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Abstract 

 The Tumaco on and offshore basin is located in the Pacific region of NW corner 

of South America, southwestern Colombia. It is classified as a forearc basin and it is 

considered a frontier exploration basin. The basin was formed during Paleogene-Recent 

convergence of oceanic derived terranes against South America. The stratigraphy consists 

of a volcano-clastic basement overlie by an Eocene to Recent clastic sedimentary cover. 

The last exploratory well, drilled in the 80’s, showed non-commercial amounts of oil and 

gas. This study integrates new onshore outcrop data (e.g. biostratigraphy, stratigraphic 

and organic geochemistry) with more than 3000 Km of 2D seismic data on- and offshore. 

Results based on seismic interpretation, plate tectonic models and surface geology 

indicate that the basement high, the Remolinogrande high, is the continuation of the 

Gorgona large igneous province to the north, which was accreted in the Late Eocene 

during subduction of the Farallon plate beneath South America. This accretion resulted in 

the development of the Tumaco onshore basin, located between the Remolinogrande high 

and the Western Cordillera of Colombia. 

The Tumaco offshore basin is suggested as the fore-arc basin that results of the 

subduction of the Nazca plate beneath South America. The subduction affected the entire 

region, resulting in continuous uplift of the Remolinogrande high and the migration of the 

fore-arc basin eastwards. 

Two main geological terranes were identified. The Tumaco South terrane 

(Gorgona terrane sensu Cediel et al., 2003) and the Tumaco North terrane. These terranes 

are separated by the Garrapatas Fault System and exhibit two diferent deformation styles. 

The structural style in the Tumaco South terrane is characterized by a thick skin 

deformation while the Tumaco North terrane has a thin skin deformation. 
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Eocene-Recent basin infill of the Tumaco onshore basin occurred mostly from the 

Western Cordillera of Colombia with the development of deep marine to continental 

deposition, whereas the Tumaco offshore consists of mostly marine sedimentation since 

Miocene. Source rocks mostly include gas prone Eocene marine shales in the Tumaco on 

- and off shore basin that are buried today to a depth of 8 km. Reservoir rocks include 

marine and continental sandstones of Miocene age. 

Because the Tumaco basin has a sag type basin configuration most of the traps are 

pinchtouts against the uplifted Remolinogrande high and stratigraphic traps. 
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1. INTRODUCTION 

The geological history of the northwestern corner of South America is 

complicated. Its configuration is based on the accretion of different Cretaceous 

allocthonous blocks of mainly oceanic crust composition (Cediel et al., 2003; Escovar et 

al., 1992; Jaillard et al., 2006, 2009; Kerr et al., 2002). Despite the complicated 

geological history, few studies have been published in Colombia in order to constrain the 

geological history of the southwestern corner of the country and its relation with the 

geological history of northern Ecuador ((Kerr et al., 2002; Cediel et al., 2003)  

 

The Tumaco on- and offshore basin several studies, including Ecopetrol and 

Agencia Nacional de Hidrocarburos (ANH) studies, have been conducted in the basin 

(Duque-Caro, 1984, 1990a, 1990b, 1991; Escovar, 1992; (Bueno et al., 1989; Bueno et 

al., 1974; Kerr et al., 2002; Marcaillou and Collot, 2008; Mountney and Westbrook, 

1997; López, 2009; Ojeda, 1987). Most previous work in the region focuses on the on- 

and offshore area separately. No attempt to integrate the geological history of both areas, 

have been conducted, since it is difficult to extrapolate and correlate the onshore 

information to the offshore area.  

 

This study integrates the study of the geology of the on- and offshore Tumaco  

basins and for the first time presents detailed analysis of the Pacific accretionary prism 

offshore structure in southwestern Colombia. It integrates 2-D local seismic lines and ten 

2-D seismic regional profiles (published for first time), which were acquired from the 

present subduction zone up to the shoreline of the Pacific area and are interpreted in this 

work with the aim to: 



 

 

  2 

1) Understand the tectono-stratigraphic evolution, 

2) Its relation with terranes accretion and 

3) The petroleum potential of the southwestern corner of Colombia. Tumaco on- 

and offshore basins in Colombia.  

 

Previous studies  

Most of the studies done in the Tumaco basin correspond to in-house studies 

completed by Ecopetrol (Ojeda, 1987; Escovar et al., 1992), (Ahmadi et al., 2003; 

Robertson Research U.S, 1981a, 1981b, 1988) and recently by ANH (2011). There are 

few publications relating to the tectono-stratigraphic evolution (Borrero et al., 2012) and 

the hydrocarbon potential of the basin. Generally, most of the published studies focus 

either northwards or southwards of the study area, as in the Gorgona Island (Kerr, 2005), 

the Atrato and Choco basin (Duque-Caro, 1984, 1990a, 1990b, 1991); and in the Borbon 

and Marañon basins in Ecuador (Kerr et al., 2002; Marcaillou and Collot, 2008; 

Mountney and Westbrook, 1997) comprises the study on the on- and offshore area 

separately. 

