STEEL 

 

MATERIAL WELD CONSUMABLE 

Carbon Steel  For SMYS ≥ 415 MPa, HDM 5 ml/100 g shall be used  

 Otherwise, HDM 10 ml/100 g shall be used 

Material Chemical Composition 

Carbon Manganese Phosphorous Sulphur 

≤0.28 ≤1.2 ≤0.03 ≤0.030 

PROS: 

 Does not demand the need for clean and hence is independent from black scale as iron 

oxide and scale melt at a much lower temperature than the material. 

 The steel weld fillers used during welding serve the additional job as deoxidizing 

agents 

 High thermal conductivity 

 Less distortion when compared to stainless steel alloys 

 Excellent flow of weld fillers 

 Good weld arc penetration 

 Less fabrication time 

 Easy to cold form 

 Welding can be performed without preheating 

 Do not require accurate processing in heat treatment  

 Good machinability 

 Not prone to impurities such as sodium and vanadium during welding 

 Maintains good impact strength of the material after welding 

 Does not require extensive cleaning of the weldment and heat affected zone 
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 Possess high thermal conductivity compared to austenitic stainless steel 

CONS: 

 With carbon content more than 0.25%, the material offers does not offer good 

resistance to intergranular corrosion 

 Requires the material to be grinded to alloy steel grade finish, when required to 

perform welds between dissimilar materials, especially stainless steel 

 Possibility of cracks due to hardening of the weld once the weldment is cooled after 

welding 

 Requires post weld heat treatment to relive stresses  

 Becomes less ductile because of heat treatment 

 The higher carbon content reduces the weldability 

 Carbon percentage lowers the melting point of the material 

 Does not provides good corrosion resistance to organic acids at higher concentrations 

 Does not offer good corrosion resistance to organic acids at high temperatures 

 Does not  provide good corrosion resistance to inorganic acids at concentrations 

higher than the minimum 

 Does not provide good corrosion resistance to higher concentrations of sulphuric 

acids at low temperatures 

 Prone to attacks from sulphides 

 Does not maintain corrosion resistance characteristic in severe caustic environments 

 Because of the high strength, tougher inserts are required for cutting  

 Bending with less tolerance to bending radius 

 Requires post weld heat treatment  

 When the weldment is under stress, there is a possibility of hot cracking  
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10. DISCUSSION & CONCLUSION 

 

Safety & Environmental impacts: 

Safety in operation is always on high priority in oil & gas production. In order to maintain 

safe environment it is necessary to select the material according to the appropriate reservoir 

condtions. Selecting less corrosive and highly reliable material reduces number of failures.  

Improving knowledge about the failures mechanisms increases safety in operation. The 

fundamentals behind the environmental assisted failure mechanisms are not completely clear. 

Therefore long term study is needed to get better understanding of these issues. 

 

Inhibitors are often used in pipelines made of carbon steels to control the corrosion. Therefore 

inhibitors is, however have negative impact from an environmental impact viewpoint. By 

replacing carbon steels with stainless steels the contamination component is neglected. 

 

LCC: 

The essential concepts of LCC methodology for performing the calculations are discussed 

earlier in this paper. This analysis is done to compare the LCC between carbon steel and five 

corrosion resistant alloy namely 316 SSTL, 6Mo SSTL, 22 Cr Duplex SSTL, 25 Cr Duplex 

SSTL and Titanium.  

 

The alternatives having the identical life span can be compared from an engineering economy 

viewpoint just by comparing the magnitude of the present worth. If the alternatives have 

different life spans, then the present worth needs to be converted into annualized cost to 

compare. Therefore best alternative can be selected from the one having lowest annualized 

cost. Maximum Life span of 25 years are considered for these alternatives.  

 

The LCC results shows that 316 stainless steel is economical for 25 years life span. However 

there is approximately one million cost difference between 316 sstl, 22 cr duplex sstl and 25 

Cr duplex sstl. From these three 25 Cr duplex have better corrosion resistence properties 

compared to other two materials. Titanium and 6Mo stainless steel comes with higher life 

cycle cost. They have excellent corrosion resistance properties are uneconomical for lengthy 

flowlines. Carbon steel with inhibitor is most economical if the service life is 5 years. After 5 

years the carbon steel cost gradually increases due to high operation and maintenance cost. 
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There is a prediction that carbon steel will generally have lowest life cycle cost so its been 

considered as base case for selecting material  for flowlines. It should be noted that when 

selecting an alternate option it should not be limited only to  LCC as driving factor, For 

making final decision there are also other factors which each choice should also be considered 

separately. 

