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Abstract

Analytical and semi-analytical solutions to the di�usion equation have been
obtained in an e�ort to model pressure decay in a closed CO2-water system.
Various boundary conditions that include di�erent physical e�ects and sim-
pli�cations have been investigated. Experimental data have been interpreted
qualitatively and quantitatively by making use of the analytical solutions. Nu-
merical modelling of the system in question has also been explored. It has been
concluded that the pressure decay can not exclusively be described by a di�usion
process, and that advection currents increase the rate of mass transfer between
the gas and liquid phase. It has been found that advection becomes less domi-
nant compared to di�usion in late times of the pressure decay experiment. The
experimental data has been interpreted in terms of a time-dependent e�ective
di�usion coe�cient that initially is two orders of magnitude greater than the
di�usivity of CO2 in water, and that gradually decreases towards the literature
value. The di�usion-only model that has been put forward is found to accurately
predict pressure decay in CO2-bitumen, and methane-pentane systems.
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1 INTRODUCTION

1 Introduction

Carbon Dioxide (CO2) is a gas that has been subject to much debate. While
being blamed for causing global warming, it is also vital to life on earth, as
well as having many industrial uses. Because of the problem of global warming,
geological storage of CO2 has been considered. When CO2 is injected for storage
it will come in contact with water and dissolve into it. Understanding and
quantifying the processes that lead to dissolution of CO2 into water is therefore
important. Another area where knowledge about the dissolution of CO2 in
water is of interest, is when CO2 is injected into petroleum reservoirs to increase
recovery. In this process the CO2 may come in contact with water, either when
it comes in contact with previously injected water in the reservoir or aquifers
surrounding the reservoir, as well as when the gas is injected together with water
in a so called WAG1 or SWAG2 injection.

A method to experimentally determine di�usion coe�cients of gases in liquids
was introduced by Riazi in 1996 [1]. This method has been called the pressure
decay method. When a gas is in contact with a liquid in a closed system, such
as in a PVT cell, the pressure will decrease in the cell due to the fact that
the gas dissolves in the liquid, thus taking up less volume. The method is
based on the fact that the time it takes to reach equilibrium, the point where
the liquid is saturated with the gas, is determined by the di�usion processes
acting in the system. Originally applied to petroleum �uids, the pressure decay
method has been successful in determining di�usion coe�cients in many oil-gas
systems. The method has been attractive because of its convenience, simplicity
and accuracy [2].

Although pressure decay experiments on CO2-water systems have not been as
extensively used as for petroleum systems, some studies can be found in the
literature. Farajzadeh et al. [3] have carried out pressure decay experiments
involving CO2 and water, and has put forward a theoretical interpretation of
the observed e�ects. Pressure decay experiments have also been carried out by
Time et al. [4] at the University of Stavanger in order to study the dissolution
of CO2 in water.

In order to understand the results from a pressure decay experiment, both quan-
titatively and qualitatively, it is useful to have a mathematical model that de-
scribes the system in question. The main focus of this thesis has been to �nd
an analytical model that can adequately describe pressure decay in a closed
CO2-water system. Several approaches with di�erent boundary conditions and
assumptions have been used to this end. Experimental results have been inter-
preted based on comparison with the analytical model. Numerical simulations
using the lattice Boltzmann method have also been implemented in an attempt
to shed further light on the processes at work.

The impact of advection has been of particular interest. A solution containing
CO2 will be denser than pure water. This leads to instabilities that cause

1Water-Alternating-Gas. A method to increase oil production where water and gas is
alternately injected into the reservoir for periods of time.

2Simultaneous-Water-and-Gas. Water and gas is injected simultaneously into the reservoir
in an e�ort to increase oil production.

1



1 INTRODUCTION

advection currents. The e�ect advection has on the rate of pressure decay
during di�erent stages of the experiment has been investigated .

2



2 THEORY

2 Theory

2.1 Solubility of CO2

The following reactions govern the solubility of CO2(g) in distilled water [5]:

CO2(g) −⇀↽− CO2(aq) ,

CO2(aq) + H2O −⇀↽− H2CO3,

H2CO3 −⇀↽− HCO−3 + H+,

HCO−3 −⇀↽− CO2−
3 + H+,

OH− + H+ −⇀↽− H2O.

When the pH is low (pH < 8) the generation of CO2−
3 can be neglected. The

last reaction describes the autoprotolysis of water. Combining the �rst three
reactions gives:

CO2(g) + H2O −⇀↽− HCO−3 + H+.

According to the law of mass action [6] the equilibrium constant for this
reaction can be written as

KCO2(g) =
aHCO−

3
· aH+

aCO2(g)
. (2.1)

where a is the activity3 of each species. In order to simplify, it can be assumed
that the activity equals the concentration m of the species in the solution.
This is a valid assumption because of the low ionic strength of the CO2-water
solutions studied in this work. In the case of CO2(g) the activity is equal to
the partial pressure, aCO2(g) = pCO2(g). In addition to the equilibrium
constants, we also know that the system will be charge neutral,

mH+ = mHCO−
3
+mOH− .

At equilibrium we thus have

mH+ =
KCO2(g)pCO2(g)

mH+

+
1

KOH− ·mH+

⇒ mH+ =

√
KCO2(g)pCO2(g) +

1

KOH−
.

KOH− = 1014.05 at 25◦C, so 1
KOH−

can be neglected. From equation (2.1) we

then get an expression for the concentration of HCO−3 in solution.

mHCO−
3
=
√
KCO2(g)pCO2(g).

3The activity is a measure of the e�ective concentration of a species, and is treated as a
dimensionless quantity.
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2 THEORY

From the de�nition of KH2CO3 , and the above expressions for mH+ and
mHCO−

3
, it follows that

mHCO−
3
=
KCO2(g)pCO2(g)

KH2CO3

.

The conventional de�nition of the equilibrium constant K implies that mol
l is

used as the unit for concentration, and that atm is used as the unit for partial
pressure. The total concentration of CO2 in aqueous form is then

mtotal = mH2CO3 +mHCO−
3
≈
KCO2(g)

KH2CO3

pCO2(g), (2.2)

where the concentration of HCO−3 is so small compared to the concentration
HCO3 that it has been neglected.

For the purposes of these calculations H2CO3 and CO2(aq) have been treated
as the same species. In reality, the concentration of CO2(aq) dominates over
the concentration of H2CO3 in a ratio of 386 to 1 (at ambient conditions) [5].
Equation (2.2) is analogous to Henry's law, P = HC, where P is the partial
pressure of CO2 in the gas phase , and C is the concentration of dissolved CO2.
When SI units are to be used, the Henry's law constant is de�ned as follows:

H

[
m3Pa

mol

]
= 101.3

KH2CO3

KCO2(g)
.

The Henry's law constant, as it is calculated here, will give the sum of the
concentrations of CO2(aq) and H2CO3 at equilibrium.

2.2 Transport mechanisms

2.2.1 Di�usion

Di�usion describes the process where random movement of particles causes mat-
ter to be transported from regions of higher to lower concentration. The transfer
of mass is proportional to the concentration gradient. In 1855, Adolf Fick de-
rived the laws of di�usion. Fick's �rst law of di�usion is an expression for the
di�usive �ux [7]:

−→
J = −D∇C, (2.3)

where
−→
J is a vector describing the �ux of particles in each direction

(
mol
m2s

)
,

and D is the di�usion coe�cient. Fick's second law of di�usion, also known as
the di�usion equation predicts how the concentration distribution changes with
time:

D∇2C =
∂C

∂t
. (2.4)
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2 THEORY

The di�usion equation can be derived from the continuity equation and Fick's
�rst law. A �nite region will have the following amount of particles:∫

V
C dV.

The �ux of particles out of the region is:∫
S

−→
J ·−→n dS,

where −→n is a normal unit vector pointing out of the domain enclosed by S. The
source/sink term is given by: ∫

V
A∗ dV,

where A∗ is rate of concentration change. Mass conservation can thus be written

d

dt

∫
V
C dV = −

∫
S

−→
J ·−→n dS +

∫
V
AdV.

Use of the divergence theorem, and the Du Bois-Reymond lemma gives:

d

dt

∫
V
C dV = −

∫
V
∇J dV +

∫
V
AdV

⇒ ∂C
∂t +∇J = A

⇒ ∂C
∂t +∇(−D∇C) = A

⇒ D∇2C +A =
∂C

∂t
. (2.5)

Equation (2.5) is the general form of the di�usion equation. It is worth mention-
ing that, mathematically, di�usion of heat and di�usion of particles is treated
identically. For a thorough derivation of the above equations, the reader is
referred to [8].

2.2.2 Interface mass transfer

When a species (CO2 in this work) is transported from a gaseous phase to a
liquid phase, there are three mass transfer resistances that have to be overcome:
the resistance in the gas phase, the resistance at the interface �lm, and the
resistance in the liquid. Transport through the gas and liquid layers are driven
by a concentration gradient. At the interface �lm, the transport processes are
driven by a jump in concentration (concentrations are usually discontinuous at
the interface between two materials [9]). The �ux through the gas, JG, and
through the liquid, JL, can be written as follows:

JG = kG(PG − Pinterface),

JL = kL(Cinterface − CL),

5



2 THEORY

where kG and kL are the interface transfer coe�cients. The two expressions
above should be equal, assuming no accumulation at the interface. See Figure
1 for a typical concentration distribution close to an interface. In the literature,
the resistance at the interface �lm is often neglected, and only the resistances
across the gas and liquid layers are used in the calculation of the interface
transport coe�cient. In some cases the resistance at the interface �lm should
not be excluded [10]. When the resistance at the interface �lm is ignored, the
concentration in the top layer of the liquid will be in instantaneous equilibrium
with the overlying gas. When the �lm resistance is included, the concentration
in the top layer of the liquid will gradually build up towards the equilibrium
value. The �ux into the liquid can be described as [11, 12]:

J =
dn

dt

1

A
= k(Ceq − CL),

where n is number of moles, k is the interface �lm transfer coe�cient, and Ceq

is the liquid concentration in equilibrium with the overlying gas.

x

CO (g)

CO (aq)

2

2

C

Figure 1: Concentration of CO2 near the gas-liquid interface. The concentration in the
liquid phase is determined from Henry's law, and will be lower than in the gas phase.