 

Recently, the ANH has tried to increase the understanding of the basin and some 

Master and PhD studies have been conducted (López, 2009; Barbosa, 2012). In his study, 

López (2009) used seismic interpretation to determine the basin evolution of the Tumaco 

on- and offshore basins. However, he did not consider the possible accretion of the 

different terranes in the area; he assumed the Western Cordillera and the Remolinogrande 

high as a unique terrane. In addition, his study mainly focused on the description of the 

evolution of the sedimentary facies but little discussion regarding structural configuration 
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was provided. The main focus of Barbosa (2012) was the understanding of the thermal 

history of the basin and its implications for the hydrocarbon generation. In his study, he 

uses apatite and zircon fission track to generate thermal models of the basin. However, he 

only recognizes the uplifting events of the Western Cordillera and by this neglecting the 

possible uplifting and subsidence events that may have occurred in the Remolinogrande 

high. This can have greater implications, not only in the tectono-stratigraphic model of 

the basin, but also in its hydrocarbon potential. 
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2. REGIONAL SETTING 

The Tumaco basin is an elongated and asymmetric basin with an approximate 

N30°E trending; with a total area of 5828.5 km2. It is located in the Pacific coastal region 

of southwestern Colombia (Figure. 1). The basin corresponds to a fore-arc basin 

developed on and active convergent margin that extends from northwestern South 

America to Central America, formed during the subduction of both the Caribbean and 

Nazca plate (Duque-Caro, 1990; Escovar, 1992). It has been proposed that subduction 

along the margin started during the Mesozoic and was follow by the accretion of the 

several terranes until Cenozoic (Kellog and Vega, 1995). 

 

The basin is divided into two sub-basins: on- and offshore basins (Figure. 1). The 

onshore basin is bounded to the east by the Western Cordillera, to the west by the present 

Pacific shoreline, to the north by the Garrapatas fault system and to the south by the 

Ecuatorian border (Figure. 1). 

The Tumaco offshore basin is bounded to the north by the Garrapatas fault 

system, to the south by the Ecuatorian border, to the east by the present shoreline and to 

the west to the inner trench wall of the present subduction zone of the Nazca plate 

beneath South America (Figure.1).  

 

Figure 2, shows the main structural elements and basins of the study area ( López 

et al.,  (2008)). The Manglares basin and the Tumaco basin are considered fore-arc basins 

formed during the progressive subduction of the Nazca plate beneath the South American 

plate. These basins are separated by the Remolinogrande high (Figure. 2). The free-air 
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gravity anomaly map (Figure. 3) shows the main basement paleo-highs, which include 

the Gorgona complex, the Tumaco on-and offshore basin and the Manglares basin.  

 

Seismically, the study area is characterized as a very active zone related to the 

subduction process. Over the last 100 years, earthquakes of different magnitudes, up to 8 

in the richer scale have been documented along the pacific margin in northern Ecuador 

and Southern Colombia. Figure 4 shows the regional seismicity transects along the study 

area, illustrating the angle and deep variation of the subduction slab throughout the study 

area. 
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Figure 1. a) GEBCO digital elevation model of northwestern South America and surrounding tectonic plates. The red square indicates the 

study area b) Study area, showing main faults and major geographic features. WC: Western Cordillera, CC: Central Cordillera, GOR: Gorgona 

island,  Toff: Tumaco offshore basin, Ton: Tumaco onshore basin,  GFS: Garrapatas fault system, CPF: Cauca-Patía fault, BF: Buenaventura 

fault, JQF: Jama- Quininde fault. 
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Figure 2. Structural cross section of Southern Colombia  after López et al., (2008) showing main basins (Tumaco and Manglares basin) and 

basement paleo-highs (Remolino high) within the study area. Age of the units: K2, Late Cretaceous (basement); E2, Eocene; E3, Oligocene; N1, 

Miocene; N2, Pliocene; Q1, Pleistocene.
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Figure 3. Regional free-air gravity anomaly map showing the distribution of the 

main basement paleo-highs and basins. Tco-off: Tumaco offshore basin; Tco-on: Tumaco 

onshore basin; Man: Manglares fore-arc basin; GOR: Gorgona basement complex; Ch-

off: Choco offshore basin, GFS: Garrapatas fault system; BFS: Buenaventura fault 

system; WC: Western Cordillera; AC: actual accretionary prism. Dashed blue lines 

surrounds basement paleo-highs.  
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Figure 4. Regional seismicity transects from the study area and northern Ecuador. Black points indicate major hypocenter earthquakes. Red 

lines show the depth tendency of the earthquakes and red triangles indicates locations of volcanos.
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Terranes configuration 

The western margin of Colombia and Ecuador consist of a series of blocks of 

oceanic plateau and island arc affinity, accreted to the continental margin of the South 

American Plate (SOAM) from Mesozoic up to the Cenozoic times (Figure. 5).  

  

In Ecuador, several terranes as the Macuchí, Naranjal, Piñón, and Pedernales 

terranes, among others are thought to constitute the Cretaceous basement of the western 

side of the country (Figure. 5). The Macuchí and Naranjal terranes, (represented by the 

Piñón Unit and the Pedernales-Esmeraldas sequences) have an island arc affinity and are 

believed to have accreted to the continental margin from the late Campanian up to 

Eocene time (Kerr et al., 2002). Jaillard et al. (2009) suggests that the Piñón and Naranjal 

units form a unique terrane which was accreted to the ecuadorian western margin during 

the late Paleocene.  

