Faculty of Science and Technology MASTER'S THESIS	
Study program/ Specialization: MSc Petroleum Engineering Drilling Engineering	Spring semester, 2010 Open / Restricted access
Writer: Torgeir Horgen	(Writer's signature)
Faculty supervisor: Jan Aage Aasen External supervisor(s):	
Title of thesis: Analysis of packer forces in vertical	onless sail sections
Credits (ECTS): 30	
Key words: Buckling in vertical and sail sections Packer force Lubinski theory	Pages: 38 + enclosure: 29 Stavanger, \qquad Date/year

Preface

This thesis completes my Master degree in Petroleum Engineering with specialization in Drilling Engineering.

I give my best thanks to my supervisor Jan Aage Aasen for always being there when I needed guidance, always giving a quick response to emails and telling me which direction to go when I was lost. It has truly been an honor to be supervised by him.

I also wish to thank my family for the support they have given me throughout my studies by always believing in me.

Finally I want to thank my fellow students for the help they have given me when units were tough, the friendship and all the good times. Even though many of them start working for different companies at different locations, the memory of them and the good times we had will last forever. Without them the studies would have been meaningless.

Table of Contents

Preface 1
Nomenclature. 4
Abbreviations 8
List of Figures 9
List of Tables 10
Abstract 11
Chapter 1 12
Introduction 12
1.1 Background of the thesis 12
1.2 Study objective 12
1.3 Report structure 13
Chapter 2: Packer force theory 14
2.1 Real force and fictitious force 14
2.2 Calculating the length changes of the tubing 17
2.2.1 Packer permitting free motion 17
2.2.2 Packer permitting limited motion 18
2.2.3 Packer with PBR 19
2.2.4 Integral packer 20
2.3 The packer body force 20
Chapter 3: Integral packers in vertical wells 21
3.1 Length of buckled section in a vertical well 21
3.2 Vertical well, mechanical set packer and pressure test of tubing (case 1) 22
3.3 Vertical well, hydraulic set packer and pressure test of tubing (case 2) 23
3.4 Hydrostatic set packer 26
Chapter 4: Deviated wells without friction 27
4.1 The equivalent height concept 27
4.2 Length of buckled tubing in a sail section 28
4.3 Buckling length change for a sail section 29
4.4 Mechanical set packer in a deviated well and pressure test of tubing (case 3) 32
4.5 Hydraulic set packer in a deviated well and pressure testing of tubing (case 4) 32
4.6 The effect of hole angle on the $\Delta \mathrm{L}_{1}, \Delta \mathrm{~L}_{2}, \Delta \mathrm{~L}_{3}$ and buckled length 33
4.7 Sensitivity of $\Delta \mathrm{L}_{1}, \Delta \mathrm{~L}_{2}, \Delta \mathrm{~L}_{3}$ and buckled length for small angles 35
Chapter 5 37
Conclusion 37
References 38
Appendix A 39
Results Case 1: 39
Appendix B 47
Results Case 2 47
Appendix C 54
Results case 3: 54
Appendix D 60
Results Case 4 60

Nomenclature

$A_{a}=$ Area of annulus, area between the casing and the tubing
$A_{i}=$ Inner area of the tubing
$A_{o}=$ Outer area of the tubing
$A_{p}=$ Area of the packer bore
$A_{p b}=$ Area of the packer body
$\mathrm{A}_{\mathrm{s}}=$ Steel area of the tubing $=\mathrm{A}_{\mathrm{o}}-\mathrm{A}_{\mathrm{i}}$
$A_{w}=$ Area of the wellbore, area inside the casing
$B L=$ Buckling limit
$D_{i}=$ Inside diameter of the tubing
$D_{0}=$ Outside diameter of the tubing
$E=$ Young's modulus of elasticity (for steel, $E=31038000$ psi)
F = Piston force/buckling force
$F_{a}=$ Force actual, same as force real, the force that actually can be felt, true weight below the point the of interest
$F_{\text {ah }}=$ Axial load at tubing hanger
$F_{\text {ahel }}=$ Available force for helical buckling
$F_{\text {alat }}=$ Available force for the lateral buckling
$F_{\text {atra }}=$ Available force for the transition buckling
$F_{E}=$ Fictitious force, same as F_{f}, the buckling force
$F_{f}=$ Fictitious force, the buckling force
$F_{f p}=$ Fictitious force just above the packer
$F_{\text {fts }}=$ Fictitious force at the top of the sail section
$F_{f s}=$ Gradient of the fictitious force in the sail section, change in fictitious force per unit length
$\mathrm{F}_{\mathrm{fz}}=$ Gradient of the fictitious force in the vertical section, change in fictitious force per unit length
$F_{h}=$ Hooke's force, the force needed to stretch the tubing back to the packer position
$F_{p}=$ Piston force working on the steel area below the tubing
$\mathrm{F}_{\mathrm{pb}}=$ Packer body force
$\mathrm{F}_{\mathrm{p} 2 \mathrm{c}}=$ Force packer to casing
$F_{R}=$ Real force, same as force actual, the force that actually can be felt, true weight below point the of interest
$F_{t 2 p}=$ Tubing to packer force
$\mathrm{F}_{\mathrm{t} 2 \mathrm{p} \text { old }}=$ Tubing to packer force after the hydraulic packer is set and the pump pressure is zero.
HBL = Helical buckling limit
$\mathrm{I}=$ Moment of inertia $=\mathrm{PI} / 64^{*}\left(\mathrm{Do}^{\wedge} 4-\mathrm{Di}^{\wedge} 4\right)$
$\mathrm{LB}_{\mathrm{i}}=$ Buckled length for $\mathrm{i}=1,2,3$ where $1=$ lateral, $2=$ transition and $3=$ helical
$\mathrm{LB}_{\mathrm{s}}=$ Length of the buckled tubing in the sail section
$\mathrm{LB}_{\mathrm{t}}=$ Total buckled length
$\mathrm{LB}_{\mathrm{v}}=$ Length of the buckled tubing in the vertical section
$L_{t}=$ Length of tubing between tubing hanger and packer
$L_{\text {th }}=$ Length of tubing in the helically buckled section
$\mathrm{L}_{\mathrm{t}}=$ Length of tubing in the laterally buckled section
$L_{t t}=$ Length of tubing in the transition from helically to laterally buckled section
$M D=$ Measure depth at a chosen point
$M D_{p}=$ Measure depth at packer depth
$\mathrm{n}=$ neutral point
$P=$ Pressure at a given depth
$P_{b t}=$ Pressure below the tubing
$P_{i}=$ Pressure inside of the tubing
$P_{o}=$ Pressure outside of the tubing
$P_{p}=$ Pump pressure in psi
$R=$ Ratio OD/ID of the tubing
$r=$ Radius of curvature, inch
$\mathrm{R}_{\mathrm{C}}=$ Tubing to casing radial clearance
$S_{i}=$ Length fractions of the different type of buckling, $i=1,2,3$ where $1=$ lateral, $2=$ transition and $3=$ helical

TVD = True vertical depth at a chosen point
$T V D_{h}=$ True vertical depth at the tubing hanger
$T V D_{p}=$ True vertical depth at the packer
$v=$ Poisson's ratio of the material (WellCat $v=0,27$)
$w=$ Buoyed weight of the string per unit length, in air w equals w_{s}
$\mathrm{w}_{\mathrm{bp}}=$ Buoyed weight of the string, lbs/inch
$\mathrm{w}_{\mathrm{i}}=$ Weight of the liquid inside the string per unit length
$\mathrm{w}_{\mathrm{o}}=$ Weight of the outside fluid displaced by the string and the fluid inside the string
$\mathrm{w}_{\mathrm{s}}=$ Weight of the tubing in air per unit length
$\alpha=$ Inclination angle from vertical, rad
$\beta=$ Coefficient of thermal expansion of the tubing material, for steel $\beta=6,9^{*} 10^{-6} / \mathrm{l}^{\circ} \mathrm{F}$
$\delta=$ Pressure drop per unit length due to flow
$\Delta \mathrm{F}=$ The net change of piston forces inside and outside the tubing
$\Delta L_{1}=$ Length change of the tubing due to Hooke's law
$\Delta \mathrm{L}_{2}=$ Length change due to helical buckling
$\Delta L_{2 s l}=$ Length change due to lateral buckling for a sail section, inch
$\Delta \mathrm{L} 2$ sh $=$ Length change due to helical buckling for a sail section, inch
$\Delta \mathrm{L}_{3}=$ Length change due to radial pressure forces and flow through the tubing
$\Delta \mathrm{L}_{4}=$ Length change of the tubing due to temperature change
$\Delta L_{5}=$ Length change due to slack off or pick up before pressure, temperature, density change and flow
$\Delta L=$ Total length change of the tubing due to initial slack off or pick up followed by pressure temperature and density changes
$\Delta \mathrm{P}_{\mathrm{i}}=$ Change of pressure inside the tubing at packer level from initial condition to final condition
$\Delta \mathrm{P}_{\mathrm{o}}=$ Change of pressure outside the tubing at packer level from initial condition to final condition
$\Delta \mathrm{F}_{\mathrm{P}}=$ Delta piston force (working on the steel area below the tubing)

Abbreviations

BHT = Bottom hole temperature
TVD = True vertical depth
MD = Measure depth
PBR $=$ Polish bore receptacle
HBL = Helical buckling limit
$B L=$ Buckling limit
CT = Coiled tubing
DLS = Dog leg severity
KOP = Kick off point
SDW =Set down weight
$B U=$ Build up section
RKB = Rotary kelly bushing
DO = Drop off section
List of Figures
Figure 1. Sinusoidal and helical buckling deformation [2] 12
Figure 2. Buckling of tubing [3]. 14
Figure 3. Open and plugged tubing submerged and filled with liquid 15
Figure 4. Tubing buckles because the density of the tubing is less than the liquid. 16
Figure 5. Packer permitting limited motion, (landing of tubing, slack off and packer restrain removed). 19
Figure 6. PBR 19
Figure 7. Packer permitting no motion. 20
Figure 8. Packer body force. 20
Figure 9. Setting of hydraulic set packer, pressure testing of the tubing and the length changes. 24
Figure 10. Deviated well with a sail section 27
Figure 11. Effect of sail angle on ΔL_{1} 33
Figure 12. Effect of sail angle on $\Delta \mathrm{L}_{2}$. 33
Figure 13. Effect of sail angle on ΔL_{3} 34
Figure 14. Effect of sail angle on total buckled length. 34
Figure 15. Comparing buckled length of WellCat and the equations. 35
Figure A.1. WellCat illustration of the tubing to packer force, packer to casing force and packer body force at initial and final condition 41
Figure A.2. WellCat illustration of the real force below and above the packer and the tubing to packer force at initial and final condition 42
Figure A.3. Effect of the pump pressure on length change of the tubing due to Hooke's law. 44
Figure A.4. Effect of pump pressure on the helical buckling length change 45
Figure A.5. Effect of pump pressure on the ballooning effect 45
Figure A.6. Effect of pump pressure on the buckled length. 46
Figure B.1. WellCat illustration of the tubing to packer force, packer to casing force, packer body force and the axial forces above and below the packer at stage 3 48
Figure B.2. WellCat illustration of the tubing to packer force, packer to casing force, packer body force and the axial forces above and below the packer at stage 5 51
Figure C.1. WellCat illustration of the tubing to packer force, packer to casing force and packer body force at initial and final condition. 56
Figure C.2. WellCat illustration of the real force below and above the packer and the tubing to packer force at initial and final condition. 57
Figure D.1. WellCat illustration of the tubing to packer force, packer to casing force, packer body force and the axial forces above and below the packer at stage 3 61
Figure D.2. WellCat illustration of the tubing to packer force, packer to casing force, packer body force and the axial forces above and below the packer at stage 5 65
List of Tables
Table 1. Buckling coefficients at helical buckling [8] 29
Table 2. WellCat vs. equations for small angles 35
Table 3. Input data used for the calculations in case 1 39
Table 4. Areas, radial ratios, moment of inertia and buoyed weight of the tubing 39
Table 5. Forces and length changes 40
Table 6. Packer forces. 40
Table 7. Pressure data and actual force before and after pressure testing of the tubing 43
Table 8. Fictitious force and helical buckling limit vs. depth 43
Table 9. Fictitious force gradient, buckled length and TVD at start of buckling. 44
Table 10. Pressure input data used for the setting of the hydraulic set packer (stage 1 and 2) 47
Table 11. Length changes and forces when setting the hydraulic packer (stage 2) 47
Table 12. Tubing to packer force and axial forces after setting the hydraulic packer (stage 3) 47
Table 13. Actual force and pressure data for setting of the hydraulic set packer 49
Table 14. Fictitious force at stage 1 and 3 49
Table 15. Input pressures for the pressure test of the tubing (stage 5). 50
Table 16. Delta piston force, Hooke's force and length changes for the pressure testing of the tubing (stage 5) 50
Table 17. Tubing to packer force and axial forces at the pressure testing of the tubing (stage 5) 50
Table 18. Pressure and actual force for the pressure testing of the tubing (stage 5) 52
Table 19. Fictitious force for the pressure testing of the tubing (stage 5) 52
Table 20. Pressures for mechanical set packer and pressure test of the tubing at 6993 psi to determine delta L2 53
Table 21. Real force, Hooke's force and the length changes during the pressure test of the mechanical set packer 53
Table 22. Fictitious force gradient, buckled length and TVD at start of buckling. 53
Table 23. Input data used for the calculations in case 3 54
Table 24. Forces and length changes 54
Table 25. Packer forces. 55
Table 26. Pressure and actual force at the pressure testing of the tubing. 58
Table 27. Fictitious force and helical buckling limit vs. depth 59
Table 28. Fictitious force gradient, buckled length and MD at start of buckling 59
Table 29. Pressure input data used for the setting of the hydraulic set packer for case 4 (stage 1 and 2). 60
Table 30. Length changes and forces when setting the hydraulic set packer 60
Table 31. Tubing to packer force and axial forces when setting the hydraulic set packer (stage 3) 60
Table 32. Actual force and pressure data for setting of the hydraulic set packer (stage 1 and 3), 62
Table 33. Fictitious force and helical buckling limit vs. Depth (stage 1 and 3) 63
Table 34. Input for the pressure testing of the tubing (stage 3 and 5) 64
Table 35. Length changes and forces for the pressure testing of the tubing (stage 5) 64
Table 36. Tubing to packer force and axial forces for the pressure testing of the tubing (stage 5) 64
Table 37. Pressure and real force for the pressure testing of the tubing. 66
Table 38. Fictitious force for the pressure testing of the tubing 67
Table 39. Fictitious force gradient, buckled length and MD at the beginning of the buckled tubing. 67