2.2.3 Advection

Advection4 is an important mass transfer mechanism in which mass is trans-
ported by �uid motion. Advection currents often arise where there are density
gradients that are negative in the direction of gravity, that is to say that the
density increases upwards in the �uid. This is an arrangement that is potentially
unstable. Because the force of gravity is stronger on the denser �uid, it may be
'pulled' down, while the less dense �uid �ows upward. A common example of

4Historically, the terms advection and convection have been used interchangeably. However,
according to Incropera et al. [9], it has become customary to use the term advection when
referring to macroscopic �uid motion , and to the term convection when referring to the
cumulative transport of molecular di�usion and macroscopic �uid motion. This de�nition has
been used throughout this work.

6



2 THEORY

this is when a �uid is heated from below. Heat causes the �uid to expand and
become less dense, and advection may develop. Another case where advection
currents can play a part is when a �uid absorbs another substance through an
interface, such as when CO2 is absorbed through the surface of water. The
water containing CO2 will be denser than pure water, and the resulting mix-
ture becomes top-heavy, i.e. the �uid density increases upwards and the system
becomes unstable. The force driven by the density gradient must overcome the
viscous forces in the �uid in order for the instability to manifest itself. In other
words, there is a critical density gradient necessary before �ow starts to occur.

Figure 2: Illustration of advection occurring when �uid is heated from below. Im-
age taken from lattice Boltzmann simulation of the Rayleigh-Bénard convection in
Matlab. The Matlab code that runs the simulation depicted above can be found at
http://www.lbmethod.org.

The challenge of determining the onset of the instability that occurs when a �uid
is heated from below is called the Bénard problem [13]. The �ow that occurs
when the instability sets in is called Rayleigh-Bénard convection, and is one
of the most commonly studied convection phenomena [14]. An analogy can be
drawn between the Rayleigh-Bénard convection, and the convection that occurs
when CO2 dissolves into water from above. Considering that the di�usion of
heat and the di�usion of molecules is treated the same way mathematically,
and that the absorption of CO2 from above causes an adverse density gradient
much like when a �uid is heated from below, it is reasonable to conclude that
the convection that occurs in the closed CO2-water system studied in this work
can be treated like the well studied Rayleigh-Bénard convection. More about
Rayleigh-Bénard convection and how to determine the onset instability can be
found in Appendix A.

2.3 The Laplace transform method

Several methods are used to solve partial di�erential equations, one of which is
the Laplace transform method. The idea behind the method is to remove the
time dependency, e�ectively converting the partial di�erential equation (PDE)
into an ordinary di�erential equation (ODE). The inverse Laplace transform

7



2 THEORY

is then applied to the solution of the ODE to obtain the �nal solution. The
de�nition of the Laplace transform is:

F (s) = L{F (t)} =
∫ ∞

0
e−stF (t)dt.

where F (t) is the original function and F (s) is called the image function [15].
From this de�nition we have that

L
{
dF

dt

}
= sF − F (0).

Applying the Laplace transform to a PDE and its initial and boundary condi-
tions, will in many cases lead to an easily solvable ODE. In order to �nd the
inverse transform we have the following expression:

F (t) =
1

2πi

∫ c+i∞

c+i∞
etsF (s)ds,

where c is a complex number chosen by certain criteria. Obtaining the inverse
transform can be a di�cult and at times impossible process. Substantial ef-
forts have been made to tabulate Laplace transforms as well as inverse Laplace
transforms for a wide array of functions. If the inverse transform can not be
found in tables or by conventional means, it is possible to calculate it numeri-
cally. Among such methods are the Gaver-Stehfest method [16], and a quotient
di�erence method developed by de Hoog et al. [17]. These methods will �nd
the value of the function in question for arbitrarily chosen values of t, while the
analytical form of the function will remain unknown.

8



3 ANALYTICAL MODEL

3 Analytical model

3.1 The physical system

The physical system to be modelled is a cell of constant volume containing a
�xed amount of water with a gas cap of CO2. The temperature is kept constant
and there is no mass �ux between the cell and its surroundings. As CO2 dissolves
into the water, CO2(g) → CO2(aq), the pressure in the cell decreases. The aim
of the model is to accurately predict the pressure decay in the cell over time.
Figure 3 provides an illustration of the physical system.

The exact mechanisms that determine the rate of pressure decline are unclear.
For instance, experiments carried out by Time et al. [4] con�rm the presence of
advection currents in the cell during a pressure decay experiment. The impact
of advection at di�erent times of the experiment is unknown. It is also unclear
whether there exists a signi�cant interface �lm resistance to mass transfer. A
number of scenarios will be investigated in this chapter in order to shed light
on the processes at work.

CO (g)

CO (aq)

2

2

x

h

hL

G

Figure 3: The CO2-water system to be modelled.

3.2 Mathematical formulation

It is for the moment assumed that the transport mechanism is dominantly di�u-
sion. The process can thus be described by the di�usion equation, see equation
(2.4). The interface between water and CO2 is assumed to be at instantaneous
equilibrium according to Henry's law. In other words there is assumed to negli-
gible interface �lm resistance between the two phases. The interface equilibrium
concentration will decrease as the pressure decreases in the cell. Another sim-
plifying assumption that is made is that the liquid volume remains constant,
i.e. no swelling of the water due to the dissolution of CO2. In order to keep cal-
culations simple, the di�usion coe�cient D, gas compressibility factor Z, and
the Henry's law constant H, are assumed to be independent of pressure and
concentration.

9



3 ANALYTICAL MODEL

The physical system can be modelled in one dimension. The di�usion of CO2

in the water can be described by equation (3.1).

D
∂C

∂x2
=
∂C

∂t
, 0 ≤ x ≤ hL, t ≥ 0. (3.1)

It is assumed that the interface initially is at equilibrium with the overlying gas,
while the concentration of CO2 is zero everywhere else.

C =
{
Pi
H
0

, z=0, t=0
, z>0, t=0

. (3.2)

According to the law of mass conservation, the �ux of CO2 into the liquid phase
is equal to the �ux of CO2 out of the gas phase. The number of moles of CO2

dissolved into the liquid phase (nd) is therefore equal to the number of moles
lost by the gas phase. Using the modi�ed ideal gas law (PV = ZnRT ) we get:

nd =
V

ZRT
[Pi − P (t)]⇒

dnd

dt
=
−V
ZRT

dP

dt
.

From Fick's �rst law we already have that: dnd
dt = −DA∂C

∂x |x=0, which leads to:

∂C

∂x

∣∣∣
x=0

=
V

ZRTDA

dP

dt
=

hG

ZRTD

dP

dt
. (3.3)

Henry's law allows us to express the pressure change as a concentration change
at the interface:

P = HC ⇒ dP

dt
= H

∂C

∂t
|x=0,

and we get the �rst boundary condition:

∂C

∂x

∣∣∣
x=0

= α
∂C

∂t

∣∣∣
x=0

, t > 0. (3.4)

where α = hGH
ZRTD . The second boundary condition comes from the fact that

there is no �ux through the bottom of the container.

∂C

∂x
= 0, x = hL. (3.5)

The di�usion boundary value problem presented above is solved by the method
of Laplace transform. Both sides of equation (3.1) are transformed:

L
{
D
∂2C

∂x2

}
= L

{
∂C

∂t

}
⇒ D

d2C

dx2
= Cs− C(x, 0).

For x > 0 we get the homogeneous ordinary di�erential equation :

d2C

dx2
− s

D
C = 0,

10



3 ANALYTICAL MODEL

which has the general solution:

C(x, s) = c1e
√

s
D
x + c2e

−
√

s
D
x.

Laplace transform of the �rst boundary condition gives:

∂C

∂x

∣∣∣
x=0

= α
(
Cs− C(0, x)

)
|x=0.

C(0, 0) is known from initial conditions.

∂C

∂x

∣∣∣
x=0

= α

(
Cs− Pi

H

) ∣∣∣
x=0

= α

(
(c1 + c2)s−

Pi
H

)
. (3.6)

The Laplace transform of the second boundary condition is:

∂C

∂x

∣∣∣
x=hL

= c1

√
s

D
e
√

s
D
hL − c2

√
s

D
e−
√

s
D
hL = 0,

which yields:

c1 = c2e
−2
√

s
D
hL . (3.7)

Di�erentiating the general form of the Laplace transformed solution:

∂C

∂x
= c1

√
s

D
e
√

s
D
x − c2

√
s

D
e−
√

s
D
x (3.8)

⇒ ∂C

∂x

∣∣∣
x=0

= c1

√
s

D
− c2

√
s

D
. (3.9)

Inserting (3.6) in (3.9) while applying (3.7) gives:

c1 =
Pie
−2
√

s
D
hL

H(s+ 1
α

√
s
D + e−2

√
s
D
hL(s− 1

α

√
s
D )
,

c2 =
Pi

H(s+ 1
α

√
s
D + e−2

√
s
D
hL(s− 1

α

√
s
D )
,

⇒ C(x, s) =
Pi(e
√

s
D
x−2
√

s
D
hL + e−

√
s
D
x)

H(s+ 1
α

√
s
D + e−2

√
s
D
hL(s− 1

α

√
s
D )
. (3.10)

This is the solution to the problem in Laplace space. In order to �nd the inverse
Laplace transform, we simplify (3.10) by letting hL →∞.

C(x, s) =
Pi

H

e−
√

s
D
x

√
s(
√
s+ 1

α
√
D
)
. (3.11)

The inverse Laplace form of (3.11) can be found in [18]. The solution, which is
valid in the in�nite-acting period, is thus:

11



3 ANALYTICAL MODEL

C(x, t) =
Pi

H
exp

(
x

αD
+

t

α2D

)
erfc

(
x

2
√
Dt

+

√
t

α
√
D

)
. (3.12)

Using Henry's law and solving for x = 0 leads to an expression of pressure as a
function of time:

P (t) = Pi exp

(
t

α2D

)
erfc

( √
t

α
√
D

)
. (3.13)

This equation is identical to the expression put forward by Sheikha et al. [19]
on the di�usivity of gases in bitumen. It is validated further by being consistent
with the model developed by Etminan et al. [11], if interface �lm resistance is
neglected and liquid height is in�nite. The model presented here di�ers from the
one used by Civan et al. [20], in that the equilibrium concentration is treated
as constant by Civan et al.