 

According to Kerr et al. (2002) the Piñón-Pedernales terrane in Ecuador and the 

Gorgona and Serrania de Baudo terranes in Colombia cannot belong to the Colombian 

Caribbean Oceanic Plateau (CCOP). Reynaud et al. (1999) consider that the geochemical 

and geochronological data ages from the basement terranes of Colombia and Ecuador has 

different origins and cannot be considered as belonging to a unique oceanic plateau 

(CCOP).  In contrast, Jaillard (2004), based on the geochemical analysis of the Piñón 

terrane suggest that this was form on the CCOP plateau and that it has similar affinities 

with the rocks found in the Gorgona island. Therefore the Gorgona island rocks do not 

have a Galapagos hot spot origin and more likely were form in the Farallon plate, South 
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of Ecuador and close to the South America margin, forming a unique oceanic plateau 

which was separated by a subduction zone.  

 

Others like Cediel et al. (2003)and Litherland et al., (1994) considered that the 

Dagua terrane (In Colombia) and Piñón terrane has the same origin and correlates them 

as a unique body (Cediel et al., 2003) denominated by the author as the Dagua-Piñón 

terrane.  

 

Based on seismic, geochemical and palomagnetic interpretations (Cediel et al., 

2003; Kerr, 2005; Kerr et al., 2002; Macdonald et al., 1997; McGeary et al., 1986)   

suggest that Gorgona is an isolated terrane that does not belongs to the CCOP and which 

was originated from southern Pacific latitudes and separated from the Dagua-Piñón 

terrane by the Buenavetura fault and from the Baudo terrrane by the Garrapatas fault 

(Figure. 5). However, the trace of the latter fault has been also a matter of debate since 

its trace has a lot of uncertainty in the offshore where it only had been observed in 

seismic and gravimetic maps near of the Buenaventura bay.  
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Figure 5. Regional free-air anomaly map showing the different Mesozoic terranes from 

the northwestern corner of South America. Names and location of terranes modified from Cediel 

et al., 2003; Jaillard et al., 2006 and Kerr et al., 2002. MT: Macuchí island arc terrane; RT: 

Romeral terrane; DPT: Dagua-Piñón terrane; GOR: Gorgona terrane; CGT:  Cañas Gordas 

terrane; BT: Baudo terrane.
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Tectonic framework  

Based on plate tectonic reconstructions, thermochronology, geochronology and 

geochemistry data (Cediel et al., 2003; Duque-Caro, 1990; Kennan and Pindell, 2009; 

Moreno-Sanchez and Pardo-Trujillo, 2003; Villagómez et al., 2011; Pindell et al, 1998), 

four tectonic evolutionary stages are proposed (Figure. 6) 

 

 LATE CRETACEOUS – EARLY PALEOCENE  

During the Late Cretaceous- early Paleocene the tectonic regime in southwestern 

Colombia changed from a passive margin to an active convergent margin as a result of 

oblique collision of the leading edge of the Caribbean plate and South American plate 

(SOAM) (Cediel et al., 2003; Duque-Caro, 1990; Kennan and Pindell, 2009; Moreno-

Sanchez and Pardo-Trujillo, 2003; Villagómez et al., 2011; Pindell et al, 1998). Collision 

started in Ecuador and southern Colombia, resulting in the emplacement of the Western 

Cordillera range, around 75-70 Ma (Villagómez et al., 2011). The collision was followed 

by right-lateral strike-slip faulting along the Romeral fault system, as the Caribbean plate 

collision migrated diachronously to the north and northeast. 

 

 LATE PALEOCENE (~58 MA) – EARLY EOCENE  

 To the south, in Ecuador, the Piñón and Naranjal terranes were accreted to the 

western continental margin of Ecuador (Jaillard et al., 2009; Kerr, 2005) (Figure. 6a). 

According to Jaillard et al., 2006; these terranes are part of the CCOP. Cediel et al. 

(2003) suggested that the Western Cordillera and the Piñón terrane are part of the same 

oceanic plateau (CCOP) and conformed what he called as the  Dagua-Piñón terrane.  
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MIDDLE EOCENE (45 MA) TO LATE EOCENE (~37–40 MA) 

The collision of the Gorgona terrane with the Western Cordillera terrane occurred 

around 45 Ma (Cediel et al., 2003)Figure. 6b). According to (Franco and Abbott, 1999) 

the collision ended with a westward jump of the subduction zone.  

The basement of the Tumaco basin is considered to be part of the Gorgona 

allocthonous block, derived from an oceanic plateau (CCOP) which was accreted to the 

continent during the initial Caribbean collision in northwestern South America (Escalona 

and Mann, 2012; Kerr et al., 2002; Pindell et al., 1998; Spikings et al., 2001). 

 

 OLIGOCENE – EARLY MIOCENE 

The Nazca and Cocos plate consolidate and the Choco-Panama- arc terranes collided with 

the South American plate diachronously from southwestern  to northwestern Colombia 

(Farris et al., 2011; Montes et al., 2012) (Figure. 6c, 6d), while the subduction of the 

Cocos plate  generated arc magmatism in the Western Cordillera. 

