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ABSTRACT 
As the operational window is getting narrower, pressure control is becoming more important. 

Drilling from a semi-submersible platform can in this context offer new challenges as the top 

of the drill string will follow the semi-submersible platform's heave response to ocean waves 

during a connection. The heave movement can travel down the drill string and create pressure 

fluctuations around the drill bit.  

The movement of the drill string has been numerical simulated with a numeric program 

created in Matlab. The movement of the semi-submersible platform was simulated using a 

combination of two sinus functions.   

The results from the simulations show that the drill bit velocity and amplitude is generally 

increasing with heave amplitude, and generally decreasing with increased heave period and 

deviation angle. For the drill strings in vertical wells, the amplitudes are increasing with drill 

string length. However, as the deviation angle is increasing, more of the energy in the drill 

strings is lost due to contact friction, leading to a non-linear behavior and less distinctive 

oscillation patterns. The drill bit amplitude in deviation wells is then small up to a certain 

heave amplitude, where the drill bit amplitude increases rapidly. 

The simulations show that some of the drill strings start to resonate at a certain heave period, 

but the resonance is terminated by contact friction if the deviation angle is larger than 

approximately 7 degrees. Simulations also showed that the surge and swab pressures during 

normal weather conditions and drill string oscillations are up to approximately 5 bar. The 

pressure calculations were done with a relatively large flow area between the BHA and 

wellbore wall, but preliminary calculations have shown that the pressure fluctuations can be 

drastically increased if the flow area between the BHA and the wellbore wall is decreased. 

However, the calculations performed during the simulations and pressure estimations are 

probably conservative. 
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1. INTRODUCTION 
Drilling on the Norwegian Continental Shelf is today associated with high cost and increasing 

complexity. The easiest accessible petroleum resources have up to now been produced in such 

a way that drilling into produced reservoirs to reach remaining pockets of oil is getting 

difficult, sometimes nearly impossible. In addition, the search for new recourses is forcing the 

industry into new areas with deeper waters and higher pressures and temperatures. This offers 

new challenges.  

The pressure window between pore pressure and fracture pressure has traditionally been quite 

large. This difference is called the operational window, and is observed to shrink, for instance 

in high pressure wells. A narrower operational window leaves less room for pressure 

fluctuations during drilling operations. 

When drilling from a floating platform the heave compensator is reducing the vertical drill 

string movements induced by waves. However, when doing a connection the drill string is 

disconnected from the heave compensator and wedged to the drill floor, the top of the string 

will then follow the rig movements. If these movements are transmitted down to the drill bit it 

may cause rapid changes in the bottom hole pressure.  

The purpose of this thesis is primarily to calculate if the heave movements will travel down 

the string and reach the drill bit, and to what extent this movement will induce pressure 

fluctuations below the drill bit. 
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2. THEORY 
The theory presented in chapters 2.1.2 and 2.1.3 are based on the presentations of professor 

Jonas Odland in the subject Offshore Field Development at the University of Stavanger, fall 

2011. In addition some theory is collected from e-mail correspondence with the same 

professor. 

The theory, equations and most of the figures in chapter 2.7 are based on the compendium 

Dynamic Loading of Equipment written in 1996 by Professor Erik Skaugen at the University 

of Stavanger. 

 

2.1  Drilling in the North Sea 
The average water depth in the North Sea is 94 meters, but varies between 25 meters in the 

south to 725 meters in the Norwegian Trench [1]. The North Sea has some of the harshest 

weather conditions in the world. The wind speed in the North Sea can exceed 50 m/s and the 

significant wave height (the mean of the highest third of the waves in a time-series) is 15 

meters. The peak period (the period with highest wave energy) is between 15 and 17,5 

seconds [2].  

Drilling to find oil and gas in these conditions requires special designed equipment. Offshore 

wells are much more expensive to drill compared to land based wells because of high rig rates 

and limited space and weight issues. When drilling in water depths greater than around 120 

meters it requires normally that operations are carried out from a floating vessel, as fixed 

structures are not practical.  

The floating vessel can be a drill ship or a semi-submersible platform. For exploration wells 

drill ships can be used, but semi-submersible platforms are more commonly used. Drilling 

from semi-submersible platforms will be the basis for this thesis. 

 

2.1.1 Semi-submersible platforms 
Semi-submersible platforms (semi-subs) are the most common type of offshore drilling rigs. 

The floating structures obtain buoyancy from ballasted, watertight pontoons located below the 

ocean surface. The topside of a semi-sub are located high above the sea level, supported by 

structural columns connecting the pontoons to the top side. Semi-subs are quite easy to install 
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on location since they can be ballasted up and down by altering the amount of sea water 

flooding in buoyancy tanks, usually located in the pontoons, for stability. 

 

 

Figure 2.1: A semisubmersible platform with eight columns and two submerged pontoons. 
The drilling derrick is placed approximately in the middle of the platform [3]. 

 

The submerged location of the pontoons provides counteracting forces to the vertical motions 

on the vessel created by the waves as illustrated in Figure 2.3. A semi-sub can be designed for 

a fixed location or as a mobile drilling unit. A mobile semi-sub will in principle have only two 

pontoons for decreased drag during towing, while a semi-sub designed for a fixed location 

have four pontoons providing increased stability. Low relative contact area at the water line 

and wave action gives the design high operational stability in rough seas. 

Semi-submersible platforms are capable of drilling in water depths up to 3000 meters. The 

water depth and weather conditions decide what kind of mooring system will be used. The rig 

movement characteristics will vary with the mooring system, water-line area and submerged 

volumes. The water-line area and submerged volumes are especially important factors for the 
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movement characteristics in relation to drilling. The number of columns and pontoon are of 

less importance for the global behavior.  

 

2.1.2 Movement of a semi-submersible platform 
Semi-submersible platforms are generally designed to minimize the response to the 

environment, where each type has its own movement characteristics. A semi-subs movement 

characteristic can be decided from hydrodynamic calculations, which can be verified to some 

extent by model experiments.  

The movement characteristics of a semi-sub can be considered to have six degrees of 

freedom, see Figure 2.2. This means that it can move in six different ways which can be 

divided into two main types of motion; translation and rotation.  

 

 

Figure 2.2: The different movements of a floating vessel [4]. 

 

Translation is movement that changes the position of the semi-sub. This is a linear type of 

displacement where the displacement values are common for each point of the vessel. The 

linear displacement motions can be divided into three different classes: 
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- Surge (forward/astern motion) 

- Sway (starboard/port motion) 

- Heave (up/down motion) 

Rotation is movement of the vessel around an axis, which means the displacement values 

of each point of the vessel varies. Rotation is an angular displacement, and can be divided 

into three different classes: 

- Roll (rotation about surge axis) 

- Pitch (rotation about sway axis) 

- Yaw (rotation about heave axis) 

 

2.1.2.1 Vertical movement 
Most semi-submersible drilling units are designed in such a way that the drilling derrick is 

placed in the center of the platform. Pitch and roll motions are both rotation in the vertical 

plane, which means that they will have minimum impact on drilling as long as the derrick is 

placed in the center of the platform. The motion of most importance in relation to drilling is 

the heave motion. Rotation about the heave axis will not affect the drill string at all. 

The natural heave period is the period where the vessel will resonate with the waves. For a 

semi-sub the natural heave period is decided by the relation between water-line area and total 

volume submerged. To ensure as little resonance as possible, the natural heave period for a 

semi-sub in the North Sea is normally designed to be a bit longer than 20 seconds.  

 

Figure 2.3: A twin pontoon semi-sub on a crest centered wave (left) and a trough centered 
wave (right). The platform is designed to counteract the passing waves, and is 
moving opposite to the wave movements. 
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The heave cancellation period is the period where the hydrodynamic forces on the pontoons 

are practically equal to the forces on the columns, and the heave response therefore tends to 

zero. The heave cancellation period for a semi-sub is dependent on water-line area and 

pontoon volume. For a semi-sub in the North Sea the heave cancellation period is designed to 

be somewhat shorter than 20 seconds.  

 

2.1.2.2 Horizontal movement 
The movements in the horizontal plane (surge, sway, yaw) consists of three components; fast-

varying, slow-varying and quasi-static movements. 

The fast-varying movement follows the waves in the same manner as heave, pitch and roll. 

This kind of movement is hard to mitigate.  

The slow-varying movement is decided by the natural period which is dependent of the 

stiffness of the mooring system. This is where the water depth comes in. In shallow water the 

system is stiff and the natural period is short. In deep water the system is softer and the natural 

period is longer (maybe a couple of minutes).  

The quasi-static movement is a shift of the equilibrium position due to wind and currents. 

 

2.1.3 The semisubmersible platform mooring system 
The type of mooring system has no or little effect on the vertical movement of a semi-sub 

(heave, pitch and roll). This means that the water depth is of less importance to the vertical 

movement. On the other hand, the type of mooring system and water depth are of larger 

importance when it comes to the horizontal movement. A semi-sub will experience a 

horizontal displacement changing the angle of the drill string to the seabed. This will however 

not be a problem due to the flexible qualities of the drill string. Deeper water gives a larger 

horizontal displacement, but is balanced by a longer span giving a gentler angle to the sea 

bottom. 

The catenary mooring system is the most common type of mooring system used for a semi 

submersible platform in shallow water. Catenary refers to the shape of a free hanging line 

under the influence of gravity. The system provides restoring forces through the suspended 
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weight of the mooring lines where its change in configuration is arising from the vessel 

motion. This means that external loading on the platform applied from the surrounding 

environment makes the vessel trying to lift the mooring lines. The catenary system requires 

that the mooring lines are terminated at the seabed horizontally, thus only applying horizontal 

loads on the anchor points. The lines must therefore be relatively long compared to the water 

depth. Traditional anchors which are designed for horizontal loads are used for the catenary 

systems.  

 

 

Figure 2.4: The different mooring systems used on semi-subs [3]. 

 

With the increase of the water depth the weight and the length of the mooring lines starts to 

increase rapidly. In deepwater the weight of the mooring lines becomes excessive and the 

mooring lines tend to hang directly down from the rig. The excessive weight diminishes the 

working payload of the platform. To overcome this problem, synthetic ropes are used in the 

taut leg mooring system. 
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The taut leg system is a much more cost effective system in deepwater. The system relies on 

the axial elastic stretching of the mooring lines rather than geometry changes. The lines 

terminate at an angle between 30 and 45 degrees at the seabed, which means that the anchor 

point are loaded by horizontal and vertical forces. A traditional anchor is therefore not 

suitable for taut leg systems, and suction anchors have to be applied instead. The restoring 

forces are determined by the stiffness and elasticity of the mooring lines. 

A semi-taut system is a combination of the taut mooring system and the catenary system, and 

is better suited for deepwater application than catenary system. 

 

2.1.4 Drilling from a semisubmersible platform 
When drilling in water depths greater than around 120 meters a semi-sub must be employed, 

as fixed structures are not practical. Semi-subs can also be used for pre-drilling. Pre-drilling is 

a way of reducing the time before production of a new discovery can begin. In conventional 

offshore development, wells cannot be drilled until a platform has been constructed and 

installed. This means a delay of several years before production begins. Such delays can be 

considerably reduced by pre-drilling some of the wells using a semi-sub. Pre-drilling involves 

drilling and casing the wells to a convenient depth, normally through the shallow water flow 

zone or other potential hazards. Pre-drilling may also be suspended just above the production 

zone, while some wells may be drilled to total depth and completed [3].  

When drilling from a semi-sub, the rig moves according to the movement characteristics of 

the rigs response to waves. To be able to keep a more constant weight on bit (WOB), the use 

of a heave compensator in the top drive is necessary. A heave compensator will reduce the 

vertical movement of the drill string, maintaining a more constant WOB. A constant WOB 

reduces torque variations at the bit, and will also improve the drilling rate of penetrations 

(ROP).  

 

2.1.4.1 Making a connection 
To make a connection is adding a length of drill pipe or a stand to the drill string in order to 

continue drilling. When the drill bit has drilled down to where the top drive is close to the drill 

floor, the drill string between the two must be lengthened by adding a stand (usually three 
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joints) to the drill string. Once the rig crew is ready, the driller stops the rotary, picks up off 

bottom to expose a threaded connection and turns off the pumps. The crew sets the slips to 

grip the drill string temporarily and unscrews the top drive. The top of the drill string is now 

moving according to the rig movements. This can be critical, as the rig movements may travel 

down to the drill bit, possibly creating pressure fluctuations at the bottom of the well. The top 

drive is then screwed into the additional stand of pipe, the pipe is picked up and screwed into 

the top of the temporarily hanging drill string. The driller then picks up the entire drill string 

to remove the slips, and carefully lowers the drill string while starting the pumps and rotary 

system. The drilling resumes when the bit touches bottom. A skilled rig crew can make a 

connection in a minute or two [5]. 

 

2.1.4.2 Fluctuations of the bottom hole pressure during a connection 
The bottom hole pressure in a well without circulation is decided by the fluid column above 

(no backpressure is applied). A surge effect can be created at the bottom of the well if the drill 

string moves down rapidly. This rapid movement can cause increased bottom hole pressure 

(BHP) due to the friction between the moving drill string and the stationary drilling fluid. The 

increase in the BHP due to a surge effect is referred to as surge pressure. The outcome of a 

increased BHP can be a fracture in the formation and loss of drilling fluid. In the worst case, a 

loss of drilling fluid can induce a kick from a formation further up the well. 

The opposite of a surge effect is a swab effect. A swab effect can be created when the drill bit 

moves up rapidly, decreasing the BHP. The decrease in BHP due to a swab effect is referred 

to as swab pressure. The outcome of a decreased BHP can be a kick induced at the bottom of 

the well. 

Traditionally the surge and swab effects have not been a problem during connections because 

of the large pressure margin between the pore pressure and the fracture pressure. However, as 

reservoirs are being depleted, they are getting more and more difficult to drill due to smaller 

pressure margins. The tendency observed is also that drilling in deeper water means a smaller 

margin between the fraction pressure and pore pressure (see section 2.5 ). 

The surge/swab pressure below the drill bit can be calculated as the as the drill string moves 

up and down. The pressure fluctuations arise when fluid are forced to flow through an area 
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with less flow area. This happens mainly at the drill bit and outside the lower part of the drill 

string which is called the bottom hole assembly (BHA) (see section 2.2.2).  

The pressure drop over the drill bit can be calculated by using the nozzle equation from 

Drilling data handbook [6]: 

 ∆𝑃 [𝑃𝑎] = 1
2

 𝑣
2 𝜌𝑚
𝐶𝑑2

                  (2.1.1) 

where v is the velocity, 𝜌m is the density of mud, and Cd
2 is an efficiency factor for 

conservation of energy.  

Cd is set to 0,95 and the velocity can be found using the equation below: 

 𝑣 =  𝑣𝑏𝑖𝑡  𝐴𝐵𝐻𝐴
𝐴𝑗𝑢𝑛𝑘

                  (2.1.2) 

where vbit is the velocity of the drill bit, ABHA is the cross section area of the bottom 

hole assembly, and Ajunk is the total cross section area of junk areas in the drill bit. 

This assumes that the area Ajunk is smaller than the annulus cross section around the 

BHA. If not, the latter should be used, replacing Ajunk in equation (2.1.2).  

The pressure drop due to friction along the outside of the BHA can be calculated using the 

equation below [7]: 

 ∆𝑃𝐹[𝐵𝑎𝑟] = 𝜌𝑅0,8𝜇0,2𝑄1,8

70696  (𝐷+𝑑)1,8 (𝐷−𝑑)3 𝐿                (2.1.3) 

where 𝜌R is the relative density of mud, μ is the viscosity of mud [cP], Q is the flow 

rate [liter/minute], D is the wellbore diameter [inches], d is the diameter of the BHA 

[inches], and L is the length of the BHA [m].  

As you can see not all of the units used in equation (2.1.3) are a part of the SI-system. The 

factor 70696 is adjusted in such a way that the result of the calculation comes out in bars.  

The compressibility of the mud is not taken into account in the equations above, but the effect 

of the compressibility can easily be calculated as the mud is in a closed system.  
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Figure 2.5: A cylinder of length L filled with mud, compressed by a piston travelling a 
distance ∆L. 

 

Figure 2.5 shows a cylinder filled with mud having a density of 𝜌m and the speed of sound in 

the mud is c. The volume inside the cylinder is proportional to the length of the cylinder, and 

the compressibility Cv of mud is equal to the inverse of c2 multiplied with 𝜌m. The pressure 

inside the mud as the piston has traveled the distance ∆L can be found by the equation below: 

 ∆𝑃 = ∆𝑉
𝑉
1
𝑐

= ∆𝐿
𝐿
1
𝑐

= ∆𝐿
𝐿
𝑐2 𝜌𝑚                 (2.1.4) 

The situation in Figure 2.5 can be transferred to a well with a drill string inside. The pressure 

increase due to the movement of the drill string (without the compressibility of mud) is the 

sum of equation (2.1.1) and (2.1.3). The mud has then been compressed the distance ∆L: 

 ∆𝐿 =  ∆𝑃 𝐿
𝑐2 𝜌𝑚

                   (2.1.5) 

This compression of the mud would have caused a slightly smaller pressure increase. If the 

cylinder is 10m long, the speed of sound in the mud is 1000m/s, the mud density is 

1200kg/m3, and the calculated pressure increase due to the string movement is 10 bar, the 

mud has been compressed the distance ∆L: 

 ∆𝐿 =  10∗105𝑃𝑎 ∗ 10𝑚

(1000 𝑚𝑠 )2∗ 1200 𝑘𝑔
𝑚3 

= 0,0083𝑚 

This means that the mud have been compressed a distance of approximately 0,8 cm which is a 

small number compared to the expected drill string movement which is in the scale of meters. 

This shows that for all practical purposes the mud will here behave as an incompressible 
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liquid. Any movement of the bit will generate a pressure that is sufficient to generate a mud 

flow that is equal to the mud displaced by the movement of the bit, as has been assumed in the 

equations 2.1.2 and 2.1.3. 
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2.2  The drill string 
The drill string has two primary purposes; act as a passage for the drill fluid making it 

possible to circulate the well, and transmit torque from the top drive in addition to generating 

and transmitting weight on bit. The drill string consists of drill pipes, drill collars, drill bit and 

other equipment. 

The drill string is custom built for each well and target. The length and weight will obviously 

change with the depth, but also the stiffness, diameter, strength of pipes, tools, drill bit, and 

other equipment will continuously be changed during the drilling of a well. The total length of 

a drill string can vary, but there are limitations when it comes to the TVD (True Vertical 

Depth). The heaviest loads are taken at the top of the drill string which must be able to stand 

the weight of the drill string below. A drill pipe of steel quality s135 are able to withstand a 

load equal to 135 000 psi. A 5" drill pipe can then bear a drill string having a TVD of more 

than 12000m. However, the string must also be able to take some extra loads due to friction, 

stuck pipe etc. A depth of 8000-9000m TVD is therefore looked at as the maximum depth of a 

wellbore.  

 

2.2.1 Drill pipes 
Most of the drill string consists of drill pipes. Drill pipes transmit rotation, vertical movement 

and drill fluid to the drill bit. There are many types and sizes, where the size denotes the pipe's 

outside diameter. The most used drill pipes in the North Sea have an outer diameter of 5" or 5 

1/2", with a length of about 10 meters [8]. Typical nominal weight of a 5 1/2" drill pipe is 

24,70 lb/ft (∼37 kg/m), where the weight indicates the wall thickness. The actual weight of a 

drill pipe assemblies includes the weight of the tool joints [9]. 

 

 

Figure 2.6: Cross section of a drill pipe seen from the side. Drill pipes come in different 
configurations, but a typical drill pipe cross section may look like this. 
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Both the inner and outer diameter of a drill pipe varies with the steel diameter variations. The 

inner diameter is smaller at the tool joints (3-4"), and the outer diameter is larger at the tool 

joints (7-7,5"). The reason for having thicker steel at the tool joints is the need for a low stress 

area where pipe tongs are used to grip the pipe. This means that relatively small cuts caused 

by the pipe tongs do not significantly impair the strength or life of the joint of drill pipe. Since 

the tool joints are having the largest outer diameter of the drill pipe, this is also where the 

main wear occurs. To extend the life time of the tool joints, the steel in this part have usually 

been heat treated to a greater hardness than the steel of the tube body [10]. To increase wear 

resistance even more some joints may have a surface layer of hard metal. 

The tube section has a smaller outer diameter compared to the tool joints (5,5") making it less 

exposed to wear. However, since the tube section has a smaller steel cross section than the 

rest of the drill pipe, this is where most of the elongation and compression of the drill string 

occurs. Inner diameter of the tube section is typically 4,67". For standard drilling operations 

the drill pipe is always in tension, as any compression gives buckling that increases the risk of 

pipe failure. 

 

2.2.2 Bottom hole assembly 
The bottom hole assembly (BHA) is the lower part of the drill string that hangs below the drill 

pipes. Typical length of the BHA is 100-200 meters [7]. A simple example of a BHA consists 

of a drill bit, drill collars, heavy-weight drill pipes, and stabilizers. In addition, components as 

downhole motor, rotary steering system (RSS), measurement while drilling (MWD) and 

logging while drilling (LWD) can be installed. In general, the complexity of the drill string is 

increasing when deeper sections are drilled [8]. The BHA is sufficiently heavy to give the 

required WOB with a good safety margin, thus ensuring that the drill pipe section will not 

experience compression. 

 

2.2.2.1 Drill collars 
The drill collars are heavy thick-walled pipes made to withstand compression without 

significant bending, enabling the required WOB. The drill bit must be pressed towards the 

formation with a force depending on type of bit and type of formation. The drill collars are 

simpler compared to the drill pipes since there is no changes in inner or outer diameter, 
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forming slick surfaces. This means that wear and friction are constant along the outside of the 

drill collars. Some drill collars can however have a spiral shaped surface to help the 

transportation of drill cuttings upwards in addition to reduce the differential pressure sticking. 

The outer diameter of drill collars used are usually larger than the outer diameter of the drill 

pipes further up the string, but the inner diameter of the drill collars are nevertheless often 

smaller. Typical inner diameter of a 6,5" drill collar is 2,25" and the weight of the same pipe 

can be 100 lb/ft (∼149 kg/m) [11]. 

 

 

Figure 2.7: Spiral drill collar with constant inner and outer diameter [12]. 

 

Heavy weight drill pipes (HWDP) are often installed between the heavy rigid drill collars and 

the more flexible drill pipes to make a gradual transition between the two. This can often be 

an advantage if the drill string is exposed to vibrations because it reduces the stress 

concentration significantly.  

 

2.2.2.2 Downhole motor 
A downhole motor is most often a mud motor that can be placed in the BHA to provide 

additional power to the bit while drilling. The mud motor can draw energy from the flowing 

fluid, transferring it to torque power to the drill bit.  

 

2.2.2.3 Stabilizers 
Stabilizers are required in the BHA to keep the drill collars centralized in the hole. There are 

different types of stabilizers, but they all are used to maintain the BHA in the well centered in 

order to prevent unwanted deflection and vibrations. The dimensions of the stabilizers are 
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usually the same as for the drill collars, the difference is the welded blades on the stabilizers, 

where the diameter is equal to the well diameter or slightly less. 

 

 

Figure 2.8: Welded blade stabilizer [13]. 

 

2.2.2.4 Rotary Steering Systems (RSS) 
Rotary steering systems are systems placed in the BHA enabling steering of the drill bit in the 

desired direction by the use of commands transmitted from the surface. The unit is placed 

directly above the bit and consists of a steering unit, a power unit and stabilizers among other 

things. The total length of a RSS can be around 10 meters [14]. 

 

2.2.2.5 Measurements While Drilling (MWD) 
MWD tools are placed in the BHA near the bit to measure the exact direction of the tool, the 

vibration level, and the pressure and temperature in the well among other things. The 

measurements are recorded by a computer in the tool, and can be compressed and transmitted 

to the surface continuously while the hole is being drilled. The MWD tools are either installed 

inside a thick-walled drill collar or they are built directly into the collars at a factory prior to 

arriving on the drilling location [15]. A mud pulse tool will often be installed to transmit the 

signals from the MWD tools to surface. 

 

2.2.2.6 Logging While Drilling (LWD) 
LWD tools are logging tools that can be placed in the BHA, working with the MWD system 

to transmit the measurements to the surface. The logging tools can give information about the 

formation, borehole and formation fluid. The logging tools typically have a total length of 8-

15 meters.  
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2.2.2.7 Jar 
A jar can be placed in the BHA to better free stuck downhole equipment. The jar uses a 

principle where kinetic energy are stored and suddenly released allowing the jar to strike up or 

down. An accelerator is often used with the jar to increase the efficiency of the jar. The jar 

can be either mechanical or hydraulic, having a latched length of 20-25 meters [16]. 

 

2.2.2.8 Float valve 
Inside the drill string there might be installed a float valve, allowing fluid to be pumped into 

the well, but preventing fluid flowing back into the drill string. 

 

2.2.2.9 Drill bit 
There are mainly two types of drill bits that are used to a large extent in the North Sea: tricone 

bit and polycrystalline diamond compact (PDC) bit. One can roughly say that tricone bit are 

used in the upper well sections, while PDC bit are used in the lower sections. The different 

drill bits operate in different ways, but all drill bits produce drill cuttings which must be 

transported to the surface. Junk slot areas in the bit allow the drill cuttings to pass, along with 

the drill mud. The junk slot area must be large enough to let the drill mud and cuttings escape 

without creating a large pressure build up below the drill bit, and at the same time be small 

enough to ensure effective cleaning of the drill bit. The junk slot area is different from bit to 

bit, but a 9 1/2" PDC bit can i.e. have a total junk slot area of 12,554 in2, which corresponds 

to about 18% of the total area.  
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2.3  Well trajectory 
An offshore drilling rig will have a limited number of well slots. The well slots are close to 

each other, which mean that there will always be a danger of one well intersecting with 

another. To avoid a conflict, every well trajectory is planned in detail with respect to where 

the kick-off point is located. The wells in the middle will have the deepest kick-off points, 

while the wells located further out will have shallower kick-off points.  

 

 

Figure 2.9: Multiple wells drilled from one offshore location having different kickoff points 
[17]. 

 

The trajectory of an offshore well will depend on a number of factors; hole pattern, casing 

program, mud program, required horizontal displacement and maximum tolerable inclination. 

Build-up rates are usually in the range 1,5°/100 ft MD to 4,0°/100 ft MD for normal 

directional wells [17]. It is however important to avoid unnecessary high dogleg severities 

which may lead to problems during completion and production.  

The use of deviated and horizontal wells has made it possible to reach reservoirs several 

kilometers away from the drilling location. The introduction of steerable systems has resulted 

in wells that are planned and drilled with complex paths involving 3-dimensional turns. This 

is particularly true in the case of slot recoveries, where old wells are sidetracked and drilled to 

new targets. These complex well paths are harder to drill, and therefore most directional wells 

are still planned using traditional patterns. There are several basic types of wells, and some of 

the most common are listed below [17]. 
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2.3.1 Build and hold 
This type of well has a shallow kick-off point, 

followed by a build-up section and a tangent 

section. The build and hold are used to reach 

deep targets with a large horizontal displacement, 

and moderately deep targets with moderate 

horizontal displacement where intermediate 

casing in the well is not required [17]. 