For convenience in the analysis, the function for pressure decay can be expressed
using dimensionless variables:

PD =
P

Pi
,

tD =
t

α2D
,

which leads to the following simple form of the expression for pressure decay:

PD(tD) = exp(tD) erfc
(√
tD
)
.

Figure 4 shows how the dimensionless pressure decays as the dimensionless time
increases.
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Figure 4: Predicted pressure decay in a closed CO2-water system with in�nite water
column. Units on the axes are dimensionless.
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3.3 Calculations with �nite liquid height

At early times the the assumption of in�nite liquid height will be valid. However,
at a certain point the dissolved CO2 will reach the bottom of the container,
eventually leading to a signi�cant decrease in the concentration gradient, slowing
down the �ux of CO2 until it stops at the equilibrium concentration given by
Henry's law. In order to investigate the e�ects of a �nite water column, a semi-
analytical approach is needed. The Laplace transform of Henry's law can be
written

P (s) = HC(x, s)|x=0.

Inserting the above equation into equation (3.10) evaluated at x = 0 provides
an expression for the Laplace transformed pressure:

P (s) =
Pi(e

−2
√

s
D
hL + 1)

(s+ 1
α

√
s
D + e−2

√
s
D
hL(s− 1

α

√
s
D )
. (3.14)

The inverse Laplace transform of the expression above can be obtained by nu-
merical methods. An algorithm based on a method by de Hoog et al., which
is commonly used in solving advection-di�usion problems [21], has been imple-
mented in order to model the pressure decay over time. The algorithm can be
found in [17]. Figure 5 shows the evolution of the gas pressure for di�erent
values of the liquid height.
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Figure 5: Pressure decay for cases with �nite water column compared to the in�nite-
acting model. Dimensionless axes have been used. Besides the liquid height, the
parameters used are the listed in Table 3. The plot is independent of the chosen
di�usivity.
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3.4 Initial concentration

3.4.1 Homogeneous distribution

In the previous sections there has been assumed to be no dissolved CO2 initially.
There are cases, however, when there will exist an initial concentration of CO2

in the water. This scenario will for example be of interest when modelling a pure
di�usion process at late times of a pressure decay experiment, after advection
has ceased (as has been done in Section 5.2.3). A di�usion driven process, with
an initial concentration distribution determined by the convection up to that
point, would then continue the pressure decay. If this initial concentration is
assumed to be homogeneous, we have the initial condition:

C =
{
Ci, t=0, z>0
Pi
H
, t=0, z=0

.

We de�ne
C∗ = C − Ci. (3.15)

The initial conditions will thus be

C∗ =
{

Pi
H
−Ci, t=0, z=0

0, t=0, z>0
.

The di�erential equation (3.1) is still valid,

D
∂2C∗

∂x2
=
∂C∗

∂t
, 0 ≤ x ≤ hL, t ≥ 0.

The boundary conditions will be the same as in the case of zero initial concen-
tration. Solving the partial di�erential in the in�nite-acting case gives:

C∗(z, t) =

(
Pi

H
− Ci

)
exp

(
x

αD
+

t

α2D

)
erfc

(
x

2
√
Dt

+

√
t

α
√
D

)
⇒ C(z, t) = C +

(
Pi

H
− Ci

)
exp

(
x

αD
+

t

α2D

)
erfc

(
x

2
√
Dt

+

√
t

α
√
D

)
,

which leads to

P (t) = HCi + (Pi −HCi) exp

(
t

α2D

)
erfc

( √
t

α
√
D

)
. (3.16)

When the height of the water column is �nite, the solution can be found in
Laplace space. The Laplace transform of (3.15) gives

C
∗
= C − Ci

s
⇒ P

∗
= P − HCi

s

and we have

P (s) =
HCi

s
+

(Pi −HCi)(e
−2
√

s
D
hL + 1)

(s+ 1
α

√
s
D + e−2

√
s
D
hL(s− 1

α

√
s
D )
. (3.17)

Figure 6 illustrates how the pressure decays for di�erent homogeneous initial
concentrations.
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Figure 6: Pressure decay for �nite liquid height and di�erent initial concentrations.
The initial concentrations in the solution is listed in the legend of the �gure. The
initial equilibrium concentration is set to 200 mol

m3 . Standard di�usion coe�cient of
CO2 in water has been used and the liquid height is 0.1 m.

3.4.2 Heterogeneous distribution

Scenarios where the initial concentration distribution can not be assumed to be
homogeneous may also be of interest. For instance, if early-time advection does
not result in adequate mixing of the solution before di�usion starts to domi-
nate, the concentration distribution may be heterogeneous. For mathematical
simplicity it is here assumed that the initial distribution is linear,

C =
{
Pi
H
, t=0, x=0

κ1x+κ2, t=0, x>0
.

The highest concentration possible will be the initial equilibrium concentration,
and there should therefore be an upper limit to the maximum value of κ1x+κ2

in order to keep the mathematical representation physically correct. If the
concentration increases with depth, the expression below must be satis�ed.

κ1hL + κ2 ≤ Ceq.

The Laplace transformed di�usion equation is written

D
d2C

dx2
= Cs− C(x, 0) = Cs− (κ1x+ κ2). (3.18)

Equation (3.18) is a non-homogeneous ordinary di�erential equation. As in
Section 3.2, the homogeneous solution is

15



3 ANALYTICAL MODEL

Ch = c1e
√

s
D
x + c2e

−
√

s
D
x.

It can easily be shown that the particular solution is

Cp =
κ1x+ κ2

s
.

The general solution will then be

C(x, s) = c1e
√

s
D
x + c2e

−
√

s
D
x +

κ1x+ κ2

s
. (3.19)

Di�erentiating the above expression and applying the boundary conditions gives
the following:

∂C

∂x

∣∣∣
x=0

= c1

√
s

D
− c2

√
s

D
+
κ1

s
= α

(
s(c1 + c2 +

κ2

s
)− Pi

H

)
,

∂C

∂x

∣∣∣
x=hL

= c1

√
s

D
e
√

s
D
hL − c2

√
s

D
e−
√

s
D
hL +

κ1

s
= 0.

The unknown constants, c1 and c2, can now be determined from the equations
above.

c1 = e−2
√

s
D
hL ·

Pi
H −

κ1
αs

[
e−
√

s
D
hL(1− α

√
sD)− 1

]
− κ2

s+ 1
α

√
s
D + e−2

√
s
D
hL
(
s− 1

α

√
s
D

) − κ1e
−
√

s
D
hL

s
√

s
D

,

c2 =

Pi
H −

κ1
αs

[
e−
√

s
D
hL(1− α

√
sD)− 1

]
− κ2

s+ 1
α

√
s
D + e−2

√
s
D
hL
(
s− 1

α

√
s
D

) .

Inserting c1 and c2 in equation (3.19) gives the expression for concentration in
Laplace space:

C(x, s) = (e
√

s
D
x−2
√

s
D
hL + e−

√
s
D
x) ·

Pi
H −

κ1
αs

[
e−
√

s
D
hL(1− α

√
sD)− 1

]
− κ2

s+ 1
α

√
s
D + e−2

√
s
D
hL
(
s− 1

α

√
s
D

)
+ κ1(

x

s
− e
√

s
D
x−
√

s
D
hL

s
√

s
D

) +
κ2

s
.

(3.20)

Evaluating the above expression at x = 0, while applying Henry's law, yields
the function for pressure decay:

(3.21)
P (s) = (e−2

√
s
D
hL + 1) ·

Pi − κ1H
αs

[
e−
√

s
D
hL(1− α

√
sD)− 1

]
− κ2H

s+ 1
α

√
s
D + e−2

√
s
D
hL
(
s− 1

α

√
s
D

)
−Hκ1

e−
√

s
D
hL

s
√

s
D

+
Hκ2

s
.
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The inverse Laplace transform of equation (3.21) has been done numerically,
and the predicted pressure decay for di�erent initial distributions can be seen
in Figure 7.

In order to �nd a fully analytical solution for the in�nite-acting case, an in�nite
liquid height is assumed (hL → ∞). The expression for the pressure decay is
reduced to

P (s) =
Pi +

κ1H
αs − κ2H

s+ 1
α

√
s
D

+
Hκ2

s
.

In order to �nd the inverse Laplace transform of the above expression, it �rst
has to be rewritten by the method of partial fractions. The inverse Laplace
transform can then be found in [22]. Equation (3.22) is the resulting expression
for pressure decay. Figure 8 shows a comparison between the in�nite-acting
model and the semi-analytical �nite-acting model. Because of the assumption
of in�nite liquid height, the solution eventually becomes unphysical, and as time
increases, the pressure goes towards in�nity when κ1 > 0.

P (t) = (Pi + κ1αHD − κ2H) exp

(
t

α2D

)
erfc

( √
t

α
√
D

)
+κ1H

√
D

(
2

√
t

π
− α
√
D

)
+ κ2H. (3.22)
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Figure 7: Predicted pressure decay with di�erent initial distributions. Average initial
concentration is in all cases equal to 100 mol

m3 . The initial equilibrium concentration is

200 mol
m3 . Surface concentration is speci�ed (κ2), and concentration increases linearly

with depth. Standard di�usion coe�cient of CO2 in water has been used and the liquid
height is 0.1 m.

17



3 ANALYTICAL MODEL

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.75

0.8

0.85

0.9

0.95

1

t
D

P
D

 

 

κ
1
=0, κ

2
=100

Finite−acting
κ

1
=1000, κ

2
=50

Finite−acting
κ

1
=2000, κ

2
=0

Finite−acting

Figure 8: Predicted pressure decay for the in�nite-acting model with linear initial
distribution compared to the semi-analytical �nite-acting model. Average initial con-
centration is in all cases equal to 100 mol

m3 . The initial equilibrium concentration is

200 mol
m3 .