 

The discontinuous uplift of the Western Cordillera during the subduction cycle 

generated at least three periods of erosion and deposition.  

1) Eocene (?) – Early Miocene  

2) Early to Middle Miocene  

3) Late Miocene – Recent. 

 These events gave origin to the thick sequences of sediments (~ 9 km) that have 

been deposited on the Western Cordillera and Gorgona terranes, forming the Tumaco on- 

and offshore basin.  
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Figure 6. Plate tectonic reconstruction model of the Caribbean region from Middle Eocene to Recent (Escalona and Noron (2012) in 

progress. a) Middle Eocene, accreation of the Western Cordillera against the South American plate, b) Late Eocene, in Ecuador, accreation of the 

Piñón terrane, c) Late Eocene-Oligocene (?), collision of the Gorgona terrane - GOR- with Western Cordillera c) Actual configuration of the 

Caribbean
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3. DATA AND METHODOLOGY 

The well database for this study comprises two near shore wells drilled in 1967 

(Tambora-1 and Sandi-1) and three onshore wells drilled from 1953 through 1981 

(Remolinogrande-1, Chagüí -1 and Majagua-1) (Figure 7).  

The geophysical database consists of more than 10.000 km of 2D seismic lines. 

The seismic coverage consist of 3.863 km of regional 2D offshore survey lines acquired 

by Wavefield-Inseis in 2005 and semi-detailed 2D coverage of 8424 km during 1973, 

1982 and 1992 (Figure7). 

The regional seismic lines were provided by Spectrum ASA and the semi-detailed 

coverage was providing by Universidad de Caldas, Colombia, in agreement with ANH. 

Table 1 resumes the parameters of the acquisition and processing of the different surveys.  

The quality of the data varies from regular to good due to differences in acquisition, 

sampling time, coordinate systems projections, seismic processing and target between 

seismic surveys and geological complexity.  

In addition, a regional geological map from  Gómez et al. (2007) a regional 

bouguer from ANH (2010), Figure. 8 were used plus previous publications. The 

Regional bouguer anomaly gravity map has density corrections for the earth and water 

depth in the ocean of 2.67 g/cm3 and 1.03 g/cm3 respectively. The map shows variations 

between -235 mGal and 405mGal with a contouring interval of 20 mGal.  

Stratigraphic descriptions from well and outcrop data follow the new stratigraphic 

proposal of the Tumaco onshore basin from Caldas-ANH (2011). The organic 

geochemical data was taken from (Caldas-ANH, 2011; Robertson Research U.S, 1981b, 

1988)   
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The 2D seismic data was uploaded and interpreted in  Landmark’s Open Works TM.  

Due to the differences in the acquisition parameters of the different seismic surveys and 

in order to unify the seismic information resampling to 4 (s) was performed. Based on the 

well and stratigraphic descriptions of the basins, five major unconformities where 

identified. These unconformities were followed in the seismic interpretation and were 

used to define the stratigraphic and structural variations within the basin. To determine 

the main morphological characteristics of the basin, a seabed map was built. 
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Figure 7. Well and seismic coverage map with the location of the different surveys lines used in this study and the location of the gas seeps 

within the basin.
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4. OBSERVATIONS 

Basin configuration 

From the bouger gravity map (Figure 8) at least four different geological 

provinces are observed: two depocenters to the south, one depocenter to north, and a 

basement paleohigh in the central portion of the study area (Figure 8). 

 

The onshore depocenter (Figure 8 No1) corresponds with the Tumaco onshore 

basin and it is characterized by a negative bouger anomaly up to ~50 mGal. It has an 

approximate N 30° E trend. The offshore depocenter corresponds to the Manglares basin 

(Figure 8 No2) it has positive Bouger anomalies.  

 

The central portion of the basin is characterized positive bouger anomalies values 

(up to ~ 100 MGal) (Figure 8 No3). It has an approximate N 30° E trend, 40 km of width 

and 140 km of longitude. This bouger anomaly corresponds to the Gorgona basement 

complex. 

 

The last province is found in the northern area where anomalies values are the 

more negative of the whole basin reaching up to ~75mGal (Figure 8 No4). This anomaly 

has a N40°E trending approximately and gets wider near Buenaventura city. It is also 

appreciated that the axis of this depocenter is slightly displaced to the west. 

 

The bouger anomalies values increases towards the Western Cordillera, the 

subduction zone and the Gorgona complex. Deflection in the contours and elongate 

basement structures may indicate the presence of three different faults lineaments as 

shown in Figure 8.  
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Figure 8.  Bouger anomaly map modified after ANH (2010). The numbers 

indicates the different geological provinces. 1) Tumaco onshore basin, 2) Manglares 

basin, 3) Gorgona basement complex, 4) San Juan basin. Black dashed lines indicates 

fault lineaments. WC: Western Cordillera.  
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Geomorphology of the study area 

With the aim of recognizing the main geomorphological features of the basin, the 

seabed reflector was mapped from all available seismic data (Figures 9, 10). On the 

seismic, it is characterized by high acoustic impedance and a negative polarity. Based on 

its interpretation, were identified in the Tumaco offshore basin, four main 

geomorphological domains: the continental shelf; the continental slope and the oceanic 

trench. 