 

 

 

 

2.3.2 Build, hold and drop 
The build, hold and drop type of well have a 

shallow kick-off point, followed by a build-up 

section, then a tangent section, ending with a 

drop-off section. This type of well can have 

several variations: 

- Build, hold & drop back to vertical 

- Build, hold drop & hold (Figure 2.11) 

- Build, hold & continuous drop through 

reservoir 

Applications can be multiple pay zones, reduced 

angle in reservoir, lease or target limitations, well 

spacing requirements, and deep wells with small 

horizontal displacements. 

The disadvantages may be increased torque, risk 

of keyseating and logging problems due to 

inclination [17]. 

  Figure 2.10: Build and hold. 

Figure 2.11: Build, hold and drop. 
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2.3.3 Deep Kick-Off and Build 
This type of well have a deep kick-off point, a build-up 

section and may be followed by a short tangent section. 

This configuration might be used for appraisal wells to 

access the extent of a newly discovered reservoir, 

repositioning of the bottom part of the hole, or salt dome 

drilling.  

Since this type of well has a deep kick-off point, 

formations may be harder so that the initial deflection may 

be difficult to achieve. It may also be harder to achieve 

desired tool face orientation with downhole motor 

deflection assemblies because of more reactive torque 

[17]. 

 

 

2.3.4 Horizontal wells 
Any of the well trajectories above can have a horizontal section, typical in the bottom part. In 

practice, any well where the bottom part is drilled inside and along a reservoir is called a 

horizontal well even though the reservoir, and therefore the well, is not horizontal. A 

horizontal well will have a large drainage area which is a major advantage, resulting in higher 

production rate. A horizontal section through a reservoir will also lead to less water and gas 

coning, ultimately increased oil recovery. 

 

 

 

 

 

 

Figure 2.12: Deep kick-off and 
build. 
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2.4  Drill string friction without rotation 
The main object of this thesis is calculation of the drill string movement during a connection. 

As mentioned earlier, the top drive is not connected to the drill string during a connection, and 

rotation is therefore not possible. Friction while rotating is therefore not relevant in this 

setting.  

When the drill string hangs in slips from the drill floor, the rig may move up and down due to 

waves. The movement of the rig will transfer to the top of the drill string and travel down the 

drill string. Since the drill string consists of mainly steel which is almost perfectly elastic, the 

downward movement will travel with the speed of sound in steel. The movement will 

however be dampened by friction which consists of mainly three components; friction 

between drill string and formation, friction between drill string and casing, and friction 

between drill string and drill fluid. The two first friction components will be referred to as 

contact friction, and the last component will be referred to as viscous friction. 

As described in section 2.2, drill pipes are made up by a tool joint in each end with a tube 

section in the middle. The tool joints have a larger outer diameter than the tube section, and at 

the same time the tube section is rigid enough to resist bending when lying down. This makes 

it fairly reasonable to assume that only the tool boxes are in contact with the wellbore/casing 

wall, and not the tube section. When it comes to the BHA, most of the components are having 

a constant outer diameter, leaving the whole BHA-section in contact with the wellbore/casing 

wall. 

In a perfectly vertical section, the drill string is barely touching the wellbore wall, which 

means that both fluid friction and contact friction are of importance. However, in a slightly 

deviated section the drill string is lying on the low side of the well, making the contact friction 

considerably larger than the viscous friction. A higher deviating well will result in a much 

higher contact friction, leaving the viscous friction even less significant [18]. 

 

2.4.1 Contact friction 
Contact friction is in this context the friction between the drill string and formation or casing 

wall. The contact friction force mainly results from the drill string lying down at the borehole 

wall in deviated wells, and sometimes also axial force pressing the drill string towards the 
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wellbore wall in bends and curvatures due to the well trajectory, see Figure 2.13 [7]. To be 

able to calculate the friction force along the whole drill string, one must consider the altering 

deviation angle, and then integrate the friction force along the whole well trajectory since the 

friction force is changing with the deviation angle. However, if one disregards the friction 

force that results from the extra axial force due to the curved sections, the total friction force 

is much easier to calculate [19]. 

 

Figure 2.13: The drill string is forced towards the formation, creating more contact friction 
force in bends. 

 

The friction force is proportional to the contact force, which is the force pressing the two 

bodies together. The contact force is always perpendicular to the contact point and is often 

called the normal force, N [18]. The normal force for a solid body lying on a slanting support 

is given by the equation below, where G is the gravitational force and α is the deviation angle: 

 𝑁 = 𝐺 sin𝛼                   (2.4.1) 

 

Figure 2.14: The normal force N is perpendicular to the contact point. N is here shown as the 
force from the support against the body lying on it.  
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The contact friction is normally highest when the relative speed between the two bodies is 

zero (static contact friction). When the speed is larger than zero, the contact friction is 

independent of the relative speed between the two bodies (kinetic contact friction). The 

friction force against one of the bodies is always directed in the opposite direction of the 

speed relative to the other body. In this way, the friction force against the other body will have 

the same value, but directed in the opposite direction. This fulfils Newton's third law [18].  

The friction force is dependent upon the contacting surfaces of the two bodies. This 

dependence is given with a friction coefficient, µ.  

Mathematically this relation is given by  

 
v
vNF 


µ−=

          
           

(2.4.2)
 

where: F


is the friction force with direction opposite to the velocity. v is the velocity 

of the body in question relative to the other.  

A well that are being drilled will be cased off in the upper sections, having an open hole in the 

deepest section that are currently being drilled. The kinetic friction coefficient for a drill string 

inside a casing (steel against steel) will be approximately 0,15 - 0,2. For a drill string in 

contact with the formation in an open hole (steel against formation), the kinetic friction 

coefficient will be larger, approximately 0,25 - 0,3 [18]. The static friction coefficients are in 

this thesis set to be 20% higher than the kinetic friction coefficients for the same contacting 

surfaces. 

 

2.4.2 Viscous friction 
During a connection there will be no mud circulation and no rotation of the drill string as 

explained in section 2.1.4. The drill string can, however, move up and down with the rig 

movements, resulting in viscous friction against the drill string. The viscous friction towards 

the drill string is a function of many parameters such as fluid type, flow regime, relative 

speed, acceleration, roughness of surfaces, surface areas, and the position of the drill string in 

the wellbore.  
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Viscous friction is not always linear, even in the cases where there is laminar flow, as shown 

in Figure 2.16. It is to a large degree dependent upon acceleration and velocity. There is 

however no simple model for viscous friction, which makes modelling of the friction difficult. 

The total viscous friction during fluid circulation in a well can be estimated using the total 

fluid pressure drop. To find the total viscous friction against the drill string, the pressure drop 

can be divided between the drill string and wellbore surface according to the surface areas.  

If one has a 14 cm OD drill string inside a 34 cm ID vertical wellbore, the distance from the 

drill string to the wellbore wall is 10 cm on every side. The speed of sound in drill fluid is 

approximately 1000 m/s. One can expect that the fluid velocity profile to propagate with the 

speed of sound in the drill fluid, reaching the wellbore wall in 1 ms. The velocity profile will 

probably use considerably more than 1 ms to get established as a static velocity profile, but 

since the drill string is oscillating with a period of around 15 seconds, the total effect of 

viscous friction will not be very far from a static viscous friction situation. It is therefore quite 

reasonable to assume that viscous friction can be specified by giving friction as function of 

string speed relative to the drill fluid.  

To be able to calculate the viscous friction one can look at two parallel plates with fluid in 

between. If one of the plates moves with a constant speed relative to the other, a linear fluid 

velocity profile between the two plates will be obtained. 

 

Figure 2.15: Left: Two parallel plates with fluid in between. One of the plates moves with a 
velocity v relative to the other. a is the distance between the plates. Right: A pipe 
inside another pipe with fluid in between also moves with a velocity v relative to 
the other. D is the diameter of the large pipe, d is the diameter of the smaller pipe, 
a is the distance between the two, and L is the length of the pipes.  
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The scenario with the two parallel plates can be transferred to the pipe inside a larger pipe 

which represents the drill string inside the wellbore. The difference is that the surface area of 

the larger pipe is larger compared to the surface area of the smaller pipe. The viscous friction 

force transferred in the fluid is however the same for both pipes and can be estimated by 

multiplying the shear stress τ with the contact area A: 

 𝐹 =  𝜏 𝐴                     (2.4.3) 

 

The shear stress is the product of the viscosity μ and shear velocity �̇�: 

 𝜏 =  𝜇 �̇�                   (2.4.4) 

 

The shear velocity can be found by dividing the velocity v by the distance between the two 

pipes: 

 �̇� =  𝑣
𝑎

=  𝑣
𝐷−𝑑
2

=  2 𝑣 
𝐷−𝑑

                  (2.4.5) 

 

Since the surface areas are not the same for both pipes, the fluid velocity must also be 

different, as the friction is the same. The fluid velocity near the larger pipe is lower compared 

to the velocity at the same distance from the small pipe. The result is a non-linear velocity 

profile. A more correct viscous friction can be estimated by using the surface area obtained by 

using the diameter lying between d and D:  

 𝐴 =  𝜋 𝐷+𝑑
2

 𝐿                    (2.4.6) 

 

The estimated viscous friction can then be found by the equation below: 

 𝐹 = 𝜇 𝜋 𝐿 𝐷+𝑑
𝐷−𝑑

 𝑣                     (2.4.7) 

 

The velocity profile in a well as in the example above will be different at different points 

along the drill string during a connection. The string may be oscillating where parts of the 

string move upwards while others move downwards. In the beginning of a movement the fluid 

velocity near the drill string will be very low, and the angle between the velocity profile and 

the drill string will be very small. The viscous friction is inversely proportional to the angle, 

and is thus very large in the beginning of the string movement. At the same time the velocity 

of the string is also very low (see Figure 2.16, image 1). When the velocity profile has 
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propagated outwards, the angle of the velocity profile will be larger, which also applies for the 

velocity of the string (image 2). After a while the velocity profile is established and is 

approximately static (image 3). 

 

 

Figure 2.16: The velocity profile (blue line) of the fluid in the annulus outside a drill string 
when the string moves up and down (arrows). Image 1: The string starts moving 
upwards. Image 2: the string velocity is constant, but the velocity increases in the 
fluid outwards. Image 3: A approximate static velocity profile is established. 
Image 4: The string stops moving and then moves downwards. Image 5: The 
string is at rest and the fluid velocity starts decreasing outwards. Image 6: The 
string starts moving upward again, the velocity profile complexity is increasing.  

 

During string oscillations some fluid velocity effects may arise and is addressed below: 

As the string moves up and down it will act as a piston, displacing fluid when moving down, 

sucking fluid back when moving up. This piston effect will make the relative velocity 

between the string and fluid greater. The fluid velocity is also increasing with diminishing 

annulus, because of larger relative string volume to the wellbore volume. This effect is not 

included in the calculations.  

As mentioned in section 2.2.2, there might be a float valve installed in the drill string. The 

valve can in principle refill the well with some fluid when the string is moving upwards, 

diminishing the suction effect. This is, however, neglected in the simulations, the string will 

be looked at as a closed string. 
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2.5  Formation and well pressures 
During a drilling operation the objective is to reach the target using as little time and 

resources as possible with minimum formation damage to the reservoir. The formation types 

and their properties are constantly changing downwards, making it necessary to continuously 

monitor and adjust the bottom hole pressure (BHP). The BHP is usually altered by changing 

the density of the drilling fluid, but it is also possible to apply back pressure. If the BHP is too 

high the drilling fluid may fracture the formation, and if the BHP is too low, formation fluid 

may enter the well. 

 

2.5.1 Pore pressure 
The pore pressure is the fluid pressure inside the formation pores. In open porous formations 

where the pore fluid can flow freely to the surface, the pore pressure is the pressure exerted by 

a column of formation water from the formation's depth to sea level. When impermeable 

formations are compacted, the pore fluids cannot always escape and must then support the 

overlaying rock column, leading to anomalously high formation water pressures [20]. 

The pore pressure can be measured in a open hole section using different tools, but the pore 

pressure is also predicted in advance using data from adjacent wells and simulations.  

If the well pressure in an open hole is lower than the pore pressure, fluid from the formation 

can start flowing into the well at this specific depth. This is called a kick, and has to be 

mitigated by increasing the well pressure. 

 

2.5.2 Fracture pressure 
The fracture pressure is the pressure where the formation will hydraulically fracture. The 

fracture induced in a vertical well will always be in the direction of maximum stress. Some 

formations have naturally occurring fractures, and the pressure needed to open these fractures 

is somewhat lower than the pressure needed to induce new fractures. This lower pressure is 

called the fracture propagation pressure.  

The fracture pressure in a well is normally measured just after a new casing has been installed 

and cemented in the hole. The fracture pressure can be measured by increasing the well 
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pressure until leak off occurs, which is called a leak off test (LOT). Sometimes it is only 

necessary to pressure up the well until a certain BHP is obtained. This is called a formation 

integrity test (FIT), and confirms that the formation at the shoe will be able to withstand a 

certain pressure.  

If the well pressure during a drilling operation exceeds the fracture pressure, drill fluid in the 

well will be forced into the formation and hydraulically fracture it. The result of fracturing the 

formation can be huge losses of drill fluid to the formation until the pressure in the well is 

equalized to the formation pressure. This scenario can be critical, resulting in a damaged 

reservoir or worse, inducing a kick further up the well.  

 

2.5.3 Operational window 
As explained in the sections above, it is important to have a well pressure above the pore 

pressure and below the fracture pressure. The distance between these two pressures is called 

the operational window, and can be graphically described in a pore pressure plot as in the 

figure below. 

 

Figure 2.17: Pore pressure gradient plot. The red line is the pore pressure gradient, and the 
blue line is the fracture pressure gradient. The distance between the pore pressure 
gradient and the fracture pressure gradient is called the operational window. 
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The pressure in a well without circulation is the result of the pressure exerted by the mud 

column. However, if the mud is circulated, the friction pressure drop in the well along with 

the mud column results in a higher well pressure. This is called the equivalent mud weight 

(ECD), and is important to take into account when drilling. A high ECD results in a decreased 

operational window, and the risk of going outside the window increases.  

 

2.5.4 Reservoir pressure 
The reservoir pressure in an oil reservoir can be normal, high or low. To be able to determine 

if the reservoir pressure is normal, the pressure must be measured at the oil water contact 

(OWC). In an offshore oil reservoir the normal reservoir pressure is the pressure calculated 

using sea water gradient 𝜌sw from mean sea level (MSL) to sea bottom, and mean formation 

water density 𝜌p from sea bottom to the OWC (see Figure 2.18). The pressure inside the 

reservoir is higher above the OWC since oil is (in most cases) lighter than water. Normal 

pressure at the OWC can be calculated using following equation: 

POWC = 𝜌sw g hsw + 𝜌p g hp                  (2.5.1)  

where g is the gravity constant, hsw is the sea water depth, and hp is the formation 

water column from sea bottom to OWC. 

If the measured pressure at the OWC is higher than the normal pressure, the reservoir pressure 

is high. If the measured pressure is lower than the normal pressure, the reservoir pressure is 

low.  

To calculate the reservoir pressure at the gas oil contact (GOC) we can use the equation 

below: 

PGOC = 𝜌sw g hsw + 𝜌p g hp - 𝜌o g ho                (2.5.2)  

where 𝜌o is the density of oil, and ho is the height of the oil column. 

The pressure at the top of the reservoir can be calculated using the equation below: 

PTop = 𝜌sw g hsw + 𝜌p g hp - 𝜌o g ho - 𝜌g g hg               (2.5.3)  

where 𝜌g is the density of gas, and hg is the height of the gas column. 
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Figure 2.18: The pressure in a reservoir can easily be calculated if the depths and fluid 
densities are known. 

 

2.5.4.1 Natural deviating reservoir pressures 
The reservoirs with pressures naturally deviating from the normal pressure have probably 

been totally isolated from the surroundings while the reservoir depth has changed. The 

isolating rock that surrounds the reservoir must be completely impermeable as salt or shale. 

When an isolated reservoir is submerged or uplifted, the reservoir pressure stays almost 

constant while the surrounding pore pressure increases or decreases. This mechanism can 

create large pressure differences that can make drilling difficult. 

 

2.5.4.2 Compartmentalized reservoirs 
A reservoir that has been drained will usually have lower reservoir pressure than the normal 

pressure. Some reservoirs are compartmentalized, where there is no or very little 

communication between the different reservoir zones (see Figure 2.19). Before the production 

starts the pressures in the different zones are approximately the same. But since it is hard to 

predict the communication pattern in the reservoir, some zones will stay untouched, while 

others are drained. This can create large pressure differences where the drained zones have 

lower pore pressure than the virgin zones.  
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Figure 2.19: A compartmentalized oil reservoir with no pressure communication between the 
different zones. 

 

The need for infill drilling will then be revealed. The use of 4D seismic (3D seismic shot at 

the same location at different times) can reveal the reservoir zones that have not been drained.  

To reach the untouched zones it might be necessary to drill through a drained zone. The 

drained zone will have a lower pore pressure and fracture pressure than the untouched zone. If 

the pressure difference is too large, it can be seen as undrillable. The problem is that the low 

pore and fracture pressure will require a lower pressure in the well, while the high pore and 

fracture pressure requires a higher pressure in the well. If the high pore pressure is higher than 

the low fracture pressure, it can be impossible to complete the drilling. In some cases it can be 

done if a casing is set in the sealing zone between the reservoir zones. 

 

2.5.4.3 Deep water reservoirs 
Drilling in deep water can be very difficult due to a narrower operational window. The 

tendency in deep water is abruptly increasing pore pressures and weak fracture gradients. 

Pressure related drilling problems are the leading cause for abandoning deep water wells.  

Problems as lost circulation and stuck pipe often suspend the drilling operation and force the 

operator to change the casing program or well path.  

Overpressurized zones are more common in deep water wells, and may cause formation fluid 

inflow to the well.  
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2.6  Buoyancy 
During a drilling operation the well is filled with mud which gives buoyancy to the drill 

string. The buoyancy forces acting on the drill string must be known in order to calculate the 

contact friction forces and the effective weight of the drill string.  

Buoyancy is forces exerted by a fluid that opposes an object's weight. In a column of fluid, 

pressure increases with depth as a result of the overlying fluid. A submerged object in the 

fluid therefore experiences greater pressure at the bottom of the column than at the top. The 

pressure difference ∆P over a submerged object with a vertical distance h between the top and 

bottom is:  

∆𝑃 =  𝜌𝑚 𝑔 ℎ                   (2.6.1)  

where 𝜌m is the fluid density, and g is the gravity constant. 

The difference in pressure results in a net force that accelerates the object upwards. There will 

however not be a pressure difference over vertical areas, which will not have a contribution to 

the buoyancy.  

 

Figure 2.20: The pressure increases downwards in a fluid. The differential pressure over an 
submerged object accelerates the object upwards. This is called buoyancy. 
Pressure towards vertical surface areas gives no contribution to the buoyancy. 
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2.6.1 Buoyancy of a vertical submerged cylinder 
A submerged cylinder with a vertical axis will experience a buoyancy force equal to the 

pressure difference over the length of the cylinder times the end surface area. 

The area of the end surfaces is given by:  

 𝐴1 = 𝜋 𝑅2                   (2.6.2) 

The buoyancy of the cylinder becomes: 

 𝐵 =  𝐴1 ∆𝑃 = 𝜋 𝑅2 ℎ1 𝜌𝑚 𝑔                  (2.6.3)  

where h1 is the height of the cylinder (see Figure 2.20). 

 

2.6.2 Buoyancy of a horizontal submerged cylinder 
A submerged cylinder lying horizontally will only experience a pressure difference over the 

side surface. The side surface is however curved, and the pressure difference is varying. This 

makes the calculation a bit more complex: 

The following is derived by Professor Erik Skaugen. Let us look at a cylinder with length L 

and radius R. The difference in surface area A due to a small change in angle φ can be 

expressed as: 

 𝑑𝐴 = 𝑅 𝑑𝜑 𝐿                   (2.6.4) 

 

 

Figure 2.21: A cylinder with radius R and length L. A small change in the angle dφ will give a 
small change in surface area, dA. 



34 

 

According to equation (2.6.4) above, the pressure at dA is given by the column of fluid above. 

The height of the column is given by following equation (see Figure 2.21): 

 ℎ = 𝑅 − 𝑅 cos𝜑 = (1 − cos𝜑)𝑅                (2.6.5) 

The pressure at dA is: 

 𝑃 =  𝜌𝑚 𝑔 ℎ =  𝜌𝑚 𝑔 (1 − cos𝜑)𝑅                (2.6.6) 

The pressure is acting perpendicular to the surface, which means that the pressure have one 

vertical Pv and one horizontal component Ph.  

The vertical component is the one contributing to the buoyancy (see Figure 2.22): 

 𝑃𝑣 = 𝑃 cos𝜑                   (2.6.7) 

 𝑃𝑣 =  𝜌𝑚 𝑔 (1 − cos𝜑)𝑅 cos𝜑                (2.6.8) 

 

Figure 2.22: Pressure is acting perpendicular to the surface. Ph is the horizontal component, 
Pv is the vertical component. 

 

In this setting, buoyancy is defined as positive, and pressure acting downwards is negative. 

The buoyancy acting on half the cylinder (from 0 - π, see Figure 2.21) is: 

 𝑑𝐵1
2

=  −𝑃𝑣 𝑑𝐴                  (2.6.9) 

Inserting equation (2.6.4) and (2.6.8) into equation (2.6.9): 

 𝑑𝐵1
2

=  −𝜌𝑚 𝑔 𝑅2 𝐿(1 − cos𝜑) cos𝜑  𝑑𝜑                           (2.6.10) 
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Integrating around half the cylinder, and finds the buoyancy on half the cylinder: 

 𝐵1
2

= ∫ 𝑑𝐵1
2

𝜋
0 =  −𝜌𝑚 𝑔 𝑅2 𝐿 ∫ (cos𝜑 − cos2 𝜑)𝜋

0  𝑑𝜑 =  𝜌𝑚 𝑔 𝑅2 𝐿 𝜋
2
         (2.6.11) 

The buoyancy for the whole cylinder is the buoyancy for half the cylinder given in equation 

(2.6.11) times two, since the cylinder is symmetrical: 

 𝐵 =  𝜋 𝑅2 𝐿 𝜌𝑚 𝑔                 (2.6.12) 

This result is the same as equation (2.6.3). One should keep in mind that the buoyancy given 

in equation (2.6.12) is from the side of the cylinder. There is no pressure difference over the 

end pieces, and they do not contribute to the buoyancy.  

 

2.6.3 Buoyancy of a submerged cylinder with an angle 
A submerged cylinder that deviates with an angle α from vertical will experience an effective 

acceleration from both the bottom end piece and bottom side. The following is derived by 

Professor Erik Skaugen. 

We can look at a deviating cylinder in the same coordinate system as above. Since the 

cylinder is deviating from vertical with an angle α, the height of the pressure column for 

counter points are different compared to a cylinder lying horizontally (see Figure 2.23). The 

pressure is always higher at the lower side of the cylinder. The height difference is:  

 ℎ = 2𝑅 sin𝛼                 (2.6.13) 

 

Figure 2.23: A cylinder submerged with a angle α deviating from vertical. 
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The vertical pressure component over the cylinder can be found by inserting equation (2.6.13) 

into equation (2.6.7): 

 𝑃𝑣 = 𝜌𝑚 𝑔 2𝑅 sin𝛼  cos𝜑               (2.6.14) 

The buoyancy over one half side (not including the end pieces) of the cylinder can be found 

by inserting equation (2.6.4) and (2.6.14) into equation (2.6.9): 

 𝑑𝐵1
2

=  −𝜌𝑚 𝑔 𝐿 2𝑅2  sin𝛼  cos𝜑  𝑑𝜑              (2.6.15) 

Integrating around half the cylinder, and finds the buoyancy over the half side of the cylinder: 

 𝐵1
2

= ∫ 𝑑𝐵1
2

𝜋
0 =  −𝜌𝑚 𝑔 𝑅2 𝐿  sin𝛼  ∫ ( cos𝜑)𝜋

0  𝑑𝜑 = 𝜋 𝑅2 𝐿 𝜌𝑚 𝑔  sin𝛼        (2.6.16) 

The buoyancy for the whole sides of the cylinder is the buoyancy for half the cylinder given 

in equation (2.6.16) times two, since the cylinder is symmetrical: 

 𝐵𝑠𝑖𝑑𝑒𝑠 = 𝜋 𝑅2 𝐿 𝜌𝑚 𝑔  sin𝛼               (2.6.17) 

We must also include the buoyancy acting on the end pieces. The average pressure towards 

the end pieces is equal to the pressure at the center of the cylinder. This pressure is given by 

the equation: 

 𝑃 = 𝜌𝑚 𝑔 ℎ =  𝜌𝑚 𝑔 𝐿 cos𝛼               (2.6.18) 

The area of the end pieces are given by equation (2.6.2). The buoyancy acting at the end 

pieces are given by the equation: 

 𝐵𝑒𝑛𝑑𝑠 = 𝜋 𝑅2 𝐿 𝜌𝑚 𝑔  cos𝛼               (2.6.19) 

The total buoyancy is a combination of the buoyancy acting on the side pieces (equation 

(2.6.17)) and the buoyancy acting at the end pieces (equation (2.6.19)). The direction of the 

total buoyancy is vertical, as there are no rotational forces acting on a submerged object.  
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2.6.4 Archimedes' principle 
To make the calculations as straightforward as possible, the use of Archimedes' principle can 

simplify them. The advantage of Archimedes' principle is that the orientation of an object is 

not considered.  

Archimedes' principle states that the net upward buoyancy force B is equal to the magnitude 

of the weight of fluid displaced by the object: 

 𝐵 =  𝜌𝑚 𝑉𝑑𝑖𝑠𝑝 𝑔                (2.6.20)  

 where Vdisp is the displaced volume 

The displaced volume of a cylinder with length L and radius R is: 

 𝑉𝑑𝑖𝑠𝑝 =  𝜋 𝑅2 𝐿                (2.6.21) 

Inserting equation (2.6.21) into equation (2.6.20), the buoyancy of the cylinder becomes: 

 𝐵 = 𝜋 𝑅2 𝐿 𝜌𝑚 𝑔                (2.6.22) 

which is exactly the same as equation (2.6.3) and (2.6.12).  

The displaced volume of i.e. a submerged drill pipe is not dependent of the orientation of the 

drill pipe, making Archimedes' principle practical in this thesis.  