 

When implemented correctly, LCC is a powerful tool to show that higher costs at initial 

stages for corrosion resistant alloys rather than evidently lesser cost, in which the CRA 

outcomes with considerable savings in operation, maintenance and repair costs in the future. 

 

Reliability: 

Following the deterioration of steel structures in offshore production platforms, production 

flowlines degenerate with time.  With degradation of material in the form of corrosion, 

operators throughout the world operate with a challenge to accommodate the risks associated 

with aged flowlines. The challenges escalate to extreme risks due to the destructive 

characteristics of effects of corrosion. The research evaluated reliability as one of the key 

contributing factors that can be used as a criteria when it comes to material selection of 

flowlines. Some operators currently pursue carbon steel material for flow lines despite the 

need for its use comes with the efficiency of the maintenance program. Such a program 

involves in the application of corrosion inhibitors. The current practices in the industry 

demands the use of corrosion inhibitors on all carbon steel materials in order to satisfy the 

safety requirements and ensuring that the facility is in operation without any down time. 

However, the solution offered as a mitigating mechanism for countering the degradation of 

carbon steel material through corrosion, translates into a new challenge in the form of 

administering the maintenance program.  

 

The industry today is posed with an inherent challenge to define and implement a 

maintenance model or system that is optimized for the measurement and implementation of 

mitigating  mechanisms. The evolution of corrosion resistant alloys has significantly 

downplayed the need for such an evaluation. However, with rapidly increasing production and 

operating costs, and with significant developments in branch of reliability engineering, 

developing the limit state functions has helped operators consolidate some of the practical 

experiences and probabilistic theories. For developing and optimizing such a maintenance 
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program, it is important that the probability of failure of the material is evaluated using either 

theoretical simulations or probabilistic simulations. In this research, the researcher made an 

attempt to understand the significant effects of corrosion using both the probabilistic as well 

as the deterministic models.  By doing so, the researcher, performed the reliability analysis of 

the materials and quantified the touchstones that determine the failure of the flowlines. The 

results of touchstones such as strength and force calculated and quantified in chapter 9.  

 

The research has mapped the results of the calculated corrosion rates from using the 

Cassandra model used by the operator British Petroleum and NORSOK M-506 model with 

efficiency of the inhibitors to calculate the percentage loss of thickness of pipeline due to 

corrosion. Based on the results, the research found that to maintain less than 30% of the wall 

thickness loss due to corrosion, the carbon steel material requires the inhibitor efficiency to be 

in the range high to very high with the life of initial protection provided to the pipeline in the 

range of 10 to 20 years. Similarly, the research found that to maintain less than 90% but 

greater than 30% of the wall thickness loss due to corrosion, the carbon steel material requires 

the inhibitor efficiency to be in the range very low to high with the life of initial protection 

provided to the pipeline in the range of 0 to 25 years. For stainless steel, duplex and super 

duplex grade materials, based on the results, the research found that to maintain less than 30% 

of the wall thickness loss due to a corrosion rate of 0.04 mm/yr., the materials requires the 

inhibitor efficiency to be in the range low to very low with the life of initial protection 

provided to the pipeline in the range of 15 to 20 years. To maintain less than 90% but greater 

than 30% of the wall thickness loss due to corrosion, the stainless steel, duplex and super 

duplex grade materials require the inhibitor efficiency to be in the range low to moderate with 

the life of initial protection provided to the pipeline in the range of 10 to 20 years. For 

titanium grade materials, based on the results, the research found that to maintain less than 

30% of the wall thickness loss due to a corrosion rate of 0.003 mm/yr., the materials requires 

the inhibitor efficiency to be in the range low with the life of initial protection provided to the 

pipeline in the range of 20 to 25 years. To maintain less than 90% but greater than 30% of the 

wall thickness loss due to corrosion, the titanium grade materials require the inhibitor 

efficiency to be of the range low to very low with the life of initial protection provided to the 

pipeline in the range of 20 to 25 years. 