3.5 Time-dependent di�usion coe�cient

In many cases the di�usion coe�cient can be considered to be constant. In
reality it can potentially vary signi�cantly in the time-frame of interest. Sce-
narios in which temperature or viscosity changes with time are examples of
cases where di�usivity may be time-dependent. When transport phenomena in
addition to di�usion are present, the system may be described by an e�ective
di�usion coe�cient that accounts for all signi�cant transport processes. In the
case of CO2 dissolving in water, the e�ective di�usion coe�cient may depend
upon the amount of advection, and thus change over time. The following calcu-
lations are based on a time-dependent e�ective di�usion coe�cient, D = D(t).
The di�usion equation becomes:

D(t)
∂2C

∂x2
=
∂C

∂t
. (3.23)

The di�usion equation with time-dependent di�usion coe�cient is potentially
very di�cult to solve. According to Crank [7], the following substitution may
in some cases be helpful:

dt =
dτ

D(t)
.

Integration of the above equation leads to:

τ(t) =

tˆ

0

D(t′)dt′. (3.24)
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Equation (3.23) becomes:

∂2C

∂x2
=
∂C

∂τ
.

The initial condition (3.2) is still valid, provided that t = 0 implies that τ = 0.
The �rst boundary condition (3.4) is a function of t, and becomes

∂C

∂x
|x=0= D(t)α

∂C

∂τ
|x=0= ατ

∂C

∂τ
|x=0

where α = hGH
D(t)·ZRT and ατ = hGH

ZRT . The second boundary condition remains
the same. The Laplace transformed solution is

C(x, sτ ) =
Pi(e

√
sτx−2

√
sτhL + e−

√
sτx)

H(sτ +
√
sτ
ατ

+ e−2
√
sτhL(sτ −

√
sτ
ατ

)
, (3.25)

which leads to the following expression for the pressure decay in Laplace space:

P (sτ ) =
Pi(e

−2
√
sτhL + 1)

H(sτ +
√
sτ
ατ

+ e−2
√
sτhL(sτ −

√
sτ
ατ

)
(3.26)

The variable s has been given the subscript τ to emphasize that an inverse
Laplace transform will yield a function of τ instead of t. If the solution is
simpli�ed to be in�nite acting, it becomes:

C(x, sτ ) =
Pi
H

e−
√
sτx

√
sτ (
√
sτ +

1
ατ

)
.

Performing the inverse Laplace transform on the above expression gives:

C(x, τ) =
Pi
H

exp(
x

ατ
+

θ

α2
τ

)erfc(
x

2
√
τ
+

√
τ

ατ
), (3.27)

and the expression for the expression decay as a function of the transformed
time τ becomes:

P (τ) =
Pi
H

exp(
τ

α2
τ

)erfc(

√
τ

ατ
). (3.28)

In order to �nd P (t), the integral in equation (3.24) must be solved and inserted
into the above expression. When an explicit expression for P is not available
(when dealing with calculations concerning a �nite water column), the procedure
is similar: for every value of t, the corresponding value of τ is instead inserted
into the algorithm that calculates P at that time.

3.6 Including interface �lm resistance

Up to this point instantaneous equilibrium has been assumed at the interface.
Generally, there may exist an interface �lm resistance to mass transfer. For
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instance, increased interface �lm resistance may arise from adsorption of sur-
factant molecules to the interface [3]. Such a scenario might arise in a CO2-
surfactant �ooding that is performed to increase oil recovery. Also, the possi-
bility that interface �lm resistance could be signi�cant even in distilled water
should not be ignored. The concentration at the aqueous side of the interface
will gradually build up towards equilibrium concentration over time. In the no-
tation used in this work, k is the interface �lm mass transfer coe�cient, and 1

k is
the resistivity factor. The situation where the interface is at instant equilibrium
can be considered a special case, where k → ∞. The �ux from the gas to the
interface is given by the expression below [11, 12].

J = k (Ceq(t)− C(x, t)|x=0) ,

where Ceq is the equilibrium concentration of CO2 given by Henry's law. Com-
bining the above with Fick's �rst law (see Section 2.2.1) gives:

−D∂C
∂x

∣∣∣
x=0

= k (Ceq(t)− C(x, t)|x=0) . (3.29)

Rearranging and di�erentiating with regards to t yields:

∂C

∂t

∣∣∣
x=0
− D

k

∂2C

∂x∂t

∣∣∣
x=0

=
∂Ceq

∂t
. (3.30)

Equation (3.4) can in this case be written

∂Ceq

∂t
=

1

α

∂C

∂x

∣∣∣
x=0

. (3.31)

From Equations (3.30) and (3.31) we thus have the boundary condition for
gas-water interface:

∂C

∂x

∣∣∣
x=0

= α

[
∂C

∂t
− D

k

∂2C

∂x∂t

]
x=0

.

The Laplace transformed boundary condition is

∂C

∂x

∣∣∣
x=0

= α

[
sC − C(x, 0)− D

k
(s
∂C

∂x
− ∂C

∂x
|t=0)

]
x=0

.

Because the concentration is homogeneous initially, it follows that ∂C
∂x |t=0= 0.

The boundary condition in Laplace space becomes

∂C

∂x

∣∣∣
x=0

=
α

(1 + αD
k s)

(sC − Pi

H
)
∣∣∣
x=0

.

The expression for the concentration is found in the same manner as in Section
(3.2).

C(x, s) =
Pi(e
√

s
D
x−2
√

s
D
hL + e−

√
s
D
x)

H
(
s+

(
1
α + Ds

k

)√
s
D + e−2

√
s
D
hL
[
s−

(
1
α + Ds

k

)√
s
D

]) . (3.32)
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In order to relate the aqueous concentration to the gas pressure, Henry's law,
as well as the relationship between C(x = 0, t) and Ceq(t), is used. Henry's law
is in this case written

P (s) = HCeq(s) (3.33)

The Laplace transform of equation (3.29) yields

Ceq(t) = C(x, t)|x=0−
D

k

∂C

∂x

∣∣∣
x=0

. (3.34)

Inserting (3.33) in (3.34) leads to

P (s) = HC(x, s)|x=0−
DH

k

∂C

∂x

∣∣∣
x=0

. (3.35)

Equation (3.32) and its derivative is combined with the above equation to get
equation (3.36), the expression for pressure in the Laplace domain. It is easy to
see that the expression is reduced to equation (3.14), the case with no interface
�lm resistance, when k →∞.

P (s) =
Pi

[
(e−2
√

s
D
hL + 1)− D

k

(√
s
De
−2
√

s
D
hL −

√
s
D

)]
s+

(
1
α + Ds

k

)√
s
D + e−2

√
s
D
hL
[
s−

(
1
α + Ds

k

)√
s
D

] . (3.36)

The expression above has also been put forward by [11]. Numerical methods
can be used to �nd the pressure as a function of time. Figure 9 illustrates how
the pressure behavior changes when the interface �lm resistance is varied. It
is the ratio D/k that governs the impact of the interface �lm resistance, i.e.
higher di�usivity will make the interface �lm resistance more signi�cant.
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Figure 9: Predicted pressure decay for di�erent interface �lm resistances. The di�usion

coe�cient is set to D = 2 · 10-9 m2

s .

21



3 ANALYTICAL MODEL

3.7 Boundary condition at gas-liquid interface

3.7.1 Boundary conditions from published literature

There is no consensus on which boundary condition should be used at the gas-
liquid interface. Researchers have been using boundary conditions ranging from
simpli�ed expressions that allow for analytical solutions to be obtained, to more
complex expressions that include several physical e�ects. Which boundary con-
dition is more appropriate depends on the �uids used and the conditions of the
experiment [23]. Riazi [1], who �rst introduced the pressure decay method in
1996, considered both the equilibrium concentration and the position of the in-
terface to vary with time. These variables were, however, treated as constants
within certain time intervals, and the model was divided into discrete time steps.
Later, Zhang et al. [24] modelled the problem using a constant Dirichlet5 condi-
tion at the gas-liquid interface, while ignoring change of interface position due
to swelling:

C(x, t)|x=0= Ceq,final. (3.37)

This makes analytical solutions easier to obtain than when alternative conditions
are used. However, the assumption that the interface concentration is constant
is not physically correct and may lead to errors when applying the model.

Upreti et al. [25] utilized a non-constant Dirichlet condition as the interface
condition. Their study focused on a CO2-bitumen system, and included the
e�ect of swelling of the bitumen in their model. The boundary condition, which
is more physically correct than the one used by Zhang et al., is as follows:

C(x, t) = Ceq,final(t).

In 2006, Sheikha et al. [26] introduced a new boundary condition that used the
principle of mass conservation to equate the �ux of mass leaving the gas phase
to the �ux into the liquid phase. The same relationship was used by Zhang et
al. in order to relate mass �ux to pressure decay, but simpli�cations lead to
equation (3.37) being implemented in their model as their boundary condition.
Sheikha et al. used the model in a study of dissolution of gases in bitumen.
Farajzadeh et al. [3] also used this boundary condition when modelling the
mass transfer of CO2 into water. The boundary condition is written below, and
is of the Neuman6 type. The constant α is de�ned in Section 3.2.

∂C

∂x

∣∣∣
x=0

= α
∂C

∂t

∣∣∣
x=0

.

Civan et al. [12] applied a non-equilibrium boundary condition to the problem.
It was assumed that there was an interface �lm resistance between the gas
and liquid phase, and the interface concentration would consequently not be in
equilibrium with the overlying gas. The theoretical equilibrium concentration

5The so called Dirichlet, or �rst-type, boundary condition speci�es the values a solution
has on the boundary of the domain.

6The Neuman, or second-type, boundary condition speci�es the values the derivative of
the solution has on the boundary of the domain.
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was, as in the case of Zhang et al., considered constant and based on the �nal
pressure. The expression for this Robin7 boundary condition is:

−D∂C
∂x

∣∣∣
x=0

= k (Ceq,final − C(x, t)|x=0) .