 

2.6.5 Apparent weight 
The apparent weight of an object immersed in a fluid is given by the weight of the object in 
air subtracted the buoyancy: 

 𝑊𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 =  𝑊𝑎𝑖𝑟 − 𝐵                 (2.6.23) 

The weight of a steel cylinder in air is: 

 𝑊𝑎𝑖𝑟 =  𝜋 𝑅2 𝐿 𝜌𝑠  𝑔                (2.6.24) 

where 𝜌s is density of steel 

The apparent weight of the steel cylinder is equal to equation (2.6.24) subtracted equation 
(2.6.22): 

 𝑊𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 =  𝜋 𝑅2 𝐿 𝜌𝑠  𝑔 − 𝜋 𝑅2 𝐿 𝜌𝑚 𝑔 =  𝜋 𝑅2 𝐿 𝑔 (1 − 𝜌𝑚
𝜌𝑠

)          (2.6.25)            
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2.7  Describing the drill string movement 
In order to describe the drill string movement one can use a method by Professor Erik 

Skaugen at the University of Stavanger. The method is numerical and enables one to calculate 

the behavior of strings when exposed to changing forces. These forces can be movement of 

objects connected to the string, gravity and friction. Stress waves will be induced in the string 

by the different forces, and travel with the speed of sound in the material. The method 

provides equations for several situations, but has some limitations. If the forces acting on the 

string become so large that the string yields or break, the continued calculations will be 

incorrect. The numerical method is restricted to treat only one-dimensional waves, travelling 

along the string axis. These waves are pure stress waves which gives the local stress along the 

string, or torsion waves. Shear waves and waves that are induces across the string is however 

neglected [21]. 

 

2.7.1 String parameters  
To be able to calculate the drill string movements it is important to establish a set of 

parameters and conditions: 

The physical parameters required for calculation are: 

- String length L 

- String material cross section  A 

- Any two of the three string material parameters below. They are connected by the 

equation c2 = E/𝜌. If two of the parameters are given, the third can be calculated. 

o 𝜌, density  

o c, speed of sound in the material 

o E, the modulus of elasticity 

- All external forces acting along the string and any connections must be specified as 

functions of time. 

- Contact friction must be specified by the coefficients of friction. 

- Liquid friction must be specified by giving friction as a function of string speed 

relative to liquid. 
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- The string axis deviation from the vertical direction must be given and may change 

along the string. This is used to calculate the normal force to find the contact 

friction, and to find the component of gravity acting along the axis. 

 

The input numerical parameters required for calculation are: 

- The time step length ∆t (alternatively the space step length ∆z) 

- The displacement unit ∆x. This unit is used as the basic unit in the numerical 

calculations and can be freely chosen. The displacement unit is often chosen to 

give integer values for hand calculations. 

 

The numerical calculations give the actual movement of the segment mid points at all times 

that are whole multiples of the time step. The calculated movement is the actual movement of 

the string material at the segment mid point [21].  

 

2.7.2 Division of a string into numerical segments 
To be able to perform calculations on a string the whole string must be divided into a number 

of segments. Half segments can be used at the ends, but the rest of the string is always divided 

into whole segments. A string might have different sections with different diameters. Figure 

2.24 is showing some possible divisions into numerical segments. The length of a segment is 

∆z, and the length of a half segment is ∆z/2. It is worth to note that the "mid-point" of a half 

segment is actually at the end of the segment.  

In a string with a total length L, having a total of N segments, the length of each segment ∆z 

is L/N. A segment is defined to be inside the string if the mid point of the segment is a 

distance ∆z or more away from the ends of the string.  
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Figure 2.24: Some examples of how to divide strings correctly into numerical segments. The 
number of N segments is known, and the mid point of a segment is shown as a 
small circle [21].  

 

The requirement for segment diameters is that each half of a whole segment must have a 

constant diameter. This means that a whole segment can have two different diameters, while a 

half segment can only have one diameter. Figure 2.25 shows the possible ways of 

representing a string of changing diameter. 

 

Figure 2.25: Two different ways of dividing a string with changing diameter into numerical 
segments. The lower case shows a whole segment having two different diameters. 
The number N of segments is 4 in both cases, but the number of segment mid 
points are 4 and 5 [21]. 

 

According to the rules only strings with abrupt changes of diameter can be modelled exactly. 

For real strings there may be more gradual changes of diameter. A possible approximation to 

this with numerical segments can be done, but requires that the distance between segment mid 

points is short compared to the transition zone. 

The segment mid points should be numbered in the positive direction from 1 and upwards, 

where the positive direction can be chosen freely, but must be along the string axis. When 
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gravity is included, positive direction is usually chosen to be from the top and downward 

along the string. The gravity component that acts along the string is then positive. Forces that 

act along the string in the positive direction are positive, and negative if they act in the 

negative direction. This convention is also used for velocities. 

 

2.7.3 Displacements 
In the beginning of a calculation, the string can be assumed to be completely relaxed, and the 

movement of each segment mid point is calculated as its displacement from its assumed initial 

position in the string. The calculation procedure and notations are as follows: 

- The displacement of segment mid point number j at present time t is Xj. 

- The displacement of segment number j at the time step before present time (time t - 

∆t) is XGj. 

- The new displacements XNj at one time step into the future (time t + ∆t) can be 

calculated from numerical equations as long as the displacements at present time 

Xj, and one time step before present time XGj is known. 

- When the new displacements are calculated the time t + ∆t is taken as the present 

time t, and all XNj becomes Xj, and all former Xj becomes XGj. 

- In order to start the first calculation, the initial conditions must be known. This 

means that in order to calculate all XNj for the first time, a complete set of Xj and 

XGj must be known. This is the initial condition or the boundary condition in time, 

and must be found from the actual condition of the string. 

If no forces are acting on a string lying horizontally during the initial time, the string will 

remain relaxed, and all displacements Xj and XGj are zero.  

 

2.7.4 Boundary conditions in space 
The initial conditions are left behind after two time steps of calculations. This means that they 

will have no influence on further calculations. However, there will usually be other conditions 

present that will keep having influence on the calculations. These are called boundary 

conditions in space, since they are usually found at a certain point along the string. Generally, 
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all deviations from a freely moving, continuous string of constant cross section can be 

considered as a boundary condition. Some are mentioned here: 

- The string is terminated with a free end. This is a end that can move freely, where 

no forces are acting on it. This is the case when a string ends in air, with nothing 

connected to the end. 

- The string is terminated with a fixed end. This end has a fixed position, and 

movement of the end is not possible. 

- Change of cross section of the string 

- A piece of equipment clamped to the string and moving freely with the string. 

As general forces as gravity and friction affect every part of the string, they are usually not 

called boundary conditions, but they can be considered as such. Fixed points and forced 

movement of any point in the string are given by an equation that is independent of the string 

movements. The equation for a fixed point will be a constant, while the equation for a forced 

moving point will be a function of time. For calculation purposes, the boundary condition 

should be applied on a segment min point or at a segment boundary. Often it will be smart to 

divide the string in such a way that fixed or forced points are placed at segment mid points.  

For other boundary conditions as diameter changes and ends, special numerical equations for 

the segment mid points affected will be used.  

 

2.7.5 The standard numerical equations 
To calculate the new displacement (XN) of a segment mid point, the standard numerical 

equation is used. This is a equation used for a segment having a constant cross section. For 

segment number j, we have: 

XNj = Xj-1 + Xj+1 - XGj                  (2.7.1) 

 

2.7.6 End boundary numerical equations 
A free end of a string can be described by two different equations, depending on which of the 

two possible segment placements relative to the end is chosen. In most cases the 

recommended configuration is to end the string with a whole segment. The figure below 
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shows a string ending with a whole segment, where the distance from the end to the mid point 

is ∆z/2. 

 

Figure 2.26: A string with free ends having whole segments at both ends. n is the number of 
segments in the string [21]. 

 

The numbering of the segments gives two possible equations for the free ends, depending if 

the free end is at the beginning or at the end of the string. The equation at the left is the 

equation for the first segment of the string, while the equation at the right is the equation for 

last segment of the string. 

 XN1 = X1 + X2 – XG1   XNn = Xn-1 + Xn – XGn            (2.7.2)            

 

Figure 2.27: A string with free ends having half segments at both ends. n is the number of 
segment mid points, but the number of whole segments are n-1 [21]. 

 

Sometimes the string is ended with half ends. This gives segment mid points at the ends as 

shown above. The equations for the free ends then become: 

 XN1 = 2X2 – XG1   XNn = 2Xn -1 – XGn                       (2.7.3) 

A string may end with a whole segment at one end, and a half segment at the other end. The 

equations will also be the same for changes in the cross section between the ends (if the 

change in cross section is at least a distance ∆z away from the mid point of the end segment). 

For fixed ends there are also two different numerical equations for segments at the string 

ends. The equations are also here depending on whether the string is ended with a half or a 

whole segment. If the string is ended with half segments at both ends, the fixed end equations 

are: 
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XN1 = XLE  XNn = XRE                (2.7.4) 

where XLE is the constant, fixed displacement of the left end, and XRE is the constant, fixed 

displacement of the right end. This is the simplest type of fixed ends, and will never give any 

numerical problems. It is also the recommended type of fixed ends. 

 

 

Figure 2.28: Two strings with fixed ends. The string above is ending with half segments at 
both ends, the lower with whole segments at both ends [21]. 

 

If the string is ended with whole segments at both ends, the fixed equations are: 

XN1 = X2 – X1 – XG1 + 2XLE XNn = Xn-1 – Xn – XGn + 2XRE            (2.7.5)       

For forced ends, the displacements will change with time and is then functions of time, XLE = 

XLE(t) and XRE = XRE(t). In some cases the end displacements may also be more complex. 

 

2.7.7 Change of string cross section 
A change in cross section is in this context a change in inner string diameter, outer string 

diameter or both. Any change of cross section is allowed at a segment mid point, or at a 

segment border. A change in cross section at a segment mid point is the simplest case and is 

shown in Figure 2.29 below. The equation for a change in cross section from A1 to A2 in the 

positive direction is:  

jjjj XGX
AA

AX
AA

AXN −
+

+
+

= +− 1
21

2
1

21

1 22
               (2.7.6) 
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Neighboring segments will not be affected by the change of cross section. This is because 

their mid points are ∆z away from the change, and the equation assumes that there is not 

another change of cross section closer than ∆z to any segment mid point j.  

 

 

Figure 2.29: A change in the string cross section at the mid point of segment number j. The 
cross section is changed from A1 to the left of this segment, to A2 at the right of it 
[21]. 

 

If the change in cross section occurs at a segment border as shown in Figure 2.30 below, the 

two segment mid points that are closer than ∆z are affected by it.  

 

 

Figure 2.30: A change in the string cross section at the border between segment number j and 
j+1 [21]. 

 

The equations for the two segments are shown below: 

jjjjj XGX
AA

AX
AA
AAXXN −

+
+

+
−

+= +− 1
21

2

21

21
1

2
              (2.7.7) 

121
21

12

21

1
1

2
++++ −+

+
−

+
+

= jjjjj XGXX
AA
AAX

AA
AXN              (2.7.8) 

 



46 

 

2.7.8 Stress in the string 
In the initial reference condition, the string is relaxed with no stress of the string material. 

However, when the string is affected by forces, the distance between the different segment 

mid points is altered, and stress is induced in the string. If the distance between two segment 

mid points is increased, the string is stretched and the stress induced is here defined to be 

positive. A decrease in the distance between two segment mid points means that the string is 

compressed, which is defined to be negative stress. The elongation between segment mid 

point number j and j+1 are given by the equation: 

jjjj XXX −=∆ ++ 11,                   (2.7.9) 

If ∆Xj, j+1 is negative the string is compressed between segment mid point number j and j+1, 

and if ∆Xj, j+1 is positive the string is stretched. The average stress σj, j+1 between these points 

can be found by the equation: 

z
XX

E jj
jj ∆

−
= +

+
1

1,σ                 (2.7.10) 

where E is the modulus of elasticity, with the unit N/m2 

Since the average stress is calculated between two points it is possible that the material yields, 

but we are not seeing it from our data. The calculations will be invalid from this point. This is 

however not a large problem, as the finite time steps limit the shortness of stress pulses we are 

able to put into the string. If there is a suspicion of existence of shorter pulses, one have 

always the possibility of reducing the time and space length to reveal them.  

 

2.7.9 Velocity of the string material 
Any change of the string state is spreading out along the string with a velocity equal to the 

speed of sound in the string. But the average material velocity vj is the change of displacement 

of a segment mid point during a time step ∆t at position j in the string, and can be estimatd by 

two different equations, equally valid: 

t
XGX

tttv jj
j ∆

−
=∆− ),(  

t
XXN

tttv jj
j ∆

−
=∆+ ),(            (2.7.11) 

where t is the present time, t - ∆t is the old time, and t + ∆t is the new, future time. 
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However, these two equations are not good expressions for the velocity at the present time, as 

they are more suitable to find the velocity in the middle of Xj & XGj, and XNj & Xj. 

The velocity of a segment mid point at any time t can be estimated by taking the average of 

the average velosities in the former and the future time interval ∆t. This is more accurate and 

is shown matematically in [21]: 

t
XGXN

t
XXN

t
XGXtttvtttv

tv jjjjjjjj
j ∆

−
=

∆

−
+

∆

−
=

∆++∆−
=

2222
),(),(

)(        (2.7.12)             

This equation is quite accurate if the velocity changes smoothly, but may not be very useful 

when the velocity changes suddenly.  

 

2.7.10 External forces 
According to the physical ball-spring model, the expression for segment mid point force 

balance is: 

∑ ∑+=
∆

+−
= forcesExternalforcesInternal

t
XGXXN

mma jjj
2

2
                

(2.7.13) 

where: 

o m is the mass of a whole segment of length ∆z, m = A ∆z 𝜌 

o A is the cross section of the string 

o a is the acceleration of the segment 

o ∆t is the time step length, ∆t = c/∆z 

o c is the speed of sound in the string material, c = �𝐸/𝜌 

o E is the modulus of elasticity of the string material 

o 𝜌 is the density of the string material 

 

It is possible to calculate the internal forces and expressing them by known displacements in 

the equation above, resulting in the equation for the new position of a segment mid point 

including external forces: 
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 ∑∆
+−+= +− forcesExternal

m
tXGXXXN jjjj

2

11             (2.7.14) 

For a string of constant cross section hanging vertically in a well surrounded by air, the 

numerical equation for the segment mid points (except the end segments) are: 

 2
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If the cross section changes from A1 to A2 at segment mid point number j, the equation is: 
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where m1 is the mass of the whole segment to the left of the cross section change, and 

m2 is the mass of the whole segment to the right of the change. 

 

The equation for a half end segment at the bottom end of the string is: 

2
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+−=            (2.7.17) 

 

2.7.11 Friction 
Friction is a special case of external forces acting on the string, but can be treated in the same 

way as other external forces. Friction is usually acting on every segment in the string as 

gravity is, but can be more complex than gravity because it is always acting in the opposite 

direction of the segment velocity. It can therefore be a problem to determine when to use the 

plus sign or the negative sign in front of the friction term. 

If the mid point displacement is positive (downward displacement), the friction should be 

negative and subtracted. If the mid point displacement is negative (upward displacement), the 

friction should be negative and added. The direction of the displacement of mid point j is 

determined by the difference between the current position and the new position, Xj - NXj. Let 

us say that the displacement is positive, causing friction to be subtracted. If the friction term is 

larger than the difference in displacement, the mid point j would change direction due to the 

friction term. This is a problem since the friction is always acting in the oposite direction of 
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the mid point direction. When the direction of the mid point is changed, so is the direction of 

friction, causing friction rather to be added. The mid point direction is once again changed 

due to the friction term, and the start of an endless loop is initiated. The scenario with a 

change of direction is illustrated in Figure 2.31. The problem can be solved with an 

assumption: 

It can be assumed that a change of the displacement direction will include a brief stop of the 

movement. As the static contact friction is higher than the kinetic contact friction, a stop in 

the movement will also involve a higher contact friction. A solution to the problem is to either 

assume that the new position is equal to the current position, or that the mid point is equal to 

the position where the change of displacement direction occurred. 

 

Figure 2.31: XG is the old position, X is the current position and XN is the new position. ∆t is 
the time step, and downwards is defined as the positive direction. The red line 
represents the movement of a segment mid point, where the displacement 
direction changes between the current position and the next position due to 
friction forces. X,max is the turning point of the mid point where the movement 
stops before it changes direction. 

 

If one assumes that the movement of the mid point can be described with a quadratic 

equation, the turning point of the curve is the position where the change of direction occurs. 

The turning point can easily be found, and has been derived by Professor Erik Skaugen: 

The quadratic equation can be expressed using the following symbols: 

y = at2 + bt + c                (2.7.18) 

c is given at t = 0, and is equal to X: 
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y = at2 + bt + X                (2.7.19) 

The equation for XN is found at t = ∆t: 

 XN = a∆t2 + b∆t + X                (2.7.20) 

The equation for XG is found at t = -∆t: 

XG = a∆t2 - b∆t + X                (2.7.21) 

Finding the parameter a by adding XG to XN: 

XN + XG = 2a∆t2 + 2X → 𝑎 =  𝑋𝑁+𝑋𝐺−2𝑋
2∆𝑡2

            (2.7.22)            

 

 Finding the parameter b by subtracting XG from XN: 

XN - XG = 2b∆t → 𝑏 =  𝑋𝑁−𝑋𝐺
2∆𝑡

             (2.7.23)            

The top point of the curve is the derivate of equation (2.7.18): 

 𝑑𝑦
𝑑𝑡

= 2𝑎𝑡 + 𝑏 = 0                (2.7.24)            

This gives the time corresponding to the turning point: 

 𝑡 =  − 𝑏
2𝑎

                 (2.7.25)            

By inserting equation (2.7.25) into equation (2.7.19), the position of the turning point is 

found: 

 𝑦𝑚𝑎𝑥 = 𝑎(− 𝑏
2𝑎

)2 + 𝑏 �− 𝑏
2𝑎
� + 𝑋 =  𝑏

2

4𝑎
− 𝑏2

2𝑎
+ 𝑋 = 𝑋 − 𝑏2

4𝑎
          (2.7.26)            

Inserting equation (2.7.22) and (2.7.23) into equation (2.7.26) gives us the position of the 

turning point: 

𝑦𝑚𝑎𝑥 = 𝑋 −
(𝑋𝑁−𝑋𝐺2∆𝑡 )2

4(𝑋𝑁+𝑋𝐺−2𝑋
2∆𝑡2

)
=  𝑋 − (𝑋𝑁−𝑋𝐺)2

8(𝑋𝑁+𝑋𝐺−2𝑋)
            (2.7.27) 

By assigning either the current position or equation (2.7.27) as the new position, the 

calculations can continue. The mid point is now assumed to be stationary, and the static 

friction coefficient must be used in the calculation until it starts moving again.  
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2.7.11.1 Contact friction 
Contact friction is discussed in section 2.4.1. For the strings considered in this thesis, there is 

only one dimension, along the string axis. The equation for the friction force due to contact 

friction in one dimension can be written as: 

NF µ=                  (2.7.28) 

where µ is the coefficient of friction and N is the normal force. The minus sign  

means that if the velocity is positive, the friction force is negative, and vice versa. 

We can use equation (2.7.14) (a string of constant cross section) and insert the equation above 

and get the equation for the new position when contact friction is included: 

 N
m
tXGXXXN jjjj µ

2

11
∆

−+= +−                (2.7.29) 

 

2.7.11.2 Viscous friction 
The simplest case of viscous friction is linear friction where the friction force is proportional 

to the segment velocity, as discussed in section 2.4.2. The viscous friction force towards one 

numerical segment of the drill pipe with length ∆z, drill pipe outer diameter ODb, and inner 

diameter of the casing/wellbore D becomes: 

 𝐹 = 𝜇 𝜋 ∆𝑧 𝐷+𝑂𝐷𝑏
𝐷−𝑂𝐷𝑏

 𝑣 =  𝜇 𝜋 ∆𝑧 𝐷+𝑂𝐷𝑏
𝐷−𝑂𝐷𝑏

 𝑋𝑁𝑗−𝑋𝐺𝑗
2∆𝑡

               (2.7.30)           

  

 

 

Figure 2.32: The average velocity from position XG to XN is (XN-XG)/2∆t. 
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Inserting the viscous friction force into equation (2.7.14): 

 𝑋𝑁𝑗 = 𝑋𝑗−1 + 𝑋𝑗+1 − 𝑋𝐺𝑗 −
∆𝑡2

𝑚
 𝜇 𝜋 ∆𝑧 𝐷+𝑂𝐷𝑏

𝐷−𝑂𝐷𝑏
 𝑋𝑁𝑗−𝑋𝐺𝑗

2∆𝑡
             (2.7.31)            

 

For a drill pipe the segment mass m is the length of a segment ∆z multiplied with the mass per 

length of drill pipe Mb, and we get: 

 𝑋𝑁𝑗 = 𝑋𝑗−1 + 𝑋𝑗+1 − 𝑋𝐺𝑗 −
∆𝑡 𝜇 𝜋
 2 𝑀𝑏

 𝐷+𝑂𝐷𝑏
𝐷−𝑂𝐷𝑏

 𝑋𝑁𝑗 − 𝑋𝐺𝑗              (2.7.32)            

 

The equation can be rearranged and the constants can be collected into one constant C: 

 𝑋𝑁𝑗 = 1
1+𝐶

(𝑋𝑗−1 + 𝑋𝑗+1) − (1 − 𝐶)𝑋𝐺𝑗                        (2.7.33)            

 where 𝐶 =  ∆𝑡 𝜇 𝜋
 2 𝑀𝑏

 𝐷+𝑂𝐷𝑏
𝐷−𝑂𝐷𝑏

 

 

We can rewrite equation (2.7.33) and get: 

jjjj XGXXXN )21()1()1( 11 εεε −−−+−= +−             (2.7.34)            

where 𝜀 =  𝐶
1+𝐶

 and 𝐶 =  ∆𝑡 𝜇 𝜋
 2 𝑀𝑏

 𝐷+𝑂𝐷𝑏
𝐷−𝑂𝐷𝑏
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3. NUMERICAL SIMULATION 
The numerical simulation of the string movements have been performed using Matlab. This is 

a programming environment for algorithm development, data analysis, visualization, and 

numerical computation [22].  

The numerical simulation program has been developed from scratch by the author, but 

Professor Erik Skaugen has contributed with some of the programming and setup. It has been 

a goal to make a organized and time-efficient program, which is not too far from the final 

result. The reader must however bear in mind that the author has very little experience with 

programming prior to this thesis. 

 

3.1  Input data 
There are some input data that must be entered into the program before a simulation can 

begin; wellbore data, string data and fluid data. The program is built in such a way that most 

of the input data are entered in the upper part of the program, and the calculations are 

performed further down. There are however some exceptions from this in order to group the 

data and make the program more intuitive. 

 

3.1.1 The wellbore 
One of the first variables to decide before doing a simulation is the well path. The program is 

prepared to deal with different well trajectories, from simple vertical trajectories to quite 

complex ones. The most complex well trajectory the program can handle is a well with a 

vertical section at the top, then a build section, followed by a straight tangent section, after 

that a drop/build section, ended by a straight hold section. The following input data must be 

entered for the program to calculate the well trajectories: 

- Length and deviation angle of straight sections 

- Angular radius of build/drop sections 

In order to calculate the contact friction forces, the friction coefficients and set depth of the 

last casing must be known. The program assumes the casing being suspended from surface 

having a constant ID and a constant friction coefficient between the drill string and the casing. 

The setting depth of the casing is adjusted to the nearest segment boundary. This means that 
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the casing depth can be altered with ±5 meters by the program given a segment length of 10 

meters. The new casing setting depth is however displayed in the command window. The 

program assumes an open hole below the casing setting depth. 

 

3.1.2 The drill string 
The drill string is divided into two main sections; drill pipes and drill collars. The length of 

the two sections must be entered, but these numbers can be changed by the program. The 

program will automatically adjust the section lengths according to the segment lengths, 

making sure of the string consisting of an integer number of segments. The adjustments 

performed by the program are small, and can vary up to ±5 meters, given a segment length of 

10 meters. The usual setup is a 200 m drill collar section, and a drill pipe section of 1000 m-

9000 m. 

The program places the drill string inside the entered well trajectory and calculates the TVD, 

MD, horizontal displacement and deviation angle for every mid point in the string. It is not 

possible to run the program having a drill string that is longer than the wellbore. If this is 

attempted, an error message is displayed and the running of the program is terminated. 

Other string data that must be entered is the material density, string diameters and Young's 

modulus of the string material. The cross section areas are then calculated, giving the basis for 

the string calculations. 

 

3.1.3 Other data 
Fluid density must be entered to include buoyancy, and start/stop simulation time must be 

specified for the program to start and stop the calculations at a desired time. The program then 

calculates the time step between every calculation based on the space step between segment 

mid points and speed of sound, and simulates the string movements one time step at a time. It 

is also possible to enter a specific time where the program starts sampling of the data. The 

simulation before the sampling start is then regarded as a "break in" of the string, which may 

be necessary in certain circumstances.  
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3.2  Assumptions 
To be able to simulate the string movements effectively some assumptions have been made: 

- Fluid: 

o The string is assumed to be closed at the end, not allowing any fluid flow in or 

out (this could affect the fluid velocity). 

o The changes in fluid velocity due to piston effect are neglected (when the 

string moves down, the string may displace some of the fluid, increasing the 

relative velocity between the fluid and the string. The opposite may happen 

when the string moves up). 

o It is assumed that the same mud is inside and outside the drill string. 

o The density of the fluid in the well is uniform and does not change with depth 

and temperature. 

o The fluid is incompressible 

 

 

- Drill string calculations: 

o When a mid point moves up and down, a change of deviation angle are 

neglected. The angle used for every mid point is the same as in the beginning 

of the simulation. 

o The gravity is elongating the drill string slightly, possible giving a slight 

change in deviation angle of every mid point. This change in deviation angle is 

neglected.  

 

 

- Drill string set-up: 

o The equipment in the BHA is assumed to have the same properties as drill 

collars (density, speed of sound, etc.). This may not be the case in a real set-up 

since equipment as MWD, LWD and RSS contains quite a lot of electronics. 

The equipment in the BHA is, however, in most cases only a fraction of the 

drill string as a total, and would most likely not have a large affect on the 

results. 
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o The drill string is assumed to be lifted far enough from the bottom of the well 

during a connection to ensure that the bit never touches the bottom, even with 

large drill string movements.  

o The connections and the transition from drill pipes to BHA are assumed to be 

sudden with no upsets (a gradual transition from drill pipes to drill collars are 

not taken into account since the length of a segment is much larger than the 

length of a tool joint). 

o The larger outer diameter of the drill string tool joints is neglected. 

 

 

- Well paths: 

o The well trajectories are assumed to be two-dimensional, and not three-

dimensional. A three-dimensional well trajectory would be more difficult to 

model, and is assumed to not have a large impact on the results.  

o The casings in the wellbore are suspended from surface which means that there 

are no liners in the well.  

o Open hole below the casing setting depth is assumed 

 

 

- Friction: 

o The viscous friction is modeled as linear friction. 

o The drill string is assumed to not touch the wellbore wall in a vertical section, 

resulting in no contact friction. 

o The reduced or increased friction force in bends due to axial force pressing the 

string against the wellbore wall is neglected. 

o The extra friction force when the mud is squeezed past the drill bit and BHA 

when the drill string moves up and down is neglected. 
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3.3  Dividing the string into segments 
To be able to simulate the drill string movements, the 

drill string is divided into segments. The length of 

every segment can be changed in the program, but is 

set to be the length of a drill pipe/drill collar which is 

10 meters. The length of the drill string is then adapted 

to the segment lengths, so that the string is always 

divided into an integer number of segments.  

The top and bottom segments are half segments, while 

the rest are whole segments. In order to keep track of 

the different segment mid points, they are counted from 

the top and downwards. N is the number of whole 

segments in the string (two half segments are counted 

as one whole segment), and N+1 are the total number 

of segment mid points. 

