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GLOBAL WEAK SOLUTIONS FOR A GAS-LIQUID MODEL WITH
EXTERNAL FORCES AND GENERAL PRESSURE LAW*

HELMER ANDRÉ FRIISt AND STEINAR EVJE*

Abstract. In this work we show existence of global weak solutions for a two-phase gas-liquid
model where the gas phase is represented by a general isothermal pressure law, whereas the liquid
is assumed to be incompressible. To make the model relevant for pipe and well-flow applications
we have included external forces in the momentum equation representing, respectively, wall friction
forces and gravity forces. The analysis relies on a proper combination of the methods introduced
in [S. Evje and K. H. Karlsen, Commun. Pure Appl. Anal, 8 (2009), pp. 1867-1894], [S. Evje,
T. Flatten, and H. A. Friis, Nonlinear Anal., 70 (2009), pp. 3864-3886], where a two-phase gas-
liquid model without external forces was studied for the first time, and on techniques that have
been developed for the single-phase gas model. As a motivation for further research, some numerical
examples are also included demonstrating the ability of the model to describe the ascent of a gas
slug due to buoyancy forces in a vertical well. Characteristic features like expansion of the moving
gas slug as well as counter-current fîow mechanisms (i.e., liquid is moving downward due to gravity
and gas is displaced upward) are highlighted. These examples are highly relevant for modeling of
gas-kick flow scenarios, which represent a major concern in the context of oil and gas well control
operations.

Key words, two-phase flow, well model, gas-kick, weak solutions, Lagrangian coordinates, free
boundary problem
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1. Introduction and examples. This work is devoted to a study of a one-
dimensional two-phase model of drift-fiux type. The model is frequently used in
industry simulators to simulate unsteady, compressible fiow of liquid and gas in pipes
and wells [1, 4, 5, 7, 19, 23, 26, 31]. The model consists of two mass conservation
equations corresponding to each of the two phases gas {g) and liquid (/) and one
equation for the conservation of the momentum of the mixture and is given in the
following form:

(1) dt{aipi] + dx{aipiui] = 0,

-f- dx[agPgul + aipiuf + p] = <? + dxledxUmix], Umix = CigUg -f a¡u¡.

where £ > 0. The model is supposed under isothermal conditions. The unknowns
are as follows: pi,Pg, the liquid and gas densities; a/,ag, the volume fractions of
liquid and gas satisfying ag -\- ai = 1; ui,Ug, the fluid velocities of liquid and gas;
p, the common pressure for liquid and gas; and q, representing external forces like
gravity and friction. Since the momentum is given only for the mixture, we need an
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additional closure law, a so-called hydrodynamical closure law, which connects the
two phase velocities. More generally, this law should be able to take into account the
different fiow regimes. In addition, we need a thermodynamical equilibrium model
which specifies the fiuid properties. More details will be given in the next section.
Otherwise, we refer to [2, 3, 6, 7, 11, 12, 15, 16, 23, 25, 26, 28, 31] for various numerical
schemes which have been developed for the study of the drift-flux model. See also [8]
for a study of the relation between the drift-fiux model and the more general two-
fluid model where two separate momentum equations are used instead of a mixture
momentum equation [4, 19].

In [10, 9] we studied a simplified version of the model (1) obtained by assuming
that fluid velocities are equal, Ug = ui = u, and by neglecting the external forces,
i.e., q = 0. In addition, we neglected certain gas eflects by considering a simplified
momentum equation where acceleration terms depend solely on the liquid phase. This
is motivated by the fact that liquid phase density typically is much higher than gas
phase density. Consequently, we considered a model in the form

dt[agPg]-\-d:,[agpgu] = 0,

(2) dt[aipi]-\-d:,[aipiu] = 0,

^-\-d:cP = d^led^u], p,e>0.

Assuming a polytropic gas law relation, ,

(3) P = cp;,

with 7 > 1 for the gas phase, whereas the liquid phase is treated as an incompressible
fluid, i.e., pi = Const, we get a pressure law of the form

(4) Kn,m) =

where we use the notation n = ügpg and m = a;p¿. In particular, we see that there is a
possibly singular behavior associated with pressure at transition to pure liquid phase,
i.e., ai = 1, which yields m = pi and n = 0. In addition, we have the possibility for
vacuum as in the single-phase gas model, i.e., that pg = 0, which implies that n = 0
and p = 0.

Different forms for the viscosity function e have been considered. In [10] we used

(5) , = ,(,„) = _ J ^ , ö e (0,1/3),

whereas in [9] we considered ^

(6) e = e{n,m) = -^^-^^^, Ö G (0,1/3).

More recently, Yao and Zhu [37] also studied the model (2) in a flow regime where
the viscosity coefficient £ > 0 was assumed to take the form (5). They gave a proof of
the global existence and uniqueness of weak solutions when 9 is in (0,1] and thereby
improved the result of [10]. They also gave an interesting asymptotic behavior result
and obtained the regularity of the solutions by the energy method. The same authors
also ¡presented a nice result for the same gas-liquid model (but constant viscosity term)
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when the masses m,7i connected continuously to a vacuum state m = n = 0 [38]. A
key point in the analysis of the model (2) and exploited in the above-mentioned works
is to rewrite it in terms of Lagrangian coordinates {^, r ) . This gives us a model of the
following form:

drTi-\-{nm)d^u = 0,

(7) fc a^m 4-m^oçw = 0, ' ?

. , drU 4- d^p{n, m) = d^{e{

which also clearly can be written as

(8) drtn 4- m^d^u = 0, '

dj-u 4~ dfp{^c,Tnj = df(^£(^in)Titdf'U), c = —.
m

Motivation for the form of the viscosity term e. Motivated by lab ex-
periments, different examples of a mixture viscosity term /i,„, where the gas-liquid
mixture is considered as a single-phase fiuid, have been proposed. One of them is the
following correlation [27, 32]:

(9) — = — 4- —^ (McAdams et al.'s model).

Here y is defined as mass fiux fraction: . ,

(10) , y =
4-

For equal fluid velocities u/ — Ug this corresponds to y = ^^^^.
If we assume that n '^m (i.e., the liquid phase is dominating), then y = ^ ^ ^ »

^ := c for 0 < y < 1. Moreover, typically the liquid viscosity /i; is considerable larger
than the gas viscosity ßg-, see (24). Consequently, /i/ 3> ßg and we may approximate
as follows by using the viscosity model (9) of McAdams, Woods, and Heroman [27]:

(11) — = \ « — = —.
ßm ßg ßl ßg ßg

Directly motivated by the traditional single-phase viscosity term of the form E =
(/xp)̂ """* = Cp^'^^ in Lagrangian coordinates (see, for example, [29, 22, 24, 33, 30, 21]),
we may propose a similar viscosity coefficient E = {ßmpm)^'^^ for the gas-liquid
mixture model (1) where ^„1 is a mixture viscosity defined by, e.g., (9), and pm is a
suitable mixture density. If we define a mixture density pm as

(12) „ Pm =

and combine it with the approximation (11), then E = (ßmPm)^'^^ corresponds to

:= E, + E2,
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where we have used the fact that pg = pi " ^ ; see (35). Recalling that pi is constant
and that c = ^ = c[x) is constant in time according to the first equation of (8), the
most "dynamic" part of this viscosity term is the first part:

(13) E,

Comparing (13) with (5) and taking into account that the viscosity term in terms
of the Lagrangian description takes the form E = e{m)m (see (8)), we see that Ei
coincides with the one that is studied in [10] except that the coefficient {agpip.g)^'^^
has been replaced by a constant.

Purpose of this work. The objective of this work is twofold.
(A) First, we demonstrate some simple but highly relevant flow cases from an engi-

neering point of view. More precisely, we illustrate by numerical calculations
that the drift-flux model (1) can be used to study how a gas slug, initially lo-
cated at the bottom of a vertical well, will ascend driven by buoyancy forces.
The dynamics are determined by a relatively complicated interplay between
friction forces, gravity, and slip relation. Strong gas slug expansion is possible
near the surface, and transition between two-phase and single-jjhase regions
typically will occur. This type of flow is highly relevant for gas-kick scenarios,
which ultimately can lead to blowout [1], as well as for the study of volcanic
eruption mechanisms [20].