In order to calculate the safety index and thereafter the probability of failure of the material 

exposed to corrosion, both deterministic as well as probabilistic has been adapted in this 

research. The results of probabilistic and deterministic models suggest and reiterate that the 
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probability of failure for the carbon steel grade materials with SMYS = 42000 Psi  and SMTS 

= 52000 Psi, increases proportionately with decrease in efficiency of the inhibitor and the life 

of initial protection provided to the carbon steel pipeline. The results suggest that a very low 

efficiency of inhibitor, administered from the beginning of the life of the carbon steel 

flowlines translate into a probability of failure of the order 48% with a safety index of 0.05.  

 

Even with very high efficiency of the inhibitor, the probability of failure of the carbon steel 

material is calculated and found to be 20% with a safety index 0.84. The research also made 

an important evaluation with respect to the correlation between the efficiency of inhibitor 

required and the life of initial protection required to be provided to the pipe in order to 

maintain less than 30% loss of wall thickness of the pipe. The results of the evaluation 

suggest that the probability of failure of the carbon steel material is in the range 14 % to 25%, 

for inhibitor efficiency falling in the range very low to very high administered during 0 to 20 

years of the life of initial protection to the pipeline. Similarly for maintaining the wall 

thickness of the pipe in the range 30% to 60 % of initial wall thickness, the results of the 

evaluation suggest that the probability of failure of the carbon steel material is in the range 

29% to 36%, for inhibitor efficiency falling in the range very low to very high administered 

during 0 to 20 years of the life of initial protection to the pipeline. For maintaining the wall 

thickness of the pipe in the range 60% to 90 % of initial wall thickness, the results of the 

evaluation suggest that the probability of failure of the carbon steel material is in the range 

39% to 40%, for inhibitor efficiency falling in the range very low to very high administered 

during 0 to 20 years of the life of initial protection of the flowline. 

 

The results of probabilistic and deterministic models suggest and reiterate that the probability 

of failure for the stainless steel grade materials with SMYS = 29732 Psi  and SMTS = 74694 

Psi, increases proportionately with decrease in efficiency of the inhibitor and the life of initial 

protection provided to the stainless steel pipeline. The results suggest that a very low 

efficiency of inhibitor, administered from the beginning of the life of the stainless steel 

flowlines translate into a probability of failure of the order 83% with a safety index of -0.96. 

With very high efficiency of the inhibitor, the probability of failure of the stainless steel 

material is calculated and found to be 67% with a safety index -0.43. The research also 

evaluated stainless steel grade materials with respect to the correlation between the efficiency 

of inhibitor required and the life of initial protection required to be provided to the pipe in 

order to maintain less than 30% loss of wall thickness of the pipe. The results of the 
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evaluation suggest that the probability of failure of the stainless steel material is in the range 

60% to 77%, for inhibitor efficiency falling in the range very low to very high administered 

during 0 to 20 years of the life of initial protection to the pipeline. Similarly for maintaining 

the wall thickness of the pipe in the range 30% to 60 % of initial wall thickness, the results of 

the evaluation suggest that the probability of failure of the stainless steel material is in the 

range 81% to 83%, for inhibitor efficiency falling in the range very low to very high 

administered during 0 to 20 years of the life of initial protection to the pipeline. For 

maintaining the wall thickness of the pipe in the range 60% to 90 % of initial wall thickness, 

the results of the evaluation suggest that the probability of failure of the stainless steel 

material is in the range 81% to 83%, for inhibitor efficiency falling in the range very low to 

very high administered during 0 to 15 years of the life of initial protection to the pipeline. 

 

The results of probabilistic and deterministic models suggest and reiterate that the probability 

of failure for the 6Mo grade materials with SMYS = 55000 Psi  and SMTS = 107000 Psi, 

increases proportionately with decrease in efficiency of the inhibitor and the life of initial 

protection provided to the 6Mo pipeline. The results suggest that a very low efficiency of 

inhibitor, administered from the beginning of the life of the 6Mo flowlines translate into a 

probability of failure of the order 67% with a safety index of -0.43. With very high efficiency 

of the inhibitor, the probability of failure of the 6Mo material is calculated and found to be 

46% with a safety index 0.1. The research also evaluated 6Mo grade materials with respect to 

the correlation between the efficiency of inhibitor required and the life of initial protection 

required to be provided to the pipe in order to maintain less than 30% loss of wall thickness of 

the pipe. The results of the evaluation suggest that the probability of failure of the 6Mo 

material is in the range 40% to 59%, for inhibitor efficiency falling in the range very low to 

very high administered during 0 to 20 years of the life of initial protection to the pipeline. 