The number of whole drill pipes in the string are NCB 

(the two half pipes at each end is counted as one whole 

segment). The mid point located at the transition 

between the drill pipes and drill collars are NCB+1. 

 

 

 

 

 

 

  

 

Figure 3.1: N is the number of whole 
pipes and segments in the 
string. NCB is the number of 
drill pipes in the string (the 
first drill pipe is counted as 
one drill pipe) 
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3.4  Forces acting on the string 
There are three forces acting on the string; gravity, buoyancy and friction. All these forces are 

acting along the whole string, and can be calculated for every segment. 

 

3.4.1 Gravity 
Gravity is acting on every part of the string, and pulls the segments downwards with a force 

proportional to the mass of the segments. The gravitational force Gj of a segment number j 

with a mass mj is given by the equation below: 

 𝐺𝑗 = 𝑚𝑗𝑔 cos𝛼𝑗                          (3.4.1) 

 where g is the gravity constant and αj is the deviation angle. 

The gravitational force is elongating the string, but also pulling the string towards the 

wellbore wall in a deviated well, giving contact friction. Equation (2.7.15) gives the equation 

for a string of constant cross section hanging in air, only affected by gravity. The gravity is 

given by the term g ∆t2, as the mass is conveniently eliminated from the equation. 

 𝑋𝑁𝑗 = 𝑋𝑗−1 + 𝑋𝑗+1 − 𝑋𝐺𝑗 + 𝑔∆𝑡2 cos𝛼𝑗                       (3.4.2) 

The mass of the segment is not including the mass of the tool joints. If one wish to include the 

mass of the tool joint in a string of constant cross section, the equation becomes: 

 𝑋𝑁𝑗 = 𝑋𝑗−1 + 𝑋𝑗+1 − 𝑋𝐺𝑗 + ∆𝑡2

𝑚𝑗
�𝑚𝑗𝑔 − ∆𝑚𝑗𝑔 �1 − 𝜌𝑚

𝜌𝑠
�� cos𝛼𝑗               (3.4.3) 

 where ∆mj is the mass of the tool joint. 

The mass of the tool joints are however not included in the calculations. 

 

3.4.2 Buoyancy 
Buoyancy must be calculated for every segment mid point to be able to calculate the normal 

force along the string. The extra weight and volume of the tool joints are not taken into 

account when buoyancy is calculated. For convenience, it is assumed to have the same mud 

inside and outside the string when buoyancy is calculated.   
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Buoyancy is included in the calculations in two ways as the string is not always vertical. The 

buoyancy forces acting on the sides of the drill string is included in the normal force term by 

multiplying the normal force for every segment mid point with the buoyancy factor (1 − 𝜌𝑚
𝜌𝑠

), 

where 𝜌m is the density of the mud in the well and 𝜌s is the density of the string material 

(density of steel). The equation for the normal force where buoyancy is included for segment 

number j is shown below: 

 𝑁𝑗 =  𝑚𝑗𝑔 sin𝛼𝑗  (1 − 𝜌𝑚
𝜌𝑠

)                         (3.4.4) 

The buoyancy forces acting on the end pieces of the drill string is added to the segments it 

applies for, which is where there is change of cross section (transition between drill pipes and 

drill collars) and at the end of the string (drill bit). The buoyancy forces can easily be 

calculated by multiplying the area with the pressure given by the mud column. The complete 

equation for these two segment mid points is given in section 3.6. 

 

3.4.3 Friction  
The friction forces acting along the string is a combination of viscous and contact friction. By 

adding the contact friction term from equation (2.7.29) to equation (2.7.34), a combined 

equation for a segment of constant cross section is obtained below. The equation includes 

both viscous and contact friction: 

 𝑋𝑁𝑗 = (1 − 𝜀)𝑋𝑗−1 + (1 − 𝜀)𝑋𝑗+1 − (1 − 2𝜀)𝑋𝐺𝑗 ± ∆𝑡2

𝑚
𝜇𝑁𝑗             (3.4.5) 

 

3.4.4 Combining the forces into one equation 
By inserting the normal force from equation (3.4.4) into equation (3.4.5) we are able to obtain 

the final standard equation for a string of constant cross section including both viscous and 

contact friction, gravity and buoyancy: 

𝑋𝑁𝑗 = (1 − 𝜀)𝑋𝑗−1 + (1 − 𝜀)𝑋𝑗+1 − (1 − 2𝜀)𝑋𝐺𝑗 + 𝑔∆𝑡2 cos𝛼𝑗 ± 𝑔∆𝑡2 𝜇 sin𝛼𝑗  (1 − 𝜌𝑚
𝜌𝑠

) 

                     (3.4.6) 
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3.5  Boundary conditions in time 
There are several ways to initiate the drill string simulations. The forces acting on the string 

can either be gradually assigned to the string, or all forces can be assigned to the string from 

the start. If the simulations are started when the string is relaxed (no forces are acting on it), 

some initial waves may be induced in the string due to sudden introduction of gravity forces. 

The gravity force will elongate the drill string and induce waves, and it may take some time 

before these waves die out. The induced waves can therefore have an effect on the string 

movements for some time.   

One solution may be to leave out the gravity that elongates the string from the calculations. 

Gravity is however included when the normal force is calculated, making the calculation of 

contact friction possible. Leaving out gravity will only affect the elongation of the string, and 

will also eliminate the initial waves induced by gravity. The advantage of leaving out gravity 

is that simulations can start immediately. The disadvantage is that the calculations of the 

string will not be completely accurate, as the position and angle of the segments will be 

slightly off.  

Another scenario is to assign all forces acting on the string from the beginning, set the top of 

the string in motion, and then simulate the drill string movements for a long enough time 

allowing the initial waves to die out. When it is assumed that the initial waves have 

disappeared, the sampling can begin.  

A last scenario is to start with a relaxed string hanging from a stationary drill floor (which can 

represent the top drive with heave compensator). Gravity is then assigned to the drill string, 

along with a linear friction. At this point the linear friction is adjusted to bring the drill string 

to rest as quickly as possible. Without linear friction is to stop the string from oscillating as 

gravity start acting, the string would keep on oscillating forever. The friction must therefore 

overcome the oscillations, and at the same time the friction must be small enough allowing 

the string to settle. When the string has settled, the simulations begin, where contact friction, 

buoyancy and the correct viscous friction are assigned to the drill string. The top of the drill 

string is set to move according to the chosen wave-function.  

All the three scenarios mentioned above are tested, where the last one seems to be the better 

one and is therefore used in the simulations. The linear friction is set to gradually decrease in 

steps until it reaches the value of the correct viscous friction. Figure 3.2 shows a string being 
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elongated by gravity, while Figure 3.3 is an example of a string being assigned all the other 

external forces after it has been elongated by gravity.  

 

Figure 3.2: A 7200m drill string elongated by gravity. The drill bit is displaced approximately 
12 meters due to gravity. Buoyancy is not included. 

 

Figure 3.3: A 7200m drill string being assigned external forces as friction and buoyancy. The 
drill string starts climbing due to the introduction of buoyancy and the movement 
of the top segment. The viscous friction is decreased in steps, and the correct 
viscous friction is assigned at approximately 145 seconds. The initial waves due 
to the introduction of external forces disappear after approximately 80 seconds.  
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3.6  Boundary conditions in space 
There are three different boundary conditions in space downward the string: 

- The top segment is a forced end.  

- There is a change of cross section at the transition between drill pipes and drill 

collars.  

- The string is terminated with a free end. 

Gravity and friction along the string affects every part of the string and is not considered a 

boundary condition in this context.  

 

3.6.1 The top segment 
The top of the string is a half segment where the mid point is located at the drill floor level. 

This location of the mid point is convenient as the movement of the drill floor is coupled to 

the drill string at this point, making calculations more exact. The top segment is modeled as a 

forced end, moving according to the drill floor motions, transmitting the movements 

downward.  

As explained in section 2.1.4.1, this is also what is happening during a connection, and is 

quite realistic. However, when it comes to the movements of the drill floor, every semi-sub 

has its own movement characteristic, and it has unfortunately not been possible to obtain any 

movement characteristics data for a semi-sub. This is probably not critical for the simulations, 

as it is possible to base the rig movements on the shape of ocean waves. A semi-sub will 

probably move with a much longer time period compared to the time period of ocean waves, 

but as both the period and the amplitudes are changed throughout a simulation, the effect of 

these two variables can be revealed. 

Ocean waves can be simulated by sinus functions. In real life, ocean waves have more pointed 

crests and rounded troughs compared to a single sinus function. The solution to successfully 

imitate the shape of ocean waves is adding a phase shifted sinus function to another sinus 

function, see equation below:  
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 𝑋(𝑡) =  𝐴1 sin(𝜔 𝑡) +  𝐴2 sin(2 𝜔 𝑡 +  𝜑)               (3.6.1) 

where A1 and A2 is amplitudes, ω is the angular frequency, t is the time, and φ is the 

phase shift. 

The angular frequency is given by the equation below: 

ω = 2π/T                   (3.6.2) 

where T is the time period. 

The heave movement of the rig is here assumed to follow the asymmetric wave curve given 

by equation (3.6.1), where A2 = A1/5 and φ = π/2. The main point of this is that any 

asymmetric heave movement of the rig will probably have at least these two wave 

components. Possible resonances in the drill string due to the second wave component will 

then be seen. One graphical representation of equation (3.6.1) is shown in the figure below.  

 

 

Figure 3.4: The red line shows the resulting function of two combined sinus functions 
imitating ocean waves. The ocean waves have a sharp crest and a round trough 
as achieved in the figure. The following values are used in equation (3.6.1) to get 
the resulting function: A1 = 5, A2 = 1, T = 5, φ = π/2. 
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This type of function is the base of the drill string simulations, making it easy to investigate 

how the top movements are influencing the drill string oscillations during a connection. The 

total vertical movement of the top segment is equal to 2A1, which is equal to 10 meters in this 

case. The relationship between A1 and A2 throughout the simulations have been set to A1 = 

5A2, making sure that the shape of the waves stays the same. The results of the simulations 

will be presented in plots with 2A1 on the x-axis. It is therefore important to notice that the 

numbers on the x-axis represents the total wave amplitude from trough to crest.  

 

3.6.2 Change of cross section 
The segment at the transition between drill pipes and drill collars (segment mid point number 

NCB+1) is given a value shown by equation (2.7.6), where the change of cross section 

happens at the segment mid point. By including viscous friction, gravity and buoyancy, we 

obtain the final equation for the transition segment: 

𝑋𝑁𝑁𝐶𝐵+1 = (1 − 𝜀) 2𝐴𝑏
𝐴𝑏+𝐴𝑣

𝑋𝑁𝐶𝐵 + (1 − 𝜀) 2𝐴𝑣
𝐴𝑏+𝐴𝑣

𝑋𝑁𝐶𝐵+2 − (1 − 2𝜀)𝑋𝐺𝑗 + 𝑔∆𝑡2 cos𝛼𝑗 +

                       𝐾𝐶 ± 𝑔∆𝑡2 𝜇 sin𝛼𝑗  (1 − 𝜌𝑚
𝜌𝑠

)                (3.6.3) 

where Ab is the cross section of the drill pipe, and Av is the cross section of the drill 

collar. KC is the negative buoyancy force due to the larger outer diameter of the drill 

collars compared to the drill pipes. KC is given below: 

 𝐾𝐶 =  2 𝑀𝑣−𝑀𝑏
𝑀𝑣+𝑀𝑏

𝑔∆𝑡2 ℎ𝑁𝐶𝐵+1 𝜌𝑚
∆𝑧 𝜌𝑠

                 (3.6.4) 

where Mv is the weight per meter of drill collars, Mb is the weight per meter of drill 

pipes, hNCB+1 is the true vertical depth of segment NCB+1, 𝜌m is the density of mud, 𝜌s 

is the density of steel, and ∆z is the length of a segment. 

 

3.6.3 The termination of the string 
The string is terminated with a free end. The end segment is a half segment with the mid point 

at the very end of the drill string, ensuring that the calculation of movement at this numeric 

mid point gives the movement of the drill bit.  
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It is important to make sure of the end segment not hitting the bottom of the well. If this were 

to happen, the end segment is no longer regarded as a free end and the results from the 

calculations would be incorrect. If one would want to calculate the movements after an 

impact, the end segment should be regarded as a fixed end until it bounces off the bottom and 

becomes a free end again. This can be calculated, but is regarded as irrelevant in this setting.  

The free end equation used in the program is equation (2.7.3), where the end is a half 

segment. All the forces as gravity, friction and buoyancy are also included in the equation. 

The equation for the bottom end segment with mid point number N+1 with all external forces 

is: 

𝑋𝑁𝑁+1 = (1 − 𝜀) 2𝑋𝑁 − (1 − 2𝜀)𝑋𝐺𝑁+1 + 𝑔∆𝑡2 cos𝛼𝑗 − 𝐾𝐵 ± ∆𝑡2 𝜇 𝑔 sin𝛼𝑗  (1 − 𝜌𝑚
𝜌𝑠

)

                     (3.6.5) 

where KB is the buoyancy force due to the pressure acting onto the end of the string. 

KB is given below: 

 𝐾𝐵 =  2 𝑔∆𝑡2 ℎ𝑁+1 𝜌𝑚
∆𝑧 𝜌𝑠

                   (3.6.6) 

where hN+1 is the true vertical depth of the segment, 𝜌m is the density of mud, 𝜌s is the 

density of steel, and ∆z is the length of a segment. 
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3.7  Determination of the parameters 
Due to a large variety of parameters to be changed in a well, it is important to point out the 

ones that might have a relevant impact on the string movements. It is, however, not possible 

to take all parameters into account, but the most important is believed to be the drill floor 

movements (the top string movements) and the well path along the drill string length.  

 

3.7.1 Drill floor movements 
The amplitude of the top string movements is believed to heavily decide the movements of the 

drill bit. A large amplitude is expected to have a larger impact on the drill bit movements than 

a smaller amplitude.  

The time period is expected to influence the drill strings in different ways. If the time period 

is the same as the natural frequency of the drill string, the string may start responding with a 

much larger displacement compared to the other string lengths.  

 

3.7.2 Well path 
It is required to use simple well paths in the simulations to be able to reveal some effects that 

could have been overlooked due to other effects in a more complicated well path. The 

simplest well path the simulations will be investigating is a straight vertical well with 

different depths.  Different depths can reveal string resonance and the effect of viscous 

friction. To see effects due to contact friction, the well must have a deviated section. A KOP 

is then placed at 500m down the well, where the angle radius of the build section is set to 

500m. The length of the well is then changed along with the deviation angle. It is worth to 

notice that the length of the build section will change with different deviation angles. A larger 

deviation angle gives a longer build section. The casing setting depth can also be changed to 

see if there are any significant effects of the changed contact friction. 

To further complicate the well path, a build/drop section along with a hold section can be 

added. As long as the well is longer than the drill string, the drill string is automatically fitted 

into the well, regardless of the space beneath the drill bit. The space beneath the drill bit will 

not have any effects on the drill string simulations, but this space will be considered in section 

5. 
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3.7.3 Table of parameters 
The parameters used in the numerical simulations and pressure calculations are presented in 

the table below.   

Parameter Value Unit 
Drill string   
Drill pipe string length 1000 - 9000 m 
BHA length  200 m 
Total drill string length 1200 - 9200 m 
Drill pipes   
Length of one drill pipe 10 m 
Outer diameter 5 inches 
Inner diameter 4 inches 
Drill collars   
Length of one drill collar 10 m 
Outer diameter 8 inches 
Inner diameter 2,8125 inches 
Steel properties   
Steel density 7850 kg/m3 

Young's modulus for steel 210*109 Pa 
Yield strength 9,3079*108 Pa 
Drill bit   
Outer diameter 12 inches 
Junk area 0,01110 m2 

Casing   
Inner diameter 12 inches 
Mud   

Mud density 1200 kg/m3 

Mud viscosity 5 cP 
Friction coefficients   
Static steel-steel 0,20  
Dynamic steel-steel 0,24  
Static steel-rock 0,30  
Dynamic steel-rock 0,36  
Direct simulation data   
Numeric space step length, ∆z 10 m 
Start time  0 s 
Start sample time 200 s 
End simulation time 400 s 
Heave parameters   
Heave amplitude (A1) 0,5 - 3 m 
Heave period 10 - 20 s 
Pressure calculations   
Nozzle factor, Cd 0,95  

Table 3.1: An overview of the parameters used in the Matlab program and pressure 
calculations. Some of the parameters as string length are changed throughout the 
simulations while others are constant. 
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3.8  Data sampling and presentation of the results 
The main focus of this thesis is the movement of the bottom segment, but the global 

behaviour of the string is also of interest in order to be able to understand the overall string 

behaviour. It is therefore possible to plot the movement of selected segment positions 

throughout a simulation, making the string behaviour visual. Figure 3.3 is an example of a 

plot of the displacement of three different segment mid points. 

Throughout a simulation the heave amplitudes and time period is continuously changed in 

steps. The movement of the drill bit segment is monitored and sampled throughout the 

simulation. The maximum amplitude and the maximum velocity of the drill bit is especially of 

interest.  

 

3.8.1 Maximum drill bit velocity  
The maximum velocity is relevant for the estimation of surge and swab effects. A large 

movement of the drill bit is not a threat in terms of pressure fluctuations as long as the 

velocity of the bit is relatively low. On the other hand, a high bit velocity is not a threat in 

terms of pressure fluctuations as long as the drill bit movement is small. The maximum values 

must therefore be seen in a larger setting.  

The calculations are not always resulting in smooth lines in a micro-scale. The result is that 

the bit velocity within two time-steps (~0,004 s) can be very high, while the velocity in a 

more normal time perception (~0,5 s) is relatively low. The sampling of the drill bit velocity 

is therefore calculated as the average velocity over a time period of approximately 0,5 

seconds. The maximum velocity is usually obtained around the point of equilibrium at which 

the drill bit is oscillating about. 

 

3.8.2 Maximum drill bit movement 
The maximum drill bit movement is relevant when seen in context with the drill bit speed. 

Both the minimum and the maximum value of the drill bit position are sampled throughout 

the simulation, where the maximum drill bit amplitude is the difference between the two.  In a 

situation where the drill string oscillations are regular, the maximum drill bit amplitude will 

be a good quantification of the maximum drill bit movement. On the other hand, if the drill 
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string oscillations are irregular, this might not be a good quantification of the maximum 

movement as the two values can be sampled within a large interval. It must always be seen in 

a larger context. The majority of the results from the simulations show regular movements. A 

regular movement can be seen in Figure 3.3. An irregular movement can be seen in the figure 

below. 

 

Figure 3.5: The drill string is oscillating with irregular movements on a small scale. On a 
large scale on the other hand, the movements can probably be said to be regular. 
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4. RESULTS 
The simulations have been performed with nine different drill pipe string lengths (1000 m-

9000 m), in both vertical and deviated wells. The BHA was given a constant length of 200 m 

regardless of total string length, and comes in addition to the drill pipe string length. In a 

deviated well, the KOP was set to 500 m below the top of the string, with a build radius of 

500 m. The casing setting depth was set to 2/3 of the total drill string length.  

Preliminary simulations showed that a time period of 5 seconds with heave amplitudes up to 5 

m would shake the drill string violently causing the string to break regardless of string length. 

A time period of 5 seconds is too short to resemble the movements of a semi-sub, and the 

results from the 5 second time period are therefore left out. A heave amplitude of 5 m is also 

regarded as a too high amplitude to resemble a semi-sub, so the maximum heave amplitude 

was set to be 3 m. The total heave amplitude, which is the peak to peak movement, will then 

be 6 m. 

The results are presented by evaluating the drill bit velocities and drill bit amplitudes for each 

heave period and well path. The x-axis in the maximum velocity plot represents the heave 

amplitude, which is measured from crest to trough, while the y-axis represents the maximum 

velocity measured at the given heave amplitude and time period. When it comes to the 

maximum drill bit amplitude plot, both the x-axis and the y-axis represents the maximum 

amplitude from crest to trough. 

The lengths presented in the plots are the length of the drill pipe section, but the length of the 

BHA which is 200 m comes in addition to the drill pipe section. A drill string presented as 

1000 m in the plots is therefore actually having a total length of 1200 m.  
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4.1  A vertical drill string 
There is no contact friction in a vertical string, and the string is therefore expected to have 

larger amplitudes compared with the strings in deviated wells. 

 

4.1.1 10 second time period  
The drill bit amplitudes and velocities with a 10 second period are presented in the figures on 

the next page.  

The maximum drill bit amplitudes in Figure 4.1 are quite regular in all cases, except for the 

5000 m and the 9000 m drill strings. The 5000 m string has the largest amplitude, and seems 

to have a much more violent behaviour compared to the other strings. The 5000 m string 

broke at the top segment due to large load at a heave amplitude of 4 m. The maximum drill bit 

amplitude achieved before the 5000 m string broke was approximately 22 meters. The second 

largest amplitude was achieved by the drill bit at the 9000 m string just before it broke at a 

heave amplitude of 6 m. The maximum bit amplitude of the 9000 m string was 19,3 meters, 

but the behavior was not nearly as violent as the 5000 m string.  

In general we can see that the drill bit at the end of a longer drill string was oscillating with 

larger amplitude as compared to the shorter drill strings. The distribution of the drill string 

amplitudes at a heave amplitude of 6m is within an interval of a little less than 16 meters.  

When it comes to the drill bit velocities we can see that it is also behaving as a linear function 

of the input heave in most cases. The drill bit velocities follows the drill bit amplitudes to a 

large extent, but there are some exceptions. The 6000 m drill string achieved a higher velocity 

than both the 8000 m and the 9000 m string.  

The bit at the 5000 m string achieved a maximum velocity of approximately 12,4 m/s before it 

broke. The second largest bit velocity was achieved by the bit at the 6000 m string, and was 

7,2 m/s at a heave amplitude of 6 m.  

For both the bit amplitude and velocity we can see a reduction in the slope just before the 

5000 m and 9000 m strings broke.  
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Figure 4.1: Drill bit amplitude vs. heave amplitude. A vertical drill string oscillating due to a 
heave-movement with a time period at 10 s at the top of the string. The 5000 m 
string broke at a heave amplitude of 4 m, while the 9000 m string broke at a heave 
amplitude of 6 m. 

 

 

Figure 4.2: Drill bit velocity vs. heave amplitude. A vertical drill string oscillating due to a 
heave-movement with a time period at 10 s at the top of the string. The 5000 m 
string broke at a heave amplitude of 4 m, while the 9000 m string broke at a heave 
amplitude of 6 m. 
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4.1.2 15 second time period  
The drill bit amplitudes and velocities achieved with a 15 second period are presented in the 

figures below.  

 

Figure 4.3: Drill bit amplitude vs. heave amplitude. A vertical drill string oscillating due to a 
heave-movement with a time period at 15 s at the top of the string. Both the 8000 
m and the 9000 m string broke at the top at a heave amplitude of 4 m. 

 

 

Figure 4.4: Drill bit velocity vs. heave amplitude. A vertical drill string oscillating due to a 
heave-movement with a time period at 15 s at the top of the string. Both the 8000 
m and 9000 m string broke at heave amplitude of 4 m. 
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The drill bit amplitudes are also here acting linearly in most cases, and the amplitudes have 

generally diminished compared to T=10 s. There are however some exceptions. In  

Figure 4.3 we can see that the 5000 m string is now acting linearly all the way, having a much 

smaller amplitude compared to T=10 s. We can also see that the 8000 m and 9000 m strings 

broke at a heave amplitude of 4 m.  

The maximum amplitude for the 8000 m string was approximately 21,2 meters, while the 

maximum amplitude for the 9000 m string was approximately 17,3 meters. As for T=10 s, we 

can also here see a decline in the slope just before the strings breaks. For the other drill string 

lengths we can see that the amplitudes is roughly halved compared to the amplitudes at T=10 

s, and the distributions of their bit amplitudes are also less, approximately 4 meters at a heave 

amplitude 6 m. 

From Figure 4.4 we can see that the drill bit velocities corresponds perfectly to the drill bit 

amplitudes. All the strings behave linearly, except where the strings break as we have seen 

before. The largest maximum bit velocity is achieved for the 8000 m string just before it 

broke, and is approximately 8,5 m/s. The bit at the 9000 m string reached a speed of 6,8 m/s 

before it broke. The maximum bit velocity of the 7000 m string is 3,5 m/s.  

 

4.1.3 20 second time period  
The drill bit amplitudes and velocities achieved with a 20 second period are presented in the 

figures on the next page. The drill bit amplitudes and velocities are here acting linearly in all 

cases, and the amplitudes are quite similar compared to T=15 s. In Figure 4.5 we can see that 

the difference in amplitudes is more similar for short strings compared to the longer strings. 

The distance between the lines is especially increasing when the string reaches a length of 

more than 7000 m. We can also see that the amplitudes decrease with string length. The 

distribution of the drill string movements at heave amplitude equal to 6 m is a little less than 3 

meters. The larges drill bit amplitude is achieved by the 9000 m string, where the bit has a 

maximum amplitude of 8,6 m. 

In Figure 4.6 we can see that the drill bit velocity has generally decreased compared to the 

velocities at T=15s. The bit velocities correspond perfectly with the bit amplitudes where the 

string having the largest amplitudes, also achieves the highest velocities.  
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Figure 4.5: Drill bit amplitude vs. heave amplitude. A vertical drill string oscillating due to a 
heave-movement with a time period at 20 s at the top of the string. All strings 
behave linearly. 

 

 

Figure 4.6: Drill bit velocity vs. heave amplitude. A vertical drill string oscillating due to a 
heave-movement with a time period at 20 s at the top of the string. All strings 
behave linearly. 
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4.2  A drill string deviating with 10 degrees below 500 m 
As mentioned earlier, the KOP was 500 m, and the build radius was 500 m. This resulted in 

three different well sections: a 500 m vertical section, a build section of 87,3 m, and a 10 

degrees deviated section of different lengths. A 1200 m string will have 42 % of the string in 

the vertical section, while a 9200 m string will have less than 6 % of the string in the vertical 

section. 

 

4.2.1 10 second time period  
From the figures on the next page we can see that the drill bit amplitudes and velocities have 

not changed significant compared to the vertical well at time period 10s. The largest 

difference is that none of the strings broke and some of the strings are not behaving linearly 

anymore. The 5000 m string amplitudes start off with a linear curve, but the gradient suddenly 

increases from a heave amplitude of 3m, and increases with a steady rate from there. The 

maximum drill bit amplitude for the 5000 m string was 21,6 m and occurred at a heave 

amplitude of 6 m. The drill bit at the 7000 m, 8000 m and 9000 m strings did not move at a 

heave amplitude of 1m, but they started to move at a heave amplitude of 2 m, where the 

movement increased steadily from there on. All strings shorter than 4000 m were acting 

linearly at all heave amplitudes. 

From Figure 4.8 we can see that the drill bit velocity is corresponding quite well to the drill 

bit amplitudes. There is however some small bends on most of the drill bit velocity curves 

which means that the velocity is not acting linearly anymore. The drill bit velocities has 

generally decreased slightly, except from the bit in the 9000 m string which has increased by 

almost 1 m/s.   
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Figure 4.7: Drill bit amplitude vs. heave amplitude. A drill string with 10 degree deviation 
angle oscillating due to a heave movement with a time period at 10 s at the top of 
the string.  