(B) Second, we provide mathematical analysis of a simplified gas-liquid model
similar to (2) but with two important extensions relevant for the simulation
cases demonstrated in (A): (i) inclusion of a frictional force term and gravity
term (compare (14) with (7)); and (ii) use of a general equation of state for
the gas phase. In particular, we derive an existence result for a class of weak
solutions by employing a proper combination of the techniques introduced
in [10, 9] for the study of (2) and single-phase analysis as described, e.g., in
[33, 34, 35, 36]. We refer to the remark after Theorem 3.1 for more details
concerning additional difliculties due to the new terms and how these terms
are handled within the chosen mathematical framework.

To be precise, we study the following gas-liquid model described in terms of La-
grangian variables where we replace ( ,̂ r) by {x, t):

-I- {nm)dxU = 0,

(14) dtm -h m^ôx« = 0,

dtU-\-dxp{n,m) =-fm^u\u\-\-g-\-dx{E{m)dxU), a: G (0,1),

with

(15) p(n,m)
pi - m

where P is a general pressure function whose properties are specified in section 3.2;
see (58)-(60). Moreover, the viscosity term is the same as studied in [10, 37]:

( in \ Ö+1
) , 0 < 6 l < l / 2 .

pi - mJ

We here note that 9 is allowed to be in a larger interval compared to the works [10, 37].
Boundary conditions are given by . , . . - •

(17) \p{n,m)-E{m)dxu]{ù,t)=Q, ÍÍ(1,Í) = 0.
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whereas initial data are

(18) n(x,O) = no(x), m(x,O) = mo(x), u(x,O) = •tio(x), x 6 (0,1).

Hopefully the combination of (A) and (B) can serve as motivation for other researchers
to deepen insight into the matliematical properties of the general drift-flux model (1)
as well as bring forth further development of the drift-flux model itself to make it
more applicable for various large scale multiphase flow scenarios. Before we end this
section we recall that the key result leading to Theorem 3.1 is the fact that we can
derive a series of a priori estimates for approximate solutions of (14)-(18) and a
corresponding limit procedure. The main estimates are to obtain appropriate upper
and lower pointwise bounds on the masses m and n. These estimates must be sharp
enough to handle the potential singular behavior associated with pressure p{n, in) and
viscosity E{in). For that purpose we introduce a transformed version of the model (see
(69)-(72)) described in terms of new variables (c, Q, u). One crucial step is to obtain
the result of Lemma 4.6, which allows us to derive more control on Q, as expressed by
Lemma 4.7. Ultimately, this gives us the pointwise lower bound on Q, as described
by Lemma 4.8. These bounds can then be transferred back to sufficient control on the
masses m and n. Finally, equipped with the regularity results of Lemma 4.12-4.14 we
can apply standard compactness arguments to derive convergence of the approximate
solutions to limit functions that can be shown to be a weak solution of (14)-(18).

The rest of the paper is organized as follows: In section 2 we present more details
for the gas-liquid model we study in a setting relevant for well control operations.
We also present numerical calculations of two characteristic gas slug fiow examples
where gravity and frictional forces play an important role. In section 3, motivated
by the numerical examples, we derive the simplified version of the full model (1)
with inclusion of friction and gravity, as given by (14). We present the model in
appropriate Lagrangian variables and give the main assumptions as well as the main
existence result. Theorem 3.1. Section 4 is devoted to the various a priori estimates
which in turn imply compactness and convergence to weak solutions.

2. Application of the drift-flux model for well control operations.

2.1. Specification of the model (1). To close the system (1), we need to
include the following additional equations: The volume fractions are related by

(19) a , + a g = l.

Thermodynamical laws specify fluid properties such as densities pi, pg and viscosities
fj.l,fi,g. In particular we will assume that the liquid density has the form

(20)

where a; = 1000 [m/s] is the velocity of sound in the liquid phase and p¡,o and pi,o
are given constants. Here we will assume that p¡,o = 1000 [kg/m^] and p¡,o = 1 [bar].
It is often assumed that the liquid is incompressible, i.e.,

(21) . . Pi = pi,o-

Typically, we assume that we consider a polytropic, isentropic ideal gas characterized
by

(22)
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In other words, we have

(23) • P9={^) ' 7 > 1,

where Oj = 316 [m/s] is the velocity of sound in the gas phase. Furthermore, the
viscosity for liquid and gas are assumed to be , -, •

(24) • /xi = 5 - 1 0 - 2 [Pas], /x̂  = 5 • 10"^ [Pa s]. , ,̂  .

Since we only have one momentum equation for the mixture of the two phases, the
model must be supplemented with an additional hydrodynamical closure law whose
purpose is to determine the fluid velocities M/ , Ug through a so-called slip relation. We
may assume that the slip relation can be expressed by a general relation

(25) •• .1 f{ag,Ul,Ug,Pg,Pl) =0. - . *. ¡i :.

A commonly used slip relation (see, for example, [1, 7]) is given by . ';v . ^

(26) /(Qg,M/,Ug,/9g,p;) = % -CoiXmix - C i = 0, "

where , i< '

+agUg,

and co,ci are flow dependent coeflicients. co is the so-called profile parameter (or
distribution coefficient), whereas ci is the drift velocity. The gas concentration tends
to be highest in the center of the well for many flow scenarios, where the local mixture
velocity is also fastest. Thus, when integrated across the area of the well, the average
velocity of the gas tends to be greater than that of the liquid. This effect is represented
by the co parameter, ci, on the other hand, represents the buoyancy effect. Important
characteristics of the different flow patterns can be captured through appropriate
choices for these two parameters. For the source term q we have two components,

q = Ff+Fg, ' : >'

where » '

(27) Fg = g{aipi+agPg)sm9

represents the gravity force in which g is the gravitational constant and 9 is the in-
clination. Moreover, Fj rej^resents friction forces between the wall and the fluids.
Typically (see, for example, [7] and the references therein), the following simple ex-
pression for Ff is assumed:

(28) . ., I'f =

where d is the inner diameter and the mixed viscosity ßmix is given by

where the viscosities ßi, ßg are given by (24). In order to see how pressurep is related
to the masses m = aipi and 7). = agpg we observe that the relation (19) can be written
as

(29) ' . ' ^ + ^ = 1 . . .
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Using this, we can express the pressure p as a function P of n and m, i.e.,

(30) p=P{n,m). " • '

In particular, for the choices (20) and (23) with 7 = 1, we see that (30) corresponds to
solving a second order polynomial which has a unique physical relevant solution. More
generally, for 7 > 1 the existence and uniqueness of solutions leading to a well-defined
pressure p require finer investigations. See, for example, [13, 14] and the references
therein for more information.

2.2. The ascent of a gas slug in the context of well control operations.
Various gas-kick simulators have been developed for the purpose of studying well
control aspects during exploratory and development drilling subject to high pressure
and temperature bottomhole conditions. Precise predictions of wellbore pressures,
liquid/gas volumes, as well as fiow rates at the top of the well represent central issues.
The Deepwater Horizon oil spill that took place in 2010 is a strong reminder of the
need for sufficient well control. Clearly, the possibility of blowout occurrences needs
to be mitigated in order to avoid human casualties, financial losses (interruption of
production, equipment losses), and, last but not least, environmental damage. We
refer to [1] and the references therein for more information pertaining to this subject.
In particular, in [1] the simulations are based on the drift-fiux model (1) equipped
with density-pressure relations similar to those used in the present work as well as a
slip law that is based on the formulation (26).

In the following we consider two different examples which involve the ascent of a
gas slug initially located at the bottom of a well 100 meters deep; the first example
assumes that the well is closed at the top, whereas the second example assumes that
the well is open at the top. The wellbore has a diameter of d = 0.06 cm; otherwise
we use the data as described in section 2.1. In particular, we use a slip relation (26)
with Co and ci defined as

(31) Co = 1.2 - 0.2ag, ci = 2(0.2 + ag)(l - Qg).