Similarly for maintaining the wall thickness of the pipe in the range 30% to 60 % of initial 

wall thickness, the results of the evaluation suggest that the probability of failure of the 6Mo 

material is in the range 64% to 67%, for inhibitor efficiency falling in the range very low to 

very high administered during 0 to 20 years of the life of initial protection to the pipeline. For 

maintaining the wall thickness of the pipe in the range 60% to 90 % of initial wall thickness, 

the results of the evaluation suggest that the probability of failure of the 6Mo material is in the 

range 64% to 67%, for inhibitor efficiency falling in the range very low to very high 

administered during 0 to 20 years of the life of initial protection to the pipeline. 
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The results of probabilistic and deterministic models suggest and reiterate that the probability 

of failure for the Duplex grade materials with SMYS = 65000 Psi  and SMTS = 95000 Psi, 

increases proportionately with decrease in efficiency of the inhibitor and the life of initial 

protection provided to the Duplex pipeline. The results suggest that a very low efficiency of 

inhibitor, administered from the beginning of the life of the Duplex flowlines translate into a 

probability of failure of the order 17% with a safety index of 0.95. With very high efficiency 

of the inhibitor, the probability of failure of the Duplex material is calculated and found to be 

7% with a safety index 1.48. The research also evaluated Duplex grade materials with respect 

to the correlation between the efficiency of inhibitor required and the life of initial protection 

required to be provided to the pipe in order to maintain less than 30% loss of wall thickness of 

the pipe. The results of the evaluation suggest that the probability of failure of the Duplex 

material is in the range 20% to 38%, for inhibitor efficiency falling in the range very low to 

very high administered during 0 to 20 years of the life of initial protection to the pipeline. 

Similarly for maintaining the wall thickness of the pipe in the range 30% to 60 % of initial 

wall thickness, the results of the evaluation suggest that the probability of failure of the 

Duplex material is less than 43%, for inhibitor efficiency falling in the range very low to very 

high administered during 0 to 20 years of the life of initial protection to the pipeline. For 

maintaining the wall thickness of the pipe in the range 60% to 90 % of initial wall thickness, 

the results of the evaluation suggest that the probability of failure of the Duplex material is 

less than 43%,  for inhibitor efficiency falling in the range very low to very high administered 

during 0 to 20 years of the life of initial protection to the pipeline. 

 

The results of probabilistic and deterministic models suggest and reiterate that the probability 

of failure for the Super Duplex grade materials with SMYS = 80000 Psi  and SMTS = 116000 

Psi, increases proportionately with decrease in efficiency of the inhibitor and the life of initial 

protection provided to the Super Duplex pipeline. The results suggest that a very low 

efficiency of inhibitor, administered from the beginning of the life of the Super Duplex 

flowlines translate into a probability of failure of the order 43% with a safety index of 0.18. 

With very high efficiency of the inhibitor, the probability of failure of the Super Duplex 

material is calculated and found to be 24% with a safety index 0.71. The research also 

evaluated Super Duplex grade materials with respect to the correlation between the efficiency 

of inhibitor required and the life of initial protection required to be provided to the pipe in 

order to maintain less than 30% loss of wall thickness of the pipe. The results of the 

evaluation suggest that the probability of failure of the Super Duplex material is less than 
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35%, for inhibitor efficiency falling in the range very low to very high administered during 0 

to 20 years of the life of initial protection to the pipeline. Similarly for maintaining the wall 

thickness of the pipe in the range 30% to 60 % of initial wall thickness, the results of the 

evaluation suggest that the probability of failure of the Super Duplex material is less than 

35%, for inhibitor efficiency falling in the range very low to very high administered during 0 

to 20 years of the life of initial protection to the pipeline. For maintaining the wall thickness 

of the pipe in the range 60% to 90 % of initial wall thickness, the results of the evaluation 

suggest that the probability of failure of the Super Duplex material is less than 35%, for 

inhibitor efficiency falling in the range very low to very high administered during 0 to 20 

years of the life of initial protection to the pipeline. 