Abstract

New discoveries could represent challenges in many ways such as high pressures and high temperatures. The reservoir contains corrosive liquids that are being produced to the surface. Since the casing is expensive to replace, it is common practice to flow the reservoir fluid through a protective tubing. Also the tubing and packer are part of the primary well barrier. Change of temperature and pressure can make the tubing buckle. When wells need intervention, for instance to repair some type of damage or to increase the production, intervention equipment run through the tubing could get stuck in the buckled section.

This thesis will study buckling of tubing in vertical wells and sail sections for frictionless wells. By using theory, theoretical field cases and reverse engineering this thesis reveals the equations used by the buckling simulation software called WellCat 2003.0.4.0 from Landmark.

The fictitious force, also known as the buckling force, is discussed in details. The buckling limit used by WellCat is found, showing that the simulator performs very conservative buckling calculations. Buckling is less severe in sail sections than in vertical sections. The effect of inclination of the sail section on the piston effect, helical buckling length change and ballooning effect is shown for a mechanical set packer.

Chapter 1

Introduction

This thesis studies the equations to calculate the packer forces and the buckled length of the production tubing used by the buckling simulation software WellCat 2003.0.4.0 from Landmark. Well friction is neglected. Four theoretical field cases have been studied. Vertical well with mechanical and hydraulic set packer, deviated well with mechanical and hydraulic set packer.

1.1 Background of the thesis

As seen in Figure 1 there are two ways a pipe can buckle, sinusoidal or helically. In a vertical well the pipe buckles helically after making a single point contact with the surrounding wall [1]. In a sail section the pipe buckles first snake like. If enough energy is present in the pipe to lift the pipe up against the casing wall, helical buckling occurs. There is also transition between the two types of buckling.

Figure 1. Sinusoidal and helical buckling deformation [2].

1.2 Study objective

The objective of this work is to reveal the equations used by the buckling simulator WellCat 2003.0.4.0 to calculate axial force, length changes of the tubing, packer forces, buckled length of the tubing for frictionless wells and determine which helical buckling limit the simulator uses. Buckling for theoretical field cases are calculated for vertical and deviated wells with mechanic and hydraulic set packer.

1.3 Report structure

Chapter 2 explains the fictitious force, real force and the piston force. These parameters are important in order to understand the basic concepts of buckling. The different types of length changes for some types of packer concepts are also presented in this chapter.

Chapter 3 explains the equations used for calculating packer forces and buckled length for mechanic and hydraulic set packers. The results for the theoretical field cases for chapter 3 are presented in Appendix A and B. They focus on mechanic and hydraulic set integral packers in vertical wells.

Chapter 4 introduces the equivalent height concept, equations to calculate the buckled length for the sail section in frictionless wells. A table of buckling limits developed by various researchers is presented and the buckling limit used by WellCat is found. Equations for calculating the length change due to helical, transition and lateral buckling in sail sections are presented. The results for the theoretical field cases for chapter 4 are presented in Appendix C and D. They focus on mechanic and hydraulic set packers in sail sections for frictionless wells. Further an analysis on the behaviour of the length changes and the buckled length on sail angle is conducted and discussed. A sensitivity analysis of the behaviour of the length changes and the buckled length for small angles is conducted and the WellCat result is compared to the equation presented in the thesis.

Finally, the conclusion is given based on the observations and the theory presented.

Chapter 2: Packer force theory

The focus in this chapter is to understand the fictitious force, also called the buckling force, the piston force and the different type of length changes of the tubing. Also different packer concepts are presented.

2.1 Real force and fictitious force

The fluids that are produced from the reservoir to the surface normally flows through a tubing which is placed inside of the casing string. The annulus, the space between the casing and the tubing, is sealed off with a packer. The packer can either be set mechanically or by applying pressure for hydraulic and hydrostatic set packers. The tubing is subject to pressure forces. When the pressure forces are changed the tubing can shorten and elongate due to the elasticity of steel. Also change in temperature plays a big role in changing the length of the tubing. After the packer is set and the production has started the tubing is subject to different pressure and temperature than it was before the packer was set. If the tubing is allowed to move the length of the tubing could change. If the tubing is fixed and not allowed to move freely, the packer could be subject to additional forces. If the net force on the packer is to big the packer could fail causing leakages and need for a costly work over operation. In 1962 Arthur Lubinski et. al. [3] published equations for calculating the length changes of the tubing caused by the change of pressure and temperature. The theory and equations is repeated as a background for the theoretical field cases in the thesis.

We define an elongation of the string as positive (+) and shortening negative (-). Further, a tension force is positive (+) and a compression force is negative (-). Consider the string shown in Figure 2 (a).

Figure 2. Buckling of tubing [3].

Applying a large enough force on the bottom of the string in the upward direction will make the string buckle into a helix as shown in Figure 2 (b). The force F is compressive. The point where the string transforms from buckled to straight is called the neutral point. The neutral point in a vertical well can be found by [3]:
$\mathrm{n}=\frac{\mathrm{F}_{\mathrm{f}}}{\mathrm{w}}$
Where Ff is the fictitious force given by:

$$
\mathrm{Ff}(\mathrm{z})=\mathrm{F}_{\mathrm{R}}(\mathrm{z})+\mathrm{A}_{\mathrm{o}} \mathrm{P}_{\mathrm{o}}(\mathrm{z})-\mathrm{A}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}(\mathrm{z})
$$

And the buoyed weight per unit length is given by [3]:
$\mathrm{w}=\mathrm{w}_{\mathrm{s}}+\mathrm{w}_{\mathrm{i}}-\mathrm{w}_{\mathrm{o}}$
Where w_{s} is the weight of steel per unit length, w_{i} is the weight of the fluid inside the pipe per unit length and w_{o} is the outside weight of the fluid per unit length. P_{i} and P_{o} is the inside and outside pressures. A_{i} and A_{o} is the inside and outside pipe area. For a vertical well buckling occur when the fictitious force is less than zero (compression). In an inclined well buckling occurs when the fictitious force is less than the buckling limit (BL). The fictitious force depends on the true vertical depth (TVD). The real force, F_{R}, is the axial force at a point that would be needed in order to keep the tubing from falling. In our case the real force at bottom is a compression force that is negative. Moving upward the string, the weight of the string hanging below it will increase the real force. At some point the real force changes from negative to positive, meaning that the string goes from compression into tension. Even though the real force is zero, the pressure inside the tubing can make it buckle if it is high enough. On the other hand, if the pressure outside of the tubing is high enough compared to the inside pressure buckling is prevented.

Consider a string submerged in a liquid as shown in Figure 3:

Figure 3. Open and plugged tubing submerged and filled with liquid.

The liquid pressure acting on the bottom of the tubing $(Z=0)$ on the steel area creates a compressive piston force. At point (a) in Figure $3 F_{R}$ is negative and the tubing is actually in compression. At point (b), F_{R} is the piston force plus the weight of the tubing:
$\mathrm{F}_{\mathrm{R}}(\mathrm{L})=\mathrm{F}_{\mathrm{R}}(0)+\mathrm{w}_{\mathrm{s}} * \mathrm{~L}$
$\mathrm{F}_{\mathrm{R}}(\mathrm{b})=-\mathrm{P}_{\mathrm{bt}} \mathrm{A}_{\mathrm{s}}+\mathrm{w}_{\mathrm{s}} * \mathrm{~L} \quad$ (open tubing)
$F_{R}(b)=-P_{b t} A_{o}+P_{i} A_{i}+w_{s} * L \quad$ (plugged tubing)
As one travel along the tubing from the bottom, F_{R} will become zero (neither in compression nor tension) and above that point the tubing is in tension.

If the tubing is open and the pressure inside pressure changes there will be a change in piston force:
$\Delta F_{P}=A_{s} \Delta P_{i}$
For the open tubing case the fictitious force at the bottom is $(Z=0)$:
$F f(0)=F_{R}(0)+A_{o} P_{o}(0)-A_{i} P_{i}(0)$
$=-\mathrm{P}_{\mathrm{bt}} \mathrm{A}_{\mathrm{s}}+\mathrm{w}_{\mathrm{s}} * 0+A_{o} P_{o}-A_{i} P_{i}, P_{i}=P_{o}=\mathrm{P}_{\mathrm{bt}}$
$=-P_{b t} A_{s}+w_{s} * 0+P_{i}\left(A_{o}-A_{i}\right)$
$=-P_{b t} A_{s}+w_{s} * 0+P_{b t} A_{s}=0 \quad$ (open tubing)
The pressure inside and outside of the tubing is the same. This shows the important fact that when a pipe is submerged into a liquid and filled inside with the same liquid, the pipe will never buckle. Moving upwards the string the F_{R} will increase and the inside and outside pressure will decrease. However, because steel is denser than drilling fluids the fictitious force becomes a tension force moving upwards from the bottom and the pipe remains straight all the way to the top.

If the tubing were made of superlight material, just as an example w_{s} equals almost to zero, at the top of the tubing where the inside and outside pressures are zero, the real force would almost be the same as at the bottom. Thus, the fictitious force would be compressive and the whole tubing would be buckled. At the bottom the tubing would be straight, but moving upwards the degree of buckling would increase as shown in Figure 4. A tubing closed at the bottom may top buckle if the displaced fluid outside of the tubing is heavier than the steel and the fluid inside the tubing combined [4].

Figure 4. Tubing buckles because the density of the tubing is less than the liquid.

2.2 Calculating the length changes of the tubing

Different types of packers are used today such as the mechanic, hydraulic and hydrostatic set packers. They can be equipped with a polished bore receptacle (PBR) or an integral packer. A PBR allows the tubing to move freely up-and downwards after the packer is set. An integral packer does not allow the tubing to move.