 

 

 

 

Figure 9. Seismic line showing the seabed reflector.
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Figure 10. To the left, seabed depth map of the study area. To the right, 3D seabed depth map showing the main geomorphological elements 

of the basin as the shelf break (white dashed line), the Patía promontory, the Tumaco high, the Manglares basin, the accrecionary prism and Naya-

Micay and Patía actual incised canyons.
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CONTINENTAL SHELF BREAK 

The present shelf area is defined approximately at the 200 m bathymetric line. It 

extends along the whole study area, with common variations in its width. The wider 

location is found in the central part of the study area, where it has an approximate width 

of 40 km and defines the Patía Promotory (Figure 10).  

The geological processes affecting the shelf area are variable. In some areas the 

shelf is highly eroded by submarine canyon incisions (Figure 10) while in others the 

shelf exhibits gently dipping slope angles with downlapping reflectors over the upper 

continental slope (Figure 11).  

 

 

Figure 11. Close up over a dip seismic line showing how the shelf exhibits gently 

sloping angles with downlaps reflectors over the continental slope. 
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CONTINENTAL SLOPE 

It is divided in upper, middle and lower continental slope.  The upper continental 

slope has an N35°E trend and it extends from the shelf break approximately 200 meters 

below sea level (mbsl) basinwards to approximately ~ 1300 mbsl. The middle continental 

slope is located from the upper continental slope up to the Tumaco high to the south and 

between the 1300-2000 mbsl, to the north. It has N30°E direction with a prominent 

salient controlled by the Patía promotory. The lower continental slope is located between 

the 2000-3000 mbsl. It constitutes the accretionary prism of the study area. 

 

The upper and middle continental slopes, to the south, are incised by the Mira and 

Patía Canyons while to the north are incised by the Micay and San Juan rivers (Figure 

10). The Mira canyon exhibits a series of different bends. At the shelf break it has a 

westward direction, where it reaches the upper continental slope. In the Manglares basin, 

it changes to a NNE direction and in the Patía Promotory area its submarine direction 

changes to the NWW (Figure 10). The Patía Canyon exhibits a straighter path than the 

Mira Canyon. It incises the shelf and the continental slope to the south of the Patía 

promontory with an approximate W direction and it joins the Mira Canyon at the 

Guaiquer ridge (Figure 10). The Micay Canyon has almost the same behavior as the 

Patía Canyon. It incises the shelf and the continental slope with a NWW direction 

(Figure 10). These changes on its submarine paths are controlled by the basement paleo-

highs found in the southern area as shown in figures 3 and 9.  

 

Additionally, the upper and middle continental slopes are characterized by the 

presence of numerous basins as shown in Figure 12. The bigger basins are located 

towards the continental shelf.  
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Figure 12. Main geomorphological features, basins and basement paleo-highs 

distribution, along the Tumaco offshore basin. 
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The lower continental slope is formed by the actual accretionary prism (Figure 

10) which has an approximate N30°E continuous trend with local variations. It is located 

about 80-120 km west of the Pacific coast line with and approximate width of 15-20 km. 

To the south, the accretionary prism is wider with an approximate width of 30-35 km 

(Figure 10). In this area, the Guaiquer ridge has a width of about 40 km. The presence of 

small basins is also common through the entire accretionary prism 

 

Figure 13 shows the bathymetric profiles of six seismic lines along the offshore 

basin. In the figure, it can be appreciated that the bathymetric profile changes from north 

to south. To the north, the continental slope is characterized by having a gentle slope 

angles while to the south the bathymetric profiles are more rough, exhibiting strong slope 

breaks and a bathymetric high eastwards of the accretionary prism (AC) which can be 

associated with the basement high observed in Figures 3 and 8 and which could be 

associated either with a big seamount feature. 

 

OCEANIC TRENCH 

The oceanic trench is located westwards of the accretionary prism, at about 3600 

mbsl. It is approximately 30 km wide and extends with a N30°W trend along the study 

area (Figure 10).  
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Figure 13. Bathymetric profiles along the Tumaco offshore basin. Profiles A, B, C 

shows rough bathymetric profiles related to basement paleo-highs. Profiles D, E, F 

exhibits gentler continental slope profiles than profiles A, B and C. Notice the strong 

slope breaks in profiles A and C.
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Fault families   

Based on seismic interpretation and gravity data eight fault families were 

identified.  

 FAULT FAMILY 1 

Fault family one is the most difficult one to observe in the seismic lines. Its 

recognition is easier using gravity maps as shown in figures 3 and 8.    

Consist of two main regional fault systems. The Buenaventura fault system (BFS) 

and the Garrapatas fault system (GFS).  

The NE rectilinear trace that separates the Tumaco onshore basin, from the 

Tumaco offshore basin and the Gorgona complex was recognized in the gravimetric map 

as the Buenaventura fault system (Figure 8).  According to Cediel et al., (2003) this fault 

has a dextral transpressive motion.  