We have also used 7 = 1 in (22), which implies that the pressure (30) is obtained
as the solution of a second order polynomial. We rely on the numerical methods
presented in [6, 7] for the following numerical examples.

Example 1: Gas slug in a closed well. In this example we consider the ascent
of a gas slug initially located at the bottom of a well 100 meters deep. The well is
closed at the bottom as well as at the top. Due to the slip law that is used, the gas slug
will immediately start ascending due to the fact that the heavy liquid falls towards
the bottom. We refer to Figure 1 for a visualization of the gas volume fraction Og,
pressure p, and superficial velocities (agVg) and {aivi) for different times. Finally, the
gas will be accumulated at the top of the closed well. The form of the gas slug as it
ascends (length, height, and shape) is strongly related to the slip coefficients co and
ci given by (31). See also Figure 2 for a plot of the gas volume fraction in space and
time. •! , >••' •• " ; ' • l i i •'//"• ' - • ,, ;-

Example 2: Gas slug in an open well. In Figure 3 we consider the same
flow case as in Example 1, except that the well now is open at the top. This implies
that the pressure is kept fixed at the ambient pressure (1 bar) at the top. As the
gas slug ascends, the drop in pressure results in an expansion effect clearly seen from
the plot of the gas volume fraction (Figure 3(top, left)). At the same time there will
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F̂ IG. 1. Top: The behavior of the gas slug (left) and corresponding pressure (right) as the gas
slug is moving upwards. Note the increase in pressure as the gas slug is ascending towards the top.
Bottom: The superficial velocity of gas (agVg) (positive) and liquid (aivi) (negative), respectively,
refiect the upward movement of the gas slug and the downward behavior of the surrounding liquid.
Note that this problem, is relatively complicated to solve as it involves strong nonlinear phenomena
associated with counter-current flow and challenges associated with transition from two-phase to
single-phase fiow.

be a rather strong increase in fluid velocities (bottom). This simulation case gives
an indication of the driving mechanisms as a gas slug approaches the surface and
expands. See also Figure 4 for a plot of the gas volume fraction in space and time.

3. An existence result for a viscous gas-liquid model relevant for well
operations. Development of accurate and robust discretization techniques for solv-
ing the system (1) is naturally related to a good understanding of its mathematical
features (long-time behavior, estimates of various quantities, compactness, etc.). In
particular, clearly it is of interest to obtain existence, stability, and uniqueness results
of various versions of the model (1).

' • •

3.1. The gas-liquid model. In this work we apply the same simplifying as-
sumptions as used in the previous works [10, 9, 37].

(i) We use a simplified momentum equation by neglecting the gas-related terms.
This is motivated by the fact that the liquid density pi is much higher than the
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FIG. 2. A visualization of the gas volume fraction in x-t plan. The plot shows the linear trend
associated with the ascension velocity of the gas slug. Ultimately, all the gas will be localized in a
pure single-phase gas region at the top since the well is closed.

gas density pg, typically, pi/pg = 0(1000). The mixture momentum equation
we consider is then in the form

(32) dt[mui] -I- dx[muf + p{n,m)] ^Fj + Fg + dx[e{m)dxUi],

where, in view of (27) and (28),

Ff = := -fin^ui\ui = g{aipi)sin9 := gm

for appropriate constants f,g > 0. Here we use the fact that the liquid
density pi is constant. We consider the model in a domain [a(i),6] such that
the positive direction coincides with the direction of the gravity force. The
left point X = a{t) is moving, whereas the right point x = 6 is fixed. This is
mostly motivated by the fact that we want to make use of a mathematical
framework similar to that employed in [36].

(ii) We assume that the model is used for a no-slip now regime, i.e., Ug = ui = u,
which corresponds to the choice co — I and ci = 0 in (26).

Hence, we consider the model

(33)

dt[mu]

dtn + 9x[nu] =0 ,

dtm-^ dx[mu] = 0,

mu^ +p{n,m)] = - gm
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FIG. 3. Top: The gas volume fraction (left plot) reflects the strong expansion effect as the gas
slug is approaching the surface where the pressure is equal to ambient pressure. Note the drop in
pressure (right plot) as the gas slug is approaching the top. Note also the viscous effect associated
with the falling film of liquid that surrounds the gas slug that leads to a lower pressure gradient
locally in the slug region. Bottom: The strong expansion of gas close to the open top leads to a
strong increase in the gas and liquid superficial velocities.

together with the constitutive relations

(34) ai-hag = 1, pi = Const, P = P{pg),

where P represents a general pressure law for the gas phase whose properties are
specified in section 3.2; see (58)-(60). Clearly, P becomes a function of the masses n
and m by observing that

(35)
a„

n n , n
= Pi = A:i1 - a , Pi - Pi-m

= Pi-

Here we again take advantage of the fact that the liquid is assumed to be incompress-
ible. Consequently,

(36)
f 11 \

pin, m) = P{ki ).
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FIG. 4. A visualization of the gas volume fraction in x-t plan. The plot shows the strong
expansion effect as the slug is approaching the surface.

To conclude, in view of (33)-(36), we shall in the rest of this paper deal with the
following compressible gas-incompressible liquid two-phase model:

(37)

dt \mu]

where

(38)

(39)

dtn-\- dx\nu] = 0,
tm + dx[mu] = 0,
-f- dxp(n,Tn) = ~ gm -I-

- m

(0,1/2),

where k] and /c2 are constants. One special feature of the above two-phase model (37)-
(39) is the possible singularity associated with the pressure law at transition to pure
liquid flow, that is, when m = piai = pi, or vacuum in the gas phase corresponding
to pg = 0.

As already mentioned, we here propose to study the model (37) in a free boundary
setting where the top point (relatively the gravity force) x = a{t) is moving, whereas
the bottom point x = bis fixed. Note that x = a{t) is the particle path separating the
two-phase mixture and the vacuum state n = m = 0 and is characterized as follows:

(40)
d
—a{t) = u{a{t), t) and \p{n, m) - £{m)dxu\{a{t),t) = 0.

Furthermore, the initial data is specified as

(41) n{x,Q) = no{x), TO(X,O) = mo(x), u{x,Q) = uo{x), x €

where ao = a(0). The boundary condition is set as follows:

(42) ^{n, m) - e{m)dxu\ \x=a{t) =0 , u|x=6 = 0.
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In this work we shall assume that the initial masses no(x),mo(x) connect to vacuum
discontinuously, i.e., inf[o,i] no(x),inf[o,i] mo(x) > Co > 0 for a positive constant Co.

Following along the lines of previous studies for the single-phase Navier-Stokes
equations [29, 22, 24], it is convenient to replace the moving domain [a{t), b] by a fixed
domain by introducing suitable Lagrangian coordinates. First, in view of the particle
paths Xt{x) given by

^^^u{Xt(x),t), Xo(x)=x,

the system (37) takes the form

(43)

Next,

(44)

m

we introduce

du
'dt

the

«271

It^
dm

dt ^

+ p{n,

nux = 0,

nux = 0,
•

' ^ / TT ^^~' ——̂  J fit, iju Uj 1 "̂ ^̂  t í 1 f if 1 \

coordinate transformation

= / m{y,t)dy, r = í
Jalt)

such that the free boundary x = a{t) and the fixed boundary x = 6, in terms of the
(^,r) coordinate system, are given by

(45) 4(t)('r) = 0, Çfc(T) = / m{y,t)dy= / 7no(i/) dy = Const,

where / rrio{y) dy is the total liquid mass initially, which we normalize to 1. Applying
(44) to shift from (x,i) to (^,r) in (43), we get

; • • - , „ , • • ; • ' • ' • :

rrir + {m'^)u^ = 0 , •• '•' ' • • - •

where boundary conditions, in light of (42), are given by

[p{n,m) - £{m)md^u]{O,T) = 0, ti(l,T)=O.