2.2.1 Packer permitting free motion

There are five types of length changes related to packer force:
$\Delta \mathrm{L}_{1}$, length change caused by the piston force
$\Delta \mathrm{L}_{2}$, length change caused by helical buckling
ΔL_{3}, length change caused by ballooning of the tubing
ΔL_{4}, length change caused by change of temperature
ΔL_{5}, length change caused by the slack off force (discussed later)
$\Delta \mathrm{L}_{1}$ is the length change caused by the piston force. Comparing the tubing to a metal rod, we know from elementary mechanics that the rod will shorten or elongate when applying a compressive or tension force at the ends. The tubing can be elongated if the pressure below the tubing is reduced, or it could shorten it if the pressure is increased.

$$
\Delta L_{1}=\frac{L \Delta F}{E A_{s}}
$$

The change in piston forces, $\Delta \mathrm{F}$, determines whether the tubing shortens or elongates:

$$
\begin{array}{ll}
\Delta F=P_{i 2} A_{i}-P_{i 1} A_{i}-\left(P_{b t 2} A_{p}-P_{b t 1} A_{p}\right) & \text { (for plugged tubing) } \\
=P_{i 2} A_{i}-P_{i 1} A_{i}-P_{i 2} A_{p}+P_{i 1} A_{p} & \text { (for open tubing, } \left.P_{b t}=P_{i} \text { and here } A_{p}=A_{o}\right) \\
=P_{i 1}\left(A_{o}-A_{i}\right)-P_{i 2}\left(A_{o}-A_{i}\right) & \text { (for open tubing) } \\
=P_{i 1} A_{s}-P_{i 2} A_{s} & \text { (for open tubing) }
\end{array}
$$

In our cases the area of the packer bore is the same as the outer area of the tubing.
$\Delta \mathrm{L}_{2}$ is the length change caused by helical buckling below the neutral point as can be seen in Figure 2. Because $\Delta \mathrm{L}_{2}$ governs length change due to buckling one must use the fictitious force at the packer depth. For a vertical well:
$\Delta L_{2}=-\frac{R_{c}{ }^{2} \Delta F_{f}^{2}}{8 E I w}$

Note that $\Delta \mathrm{L}_{2}$ only exists if the string is buckled. Thus, if $\Delta \mathrm{Ff}$ is positive (tension) $\Delta \mathrm{L}_{2}$ is zero. The fictitious force at the packer depth can be expressed as:
$F_{f}=-\mathrm{P}_{\mathrm{bt}} \mathrm{A}_{\mathrm{s}}+\mathrm{w}_{\mathrm{s}} * \mathrm{~L}+P_{o} A_{o}-P_{i} A_{i} \quad 2.18$
$=-P_{i}\left(A_{o}-A_{i}\right)+0+P_{o} A_{o}-P_{i} A_{i}$
$=P_{i} A_{i}-P_{i} A_{o}+P_{o} A_{o}-P_{i} A_{i}$
$=-P_{i} A_{o}+P_{o} A_{o}, \quad$ in our case $A_{o}=A_{p}$
$=A_{p}\left(P_{o}-P_{i}\right)$
In actual problems almost always $\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{o}}$ at initial condition and the fictitious force at initial condition is zero. Thus, it is the change in fictitious force that makes the tubing buckle:
$\Delta F_{f}=A_{p}\left(\Delta P_{o}-\Delta P_{i}\right)$
$\Delta \mathrm{L}_{3}$ is the length change caused by ballooning of the tubing caused by flow inside the tubing and change in radial pressure forces. Consider the tubing filled with liquid in static conditions, and later replaced by another liquid in either static condition or in motion. The liquid flow result in a pressure drop modifying the radial pressure forces and imparts a force to the tubing wall. Both effects change the length of the tubing. Similarly the length can also be changed by changing the fluid pressure in the annulus and thus the radial pressure forces. The length change caused by ballooning is given by:
$\Delta L_{3}=-\frac{v}{E} \frac{\Delta \rho_{i}-R^{2} \Delta \rho_{o}-\frac{1+2 v}{2 v} \delta}{R^{2}-1} L^{2}-\frac{2 v}{E} \frac{\Delta P_{i}-R^{2} \Delta P_{o}}{R^{2}-1} L$
δ is the pressure drop per unit length due to flow in the tubing. δ is positive when the flow is downward and zero in case of no flow.
ΔL_{4} is the length change caused by change of temperature and is given by:
$\Delta L_{4}=L \beta \Delta t$
β is the coefficient of thermal expansion [3].

2.2.2 Packer permitting limited motion

$\Delta \mathrm{L}_{5}$ is the length change caused by the slack off force. Consider a packer which permits limited motion as shown in Figure 5.

When the tubing has landed further slack off at the surface sets the tubing just above the packer to a compression. In order to calculate the total length change after the pressure and temperature is changed, one must know the length change the tubing would have after slack off and before pressure and temperature change when the packer restrain is removed and the tubing is allowed free motion. The imaginary elongation is called $\Delta \mathrm{L}_{5}$. The slack off is normally given in weight and not

Figure 5. Packer permitting limited motion, (landing of tubing, slack off and packer restrain removed).
length. Thus, $\Delta \mathrm{L}_{5}$ is given by: $\Delta L_{5}=\frac{L F}{E A_{s}}+\frac{R_{c}^{2} F^{2}}{8 E I w}$
, which is the same as the sum of $\Delta \mathrm{L}_{1}$ and $\Delta \mathrm{L}_{2}$, but the force used in the equation is the slack off force. The equation describes the length change that the piston and helical buckling effect would have in order to push a non restricted tubing back to the original position at where the tubing landed. When the packer restraint is removed the tubing elongates. $\Delta \mathrm{L}_{5}$ is this elongation. The total length change of the tubing is naturally the sum of all length changes:
$\Delta L=\Delta L_{1}+\Delta L_{2}+\Delta L_{3}+\Delta L_{4}+\Delta L_{5}$
Note that in case of a packer permitting limited motion the elongation $\Delta \mathrm{L}$ cannot be positive as the packer doesn't permit an elongation. In that case the answer is zero. On the other hand a shortening (negative $\Delta \mathrm{L}$) is a real answer.

If the length change is longer than the seals the annulus is allowed to communicate with the tubing. This is not a wanted situation where the primary barrier has failed and a work-over needs to be done and it could result in costly operations [3].

2.2.3 Packer with PBR

A packer with PBR permits free motion of the tubing, as shown in Figure 6. The seal between the PBR and the tubing allows the tubing to move frictionless up and down without any fluid communication with the annulus. A PBR does not allow slack off and therefore ΔL_{5} is zero [3]. Using a PBR A_{p} is the inner diameter of the PBR.

2.2.4 Integral packer

Figure 7.
Packer permitting no motion.

Consider a packer permitting no motion in either direction as shown in Figure 7. The tubing is now fixed in two ends and it can neither move up-nor downwards. In other words, $\Delta \mathrm{L}$ has to be equal to zero. Since the tubing is not allowed to move the piston effect cannot shorten or elongate the tubing, but the piston force will instead be acting on the packer. Imagine that the tubing were allowed to move freely and buckled as a result of pressure change, there would be a shortening caused by helical buckling and ballooning. The packer does not allow the tubing to move and therefore the tubing must be stretched the same length as it was shortened. If change in temperature elongates the tubing the tubing has to be shortened the same length. All the length changes have to equal the length change needed to place the tubing back to the packer depth [3]:
$\Delta L=\Delta L_{1}+\Delta L_{2}+\Delta L_{3}+\Delta L_{4}+\Delta L_{5}=0$
$\Delta L_{1}=-\Delta L_{2}-\Delta L_{3}-\Delta L_{4}-\Delta L_{5}$
Notice that ΔL_{1} in equation 2.29 is different from ΔL_{1} in equation 2.12 and is only valid for a packer permitting no motion.

2.3 The packer body force

The objective of the packer is to seal the annulus as shown in Figure 8. If the pressures on each side of the packer body are different, there will be a net force working on the packer body. The packer body force is expressed by:

$\begin{array}{ll}F_{p b}=P_{i} A_{p b}-P_{o} A_{p b} & 2.30 \\ F_{p b}=P_{i}\left(A_{w}-A_{p}\right)-P_{o}\left(A_{w}-A_{p}\right) & 2.31 \\ F_{p b}=A_{a}\left(P_{i}-P_{o}\right) & 2.32\end{array}$
The pressure differences can for instance be caused by pressure testing of the annulus, pressure testing of the tubing, production, any kind of injection or any changes in the densities in the annulus or the tubing. During a pressure test of the tubing the packer body is:

$$
F_{p b}=A_{a} *\left(\Delta P_{i}-\Delta P_{o}\right)
$$

Figure 8. Packer body force.

Chapter 3: Integral packers in vertical wells

3.1 Length of buckled section in a vertical well

To find the buckled length of the tubing one has to find the gradient of the fictitious force, that is how much the fictitious force changes per unit length:
$F_{f z}=\frac{F_{f p}-F_{f}}{T V D_{p}-T V D}$
Where $F_{f p}$ is the fictitious force just abouve the packer, F_{f} is the fictitious force at a randomly chosen point of TVD above the packer and $T V D_{p}$ is the true vertical depth at the packer. The buckled length can then be found by:
$L B_{v}=\frac{\mathrm{F}_{\mathrm{fp}}-\mathrm{BL}}{\mathrm{F}_{\mathrm{fz}}}$

Where $L B_{v}$ is the buckled length of the tubing in the vertical section and BL is the buckling limit. WellCat uses zero lbs as buckling limit for vertical sections. However, Wu and Juvkam-Vold [5] used an energy analysis to predict helical buckling in vertical wells and concluded that the helical buckling limit for a straight vertical well is not zero. They derived an expression for the helical buckling limit for a vertical section:
$B L=-5,55\left(E I w^{2}\right)^{1 / 3}$
For the tubing and fluid density used in this thesis the buckling limit is $\mathbf{- 7 0 0 0} \mathbf{l b s}$.

3.2 Vertical well, mechanical set packer and pressure test of tubing (case 1)

The tubing is lowered into the well until the setting depth is reached. The packer is set mechanically, meaning that there will be no change of pressures neither on the inside nor outside of the tubing. The packer seals off the annulus so that the pressure test of the tubing only increases the pressure inside the tubing and below it. The tubing is fixed at the bottom at the packer and at the top at the tubing hanger. Imagine that the tubing were allowed to move freely up or down during the pressure test of the tubing. The piston force acting on the steel area, the helical buckling and the ballooning effect would shorten the tubing. However, in our case the tubing at packer depth is fixed, which means that the tubing is not allowed to shorten and thus the shortening caused by the helical buckling and ballooning effect must equal to the elongation required to stretch the tubing back to the original position. The tubing to packer force is the sum of two forces, the pressure area force acting on the steel area in the upward direction and the force related to Hooke's law, that is the force required to stretch the tubing the same length as the tubing should be shortened if it were hanging freely at the bottom. Both forces work in the upward direction and the packer force becomes:
$F_{t 2 p}=\Delta F_{P}+F_{h}$
$=A_{s} * \Delta P_{i}+\frac{\Delta L_{1} E A_{s}}{L_{t}}$
Where:
$\Delta L_{1}=-\Delta L_{2}-\Delta L_{3}$
Because the pressure on the bottom of the packer body is greater than the pressure on the top there will be a net force on the packer body acting upwards.
$F_{p b}=A_{a} *\left(\Delta P_{i}-\Delta P_{o}\right)$
The force that the packer transfers to the casing is the sum of the force that the tubing transfers to the packer and the packer body force:
$F_{p 2 c}=F_{t 2 p}+F_{p b}$
$=A_{s} * \Delta P_{i}+\frac{\Delta L_{1} E A_{s}}{L_{t}}+A_{a} *\left(\Delta P_{i}-\Delta P_{o}\right)$
An example of a theoretical field case is presented in Appendix A as case 1 using the equations and principles above.

3.3 Vertical well, hydraulic set packer and pressure test of tubing (case 2)

Case 1 and 2 are similar. The same casing and tubing are used, but the packer is a hydraulic set packer. The principle of setting the packer is illustrated in Figure 9. The tubing is plugged at the bottom. At stage 1 in Figure 9 the tubing is hanging freely and the inside and outside pressure is the same. At stage 2 in Figure 9 the pump at the surface pressurizes the inside of the tubing and the packer is set when the pressure inside the tubing at packer depth reaches a predetermined differential to the outside pressure. In this calculation example the pressure differential that activates the packer is 3000 psi , that is the inside pressure has to be 3000 psi higher than the outside pressure. The fictitious force in this condition is:
$F f(z)=F_{R}(z)+A_{o} P_{o}(z)-A_{i} P_{i}(z)$
$F f(0)=A_{i} P_{i}-A_{o} P_{o}+A_{o} P_{o}-A_{i} P_{i}=0$
In this state the fictitious force is zero and the tubing will not buckle. However, the pressure force of the 3000 psi on the inside of the tubing working at the area of the plug on the bottom of the tubing elongates the tubing, while the ballooning effect shortens it. The total length change shows that the tubing elongates. In fact, with the input parameters used in the theoretical cases, the tubing will elongate whatever the inside radius and pump pressure may be. The elongation during the setting of the packer is:
$\Delta L=\Delta L_{1}+\Delta L_{3}$
$=\frac{L * \Delta F}{E * A_{s}}-\frac{v}{E} \frac{\Delta \rho_{i}-R^{2} \Delta \rho_{o}-\frac{1+2 v}{2 v} \delta}{R^{2}-1} L^{2}-\frac{2 v}{E} \frac{\Delta P_{i}-R^{2} \Delta P_{o}}{R^{2}-1} L$
$=\frac{L *\left(\left(P_{i 2} A_{i}-P_{i 1} A_{i}\right)-\left(P_{b t 2} A_{o}-P_{b t 1} A_{o}\right)\right)}{E * A_{s}}-\frac{2 v}{E} \frac{\Delta P_{i}-R^{2} \Delta P_{o}}{R^{2}-1} L$
Equation 3.14 assumes no flow in the tubing and no change in the densities.
At stage 3 in Figure 9 the packer is set and the pump is turned off leaving the tubing in tension (the inside and outside pressures are the same). The tubing to packer force is simply the Hooke's force required to elongate the tubing the same length as the total length change during the setting of the packer:
$\mathrm{F}_{\mathrm{t} 2 \mathrm{p}}=\mathrm{F}_{\mathrm{h}}=\frac{\Delta \mathrm{LEA}_{\mathrm{s}}}{\mathrm{L}_{\mathrm{t}}}$
where L_{t} is the length of the tubing from the tubing hanger to the packer. At this stage the pressure in the annulus and below the tubing is the same and the packer body force is zero. The plug at the end of the tubing is removed and the pressures inside and below the tubing are the same.