 

 

Figure 4.8: Drill bit velocity vs. heave amplitude. A drill string with 10 degree deviation 
angle oscillating due to a heave movement with a time period at 10 s at the top of 
the string. 
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4.2.2 15 second time period  
 

 

Figure 4.9: Drill bit amplitude vs. heave amplitude. A drill string with 10 degree deviation 
angle oscillating due to a heave movement with a time period at 15 s at the top of 
the string. 

 

 

Figure 4.10: Drill bit velocity vs. heave amplitude. A drill string with 10 degree deviation 
angle oscillating due to a heave movement with a time period at 15 s at the top of 
the string. 
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In the figures above we see that all drill bit amplitudes have decreased compared to the drill 

bit amplitudes in a vertical well, and also compared to the strings having 10 degrees deviation 

with a 10 second heave period. The bit at the 7000 m, 8000 m and 9000 m strings are not 

moving at a heave amplitude of 1m, and the movement has decreased distinctly at a heave 

amplitude of 2 m compared to the movement at time period 10 s. The drill bits at the 5000 m 

string and shorter seems to behave linearly. The largest drill bit amplitude is achieved by the 

drill bit at the 8000 m string and is equal to 12,9 m at a heave amplitude of 6m. 

When looking at the two figures above we can still see a correlation between the bit velocity 

and amplitude. As for the drill bit amplitudes, the highest drill bit velocity is achieved by the 

8000 m string, and is 4,8 m/s at a heave amplitude of 6m. 

 

4.2.3 20 second time period  
In the figures on the next page we see that all drill bit amplitudes for the longest drill strings 

have generally decreased. The bit amplitudes of the 1000 m, 2000 m and 3000 m strings are 

still behaving linearly, while the bit at the 9000 m, 8000 m and 7000 m is still not moving at 

heave amplitude 1 m. A maximum bit amplitude of 8,1m is achieved by the 9000 m string at a 

heave amplitude of 6 m.  

The drill bit velocities has almost halved for some of the bits compared to the 15 s time 

period. The correlation between bit velocity and amplitude is quite good, but we can see that 

the bit in the 6000 m string has the third lowest amplitude, but is maintaining the highest bit 

velocity at a heave amplitude of 6m compared to the shorter strings. A maximum bit velocity 

of 2,2 m/s is achieved by the 6000 m string at a heave amplitude of 6m. 
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Figure 4.11: Drill bit amplitude vs. heave amplitude. A drill string with 10 degree deviation 
angle oscillating due to a heave movement with a time period at 20 s at the top of 
the string. 

 

 

Figure 4.12: Drill bit velocity vs. heave amplitude. A drill string with 10 degree deviation 
angle oscillating due to a heave movement with a time period at 20 s at the top of 
the string. 

 

 

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6

Dr
ill

 b
it 

am
pl

itu
de

 [m
]

Heave amplitude [m]

10 degrees deviation, T = 20s

9000 m
8000 m
7000 m
5000 m
4000 m
1000 m
6000 m
2000m
3000 m

0

0,5

1

1,5

2

2,5

0 1 2 3 4 5 6

Dr
ill

 b
it 

ve
lo

ci
ty

 [m
/s

]

Heave amplitude [m]

10 degrees deviation, T = 20s

6000 m

9000 m

8000 m

7000 m

5000 m

4000 m

3000 m

2000m

1000 m



81 

 

4.3  A drill string deviating with 20 degrees below 500 m 
As mentioned earlier, the KOP was 500 m, and the build radius was 500 m. This resulted in 

three different well sections: a 500 m vertical section, a build section of 174,5 m, and a 20 

degrees deviated section of different lengths. 

 

4.3.1 10 second time period  
In the figure on the next page we can see that it is now only the bit at the 1000 m string that 

responds with linear bit amplitude to the heave movement. The 2000 m and 3000 m strings 

are having a small dip around a heave amplitude of 1-2 m. We can also see that it is still the 

bits in the 9000 m and 5000 m strings that respond with the highest amplitudes at a heave 

amplitude of 3 m. A maximum bit amplitude of 16,4 m is achieved by the 9000 m string at a 

heave amplitude of 6 m. All the bits on the drill strings longer than 4000 m are stationary at a 

heave amplitude of 1 m, while all the bits at the drill strings longer than 6000 m are static at a 

heave amplitude of 2 m. We can generally see that the maximum amplitudes of the shorter are 

decreasing slightly at a heave amplitude of 6m compared to the same time period in a 10 

degree deviated well, while the longer strings are decreasing a bit more.  

The drill bit velocities in the figure on the next page are corresponding very well to the drill 

bit amplitudes. The 5000 m string has however a slightly higher velocity than the 9000 m 

string, even if the 9000 m amplitudes are higher than the 5000 m amplitudes. A maximum bit 

velocity of 7,0 m/s is achieved by the 5000 m string at a heave amplitude of 6 m. 
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Figure 4.13: Drill bit amplitude vs. heave amplitude. A drill string with 20 degree deviation 
angle oscillating due to a heave movement with a time period at 10 s at the top of 
the string. 

 

 

Figure 4.14: Drill bit velocity vs. heave amplitude. A drill string with 20 degree deviation 
angle oscillating due to a heave movement with a time period at 10 s at the top of 
the string. 
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4.3.2 15 second time period  
 

 

Figure 4.15: Drill bit amplitude vs. heave amplitude. A drill string with 20 degree deviation 
angle oscillating due to a heave movement with a time period at 15 s at the top of 
the string. 

 

 

Figure 4.16: Drill bit velocity vs. heave amplitude. A drill string with 20 degree deviation 
angle oscillating due to a heave movement with a time period at 15 s at the top of 
the string. 
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From the figure above we can see that the drill bit amplitudes of the longer strings are getting 

smaller compared to the strings with a smaller deviation angle. It is now only the bits in the 

end of a string shorter than 5000 m that moves at all heave amplitudes. The bits at the longer 

strings are static up to a specific heave amplitude. The bit at the end of the 9000 m string is 

static until the heave amplitude reaches 3m.    

The drill bit velocities in the figure above are corresponding very well to the drill bit 

amplitudes. The bit in the end of the 4000 m string is, however, having the smallest maximum 

bit amplitude, and at the same time the bit velocity of the same string is relatively high 

compared to the other strings.  

 

4.3.3 20 second time period  
The amplitudes in the figure at the next page is quite similar to the amplitudes at T=15 s, but 

smaller at a heave amplitude 6 m. The bit amplitude distribution for the different strings is 

also within a smaller interval at a heave amplitude of 6 m, where the bit at the 5000 m string 

has the lowest amplitude, and the bit at the 9000 m string has the highest amplitude.  

There is a good correspondence between the amplitudes and velocities, and the distribution of 

the velocities is collected within an interval of 1 m/s.  
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Figure 4.17: Drill bit amplitude vs. heave amplitude. A drill string with 20 degree deviation 
angle oscillating due to a heave movement with a time period at 20 s at the top of 
the string. 

 

 

Figure 4.18: Drill bit velocity vs. heave amplitude. A drill string with 20 degree deviation 
angle oscillating due to a heave movement with a time period at 20 s at the top of 
the string. 
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4.4  A drill string deviating with 40 degrees below 500 m 
As mentioned earlier, the KOP was 500 m, and the build radius was 500 m. This resulted in 

three different well sections: a 500 m vertical section, a build section of 349 m, and a 40 

degrees deviated section of different lengths. 

 

4.4.1 10 second time period  
In the figure in the next page we can see that the bits in the end of the longer strings are 

stationary until a certain heave amplitude is reached, where the bit amplitude suddenly 

increases. The bit in the end of the 9000 m string is now clearly the bit with the smallest 

amplitude of  4,0 m, while the bit in the end of the 7000 m string has the largest amplitude at a 

heave amplitude of 6 m, equal to 10,9 m. 

The velocities correspond quite well to the drill bit amplitudes, where the bit at the 9000 m 

string has the lowest velocity. The distribution interval of both bit amplitudes and velocities 

are now increasing. 
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Figure 4.19: Drill bit amplitude vs. heave amplitude. A drill string with 40 degree deviation 
angle oscillating due to a heave movement with a time period at 20 s at the top of 
the string. 

 

 

Figure 4.20: Drill bit velocity vs. heave amplitude. A drill string with 40 degree deviation 
angle oscillating due to a heave movement with a time period at 20 s at the top of 
the string. 
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4.4.2 15 second time period  
 

 

Figure 4.21: Drill bit amplitude vs. heave amplitude. A drill string with 40 degree deviation 
angle oscillating due to a heave movement with a time period at 15 s at the top of 
the string. 

 

 

Figure 4.22: Drill bit velocity vs. heave amplitude. A drill string with 40 degree deviation 
angle oscillating due to a heave movement with a time period at 15 s at the top of 
the string. 
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The figure above shows that the bit at the 9000 m string is now static at all heave amplitudes 

up to 5 m, and the bit at the 8000 m string is moving first at a heave amplitude of 4 m. Both 

the bits at the 1000 m and 2000 m strings are responding to the top movement at all heave 

amplitudes, while the others are static until a certain non-zero heave amplitude.  

Once again we can see that the velocities and amplitudes of the different strings are quite 

correlated, and the velocity distribution interval at a 6 m heave amplitude has increased to 2,6 

m/s. 

 

4.4.3 20 second time period  
From the figures on the next page we can suspect a pattern emerging, where the bits at the 

longer strings are not having a movement respond at the smaller heave amplitudes. The drill 

bit amplitudes are also getting smaller with increased lengths. 

The figures shows that the pattern mentioned for the drill bit amplitudes are not as clear as it 

is for the drill bit velocities, as some of the drill bits at the longer strings are having velocities 

larger than the shorter. The tendency is, however, that the drill bits at the longer drill strings 

has a lower velocity compared to the shorter strings. 
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Figure 4.23: Drill bit amplitude vs. heave amplitude. A drill string with 40 degree deviation 
angle oscillating due to a heave movement with a time period at 20 s at the top of 
the string. 

 

 

Figure 4.24: Drill bit velocity vs. heave amplitude. A drill string with 40 degree deviation 
angle oscillating due to a heave movement with a time period at 20 s at the top of 
the string. 
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5. DISCUSSION 
When it comes to the calculations of the drill string movements, some aspects that may be 

important have been left out. One of them is the relative velocity between the drill string and 

the fluid. As the string moves up and down it will act as a piston, displacing fluid when 

moving down, sucking fluid back when moving up. This piston effect will make the relative 

velocity between the string and fluid greater. The result of this being included in the 

calculations would be a higher viscous friction which could dampen the movement, and at the 

same time a increase the pressure drop over the BHA. Another aspect that has been left out 

from the calculations is the dampening of the drill string movement due to the pressure drop 

over the BHA. It is not possible to forecast the outcomes from the simulations if these effects 

would have been included in the simulations, but it is reasonable to assume that the string 

velocity and amplitudes would have become smaller, and the calculations are in that sense 

conservative.  

As mentioned earlier, the length of the BHA is set to a constant 200 m regardless of drill pipe 

string length. In reality the length of the BHA would vary with the type of well and length, 

but it turns out that the length of the BHA is not having a large impact on the string amplitude 

and velocity in a normal case. If the BHA length is decreased to 100 m, the bit amplitude and 

velocity are decreased slightly. The length of the BHA is, however, important when it comes 

to drill string resonance. Some of the vertical drill strings are experiencing resonance at a 

certain heave period. If the BHA length is changed, the string resonance is dampened or 

increased, depending on the natural frequency of the string. The natural frequency of a drill 

string is determined by the speed of sound in the string material combined with the string 

length, but also by the deflection of waves in the material due to a change in cross section. It 

is therefore not straight forward to determine the natural frequency of a drill string. 

The surge and swab pressure calculations are the sum of the pressure drop over the drill bit 

and BHA. The total pressure drop depends heavily on the wellbore diameter, the junk area of 

the drill bit and the length and diameter of the BHA. To make the calculations consistent, the 

drill bit size is set to be the same as the wellbore diameter which is 12". The junk area is 

calculated to be 18% of the drill bit cross section area, while the diameter of the BHA is set to 

be 8". The BHA in a drill string is always having a smaller diameter than the wellbore, and if 

the wellbore diameter is decreased to 10" and the BHA diameter is decreased to 6", the 

pressure drop becomes slightly smaller. However, if the wellbore diameter is kept at 10" and 
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the BHA diameter is increased to 8", the pressure drop is doubled. It is important to be aware 

of this, especially with the longer strings, where the wellbore diameter is often smaller than 

12". One should then consider the length and diameter of the BHA, making sure that the 

pressure drop over the BHA stays small. 

 

5.1  Vertical drill string 
The results from the simulations on a vertical drill string shows that the drill bit amplitude and 

velocity are generally increasing with heave amplitude and drill string length, and are 

generally decreasing with increased heave period.  

The bit amplitude and velocity increase linearly in response to a linear increase in heave 

amplitude. There is no contact friction along the strings in a vertical well, which means that 

the friction forces are more evenly distributed along the drill string. When the heave 

amplitude is increased linearly, so is the segment velocity, and thereby the viscous friction. 

If we look at the drill bit amplitude of the 1000 m (actually 1200 m) drill string at a heave 

amplitude of 6 m and time period of 10 s, it has a maximum drill bit amplitude of 

approximately 6,2 m. This means that the drill bit is moving 3,1 m up and 3,1 m down from 

the point of equilibrium. An elongation and compression of 3,1 m corresponds to 0,26% of 

the total length of the drill string. This can be compared to the drill bit at the vertical 9000 m 

string, which had a maximum drill bit amplitude of approximately 19,3 m at the same heave 

amplitude and time period. This corresponds to approximately 9,6 m compression and 

elongation which is around 0,10% of the total string length. It then becomes clear that the 

longer strings have a smaller relative drill bit amplitude compared to the shorter strings, 

giving a smaller string material stress than for the 1000 m string. This result is quite 

reasonable as it is easier to elongate and compress a longer string the same distance as a short 

string. At the same time a longer string is experiencing more viscous friction which is 

damping the movement from the top segment, limiting the response. 

As the heave period is increased, the bit amplitude and velocity is decreased. A longer heave 

period means less energy fed into the drill string in the same time interval, and a smaller 

response is the result. When the time period is increased from 10 s to 15 s, the relative 

decrease in amplitude is larger than the decrease in amplitude from 15 s to 20 s. This may also 
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explain that the distribution interval of the amplitude and velocity is generally smaller as the 

time period is increased. 

Some of the results from the simulations stands out, and must be further addressed. Some drill 

strings of certain lengths broke at the top due to excessive loads at the top segment.  This 

happened at four occasions: the 5000 m and 9000 m string at a heave period of 10 s, and the 

8000 m and 9000 m string at a heave period of 15 s. The reason why the 9000 m string broke 

at a heave period of 10 s was probably due to the sheer weight of the string in combination 

with the movement of the top segment. There is, however, a reason to believe that the three 

other strings broke due to another reason. The figure below shows the movement of the drill 

bit at the 5000 m string throughout one simulation with heave amplitude 0,5 m and time 

period 10 s. 

 

Figure 5.1: The blue line shows the drill bit movement at the 5000 m drill string at time 
period 10 s and heave amplitude 0,5 m. 

 

The figure above shows typical signs of a string resonating. The string movement is 

increasing and decreasing in certain intervals, and becomes larger and larger as the heave 

amplitude is increased. The 5000 m drill string at a heave period of 10 s oscillated more and 

more violently as the heave amplitude was increased, until the top segment eventually broke 

due to excessive loads. The same pattern can be seen in the movement of the 8000 m and 

9000 m strings at time period 15 s. A small decline in the slope for both the velocity and 

amplitude graphs is observed in Figure 4.1 to Figure 4.4, just before a string broke. This is 
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because the simulation program stops the simulation at the moment a string breaks. The 

velocity and amplitude would therefore probably have continued increasing linearly if the 

string would have been able to withstand the loads.  

The highest drill bit velocity was obtained by the bit at the 5000 m string just before the string 

broke at the top. The velocity was 12,4 m/s, and the bit amplitude was 22,0 m. The bit 

amplitude indicates a movement of approximately 11 m in both directions from the point of 

equilibrium. During a connection the drill bit is lifted a few meters from the bottom of the 

well, but normally not as much as 11 m. This means that the oscillating movement of the 

string due to resonance would have been reduced every time the bit had hit the bottom. 

However, if the drill string would have been lifted up more than 11 m from the bottom, the 

drill string could have started oscillating violently and eventually snapped, as seen in the 

simulations. The maximum surge/swab pressure the drill string could have caused before it 

broke was 43,4 bar according to equation 2.1.1 and 2.1.3. This is a very high pressure 

fluctuation and could certainly lead to both influx of formation fluid and loss of drill fluid. 

However, a 5000 m vertical well without any contact friction between the drill string and the 

wellbore wall is not very likely. It is impossible to keep the wellbore straight all the way, and 

it is very likely that the drill string would make contact with the wellbore wall. Some further 

investigation on the 5000 m string was conducted and a deviation angle of 7 degrees below 

500 m was enough to stop the resonance completely. This shows that some contact friction 

due to an irregular wellbore could stop the resonance.  

When it comes to the combination of a heave amplitude of 4 m and a heave period of 10 s in 

relation to the semi-sub movement, it is not very likely to occur. A heave amplitude of this 

magnitude involves the rig to i.e. move 1,6 m down, 2,4 m up, and back to zero again in 10 

seconds. A semi-sub would probably not move this much in 10 seconds. If we however 

consider the lower and more probable heave amplitudes we can see that the drill bit at the 

5000 m string moves with a velocity of 3,5 m/s at a heave amplitude of 1m. This corresponds 

to a surge/swab pressure of 4,3 bar. Pressure fluctuations of this magnitude can be enough to 

cause problems if the BHP in the well is already close to the pore or fracture pressure, but is 

more likely to not cause any serious problems. At a heave amplitude of 2 m, the bit obtains a 

maximum velocity of 7,0 m/s. This would give a surge/swab pressure of 15,3 bar, which is 

more likely to cause serious problems. 
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The most likely scenarios for vertical strings at a heave period of 10 s, however, involve the 

shorter strings as 1000 m, 2000 m and 3000 m. A shorter string would experience less contact 

friction, allowing the upper movement to travel down the string more easily. As mentioned 

earlier, a heave amplitude of 6 m at this time period is not very likely, but a heave amplitude 

of 2 m is. The bit amplitudes of all the three strings are roughly 2 m, and the velocities of all 

the three strings are approximately 1m/s. This would lead to a pressure increase/decrease of 

0,4 bar, which is insignificant. 

The maximum drill bit velocity at time period 15 s was the drill bit on the 8000 m string, and 

was measured to 8,5m/s just before the string broke at the top at a heave amplitude of 4 m. 

The maximum drill bit amplitude was 21,2 m, which is significant. It is also here expected 

that there would be some contact friction in the well making sure of reducing the bit 

amplitude along with the velocity, especially since this string is very long. Neither the 8000 m 

string or the 9000 m string is expected to be able to cause any problems, both because of the 

expected contact friction, but also since the lengths of the strings makes the whole scenario 

unlikely. Regardless of the likelihood of the scenarios, the surge/swab pressure would have 

been 21,7 bar, which is significant. If one disregards the results from the two strings that 

broke, the highest velocity measured at a heave period of 15 s are 3,5 m/s. This velocity was 

obtained at a heave amplitude of 6 m, and corresponds to a surge/swab pressure of 4,3 bar, 

which shows that there are no danger of harmful surge/swab effects due to heave at this time 

period.  

The maximum drill bit velocity for the 20 s heave period was obtained at a heave amplitude of 

6 m by the bit at the 9000 m string, and was 2,3 m/s which corresponds to a surge/swab 

pressure of 2,0 bar.  
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5.2  Deviated drill strings 
As for the vertical strings, simulations of deviated strings also shows that the drill bit velocity 

and amplitude are generally increasing with heave amplitude, and are generally decreasing 

with increased heave period. The simulations also show that the bit velocity and amplitude are 

generally decreasing with increased deviation angle. However, as the deviation angle is 

increasing, more of the energy in the drill strings is lost due to contact friction, leading to a 

non-linear behavior and less distinctive patterns.  

As the lower well section is getting more deviated, the amplitudes and velocities of the drill 

strings are declining. There are no definitive signs of resonance, even though the bit at the 

5000 m drill string is having a large response to the heave movement. The maximum 

amplitude of the drill bit at the 5000 m string is 20,6 m and the maximum bit velocity is 11,6 

m/s. This is obtained at a heave amplitude of 6m, and would give a surge/swab pressure of 

38,4 bar. As before, a heave amplitude of this magnitude at a heave period of 10 s is not very 

likely. At a heave amplitude of 1m the drill bit amplitude is 1,5 m and the velocity is 0,8 m/s. 

This would give a surge/swab pressure of 0,3 bar, which is very small. The bit velocity at a 

heave amplitude of 2 m is 2,0 m/s, and would give a surge/swab pressure of 1,6 bar. 

The maximum velocity for the 10 degree deviation and 15 s heave period is 4,8 m/s, and is 

obtained by the drill bit at the 8000 m drill string at a heave amplitude 6 m. This corresponds 

to a 7,7 bar surge/swab pressure which is significant. However, a more likely scenario for a 

semi-sub is in this case a maximum heave amplitude of 3 m. The maximum bit velocity at this 

heave amplitude is 1,8 m/s and would lead to a surge/swab pressure of 1,3 bar. 

For the 20 s time period the maximum velocity was obtained at a heave amplitude of 6 m and 

is 2,2 m/s, which leads to a pressure increase/decrease of 1,8 bar.  

As the well inclination reaches 20 degrees, the velocities are very similar to the ones obtained 

at a well deviation of 10 degrees. The bit at the 5000 m string (time period 10 s) still obtains 

the highest velocity at a heave amplitude of 6 m compared to the other strings. This indicates 

that the contact friction prevents string resonance, and it is also reducing the drill bit 

amplitudes. 

As the wellbore inclination are further increased, none of the drill strings are showing any bit 

movements that are able to generate pressure fluctuations that are a threat to the drilling at 

heave amplitudes that is likely to occur during a drilling operation. The string behavior is 
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getting more and more different from the linear behavior seen for small inclinations, probably 

due to the increased contact friction. In addition, for some of the longer strings the dynamic 

contact friction is overcoming the movements from the top of the drill string, stopping the bit 

movement altogether. As a consequence, the contact friction is in effect increased as the static 

contact friction is set to be 20% higher than the dynamic contact friction. The movement is 

also stopped further up the string, depending on inclination and heave amplitude. The 1000 m 

string is, however, not experiencing the same increase of contact friction, as it has only a 

shorter part of the string in the deviating well section. The 1000 m drill string is therefore able 

to maintain a behavior more consistent for changing deviations than the longer strings. 
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6. CONCLUSIONS 
The results from the simulations show that the drill bit velocity and amplitude is generally 

increasing with heave amplitude, and generally decreasing with increased heave period and 

deviation angle. For the drill strings in vertical wells, the amplitudes are increasing with drill 

string length. However, as the deviation angle is increased, more of the energy in the drill 

strings is lost due to contact friction, leading to a non-linear behavior and less distinctive 

oscillation patterns. The drill bit amplitude is then small up to a certain heave amplitude, 

where the drill bit amplitude suddenly increases rapidly. A drill bit at a long deviating drill 

string may be completely stationary at small heave amplitudes, while the drill bit at a shorter 

string is moving with the heave amplitudes.  

At a certain heave period, a vertical drill string can start resonating, leading to high loads 

mainly on the uppermost drill string segment, which may finally break due to excessive loads. 

This is, however, only observed in wells with deviations approximately less than 7 degrees, as 

the contact friction effectively prevent string resonance. In a real drilling operation it is 

therefore not believed that a drill string could start resonating due to the heave movement of a 

semi-sub, as the contact friction is likely to overcome the string resonance. Precautions must, 

however, be taken, as other combinations of the drill string sections in a shorter drill string 

can lead to drill string resonance, and thereby be much more likely to occur. A more thorough 

investigation of the natural frequency of the drill strings should be conducted to possibly 

predict when drill string resonance occurs, but this is outside the scope of this thesis.  

As the pressure drop over the BHA and drill bit are not included in the calculations of the drill 

string movements, one can expect that the calculations are conservative. The drill bit 

amplitudes and velocities are therefore expected to be lower in a real drilling operation, but it 

is here not calculated whether the pressure fluctuations would be higher or lower. It is 

nevertheless important to be aware that if the flow area between the BHA and wellbore wall is 

decreased to less than a few inches, especially in a wellbore having a small inner diameter, 

high pressure fluctuations can easily be obtained for the bit amplitudes and velocities 

calculated here.  

Based on a drill string a few inches smaller in diameter than the wellbore, the most likely 

scenarios shows that the drill string oscillations during normal weather conditions can cause 

surge and swab pressures up to approximately 5 bar. Pressure fluctuations of this magnitude 
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have traditionally not been a problem, but as the operational window is decreased, it might 

turn out to be an issue.  

Future work should focus on a better description of the semi-sub heave response to waves and 

a more comprehensive simulation program taking additional effects into account. The 

pressure drop over the BHA and drill bit should be included in the calculations, along with the 

extra weight of the tool joints. If the extra contact friction force due to bends in the well path 

is included in the program, the effects of additional contact friction due to one or more 

build/drop sections can be found.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

 

ACKNOWLEDGEMENTS 
I would like to thank my supervisor Professor Erik Skaugen for his guidance and support 

during the building of the simulation program. I am also grateful for the good discussions that 

helped me understand the principles of the theory, and for the supply of good sources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 

 

NOMENCLATURE AND ABBREVIATIONS 

Nomenclature 
A    Area 

a    Acceleration / Constant 

B    Buoyancy force 

b    Constant 

C    Proportionality constant 

c    Speed of sound in a material 

E    Modulus of elasticity of a material 

F    Force 

g    Gravity constant 

h    Height 

j    Number 

L    Length 

m    Mass 

N    Number of segments / Number of pipes / Normal force 

NCB    Number of drill pipes 

P    Pressure 

R    Radius 

T    Time period 

t    Time 

v    Velocity 

X    Current displacement 

XN    New displacement 

XG    Old displacement 

α    Deviation angle from vertical  

ε    Constant 

μ    Friction coefficient 

𝜌    Density of a material 

σ    Stress 

φ    Radial angle / Phase shift 

ω    Angular frequency 
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∆t    The time step between calculations 

∆x    Displacement unit 

∆Z    Distance between segment mid points  

' (prime symbol)  Foot 

" (prime symbol)  Inch 
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Abbreviations 
BHA    Bottom Hole Assembly 

BHP    Bottom Hole Pressure 

cm    Centimetre 

ECD    Equivalent Circulating Density 

FIT    Formation Integrity Test 

ft    Foot 

GOC    Gas Oil Contact 

HWDP    Heavy Weight Drill Pipe 

ID    Inner Diameter 

kg    Kilogram 

KOP    Kick Off Point 

lb    Pound 

LOT    Leak Off Test 

LWD    Logging While Drilling 

m    Metre 

MD    Measured Depth 

ms    Millisecond 

MSL    Mean Sea Level 

MWD    Measurement While Drilling 

NCS    Norwegian Continental Shelf 

OWC    Oil Water Contact 

OD    Outer Diameter 

ROP    Rate Of Penetration 

RSS    Rotary Steerable System 

s    Second 

TVD    True Vertical Depth 

WOB    Weight On Bit 
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APPENDIX 

A. The Matlab program text 
The program text can be copied and pasted into Matlab. The program consists of mainly two 

separate sections: one section where the drill string simulations are carried out with only one 

heave period and amplitude, and one section where the drill string simulations are carried out 

with a chosen number of heave periods and amplitudes. Only one section can be used at a 

time, where the other must be deactivated by typing % in front of it. 