In addition, we have the initial data .*

In the following, we find it convenient to replace the coordinates (C,T) by (x, i) such
that the model we shall work with in the rest of this paper is given in the form

dtn-\-{nm.)dxU = 0, '..^ ' ' > . ; '

(46) dtm-\-m'^dxU = O, / ' • :• '.

dtu + dxp{n,m.) =—frri^ulul-\-g-\-dxiE(m)dxU), X G ( O , 1),
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with

(47) p(^ri,m)
pi - m

and .

(48) E{m)-£{m)m={ ) , 0 < ö < 1/2, " •.
\pl - mJ

where we, for simplicity, have set the constants ki,k2 associated with p and £ to be
fci = 2̂ = 1. Moreover, boundary conditions are given by

(49) [p(n,rn)-.E(m)axu](O,i) = 0, w(l,i) = O, '

whereas initial data are . ~" '. '

(50) n{x,Q) = 7io{x), m(x,O) = Tno(a;), u(x,O) = uo(a:), a; G (0,1).

3.2. Main result. Before we state the main result for the model (14)-(18), we
describe the notation we apply throughout the paper. H^ '̂̂ (/) = H^(I) represents
the usual Sobolev space defined over / = (0,1) with norm [| • ||wi2. Moreover,
L^{K,B) with norm ]] • \\LI'(K,B) denotes the space of all strongly measurable, pth-
power integrable functions from K to B, where K typically is a subset of R and B
is a Banach space. In addition, let ^^[0,1] for a e (0,1) denote the Banach space of
functions on [0,1] which are uniformly Holder continuous with exponent a. Similarly,
let C°''"/'^{DT) represent the Banach space of functions on DT = [0,1] x [0,T] which
are uniformly Holder continuous with exponent ain x and a/2 in t.

Assumptions. The above model is subject to the following assumptions:

(51) 0 < ^ < 5 '

(52) co(x)€L°°([0,l]), inf [co(x)] > 0, (CQ), e L°°([0,1]),
i6[0l]

(53) QO(:C)GL-([O,1]) ,

(54) . uo(x) G L°°([0,1]),

(55) ' P(COQO)X€L2([0,1]), ( Q ^ > U O , . ) . € L 2 ( [ O , I ] ) .

The function Qo is given by Qo - Q{mo), where Q{s) = ^ ^ and co = ^ . The role
of these functions is explained in section 4.1. As a consequence of assumption (53) it
is clear that

and, consequently, ¡^ Q^dx < oo for p < 0. This is used repeatedly in section 4. Note
that the lower and upper bounds of co and Qo (as well as bounds on co,i and Qo,x)
formulated in (52) and (53) are satisfied by assuming

(56) inf iio > 0, sup no < oo and inf mo > 0, sup mo < pi
[0-11 (0,1] [0,1] (0,1]
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and

(57) • (no).,(?no). eL°°([O,l]).

The general pressure function P is assumed to satisfy general conditions similar to
those assumed in the single-phase work [36]. More precisely, we assume that P as a
function of .s & MQ" ~ [0> co) satisfies

/•' P i si . '
(58) / -^ds <oo,

Jo s
(59) P(0) = 0, P'(0) = 0; P(s), P'(s), P"(s) > 0 Vs e R°° = (0,oo),

(60) P(s), P{s)^s-'-', ^ , P'{s)s'-' e L^ci^^).

Then we can state the main theorem. • '
THEOREM 3.1 (main result). Under the assumptions (51)-(60) the initial bound-

ary problem (14)-(18) possesses a global weak solution {n,m,u) in the sense that for
any T > 0, the following hold:

(A) We have the regularity -.. i !

n,meL°°{[O,l]x[O,T])nC'{[O,T]•,L^'{[O,l])),

In particular, the following pointwise estimates hold for fi > 0:

/¿"Mnf (co) < n(x,i) </isup(co), co : = — ,
[0.1] [0,1] m-o

•• 0 < ß~^ < m{x,t) < ß < pi V(x,i) G [0,1] X [0,T], j

where the positive constant p. depends only on time T and the regularity of
the initial data as stated in the assumptions.

(B) Moreover, the following weak formulation of (14) holds:

/ / \n4>t - nmux<t>\ dxdt-\- / no{x)<f>{x,O)dx = 0,
Jo Jo ^ ^ Jo '••'

/•OO nl /-I

(61) / / Imtpt - m'^Uxipl dxdt-{- / mo{x)ip{x,0)dx = 0,
Jo Jo '- ^ Jo • '

/•OO / -I |- -, [

/ / lutpi-i-{p{n,m) - E{m)ux)ipx - if'rn^u\u\-9)''P\dxdt
Jo Jo ^ , . ••

' ' " • ' • r^ ' ' I
-I- / Uo{x)^l;(x,O)dx = O '

Jo

for any test function (t>,'f,ip £ C^{D), with D := {{x, i) I 0 < .T < 1, í > 0}.
The proof of Theorem 3.1 is based on a priori estimates for the approximate

solutions of (14)-(18) and a corresponding limit procedure. As in [10, 9] we can
obtain pointwise upper and lower limits for m that are transferred also to n. This
in turn opens up for Lemmas 4.11-4.14, which allow use of standard compactness
arguments.
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The main idea in the following analysis, which also was employed in the works [10,
9, 37], is to focus on the quantity Q{m) = m/{pi-m), which connects pressure P(;n, m)
and viscosity coefficient E'(in). It turns out that we naturally can reformulate the
initial boundary value problem (IBVP) (14)-(18) described in terms of the variables
(n, m, u) into a corresponding IBVP (69)-(72) described in terms of the variables
(c, (5,u), where c = n/in. However, the appearance of the friction term -/m^u]w]
requires special care. The following new aspects compared to the works [10, 9, 37] are
highlighted:

• Thanks to the fact that m = piQ/{l + Q) < pi for all Q > 0, we can directly
get the upper bound on Q as described in Lemma 4.2 by means of the energy
estimate of Lemma 4.1.

• As far as Lemmas 4.3 and 4.6 are concerned, it turns out that the friction
term appears as a nonnegative term on the left-hand side of the inequality,
similar to the energy estimate of Lemma 4.1. The higher order estimate of
the velocity u as given by Lemma 4.3 is then employed to control the friction
term in Lemma 4.4.

• New arguments must be introduced due to the frictional term to obtain the re-
sult of Lemma 4.11. In particular, we must show that W{t) = ¡^ \{h{Q)u)a;\dx
is in L\[O,T]) for h{Q) given by (70).

• The analysis demonstrates that the gravity term and the general pressure
function P for the gas-liquid model are handled by techniques similar to
those used in [36] for the single-phase Navier-Stokes model.

4. A priori estimates. In this section we first describe how to obtain a more
convenient representation of our model. Then we give a series of a priori estimates
that will imply existence of weak solutions.

4.1. Transformed models. We introduce the variable

(62) c = -
m

and see from the first two equations of (14) that

„ 1 n nm nm?
OfC = —Ut xTTlt = Ux H :pUx = 0.

m m^ m m^

Consequently, the model (14)-(18) then can be written in terms of the variables
(c, in, u) in the form

(63) dtm

dtu + dxp{c,m) = -fni^ulul +g + dx{E{m)dxu), x 6 (0,1),

with

(64)
pi - m

and

(65) , E{m) = [—^) , 0<9< 1/2.
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Moreover, boundary conditions are given by '
•I

(66) {p{c,m)-E{m)ux]{O,t)=O, u(l,t) = O, Í > 0,

whereas initial data are

(67) c{x,O) = co(x), m(a;,O) = mo(3;), u{x,O) = uoix), x € (0,1).
It is clear from the functions P and E that m must obey an upper limit strong
enough to ensure that these functions do not blow up. For that purpose we introduce
the quantity Qim) = ni/{pi - m) and deduce a reformulated model in terms of the
variables (c,(5,'íí). That is, we introduce the variable

(68) Qim) = — — — = ^^' > 0 ( which implies that m = / 9 i - - - ^ ) ,
pi - m 1 ~ ai \ 1 -\- Q J

implicitly assuming m > 0 and m < pi, and observe that

, , / m \ / 1
Q{m)t = [ =

\pi—m/t \pi-

m
m (pi -

{pi - my [pi - my

in view of the second equation of (63). Consequently, we rewrite the model (63) in
the form

x e (0,1),

(69)

with

and

(70)

and

dtQ

dfU -\- dxP{c,Q)

= 0,

= 0,

= -h{Q)u\u -^g

. p(c,Q) =

n
h{Q) — fpl

+ dx{E{Q)dxu),

P{cQ)

Q N̂
\\-\-Q)

Q^+\ 0<9<l/2.