At stage 4 in Figure 9 the pumps are turned on for the pressure testing of the tubing and the pressure inside the tubing increases by 3000 psi. Imagine a freely hanging tubing. The ballooning effect shortens the tubing. Stretching the tubing back at the packer position elongates the tubing. In other words, because the tubing is fixed in both ends (at the tubing hanger and at the packer) the ballooning effect stretches the tubing, thus the positive (+) sign in the ballooning effect at stage 4
and 5. Similarly the helical buckling effect stretches the tubing at stage 5 . The size of the ballooning effect is still the same at stage 4 as during the setting of the packer (stage2). The tension force that the bottom plug provided at the setting of the packer is now provided by the packer. Thus, the condition of the tubing is similar to the setting of the packer and the tubing does not buckle.

At stage 5 the pumps pressurize the tubing further to 9993 psi above the initial pressure. The ballooning effect and the helical buckling stretch the tubing further. The tubing buckles because the fictitious force is less than the BL. The available pressure for the buckling is therefore 6993 Psi. The ballooning effect is as always found by equation 2.24.

There are two ways of determining the helical buckling length change for a hydraulic set packer. One can use the helical buckling length change equation determined in case 1, which is the equation of the trend line in Figure A. 4 in Appendix B:
$\Delta L_{2}=-9,87096 * 10^{-10} * P_{p}^{2}+2,14436 * 10^{-7} * P_{p}+2,38095 * 10^{-4}$
where P_{p} is the pump pressure in psi and ΔL_{2} is in ft . This equation is only valid for the same tubing and mud weight as presented in this thesis. The equation is the trend line equation of the helical buckling length change curve and is plotted against the pump pressure.

Another way of finding ΔL_{2} is to calculate ΔL_{2} for a similar case with a mechanical set packer when the pressure test of the tubing is 6993 psi. The difference between these two methods of finding ΔL_{2} is very small, in fact only 23 lbs in the final result for the tubing to packer force in our case, so both methods are acceptable to use. In the calculation of the results a mechanical set packer was used to find ΔL_{2}.

Figure 9. Setting of hydraulic set packer, pressure testing of the tubing and the length changes.

When the pump pressure is 9993 psi, there must be an increase in piston force acting on the steel area at the bottom of the tubing as described in eq. 2.7. The tubing to packer force consists of the piston force and the Hooke's force (the force required to stretch the tubing the same length as it would shorten if the packer were allowed to slide frictionless up the casing wall). Thus the tubing to packer force becomes:
$F_{t 2 p}=\Delta F_{p}+F_{h}$
$F_{t 2 p}=A_{s} \Delta P_{i}+\frac{\Delta \mathrm{LEA}_{s}}{\mathrm{~L}_{\mathrm{t}}}$
where $\Delta \mathrm{L}$ is the total elongation at stage 5 ($8,02 \mathrm{ft}$ for the theoretical field case in Appendix B). This is the simplest method of calculating the tubing to packer force.

However, another procedure could be used to calculate the tubing to packer force using the tubing to packer force calculated in equation 3.15. The piston force is then as described in equation 2.7 but now the tubing only shortens by the ballooning effect (eq.2.24) and the helical buckling effect (eq.3.16). Using this method one has to keep in mind that in the calculation of the ballooning effect 9993 psi should be used and for the helical buckling 6993 psi. The equation for the tubing to packer force is then:
$F_{t 2 p}=F_{t 2 p \text { old }}+\Delta F_{p}+F_{h}$
Where $F_{t 2 p}$ old $r e p r e s e n t s$ the tubing to packer force after the packer is set and the pressure is at initial condition (stage 3) as described in equation 3.15.

An example of a theoretical field case is presented in Appendix B as case 2 using the equations and principles above. The elongations in Figure 9 referes to case 2 in Appendix B.

3.4 Hydrostatic set packer

Fields that require high angle and extended reach wells could put completion packers beyond wireline access. Using coiled tubing (CT) to set and pull plugs during the completion installation is expensive and time consuming. Absolute well pressure activation is a system where the tool holds an atmospheric pressure chamber and uses a rupture disk for actuation. When the well pressure exceeds the actuation pressure the rupture disk ruptures and wellbore fluid flows into the tool. The driving force for setting the packer is the pressure difference between the atmospheric chamber and the wellbore fluid. The packer is cost-effective in cases where it can remove the need for CT intervention. A drawback by using hydrostatic set packer is that the well has to be unperforated or the lower completion has to be hydraulically isolated [6]. Modelling of packer forces for hydrostatic set packers is easily taken care of using the theory presented in the present work. Design equations for this application are not developed as a part of this work.

Chapter 4: Deviated wells without friction

4.1 The equivalent height concept

Aadnøy et al. [7] (1999) published the equivalent height concept to calculate the weight of a pipe in a deviated well.

Figure 10. Deviated well with a sail section.

The equivalent height concept says that weight of a frictionless string inside the deviated well at the tubing hanger in the figure is [7]:
$F_{a h}=w *\left(T V D_{p}-T V D_{h}\right)$

At any given point in an open string (without packer forces) the axial force is:
$F_{R}=-A_{s} * P_{b t}+w_{s} *\left(T V D_{p}-T V D\right)$
These two expressions are valid for a frictionless well.

4.2 Length of buckled tubing in a sail section

To find the buckled length of the tubing in a sail section one has to find the gradient of the fictitious force in the sail section:
$\mathrm{F}_{\mathrm{fs}}=\frac{\mathrm{F}_{\mathrm{fp}}-\mathrm{F}_{\mathrm{f}}}{\mathrm{MD}_{\mathrm{p}}-\mathrm{MD}}$
Where the $F_{f p}$ is the fictitious force just above the packer, F_{f} is the fictitious force at a randomly chosen point of $M D$ above the packer in the sail section and $M D_{p}$ is the $M D$ at the packer. The buckled length can then be found by:

$$
L B_{s}=\frac{\mathrm{F}_{\mathrm{fp}}-\mathrm{BL}}{\mathrm{~F}_{\mathrm{fs}}}
$$

where $L B_{s}$ is the length of the buckled tubing in the sail section and $B L$ is the buckling limit. There are many buckling limits derived by researchers. Aasen and Aadnøy (2002) [8] summarized buckling models that were available at that time. For curved and inclined wells, the general buckling limit is:
$F_{H}=\frac{\gamma_{1}}{4 \mathrm{~A}}\left[1+\sqrt{1+\frac{4 A B \sin \alpha}{\gamma_{2}}}\right]$
$=\frac{\gamma_{1} E I}{R_{c} r}\left[1+\sqrt{1+\frac{R_{c} r^{2} w_{b p} \operatorname{sin\alpha }}{\gamma_{2} E I}}\right]$
where A and B are given by:
$A=\frac{\mathrm{R}_{\mathrm{c}} \mathrm{r}}{4 \mathrm{EI}}$
$B=w_{b p} r$

The buckling limit for a straight inclined well is:

$$
\begin{align*}
& \lim _{r \rightarrow \infty} F_{H}=\frac{\gamma_{1}}{\gamma_{2}} \sqrt{\gamma_{2}} \sqrt{\frac{w_{b p} E I \sin \alpha}{R_{c}}} \\
& =\gamma_{3} \sqrt{\frac{w_{b p} E I \sin \alpha}{R_{c}}}
\end{align*}
$$

Reference	γ_{1}	γ_{2}	γ_{3}
Chen/Lin/Cheatham, 1990[9]			$-2,83$
He/Kyllingstad, 1995[10]			$-2,83$
Lubinski/Woods, 1953[11]			$-2,85$
Lubinski/Althouse/Logan, 1962[3]			$-2,4$
Qui/Miska/Volk, 1998[12]	-8	2	$-5,66$
Qui/Miska/Volk, 1998[13]	$-7,04$	3,52	$-3,75$
Wu/Juvkam-Wold, 1993[14]			$-3,66$
Wu/Juvkam-Wold, 1995[15]	-12	8	$-4,24$

Table 1. Buckling coefficients at helical buckling [8].

To find the BL used by WellCat different buckling models were used in equation 4.4 (above) and buckled length compared to WellCat. None of the above limits in Table 1 met the buckled length calculated by WellCat. However, the Dawson and Paslay [16] (1984) snaking buckling limit equation for a straight inclined section was found to give the same buckled length as WellCat:
$B L=-2 \sqrt{\frac{E I w_{b p} \sin \alpha}{R_{c}}}$
By using the Dawson and Paslay equation, the buckling calculations performed by WellCat are conservative.

4.3 Buckling length change for a sail section

The Lubinski [3] equation for helical buckling length change is only valid for vertical wells. A couple of methods [17, 18] were used in an attempt to get the same ΔL_{2} result as WellCat, but without success. Mitchell [2] (2006) published an equation that governs length change (ΔL_{2}) due to lateral buckling in a sail section:
$\Delta L_{2 s l}=-\frac{R_{c}^{2}}{4 E I w_{b p} \cos \alpha}\left(F_{f p}-B L\right)\left[0.3771 * F_{f p}-0.3668 * B L\right]$
Mitchell [2] modified slightly the familiar Lubinski [3] equation (2.17) for ΔL_{2} for helical buckling by:
$\Delta L_{2 s h}=-\frac{R_{c}^{2}}{8 E I w_{b p} \cos \alpha}\left[F_{f t s}^{2}-F_{f p}^{2}\right]$
where $\mathrm{F}_{\mathrm{fts}}$ is the fictitious force at the top of the sail section. Since $\Delta \mathrm{L}_{2}$ at first is not known and the fictitious force above the packer depends on the axial force and thus the tubing to packer force, one has to assume that ΔL_{2} zero. When the fictitious force above the packer is calculated the real ΔL_{2} can be found. This value of ΔL_{2} should then be used to calculate the tubing to packer force, axial force and fictitious force. This process of using an old $\Delta \mathrm{L}_{2}$ to calculate a new one should be repeated a couple of times until the whole number to the third decimal place have converged.

WellCat uses the following criteria for buckling [19]:
$F_{f}<F_{\text {Paslay }} \quad \rightarrow$ No buckling
$\mathrm{F}_{\text {Paslay }}<\mathrm{F}_{\mathrm{f}}<2,7 * \mathrm{~F}_{\text {Paslay }} \quad \rightarrow$ Lateral buckling
$2,7 \mathrm{~F}_{\text {Paslay }}<\mathrm{F}_{\mathrm{f}}<2,83 * \mathrm{~F}_{\text {Paslay }} \quad \rightarrow$ Linear interpolation between
lateral and helical buckling
$\mathrm{F}_{\mathrm{f}}>2,83 * \mathrm{~F}_{\text {Paslay }} \quad \rightarrow$ Helical buckling
In order to calculate the correct ΔL_{2} of the tubing, one need to consider that the tubing can be helically buckled, laterally buckled and in a transition phase between helically and laterally buckled. The size of F_{fp} determines the buckling condition of the tubing. As stated earlier WellCat uses the Dawson and Paslay BL (eq. 4.11) and then the tubing in a vertical well can only be helically buckled. WellCat uses the Lubinski et al. [3] equation (eq.2.17) to calculate ΔL_{2} for a vertical well. If the forces are not too high an increase of sail angle will decrease the helically buckled fraction of the tubing and the laterally buckled fraction will increase. At some sail angle the tubing will only experience the transition phase and lateral buckling. Increasing the sail angle a little bit more will make the transition phase disappear and only lateral buckling occurs.