 

The results of probabilistic and deterministic models suggest and reiterate that the probability 

of failure for the Titanium grade materials with SMYS = 25000 Psi  and SMTS = 35000 Psi, 

increases proportionately with decrease in efficiency of the inhibitor and the life of initial 

protection provided to the Titanium pipeline. The results suggest that a very low efficiency of 

inhibitor, administered from the beginning of the life of the Titanium flowlines translate into a 

probability of failure of the order 21% with a safety index of 0.82. With very high efficiency 

of the inhibitor, the probability of failure of the Titanium material is calculated and found to 

be 16% with a safety index 1. The research also evaluated Titanium grade materials with 

respect to the correlation between the efficiency of inhibitor required and the life of initial 

protection required to be provided to the pipe in order to maintain less than 30% loss of wall 

thickness of the pipe. The results of the evaluation suggest that the probability of failure of the 

Titanium material is 21%, for inhibitor efficiency falling in the range very low to very high 

administered during 0 to 20 years of the life of initial protection to the pipeline. Similarly for 

maintaining the wall thickness of the pipe in the range 30% to 60 % of initial wall thickness, 

the results of the evaluation suggest that the probability of failure of the Titanium material is 

21%, for inhibitor efficiency falling in the range very low to very high administered during 0 

to 20 years of the life of initial protection to the pipeline. For maintaining the wall thickness 

of the pipe in the range 60% to 90 % of initial wall thickness, the results of the evaluation 

suggest that the probability of failure of the Titanium material is 21%, for inhibitor efficiency 

falling in the range very low to very high administered during 0 to 20 years of the life of 

initial protection to the pipeline. 

 

Availability: 
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With significant developments in the offshore oil and gas  industry sector, the management of 

asset availability and asset management offers a series of challenges to the operators. The 

challenges henceforth translated into a need for implementing strategies and techniques for 

satisfying the maintenance protocols for the system to be up and running. As recommended 

by NORSOK standard M-001, the researcher, in this research, deviated from the availability 

perspective with respect to spare parts management, complexities in inventory management, 

economics of inventory, availability of asset management personnel, mismatch between 

actual demand, purchasing period, stock piling of unnecessary inventory parts etc. and 

focused on the maintenance management philosophies. The objective of the deviation was to 

ensure that the asset is utilized to its design life capacity and spend economically on the 

asset's maintenance requirements. The researcher therefore evaluated availability 

characteristic of the flowlines materials with respect to the asset management principles rather 

than the supply chain perspective. By doing so, the researcher latently ensured that the 

evaluation meets the asset management principles such as low down time, reduce inspection 

requirements, foresee risks associated with unexpected events and more importantly create a 

conducive operating environment for zero accidents through maintaining the technical 

integrity of the flowlines. 

 

Under the heading of corrosion, the researcher evaluated the selection of material from the 

availability perspective and the results are presented in chapter 9. As discussed in chapter 9. 

The availability of the material is drawn parallels to the availability of corrosion inhibitor or 

in other words the time the inhibitor should be made available in order to ensure the system is 

up and maintain its technical integrity for its designed life. The research adapted the 

percentage availability formula provided by NORSOK standard M-001 considering the 

parameters of the operating characteristics such as CO2, H2S and O2, operating temperature 

and pressure, amount of organic acids or in other words pH, velocity of the flow, kind of flow 

regime, metallic ion concentration, biological activity and condensing conditions. The 

quantifiable corrosivity characteristics such as uninhibited corrosion rate and corrosion 

allowance has been adapted from the results of the two models used this this research namely, 

NORSOK M-506 and British Petroleum Cassandra for the aforementioned parameters. 