This model is then subject to the boundary conditions

(71) \p{c,Q)-E{Q)ux]{O,t)=O, u{l,t) = O, t > 0.

In addition, we have the corresponding initial data

(72) c{x,O) = coix), Q{x,O)= """^^^ u{x,O) ^ uoix), x G (0,1).
Pi - mo[x)

In particular, the first equation of (69) gives that ;

(73) c(x,i) =co(x) = — (x) > 0 , i > 0 .
iri
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4.2. A priori estimates. We are now reîidy to establish some important esti-
mates. We let C and C{T) denote generic positive constants depending only on the
initial data and the given time T, respectively. In particular, we note from (70) that

(74) . hiQ)<G.

This estimate plays an important role in Lemma 4.2.
LEMMA 4.1 (energy estimate). Under the assumptions of Theorem 3.1 we have

the basie energy estimate

(75)

' r ^ds+^){x,t)dx+ f f Q'+\ldxds+ f f h[Q)uMdxds
s L¿ / Jo Jo Jo Jo

Proof Start by summing (69)2 multiplied by (^^ - ^ ) with (69)3 multiplied
by ii to obtain
(76)

^ i Q ) x Q t
PlW Pl

Then rewrite (76) as
(77)

and integrate it over [0,1] x [0, t] to yield

x+ f f
(78) = / ' {¡ul + [""

Jo ^^ Jo

- f (uP{cQ))\lz'ods + I {gxu)\lzlds- f [ h{Q)u'\u\dxds.
Jo Jo Jo Jo

Now invoking the boundary conditions (71) and the assumptions on the initial data,
we arrive at the conclusion (75). D

LEMMA 4.2. Under the assumptions of Theorem 3.1 we have the pointwise upper
bound

(79) Q{x, t) < G{T) V(x, Í) € [0,1] x [0, T].

Proof. Multiplying (69)2 with 6Q^~\ we observe that

(80) {Q% = -pi9Q'+\x.

We then integrate (80) over [0,t] and, moreover, (69)3 over [0,x], which gives

(81) .. ' Q\x,t) = Qg(x) - p
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a n d • .• • ,'. • ) , '

•Vr)(O,í) = (5^+%i4-gx- / h{Q)u\u\dy.
Jo

We further substitute (82) into (81) and exploit the boundary conditions such that

(83) Q^(a;,i)4-/3/ö / P{cQ){x,s)ds = Q^o{x)-\-pi9\ / uo{y)dy — / u{y,t)dy)
Jo ^Jo Jo '

.t pv
4- pi9gxt - pi9 I j h{Q)u\u\dyds.

Jo Jo

Now invoking the estimate (74), Lemma 4.1, and the assumptions (53) and (54),
together with an application of the Cauchy inequality on the third term on the right-
hand side of (83), we arrive at the following estimate: , ...

/ • ' • ' •

(84) Q^{x,t)+ pi9 I P(cQ){x,s)ds<C{T) ,, , , i
•'0

for 0 < X < 1, 0 < Í < T. But (84) implies (79), in light of assumption (59), and the
proof is complete. D

LEMMA 4.3. Under the assumptions of Theorem 3.1 we have the following higher
order estimate for any positive integer m:
(85)

fi i-t p\ ft fi
/ u d.T4-772(2m,—1) / / u Q u'^dxds-\-2m I I h{Q)u u\dxds < C{T).

Jo Jo Jo Jo Jo

Proof Multiply (69)3 by u^"'~' and integrate it over [0,1] x [0,i]. Then by using
integration by parts and employing the boundary conditions, we arrive at

( 8 6 ) ••'• '

Jo Jo Jo Jo Jo

= / IÍQ'"C¿X 4-2m(2m — 1) / / u P[cQ)uxdxds-\-2ing I / «
Jo Jo Jo Jo Jo

We further apply the Cauchy inequality, multiplying the second integrand on the
right

(87)

p
right-hand side of (86) by the identity Q ^ Q ^ " , to obtain the estimate

[ f [/ u^"'dx-{-m{2m-l) [ [ u^'^-'^Q^+'^uldxds+ 2m f [
Jo Jo Jo Jo Jo

[ ul'^dx + mi2m - I) [ [ u^"'-^P{cQ)^Q-^-''dxds+ 2mg [ [
o Jo Jo Jo Jo

Moreover, we now make use of Young's inequality, ah < ^af-\--b'^, where ¿4-^ = 1 and
p,q > I, for the second and third terms on the right-hand side of (87), respectively.
More precisely, using p = 2m. - l,q = ^E^ and p = 2m,q = ^^^ successively for
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the second term, and then p - 2m, q = ^ ^ for the third term, we get

(88) - - r • • •
ft fl

TO(2m - 1) / / u^""-
^0 Jo

<m(2m- l ) / /
~ U) Jo 2TO-1

< C{T) + C{T) + TO(2m - 2) / / —^
Jo Jo 2-m

where we have also used Lemma 4.2 and the assumptions (60) on the pressure, to
conclude that P{cQ)'^Q~^~^ < C. Furthermore, we have

(89) 2mg I [ u'^'"-^dxds < [ [ g'^"'dxds-\-{2m - I) [ [ u'^"'dxds.
Jo Jo Jo Jo Jo Jo

We can then conclude from (87), (88), and (89) that

(90)
/•I ft fl ft fl

j u'"dx-\-m{2m — 1) / / u^"^~^Q^'^^Uxdxds-\-2m j j h{Q)u^"^\u
Jo Jo Jo Jo Jo

ft fl

<C(T)+m(2m-l) / / u^'^dxds.
Jo Jo

Clearly, (90) implies that

/•I „ / •* / • ! ,,

(91) / u^'^dx <C{T) + m{2m~\) I / u^'^dxds,
Jo Jo Jo

and thus /^ u'^"^dx < C{T) by Gronwall's lemma. The conclusion (85) then follows
directly from (90). D

LEMMA 4.4. Under the assumptions of Theorem 3.1 we have the following upper
bound: , /

*, rl

Jo

Proof Using (80) in combination with the momentum equation (69)3 we obtain

(93) {Q^)xt = -Opiiut + P{cQ)x) + Opig - 9pih{Q)u\u\.

Time-integration of this equation over [0, t] then gives
(94)

ft ft
{Q )x = {Qo)x - Opi{u{x,t) - uo{x)) - dpi / P{cQ)xds -h 9pigt - Opi / h{Q)u\u\ds.

Jo Jo
Furthermore, multiply (94) with {Q^)x and integrate it with respect to x over [0,1]
to obtain

/ f
o Jo

- 9pi f {u{x,t) - uo{x)
Jo

(95) - 9pi [ {Q%x f P{cQ)xdsdx + 9pigt Í
Jo Jo Jo

fl ft

- Opi / {Q')x / h{Q)u\u\dsdx.
Jo Jo ' •
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We now seek to limit the term /^ [{Q^)x]^dx on the left side of (95) by making use of
the "epsilon-version" of Young's inequality, i.e., ab < ea^ + G{e)b'^ for a,b>0,e>0,
and G{s) = {ep)^'^'q~^, on each of the four terms on the right side of (95). Using
p = q= ^ together with appropriate choices of e, this leads to the inequality

\Q\?d < \ \f ¡
o Jo

[
/o Jo

f\ , rt

(96) ^^ t
1 /• 1 /" /"

H / \(Q'')v?dx + Gt^-i-— / [(Q^)x]^dx-|-C /

I (f\P{cQ)x\dsfdx
o ^Jo '

^ f\{Q\fdx

QW^dx + C í\iQt>)x?dx + G i
Jo Jo

C [ {u{x,t)^ + uo{x)^)dx + C f ( j \P{cQ)x\ds)'dx + G{T).
Jo Jo ^Jo '

Using the assumptions on the initial data together with Lemma 4.1, we can rewrite
(96) as •• , ~ . •

/•I i^ / i' N 2 /'V /'' \'^
(97) / \{Q )x] dx ^G I [I \P{cQ)x\ds\ dx-\-G I I / h(C¿)u ds\ dx -\- G{T).