In 2010, Etminan et al. [11] modi�ed the boundary condition above to also
include the time-dependency of the equilibrium concentration. The resulting
model is more physically correct than the one developed by Civan et al., and it
is more versatile then the one of Sheikha et al., as it allows for the existence of
interface �lm resistance. The expression for this boundary condition is:

−D∂C
∂x

∣∣∣
x=0

= k (Ceq,final(t)− C(x, t)|x=0) .

3.7.2 Solution - constant Dirichlet BC

The constant boundary condition at the interface have been used as a simpli-
�cation to the pressure decay problem because it makes analytical calculations
easier. Modi�ed pressure decay experiments have also been designed with this in
mind, in which the pressure in the cell is kept constant, while pressure declines
in an external tank supplying gas to the cell [2]. The mathematical problem is
the same as in Section 3.2, except for the boundary condition at the interface.
The Laplace transformed solution is thus:

C(x, s) = c1e
√

s
D
x + c2e

−
√

s
D
x.

The boundary condition at the gas-liquid interface is:

C(x, t)|x=0= Ceq.

The constants A and B are determined from the boundary conditions:

c1 =
Ceq

s(1 + e2
√

s
D
hL)

,

c2 =
Ceq

s(1 + e−2
√

s
D
hL)

.

The expression for the concentration in Laplace space thus becomes:

C(x, s) = Ceq

(
e
√

s
D
x

s(1 + e2
√

s
D
hL)

+
e−
√

s
D
x

s(1 + e−2
√

s
D
hL)

)
.

If we let the height of the water column go to in�nity, the expression becomes:

C(x, s) =
Ceq

s
e−
√

s
D
x.

7The Robin, or third-type, boundary condition speci�es a relationship between the values
of the solution and its derivative on the boundary of the domain.
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The inverse Laplace transform of the above expression (can be found in [18])
gives the in�nite acting solution:

C(x, t) = Ceqerfc

(
x

2
√
Dt

)
.

In order to calculate the pressure decay from the above equation, the gas law
combined with the principle of mass conservation is used. The total number of
moles dissolved into the water is:

nd(t) =

∞̂

0

C(x, t)Adx = CeqA

∞̂

0

erfc

(
x

2
√
Dt

)
dx

=

[
x erfc

(
x

2
√
Dt

)
− 2

√
Dt

π
e

−x2
4Dt

]∞
0

= 2CeqA

√
Dt

π
.

The expression for the pressure decay becomes

P (t) =
ZRT [ntot − nd(t)]

V
= Pi −

2CeqZRT

hG

√
Dt

π
.

A signi�cant discrepancy can be observed in the predicted pressure decay be-
tween the cases of constant and time-dependent surface concentration. The
di�erence is apparent in Figure 10 when either the initial or the �nal equilib-
rium concentration is chosen as the surface concentration. However, the choice
should depend upon whether early or late times of the experiment is to be
studied.

The �nal equilibrium concentration is calculated as follows (see section 3.8 for
calculation of �nal pressure):

Ceq =
PihG

HhG + ZRThL
. (3.38)

3.7.3 Solution - Robin BC with constant Ceq

A Robin boundary condition that accounts for interface �lm resistance is writ-
ten below. Civan et al. [12] used this boundary condition and considered the
equilibrium concentration to be constant.

J = −D∂C
∂x
|x=0= k (Ceq − C(x, t)|x=0) . (3.39)

The mathematical formulation is otherwise the same as in section 3.2. The
solution below is given by Crank [7], and is valid in the in�nite acting period,
i.e. hL →∞.

C(x, t) = Ceqerfc

(
x

2
√
Dt

)
− Ceq exp

(
kx

D
+
k2t

D

)
erfc

(
x

2
√
Dt

+ k

√
t

D

)
. (3.40)
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Figure 10: Predicted pressure decay for cases of constant surface concentration com-
pared to when the concentration is time-dependent. Results are shown for surface
concentrations at initial and �nal equilibrium. The liquid height is in�nite, and the
gas height is set to 0.1 m.

When the interface resistance goes to zero, k →∞, the solution becomes iden-
tical to the case with with the constant Dirichlet boundary from section 3.7.2.
By integration of Equation (3.39) after inserting Equation (3.40) valued at at
x = 0, it follows that the number of moles of the di�using substance that has
accumulated in the liquid is

nd = CeqA
D

k

[
exp

(
k2t

D

)
erfc

(
k

√
t

D

)
− 1 + 2k

√
t

Dπ

]
.

From the above equation and the gas law we get the expression for the pressure
decay:

P (t) = Pi − Ceq
ZRT

hG

D

k

[
exp

(
k2t

D

)
erfc

(
k

√
t

D

)
− 1 + 2k

√
t

Dπ

]
.

From Figure 11 it can be observed that the discrepancy between the cases of
constant and time-dependent equilibrium concentration is signi�cant, but the
di�erence is smaller for higher interfacial �lm resistances.

3.8 Validating the model

Calculating �nal pressure:

In order to validate the model, simple calculations can be performed to ensure
that the late time values are correct. An expression for the equilibrium pressure
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Figure 11: Predicted pressure decay when the Robin boundary condition with constant
equilibrium concentration is used. Results are shown for surface concentration at initial
equilibrium. Results for the model with time-dependent equilibrium concentration is

also shown for comparison. The di�usivity D = 2 · 10-9 m2

s has been used in the
calculations. The liquid height is in�nite, and the gas height is set to 0.1 m.

in a closed and �nite CO2-water system is derived using Henry's law, the gas
law, and the law of mass conservation:

P final
D =

P final

Pi
=

HhG

HhG + ZRThL
.

Numerical Laplace transform inversion:

The numerical inversion of Laplace transforms performed in this chapter have
been carried out by the use of an algorithm based on a quotient di�erence
method by de Hoog et al. A Matlab script for this method has been written
by Hollenbeck [17]. In order to validate the results, calculations have also been
carried out by the Gaver-Stehfest method for inverse Laplace transform. The
Gaver-Stehfest algorithm can be found in [16]. Comparison of results based
on the two methods can be seen in Figure 12. A near-perfect match can be
observed.
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Figure 12: Comparison of semi-analytical results obtained by two di�erent inverse
Laplace transform algorithms. The left plot is for the �nite-acting model from Section
3.3. The right plot is for the model with interface �lm resistance from Section 3.6.
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4 Experimental results (hydrocarbon systems)

4.1 Pressure decay in hydrocarbon systems

The pressure decay method has been used to experimentally study molecular
di�usion of gases in liquids since it was put forward by Mohammad Riaza in
1996. The experimental setup is simple: a rigid container of constant volume
is �lled with a certain amount of a speci�c liquid, and the remaining volume is
�lled with a speci�c gas up to a chosen pressure. Temperature is maintained
constant throughout the experiment.

Pure di�usion models have been shown to adequately predict results of pressure
decay experiments on several hydrocarbon systems [1, 25, 26, 24, 12]. The
low molecular weight of the gases compared to the liquids in these systems, in
addition the the high liquid viscosity means that advection will be insigni�cant.
Examples of such systems are gas-oil and gas-bitumen systems. Results gained
from such experiments can provide insight into important processes that occur in
storage and re�ning of oil, as well as enhanced oil recovery processes. Since the
validity of the assumption that di�usion is the governing transport mechanism
has been established in these systems, the models from the previous chapter
will �rst be compared to experimental data for hydrocarbon systems.

4.2 CO2-bitumen system

As conventional oil reserves decline, bitumen is becoming increasingly impor-
tant as a source of hydrocarbons. Dissolution of CO2 in the bitumen reduces the
viscosity and can potentially improve recovery. Reliable measurements of di�u-
sivity in bitumen is therefore important for studying processes related to this.
Upreti et al., Sheikha et al. and Ghaderi et al. [25, 26, 27] have all focused on
CO2-bitumen systems in their e�orts to model pressure decay. The increase in
liquid density when CO2 dissolves in bitumen appears to be negligible based on
experimental data by Svrsec et al. [28]. In addition, the viscosity of bitumen is
approximately 3 orders of magnitude higher than the viscosity of water. Based
on these facts it is reasonable to assume that the forces causing advection will
be less dominant in a pressure decay experiment involving CO2 and bitumen,
compared to in a CO2-water system. Upreti et al. [25] has performed pressure
decay experiments on a CO2-bitumen system under various temperatures. The
model put forward in equation (3.14), where interface �lm resistance has been
ignored, has been compared to these experiments. The results can be seen in
Figure 13. The Henry's law constant has been estimated based on late time
data, and falls within the range of the solubility data reported by Upreti et
al. [25]. Compressibility factors in the pressure interval of the experiments are
found in [6]. Di�usion coe�cients that give the best �t to the experimental data
have been chosen. The estimated di�usivities, which are listed in Table 1, are
close to those reported by Upreti et al. [29], who reported di�usion coe�cients
of 1.3 · 10−10 m2

s and 2.3 · 10−10 m2

s at 25◦C and 50◦C respectively. The match
between the model and experimental data is good, which strongly indicates that
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the dissolution of CO2 in bitumen is governed mainly by di�usion. The condi-
tions of the experiment, along with estimated parameters, can be seen in Table
1.

Table 1: Parameters used in the modelling of the pressure decay.

Experimental conditions 25 ◦C 50 ◦C
Initial pressure (Pi) 4.12 MPa 3.95 MPa
Gas height (hG) 0.02 m 0.02 m
Liquid height (hL) 0.01 m 0.01 m

Estimated parameters 25 ◦C 50 ◦C

Henry's law constant (H) 3600 m3Pa
mol 3700 m3Pa

mol
Gas compressibility (Z) 0.80 0.83

Di�usivity (D) 1.4 · 10−10 m2

s 2.6 · 10−10 m2

s
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Figure 13: Comparison of model and experimental results in a CO2-bitumen system.
Equation (3.14) is used to model the pressure decay.