% Simulerer bevegelsene i en streng som henger fra boredekk 
  
%% INPUT DATA BORESTRENGEN 
% Strenglengder 
LB_inn =        2000;           % [m]       Total lengde borerørstreng 
LV_inn =        200;            % [m]       Total lengde vektrørstreng 
Lj =            10;             % [m]       Lengde av et borerør/vektrør 
  
% Stålegenskaper 
RHOs =          7850;           % [kg/m3]   Tetthet til stål 
Es =            210*10^9;       % [Pa]      Youngs modulus til stål 
c =(Es/RHOs)^0.5;               % [m/sec]   Lydhastighet i stål 
Flytgrense = 930792234.579071;  % [Pa]      Flytgrense til stål 
  
% Borerør 
ODb =           5;              % [inches]  Ytre diameter borerør 
IDb =           4;              % [inches]  Indre diameter borerør 
RHOb =          RHOs;           % [kg/m3]   Tetthet til stål i borerør 
Eb =            Es;             % [Pa]      Youngs modulus til borerør 
Mtooljoint =    70.5;           % [kg]      Ekstra masse pga tool joint 
  
% Vektrør 
ODv =           8;              % [inches]  Ytre diameter vektrør 
IDv =           2.8125;         % [inches]  Indre diameter vektrør 
RHOv =          RHOs;           % [kg/m3]   Tetthet til stål i vektrør 
Ev =            Es;             % [Pa]      Youngs modulus til vektrør 
  
% Borekrone 
Dslisse =       0.0244;         % [m]       Diameter på en slisse 
Cd      =       0.95;           %           Dysefaktor 
  
%% INPUT DATA BRØNNDATA 
% Loddrett seksjon fra RKB til kick off: 
L_rett_1 =          500;      % [m]       Lengde rett seksjon fra RKB til 
kick-off 
  
% Build-up seksjon: 
Vinkel_1 =          10;         % [grader]  Vinkel på rett seksjon etter 
kurve 
Vinkel_radius_1 =   500;        % [m]       Radius på build-up kurve 
  
% Tangent seksjon fra ende av build-up til bunn av brønn: 
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L_rett_2 =          12000;          % [m]       Lengde fra ende av kurve 
til bunn av brønn eller til drop sekson 
  
% Drop/build seksjon: 
Vinkel_2 =          0;          % [grader]  Vinkel på rett seksjon etter 
kurve 
Vinkel_radius_2 =   0;          % [m]       Radius på drop kurve 
  
% Hold seksjon: 
L_rett_3 =          0;          % [m]       Lengde hold seksjon fra ende av 
kurve til bunn av brønn 
  
% Casing  
Csg_set_depth_inn = LB_inn*2/3; % [m]       Settedybde MD casing 
IDcsg = 12;                     % [inches]  Indre diameter casing 
  
  
%% INPUT TID 
  
tSTART =            200;        % Tiden sampling kan begynne 
tEND =              200+tSTART; %50+tSTART; % [sek]     Tiden som skal 
simuleres 
tSLUTT =            tEND-1;     % Tiden sampling slutter 
t=0; 
%% DIVERSE INPUT DATA 
  
% Boreslamsegenskaper 
RHOm =                1200;     % [kg/m3]   Tetthet til boreslam 
MYmud =               5;        % [cP]      Viskositet boreslam 
  
% Vannegenskaper 
RHOw =                1000;     % [kg/m3]   Tetthet til rent vann 
  
%Konstanter 
g =                   9.81;     % [m/sek^2] Gravitasjonskonstant 
Inches_to_meters =    0.0254;   % [m/inch]  Omregningsfaktor 
  
%Friksjonskoeffesienter 
my =                  0;        % Friksjonskoeffesient uten avvik 
my_staal_berg =       0.3;      % Friksjonskoeffesient stål/berg 
my_staal_staal =      0.2;      % Friksjonskoeffesient stål/stål 
my_stat_staal_berg =  my_staal_berg*1.2;    % Statisk friksjonskoeffesient 
stål/berg 
my_stat_staal_staal = my_staal_staal*1.2;   % Statisk friksjonskoeffesient 
stål/stål 
  
%% SMÅ BEREGNINGER 
  
% Casing 
Pipes_in_csg = convergent(Csg_set_depth_inn/Lj); %      Antall rør i casing 
Csg_set_depth = Pipes_in_csg*Lj;             % [m]  Ny tilpasset settedybde 
Acasing = pi/4*((IDcsg*Inches_to_meters)^2); % [m2]      Indre areal casing 
  
% Borerør 
Abo = pi/4*((ODb*Inches_to_meters)^2);  % [m2]      Ytre areal borerør 
Abi = pi/4*((IDb*Inches_to_meters)^2);  % [m2]      Indre areal borerør 
Ab = Abo-Abi;                           % [m2]      Stålareal borerør  
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Mb = Ab*RHOb;                           % [kg/m]    Masse pr lengde borerør 
cb  = (Eb/RHOb)^0.5;                    % [m/sec]   Lydhastighet i borerør 
  
% Vektrør 
Avo = pi/4*((ODv*Inches_to_meters)^2);  % [m2]      Ytre areal borerør 
Avi = pi/4*((IDv*Inches_to_meters)^2);  % [m2]      Indre areal borerør 
Av = Avo-Avi;                           % [m2]      Stålareal borerør  
Mv = Av*RHOb;                           % [kg/m]    Masse pr lengde vektrør 
cv =(Ev/RHOv)^0.5;                      % [m/sec]   Lydhastighet i vektrør 
  
% Ringrom BHA 
Aring = Acasing-Avo;                    % [m2]      Strømningsareal utenfor 
BHA 
  
% Borekrone 
Aslisser = pi/4*(6*Dslisse)^2;          % [m2]      Totalt areal slisser 
  
% Relativ tetthet mud 
RHOr = RHOm/RHOw;                       %           Relativ tetthet mud 
  
% Viskositet mud i Pa s 
MYmudPas=        MYmud/1000;    % [Pa s]    Viskositet boreslam 
  
% Beregninger av antall koblinger: 
NCB = convergent(LB_inn/Lj);    %   Antall borerør, avrundet til nærmeste 
heltall 
NCV = convergent(LV_inn/Lj);    %   Antall vektrør, avrundet til nærmeste 
heltall  
N = NCB+NCV;                %   Totalt antall rør i strengen = antall hele 
segmenter i strengen (har lagt to halve sammen) 
  
% Definerer nye lengder ut ifra avrundet antall koblinger: 
LB = NCB*Lj;                % [m]       Ny lengde borerør 
LV = NCV*Lj;                % [m]       Ny lengde vektrør 
L_streng = N*Lj;            % [m]       Ny totallengde 
  
% Overgang borerør/vektrør 
CF1 = 2*Ab/(Ab+Av);         %           Connection faktor 1 
CF2 = 2*Av/(Ab+Av);         %           Connection faktor 2 
NCO = NCB;                  %           Connection over overgang 
NCU = NCB+2;                %           Connection under overgang 
  
% Tidssteg og midtpunkter 
DELTAz = L_streng/N;        % [m]       Avstand mellom midtpunkter 
DELTAt = DELTAz/c;          % [sek]     Lengde tidssteg 
Z = convergent(tEND/DELTAt);%           Antall tidssteg 
  
%% BRØNNBANE 
  
% Build-up-kurve fra kick-off til tangentseksjon: 
Vinkel_1_rad =  (2*pi/360)*Vinkel_1;        % [rad]     Vinkel på 
tangentseksjon etter build-up-seksjon 
L_bue_1 = Vinkel_1_rad*Vinkel_radius_1;     % [m]       Lengde build-up-
kurve 
if L_bue_1 > 0 
    Rad_per_m_1 =   Vinkel_1_rad/L_bue_1;   % [rad/m]   Vinkelstigning 
build-up-kurve 
else 
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    Rad_per_m_1 = 0; 
end 
  
% Drop-kurve fra tangentseksjon til holdseksjon: 
Vinkel_2_rad = (2*pi/360)*Vinkel_2;             % [rad]     Vinkel på hold-
seksjon etter drop-seksjon 
Vinkel_endring = Vinkel_1_rad-Vinkel_2_rad;     % [rad]     Endring i 
vinkel fra tankentseksjon til holdseksjon 
L_bue_2 = abs(Vinkel_endring)*Vinkel_radius_2;  % [m]       Lengde drop-
kurve 
if L_bue_2 > 0 
    Rad_per_m_2 =   Vinkel_endring/L_bue_2;     % [rad/m]   Vinkelstigning 
build-up-kurve 
else 
    Rad_per_m_2 = 0; 
end 
  
% Brønnlengder: 
% Measured Depth (MD) 
MD_end_rett_1 =     L_rett_1;                   % [m]       MD fra toppen 
til ende av loddrett seksjon 
MD_end_buildup =    MD_end_rett_1 + L_bue_1;    % [m]       MD fra toppen 
til ende av build-up seksjon 
MD_end_tangent =    MD_end_buildup + L_rett_2;  % [m]       MD fra toppen 
til ende av tangent seksjon 
MD_end_drop =       MD_end_tangent + L_bue_2;   % [m]       MD fra toppen 
til ende av drop seksjon 
MD_end_hold =       MD_end_drop + L_rett_3;     % [m]       MD fra toppen 
til ende av hold seksjon = total brønnlengde 
L_bronn =           MD_end_hold;                % [m]       Total MD 
brønnlengde 
  
% True Vertical Depth (TVD) 
TVD_end_rett_1 =    L_rett_1;                                                                   
% [m]       TVD til ende av loddrett seksjon 
TVD_end_buildup =   TVD_end_rett_1 + (Vinkel_radius_1*sin(Vinkel_1_rad));                       
% [m]       TVD til ende av build-up seksjon 
TVD_end_tangent =   TVD_end_buildup + (L_rett_2*cos(Vinkel_1_rad));                             
% [m]       TVD til ende av tangent seksjon    
if Vinkel_1>=Vinkel_2   % Drop 
    TVD_end_drop =  TVD_end_tangent + (Vinkel_radius_2*(sin(Vinkel_1_rad)-
sin(Vinkel_2_rad)));  % [m]       TVD til ende av drop seksjon 
else                    % Build 
    TVD_end_drop = TVD_end_tangent + (Vinkel_radius_2*(sin(Vinkel_2_rad)-
sin(Vinkel_1_rad)));  % [m]       TVD til ende av drop seksjon 
end 
TVD_end_hold =      TVD_end_drop + (L_rett_3*cos(Vinkel_2_rad));                                
% [m]       TVD til ende av hold seksjon = TVD brønn 
TVD_bronn =         TVD_end_hold;                                                               
% [m]       TVD brønn 
  
% Horisontal utstrekning 
H_end_rett_1 =      0;                                                                          
% [m]       Horisontal utstrekning til ende av loddrett seksjon 
H_end_buildup =     H_end_rett_1 + (Vinkel_radius_1*(cos(0)-
(cos(Vinkel_1_rad))));              % [m]       Horisontal utstrekning til 
ende av build-up seksjon      
H_end_tangent =     H_end_buildup + 
(L_rett_2*sin(Vinkel_1_rad));%((TVD_end_tangent-
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TVD_end_buildup)*(tan(Vinkel_1_rad)));      % [m]       Horisontal 
utstrekning til ende av tangent seksjon 
if Vinkel_1>=Vinkel_2   % Drop 
H_end_drop =        H_end_tangent + (Vinkel_radius_2*(cos(Vinkel_2_rad)-
cos(Vinkel_1_rad)));    % [m]       Horisontal utstrekning til ende av drop 
seksjon 
else                    % Build 
    H_end_drop =    H_end_tangent + (Vinkel_radius_2*(cos(Vinkel_1_rad)-
cos(Vinkel_2_rad)));    % [m]       Horisontal utstrekning til ende av drop 
seksjon 
end 
H_end_hold =        H_end_drop + (L_rett_3*sin(Vinkel_2_rad)); 
%((TVD_end_hold-TVD_end_drop)*(tan(Vinkel_2_rad)));              % [m]       
Horisontal utstrekning til ende av hold seksjon = TVD brønn 
H_bronn =           H_end_hold;                                                                 
% [m]       Horisontal utstrekning brønn 
  
%% KREFTER 
  
% Gravitasjon 
G = g*(DELTAt^2);   % [m]         
  
% Oppdriftsfaktor 
Oppdrift = 1-(RHOm/RHOs);   % Oppdriftsfaktor for stål 
  
% Viskøs friksjonsfaktor 
% Borerør: 
epsB = 
DELTAt*MYmudPas*pi*((IDcsg*Inches_to_meters)+(ODb*Inches_to_meters))/(2*Mb*
((IDcsg*Inches_to_meters)-(ODb*Inches_to_meters))); 
  
% Overgang borerør/vektrør 
epsOV = 
DELTAt*MYmudPas*pi*((IDcsg*Inches_to_meters)+(((ODb+ODv)/2)*Inches_to_meter
s))/((Mv+Mb)*((IDcsg*Inches_to_meters)-(((ODb+ODv)/2)*Inches_to_meters))); 
  
% Casing: 
epsC = 
DELTAt*MYmudPas*pi*((IDcsg*Inches_to_meters)+(ODv*Inches_to_meters))/(2*Mv*
((IDcsg*Inches_to_meters)-(ODv*Inches_to_meters))); 
  
% Overgang vektrør/borekrone 
epsOB = 
DELTAt*MYmudPas*pi*((IDcsg*Inches_to_meters)+(ODv*Inches_to_meters))/(Mv*((
IDcsg*Inches_to_meters)-(ODv*Inches_to_meters))); 
  
%% UTSKRIFTER I COMMAND WINDOW 
  
% Skriver ut tilpassede strenglengder: 
Streng = ['Ny tilpasset lengde borerør: ', num2str(LB), 'm, vektrør: ', 
num2str(LV), 'm, total strenglengde: ' num2str(L_streng), 'm'] 
  
% Skriver ut brønnlengder: 
Bronn = ['Brønnseksjoner: rett seksjon: ', num2str(L_rett_1), 'm, kurve 1: 
', num2str(L_bue_1), 'm, tangent seksjon: ' num2str(L_rett_2), 'm, kurve 2: 
' num2str(L_bue_2), 'm, hold seksjon: ' num2str(L_rett_3),'m, brønnlengde: 
' num2str(L_bronn), 'm, ', 'Ny tilpasset casing settedybde: ', 
num2str(Csg_set_depth), 'm '] 
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% Advarsel 
if (L_bronn < L_streng);                            %           Skriver ut 
advarsel dersom brønnen er kortere enn strengen 
    kortere = L_streng - L_bronn; 
    ADVARSEL = ['BRØNNEN ER ', num2str(kortere), ' METER KORTERE ENN 
STRENGEN'] 
    break 
end 
  
%% Oppretter diverse tabeller: 
  
% Tabeller med innsvingningsverdier 
XG1 =           (N+1);  % Gammel verdi 
X1 =            (N+1);  % Nåværende verdi 
XN1 =           (N+1);  % Ny verdi 
  
% Tabeller med simuleringsverdier 
XG =            (N+1);  % Gammel verdi 
X  =            (N+1);  % Nåværende verdi 
XN =            (N+1);  % Ny verdi 
  
% Brønnbane 
V  =            (N+1);  % Vinkeltabell brønnbane 
MD  =           (N+1);  % Tabell med MD for hvert midtpunkt 
TVD  =          (N+1);  % Tabell med TVD for hvert midtpunkt 
H  =            (N+1);  % Tabell med horisontal forflytning for hvert punkt 
  
% Krefter 
Gravitasjon  =  (N+1);  % Gravitasjonskrefter 
MYG =           (N+1);  % Dynamisk friksjon 
MYSG =          (N+1);  % Statisk friksjon 
Eps =           (N+1);  % Viskøs friksjonskonstant 
EpsA =          (N+1); 
EpsB =          (N+1); 
  
Bevegelse =     (N+1);  % Tabell for å lagre om i ro eller bevegelse. 1 
betyr i ro fra XG til X, 0 betyr bevegelse 
  
% Nuller ut tabellene 
for j=1:N+1;  
    XG1         (j:N+1,1) = 0; 
    X1          (j:N+1,1) = 0; 
    XN1         (j:N+1,1) = 0; 
     
    XG          (j:N+1,1) = 0; 
    X           (j:N+1,1) = 0;  
    XN          (j:N+1,1) = 0; 
     
    V           (j:N+1,1) = 0;           
    MD          (j:N+1,1) = 0;           
    TVD         (j:N+1,1) = 0;           
    H           (j:N+1,1) = 0;      
     
    Gravitasjon (j:N+1,1) = 0;  
    MYG         (j:N+1,1) = 0;  
    MYSG        (j:N+1,1) = 0;  
    Eps         (j:N+1,1) = 0;  
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    EpsA        (j:N+1,1) = 0;  
    EpsB        (j:N+1,1) = 0;  
     
    Bevegelse   (j:N+1,1) = 0; 
end 
  
%% Tildelinger av verdier i tabellene 
% Gir vinkel verdier til hvert punkt som korresponderer til hvert midtpunkt 
for j=1:N+1; 
    Dybde_streng = j * DELTAz; 
     
    % Gir vinkel i loddrett seksjon 
    if Dybde_streng <= MD_end_rett_1;                                    
        V(j) = 0; 
    end 
     
    % Gir vinkel i build-up seksjon 
    if  Dybde_streng > MD_end_rett_1 && Dybde_streng <= MD_end_buildup;   
        V(j) = (Dybde_streng-MD_end_rett_1) * Rad_per_m_1; 
    end 
     
    % Gir vinkel i tangentseksjon 
    if Dybde_streng > MD_end_buildup && Dybde_streng <= MD_end_tangent;      
        V(j) = Vinkel_1_rad; 
    end 
     
    % Gir vinkel i drop seksjon 
    if Dybde_streng > MD_end_tangent && Dybde_streng <= MD_end_drop;   
        V(j) = Vinkel_1_rad - ((Dybde_streng-MD_end_tangent) * 
Rad_per_m_2); 
    end 
     
      % Gir vinkel i hold seksjon 
    if Dybde_streng > MD_end_drop && Dybde_streng <= MD_end_hold;    
        V(j) = Vinkel_2_rad; 
    end 
end 
  
% Finner TVD til hvert midtpunkt på strengen 
for j=1:N+1; 
    Dybde_streng = j * DELTAz; 
     
    % Gir TVD i loddrett seksjon 
    if Dybde_streng <= MD_end_rett_1;                                    
        TVD(j) = Dybde_streng; 
    end 
     
    % Gir TVD i build-up seksjon 
    if  Dybde_streng > MD_end_rett_1 && Dybde_streng <= MD_end_buildup;   
        TVD(j) = TVD_end_rett_1 + (Vinkel_radius_1*sin(V(j))); 
    end 
     
    % Gir TVD i tangentseksjon 
    if Dybde_streng > MD_end_buildup && Dybde_streng <= MD_end_tangent;      
        TVD(j) = TVD_end_buildup + ((Dybde_streng-
MD_end_buildup)*cos(V(j))); 
    end 
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        % Gir TVD i drop seksjon 
    if Dybde_streng > MD_end_tangent && Dybde_streng <= MD_end_drop && 
Vinkel_1 >= Vinkel_2; %Drop  
        TVD(j) = TVD_end_tangent + ((Vinkel_radius_2*sin(Vinkel_1_rad))-
(Vinkel_radius_2*sin(V(j)))); 
    end 
    if Dybde_streng > MD_end_tangent && Dybde_streng <= MD_end_drop && 
Vinkel_1 < Vinkel_2;  %Build 
        TVD(j) = TVD_end_tangent + ((Vinkel_radius_2*sin(V(j)))-
(Vinkel_radius_2*sin(Vinkel_1_rad))); 
    end 
     
      % Gir TVD i hold seksjon 
    if Dybde_streng > MD_end_drop && Dybde_streng <= MD_end_hold;    
        TVD(j) = TVD_end_drop + ((Dybde_streng-MD_end_drop)* cos(V(j))); 
    end 
     
end 
  
% Finner MD til hvert midtpunkt på strengen 
for j=1:N+1; 
    Dybde_streng = j * DELTAz; 
     
    MD(j) = Dybde_streng; 
end 
  
% Finner horisontal forflytning til hvert midtpunkt på strengen 
for j=1:N+1; 
    Dybde_streng = j * DELTAz; 
     
    % Gir horisontal forflytning i loddrett seksjon 
    if Dybde_streng <= MD_end_rett_1;                                    
        H(j) = 0; 
    end 
     
    % Gir horisontal forflytning i build-up seksjon 
    if  Dybde_streng > MD_end_rett_1 && Dybde_streng <= MD_end_buildup; 
        H(j) = H_end_rett_1 + (Vinkel_radius_1*(1-cos(V(j)))); 
%(tan(V(j)/2)*(1-cos(V(j)))); 
    end 
     
    % Gir horisontal forflytning i tangentseksjon 
    if Dybde_streng > MD_end_buildup && Dybde_streng <= MD_end_tangent;      
        H(j) = H_end_buildup + ((MD(j)-MD_end_buildup)*sin(V(j))); 
%((TVD(j)-TVD_end_buildup)*(tan(V(j)))); 
    end 
     
    % Gir horisontal forflytning i drop seksjon 
    if Dybde_streng > MD_end_tangent && Dybde_streng <= MD_end_drop && 
Vinkel_1 >= Vinkel_2; 
        H(j) = H_end_tangent + ((Vinkel_radius_2*cos(V(j)))-
(Vinkel_radius_2*cos(Vinkel_1_rad))); 
    end 
    if Dybde_streng > MD_end_tangent && Dybde_streng <= MD_end_drop && 
Vinkel_1 < Vinkel_2; 
        H(j) = H_end_tangent + ((Vinkel_radius_2*(cos(Vinkel_1_rad)))-
(Vinkel_radius_2*cos(V(j)))); 
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    end 
     
      % Gir horisontal forflytning i hold seksjon 
    if Dybde_streng > MD_end_drop && Dybde_streng <= MD_end_hold;    
        H(j) = H_end_drop + ((TVD(j)-TVD_end_drop)*tan(V(j)));   
    end 
     
end 
  
% Finner gravitasjon til hvert midtpunkt på strengen 
for j=1:N+1; 
Gravitasjon(j) = G*cos(V(j)); 
end 
  
% Finner friksjon med oppdrift til hvert midtpunkt på strengen 
for j=1:N+1; 
    if j <= Pipes_in_csg;                                   % Inni casing 
        MYG(j) = my_staal_staal*G*sin(V(j))*Oppdrift;       % Beveger seg 
        MYSG(j) = my_stat_staal_staal*G*sin(V(j))*Oppdrift; % Statisk 
         
    else                                                    % Utenfor 
casing 
        MYG(j) = my_staal_berg*G*sin(V(j));                 % Beveger seg 
        MYSG(j) = my_stat_staal_berg*G*sin(V(j))*Oppdrift;  % Statisk 
    end 
end 
  
  
%% Finner trykk og oppdrift på to punkter 
  
% Overgang borerør/vektrør 
Pc = RHOm*g*TVD(NCB+1);     % [Pa]      Trykk ved overgang borerør/vektrør 
KC = 2*(Mv-Mb)*(DELTAt^2)*Pc/(DELTAz*RHOs*(Mb+Mv));% [m] Oppdrift overgang 
  
% Borekrone 
Pb = RHOm*g*TVD(N+1);       % [Pa]     Trykk ved borekrona 
KB = 2*(DELTAt^2)*Pb /(DELTAz*RHOs);   % [m] Oppdrift borekrone 
  
%Kstempel = (DELTAt^2)*(Mv^2)*RHOm/(DELTAz*(Aslisser^2)*(Cd^2)*(RHOs^3));    
% [s2/m]    Stempelkraft borekrone uten hastighet 
  
%BHAfriksjon = 
(RHOr^0.8)*(MYmud^0.2)*LV*100000/(70696*((IDcsg+ODv)^1.8)*((IDcsg-ODv)^3)); 
% Konstant i friksjon langs BHA. Mangler Q. Omgjort til Pa/Q. 
%BHAkonstant = BHAfriksjon*2*(DELTAt^2)/(DELTAz*RHOs);   % Klart til å 
settes inn i formelen 
  
%% FÅR STRENGEN TIL Å FALLE TIL RO 
  
%% Henter ut verdier løkken der strengen faller til ro 
t1 = 0; 
tEND1 =1000;                            % [sek]     Max tid som simuleres 
  
n_hopp1 =     1;                         % Vil hente ut verdier med avstand 
mellom lik n_hopp 
dtut1 =   n_hopp1 * DELTAt;           % Tidsintervall mellom verdiene som 
blir hentet ut 
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PunkterUT1 = 3;                       % Antall punkter som skal lagres 
XUT1 =    (tEND1/dtut1:PunkterUT1);   % Oppgir størrelsen på matrisen som 
skrives ut. Størrelsen blir desimaltall... Problem? 
tut1 =    1;                          % Variabel som sørger for at kun hver 
n_hopp'ende verdi blir hentet ut. Når tiden er 1 vil den ikke plottes. Må 
kanskje bruke tut=0? 
k1 =      0;                          % Teller som holder styr på tiden 
(Tiden = k*dtut) 
  
% Oppretter matrise for å lagre noen posisjoner i kommende løkke: 
M1 = (1:PunkterUT1);             
  
% Velger hvilke segmenter som skal hentes ut: 
M1(1) = 1;                       % Øvre segment 
M1(2) = convergent((NCB+1)/2);   % Segmentet nærmest midten av borerørs-
delen. 
M1(3) = N+1;                     % Det nederste segmentet 
  
% Ønsker å plotte XUT1, men med sekunder i stedet for 
tEND1/(DELTAt*n_hopp1). Lager da en matrise som holder rede på tiden: 
XUTtid1 = (PunkterUT1);           % Oppgir størrelsen på matrisen som 
skrives ut 
for j=1:PunkterUT1;               % Nullstiller tabellen 
    XUTtid1  (j:PunkterUT1,1) = 0; 
end 
  
%% Får strengen til å falle til ro med gravitasjon og lineær friksjon: 
eps1 = 0.01;        % Lineær friksjonskonstant. 
a1 = 1-eps1;      % 
b1 = 1-(2*eps1);  % 
  
Grense = 0.000000001;  % Verdi som avgjør om streng er i ro 
  
while t1 < tEND1;     % Fortsetter til fastsatt tid 
      
    X1(1) = 0;        % Det øverste punktet henger i ro 
        
    for j=2:N;    % Tildeler punktene under toppen verdier 
        XN1 (j)=a1*(X1(j-1)+X1(j+1))-(b1*XG1(j))+(G*cos(V(j)));             
% Gir nye verdier basert på sinusformelen og a & b som demper bevegelsen 
(lineær friksjon). 
    end 
     