Jo Jo ^,/o ' Jo ^Jo

However, the Holder inequality implies that • ;

(98)

and likewise

(99) / h(Q)u^ds < G(
Jo Jo

Moreover, noticing that

(100) P{cQ)x = P'{cQ){CxQ + cQx) = P'{cQ) [c

and using Fubini's theorem, we get from (97)-(100) that ,
I

/ [{Q%]''dx<C [ [ [P{cQ)x?dxds + C ¡ f h{Q)''u^dxds+ C{T) • • ':.
Jo Jo Jo . Jo Jo • ,. I

(101) - ^ / V ( '̂(^^)'[2(c.Q)2 + 2ÇQ'-^0{Q')l]yxds + G{T)

<C{T) f I \{QXfdxds + G{T),
Jo Jo ^^ ,:.

where we have also used (74), Lemma 4.3 with m = 2, Lemma 4.2, assumptions
(GO) and (52), as well as the Cauchy inequality. Equation (101) then calls for the
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application of Gronwall's lemma, and the conclusion (92) follows since {Q^)x —
9Q^~'Qx. Ü . . . .

LEMMA 4.5. For any I > Y-, we have the upper bound

(102)

Proof. A simple manipulation of (69)2 leads to

(103) '

We then integrate (103) over [0,1] x [0, f] to yield
(104)

Now employing Young's inequality (on the third term and with p = 2m and q =
2 ^ ^ ) , the boundary conditions, and (53), we get

(^°^) / t \ - ^ ^ ^ I I u ix,s)dxds-{-C / x-^^^^^^dxds.
Jo Qi^it) Jo Jo Jo Jo

Finally we observe that the second term is limited due to Lemma 4.3, and the last
term is also limited since m > 1 and ^^J^Z¡^ > -I ior I > ^ . This proves the
lemma. D

LEMMA 4.6. Under the assumptions of Theorem 3.1 and for any integer m > 0
(sufficiently large) and for QI = (1 - i^){9 - 1) < 0, we have the upper bound

(106) / Q°'^u'^dx + / / Q^ '^"^u^ dxds -i- / /
Jo Jo Jo Jo Jo

Proof First let

: r . . . 0_i
(107)

and, moreover, define am-i as

2 '

a m ^ 9 - 1 3

It follows from (69)2 and (69)3 that
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We integrate (109) over [0,1] x [O, t], which after application of partial integration and
the boundary conditions yields

p \ pt pi
/ Q"-u2'"da; + 2'"(2™-l) / / Q^+^+"-u^"'-\ldxds
Jo Jo Jo

+ 2'" / / h{Q)Q°'-u^"'\u\dxds^ [ QQ'"uf dx - OmPi [ [
Jo Jo Jo Jo Jo

- 2 ' " a , „ / / Q'>+''"'u^"'-^QxUxdxds + 2"\2'^-l) [ [
Jo Jo „ Jo Jo

+ 2"'aml I PicQ)Q''--'u'"'-'Qxdxds + 2"'g I f Q'''"
Jo Jo Jo Jo

""'u^'"

1 = 1

where the estimation of /f* (for ¿ = 1,2,3,4,5,6) is given in the appendix (see (150)-
(155)). Obviously, (110) is also valid for a ^ - i and m - 1 (instead of a™ and m and
with the exception of the inequality part, which must be proved), and thus we obtain

(111)

0 Jo Jo
pi pi /-I

2 ' " - ' / / h{Q)Q''"-'u^""'\u\dx.ds= I Q'^--'ul"''dx
Jo Jo Jo -•

[ Q'+""-'M2""'u,dxds-2'»-iQ„_i / / Q''+""-
Jo Jo Jo

pt p l _^ ••
' - 1) / / P{cQ)Q'^"'-'u^"' -'^Uxdxds •

Jo Jo

/ P(cQ)(3"'"-'-'îx2"' '-ig^dxds .

}xUxdxds

where the estimation of /,"'"' (for i = 1,2,3,4,5,6) follows from the estimates in the
appendix (see (156)-(163)). These estimates in turn depend on the estimate (110).
The recurrence relation (108) then implies that Q^ = (2-,^,,,'_t. ) ( ^ ^ ) for fc = 1 , . . . , m.
In particular, QI = (1 - 27n-)(ö - 1). We can thus conclude by induction that

(112) / Q"'u^dx+ [ I Q^+'^+'''uldxds+ f I h{Q)Q'''u^\u\dxds<C{T),
Jo Jo Jo Jo Jo

and the proof is complete. D
LEMMA 4.7. Under the assumptions of Theorem 3.1 and for any integer m > 0

(sufficiently large) and for ßi = {2 - ^){9 - I) < 0, we have

. p l • • ' '•'"•'• • • '

(113) / Q'^'dx<C{T). '-'•-. •
Jo
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Proof From (69)2 it follows that

(114) {Q^')t = -ßmQ'^^'u,. \ .
H

Integrate (114) over [0,1] x [0,i] to obtain

(115) / Q^Mx= / Q^o'dx-ßm f I Q'+^'u^dxds.
Jo Jo Jo Jo

Furthermore, we can obtain an estimate for /^ Q^^dx by using the Cauchy inequality

'̂rfx< fq^o'dx + C f fQ'^^UxQ'^^^Q=''^^
Jo Jo Jo

/-I I-t , 1 ¡.t fl

< Q^'dx + C / Q'+^+'^'uldxds + C /
• ] Jo Jo Jo Jo Jo

Now notice, in view of assumption (53), that

^ Í Q^'dx <C.
Jo

Moreover,

. f f
Jo Jo

due to Lemma 4.6. Thus by using these two latter facts and the fact that 1 4- 2/3i -
9 - a\ = ßl, equation (116) can be written as

* fl r* r^
(117) . / Q^'dx<C{T)-\-C / Q^'dxds.

Jo Jo Jo

After an application of Gronwall's lemma we arrive at the conclusion (113). D
LEMMA 4.8. Under the assumptions of Theorem 3.1 we have the following point-

wise lower bound on Q:

(118) Q{x,t)>CiT) V(x,i)G[O,l]x[O,T].

Pioof It follows from the Sobolev inequality that

(119) Q^'{x,t)<C f Q^'dx + C [
Jo Jo

Choosing/92 such that 0̂2 = 04-(l-27nTT)(6'-l) and noting that f- = {\-:ph
it is clear that

ß = 9+^ / 3 A ö > 0

Moreover, for 0 < Ö < 5 it is also clear that by choosing m sufficiently large, ß2 <
0. Some further straightforward manipulations, including application of the Cauchy
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inequality and Lemma 4.2, then give ; .

/•I /-I
t)<C Q^'dx + C Q'^'-^\Qx\dx

Jo Jo
f l f l

<C Q^'Q^^-^'dx-^C Q^^-^\Qx\dx
Jo Jo

< C max (g'^.-zJi) / ' Qß^dx + C f Q^^^'^'dx + C f Q^'^^Qldx
•I61O,11 Jo Jo Jo

fl fl . •
<C{T) + C Q^'dx + C Q'^^-^Qldx. '•

Jo Jo
Moreover, application of Lemmas 4.7 and 4.4 let us conclude that

(121) Q^\x,t)<C{T).