4.3 Methane-pentane system

The methane-pentane system was the �rst to be studied by the method of pres-
sure decay [1]. Advection can be neglected in this system because the liquid
density decreases when methane dissolves in pentane. The experimental data
from Riazi has been compared to the �nite-acting model from Section 3.3. Re-
sults can be seen in Figure 14. Late time data has been used to estimate the
Henry's law constant to 2870 m3Pa

mol . The compressibility factor of the gas in the
pressure interval of the experiment is found in [6]. The di�usion coe�cient has
been adjusted to a value of 1.05 ·10−8 m2

s to �t the experiments. The di�usivity
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obtained by Riazi for the same experiment was 1.51 ·10−8 m2

s [1]. The conditions
of the experiment, along with estimated parameters, can be seen in Table 2.

Table 2: Parameters used in the modelling of the pressure decay.

Experimental conditions Estimated parameters

Temperature (T ) 37.8 ◦C Di�usivity (D) 1.05 · 10−8 m2

s

Initial pressure (Pi) 10.2 MPa Henry's law constant (H) 2870 m3Pa
mol

Gas height (hG) 0.1426 m Gas Compressibility (Z) 0.9
Liquid height (hL) 0.0768 m
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Figure 14: Comparison of experimental and modelling results in a methane-pentane
system. Equation (3.14) is used to model the pressure decay.
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5 Experimental results (CO2-water system)

5.1 Pressure decay experiment

Time et al. [4] has performed pressure decay experiments on CO2-water systems
at the University of Stavanger. In the experiments they used a transparent
cylinder that was approximately half-�lled with distilled water, and CO2 gas was
subsequently injected up to a pressure of approximately 5 bar. A pH indicator
was added to the water so that the dissolution could be observed visually (the
acidity of the solution will increase with increasing concentration of CO2). A
pressure gauge connected to the cylinder records the pressure drop over time.
A photograph of such an experiment can be seen in Figure 15.

As can be seen from Figure 16, the earliest part of the experimental data de-
viates from the expected straight line behavior. It is unknown whether this
can be attributed to an actual physical phenomena, or if it is an e�ect of the
experimental setup. This part of the data has been ignored, except when the
experiment is compared to the model with interface �lm resistance. After a
duration of approximately 2 days, the slope of the pressure curve suddenly in-
creases, something which suggests an equipment error, or a sudden change of
experimental conditions. This part of the data will be ignored throughout the
chapter.

Figure 15: A photograph of the the pressure decay experiment carried out by Time et
al.

5.2 Comparing model and experiments

5.2.1 Constant di�usion coe�cient

When comparing the results from the mathematical model to the experimental
results obtained by Time et al. it is evident that the pressure decay happens
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much faster than predicted (see Figure 16). There are two possible explanations
for this which are easily recognizable. Since all other parameters are known with
a high degree of certainty, the assumed value for the di�usion coe�cient may
be incorrect. However, values for the di�usion coe�cient of carbon dioxide in
water that have been reported in the literature [30, 31] are of the same order of
magnitude as the one used in the model. In order to get a result that is close
to the experiments, a di�usion coe�cient that is two orders of magnitude larger
must be used. Another explanation is that there are transport phenomena other
than pure di�usion that are enhancing the mass transfer of CO2 into the water.
Previous studies have shown that advection currents due to the increased density
of water containing CO2 may play an important role [32]. Figure 16 shows how
the model compares with experiments done by Time et al. When standard
di�usivity is used, the pressure is at all times predicted to be higher than what
the experiments show. When a much higher di�usivity of 2.3 · 10−7 m2

s is used,
the model �ts well with the experiments at early times. After about 400min the
slope of the experimental pressure decay decreases, and the model over-predicts
the pressure drop. This indicates that advection becomes less dominant as the
experiment progresses. It appears from the �gure that di�usion alone or a mix
of di�usion and advection drives the mass transfer after a certain point. An
overview of the physical parameters associated with the experiment can be seen
in Table 3.
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Figure 16: Model compared to experimental data by Time et al. Equation (3.14) is
used to model the pressure decay.

5.2.2 Time-dependent di�usion coe�cient

A model with time-dependent di�usion coe�cient can be utilized in order to
gain insight into which transport processes are at work during di�erent time
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Table 3: Conditions of pressure decay experiment performed by Time et al.

Experimental conditions Estimated parameters

Temperature (T ) 21 ◦C Henry's constant (H) 2630 m3Pa
mol

Initial pressure (Pi) 4.96 bar Gas Compressibility∗ (Z) 0.97

Gas height (hG) 0.097 m E�ective di�usivity∗∗ (D) 2.4 · 10−7 m2

s
Liquid height (hL) 0.123 m
Diameter of container 0.05 m

∗Z-factor in pressure interval of experiment is found by interpolation of tables in [6].
∗∗The e�ective di�usivity that best matches the experimental data at early times.

periods of the experiment. The time-dependent e�ective di�usivity is assumed
to be of the form in equation (5.1). The di�usion coe�cient is initially at Di

and goes towards Df as time increases. Section 3.5 describes how a solution
with time-dependent di�usivity is obtained.

D(t) =
(Di −Df) a

2

t2 + a2
+Df . (5.1)

The variable τ , necessary to obtain the solution, is calculated as shown below:

τ(t) =

tˆ

0

D(t′)dt′ = (Di −Df ) a arctan

(
t

a

)
+Df t.

The initial di�usion coe�cient is set to 2.3 · 10−7 m2

s and the �nal di�usion
coe�cient is set to the standard di�usion coe�cient for CO2 in water. The pa-
rameter a has units [s], and is adjusted to get the best �t with the experiments.
Its value characterizes how long advection will be the dominant transport mech-
anism. When t = a the di�erence between the maximum e�ective di�usivity
and the standard molecular di�usivity is halved. For t� a the e�ects of advec-
tion will be negligible. For the experiment, the value a = 2.8 · 104 s was found
by visual inspection to give the best �t.

The e�ective di�usivity from equation (5.1) is shown in Figure 18 as a function of
time. This should be an approximation of what the e�ective di�usivity is during
the course of the experiment. The value of the di�usion coe�cient gets close to
the theoretical value for CO2 in water towards the end of the experiment, with
a �nal value of 3.3 · 10−9 m2

s .

35



5 EXPERIMENTAL RESULTS (CO2-WATER SYSTEM)

0 10 20 30 40 50 60 70 80
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

t1/2 [min1/2]

ln
(P

)

 

 

Experiment
Model, D=D(t)

Figure 17: Model with time-dependent di�usion coe�cient compared to experimental
results. Equation (3.26) is used to model the pressure decay. The e�ective di�usivity is
of the form in equation (5.1), and parameters for the time-dependency of the di�usivity

are: Di = 2.3 · 10−7 m2

s , Df = 2 · 10−9 m2

s , a = 2.8 · 104 s.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5
x 10

−7

t1/2 [min1/2]

E
ffe

ct
iv

e 
di

ffu
si

vi
ty

Figure 18: Estimated e�ective di�usivity over the course of the experiment. The

di�usivity becomes 3.3 · 10−9 m2

s towards the end of the experiment.
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5.2.3 Late-time transport mechanism

Late-time homogeneous concentration distribution:

In order to investigate which transport mechanisms are at work in the late
times of the experiment, the model with initial homogeneous concentration from
Section 3.4.1 is applied. If we assume that advection becomes negligible at a
certain point, and that the concentration of CO2 is homogeneously distributed
at that point, we can predict how the pressure will evolve from that point
forward. The red curve in Figure 19 shows how the pressure would decay if
di�usion was the only contributing factor to mass transport. From the �gure
it seems that the pressure decay resulting from pure di�usion is too low, and
that advection still plays a part even in the late times of the experiment. It's
unclear whether there is a point in time in which advection becomes negligible
compared to di�usion. Another explanation of the fact that pressure declines
too rapidly is that the assumption of homogeneous concentration is invalid. If
the concentration of CO2 increases downwards in the container, the the pressure
decay, as shown in Figure 19, will be under-predicted and di�usion may still be
the dominant transport mechanism.

Late-time heterogeneous concentration distribution:

The model from section 3.4.2 is used to further investigate which transport
mechanisms are governing the pressure decay at late times of the experiment.
It is plausible that the heavier CO2-rich water will sink and thus create a scenario
where there is a positive concentration gradient towards the bottom of the
container at the the point in time in which di�usion becomes the dominant
transport mechanism. By looking at di�erent linear concentration pro�les and
comparing the resulting pressure decay to the experimental data, a possible
scenario for late-time di�usion-governed pressure decay has been found. The
earliest time at which such a model �t the data was after a run of about 1.5 days,
at which point the pressure had decreased from 4.96 bar to 2.44 bar. The result
is shown in �gure 20. The assumed concentration distribution at the start of
the simulation was a concentration of 60.3 mol

m3 and a gradient of 381 mol
m4 towards

the bottom of the container. These values were found by visual inspection to
give the best �t with the experimental data. The values corresponds to the
total number of moles of CO2 dissolved in the water as the pressure decreases
from 4.96 bar to 2.44 bar. It should be mentioned that the concentration at
the bottom of the container in this scenario will be higher than the equilibrium
concentration at 2.44 bar. However, a scenario where the CO2 that was dissolved
at an earlier and higher pressure subsequently sunk towards the bottom can
justify this concentration.

To determine the initial concentration that is to be used as input to the model,
the following expression (which is derived from material balance and the modi-
�ed ideal gas law) is used:

Cavg =
hG

hL

(Pi − P (t))
ZRT

.
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Figure 19: Model with initial homogeneous concentration distribution compared to
late-time experiments. Equation (3.17) has been used to model the pressure decay.
The predicted pressure decay is too slow, even towards the end of the experiment.
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Figure 20: Model with initial linear concentration distribution compared to late-time
experiments. Equation (3.21) has been used to model the pressure decay. The concen-
tration distribution parameters at start of simulation is κ1 = 381 mol

m4 and κ2 = 60.3 mol
m3 .