Depending upon the operating characteristics, the experimental results of the model 

NORSOK M-506 and British Petroleum Cassandra are presented in chapter 9. The results 

suggest that  for a 95% availability of the corrosion inhibitor, for a temperature 65 degrees, 

the experimental corrosion allowance is 4.25 for NORSOK M-506 model and 5.5 for BP 
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Cassandra model and for 100 degrees the experimental corrosion allowance is in the range 

4.25 to 5.25 for NORSOK M-506 model and 8.3 to 16 for BP Cassandra model . Similarly for 

a 99% availability of the corrosion inhibitor, for a temperature 65 degrees, the experimental 

corrosion allowance is 1.6 for NORSOK M-506 model and 1.8 for BP Cassandra model and 

for 100 degrees the experimental corrosion allowance is in the range 2.6 to 3.1 for NORSOK 

M-506 model and 3.56 to 5.25 for BP Cassandra model .  The uninhibited service life 

corrosion has been calculated by the researcher according to the recommendation of 

NORSOK M-001 to accommodate the possibility of service life corrosion when the predicted 

corrosion rates are low. Since the  service life corrosion exceeds the maximum corrosion 

allowance practically possible, the possibility of reducing corrosion rate to an acceptable level 

is considered by the application of corrosion inhibition philosophy and hence requires  the use 

of appropriate inhibitor so that the resulting corrosion rate is practically kept as low as 

possible despite the fact inevitable natural corrosion in the system. 

 

The results of the required availability of corrosion inhibitor at the concentration levels that 

are above or below the required minimum dosage for carbon steel are presented in chapter 9. 

The results suggest that in order to maintain the required corrosion allowance for a design life 

of 25 years recommended by NORSOK M-001 (3mm) and have a corrosion inhibitor 

availability less than 95%, the required operating characteristics have to be  

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.05 to 0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.05 to 0.1mm/yr. for BP CASSANDRA 

The results also suggest that in order to maintain the required corrosion allowance for a 

design life of 25 years recommended by NORSOK M-001 (3mm) and have a corrosion 

inhibitor availability greater than 95%, the required operating characteristics have to be  

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for NORSOK M-506 model 
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 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for BP CASSANDRA model 

The results of the required availability of corrosion inhibitor at the concentration levels that 

are above or below the required minimum dosage for stainless steel and 6Mo grade materials 

are presented in chapter 9. The results suggest that in order to maintain the required corrosion 

allowance for a design life of 25 years recommended by NORSOK M-001 (1mm) and have a 

corrosion inhibitor availability less than 95%, the required operating characteristics have to be  

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.05 to 0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for BP CASSANDRA model 
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 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.05 to 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for BP CASSANDRA model 

The results suggest that for stainless steel and 6Mo grade materials, in order to maintain the 

required corrosion allowance for a design life of 25 years recommended by NORSOK M-001 

(1mm), the corrosion inhibitor availability is always less than 95%. 

For Duplex, super duplex and titanium grade materials, the results of the required availability 

of corrosion inhibitor at the concentration levels that are above or below the required 

minimum dosage are presented in chapter 9. The results suggest that in order to maintain the 

required corrosion allowance for a design life of 25 years recommended by NORSOK M-001 

(1mm) and have a corrosion inhibitor availability less than 95%, the required operating 

characteristics have to be  

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.05 to 0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for NORSOK M-506 model 

 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for BP CASSANDRA model 
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 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 65 degrees with 1 % Co2 in the gas phase and a corrosion rate 

0.05 to 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 100 degrees with 1 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for BP CASSANDRA model 

 A temperature less than 100 degrees with 5 % Co2 in the gas phase and a corrosion 

rate 0.05 to 0.1mm/yr. for BP CASSANDRA model 

The results suggest that for duplex, super duplex and titanium grade materials, in order to 

maintain the required corrosion allowance for a design life of 25 years recommended by 

NORSOK M-001 (1mm), the corrosion inhibitor availability is always less than 95%. 

 

Fabrication: 

As discussed in chapter 9, from the fabrication perspective, the corrosion characteristics of 

materials used for flowlines depend on the material itself, type of filler material used, the kind 

of welding procedure adopted and the requirement of post weld heat treatment. In addition the 

researcher also extended the study of fabrication of materials to required heat treatment, 

preheating requirement, hot forming and cold forming. The researcher evaluated the materials 

for all the fabrication characteristics and the results are presented in chapter 9.  