However, since ß2 < 0, (118) follows. D '
COROLLARY 4.9. Under the assumptions of Theorem 3.1 there is a constant

p > 0 such that

(122) fi~^ <m<iJ.<pi, p~^ inf (co) < n < /isup(co)
[0,1] [0,1]

for c- co = no I mo.
Proof. In view of the expression for Q(m) given by (68) and the upper bound

(79) and lower bound (118), it is clear that the first estimate of (122) follows. The
second follows from the first and the fact that n = com. D

COROLLARY 4.10. Under the assumptions of Theorem 3.1 we have the estimates

(123) / ]TO,|(/x [
Jo [

o
for a constant C = C{T).

Proof It follows that

since Q'{m) = {pi/m'^)Q{m)^. In view of this calculation and the pointwise upper
and lower limits for Q{m), as well as m, given, respectively, by (79), (118), and (122),
it follows by application of Lemma 4.4 that the first estimate of (123) holds. For the
second estimate of (123) we note that we have the relation

9x71 = nidxCo -I- codxm, since n = com.

Thus, we estimate as follows:

I \dxn\dx<pi¡ \dxCo\dx + supco I \dxm\dx<C{T) •.
Jo Jo [0,1] Jo

by the first estimate of (123) and the assumption (52). D
Lemmas 4.11-4.14 can be proved by following along the lines of [9], which in turn

is strongly inspired by works like [33, 34, 35]. In particular, in the next lemmas we
need for the first time the additional regularity of eissumption (55).
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LEMMA 4.11. Under the assumptions of Theorem 3.1 we can prove that

/

I pt pi

uldx+ / Q{m)^+'ul^dxds<G{T).
Jo Jo ',

Proof. We differentiate the third equation of (69) with respect to time t, multiply
the resulting equation by 2ut, and integrate over [0,1] x [0, i] to obtainpt pi

(125)

rl pt p

/ ul{x,t)dx + 2 /

/-I pt pi
= / uf{x,0)dx-2 / ihiQ)u\u\)tUtdxds.

^0 ^0 Jo

First, it follows that - •

/•I

(126) ' / u'¡{x,O)dx<G{T)
Jo

by considering the momentum equation of (69) at time í = 0,

+ P{cQo)x = -h{Qo)uo\uo\ +g + (Q^'wo,

together with assumptions (52)-(54). We also note that

/ /
o Jo

(127)
= [ {{P{

°
cQ) -

= / i[P{cQ) -
J

'"' ds- I [ \P{cQ) -

^' ds - ¡\\P{cQ) - {Q
=0 JQ

X=0

dxds

' ds

- I f [
Jo Jo

/
o Jo

{P{cQ) -

by application of the boundary conditions (71). Moreover, using the second equation
of (69) it follows that

// /
o Jo

(128)

and

(129)

and

(130)

f pi

0 Jo
fi

Jo Jo

Jo Jo

0 Jo Jo Jo

/ {h{Q)u\u\)tUtdxds

[' [^ I 2 / ' /
Jo Jo Jo Jo

\u] dx ds =
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Now, we consider how to estimate / i . I2, h, and I4. First, we have for
(131)

1 /"' /'' í' /'' 1 f* f^

2 7o Jo Jo Jo 2 Jo io

where we have used ab < zc? -f- \-^ with s. = \- Similarly, we have for I2

| / 2 l < 2 / / Q'^'uUxds + G / P '
^ ./O v/0 ./O Jo
1 / ' /"̂  Ö + 1

2 Jo io

Combining (125)-(132), we get
/.I ^i /-I

(133) / u¡{x,t)dx+ / / Q^+\ltdxds
Jo Jo Jo

We then estimate as follows:

nt ,.1 pt

(134) .- hi = / Q^^^u^dxds < I

where ^(s) = / J Q^'^^u^dx. We observe that the third equation of (69) gives

- / ut{y,t)dy - g + / h{Q)u\u\dy.
Jo Jo

It follows that

h{Q)u\u\dy)' '

( / u\dx^ P{cQf + Í/2 + C )̂ < C(r) / u\dx + G{T)

by using Lemmas 4.1, 4.2. and 4.8. Consequently, we have
(135)

<
,-( çt ç\ ci ç\

G{T) / V{s)ds-trG(T) / V{s) / ufdxds<G{T)+G{T) / V{s) / ufdxds,
Jo Jo Jo Jo Jo

where V{s) e L^{[O,T]) in view of (75) of Lemma 4.1. Moreover, we have

I22= [' [ P'{cQ)''c^Q^-%ldxds<maxic'^^) / (m

(136) -̂ ^ -^^ , / °

• ' <G{T) [ V{s)ds <G{T)
Jo
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in view of assumptions (52) and (60) and Lemma 4.2. Finally, we estimate I3 and I4.
We have

pt /-I j-t pl

\h\ < ma-x{h'{Q) Q^~ ) / / Q^'^^u'^u^dxds -\- / / ufdxds
Jo Jo Jo Jo

<G{T)-\- [ [ ufdxds
Jo Jo

in light of Lemma 4.3. Also

(138) • . [/4[ < / max{h{Q)\u\) f ufdxds.

Jo Jo

Furthermore, we observe that the Sobolev embedding theorem gives

. 1 • , 1

\h{Q)u\< \h{Q)u\dx+ \{h{Q)u)x\dx<G{T) + W{s)
Jo Jo

^ I \h'{Q)Qxu\dx+ [ \h{Q)ux\dx
Jo Jo

Dy Lemma 4.

' W{s)

(139)

1. Next,

pl

Jo
/•I ,

"^ 1 h
~Jo

<G(T)

we

h{Q

(«)

-1-
J

estimate

)u)x dx

pl
I \h{Q)'
0

where we have applied Lemmas 4.1, 4.2, and 4.4 and the decay properties of h. Con-
sequently,

rt pl pt pl

(140) [/4[< / max(/i(Q)[u[) / u'¡dxds< / [G{T)-^V{s)] / u^dxds.
Jo Jo Jo Jo

Using (135), (136), (137), and (140) in (133) we get

(141) / ufix,t)dx+[ I Q^+\ltdxds<G{T)-hG{T) f \\+V{s)] [ u'.dxds,
Jo Jo Jo Jo Jo

which by application of Gronwall's lemma yields

Í uldx< G{T)exp(c{T) / [1 -I- V{s)]ds'^ < G{T). D

The arguments for the proof of the next lemmas can be directly adopted from [9]
combined with arguments similar to those used above for the treatment of the friction
term. We state the lemma and refer to [9] for further details. , .
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LEMMA 4.12. Under the assumptions of Theorem 3.1 we have the estimates

(142) / \m.,\dx<C{T), f |n,
Jo Jo

(143) '+'
i,

(144) / \{Q{mf+'ux)x{x,t)\dx<C{T)
Jo

for a suitable constant C{T) and where DT = [0,1] x [0,T].
The following lemma, which gives the pointwise control on the velocity u, follows

essentially by employing the strict lower limit of Q and the estimate of Lemma 4.11.
We refer to [9] for details.

LEMMA 4.13. Under the assumptions of Theorem 3.1 it follows that we have the
estimates

(145) [ \ux{x,t)\dx<C{T), \\u{x,t)U^^Or}<C{T)._ .
Jo

What remains is continuity-in-time-type estimates in L^ norm. We just observe
that the arguments directly carry over to our model and again refer to [9] for de-
tails. 1

LEMMA 4.14. Under the assumptions of Theorem 3.1, we have for 0 < s < t <T
that

1-1
(146) / \m{x,t)-m{x,s)\'^dx<C{T)\t-s\,

Jo .

f l • \-
(147) / [n(x,í)-rí(x,s)[2(ix<C(T)[í-.s],

Jo

(148) ¡ \u{x,t)-u{x,s)\''dx<C{T)\t-
Jo

(149)

Remark 4.1. Note that due to the strict estimates of Corollary 4.9 we could get
compactness and existence of weak solution without the estimates of Lemmas 4.11-
4.14 by using arguments similar to those in [10]. However, the above approach opens
up the possibility of treating the case when masses degenerate at the boundaries.
In this sense the chosen approach is more general and therefore potentially more
interesting. This case is left to another work.