It can be observed that the model �ts well with the experimental data, making it
plausible that di�usion is the dominant transport mechanism towards the end of the
experiment. The experimental data have been analyzed after t = 1.3 · 105 s� a.
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5.2.4 Interface �lm resistance

The presence of interface �lm resistance is uncertain. The di�usion model with
interface �lm resistance is compared to the experimental results gathered by
Time et al. Results are shown in Figure 21. It is observed from the �gure that
the early part of the experimental data �ts well with the model when interface
�lm resistance is included. This indicates that interface �lm resistance may
be the cause of the gentler slope in the pressure plot at the beginning of the
experiment, and thus have a signi�cant impact on the rate of pressure decay in a
CO2-water system. However this result is not conclusive, since it is known that
the pressure decay can not be described by di�usion alone. It is also possible
that the gentler slope is a result of the experimental setup. Further work should
be done in order to investigate the impact of interface �lm resistance on the
CO2-water system
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Figure 21: Experimental results compared to the model that includes interface �lm
resistance. Equation (3.36) has been used in the modelling of the pressure decay.

5.3 Obtaining parameters from experimental data

5.3.1 Determination of di�usivity from in�nite-acting data

The in�nite-acting model from Section 3.2 is dependent on only one relationship:
ZRT

√
D

hGH

(
= 1

α
√
D

)
. All these parameters are known from the experimental setup,

except D and H. By analyzing experimental data it is thus possible to estimate
a value for the ratio

√
D
H . The in�nite acting solution will be valid at early times

only, until the di�using substance reaches the bottom of the container. At early
times the solution can be approximated to:

P (t)

Pi
= erfc

( √
t

α
√
D

)
. (5.2)

39



5 EXPERIMENTAL RESULTS (CO2-WATER SYSTEM)

when taking use of the fact that

lim
t→0

exp

(
t

α2D

)
= 1.

This simpli�cation has been utilized by Sheikha et al. [26] in order to create
the following method to graphically determine the di�usion coe�cient of gases
in bitumen. Taking the inverse complimentary error function of equation (5.2)
leads to the expression below:

erfc−1

(
P (t)

Pi

)
=

√
t

α
√
D

=
ZRT

√
D

hGH
·
√
t.

The slope of the straight line in a plot of erfc−1
(
P (t)
Pi

)
vs.
√
t will be ZRT

√
D

hGH
.

The slope, b1, can be determined graphically and we have

H√
D

=
ZRT

b1hG
.

Henry's constant H can be determined from the equilibrium pressure of the
system in question, or from tabulated values that exist in the literature. One
advantage of this graphical method is that the in�nite acting period always
produces a straight line, and the in�nite acting period ends when the data
starts to deviate from this, thus it will always be apparent from the graphical
representation in which time intervals this method is applicable. An analogy
can be drawn between the method described in this section, and the graphical
methods used in the �eld of well testing.

When applying this method to the experimental results of Time et al., the
e�ective di�usion coe�cient at the early part of the experiment can be found.
Graphically, the slope has been found to be 3.29 · 10-3/

√
s (see Figure 22).

The resulting e�ective di�usion coe�cient is determined to be D = 1.25 · 10-7.
This value for the di�usivity is of the same order of magnitude as the one used
to �t the model to the data in Section 5.2.1. However, it is still signi�cantly
lower, something that suggests that this method should only be used as a quick
estimation of di�usivity, and not for detailed analysis.

5.3.2 Determining di�usivity from late-time data

Determination of di�usivity from late time data can prove more di�cult than
from early data, in that the assumption of in�nite liquid height is no longer
valid. However, in the case of a CO2-water system, this is the most interesting
period with regards to determining di�usivity. This is due to the fact that ad-
vection is potentially less dominant in this time period of the experiment. If the
assumption is made that di�usion dominates as the transport mechanism after
a certain point, and that the concentration of CO2 at that point is distributed
homogeneously, the di�usion coe�cient can be calculated by a modi�cation of
the method in the previous section. Since the di�usion process is assumed to
begin at the point in question, there will be no error in assuming hL →∞. From
equation (3.16) we have that

P (t)−HCi

Pi −HCi
= exp

(
t

α2D

)
erfc

( √
t

α
√
D

)
≈ erfc

( √
t

α
√
D

)
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Figure 22: The slope of the straight line in the early parts of the data is calculated in
order to estimate the e�ective di�usivity.

⇒ erfc−1

(
P (t)−HCi

Pi −HCi

)
=
ZRT

√
D

hGH
·
√
t.

The slope of erfc−1
(
P (t)−HCi

Pi−HCi

)
vs.
√
t will then be

b2 =
ZRT

√
D

hGH
,

and we have

D =

(
b2hGH

ZRT

)2

.

Towards the end of the experiment (after 42.25 hours), the pressure has de-
creased from 4.96 to 2.425 bar. From equation (3.38) we have that the average
concentration in the solution is Ci = 84.4 mol

m3 . Graphically, the slope is deter-

mined to be b2 = 5.17 ·10−4/
√
s which leads to a di�usivity of D = 3.1 ·10−9 m2

s .
This di�usivity is a little higher than the standard reported literature value for
CO2 in water. This is to be expected when considering the results in Section
5.2.3 that indicate that di�usion alone can not be responsible for the mass
transfer when there is a homogeneous concentration distribution.
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6 NUMERICAL CALCULATIONS

6 Numerical calculations

6.1 Numerical model

Numerical modelling provides the possibility to incorporate additional physical
e�ects that have been di�cult to work with analytically. The lattice Boltzmann
method has been used in the numerical simulations in this chapter. Matlab code
for lattice Boltzmann modelling of the CO2-water system have been obtained
from [33]. When comparing the numerical model with the semi-analytical model
from Section 3.3, it can be observed that the results match almost perfectly.
In the comparison, the process was modelled numerically as a pure di�usion
process, no gravity e�ects were included, and the same boundary conditions
were used as in the semi-analytical model. This result provides a validation of
the numerical Lattice Boltzmann model that has been used.

6.2 Lattice Boltzmann modelling

The Lattice Boltzmann method is used for numerical simulation of physical
phenomena, primarily in �uid dynamics. The Lattice Boltzmann equation is
based on the Lattice Gas Cellular Automata methods8, and is a relatively re-
cent development. Its use took o� in the early 90s. The Lattice Boltzmann
equation has in short time evolved into a self-standing research subject in the
�eld of statistical mechanics [34]. Instead of solving the Navier-Stokes equations,
like in traditional �uid simulation, �uid �ow is simulated using the Boltzmann
transport equation9. The �uid is modelled using a limited number of �ctitious
particles con�ned to a lattice10. The particles are represented by a particle
velocity distribution function for each component at each grid point. The algo-
rithm for the lattice Boltzmann equation has a 'stream-and-collide' structure.
In the �rst step, particles jump, or stream, to adjacent lattice sites according
to the momentum distribution. In the next step, the collision step, momentum
distributions are updated. The outcome of collisions are approximated by as-
suming that momentum of the particles will be redistributed at a constant rate
towards an equilibrium distribution feqi . The lattice Boltzmann equation can
be written as follows [35]:

fi(~x+ ~eδt, t+ δt) = fi(~x, t) +
1

τf
(f eq

i − fi).

The parameter τf is called the relaxation time and determines how quickly
the momentum distribution approaches equilibrium after each collision. The
relaxation time is related to the di�usion coe�cient in the following way [36]:

τf,D = 3D
δt
δ2
x

+
1

2
.

8A series of simulation methods consisting of a regular grid of cells which may be in one
of a �nite number of states (such as 'on' or 'o�'). The interest in these methods leveled o�
when interest the Lattice Boltzmann method started to rise.

9The Boltzmann transport equation describes the statistical distribution of one particle in
a �uid. The distribution determines the probability of a particle to be at a certain place with
a certain velocity.

10A lattice model is de�ned on points on a grid, as opposed to continuous space and time.

43



6 NUMERICAL CALCULATIONS

Streaming Collision

A A A

Figure 23: Illustrations of streaming and collision step in lattice Boltzmann model. In
the streaming step particles (momenta) are moving into point A. In the collision step
the momenta in point A are updated to approach equilibrium.

The space between lattices is denoted δx, and the length of the time-steps is
denoted δt. The Lattice Boltzmann method uses a discrete grid, or lattice as
shown in Figure 23. Streaming/collision steps have been illustrated in the �g-
ure. Lattice Boltzmann models are commonly classi�ed using a so called DnQm
scheme, where n is the number of spacial dimensions and m is the number of
directions, or speeds, a particle can travel in. The model in Figure 23 is a
D2Q9 model (each node can deliver particles to 8 neighbor nodes in addition
to itself). Lattice Boltzmann modelling can be used in most �uid problems,
but the method has limitations. In many cases, such as when �uids are highly
compressible or there are substantial heat transfer e�ects, other methods will
be more e�cient [34]. The Lattice Boltzmann method has proved to be par-
ticularly useful when modelling �ow in irregular geometries, such as in porous
media. Major oil companies have expressed considerable interest in the lattice
Boltzmann method as a tool to solve problems related to oil recovery [35].

6.3 Examining solubility simpli�cation

The e�ects of the simpli�cation done with regards to the solubility of CO2 in
water will be investigated by numerical simulation. The assumption so far has
been that the concentrations of HCO−3 and CO2−

3 are negligible and will have no
signi�cant e�ect on the rate of pressure decay. Lattice Boltzmann simulations
have been run in Matlab, both including and excluding these species. The
e�ect of including these species can be seen in Figure 24. It is apparent that the
di�erence is small, and the error in the value for pressure is well below 0.1% for
the case used in the calculations. Based on this, it can be concluded that the
simplifying assumption made in section 2.1 is valid.

6.4 Modelling advection

Several challenges arise when advection is to be included in a lattice Boltzmann
model of the CO2-system in question. In order to achieve numerical stability
there are limits to the range of values that can be chosen for the physical pa-
rameters. The current version of the numerical lattice Boltzmann model used in
this work can not use the physical parameters of the pressure decay experiment
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Figure 24: Plots generated with Lattice Boltzmann model (D2Q9). The plot on the
right shows discrepancies between the simpli�ed equilibrium calculation used in the
analytical model, and a more accurate one. A gas height of 10 cm and a temperature
of 25 ◦C has been used in the calculations. Standard value for di�usivity of CO2 in
water has been used.

without becoming unstable. A plot of the pressure decay in a CO2-water system
when unphysical values are used have been included in Appendix D.