The trace of the Garrapatas fault system was done based on the free-air gravity 

map (Figure 8) and seismic interpretation (Figure 14). It corresponds to transpressional -

transtenssional strike-slip fault. Its seismic expression near the Buenaventura bay is 

characterized by normal faulting defining a negative flower structure as shown in Figure 

15. The fault divides the Tumaco offshore basin from the accretionary prism (to the west) 

up to the Buenaventura bay (to the east), into two blocks: The Tumaco South block 

(Tumaco offshore basin) and the Tumaco North block (Choco offshore basin). 
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FAULT FAMILY 2  

Consist of NNW – SSE active normal flexural faults related to the Nazca 

subducting slab beneath the South American plate. Throws along these faults are 

normally low, but can reach up to 1000 TWT (ms) (Figures 14, 16). These faults, not 

only affects the basement of the Nazca subducting slab but also the sediments infill in the 

Pacific trench. 

FAULT FAMILY 3 

Eastwards-dipping thrust faults with a NNW –SSE direction that affects the entire 

sedimentary fill of the accretionary prism (Figures 14, 16). The deformation occurs 

progressively in 2 different stages: (1) folding and destruction of previous fold structures 

along an axes perpendicular to the Nazca plate-convergence direction and (2) new thrust 

faulting in the direction of Nazca plate-convergence.  

FAULT FAMILY 4 

NNW –SSE normal faults related to the paleo-basement highs, usually found in 

the SE offshore area, south of the GFS (fault family 1) and in the Tumaco onshore basin. 

Dip direction of these faults varies from W to E. Throws are usually low, reaching no 

more than 100 TWT (ms) (Figure 16). 

FAULT FAMILY 5 

Comprises thin-skinned thrust faults with an approximate N30W strike direction, 

related to the thrust and fold imbricate system, located northwards of the fault family 1 

(GFS) (Figure 14). These faults commonly developed well fold structures. These faults 

have large displacement to the north-west reaching up to 500 TWT (ms), with indication 

of growth strata and well-developed and well-preserved piggy back basins.  
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FAULT FAMILY 6 

Comprises thick-skinned thrust faults with an approximate N40W strike direction, 

related to the thrust and fold imbricate system, located southwards of the fault family 1 

(GFS) (Figure 16).  Most of these faults have small displacement of about 100 TWT 

(ms). 

FAULT FAMILY 7 

Normal gravitational faulting – Toe thrust faulting that occurs along the shelf 

break area, in the Manglares basin (Figure 16). The main dip direction of these faults is 

to the west. However some east dipping faults are appreciated to the north of the 

Garrapatas fault system. These faults are thought to occur as a mechanism of gravity 

collapse associated with the downfall of the shelf in the offshore area. 

 FAULT FAMILY 8 

High angle normal faults with small throws values (less than 50 TWT (ms)) that 

generally dips landwards affecting almost the entire sedimentary sequence in the eastern 

side of the Manglares fore-arc basin (Figures 14, 17) . No evidence of growth strata is 

appreciated, suggesting that the extension activity occurs recently.  
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Figure 14. To the top un-interpreted seismic line from the Tumaco offshore basin, north Garrapatas fault system (GFS). To the bottom, 

interpreted seismic line, showing main subsurface regional features and fault families. 1) The basement is not involved in the deformation, 2) A wider 

and highly deformated accretionary prism, 3) Normal faulting due to occurrence of the GFS forming and narrow and transtensional basin 4) Bottom 

Simulator reflector (BSR). 

Fig. 15 
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Figure 15. Close-up from figure 14 showing a deep transtensional sub-basin formed by normal faulting associated to the Garrapatas fault 

system (GFS, fault family 1).
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Figure 16. To the top un-interpreted seismic line from the Tumaco offshore basin, south of Garrapatas fault system (GFS).Interpreted seismic 

showing main subsurface regional features, fault families and thick-skin deformation. Eastwards fore-arc migration as the accretionary prism grows 

and imbricates. 

Fig. 17 
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Figure 17. Close up from figure 16. Normal faults with small throw values, less 

than 50 TWT (ms) occurring only along the eastern side the Manglares basin. To the top, 

along-dip seismic line P-82-1800; to the bottom along-strike seismic line P-82-1700S.
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Tectono-sequences 

The identification of the principal tectono-sedimentary sequences, regional 

unconformities and their correlation across the Tumaco on- and offshore basin was 

carried out based on the interpretation and correlation of the existing outcrop 

descriptions, well data with the seismic profiles.  

 

Four main tectono-stratigraphic sequences separated by major unconformities 

were identified. Figures 18 and 19 shows the seismic and well log expression from the 

identified tectono-sequences in the Remolinogrande-1, Tambora-1 and Sandi-1 wells.  

Additionally, the stratigraphic distribution of the sedimentary and igneous sequences of 

the study area from well and outcrop data is shown in Figure 20.  
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Figure 18. Well log and seismic correlation showing the main tectono-sequences identified in this study.
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Figure 19. a) Generalized geological map of the Tumaco onshore basin (Modified from (Gómez et al., 2007)). b) Generalized stratigraphic 

column of the Tumaco on-and offshore basin, based on core and cuttings description from the Remolinogrande-1 well. The main source rocks in the 

Tumaco on-and offshore basin is Eocene (?) shale of the Unidad Sur-1 Formation. The main reservoirs are the Early to Middle Miocene sandstones 
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Figure 20. Well and outcrop correlation showing the stratigraphic distribution of the Tumaco on-and offshore basin The numbers on the 

map indicate the location of each well and outcrop sections.Modified from Caldas-ANH (2011).
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TECTONO-SEQUENCE I: LATE CRETACEOUS – EARLY EOCENE (?) 