In order to find the fraction of the type of buckling of the buckled length section, one needs to find the available buckling force for each type of buckling. Is $F_{f p}$ in the lateral, transition or the helical buckled section? If $F_{f p}$ is in the lateral buckled section, there will be no transition phase or helical buckled section. If F_{fp} is in the transition section there will not be a helical buckled section.

If F_{fp} is in the helically buckled section the available force for helical buckling is given by:
$F_{\text {ahel }}=F_{f p}-2,83 * F_{\text {Paslay }}$
the available force for the transition buckling is:
$F_{\text {atra }}=(2,83-2,7) * F_{\text {Paslay }}=0,13 * F_{\text {Paslay }}$
and the available force for the lateral buckling is:
$F_{\text {alat }}=2,7 * F_{\text {Paslay }}-F_{\text {Paslay }}=1,7 * F_{\text {Paslay }}$
The buckled length of the different types of buckling can be expressed by:
$L B_{i}=\frac{F_{i}}{F_{f s}} \quad, \mathrm{i}=1,2,3$
where i denotes the type of buckling and $i=1=$ lateral, $2=$ transition and $3=$ helical. The total buckled length is expressed by:
$L B_{t}=\sum_{i=1}^{n} L B_{i}$

The length fractions of the different type of buckling are given by:
$S_{i}=\frac{L B_{i}}{L B_{t}} \quad, i=1,2,3$
Finally the total ΔL_{2} for the condition where $F_{f p}$ is in the helical buckled section can be found:
$\Delta L_{2}=S_{1} * \Delta L_{2 s l}+S_{2} * \frac{\left(\Delta L_{2 s l}+\Delta L_{2 s h}\right)}{2}+S_{3} * \Delta L_{2 s h}$

If F_{fp} is in the transition section there is no helical buckling and equation 4.14 should therefore not be used. Linear interpolation between lateral and helical buckling will give a good approximation of ΔL_{2} for the transition section:
$\Delta L_{2 \operatorname{tra}}=\left(1-\frac{F_{f p}-2,7 * F_{\text {Paslay }}}{2,83 * F_{\text {Paslay }}-2,7 * F_{\text {Paslay }}}\right) * \Delta L_{2 s l}+\frac{F_{f p}-2,7 * F_{\text {Paslay }}}{2,83 * F_{\text {Paslay }}-2,7 * F_{\text {Paslay }}} * \Delta L_{2 s h} 4.21$
And the total ΔL_{2} for the condition where $F_{f p}$ is in the transition section can be found:
$\Delta L_{2}=\Delta L_{2 t r a}+S_{1} * \Delta L_{2 s l}$

If F_{fp} is in the lateral section then $\Delta \mathrm{L}_{2}$ is expressed with eq. 4.12.

When ΔL_{2} is found a new tubing to packer force, axial and fictitious force must be calculated. Then a new ΔL_{2} must be calculated. This cycle should be repeated until ΔL_{2} converges.

4.4 Mechanical set packer in a deviated well and pressure test of tubing (case 3)

The concept for mechanic set packer in a sail section is similar to a vertical well, only implementing the equations described so far in chapter 4 . The deviated wells in case 3 and 4 are assumed to be frictionless. The wells are vertical to the kick off point (KOP) at 1500 ft . The dog leg severity (DLS) in the build up section (BU) is 3degrees $/ 100 \mathrm{ft}$. The sail section starts when the well is 60 degrees from vertical. The packer is set at 16974 ft MD . The calculated results can be seen in Appendix C.

4.5 Hydraulic set packer in a deviated well and pressure testing of tubing (case 4)

Case 4 has the same well path as case 3 . The concept for hydraulic set packer in a sail section is similar to a vertical well with hydraulic set packer, only implementing the theory discussed so far in chapter 4. The packer is set hydraulic at 500 psi and the pressure test of the tubing is performed at 9993 psi. If the packer was set at 3000 psi there would be no buckling. Thus, 500 psi was chosen as the setting pressure to get some buckling. The calculated results can be seen in Appendix D.

4.6 The effect of hole angle on the $\Delta \mathrm{L}_{1}, \Delta \mathrm{~L}_{2}, \Delta \mathrm{~L}_{3}$ and buckled length

Figure 11, 12, 13, 14 and 15 are based on a mechanical set packer placed at the same MD as in case 3 and 4. The pressure gradient is the same as WellCat and the pressure test of the tubing is 9993 psi. The KOP is at 1500 ft as before. For simplicity the sail section starts at 1600 ft even though it's unrealistic to have such DLS for high angles. However, since the well is frictionless it does not matter. The angle of the sail section is the only thing that varies in the analysis outlined below.

Figure 11. Effect of sail angle on ΔL_{1}.
Figure 11 shows length change caused by the Hooke's force (the force needed to stretch the tubing back to the packer position). The shape of the curve in Figure 11 is a direct result of ΔL_{1} being dependent of $\Delta \mathrm{L}_{2}$ and $\Delta \mathrm{L}_{3}$.

Figure 12. Effect of sail angle on $\mathrm{\Delta L}_{\mathbf{2}}$.
Figure 12 shows that $\Delta \mathrm{L}_{2}$ is getting smaller as the sail angle increases. In a vertical well the buckling is helical. Helical buckling gives a larger $\Delta \mathrm{L}_{2}$ than lateral buckling. When the sail angle is increased the portion of helical buckling is gradually transformed to lateral buckling. At some angle the tubing will only be laterally buckled and $\Delta \mathrm{L}_{2}$ accordingly small. This is the main reason why $\Delta \mathrm{L}_{2}$ drops so fast at
small angles. $\Delta \mathrm{L}_{2}$ increases rapidly when the well gets close to horizontal and is a result of the well being frictionless. The axial force is nearly constant in the sail section when the sail section gets close to horizontal in a frictionless well. The inside and outside pressures will almost remain constant. Thus, the fictitious force will almost remain constant when the sail section gets close to horizontal and the buckled length increases rapidly as the sail angle approaches 90 degrees.

Figure 13. Effect of sail angle on $\Delta \mathrm{L}_{3}$.
Figure 13 shows that the ballooning effect does not depend on the hole angle.

Figure 14. Effect of sail angle on total buckled length.
Figure 14 shows that increasing the sail angle, for small and medium angles, reduces the buckled length. This is a result of $\Delta \mathrm{L}_{1}$, which is a result of $\Delta \mathrm{L}_{2}$ and $\Delta \mathrm{L}_{3}$, and that the buckling limit goes into compression (less buckling interval for the fictitious force). Further the buckled length increases rapidly when the sail section gets close to horizontal. This is as discussed above a result of an almost constant fictitious force in the sail section.

4.7 Sensitivity of $\Delta L_{1}, \Delta L_{2}, \Delta L_{3}$ and buckled length for small angles

A sensitivity analysis for small angles was conducted to study $\Delta L_{1}, \Delta L_{2}, \Delta L_{3}$ and the total buckled length compared to the equations described in the thesis.

Sail Angle		0	1	2	3	4	5
$\Delta \mathrm{~L}_{1}$	WellCat	6,45	6,43	6,44	6,43	6,43	6,42
	Excel	6,44	6,44	6,43	6,43	6,42	6,42
$\Delta \mathrm{~L}_{2}$	WellCat	$-0,09$	$-\mathbf{0 , 0 7}$	$-0,08$	$-0,08$	$-0,07$	$-0,07$
	Excel	$-0,09$	$-0,09$	$-0,08$	$-0,08$	$-0,07$	$-0,07$
$\Delta \mathrm{~L}_{3}$	WellCat	$-6,36$	$-6,36$	$-6,36$	$-6,36$	$-6,36$	$-6,36$
	Excel	$-6,35$	$-6,35$	$-6,35$	$-6,35$	$-6,35$	$-6,35$
Buckled length	WellCat	3258	$\mathbf{2 6 2 8}$	2766	2658	2498	2494
	Excel	3261	$\mathbf{2 9 0 8}$	2771	2659	2574	2494
Buckling type in fractions	Lateral	0	0,2074	0,3078	0,3929	0,4696	0,5425
	Transition	0	0,0157	0,0233	0,0297	0,0355	0,0410
	Helical	1	0,7769	0,6689	0,5774	0,4949	0,4166

Table 2. WellCat vs. equations for small angles.
As the shaded cells show in Table 2 there seems to be some kind of instability in the WellCat output. The reason for the instability is unknown. It is unlikely to think that $\Delta \mathrm{L}_{2}$ decreases by $0,02 \mathrm{ft}$ from vertical to 1 degree deviation and then increasing by $0,01 \mathrm{ft}$ going from 1 to 2 degrees deviation and then decrease again from 3 to 4 degrees. The equations however seems to give a stable and more trustworthy result. The effect of the error on the total buckled length can be seen graphically in Figure 15 . Table 2 shows that the tubing is only helically buckled in the vertical section. For small angles there will be a lateral, transition and helical buckled sections.

Figure 15. Comparing buckled length of WellCat and the equations.
Figure 15 clearly shows that the simulated buckling behavior by WellCat is unstable. However, in Figure 15 the WellCat buckled length is about 300 ft less than the excel calculations. The difference in this case is not really that significant keeping in mind that the buckling calculations are conservative in the first place by using the Dawson and Paslays BL. But one has to be aware that in other cases the
simulator could give greater deviations. To be on the safe side one can always perform the buckling calculation by using the presented equations in Excel.

Chapter 5

Conclusion

Buckling of tubing has been studied in vertical and sail sections for frictionless strings for mechanic and hydraulic set packers. Equations used by the buckling simulator WellCat 2003.0.4.0 for these cases have been found.

Calculating the tubing to packer force is about finding the force needed to stretch a freely hanging tubing back to the packer position. One has to include that the tubing can buckle different ways in sail sections in the calculations.

WellCat is found to be conservative in the buckling calculations, using Dawson and Paslay [16] lateral buckling limit as initiation of buckling in the simulator software. It also uses the Dawson and Paslay buckling limit to calculate the length change due to lateral buckling in sail sections $\left(\Delta L_{2}\right)$ and the buckled length of the tubing. Going from a vertical well to a well with a sail section the buckled length is reduced because the buckling limit goes into compression and helical buckling transforms to lateral buckling as the hole angle increases. For a frictionless string the buckled length increases rapidly as the sail section approaches horizontal due to only small changes in the fictitious force in the horizontal section.

WellCat can in some cases be a bit unstable in the buckling calculations calculating "wrong" buckled length. The simulator is conservative and the practical significance of the deviation could be argued to be small. To be on the safe side one can perform the calculations by using the presented equations in Excel. The overall experience with the software is that it is reliable.

Recommendation to future work is to include friction in the buckling calculations. Also study the buckling calculations performed by WellCat in the BU and DO section.