 

The diverse characteristics of each material govern the fabrication standards and techniques to 

be implemented. While carbon steel material provide great flexibility when it comes to 

preheating requirements, thermal conductivity, cleanliness requirements, great flow 

characteristics of fillers and good machinability,  the high percentage of sulfur in its 

composition makes it more prone to hot cracking. In order to counter the effects of sulphur 

carbon steel requires manganese in its composition to mitigate failure due to hot cracking. 

The stainless steel grade materials are also prone to hot cracking with the presence of zinc or 

copper and when weldments are created using laser welding.  The duplex and super duplex 

grade materials offer significant benefits compared to austenitic stainless steel material grades 

and carbon steel material grades as the probability of hot cracking is less.  

 

While selecting carbon steel, the effects of hardening during cooling of the weld due to high 

percentage of carbon has to be considered. With low percentage of carbon in austenitic, 
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duplex and super duplex steels, the effect as a result of hardening is less as compared to 

carbon steel. When evaluating carbon steel with respect to failure due to cold cracking, the 

material offers an advantage in comparison to stainless steel grade materials. Even though 

preheating offers a solution to mitigate the failure associated to stainless steel, it adds up the 

cost and requirement itself. However for austenitic stainless steel, the amount of hardness as a 

result of cooling after the weld is very low and hence as a result do not demand the preheat 

requirements unlike carbon steel grade materials. For duplex and super duplex grade 

materials, preheating is not a necessary action to prevent cold cracks unless it is used to 

prevent condensation. However, when creating a weldment between a light component and a 

heavy component, preheating is administered for duplex and super duplex grade materials.  

In addition, such an effort to preheat stainless steel grade materials can be detrimental.  

 

The presence of chromium in corrosion resistant alloys to prevent rust, upon chemically 

reacting with carbon lose the important characteristic of corrosion resistance. The corrosion 

crack as a result can propagate along the grain structure of the material, thereby affecting the 

longitudinal cross section of the pipe. Even though post weld treatment offers in itself a 

solution for corrosion cracks, the use of carbon steel material grade offer excellent solution 

when it comes to avoiding corrosion cracks as a result of formation of chromium carbides. 

When it comes to super austenitic stainless steel grade materials, with the use of filler 

materials with high compounds of molybdenum, the welds offer more retaliation to corrosion 

than the material itself. 

When creating weldments on stainless steel materials, the surface must be clean or in other 

words free from any scales or oxides. The presence of chromium in stainless steel material, 

duplex and super duplex materials in order to counter corrosion allows the formation of 

undesired chromium oxide during the weld. Unlike carbon steel, where the steel weld filler 

material with compositions of manganese and silicon can be used, the stainless steel material 

cannot avoid scales formation. Hence, the stainless steel grade materials demand significant 

amount of cleaning and the weld must be kept clean from formation of black scales. However, 

duplex and super duplex materials do not necessarily demand the need for surface preparation 

to mitigate the failure of weldments. However, both duplex and super duplex materials are 

significantly affected by the insufficient post weld cleaning when compared to stainless steel 

grade materials leading to the phenomenon of pitting. 

 



173 

 

Even though the materials under discussion project some significant differences when it 

comes to their evaluation with respect to welding, preheating, surface preparation, post weld 

heat treatment etc., the application of suitable techniques and standards can essentially hold 

the corrosion resistance properties upon fabrication. In addition, the not so favorable need of 

cost for welding dissimilar materials especially, ascertaining that the materials under weld are 

subjected to lower stresses by regulating the coefficient of expansion of each material has to 

be evaluated. However, the resultant costs, facilities, affinity to different materials, required 

personnel expertise becomes the fourth dimension under which the materials have to be 

evaluated for taking the holistic analysis of fabrication characteristics. 
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12. ABBREVIATIONS 

 

A - Annualized Cost 

CRA - Corrosion Resistant Alloy. 

CSCC - Chloride induced stress corrosion cracking. 

GRP - Glass fibre Reinforced Plastic 

LCC - Life Cycle Cost. 

NACE - NACE International. 

PRE - Pitting Resistance Equivalent. 

PW - Present Worth 

SCC - Sulphide stress cracking. 

SMYS - Specified Minimum Yield Strength. 

SSTL - Stainless Steel 

UNS - Unified Numbering System 

ZRA - Zero resistance Ammetry 