4.3. Proof of Theorem 3.1. Following standard arguments, we can apply the
line method as in [9] and formulate a semidiscrete version of the initial boundary
problem (14)-(18). The semidiscrete version of the various lemmas can be obtained,
and in combination with Helly's theorem, the result of Theorem 3.1 follows; see [17,
18, 33, 34, 35, 36] and the references therein for details. i.
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Appendix. In this appendix we estimate the quantities 7™ and 7,"*"' (for i =
1,2,3,4,5,6), which are used in the proof of Lemma 4.6. The argument goes along the
lines of, e.g., [36], which in turn builds upon central works like [33, 34, 35]. However,
for completeness we include the proof. Note that (107) and (108) are extensively used
throughout these proofs. We start by estimating 7¿" (for i = 1,2,3,4,5,6).

Estimate for I]". Using the Cauchy inequality, 0 < 6» < i, the relation (107), and
assumptions (53) and (54), we get

/•I „. /-I fl , j

(150) ir= Qo"'ul dx<C Ql^'-dx + C uf dx<C{T).
Jo Jo Jo

Estimate for ¡2^. Using the Cauchy inequality, relation (107), and Lemmas 4.1
and 4.3, we have

Í ,.1[ I
Jo Jo

f ^U f f<C f f u''"'^Uxds + C f f
Jo Jo Jo Jo

<C [ [ u''"'^'dxds + C f f Q'+'^uldxds •
Jo Jo Jo Jo

<C f C{T)ds + C{T) < C{T).
Jo '

Estimate for I^. Using the Cauchy inequality, relation (107), and Lemmas 4.3
and 4.4, we have

t rl[
o Jo

t fl

/
ft fl

< -2^am / /

<C f [ Q'+'u^'"^'-\ldxds + C f C
Jo Jo Jo Jo

— ^ / Q u^ ~^u\dxds + C / Q^^~^Q\dxds < C{T).
Jo Jo Jo Jo

Estimate for P^. Using the Cauchy inequality, relation (107), Lemmas 4.1 and
4.2, assumptions (52) and (60), and Lemma 4.3, we have

ft /.I
jm. _
1A —

f ^ ' x d s + C [ [
Jo Jo

f
JO Jo

( 1 5 3 ) -^^ •'"

f <C j j u dxds-irC \l—--—j / Q^+^Uj
Jo Jo 7o LV Q / Jmax,.£|,,,iJ J o

<C I C{T)ds -f C{T) < C{T).
Jo



438 • HELMER ANDRÉ FRIIS AND STEINAR EVJE

Estimate for P^. Using the Cauchy inequality, relation (107), assumptions (52)
and (60), and Lemmas 4.2, 4.3, and 4.4, we have

0 Jo

^ G I / w dxds -i- G j j
Jo Jo Jo Jo

pt pi pt pi
(154) < C / / u^ ~^dxds + G [

Jo Jo Jo Jo

<G f i\^"'"''''dxds + G f
Jo Jo Jo maxien,. 1

< C / G{T)ds -hG [ G{T)ds < G{T).
Jo Jo

Estimate for I^. Using the Cauchy inequality, relation (107), Lemmas 4.3 and
4.5, and Young's inequality (with p = -^ and q = ¿), we have •''

f [
o Jo

<G [ [ Q'^°'-dxds-{-G [ [ u^"'^'
^0 Jo Jo Jo

pt pi pt pi
(155) <G / Q^-^dxds + G I / u^'"

Jo Jo Jo Jo

Jo Jo ^Q^ Jo Jo

<C / (-]dxds-\-G / x^^dxds
" Jo Jo ^Q^ Jo Jo

pt pi
+ G / u'^"'^'-^dxds<G{T).

Jo Jo

Note that for the estimate of the term /g JQ X " dxds, implicitly we assume that
for a given Ö e (0, i ) we set / small enough to ensure that 9 + (9 - 1)1 > 0. At the
same time / must satisfy the condition / > l/(2m) of Lemma 4.5. In other words, in
must be chosen large enough.

Next we estimate /,'"~^ (for i = 1,2,3,4,5,6). In particular, we shall make use of
the estimate (110) corresponding to X]t=i -̂ i" — ^•

Estimate for / { " " ' . This follows by the same arguments as for 7^: ^

(156) / ¡ " - ' '
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Estimate for I^~\ Using the Cauchy inequafity, relations (107) and (108),
Lemma 4.1, and inequality (110), we have ,

Uxdxds
o Jo

t rl

(157) =-am-m I I
Jo Jo

<G f f Q'''"u^"'dxds + G [ [
Jo Jo Jo Jo

Estimate for I^~^. Using the Cauchy inequality, relations (107) and (108),
Lemma 4.4, and inequality (110), we have • '

rin—1
•'3

(158) íyjn— 1

fi /-I

<G

/ /
Jo io

f f
Jo Jo

dxds

[ [
o Jo •ff'

Jo Jo

Estimate for I^~^. Using the Cauchy inequality and relation (108), we obtain

ri rl

^ ^ ' ( 2 — ' - 1 ) [ [
Jo Jo

< 2—1(2—1 - 1) /" /
io io

<G f f Q"-dxds + G f \^^\' C u''"
Jo Jo Jo ^ Q ^'^^icÊ\ii.i\ Jo

dxds

The argument for the last line in (159) goes as follows. Considering Gi first and using
Young's inequality (with p = y^g and q = y |^ ) . Lemma 4.5, and the assumption that
0 < Ö < i , we see that

Gi=G

(160)

* yi ^ _ y« yi „_i
io io io

/•< /•! J.I ft rl „
< C / / --dxds + G / x ( ' ^

io io Q Jo Jo

rt r

= G /
Jo Jo

<G{T)

for an appropriate choice of I. The estimate of C2 follows directly from assumptions
(52) and (60) and Lemma 4.3 for m > 2.



440 HELMER ANDRÉ FRIIS AND STEINAR EVJE

Estimate for / " " ^ After multiplying the integrand with the identity 1 = Q' ^Q~^
and applying of the Cauchy inequality twice, we obtain

/•( / • !

jm-i ^2"'-'am-i [ I
JO Jo

[ I
Jo Jo

<G [ [ [ I
Jo Jo

(161) <G Í [ Q""'jP"'-''dxds + G [ \p{cQ)''Q-'-'] [
Jo Jo Jo '- Jmax,,gi„.ii

pt pl pt pl
/ /

pt pl pt pl
<G / Q^^-dxds-^G / u'^"'^'

Jo Jo : Jo Jo

f Q
maxwell, ,1 Jo

The last inequality in (161) is explained as follows. Using Young's inequality (with
p = j4g and q = 5), Lemma 4.5, and the assumption that 0 < Ö < ^, we can estimate
the first term as follows:

'-' ÍC /'' fQ"'-dxds = GÍ f Q'-'dxds = G /
Jo Jo Jo Jo Jo Jo

•' r' x ' r' r'
<C --dxds + G I / x^ —

Jo Jo Q Jo Jo

for an appropriate choice of /. Moreover, using assumption (60), the two last terms
in (161) are limited by Lemmas 4.3 and 4.4, respectively.

Estimate for /¿"~ ' . Using Lemmas 4.3 and 4.5, and Young's inequality twice (with

p = 2^3y and q = 2n, where n is an integer and p = ^„^"7- '̂'* '̂ ^̂  ~ —2,,!.,,,_i ,

respectively), we have

1 /•' C
Jo Jo

(163) <G [ [ ' [ [
^ Jo Jo Jo

~'r""r'= G / u'''^^'" -'Uxds + G / (^)
Jo Jo Jo Jo ^Q'^

ft pl pt pl ' ' '"'i;, ',"'""'
<G u^^^^"''-'Uxds + G / x'^-^^^^

Jo Jo Jo Jo

^dxds<G{T),

Q

where n is chosen large enough and ' > 27̂  is chosen small enough such that '"'¡,J"„Z\
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