References

1. Lubinski, A., A study of the buckling of rotary drilling strings. American Petroleum Institute Drilling and Production Practice, Dallas Texas 1950: p. 178-214.
2. Mitchell, R.F., Tubing Buckling - The State of the Art, in SPE Annual Technical Conference and Exhibition. 2006, Society of Petroleum Engineers: San Antonio, Texas, USA.
3. Lubinski, A., W.S. Althouse, and J.L. Logan, Helical Buckling of Tubing Sealed in Packers. SPE Journal of Petroleum Technology, 1962. 14(6): p. 655-670.
4. Lubinski, A., Influence of Tension and Compression on Straightness and Buckling of Tubular Goods in Oil Wells. Paper presented during the 31st Annual Meeting of the American Petroleum Intitute in Chicago, Illanois, held 5-8 November, 1951.
5. Wu, J. and H.C. Juvkam-Wold, Coiled Tubing Buckling Implication in Drilling and Completing Horizontal Wells. SPE Drilling \&Completion, March 1995: p. 16-21.
6. John. N.E. Mason, P.M.J.G.K., Paul D. Cameron, Interventionless Hydrostatic Packer Experience in West of Shetland Completions. Offshore Technology Conference 13288, 2001.
7. Aadnøy, B.S., K. Larsen, and P.C. Berg, Analysis of Stuck Pipe in Deviated Boreholes, in SPE Annual Technical Conference and Exhibition. 1999, Society of Petroleum Engineers: Houston, Texas.
8. Aasen, J.A. and B.S. Aadnøy, BUCKLING MODELS REVISITED, in IADC/SPE Asia Pacific Drilling Technology. 2002, Copyright 2002, IADC/SPE Asia Pacific Drilling Technology: Jakarta, Indonesia.
9. Chen, Y.-C., Lin Y.-H. and Cheatham, J.B., Tubing and Casing Buckling in Horizontal Wells. Journal of Petroleum Technology, 1990: p. 140-191.
10. He, X. and A. Kyllingstad, Helical Buckling and Lock-Up Conditions for Coiled Tubing in Curved Wells. SPE Drilling \& Completion, 1995. 10(1): p. 10-15.
11. Lubinski, A. and H.B. Woods, Factors affecting the angle of Inclination and Dog-Legging in Rotary Bore Holes, in Drilling and Production Practice. 1953, American Petroleum Institute.
12. Qui, W., Miska, S. and Volk, L., Analysis of Drillpipe/Coiled-Tubing Buckling in a ConstantCurvature Wellbore. Journal of Petroleum Technology, May 1998: p. 66-77.
13. Qui, W., Miska, S. and Volk, L., Drill Pipe/Coiled Tubing Buckling Analysis in a Hole of Constant Curvature. SPE 39795, March 1998.
14. Wu, J. and H.C. Juvkam-Wold, Study of Helical Buckling of Pipes in Horizontal Wells, in SPE Production Operations Symposium. 1993, 1993 Copyright 1993, Society of Petroleum Engineers, Inc. This paper was prepared for presentation at the Production Operations Symposium held in Oklahoma City, OK, U.S.A., March 21-23: Oklahoma City, Oklahoma.
15. Wu, J. and H.C. Juvkam-Wold, The Effect of Wellbore Curvature on Tubular Buckling and Lockup. Journal of Energy Resources Technology, Sep. 1995: p. 214-218.
16. Dawson, R., Paslay, P.R., Drillpipe Buckling in Inclined Holes. Journal of Petroleum Technology, 1984: p. 1734-1738.
17. Mitchell, R.F., Effects of Well Deviation on Helical Buckling. SPE Drilling \& Completion, 1997. 12(1): p. 63-70.
18. Mitchell, R.F., Simple Frictional Analysis of Helical Buckling of Tubing. SPE Drilling Engineering, 1986. 1(6): p. 457-465.
19. Mitchell, R.F., Lubinski Delta L2, J.A. Aasen, Editor. 2010.

Appendix A

Results Case 1:

Input		
D_{i}	4,548	Inner diameter of the tubing, inches
D_{0}, inches	5,5	Outer diameter of the tubing, inches
D_{w}, inches	8,553	Diameter wellbore, inside casing string, inches
TVD and MD at Packer	16974	Depth at packer depth, ft
TVD and MD end_o_t	16975	Length TVD and MD at end of tubing, ft
TVD and MD wh	85	TVD and MD at the wellhead, ft
W_{S}	26	Tubing weight per unit length, lbs/ft
PPI1	7933	Initial pressure inside tubing at packer depth, psi
PPI2	17926	Final pressure inside tubing at packer depth, psi
PPO1, PPO2	7936	Initial and final pressures outside tubing at packer depth, psi
ROI1, ROO1, ROI2, ROO2	0,4679	Densities inside and outside the tubing at initial and final condition, psi/ft
DPIS	9993	Change of pressure inside tubing at surface, psi
v	0,27	Poisson's ratio
E	31038000	Young's modulus of elasticity, psi

Table 3. Input data used for the calculations in case 1.
The wellhead is located 85 feet below the RKB and should be thought of as a fixed point. The pressure data used in the calculations is taken from WellCat. The pressure gradient WellCat uses is not constant. It changes most likely because the compressibility of the fluid and the increase in temperature with depth is taken into account. Because there is a static situation and the tubing is not plugged, the initial inside and outside pressure should be the same at the packer depth and thus the wellhead pressures. WellCat calculates two different pressures at the same depth, which is impossible in the real world. The deviation is only 3 psi and does not have a significant impact on the parameters studied in the thesis. The 3 psi could be constructed by purpose in the input file. Poisson's ratio and Young's modulus of elasticity are taken from WellCat in order to get the same basis for the calculations performed in Excel.

Output	Excel	
A_{w}	57,455	Area off wellbore, inside of the casing string, inches^2
A_{a}	33,697	Area between the casing and tubing, inches^2
A_{i}	16,245	Area corresponding to tubing 4,542" ID, inches^2
A_{0}	23,758	Area corresponding to tubing 5,5"OD, inches^2
A_{P}	23,758	Area corresponding to packer bore 5,5"ID, inches^2
$\mathrm{A}_{\text {S }}$	7,513	Cross-sectional area of tubing wall, inches^2
R	1,209	Ratio OD/ID of tubing, inches
R_{C}	1,527	Tubing to casing radial clearance, inches
1	23,916	Moment of inertia, inches ${ }^{\wedge} 4$
$\mathrm{w}_{\text {bp }}$	1,874	Buoyed weight, tubing weight per inch, lbs/inch

Table 4. Areas, radial ratios, moment of inertia and buoyed weight of the tubing.

Table 4 is valid for all cases as the same tubing and casing is used in all cases and is therefore not repeated for the other cases.

Calculations	Excel	
DPPI	9993	Delta pressure inside tubing, psi
F_{R}	75076	Force actual, delta piston force, lbs
F_{h}	89048	Size of the Hooke's force to get the required length L1, lbs
L_{1}	6,45	Piston effect, Hooke's law, ft
$\Delta \mathrm{L}_{2}$	$-0,10$	Helical buckling, ft
$\Delta \mathrm{L}_{3}$	$-6,35$	Ballooning effect, ft

Table 5. Forces and length changes.

Output	Excel	
F_{pb}	336629	Packer body force, delta pressure force in the annulus, lbs
$\mathrm{F}_{\mathrm{t} 2 \mathrm{p}}$	164124	Force tubing to packer, Ibs
$\mathrm{F}_{\mathrm{p} 2 \mathrm{c}}$	500753	Force packer to casing, lbs
F_{ah}	468598	Axial load at tubing hanger, Ibs
$\mathrm{F}_{\mathrm{R}^{-}}$	29475	Axial load above packer, lbs
$\mathrm{F}_{\mathrm{R}^{+}}$	-134650	Axial load below packer, lbs

Table 6. Packer forces.

Figure A.1. WellCat illustration of the tubing to packer force, packer to casing force and packer body force at initial and final condition.

Figure A. 1 shows the forces calculated by WellCat that are acting on the tubing at initial and final condition. At initial condition there is a small force pointing downwards. Determining how WellCat calculated this force was unsuccessful. The impact of the $0,7 \mathrm{lbs}$ on the final result is insignificant.

Figure A.2. WellCat illustration of the real force below and above the packer and the tubing to packer force at initial and final condition.

Figure A. 2 shows the real force, also called actual force (F_{a}), calculated by WellCat at initial condition and for the pressure testing of the tubing. The arrow pointing up for $-\mathrm{F}_{\mathrm{a}}$ at the pressure testing of the tubing express that the tubing is in tension, $\mathrm{F}_{\mathrm{a}+}$ is in compression.

	Initial		Final		F_{R}	
Depth TVD, ft	P_{i} (psi)	P_{0} (psi)	P_{i} (psi)	P_{0} (psi)	Initial, lbs	Final, lbs
85	37	40	10033	40	379518	468589
1000	464	468	10458	468	355728	444799
2000	932	935	10925	935	329728	418799
3000	1399	1403	11393	1403	303728	392799
4000	1867	1870	11860	1870	277728	366799
5000	2334	2338	12328	2338	251728	340799
6000	2802	2805	12795	2805	225728	314799
7000	2370	3273	13263	3273	199728	288799
8000	3737	3740	13730	3740	173728	262799
9000	4205	4208	14198	4208	147728	236799
10000	4672	4675	14665	4675	121728	210799
13700	6402	6405	16395	6405	25528	114599
13719	6411	6414	16404	6414	25034	114105
15000	7010	7013	17003	7013	-8 272	80799
16974	7933	7936	17926	7936	-59 596	29475
16974	7933	7936	17926	17926	-59 596	-134 650
16975	7933	7936	17926	17926	-59 622	-134 676

Table 7. Pressure data and actual force before and after pressure testing of the tubing.
Table 7 shows that the axial force at the tubing hanger is higher at the pressure test of the tubing. This is due to the extra force required in order to stretch a freely hanging buckled tubing back to the packer position.

Depth TVD, ft	FE initial, lbs	FE final, lbs	Hole deviation, degrees	HBL, lbs	Effect
85	379867	306550	0	0	No buckling
1000	359309	286031		0	0
2000	336801	263528	No buckling		
3000	314333	241053	0	0	No buckling
4000	291826	218553	0	0	No buckling
5000	269358	196077	0	0	No buckling
6000	246850	173577	0	0	No buckling
7000	238987	151102	0	0	No buckling
8000	201875	128602	0	0	No buckling
9000	179391	106126	0	0	No buckling
10000	156899	83627	0	0	No buckling
13700	73694	428	0	0	No buckling
13719	73267	3	0	0	No buckling
15000	44464	-28800	0	0	No Buckling
16974	71	-73187	0	0	Buckling
16974	71	22	0	0	Buckling
16975	49	0	0	0	No buckling

Table 8. Fictitious force and helical buckling limit vs. depth.

As proved in equation 2.11 the fictitious force has to be zero at the bottom of an open tubing. The reason that the calculated fictitious force at the bottom at initial conditions differs from zero is that the initial inside and outside pressures taken from WellCat are not equal. However, the buckled length of the tubing remains the same because one uses the final fictitious force to find out whether the tubing is buckled.

F_{fz}, fictitious force gradient, lbs/ft	$-22,48$
Buckled length, ft	$\mathbf{3 2 5 5}$
TVD at start of buckling, ft	13719

Table 9. Fictitious force gradient, buckled length and TVD at start of buckling.
Table 9 shows the fictitious force gradient from eq. 3.1 and the buckled length from eq. 3.2. The calculated buckled length by WellCat is 3259 ft , so the result is very satisfying. One should keep in mind that WellCat and Excel could use different number of significant decimal places.

Figure A.3. Effect of the pump pressure on length change of the tubing due to Hooke's law.
Figure $A .3$ shows that the ΔL_{1} is almost linear with increasing inside pressure. Figure $A .3$ is the sum of Figure A. 4 and A.5.

Figure A.4. Effect of pump pressure on the helical buckling length change.
Figure A. 4 shows that the helical buckling vs. pressure is not linear. This is probably because the buckled length at low pressures is small and the buckling is less severe. As pressure increases the buckled length increases and the buckling becomes more severe as the pitch decreases.

Figure A.5. Effect of pump pressure on the ballooning effect.
Figure A. 5 shows that the ballooning effect is linear with the inside pressure.

Figure A.6. Effect of pump pressure on the buckled length.
The gradient $\Delta \mathrm{L} / \Delta \mathrm{P}$ in Figure A .4 and A .5 is showing that the ballooning effect is the main contributor to the shortening of the tubing and thus the buckled length.

Appendix B

Results Case 2:

(Using method 1)

Input		
PPI1	7933	Initial pressure inside tubing at packer depth, psi
PPO1, PPO2	7936	Initial and final pressure outside tubing at packer depth, psi
PPI2	10933	Final pressure inside tubing at packer depth, psi
DPIS	3000	Change of pressure inside tubing at surface, psi

Table 10. Pressure input data used for the setting of the hydraulic set packer (stage 1 and 2).
The input pressure data is presented inTable 10. The rest of the input parameters in case 2 is the same as in case 1 can be seen in Table 3.

Calculations	Excel	
DPPI	3000	Delta pressure inside tubing, psi
F_{R}	48736	Force actual, delta piston force, lbs
F_{h}	22422	Size of the Hooke's force to get the required length $\Delta \mathrm{L}, \mathrm{lbs}$
$\Delta \mathrm{L}_{1}$	3,53	Piston effect, Hooke's law, ft
$\Delta \mathrm{L}_{2}$	0	Helical buckling, ft
$\Delta \mathrm{L}_{3}$	$-1,91$	Ballooning effect, ft
$\Delta \mathrm{L}$	1,62	Total length change, ft

Table 11. Length changes and forces when setting the hydraulic packer (stage 2).

Output	Excel		
$F_{p b}$	0	Packer body force, lbs	
$F_{\mathrm{t} 2 \mathrm{p}}$	22422	Force tubing to packer, lbs	
$\mathrm{F}_{\mathrm{p} 2 \mathrm{c}}$	22422	Force packer to casing, lbs	
F_{ah}	401891	Axial load at tubing hanger, Ibs	
$\mathrm{F}_{\mathrm{a}-}$	-37223	Axial load above packer, lbs	
$\mathrm{F}_{\mathrm{a}+}$	-59645	Axial load below packer, lbs	

Table 12. Tubing to packer force and axial forces after setting the hydraulic packer (stage 3).
After the packer is set and the pumps have been turned off the packer force provides for the Hooke's force needed to hold the tubing at the packer position. This is shown by the difference between F_{a-} and F_{a+} is equal to the $F_{\text {t2p }}$. The axial force at the tubing hanger at stage 3 does only differ by 11 lbs to WellCat.