It consists of a volcano-sedimentary succession and defines what we know of the 

basement of the basin from outcrop and well data. This sequence was drilled in the 

Remolinogrande high, in the western flank of the Tumaco onshore basin by the 

Remolinogrande-1 well and outcrops in the Gorgona Island. Based on free-air gravity and 

gravity maps is possible to follow a NE trending basement paleo-high from the Gorgona 

Island to Tumaco (Figures 3, 8).  

Outcrop 

As mention before, the only known outcropping locality is in the Gorgona Island. 

In this locality the basement is mainly composed by ultramafic sequences that include 

one of the few worlds Cretaceous occurrence of Komatiites (Echevarria, 1980; Serrano et 

al., 2011). In this locality, the basement sequence is mainly composed by dunites, 

peridotites and gabbros. 

Well character 

The gamma rays values from the Remolinogrande-1 well in this sequence are low 

and spiky (Figures 18, 19). Core descriptions from Caldas-ANH (2011); indicate the 

presence of a volcano-sedimentary succession consisting of two sequences. The lower 

sequences conformed by shales, mudstones and sandstones intercalated with basalts and 

micro gabbros, while the upper sequence is mainly composed by basalts and micro 

gabbros interbedded with thin mudstones and sandstones layers. 

López (2009) interpreted this volcano-sedimentary tectono-sequence as the result 

of submarine volcanic activity that initially filled up the Tumaco onshore basin. 
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Seismic Character 

A confident well tie was not possible to achieve from the well data. Some 

possible explanations to this are the anisotropy caused by the volcano-sedimentary 

lithology, seismic processing artifacts and weathering in the basement which can creates 

transition zones. Also, the differentiation of the two sequences described in the well 

reports was not possible using the seismic data. Nevertheless, it was possible to recognize 

the general seismic character of the basement in some areas, especially in the offshore 

basin, near the Gorgona Island, where it is characterized by chaotic and discontinuous 

seismic facies with high amplitude and low frequency reflectors (Figure 21). In some 

areas the top of the basement can be recognized by the occurrence of moderate and 

positive amplitude, however, in most of the areas in the Tumaco on- and offshore basin 

the top of the basement is no differentiable. 

Time structural map 

The TWT structural map of the sequence indicates that it is missing along the 

northern portion of the Garrapatas Fault System (GFS) (Figure 22). To the south of the 

GFS some few and non-continuous structures are observed (Figure 21). The longer 

structure is located near the coast line; it has a NE trending with an approximate 

extension of 120 km. This structure is also appreciated in the gravity maps (Figures 3 

and 8) and can be associated to the southern extension of the Gorgona basement complex, 

including the Remolinogrande high. Normal faults bounding the NE trending basement 

paleo-high (Gorgona complex) are appreciated dipping in E and W direction (fault family 

4).  To the southeast, near the accretionary prism; two structural highs are observed. 

These structural highs correspond to the Tumaco high which is also observed in the 

bathymetric profiles (Figure 13). Among them, a basement low is observed, and defines 
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the Guaiquer ridge which is also observed in the seabed map (Figure 10). Fault family 6 

affects the basement in the area of the Tumaco high.
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Figure 21. Seismic line showing the Gorgona Island basement and its main structural configuration.
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Figure 22. TWT (ms) structural map near the top of the Cretaceous basement showing the main structural highs associated with the southern 

extension of the Gorgona basement complex. T-on: Tumaco onshore basin. AC: accretionary prism, HDZ: highly deformed zone, FF: fault family. 

Guaiquer ridge 
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TECTONO-SEQUENCE II: (PALEOGENE)  

Well character 

This sequence was only drilled by the Remolinogrande-1 well. The well character 

is spiky and variable; with medium to high gamma ray values at the base of the sequence 

to high gamma ray values at the top of the sequence, indicating high content of shales 

(Figure 18, 19).  The thickness reported by the well data is approximately 600 m. Recent 

core descriptions from Caldas-ANH (2011) indicate that is mainly composed by 

siltstones intercalated with sporadic layers of sandstones from Unidad Sur-1 Formation 

(Figure 19).  

Duque-Caro (1990) based on foraminifera analysis suggested that this unit was 

deposited in the upper continental slope. This unit has been interpreted as hemipelagic 

and turbidites deposits by López (2009). 

Core analysis done by the Caldas-ANH (2011) indicates the presence of forams, 

algae, and radiolarians. Foraminifers analysis (Peñaloza and Sanchez, 2006) suggested an 

Oligocene age. Nanofossils studies by Caldas-ANH (2011) suggested a Late Oligocene 

age for the interval between 5400 and 4500 feet in the Remolinogrande-1 well.  