The relaxation time pertaining to the viscosity of the �uid is written in equation
(6.1) :

τf,ν = 3ν
δt
δ2
x

+
1

2
. (6.1)
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7 CONCLUSIONS

7 Conclusions

An analytical solution to the di�usion equation has been obtained in an e�ort
to model pressure decay in a closed CO2-water system. Di�erent boundary
conditions that include various physical e�ects and simpli�cations have been
investigated. For the case of �nite liquid height a semi-analytical approach
was required to obtain the solution. Experimental data has been interpreted
qualitatively and quantitatively by making use of the analytical solutions. Nu-
merical modelling of the system in question has also been explored. However,
maintaining numerical stability has been problematic when gravitational e�ects
were included.

The mass transfer processes that lead to the pressure decay happens much faster
than the analytical model predicts. It can thus be concluded that the pressure
decay can not exclusively be described by di�usion. It is believed that advection
currents, created by the increased density of water containing CO2, are causing
the enhanced mass transfer. This conclusion is supported by other studies.
Although the model has not adequately predicted the pressure decay in a CO2-
water system, it has been useful in illuminating the transport mechanisms at
work.

At early times it is clear that advection dominates over di�usion as the main
transport mechanism. The dominating transport mechanism at late times is
less obvious. As the experiment progresses, and the the solution becomes in-
creasingly saturated with CO2, the impact of advection appears to decrease . It
has been discovered that the pressure decay at late times can not be described
by a pure di�usion process if the concentration distribution is assumed to be
homogeneous or upwards increasing at that stage of the experiment. However,
if the advection currents cause the late-time concentration gradient to be pos-
itive in the downward direction, there is still a possibility that advection has
ceased towards the end of the experiment, and the pressure decay is at that
stage governed by di�usion.

A time-dependent e�ective di�usion coe�cient has been estimated over the
course of the experiment. It is found that the e�ective di�usion coe�cient
initially is two orders of magnitude larger than the di�usivity of CO2 in water.
The estimated e�ective di�usivity stays at this value for a certain amount of
time before decreasing, ending up at a value close to the literature value towards
the end of the experiment. The parameter a, of the model, characterizes the
time scale for which advection is dominant. For times t � a advection will be
negligible.

It has been found that the presence of interface �lm resistance may explain
the unexpected pressure decline rate at the beginning of the experiment. This
could, however, also be explained by a late onset of advection, or a weakness
in the experimental setup. Further work should be done to investigate if the
interface �lm resistance is signi�cant.

A di�usion-only model is found to give a satisfactory description of pressure
decay in a CO2-bitumen, and a methane-pentane system. The solution found
in this work is di�erent from the one originally used to model the methane-
pentane system, but predicted values give an excellent match to experimental

47



7 CONCLUSIONS

results. The essential di�erence between these experiments and the CO2-water
case, is the signi�cant increase in density that occurs when CO2 dissolves in
water. Such an increase is not present in the other systems, and advection is
thus negligible.

48



Nomenclature

Nomenclature

α Group of coe�cients

β Expansion coe�cient

δt Time step

δx Lattice spacing

κ1 Concentration gradient [mol/m4]

κ2 Surface concentration [mol/m3]

ν Kinematic viscosity

ρ Density [kg/m3]

τ Transformed time variable [m2]

τf Relaxation time

A Area of interface [m2]

a Chemical activity

A∗ Rate of concentration change [mol/s]

b Slope

C Concentration [mol/m2]

D Di�usivity [(m2/s)]

f Particle distribution function

H Henry's law constant [Pa ·m3/mol]

hG Gas height [m]

hL Liquid height [m]

J Molar �ux [mol/(m2·s)]

K Chemical equilibirium constant

k Mass transfer coe�cient [m/s]

m Molarity [mol/m3]

n Number of moles [mol]

P Partial pressure [Pa]

p Partial pressure [atm]

S Surface [m2]

s Laplace frequency variable [1/s]

T Temperature [K]

t Time [s]

V Volume [m3]

Z Gas compressibility factor

Re Rayleigh number
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A RAYLEIGH-BÉNARD INSTABILITY

A Rayleigh-Bénard Instability

The onset of the Rayleigh-Bénard instability is determined by a critical value
of the dimensionless Rayleigh number . The Rayleigh number of a layer heated
from below is de�ned as [13]:

Ra =

∣∣∣∣dTdx
∣∣∣∣ · gβt

νDt
h4

L,

where g is the acceleration due to gravity, βt is the thermal expansion coe�cient,
ν is the kinematic viscosity, Dt is the thermal di�usivity, and hL is the thickness
of the layer. The de�nition of Re is arbitrarily chosen, but proves useful in a
number of scenarios. An analogous Rayleigh number, useful when dealing with
the CO2-water system, would thus be:

Ra =

∣∣∣∣dCdx
∣∣∣∣ · gβc

νD
h4

L, (A.1)

with βc = 1
V
dV
dC being the concentration expansion coe�cient. The critical

Rayleigh number for the onset of Rayleigh-Bénard instability in a system with
one rigid and one free surface (similar to the CO2-water system in this study)
has been determined to be Racrit = 1100.65 by S. Chandrasekhar [13]. For a
system with bounding vertical surfaces, such as a vertical cylinder, the Rayleigh
number will e�ectively be lower than is calculated by equation (A.1), and a
larger density gradient is required before advection occurs. However, calculated
Rayleigh numbers may still in many cases give a good idea of whether or not
advection develops.

A density correlation put forward by Song et al. [37] is used in order to estimate
βc, a parameter needed to calculate the Rayleigh number. Song et al. reported
the density of water with dissolved CO2 relative to that of pure water to be:

ρ

ρ0
= 1 + 0.275XCO2 ,

where XCO2 is the mass fraction of CO2 in the solution. The expression below
describes the density as a function of concentration

(
mol
m3

)
instead of mass frac-

tion. The density of pure water has, for simplicity, been used when converting
from mass fraction to concentration.

ρ

ρ0
= 1 + 1.21 · 10−5 m3

mol
· C

⇒ V (C) =
V0

1 + 1.21 · 10−5 m3

mol · C

The concentration expansion coe�cient becomes

βc =
1

V

dV

dC
=

1(
1

1.21·10−5
mol
m3 + C

) ≈ 1.21 · 10−5 m3

mol
.

53



A RAYLEIGH-BÉNARD INSTABILITY

An approximation of the Rayleigh number de�ned in equation (A.1) that is
associated with the pressure decay experiment by Time et al. can be given by
the following expression:

Ra =(Ctop − Cbuttom) · gβc

νD
h3

L =
Pi

H
· gβc

νD
h3

L

The Rayleigh number for the experiment can now be calculated:

Ra =1.13 · 109 � Racrit.

Calculations show that the Rayleigh number is much larger than the critical
Rayleigh number (6 orders of magnitude larger). Based on this, the assumption
can be made that advection currents develop during the course of the experi-
ment.
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B Physical properties of CO2

Solubility

Table 4: Solubility parameters at 2.3 bar.

21◦C

KCO2(g) 10-7.87

KH2CO3 10−6.45

H 2630 m3Pa
mol

Di�usivity

The di�usion coe�cient of CO2 in water at standard conditions isD = 2·10-9 m2

s
[30] .

Solution density

The correlation between density and mass fraction of CO2 in an aqueous solution
[37]:

ρ

ρ0
= 1 + 0.275XCO2 ,

Compressibility

Table 5: Compressibility factors (Z-factors) for CO2. Data obtained from [6].

Pressure [bar]
Temp. [◦C] 1 5 10 20

0 0.9933 0.9658 0.9294 0.8496
50 0.9964 0.9805 0.9607 0.9195
100 0.9977 0.9883 0.9764 0.9524
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C Additional modelling

Model with time-dependent di�usivity and interface �lm resistance

When interface �lm resistance is added to the model with time-dependent dif-
fusion coe�cient, the Laplace transformed solution is as follows. Note that in
order to acquire the expression below, the di�usivity at the interface �lm, D∗,
must be considered constant, while the di�usivity in the rest of the water phase
is variable. This is a simpli�cation done for mathematical reasons and may
have no physical basis. The equations presented here are therefore currently
not considered applicable to any physical problem.

The expression for pressure decay is in this case:

P (sτ ) =
Pi

[
(e−2

√
SτhL + 1)− D∗

k

(√
Sτe

−2
√
SτhL −

√
Sτ

)]
s+

(
1
ατ

+ D∗Sτ
k

)√
Sτ + e−2

√
SτhL

[
Sτ −

(
1
ατ

+ D(t)Sτ
k

)√
Sτ

] (C.1)

The boundary condition at the interface is derived using the methods described
in Sections 3.5 and 3.6, and is:

∂C

∂x

∣∣∣
x=0

=
ατ

(1 + ατD∗

k s)
(sC − Pi

H
)
∣∣∣
x=0

.

Figure25 shows results obtained from equation (C.1) compared to experimental
results. Equation (5.1) has been used as the time-dependent function for di�u-
sivity, with a = 4.1 · 104 s (which is higher than the value for a previously used
in this work). The di�usivity at the interface is set to D∗ = 2.3 · 10−7 m2

s , and
all other parameters are the same as used in Section 5.2.2. A good match can
be observed between predicted and measured values.
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Figure 25: Model with time-dependent di�usivity and interface �lm resistance com-
pared to experimental results.
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D SUPPLEMENTARY PLOTS

D Supplementary plots

Lattice Boltzmann simulation with gravitational e�ects

Parameters are listed in Table 6. Simulations are done on a box of with sides
of L = 0.4 m.
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Figure 26: Lattice Boltzmann simulation of pressure decay in a CO2 system. Advection
is included. Matlab code for simulation is obtained from [33].

Table 6: Parameters used in the lattice Boltzmann simulation.
D 5 · 10-7 m2

s L 0.4 m

ν 10−6 m2

s g 10−3 m
s2

59


	Blank Page
	Blank Page
	Blank Page
	front page master.pdf
	Faculty of Science and Technology

	Blank Page