Figure B.1. WellCat illustration of the tubing to packer force, packer to casing force, packer body force and the axial forces above and below the packer at stage 3.

	Stage 1 and 3		F_{R}	
TVD, ft	$\mathrm{P}_{\mathrm{i}}, \mathrm{psi}$		$\mathrm{P}_{\mathrm{o}}, \mathrm{psi}$	Stage 1, lbs
Stage 3, lbs				
85	37	40	379469	401891
1000	31	461	355679	378101
2000	459	929	329679	352101
3000	927	1397	303679	326101
4000	1395	1865	277679	300101
5000	1862	2333	251679	274101
6000	2330	2801	225679	248101
7000	2798	3269	199679	222101
8000	3266	3737	173679	196101
9000	3734	4204	147679	170101
10000	4202	4672	121679	144101
13700	4670	6404	25479	47901
14500	6401	6778	4679	27101
15000	6775	7012	-8321	14101
16974	7009	7936	-59645	-37223
16974	7933	7936	-59645	-59645
16975	7933	7936	-59671	-59671

Table 13. Actual force and pressure data for setting of the hydraulic set packer.

TVD, ft	$\begin{aligned} & \mathrm{F}_{\mathrm{E}} \text { stage 1, } \\ & \text { lbs } \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{E}} \text { stage 3, } \\ & \mathrm{lbs} \\ & \hline \end{aligned}$	Hole deviation, degrees	HBL, lbs	Effect
85	379818	402240	0	0	No buckling
1000	359193	381615	0	0	No buckling
2000	336709	359130	0	0	No buckling
3000	314224	336646	0	0	No buckling
4000	291739	314161	0	0	No buckling
5000	269255	291676	0	0	No buckling
6000	246770	269191	0	0	No buckling
7000	224285	246707	0	0	No buckling
8000	201800	224222	0	0	No buckling
9000	179316	201737	0	0	No buckling
10000	156831	179253	0	0	No buckling
13700	73637	96059	0	0	No buckling
14500	55650	78071	0	0	No buckling
15000	44407	66829	0	0	No buckling
16974	22	22444	0	0	No buckling
16974	22	22	0	0	No buckling
16975	0	0	0	0	No buckling

Table 14. Fictitious force at stage 1 and 3.

Input		
PPI1	7933	Initial pressure inside tubing at packer depth, psi
PPO1, PPO2	7936	Initial and final pressure outside tubing at packer depth, psi
PPI2	17926	Final pressure inside tubing at packer depth, psi
DPIS	9993	Change of pressure inside tubing at surface, psi

Table 15. Input pressures for the pressure test of the tubing (stage 5).

Calculations	Excel	
F_{R}	75076	Force actual, delta piston force, lbs
F_{h}	88329	Size of the Hooke's force to get the required length L1, lbs
$\Delta \mathrm{L}_{1}$	6,40	Piston effect, Hooke's law, ft
$\Delta \mathrm{L}_{2}$	$-0,05$	Helical buckling, ft
$\Delta \mathrm{L}_{3}$	$-6,35$	Ballooning effect, ft

Table 16. Delta piston force, Hooke's force and length changes for the pressure testing of the tubing (stage 5).

Output	Excel	
F_{pb}	336730	Packer body force, lbs
$\mathrm{F}_{\mathrm{t} 2 \mathrm{p}}$	185827	Force tubing to packer, Ibs
$\mathrm{F}_{\mathrm{p} 2 \mathrm{c}}$	522557	Force packer to casing, lbs
F_{ah}	490291	Axial load at tubing hanger, Ibs
$\mathrm{F}_{\mathrm{a}-}$	51177	Axial load above packer, lbs
$\mathrm{F}_{\mathrm{a}+}$	-134650	Axial load below packer, lbs

Table 17. Tubing to packer force and axial forces at the pressure testing of the tubing (stage 5).

Figure B.2. WellCat illustration of the tubing to packer force, packer to casing force, packer body force and the axial forces above and below the packer at stage 5.

Pressure test of the tubing stage 5			
TVD, ft	$\mathrm{P}_{\mathrm{i}}(\mathrm{psi})$	P_{0} (psi)	F_{R}, lbs
85	10033	40	490291
1000	10451	461	466501
2000	10919	929	440501
3000	11387	1397	414501
4000	11855	1865	388501
5000	12323	2333	362501
6000	12791	2801	336501
7000	13259	3269	310501
8000	13727	3737	284501
9000	14194	4204	258501
10000	14662	4672	232501
13700	16394	6404	136301
14500	16768	6778	115501
15000	17002	7012	102501
16974	17926	7936	51177
16974	17926	7936	-134 650
16975	17926	7936	-134 676

Table 18. Pressure and actual force for the pressure testing of the tubing (stage 5).

TVD, ft	F_{E} at stage 5, lbs	Hole deviation, degree	HBL, lbs	Effect
85	328251	0	0	No buckling
1000	307675		0	0
2000	285190	No buckling		
3000	262705	0	0	No buckling
4000	240221	0	0	No buckling
5000	217736	0	0	No buckling
6000	195251	0	0	No buckling
7000	172766	0	0	No buckling
8000	150282	0	0	No buckling
9000	127797	0	0	No buckling
10000	105312	0	0	No buckling
13700	22119	0	0	No buckling
14500	4131	0	0	No buckling
15000	-7111	0	0	No buckling
16974	-51496	0	0	Buckling
16974	22	0	0	0
16975		0	Buckling	

Table 19. Fictitious force for the pressure testing of the tubing (stage 5).

As discussed in section 3.3 one can use a mechanical set packer to determine $\Delta \mathrm{L}_{2}$:

Input		
PPI1	7933	Initial pressure inside tubing at packer depth, psi
PPO1, PPO2	7936	Initial and final pressure outside tubing at packer depth, psi
PPI2	14926	Final pressure inside tubing at packer depth, psi
DPIS	6993	Change of pressure inside tubing at surface, psi

Table 20. Pressures for mechanical set packer and pressure test of the tubing at 6993 psi to determine delta L2.

Calculations	Excel	
DPPI	6993	Delta pressure inside tubing, psi
F_{R}	57538	Force actual, delta piston force, lbs
F_{h}	62008	Size of the Hooke's force to get the required length $\Delta \mathrm{L}_{1}, \mathrm{lbs}$
$\Delta \mathrm{L}_{1}$	4,49	Piston effect, Hooke's law, ft
$\Delta \mathrm{L}_{2}$	$-0,05$	Helical buckling, ft
$\Delta \mathrm{L}_{3}$	$-4,44$	Ballooning effect, ft

Table 21. Real force, Hooke's force and the length changes during the pressure test of the mechanical set packer.

The size of $\Delta \mathrm{L}_{2}$ in Table 21 is the same as in Table 16.

F_{fz}, fictitious force gradient, lbs/ft	$-22,48$
Buckled length, ft	$\mathbf{2} 290$
TVD at start of buckling, ft	14684

Table 22. Fictitious force gradient, buckled length and TVD at start of buckling.
Table 22 shows that the buckled length of the tubing is 2290 ft . By looking back at the mechanic set packer with a buckled length of 3255 ft one can see that the buckled length is reduced by setting the packer in tension.

Appendix C

Results case 3:

Input		
TVD and MD at Packer	9891	Depth at packer depth, ft
MD at the packer	16974	Length of Tubing at packer depth, ft
MD end of tubing	16975	Length MD of tubing at the end, ft
PPI1	4623	Initial pressure inside tubing at packer depth, psi
PPO1	4625	Initial pressure outside tubing at packer depth, psi
PPI2	14616	Final pressure inside tubing at packer depth, psi
PPO2	4624	Final pressure outside tubing at packer depth, psi

Table 23. Input data used for the calculations in case 3.
Table 23 represents only the input parameters that have been changed since case 1.

Calculations	Excel	
DPPI	9993	Delta pressure inside the tubing, psi
F_{R}	75076	Force actual, delta piston force, lbs
F_{h}	87801	Size of the Hooke's force to get the required length $\Delta \mathrm{L}_{1}, \mathrm{lbs}$
$\Delta \mathrm{L}_{1}$	6,36	Piston effect, Hooke's law, ft
$\Delta \mathrm{L}_{2}$	$-0,01$	Helical buckling, ft
$\Delta \mathrm{L}_{3}$	$-6,35$	Ballooning effect, ft

Table 24. Forces and length changes.
By comparing $\Delta \mathrm{L}_{2}$ Table 24 and Table 5 (mechanic set packer in vertical well) one can see that $\Delta \mathrm{L}_{2}$ is strongly affected by the well angle. It's only about $1 / 10^{\text {th }}$ the size of ΔL_{2} in case 1 . To find ΔL_{2}, it was first set to be zero in order to find an approximate value of the fictitious force just above the packer. $F_{f p}$ was found to be about 1,3 times $F_{\text {Paslay }}$ which means that the tubing is only laterally buckled. Then ΔL_{2} was determined by solving equation 4.12. Then new length changes, packer forces, axial force and fictitious force were calculated. Then a new ΔL_{2} was calculated by using eq. 4.12. This cycle was repeated until ΔL_{2} converged. Only the final results are presented in the tables.

Output	Excel	
F_{pb}	336748	Packer body force, Ibs
$\mathrm{F}_{\mathrm{t} 2 \mathrm{p}}$	162877	Force tubing to packer, lbs
$\mathrm{F}_{\mathrm{p} 2 \mathrm{c}}$	499625	Force packer to casing, lbs
F_{ah}	308027	Axial load at tubing hanger, Ibs
$\mathrm{F}_{\mathrm{a}-}$	53071	Axial load above packer, lbs
$\mathrm{F}_{\mathrm{a}+}$	-109806	Axial load below packer, lbs

Table 25. Packer forces.
The tubing to packer force in Table 25 is spot on the calculated result by WellCat in Figure. The packer body force differs by 100 lbs . This is because WellCat uses 9990 psi as the pressure differential. The packer body force in Table 26 uses 9993 psi as the pressure differential. The axial forces in Table 25 are spot on the axial forces in C.1.

Figure C.1. WellCat illustration of the tubing to packer force, packer to casing force and packer body force at initial and final condition.

Figure C.2. WellCat illustration of the real force below and above the packer and the tubing to packer force at initial and final condition.

		Initial pressures		Final pressures		F_{R}	
MD, ft	TVD, ft	$\mathrm{P}_{\mathrm{i}}, \mathrm{psi}$	$\mathrm{P}_{0}, \mathrm{psi}$	$\mathrm{P}_{\mathrm{i}}, \mathrm{psi}$	$\mathrm{P}_{0}, \mathrm{psi}$	Initial, lbs	Final, lbs
85	85	38	40	10033	40	220226	308027
1500	1500	700	701	10694	701	183436	271237
1600	1600	746	748	10741	748	180836	268637
1700	1700	793	795	10787	795	178236	266037
1800	1799	839	841	10834	841	175662	263463
1900	1897	885	887	10880	887	173114	260915
2000	1994	931	932	10925	933	170592	258393
2100	2090	975	977	10970	977	168096	255897
2200	2184	1019	1021	11014	1021	165652	253453
2300	2277	1063	1064	11057	1065	163234	251035
2400	2367	1105	1107	11099	1107	160894	248695
2500	2455	1146	1148	11140	1148	158606	246407
2600	2540	1186	1188	11180	1188	156396	244197
2700	2623	1224	1226	11219	1226	154238	242039
2800	2702	1261	1263	11256	1263	152184	239985
2900	2778	1297	1299	11291	1299	150208	238009
3000	2850	1331	1333	11325	1333	148336	236137
3100	2919	1363	1365	11357	1365	146542	234343
3200	2984	1393	1395	11388	1395	144852	232653
3300	3045	1422	1424	11416	1424	143266	231067
3400	3102	1448	1450	11443	1450	141784	229585
3500	3154	1473	1475	11467	1475	140432	228233
3600	3204	1496	1498	11490	1498	139132	226933
16750	9779	4570	4572	14563	4572	-31818	55983
16974	9891	4623	4624	14615	4624	-34730	53071
16974	9891	4623	4624	14615	14615	-34 730	-109 806
16975	9891	4623	4625	14616	14616	-34 730	-109 806

Table 26. Pressure and actual force at the pressure testing of the tubing.