    XN1 (NCB+1)= CF1*X1(NCO)+CF2*X1(NCU)-XG1(NCB+1)+(G*cos(V(NCB+1)));    % 
Beregner verdi overgang borerør/vektrør 
    XN1 (N+1)= (a1*2*X1(N))-(b1*XG1(N+1))+ (G*cos(V(N+1)));               % 
Beregner verdi overgang vektrør/borekrone 
     
    % Lagrer noen utvalgte verdier: 
    if t1 > tut1; 
        tut1 = tut1 + dtut1; 
        k1 = k1+1; 
        for m1 = 1:PunkterUT1; 
            XUT1(k1,m1) = X1(M1(m1)); 
            XUTtid1(k1) = k1*dtut1; 
        end 
    end 
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    if t1>40 && abs(XN1(NCB+1)-XG1(NCB+1))<Grense && 
abs(XN1(convergent(NCB/2))-XG1(convergent(NCB/2)))<Grense && abs(XN1(N+1)-
XG1(N+1))<Grense;   
        t1 = tEND1; % Avslutter løkken om strengen er i ro 
    end 
     
    for j=2:N+1;              % Gir de nye verdiene til de forrige 
tabellene 
        XG1 (j)= X1 (j); 
        X1 (j)= XN1 (j); 
    end 
  
    t1=t1+DELTAt;             % Øker et tidssteg  
end 
  
%% Plotter bevegelsen slik at man kan avgjøre om i ro er tilfredsstillende 
%  
% % Trykket "File", "Generate Code" 
% figure2 = figure; 
%  
% % Create axes 
% axes1 = axes('Parent',figure2,'YDir','reverse','FontSize',30); 
% box(axes1,'on'); 
% hold(axes1,'all'); 
%  
% % Create multiple lines using matrix input to plot 
% plot1 = plot(XUTtid1,XUT1,'Parent',axes1); 
% set(plot1(1),'LineWidth',2,'Color',[1 0 0],'DisplayName','Drill floor'); 
% set(plot1(2),'DisplayName','Middle of drill pipe string'); 
% %set(plot1(3),'DisplayName','Transition drill pipes/drill collars'); 
% set(plot1(3),'LineWidth',2,'Color',[0 0 1],'DisplayName','Drill bit'); 
%  
% % Create xlabel 
% xlabel('Time [s]','FontSize',30); 
%  
% % Create ylabel 
% ylabel('Segment movement [m]','FontSize',30); 
%  
% % Create legend 
% legend1 = legend(axes1,'show'); 
% set(legend1,... 
%     'Position',[0.27569444444444 0.767496342887659 0.136979166666667 
0.0816044260027662]); 
  
%% STRENGKALKULASJONER 
  
%% Henter ut verdier fra kommende løkke 
  
n_hopp =        1;                     % Vil hente ut verdier med avstand 
mellom lik n_hopp 
dtut =          n_hopp * DELTAt;        % Tidsintervall mellom verdiene som 
blir hentet ut 
PunkterUT =     3;                      % Antall punkter som skal lagres 
XUT =           (tEND/dtut:PunkterUT);  % Oppgir størrelsen på matrisen som 
skrives ut. Størrelsen blir desimaltall... Problem? 
tut =           1;                      % Variabel som sørger for at kun 
hver n_hopp'ende verdi blir hentet ut. 
k2 =             0;                      % Teller som holder styr på tiden 
(Tiden = k2*dtut) 
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% Matriser for å lagre noen verdier i kommende løkke: 
M = (1:PunkterUT);                      % Oppretter matrise for å hente 
ønskede posisjoner på strengen 
  
% Velger hvilke segmenter som skal hentes ut: 
M(1) = 1;                       % Øvre segment 
M(2) = convergent((NCB+1)/2);   % Segmentet nærmest midten av borerørs-
delen. 
M(3) = N+1;                     % Det nederste segmentet 
  
% Lager en matrise som holder rede på tiden: 
XUTtid = (PunkterUT);           % Oppgir størrelsen på matrisen som skrives 
ut 
for j=1:PunkterUT;              % Nullstiller tabellen 
    XUTtid  (j:PunkterUT,1) = 0; 
end 
  
  
%% KALKULERER MED KUN EN PERIODE OG EN AMPLITUDE 
%  
% % Setter parametre 
%  
% % Hastighet 
%  
% DTFART = 350; 
% XFART = 0; 
% XHAST = 0; 
%  
% tHAST = 0; 
% tMAX = 0; 
% tMIN = 0; 
%  
% XMAX = -1000;   % Max utslag 
% XMIN = 1000;    % Min utslag 
% XGJS = 0;       % Gjennomsnitt 
% XKVAD = 0;      % Kvadratet 
% KFART = 0; 
% XN1FART = 0; 
% XHAST = 0; 
% Teller = 0; 
%  
% A_MAXUT = 0; 
% KVADUT = 0; 
% A_HASTUT = 0; 
%  
% %% Verdier for bevegelse av boredekk 
%  
% % Parametre til sinuskurven: 
% % Amplitude som endres 
% A1 =  3;              % [m]   Amplitude 1 
%  
% % Periode som endres 
% T =  10;              % [sek] Periode, en syklus 
%  
% A2 =    A1/5;         % [m]       Amplitude 2 
% fi =      pi/2;           % [Rad]     Forskyvning 
% omega = 2*pi/T;       % [Rad/sek] Vinkelfrekvensen [Angular frequency] 
%  
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% %% Tildeler verdien til strengen slik at den starter i ro, men strekket 
% for j=1:N+1; 
%     XG(j) =     XG1(j); 
%     X(j)=       X1(j); 
%     XN(j) =     XN1 (j); 
% end 
%  
% strengen_ryker = 1; 
% XN1FART = 0; 
%  
% while t < tEND;   % Fortsetter til fastsatt tid 
%      
%     %% Væskefriksjon 
%      
%     if t<tSTART/7 
%         for j=2:N+1; 
%             Eps(j) = 0.01; % Bruker høy lineær friksjon for å drepe 
initielle svingninger 
%         end 
%          
%     elseif t<tSTART*2/7 
%         for j=2:N+1; 
%             Eps(j) = 0.001; % Bruker høy lineær friksjon for å drepe 
initielle svingninger 
%         end 
%          
%     elseif t<tSTART*3/7 
%         for j=2:N+1; 
%             Eps(j) = 0.0001; % Bruker høy lineær friksjon for å drepe 
initielle svingninger 
%         end 
%  
%     elseif t<tSTART*4/7 
%         for j=2:N+1; 
%             Eps(j) = 0.00001; % Bruker høy lineær friksjon for å drepe 
initielle svingninger 
%         end 
%     elseif t<tSTART*5/7 
%         for j=2:N+1; 
%             Eps(j) = 0.000001; % Bruker høy lineær friksjon for å drepe 
initielle svingninger 
%         end 
%     else 
% % Finner virkelig viskøs friksjonskonstant til hvert midtpunkt på 
strengen 
%         for j=2:N+1; 
%  
%             if j>1 && j<NCB+1;      % Borerør 
%                 Eps(j) = epsB; 
%             end 
%  
%             if j== NCB+1;           % Overgang borerør/vektrør 
%                 Eps(j) = epsOV; 
%             end 
%  
%             if j>NCB+1 && j<N+1;    % Vektrør 
%                 Eps(j) = epsC; 
%             end 
%  
%             if j==N+1;              % Overgang vektrør/borekrone 



119 

 

%                 Eps(j) = epsOB; 
%             end 
%         end 
%  
%         % Her kan eps bli 0, mens du kjører inn den riktige? 
%     end 
%      
%     for j=2:N+1; 
%         EpsA(j) = 1-Eps(j); 
%         EpsB(j) = 1-(2*Eps(j)); 
%     end 
%      
%      
%     %% Øverste punkt 
%      
%     % Gir det øverste punktet en verdi ifølge bølgeligning 
%     X(1) = A1*sin(omega*t) + A2*sin(2*omega*t+fi); 
%      
%      
%     %% Alle punkter under toppen til overgang 
%      
%     for j=2:NCB;                          % Ønsker ikke å gi det øverste 
punktet en verdi, men resten 
%         XNY = (EpsA(j)*(X(j-1)+X(j+1)))-(EpsB(j)*XG(j))+Gravitasjon(j);   
% Standardformelen+gravitasjon+væskefriksjon 
%         %XNY = (X(j-1)+X(j+1))-XG(j)+Gravitasjon(j);      % 
Standardformelen 
%         DXN = XNY-X(j);               % Avstand ny/gammel verdi 
%          
%         if Bevegelse(j) > 0.5;        % I RO 
%             if abs(DXN) > MYSG(j);      % Dersom bevegelse er større enn 
statisk friksjon 
%                 Bevegelse(j) = 0; 
%                 XN(j) = XNY - sign(DXN)*MYG(j); 
%             else                        % Punktet er i ro 
%                 XN(j) = X(j); 
%             end 
%              
%         else                            % Bevegelse 
%             if abs(DXN) > MYG(j);       % Bevegelsen er større enn 
dynamisk friksjon 
%                 XN(j) = XNY - sign(DXN)*MYG(j); 
%             else 
%                 XN(j) = X(j); 
%                 Bevegelse(j) = 1; 
%             end 
%         end 
%     end 
%      
%     % Forklaring Bevegelse(j): 
%     % I ro fra XG(j) til X(j), Bevegelse(j)=1 
%     % Beveger seg fra XG(j) til X(j), Bevegelse(j)=0 
%      
%     %% Overgang borerør/vektrør 
%      
%     XNY = EpsA(j)*(CF1*X(NCO)+CF2*X(NCU))-
(EpsB(j)*XG(NCB+1))+Gravitasjon(NCB+1)+KC;      % Overgang borerør/vektrør 
%     %XNY = CF1*X(NCO)+CF2*X(NCU)-XG(NCB+1)+Gravitasjon(NCB+1)+KC;     % 
Overgang borerør/vektrør 
%      
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%     DXN = XNY-X(NCB+1);       % Avstand ny/gammel verdi 
%      
%     if Bevegelse(NCB+1) > 0.5;        % I RO 
%         if abs(DXN) > MYSG(NCB+1);  % Dersom bevegelse er større enn 
statisk friksjon 
%             Bevegelse(NCB+1) = 0; 
%             XN(NCB+1) = XNY - sign(DXN)*MYG(NCB+1); 
%         else 
%             XN(NCB+1) = X(NCB+1); 
%         end 
%          
%     else                            % Bevegelse 
%         if abs(DXN) > MYG(NCB+1); 
%             XN(NCB+1) = XNY - sign(DXN)*MYG(NCB+1); 
%         else 
%             XN(NCB+1) = X(NCB+1); 
%             Bevegelse(NCB+1) = 1; 
%         end 
%     end 
%      
%     %% Alle punkter under overgang til borekrone 
%      
%     for j=NCB+2:N;                            % Ønsker ikke å gi det 
øverste punktet en verdi, men resten 
%         XNY = (EpsA(j)*(X(j-1)+X(j+1)))-(EpsB(j)*XG(j))+Gravitasjon(j);   
% Standardformelen legg til gravitasjon og friksjon 
%         %XNY = (X(j-1)+X(j+1))-XG(j)+Gravitasjon(j);      % 
Standardformelen 
%          
%         DXN = XNY-X(j);               % Avstand ny/gammel verdi 
%          
%         if Bevegelse(j) > 0.5;        % I RO 
%             if abs(DXN) > MYSG(j);      % Dersom bevegelse er større enn 
statisk friksjon 
%                 Bevegelse(j) = 0; 
%                 XN(j) = XNY - sign(DXN)*MYG(j); 
%             else                        % Punktet er i ro 
%                 XN(j) = X(j); 
%             end 
%              
%         else                            % Bevegelse 
%             if abs(DXN) > MYG(j);       % Bevegelsen er større enn 
dynamisk friksjon 
%                 XN(j) = XNY - sign(DXN)*MYG(j); 
%             else 
%                 XN(j) = X(j); 
%                 Bevegelse(j) = 1; 
%             end 
%         end 
%     end 
%      
%     %% Overgang vektrør/borekrone 
%      
%     % Finner stempelkraften 
%     %Ks = Kstempel*(XN1FART^2); 
%     %Kfriksjon = BHAkonstant*((XN1FART*Aring)^1.8); 
%  
%     XNY = (EpsA(j)*2*X(N))-(EpsB(j)*XG(N+1))+Gravitasjon(N+1)-KB;% 
+(sign(X(N+1)-XG(N+1))*(Ks+Kfriksjon)); 
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%     %XNY = 2*X(N)-XG(N+1)+Gravitasjon(N+1)-KB;        % overgang 
vektrør/borekrone 
%      
%     DXN = XNY-X(N+1);         % Avstand ny/gammel verdi 
%      
%     if Bevegelse(N+1) > 0.5;          % I RO 
%         if abs(DXN) > MYSG(N+1);  % Dersom bevegelse er større enn 
statisk friksjon 
%             Bevegelse(N+1) = 0; 
%             XN(N+1) = XNY - sign(DXN)*MYG(N+1); 
%         else 
%             XN(N+1) = X(N+1); 
%         end 
%          
%     else                            % Bevegelse 
%         if abs(DXN) > MYG(N+1); 
%             XN(N+1) = XNY - sign(DXN)*MYG(N+1); 
%         else 
%             XN(N+1) = X(N+1); 
%             Bevegelse(N+1) = 1; 
%         end 
%     end 
%      
%     %% Lagrer noen utvalgte verdier: 
%     if t > tut; 
%         tut = tut + dtut; 
%         k2 = k2+1; 
%         for m = 1:PunkterUT; 
%             XUT(k2,m) = X(M(m)); %(X(M(m))+XN(M(m)))/2; 
%             XUTtid(k2) = k2*dtut; 
%         end 
%     end 
%      
%     %% Sjekker om strengen ryker øverst 
%     if t>tSTART && t<tEND 
%         if strengen_ryker > 0 
%             if Es*abs((X(2)-X(1))/DELTAz)>Flytgrense; 
%                 Brudd = ['STRENGEN RØK. Stresset i strengen er ' 
num2str((Es*abs((X(2)-X(1))/DELTAz))/100000), ' Bar. Tiden er ' num2str(t), 
' sekunder. T er ', num2str(T), ' sekunder, A1 er ', num2str(A1), ' 
meter.'] 
%                 strengen_ryker = 0; 
%                 t=tEND; 
%             end 
%         end 
%     end 
%      
%     %% Hopper ut av while-løkken dersom strengen ryker 
%     if strengen_ryker==0 
%         break 
%     end 
%      
%     %% Henter farten til borekronen 
%     XN1FART=abs((XN(N+1)-X(N+1))/DELTAt); 
%          
%     %% Øker et tidssteg 
%     t=t+DELTAt; 
%      
%  
%  
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%     %% Henter ut maksverdier 
%     if t>tSTART 
%         if XN(N+1) > XMAX; 
%             XMAX = XN(N+1); 
%             tMAX = t-1; 
%         end 
%          
%         if XN(N+1) < XMIN; 
%             XMIN = XN(N+1); 
%             tMIN = t-1; 
%         end 
%          
%         if t < tSTART+1.5*DELTAt; 
%             XFART = XN(N+1); 
%         end 
%          
%         KFART = KFART+1; 
%          
%         if KFART > DTFART && t<tSLUTT; 
%             if XHAST < abs((XN(N+1)-XFART)/(DTFART*DELTAt)); 
%                 XHAST = abs((XN(N+1)-XFART)/(DTFART*DELTAt)); 
%                 XFART = XN(N+1); 
%                 KFART = 1; 
%                 tHAST = t-1; 
%             end 
%         end 
%     end 
%      
%     %% Gir de nye verdiene til de forrige tabellene 
%     for j2=2:N+1; 
%         XG (j2)= X (j2); 
%         X (j2)= XN (j2); 
%     end 
%      
% end 
%  
%  %% Henter ut verdier 
%  A_MAXUT = XMAX-XMIN; % Største forskjell mellom min og maks 
%  A_HASTUT = XHAST;    % Maks hastighet 
  
         
  
%% KALKULERER MED FLERE PERIODER OG AMPLITUDER 
% Setter parametre 
  
% Amplitude: 
AMP0 = 0.5;     % Startamplitude 
DAMP = 0.5;     % Økning i amplitude 
AMPMAKS = 3;    % Maks amplitude 
AntallAmp = ((AMPMAKS-AMP0)/DAMP)+1;     % Antall amplituder 
  
% Lager en matrise som holder rede på amplituden: 
AmplitudeNr = (AntallAmp);  % Oppgir størrelsen på matrisen som skrives ut 
for j=1:AntallAmp;          % Nullstiller tabellen 
    AmplitudeNr  (j:AntallAmp,1) = 0; 
end 
  
% Periode 
PTID0 = 10;      % Start bølgeperiode 
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DTID = 5;       % Økning i bølgeperiode 
PTIDMAKS = 20;  % Maks bølgeperiode 
AntallPer = ((PTIDMAKS-PTID0)/DTID)+1;     % Antall amplituder 
  
% Lager en matrise som holder rede på perioden: 
PeriodeNr = (AntallPer);    % Oppgir størrelsen på matrisen som skrives ut 
for j=1:AntallPer;          % Nullstiller tabellen 
    PeriodeNr  (j:AntallPer,1) = 0; 
end 
  
% Hastighet 
kFART = 0; 
DTFART = 350; 
XFART = 0; 
XHAST = 0; 
  
kTID = convergent(((PTIDMAKS-PTID0)/DTID)+1); 
jAMP = convergent(((AMPMAKS-AMP0)/DAMP)+1); 
  
% Lager tabeller for å få utskrift av maksverdier 
A_MAXUT =     (jAMP);  
KVADUT =    (jAMP);  
A_HASTUT =    (jAMP);  
  
  
%% Nullstiller tabellene 
for k5=1:kTID; 
    for j5=1:jAMP; 
        A_MAXUT(j5,k5) = 0; 
        %KVADUT(j5,k5) = 0; 
        A_HASTUT(j5,k5) = 0; 
    end 
end 
  
for kk=1:kTID; 
    PTD = PTID0+(kk-1)*DTID; 
     
    PTD         % Skriver ut Perioden 
     
    for jj=1:jAMP; 
        AMP = AMP0+(jj-1)*DAMP; 
  
        strengen_ryker = 1; 
         
        AMP     % Skriver ut amplituden 
         
        AmplitudeNr(jj) = AMP; 
        PeriodeNr(kk) = PTD; 
         
        %% Verdier for bevegelse av boredekk 
         
        % Parametre til sinuskurven: 
         
        % Amplitude som endres 
        A1 =    AMP;                % [m]   Amplitude 1 
         
        % Periode som endres 
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        T =     PTD;                % [sek] Periode, en syklus 
         
        A2 =    A1/5;           % [m]       Amplitude 2 
        fi =    pi/2;           % [Rad]     Forskyvning 
        omega = 2*pi/T;         % [Rad/sek] Vinkelfrekvensen [Angular 
frequency] 
         
         
        %% Nullstiller variabler 
        t=0; 
         
        for j1 = 2:(N+1); 
            X(j1) = 0; 
            XG(j1) = 0; 
        end 
         
        XMAX = -1000;   % Max utslag 
        XMIN = 1000;    % Min utslag 
        XGJS = 0;       % Gjennomsnitt 
        XKVAD = 0;      % Kvadratet 
        KFART = 0; 
        XN1FART = 0; 
        XHAST = 0; 
        Teller = 0; 
         
        % Tildeler verdien til strengen slik at den starter i ro, men 
strekket 
        for j7=2:N+1; 
            XG(j7) =     XG1(j7); 
            X(j7)=       X1(j7); 
            XN(j7) =     XN1 (j7); 
        end 
         
        while t < tEND && strengen_ryker > 0    % Fortsetter til fastsatt 
tid 
             
%             XN1FART = 0; 
            %% Væskefriksjon 
  
            if t<tSTART/7 
                for j=2:N+1; 
                    Eps(j) = 0.01; % Bruker høy lineær friksjon for å drepe 
initielle svingninger 
                end 
  
            elseif t<tSTART*2/7 
                for j=2:N+1; 
                    Eps(j) = 0.001; % Bruker høy lineær friksjon for å 
drepe initielle svingninger 
                end 
  
            elseif t<tSTART*3/7 
                for j=2:N+1; 
                    Eps(j) = 0.0001; % Bruker høy lineær friksjon for å 
drepe initielle svingninger 
                end 
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            elseif t<tSTART*4/7 
                for j=2:N+1; 
                    Eps(j) = 0.00001; % Bruker høy lineær friksjon for å 
drepe initielle svingninger 
                end 
            elseif t<tSTART*5/7 
                for j=2:N+1; 
                    Eps(j) = 0.000001; % Bruker høy lineær friksjon for å 
drepe initielle svingninger 
                end 
                 
            else 
                % Finner virkelig viskøs friksjonskonstant til hvert 
midtpunkt på strengen 
                for j=2:N+1; 
  
                    if j>1 && j<NCB+1;      % Borerør 
                        Eps(j) = epsB; 
                    end 
  
                    if j== NCB+1;           % Overgang borerør/vektrør 
                        Eps(j) = epsOV; 
                    end 
  
                    if j>NCB+1 && j<N+1;    % Vektrør 
                        Eps(j) = epsC; 
                    end 
  
                    if j==N+1;              % Overgang vektrør/borekrone 
                        Eps(j) = epsOB; 
                    end 
                end 
  
                % Her kan eps bli 0, mens du kjører inn den riktige? 
            end 
  
            for j=2:N+1; 
                EpsA(j) = 1-Eps(j); 
                EpsB(j) = 1-(2*Eps(j)); 
            end 
             
            %% Øverste punkt 
             
            % Gir det øverste punktet en verdi ifølge bølgeligning 
            X(1) = A1*sin(omega*t) + A2*sin(2*omega*t+fi); 
             
            %% Alle punkter under toppen til overgang 
             
            for j=2:NCB;                        % Ønsker ikke å gi det 
øverste punktet en verdi, men resten 
                XNY = (EpsA(j)*(X(j-1)+X(j+1)))-
(EpsB(j)*XG(j))+Gravitasjon(j);     % Standardformelen 
  
                DXN = XNY-X(j);                 % Avstand ny/gammel verdi 
                 
                if Bevegelse(j) > 0.5;          % I RO 
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                    if abs(DXN) > MYSG(j);      % Dersom bevegelse er 
større enn statisk friksjon 
                        Bevegelse(j) = 0; 
                        XN(j) = XNY - sign(DXN)*MYG(j); 
                    else                        % Punktet er i ro 
                        XN(j) = X(j); 
                    end 
                     
                else                            % Bevegelse 
                    if abs(DXN) > MYG(j);       % Bevegelsen er større enn 
dynamisk friksjon 
                        XN(j) = XNY - sign(DXN)*MYG(j); 
                    else 
                        XN(j) = X(j); 
                        Bevegelse(j) = 1; 
                    end 
                end 
            end 
             
            % Forklaring Bevegelse(j): 
            % I ro fra XG(j) til X(j), Bevegelse(j)=1 
            % Beveger seg fra XG(j) til X(j), Bevegelse(j)=0 
             
            %% Overgang borerør/vektrør 
             
            XNY = (EpsA(j)*(CF1*X(NCO)+CF2*X(NCU)))-
(EpsB(j)*XG(NCB+1))+Gravitasjon(NCB+1)+KC;      % Overgang borerør/vektrør 
             
            DXN = XNY-X(NCB+1);             % Avstand ny/gammel verdi 
             
            if Bevegelse(NCB+1) > 0.5;      % I RO 
                if abs(DXN) > MYSG(NCB+1);  % Dersom bevegelse er større 
enn statisk friksjon 
                    Bevegelse(NCB+1) = 0; 
                    XN(NCB+1) = XNY - sign(DXN)*MYG(NCB+1); 
                else 
                    XN(NCB+1) = X(NCB+1); 
                end 
                 
            else                            % Bevegelse 
                if abs(DXN) > MYG(NCB+1); 
                    XN(NCB+1) = XNY - sign(DXN)*MYG(NCB+1); 
                else 
                    XN(NCB+1) = X(NCB+1); 
                    Bevegelse(NCB+1) = 1; 
                end 
            end 
             
            %% Alle punkter under overgang til borekrone 
             
            for j=NCB+2:N;                  % Ønsker ikke å gi det øverste 
punktet en verdi, men resten 
                XNY = (EpsA(j)*(X(j-1)+X(j+1)))-
(EpsB(j)*XG(j))+Gravitasjon(j);     % Standardformelen 
         
                DXN = XNY-X(j);             % Avstand ny/gammel verdi 
                 
                if Bevegelse(j) > 0.5;      % I RO 
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                    if abs(DXN) > MYSG(j);  % Dersom bevegelse er større 
enn statisk friksjon 
                        Bevegelse(j) = 0; 
                        XN(j) = XNY - sign(DXN)*MYG(j); 
                    else                    % Punktet er i ro 
                        XN(j) = X(j); 
                    end 
                     
                else                        % Bevegelse 
                    if abs(DXN) > MYG(j);   % Bevegelsen er større enn 
dynamisk friksjon 
                        XN(j) = XNY - sign(DXN)*MYG(j); 
                    else 
                        XN(j) = X(j); 
                        Bevegelse(j) = 1; 
                    end 
                end 
            end 
             
            %% Overgang vektrør/borekrone 
                 
            % Finner stempelkraften 
            %Ks = Kstempel*(XN1FART^2); 
            %Kfriksjon = BHAkonstant*((XN1FART*Aring)^1.8); 
             
            XNY = (EpsA(j)*2*X(N))-(EpsB(j)*XG(N+1))+Gravitasjon(N+1)-KB; 
%+(sign(X(N+1)-XG(N+1))*(Ks+Kfriksjon)); 
             
            DXN = XNY-X(N+1);           % Avstand ny/gammel verdi 
             
            if Bevegelse(N+1) > 0.5;    % I RO 
                if abs(DXN) > MYSG(N+1);% Dersom bevegelse er større enn 
statisk friksjon 
                    Bevegelse(N+1) = 0; 
                    XN(N+1) = XNY - sign(DXN)*MYG(N+1); 
                else 
                    XN(N+1) = X(N+1); 
                end 
                 
            else                        % Bevegelse 
                if abs(DXN) > MYG(N+1); 
                    XN(N+1) = XNY - sign(DXN)*MYG(N+1); 
                else 
                    XN(N+1) = X(N+1); 
                    Bevegelse(N+1) = 1; 
                end 
            end 
             
            %% Lagrer noen utvalgte verdier: 
            if t > tut; 
                tut = tut + dtut; 
                k2 = k2+1; 
                for m = 1:PunkterUT; 
                    XUT(k2,m) = X(M(m)); %(X(M(m))+XN(M(m)))/2; 
                    XUTtid(k2) = k2*dtut; 
                end 
            end 
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            %% Sjekker om strengen ryker øverst 
            if t>tSTART && t<tEND 
                if strengen_ryker > 0 
                    if Es*abs((X(2)-X(1))/DELTAz)>Flytgrense; 
                        Brudd = ['STRENGEN RØK. Stresset i strengen er ' 
num2str((Es*abs((XN(2)-XN(1))/DELTAz))/100000), ' Bar. Tiden er ' 
num2str(t), ' sekunder. T er ', num2str(PTD), ' sekunder, A1 er ', 
num2str(AMP), ' meter.'] 
                        strengen_ryker = 0; 
                        t=tEND; 
                    end 
                end 
            end 
             
            %% Hopper ut av while-løkken dersom strengen ryker 
            if strengen_ryker==0 
                break 
            end 
             
            %% Henter ut hastigheten for hvert steg 
            %XN1FART=abs((XN(N+1)-XFART)/(DTFART*DELTAt)); 
             
            %% Øker et tidssteg 
            t=t+DELTAt; 
             
            %% Henter ut maksverdier 
            if t>tSTART && t<=tEND && strengen_ryker>0 
                 
                if XN(N+1) > XMAX; 
                    XMAX = XN(N+1); 
                end 
                 
                if XN(N+1) < XMIN; 
                    XMIN = XN(N+1); 
                end 
                 
                if t < tSTART+1.5*DELTAt; 
                    XFART = XN(N+1); 
                end 
                 
                KFART = KFART+1; 
                 
                if KFART > DTFART && t<tSLUTT; 
                    if XHAST < abs((XN(N+1)-XFART)/(DTFART*DELTAt)); 
                        XHAST = abs((XN(N+1)-XFART)/(DTFART*DELTAt)); 
                        XFART = XN(N+1); 
                        KFART = 1; 
                    end 
                end 
                 
                %XGJS = XGJS+XN(N+1); 
                %XKVAD = XKVAD + (XN(N+1))^2; 
                Teller = Teller+1; 
            end 
             
            %% Gir de nye verdiene til de forrige tabellene 
            for j2=2:N+1; 
                XG (j2)= X (j2); 
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                X (j2)= XN (j2); 
            end 
             
        end 
             
            %% Henter ut verdier 
            A_MAXUT(jj,kk) = XMAX-XMIN; % Største forskjell mellom min og 
maks 
            %KVADUT(jj,kk) = (XKVAD-((XGJS^2)/Teller)^0.5)/Teller; 
            % KVADUT(jj,kk) = ((XKVAD/Teller)-(XGJS/Teller)^2)*2; 
            A_HASTUT(jj,kk) = XHAST;    % Maks hastighet 
         
        %% Hopper ut av for-løkken dersom strengen ryker 
        if strengen_ryker==0 
            break 
        end 
  
    end 
  
end 
  
  
%% PLOTTER BEVEGELSEN 
  
figure1 = figure; 
  
% Create axes 
axes1 = axes('Parent',figure1,'YDir','reverse','FontSize',30); 
box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create multiple lines using matrix input to plot 
plot1 = plot(XUTtid,XUT,'Parent',axes1); 
set(plot1(1),'LineWidth',2,'Color',[1 0 0],'DisplayName','Drill floor'); 
set(plot1(2),'DisplayName','Middle of drill pipe section'); 
%set(plot1(3),'DisplayName','Transition drill pipes/drill collars'); 
set(plot1(3),'LineWidth',2,'Color',[0 0 1],'DisplayName','Drill bit'); 
  
% Create xlabel 
xlabel('Time [s]','FontSize',30); 
  
% Create ylabel 
ylabel('Segment movement [m]','FontSize',30); 
  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,... 
    'Position',[0.687934027777776 0.155463147866916 0.19375 
0.112724757952974]); 
  
%% PLOTTER BRØNNBANEN 
%  
% % Create figure 
% figure2 = figure; 
%  
% % Create axes 
% axes1 = axes('Parent',figure2,'YDir','reverse',... 
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%     'Position',[0.13 0.11 0.280416666666667 0.815],... 
%     'FontSize',30); 
% box(axes1,'on'); 
% hold(axes1,'all'); 
%  
% % Create plot 
% plot(H,TVD,'LineWidth',3,'DisplayName','TVD vs. H'); 
%  
% % Create xlabel 
% xlabel('Horizontal Reach [m]','FontSize',30); 
%  
% % Create ylabel 
% ylabel('True Vertical Depth [m]','FontSize',30); 
  
  
%% PLOTTER HASTIGHETEN 
%  
% % Create figure 
% figure3 = figure; 
%  
% % Create axes 
% axes1 = axes('Parent',figure3,'FontSize',30); 
% box(axes1,'on'); 
% hold(axes1,'all'); 
%  
% % Create multiple lines using matrix input to plot 
% plot1 = plot(AmplitudeNr,A_HASTUT,'Parent',axes1,'LineWidth',2); 
%  
% set(plot1(1),'DisplayName','Time period = 10 seconds'); 
% set(plot1(2),'DisplayName','Time period = 15 seconds'); 
% set(plot1(3),'DisplayName','Time period = 20 seconds'); 
%  
% % set(plot1(1),'DisplayName','Time period =  5 seconds'); 
% % set(plot1(2),'DisplayName','Time period = 10 seconds'); 
% % set(plot1(3),'DisplayName','Time period = 15 seconds'); 
% % set(plot1(4),'DisplayName','Time period = 20 seconds'); 
%  
% % Create xlabel 
% xlabel('Top segment amplitude [m]','FontSize',30); 
%  
% % Create ylabel 
% ylabel('Velocity [m/s]','FontSize',30); 
%  
% % Create legend 
% legend1 = legend(axes1,'show'); 
% set(legend1,... 
%     'Position',[0.149913194444443 0.730992355222803 0.19375 
0.148686030428769]); 
  
%% PLOTTER MAKS UTSLAG 
%  
% % Create figure 
% figure4 = figure; 
%  
% % Create axes 
% axes1 = axes('Parent',figure4,'FontSize',30); 
% box(axes1,'on'); 
% hold(axes1,'all'); 
%  
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% % Create multiple lines using matrix input to plot 
% plot1 = plot(AmplitudeNr,A_MAXUT,'Parent',axes1,'LineWidth',2); 
%  
% set(plot1(1),'DisplayName','Time period = 10 seconds'); 
% set(plot1(2),'DisplayName','Time period = 15 seconds'); 
% set(plot1(3),'DisplayName','Time period = 20 seconds'); 
%  
% % set(plot1(1),'DisplayName','Time period =  5 seconds'); 
% % set(plot1(2),'DisplayName','Time period = 10 seconds'); 
% % set(plot1(3),'DisplayName','Time period = 15 seconds'); 
% % set(plot1(4),'DisplayName','Time period = 20 seconds'); 
%  
% % Create xlabel 
% xlabel('Top segment amplitude [m]','FontSize',30); 
%  
% % Create ylabel 
% ylabel('Max drill bit amplitude [m]','FontSize',30); 
%  
% % Create legend 
% legend1 = legend(axes1,'show'); 
% set(legend1,... 
%     'Position',[0.149913194444443 0.730992355222803 0.19375 
0.148686030428769]); 
  
%% PLOTTER DEN KVADRERTE 
%  
% % Create figure 
% figure5 = figure; 
%  
% % Create axes 
% axes1 = axes('Parent',figure5,'FontSize',30); 
% box(axes1,'on'); 
% hold(axes1,'all'); 
%  
% % Create multiple lines using matrix input to plot 
% plot1 = plot(AmplitudeNr,KVADUT,'Parent',axes1,'LineWidth',2); 
% set(plot1(1),'DisplayName','Time period = 10 seconds'); 
% set(plot1(2),'DisplayName','Time period = 15 seconds'); 
% set(plot1(3),'DisplayName','Time period = 20 seconds'); 
  
% % set(plot1(1),'DisplayName','Time period =  5 seconds'); 
% % set(plot1(2),'DisplayName','Time period = 10 seconds'); 
% % set(plot1(3),'DisplayName','Time period = 15 seconds'); 
% % set(plot1(4),'DisplayName','Time period = 20 seconds'); 
%  
% % Create xlabel 
% xlabel('Top segment amplitude [m]','FontSize',30); 
%  
% % Create ylabel 
% ylabel('xxx','FontSize',30); 
%  
% % Create legend 
% legend1 = legend(axes1,'show'); 
% set(legend1,... 
%     'Position',[0.149913194444443 0.730992355222803 0.19375 
0.148686030428769]); 
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B. Results from the simulations 
 

B.1 Vertical well 

1000 m    2000m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,42921 0,291 0,21764 1 0,49354 0,31068 0,22687 
2 0,85153 0,58701 0,43436 2 0,99095 0,62015 0,45591 
3 1,28007 0,88454 0,65144 3 1,47435 0,93996 0,68709 
4 1,7088 1,17938 0,87054 4 1,96523 1,25897 0,91801 
5 2,14069 1,47402 1,08529 5 2,4567 1,57236 1,13795 
6 2,5688 1,74047 1,30003 6 2,97887 1,86206 1,36615 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 1,0298 1,01528 1,00509 1 1,10185 1,04061 1,02587 
2 2,05958 2,03065 2,0102 2 2,20317 2,08149 2,05226 
3 3,08935 3,04603 3,01531 3 3,30448 3,12238 3,07865 
4 4,11913 4,0614 4,02042 4 4,40579 4,16327 4,10503 
5 5,1489 5,07677 5,02553 5 5,5071 5,20415 5,13142 
6 6,17867 6,09215 6,03063 6 6,60842 6,24504 6,15781 

 

3000 m    4000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,5986 0,33373 0,23768 1 0,77977 0,35113 0,24885 
2 1,19148 0,65126 0,4789 2 1,56506 0,70146 0,49653 
3 1,78318 0,98299 0,71443 3 2,33885 1,05644 0,74491 
4 2,39143 1,32774 0,95037 4 3,11768 1,40273 0,99326 
5 2,96537 1,64847 1,1995 5 3,91568 1,74335 1,23539 
6 3,55825 1,97726 1,44276 6 4,67607 2,09297 1,48865 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 1,23755 1,07916 1,04792 1 1,56237 1,11645 1,07422 
2 2,47414 2,15851 2,09677 2 3,12305 2,2331 2,1501 
3 3,71074 3,23786 3,14562 3 4,68374 3,34977 3,22598 
4 4,94733 4,31721 4,19447 4 6,24443 4,46644 4,30186 
5 6,18393 5,39656 5,24331 5 7,80512 5,5831 5,37775 
6 7,42053 6,47591 6,29216 6 9,3658 6,69977 6,45363 
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5000 m    6000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 3,49005 0,42088 0,25618 1 1,1988 0,48814 0,27854 
2 6,9928 0,83563 0,5079 2 2,38721 0,98094 0,55939 
3 10,4734 1,24974 0,76826 3 3,5892 1,45775 0,8455 
4 12,3569 1,66948 1,02551 4 4,79767 1,96063 1,13025 
5 0 2,10008 1,27329 5 5,96094 2,45315 1,40944 
6 0 2,51812 1,54929 6 7,17026 2,92446 1,69212 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 5,88721 1,23941 1,11267 1 2,24647 1,412 1,15258 
2 11,774 2,47799 2,22762 2 4,48975 2,82203 2,30774 
3 17,6608 3,71657 3,34258 3 6,73303 4,23206 3,46318 
4 22,0602 4,95515 4,45753 4 8,97631 5,6421 4,61863 
5 0 6,19374 5,57249 5 11,2196 7,05213 5,77408 
6 0 7,43232 6,68744 6 13,4629 8,46216 6,92953 

 
7000 m    8000 m    

Max bit velocity Max bit velocity 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 0,83264 0,58962 0,30204 1 1,16164 2,19801 0,35799 
2 1,67444 1,17403 0,6136 2 2,32163 4,39573 0,71324 
3 2,50281 1,77021 0,91804 3 3,44497 6,57354 1,08638 
4 3,33968 2,36954 1,22715 4 4,58903 8,50991 1,42801 
5 4,18456 2,96565 1,51777 5 5,70991 0 1,78628 
6 5,03085 3,54915 1,83433 6 6,8917 0 2,14581 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 1,91591 1,61029 1,21302 1 2,98692 5,37247 1,34943 
2 3,83219 3,21973 2,42746 2 5,96804 10,7393 2,7018 
3 5,74847 4,82917 3,64189 3 8,94916 16,106 4,05417 
4 7,66475 6,43861 4,85633 4 11,9303 21,1892 5,40655 
5 9,58104 8,04805 6,07076 5 14,9114 0 6,75893 
6 11,4973 9,65749 7,2852 6 17,8925 0 8,11132 
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9000 m    
Max bit velocity 

2*A1 T = 10 T = 15 T = 20 
0 0 0 0 
1 1,21237 1,83073 0,3798 
2 2,41194 3,6688 0,76178 
3 3,63021 5,50225 1,1477 
4 4,84508 6,77091 1,53047 
5 6,06633 0 1,93142 
6 6,40039 0 2,30113 

Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 

0 0 0 0 
1 3,31405 4,72645 1,4379 
2 6,62848 9,45351 2,87674 
3 9,9429 14,1806 4,31559 
4 13,2573 17,3433 5,75443 
5 16,5718 0 7,19327 
6 19,3035 0 8,63212 
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B.2 10 degrees deviation 

1000 m    2000m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,44348 0,32491 0,25539 1 0,67067 0,40535 0,28989 
2 0,90169 0,66799 0,51717 2 1,06391 0,79886 0,51526 
3 1,32676 0,97155 0,73586 3 1,66155 0,98681 0,78662 
4 1,75173 1,27992 0,90137 4 2,09375 1,30042 1,01464 
5 2,16659 1,60242 1,09904 5 2,33025 1,51114 1,28406 
6 2,55218 1,91857 1,32255 6 2,78897 1,81776 1,53018 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 0,97835 0,97319 0,9588 1 0,87438 0,93598 0,90917 
2 2,04924 1,98956 1,95433 2 2,1382 1,90165 1,93149 
3 3,07515 2,9876 2,9675 3 3,21236 2,91186 2,91644 
4 4,10083 3,98469 3,99134 4 4,28314 4,06987 3,89389 
5 5,12682 4,98181 5,00957 5 5,35409 5,1451 4,87405 
6 6,15326 5,98532 6,021 6 6,4253 6,18134 5,96364 

 

3000 m    4000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,72934 0,48907 0,33682 1 0,78739 0,49961 0,37686 
2 1,30477 0,88762 0,64739 2 1,4396 0,94381 0,72331 
3 1,84346 1,25795 0,89101 3 2,26193 1,36253 1,01391 
4 2,3589 1,63192 1,24044 4 3,34825 1,94322 1,24404 
5 2,91605 1,92951 1,53626 5 4,02725 2,3652 1,55759 
6 3,53174 2,20119 1,75955 6 4,69909 2,83836 1,79963 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 1,1227 0,78265 0,87162 1 1,3327 0,90793 0,69035 
2 2,27773 2,05175 1,88088 2 2,77857 1,91747 1,82706 
3 3,44694 3,14331 2,85382 3 4,38886 2,8846 3,03862 
4 4,62006 4,21147 3,81542 4 6,0234 3,86613 4,11206 
5 5,79016 5,27094 4,77991 5 7,43943 4,9136 5,17108 
6 6,96268 6,32069 5,85566 6 8,83308 6,11665 6,22211 
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5000 m    6000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,78877 0,49289 0,35753 1 0,767 0,39195 0,26303 
2 2,02983 1,05161 0,7443 2 1,74096 1,04914 0,78484 
3 3,52467 1,50074 1,09746 3 2,82093 1,47778 1,13087 
4 6,73251 1,78133 1,49089 4 3,8143 1,91533 1,51942 
5 9,16396 2,20394 1,87364 5 4,94612 2,37067 1,88656 
6 11,5792 2,60784 1,98003 6 6,1811 2,80854 2,21888 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 1,48651 0,95744 0,71267 1 1,52021 0,7866 0,5641 
2 3,76742 2,22911 1,7037 2 3,56597 2,48463 1,88648 
3 6,92809 3,38306 2,61479 3 5,56259 3,82861 2,96149 
4 12,0512 4,53968 3,5005 4 7,54706 5,1088 3,99177 
5 16,9673 5,69773 4,6364 5 9,6546 6,39409 5,01051 
6 21,6068 6,86262 6,27195 6 11,7879 7,68546 6,01945 

 

7000 m    8000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,08175 0,00034 0 1 0,00056 0,00063 0,00033 
2 1,739 1,05359 0,77048 2 1,79987 1,0799 0,7379 
3 2,58098 1,55898 1,15396 3 2,83367 1,73635 1,20869 
4 3,39235 2,14391 1,57388 4 3,77279 2,72819 1,53808 
5 4,18352 2,9691 1,90976 5 4,63396 3,66369 1,86151 
6 4,98023 3,78639 2,14533 6 5,42792 4,82041 2,17906 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 0,11873 0,00132 0 1 0,00304 0,00231 0,00111 
2 3,64605 2,7073 2,00213 2 4,0159 2,87649 1,97014 
3 5,50394 4,31024 3,25876 3 6,46986 5,02801 3,51749 
4 7,35554 6,03952 4,46143 4 8,83576 7,26733 4,89774 
5 9,21067 8,03278 5,61324 5 11,1694 9,76572 6,17421 
6 11,0564 10,1166 6,76543 6 13,4976 12,8467 7,43018 
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9000 m    
Max bit 
velocity 

   

2*A1 T = 10 T = 15 T = 20 
0 0 0 0 
1 0,00107 0,0006 0,00051 
2 1,99199 1,0258 0,58279 
3 3,45767 1,833 1,18019 
4 4,8009 2,72969 1,65968 
5 6,02017 3,42674 1,93841 
6 7,06367 4,30519 2,2069 

Max bit amplitude   
2*A1 T = 10 T = 15 T = 20 

0 0 0 0 
1 0,00535 0,00227 0,00155 
2 4,42891 2,84057 1,68082 
3 8,14914 5,18451 3,7274 
4 11,5017 7,64157 5,29291 
5 14,7557 9,71989 6,71492 
6 17,9879 12,0219 8,13026 
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B.3 20 degrees deviation 

1000 m    2000m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,46997 0,35014 0,24246 1 0,74552 0,42208 0,26435 
2 0,88107 0,63841 0,50434 2 1,33564 0,80222 0,57425 
3 1,3869 1,00588 0,77568 3 1,47613 1,01257 0,82546 
4 1,80386 1,32809 1,03198 4 2,08917 1,58441 1,03012 
5 2,2273 1,63733 1,29548 5 2,85393 1,87869 1,31245 
6 2,64545 1,94332 1,46051 6 3,31688 1,91974 1,56866 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 0,92523 0,90437 0,89602 1 0,85427 0,83711 0,7569 
2 1,96465 1,95008 1,9205 2 1,74929 1,87356 1,82519 
3 3,06787 2,97862 2,92516 3 3,067 2,84383 2,87449 
4 4,09895 3,97956 3,90879 4 4,27743 3,80342 3,8643 
5 5,12858 4,978 4,89558 5 5,3538 4,75709 4,84912 
6 6,15067 5,9754 5,94445 6 6,42471 5,84876 5,83382 

 

3000 m    4000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,72985 0,46532 0,33343 1 0,54886 0,35892 0,2247 
2 1,45294 0,97645 0,66152 2 1,56472 0,99572 0,75244 
3 2,01292 1,25334 0,90967 3 2,14314 1,44154 1,11167 
4 2,57316 1,79445 1,27827 4 2,86532 1,88973 1,44362 
5 3,14234 2,07049 1,53434 5 3,68723 2,30861 1,70839 
6 3,68236 2,50795 1,78925 6 4,52798 2,71394 2,01258 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 1,02722 0,68781 0,53609 1 0,80899 0,53867 0,37749 
2 2,2466 1,56672 1,75234 2 2,67006 1,82125 1,38848 
3 3,39337 2,7529 2,78243 3 4,08993 2,84784 2,28419 
4 4,55688 4,11143 3,76392 4 5,56399 3,83648 3,68881 
5 5,72368 5,20683 4,73801 5 7,13503 4,80352 4,98053 
6 6,89607 6,28971 5,70912 6 8,79972 5,76993 6,0842 
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5000 m    6000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,00017 0 0 1 0,00028 1,01E-05 0 
2 1,5702 1,00214 0,72198 2 1,54593 0,80537 0,54164 
3 2,66937 1,5416 1,15887 3 2,49482 1,53818 1,13389 
4 4,1072 2,08844 1,47793 4 3,47088 2,09759 1,5684 
5 5,54208 2,55904 1,79391 5 4,63562 2,56883 1,92985 
6 7,04315 2,98165 2,18939 6 5,62596 2,95146 2,28189 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 0,00101 0 0 1 0,00155 1,69E-05 0 
2 2,99038 1,93172 1,43902 2 3,10189 1,62672 1,17119 
3 5,25144 3,24675 2,47301 3 5,18918 3,49411 2,63505 
4 7,5594 4,46279 3,41217 4 7,14349 4,98291 3,78308 
5 10,3388 5,6217 4,33604 5 9,153 6,36907 4,86692 
6 14,0589 6,76714 5,23085 6 11,1332 7,65779 5,92911 

 

7000 m    8000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,00024 0,00025 0 1 0,00023 0,00018 0 
2 0,21457 0,00547 0 2 0,00107 0,00127 0,00045 
3 2,62889 1,48838 0,99964 3 2,55244 1,12305 0,71242 
4 3,46846 2,12619 1,53637 4 3,66127 2,14579 1,47828 
5 4,33617 2,68869 1,96089 5 4,69882 2,79472 1,89369 
6 5,14927 3,12831 2,31827 6 5,70163 3,56675 2,4159 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 0,00139 0,00094 0 1 0,00127 0,00062 0 
2 0,3187 0,00472 0 2 0,0059 0,0047 0,0016 
3 5,41565 3,52052 2,53587 3 5,34382 2,81431 1,83031 
4 7,29345 5,43673 4,02508 4 8,06521 5,79291 3,99135 
5 9,15534 7,04222 5,2999 5 10,5415 7,7236 5,62725 
6 11,0067 8,63687 6,53079 6 12,9589 10,109 7,05812 
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9000 m    
Max bit velocity 

2*A1 T = 10 T = 15 T = 20 
0 0 0 0 
1 0,00031 0,0002 0,00012 
2 0,00206 0,00126 0,001 
3 0,87955 0,05151 0,00172 
4 4,02175 2,09847 1,21108 
5 5,45608 2,86243 1,93192 
6 7,03394 3,66754 2,34377 

Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 

0 0 0 0 
1 0,00163 0,0007 0,0004 
2 0,0106 0,00468 0,00308 
3 1,29081 0,05018 0,00541 
4 8,98927 5,83552 3,47919 
5 12,8347 8,35239 5,67548 
6 16,3664 10,4222 7,50139 
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B.4 40 degrees deviation 

1000 m    2000m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,55323 0,35513 0,24342 1 0,6659 0,44857 0,30867 
2 0,93563 0,68536 0,4943 2 1,487 0,85462 0,54468 
3 1,4055 1,06386 0,82396 3 2,09871 1,09895 0,86555 
4 1,78047 1,2477 0,99748 4 2,62521 1,56403 1,14311 
5 2,31501 1,66239 1,26806 5 3,18788 1,78843 1,38342 
6 2,74917 2 1,56559 6 3,52153 1,93559 1,64452 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 0,8952 0,83336 0,80609 1 0,76349 0,52326 0,47349 
2 1,85404 1,8137 1,79811 2 1,71593 1,71942 1,53608 
3 2,80508 2,87505 2,84523 3 2,61717 2,77522 2,57124 
4 3,98626 3,92384 3,86008 4 3,50344 3,75716 3,69716 
5 5,09634 4,9539 4,86598 5 4,76876 4,72452 4,75472 
6 6,14415 5,96172 5,85736 6 6,27072 5,69562 5,76324 

 

3000 m    4000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,0042 3,90E-06 0 1 0 0 0 
2 1,43418 0,94793 0,65993 2 1,22195 0,80103 0,53778 
3 2,24184 1,49466 1,07751 3 2,36818 1,48047 1,05453 
4 2,85374 1,92738 1,39917 4 3,08649 1,99598 1,51464 
5 3,41214 2,37282 1,56916 5 3,60127 2,43419 1,86104 
6 3,97683 2,81194 2,01803 6 4,22692 2,85533 2,20015 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 0,00334 1,28E-05 0 1 0 0 0 
2 2,09599 1,40852 1,11023 2 1,8502 1,23922 0,89171 
3 3,33732 2,30223 2,34905 3 3,84533 2,58067 1,94127 
4 4,5003 3,15315 3,56553 4 5,36669 3,68048 2,83281 
5 5,64139 4,20962 4,59225 5 6,77461 4,7108 3,66935 
6 6,79476 5,75036 5,58948 6 8,20757 5,71343 4,69488 
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5000 m    6000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,00011 0 0 1 0 9,23E-05 0 
2 0,00033 0 0 2 0,0006 0,00047 0 
3 2,24599 1,28541 0,94245 3 0,22815 0,00518 0,00042 
4 3,19656 2,04347 1,44271 4 3,17366 1,73836 1,2649 
5 4,28029 2,58418 1,88785 5 4,11573 2,5253 1,83805 
6 5,60929 3,09801 2,3252 6 4,99666 3,11449 2,27752 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 0,00069 0 0 1 0 0,00039 0 
2 0,00194 0 0 2 0,00327 0,0019 0 
3 3,90546 2,36794 1,77014 3 0,38635 0,00393 0,00052 
4 6,07889 3,97427 2,97674 4 6,50544 3,6096 2,6382 
5 8,37159 5,29732 4,02818 5 8,58561 5,52834 4,13633 
6 10,7633 6,55334 4,99539 6 10,4417 7,13033 5,38819 

 

7000 m    8000 m    
Max bit velocity Max bit velocity 

2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 
0 0 0 0 0 0 0 0 
1 0,00011 8,85E-05 0 1 7,21E-05 2,68E-05 0 
2 0,00054 0,00052 0 2 0,00056 0,00034 0,00024 
3 0,00139 0,00122 0 3 0,00251 0,00141 0,00089 
4 0,96807 0,27016 0,08774 4 0,06235 0,00205 0,00144 
5 4,45481 2,14161 1,53009 5 1,72555 0,46631 0,08587 
6 5,26893 3,07206 2,16317 6 5,22375 2,69354 1,69497 

Max bit amplitude Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 2*A1 T = 10 T = 15 T = 20 

0 0 0 0 0 0 0 0 
1 0,00047 0,00026 0 1 0,00014 1,87E-05 0 
2 0,00317 0,00205 0 2 0,0031 0,00155 0,00082 
3 0,0076 0,00455 0 3 0,01343 0,00529 0,00288 
4 1,68479 0,38281 0,14862 4 0,05783 0,00779 0,00459 
5 8,93266 5,01559 3,57839 5 3,04502 0,73727 0,15135 
6 10,8648 7,37635 5,37745 6 11,1433 6,84287 4,44214 
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9000 m    
Max bit velocity 

2*A1 T = 10 T = 15 T = 20 
0 0 0 0 
1 6,69E-05 0 0,00016 
2 0,00073 0,0004 0,00051 
3 0,00374 0,00118 0,00119 
4 0,0033 0,00276 0,00215 
5 0,59005 0,00422 0,00297 
6 2,40256 0,52347 0,08919 

Max bit amplitude 
2*A1 T = 10 T = 15 T = 20 

0 0 0 0 
1 0,00018 0 0,00035 
2 0,00381 0,00132 0,00158 
3 0,02019 0,0043 0,00343 
4 0,00835 0,01045 0,00676 
5 0,69372 0,01544 0,00932 
6 4,00362 0,7824 0,14204 
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