MD, ft	TVD, ft	F_{E} initial, lbs	F_{E} final, lbs	Hole angle, degrees	HBL Dawson and Paslay (1984)	Effect
85	85	220554	145990	0	0	No buckling
1500	1500	188734	114175	0	0	No buckling
1600	1600	186485	111926	3	-13814	No buckling
1700	1700	184235	109676	6	-19 522	No buckling
1800	1799	182010	107450	9	-23 882	No buckling
1900	1897	179807	105249	12	-27 532	No buckling
2000	1994	177626	103067	15	-30 719	No buckling
2100	2090	175467	100909	18	-33 566	No buckling
2200	2184	173354	98796	21	-36 147	No buckling
2300	2277	171260	96703	24	-38 509	No buckling
2400	2367	169237	94680	27	-40 685	No buckling
2500	2455	167258	92702	30	-42 696	No buckling
2600	2540	165348	90791	33	-44562	No buckling
2700	2623	163479	88923	36	-46 293	No buckling
2800	2702	161703	87147	39	-47901	No buckling
2900	2778	159995	85438	42	-49 393	No buckling
3000	2850	158378	83822	45	-50 775	No buckling
3100	2919	156825	82271	48	-52 053	No buckling
3200	2984	155363	80808	51	-53230	No buckling
3300	3045	153991	79437	54	-54 311	No buckling
3400	3102	152708	78153	57	-55 297	No buckling
3500	3154	151540	76986	60	-56192	No buckling
3600	3204	150415	75861	60	-56192	No buckling
16750	9779	2560	-71975	60	-56 192	Buckling
16974	9891	41	-74 493	60	-56192	Buckling
16974	9891	41	-2	60	-56 192	No buckling
16975	9891	0	0	60	-56192	No buckling

Table 27. Fictitious force and helical buckling limit vs. depth.

F_{fs}, fictitious force gradient in the sail section, lbs/ft	$-11,24$
Buckled length, ft	$\mathbf{1 6 2 8}$
MD at start of buckling, ft	15346

Table 28. Fictitious force gradient, buckled length and MD at start of buckling.
Looking back at the mechanic set packer in the vertical well (case 1) the buckled length was 3255 ft . Compared to the buckled length in Table 28 one can see that the buckled length has been reduced as a result of well angle. Notice that the fictitious force gradient is less in a sail section than a vertical section.

Appendix D

Results Case 4:

Input		
TVD at packer and end of tubing	9891	Depth at packer depth, ft
MD at packer	16974	Length of Tubing at packer depth, ft
TVD end of tubing	9891	Length TVD of tubing at the end, ft
MD end of tubing	16975	Length MD of tubing at the end, ft
PPI1	4623	Initial pressure inside tubing at packer depth, psi
PPO1, PPO2	4625	Initial and final pressure outside tubing at packer depth, psi
PPI2	5123	Final pressure inside tubing at packer depth, psi

Table 29. Pressure input data used for the setting of the hydraulic set packer for case 4 (stage 1 and 2).

Calculations	Excel	
DPPI	500	Delta pressure inside tubing, psi
F_{R}	8123	Force actual, lbs
F_{h}	3737	Size of the Hooke's force to get the required length $\Delta \mathrm{L}, \mathrm{lbs}$
$\Delta \mathrm{L}_{1}$	0,59	Piston effect, Hooke's law, ft
$\Delta \mathrm{L}_{3}$	$-0,32$	Ballooning effect, ft
$\Delta \mathrm{L}$	0,27	Total length change, ft

Table 30. Length changes and forces when setting the hydraulic set packer.

Output		Excel
F_{pb}	0	Packer body force, Ibs
$\mathrm{F}_{\mathrm{t} 2 \mathrm{p}}$	3737	Force tubing to packer, Ibs
$\mathrm{F}_{\mathrm{p} 2 \mathrm{c}}$	3737	Force packer to casing, Ibs
F_{ah}	223961	Axial load at tubing hanger, Ibs
$\mathrm{F}_{\mathrm{a}-}$	-30995	Axial load above packer, lbs
$\mathrm{F}_{\mathrm{a}+}$	-34732	Axial load below packer, Ibs

Table 31. Tubing to packer force and axial forces when setting the hydraulic set packer (stage 3).

Figure D.1. WellCat illustration of the tubing to packer force, packer to casing force, packer body force and the axial forces above and below the packer at stage 3.

		Stage 1 and 3		F_{R}	
MD, ft	TVD, ft	$\mathrm{P}_{\mathrm{i}}, \mathrm{psi}$	$\mathrm{P}_{\mathrm{o}}, \mathrm{psi}$	Stage 1, lbs	Stage 3, lbs
85	85	37	37	220224	223961
1500	1500	706	706	183434	187171
1600	1600	752	752	180834	184571
1700	1700	799	799	178234	181971
1800	1799	845	845	175660	179397
1900	1897	891	891	173112	176849
2000	1994	936	936	170590	174327
2100	2090	981	981	168094	171831
2200	2184	1025	1025	165650	169387
2300	2277	1068	1068	163232	166969
2400	2367	1110	1110	160892	164629
2500	2455	1151	1151	158604	162341
2600	2540	1191	1191	156394	160131
2700	2623	1230	1230	154236	157973
2800	2702	1267	1267	152182	155919
2900	2778	1302	1302	150206	153943
3000	2850	1336	1336	148334	152071
3100	2919	1368	1368	146540	150277
3200	2984	1398	1398	144850	148587
3300	3045	1427	1427	143264	147001
3400	3102	1454	1454	141782	145519
3500	3154	1478	1478	140430	144167
3600	3204	1501	1501	139130	142867
16750	9779	4571	4571	-31820	-28 083
16974	9891	4623	4623	-34732	-30 995
16974	9891	4623	4623	-34 732	-34732
16975	9891	4623	4623	-34 732	-34732

Table 32. Actual force and pressure data for setting of the hydraulic set packer (stage 1 and 3).

MD, ft	TVD, ft	F_{E} Stage 1, lbs	F_{E} Stage 3, lbs	Hole deviation, degrees	HBL	Effect
85	85	220502	224239	0	0	No buckling
1500	1500	188735	192472	0	0	No buckling
1600	1600	186486	190223	3	-13 814	No buckling
1700	1700	184237	187974	6	-19 522	No buckling
1800	1799	182010	185747	9	-23 882	No buckling
1900	1897	179806	183543	12	-27532	No buckling
2000	1994	177624	181361	15	-30719	No buckling
2100	2090	175465	179201	18	-33 566	No buckling
2200	2184	173351	177087	21	-36 147	No buckling
2300	2277	171259	174995	24	-38 509	No buckling
2400	2367	169234	172971	27	-40 685	No buckling
2500	2455	167255	170992	30	-42 696	No buckling
2600	2540	165343	169080	33	-44 562	No buckling
2700	2623	163476	167213	36	-46 293	No buckling
2800	2702	161699	165436	39	-47901	No buckling
2900	2778	159990	163727	42	-49 393	No buckling
3000	2850	158370	162107	45	-50 775	No buckling
3100	2919	156818	160555	48	-52 053	No buckling
3200	2984	155356	159093	51	-53230	No buckling
3300	3045	153984	157721	54	-54 311	No buckling
3400	3102	152702	156439	57	-55 297	No buckling
3500	3154	151533	155269	60	-56 192	No buckling
3600	3204	150408	154145	60	-56 192	No buckling
16750	9779	2519	6256	60	-56 192	No buckling
16974	9891	0	3737	60	-56 192	No buckling
16974	9891	0	0	60	-56192	No buckling
16975	9891	0	0	60	-56192	No buckling

Table 33. Fictitious force and helical buckling limit vs. Depth (stage 1 and 3).

Input		
PPI1	4623	Pressure inside tubing at packer depth at stage 3, psi
PPO1	4625	Pressure outside tubing at packer depth at stage 3, psi
PPI2	14616	Pressure inside tubing at packer depth at stage at stage 5, psi
PPO2	4624	Pressure outside tubing at packer depth at stage 5, psi

Table 34. Input for the pressure testing of the tubing (stage 3 and 5).

Calculations	Excel	
DPPI	9993	Delta pressure inside tubing, psi
F_{R}	75076	Force actual, lbs
F_{h}	87750	Size of the Hooke's force to get the required length $\Delta \mathrm{L}_{1}$, lbs
$\Delta \mathrm{L}_{1}$	6,36	Piston effect, Hooke's law, ft
$\Delta \mathrm{L}_{2}$	$-0,01$	Helical buckling, ft
$\Delta \mathrm{L}_{3}$	$-6,35$	Ballooning effect, ft

Table 35. Length changes and forces for the pressure testing of the tubing (stage 5).

Output	Excel	
F_{pb}	336730	Packer body force, lbs
$\mathrm{F}_{\mathrm{t} 2 \mathrm{p}}$	166563	Force tubing to packer, lbs
$\mathrm{F}_{\mathrm{p} 2 \mathrm{c}}$	503293	Force packer to casing, lbs
F_{ah}	311711	Axial load at tubing hanger, Ibs
$\mathrm{F}_{\mathrm{a}-}$	56755	Axial load above packer, Ibs
$\mathrm{F}_{\mathrm{a}+}$	-109808	Axial load below packer, lbs

Table 36. Tubing to packer force and axial forces for the pressure testing of the tubing (stage 5).

Figure D.2. WellCat illustration of the tubing to packer force, packer to casing force, packer body force and the axial forces above and below the packer at stage 5.

Pressure test of the tubing, stage 5				
MD (ft)	Depth (ft TVD)	$\mathrm{P}_{\mathrm{i}}, \mathrm{psi}$	$\mathrm{P}_{\mathrm{o}}, \mathrm{psi}$	F_{R} at stage 5, lbs
85	85	10033	37	311711
1500	1500	14616	706	274921
1600	1600	14616	752	272321
1700	1700	14616	799	269721
1800	1799	14616	845	267147
1900	1897	14616	891	264599
2000	1994	14616	936	262077
2100	2090	14616	981	259581
2200	2184	14616	1025	257137
2300	2277	14616	1068	254719
2400	2367	14616	1110	252379
2500	2455	14616	1151	250091
2600	2540	14616	1191	247881
2700	2623	14616	1230	245723
2800	2702	14616	1267	243669
2900	2778	14616	1302	241693
3000	2850	14616	1336	239821
3100	2919	14616	1368	238027
3200	2984	14616	1398	236337
3300	3045	14616	1427	234751
3400	3102	14616	1454	233269
3500	3154	14616	1478	231917
3600	3204	14616	1501	230617
16750	9779	14616	4571	59667
16974	9891	14616	4623	56755
16974	9891	14616	14616	-109808
16975	9891	14616	14616	-109808

Table 37. Pressure and real force for the pressure testing of the tubing.

Pressure test of tubing, stage 5					
MD, ft	TVD, ft	F_{E}, lbs	Hole deviation	HBL	Effect
85	85	149600	0	0	No buckling
1500	1500	117882	0	0	No buckling
1600	1600	115633	3	-13814	No buckling
1700	1700	113383	6	-19522	No buckling
1800	1799	111157	9	-23882	No buckling
1900	1897	108952	12	-27532	No buckling
2000	1994	106771	15	-30719	No buckling
2100	2090	104611	18	-33566	No buckling
2200	2184	102497	21	-36147	No buckling
2300	2277	100405	24	-38509	No buckling
2400	2367	98381	27	-40685	No buckling
2500	2455	96402	30	-42696	No buckling
2600	2540	94490	33	-44562	No buckling
2700	2623	92623	36	-46293	No buckling
2800	2702	90846	39	-47901	No buckling
2900	2778	89136	42	-49393	No buckling
3000	2850	87517	45	-50775	No buckling
3100	2919	85965	48	-52053	No buckling
3200	2984	84503	51	-53230	No buckling
3300	3045	83131	54	-54311	No buckling
3400	3102	81849	57	-55297	No buckling
3500	3154	80679	60	-56192	No buckling
3600	3204	79555	60	-56192	No buckling
16750	9779	-68334	60	-56192	Buckling
16974	9891	-70853	60	-56192	Buckling
16974	9891	0	60	-56192	No buckling
16975	9891		0	-56192	No buckling

Table 38. Fictitious force for the pressure testing of the tubing.

$\mathrm{F}_{\text {fs }}$, fictitious force gradient, lbs/ft	$-11,25$
Buckled length, ft	$\mathbf{1 3 0 4}$
TVD at start of buckling	15670

Table 39. Fictitious force gradient, buckled length and MD at the beginning of the buckled tubing.
Remember that the hydraulic set packer was set at 500 psi. If 3000 psi were used as setting pressure no buckling would occur at the pressure test of the tubing.