Seismic character 

The seismic facies are characterized by chaotic, discontinuous and blurry 

reflectors with lower amplitudes values than tectono-sequence I. It has a semi-transparent 

appearance with poor defined stratification with some local areas with well bedded and 

high amplitudes reflectors. It is characterized by landward on-laps and seaward down-

laps reflectors. In the offshore area; to the south, this tectono-sequence exhibits a relative 

uniform thickness of about 1000 to 1500 TWT (ms) with some pinch-outs against the 

basement structures where its thickness varies (Figures 14, 16, 23); to the north, the real 

thickness of the sequence could not be determined. 
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Time structural map and time thickness map 

This tectono-sequence yields unconformable over tectono-sequence I. It is the 

deepest sedimentary sequence found in the study area and it is affected by fault families 1 

to 7 (Figure 25). To the north of the GFS is affected by fault families 1, 2, 5 and to the 

south of the GFS is affected by fault families 2, 3, 4, and 7. Figure 25 shows the main 

structural elements of the Paleogene sequence. In the map, three main structural highs are 

observed. These highs matches with the structural highs mapped in tectono-sequence I 

(Figure 23) which suggest that the basement paleo-highs are controlling the 

sedimentation of tectono-sequence II.  

 

Time thickness map (Figure 25) indicates that the thickness of the sequence 

varies along the whole basin and reveals the occurrence of three major depocenters.   

The first depocenter is localized in the Tumaco onshore basin (Figures 24, 25). 

Based on the free-air gravity map is possible to determine that this depocenter has a NW-

SW trending (Figure 3). The thickness of this sequence varies in this area. Towards the 

Western Cordillera and the Remolinogrande high the sequence is thinner while in the 

central portion of the basin the sequence is thicker (Figure 24). In the western side of the 

basin, the seismic patterns indicate the initial uplifting of the Remolinogrande high 

(Figure 24).  

The second depocenter is located to the south of the offshore area, in the 

Manglares basin along (Figure 16, 25) where it reaches at maximum depth of 5000 TWT 

(ms). Based on the free-air gravity map is possible to determine that this depocenter has a 

NW-SW trending (Figure 3). The thickness of this sequence in this area is almost 

constant with approximate 1000 TWT (ms).  
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Figure 23. Fault families and seismic facies distribution map and inset seismic sections of the main tectono-sequences described in this 

study showing the distribution and seismic character of the different facies interpreted. TWT: two-way time.
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Figure 24. Composed seismic section along the seismic lines NT-1992-2840 and NT-1990-2870  of the Tumaco onshore basin showing the 

four main stratigraphic sequences interpreted in this study. The red arrows indicate onlapping reflector against the Western Cordillera and the 

Remolinogrande high

Fig. 32 
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Figure 25. To the left, TWT structural map near the top of the Paleogene sequence. To the north of the GFS the structures are deeper than to 

the south of the GFS where the structures are controlled by the basement paleo-highs. To the right,  Paleogene time thickness map showing the 

main depocenters and hydrocarbon possible kitchen (dashed lines) along the basin.AC: accretionary prism, HDZ: highly deformed zone, FF: fault 

family. 

AC 
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The third depocenter is located between the Manglares basin and the actual 

accretionary prism, in the Patía segment (Figure 16, 25). In this area the thickness of the 

sequence is approximately constant with about 800-1000 TWT (ms).  

 

In the Pacific trench, it is characterized for having high amplitude, well-stratified, 

parallel and sub-continuous reflectors that onlaps against the Nazca subducting slab 

(Figure 26). In this area the thickness of the sequence varies from 200 ms to 1000 TWT 

(ms), with the deeper values where the accretionary prims starts. It is also affected by 

high angle normal faults with small throw values (50-100 TWT (ms)) related to the 

normal flexural faulting generated by subducting slab (fault family 2) (Figures 16, 26).
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Figure 26. Close up to figure 16 showing the geometry and sediments infilling of the Pacific oceanic trench. Dashed green lines indicates the 

top of crust of the subducting Nazca plate. Black dashed lines indicates major unconformities.
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TECTONO-SEQUENCE III (EARLY TO LATE MIOCENE): 

This tectono-sequence lies unconformable over tectono-sequence II. It is mainly 

composed by sandstones and conglomerates with sporadic intercalations of mudstones 

and plutonic fragments from the Capayas, Viche, Angostura, Chagüí  and San Agustín 

formations (Figures 18, 19, 20). Based on the sedimentary environments, and seismic 

character it was divided in three sequences: 

1. Sequence III-A: (Early (?) to Middle (?) Miocene) 

2. Sequence III-B: (Middle Miocene (?)) 

3. Sequence III-C: (Middle (?) to Late (?) Miocene) 

 

Despite of the fact these sequences are described in detail in numerals in the 

following title, Figure 27 shows a TWT structural map and a time thickness map of the 

top of the Miocene tectono-sequence.  

The TWT structural map shows that the Miocene tectono-sequence is affected by 

fault all fault families, except fault family 4. Fault families 2, 3, 6, 7 are common south of 

the GFS, while fault family 5 dominates northwards of GFS.  

Three main structural highs are found south of the GFS in the offshore area, with 

a common N~30°E trend. These structural highs matches with the basement paleo-highs 

mapped in tectono-sequence I which suggest that the Miocene sedimentation is also 

controlled by the basement highs. 

Associated with fault family 6, north of GFS is common the formation of piggy-

back basins is common. The most preserved and well-formed piggy back basins are 

located near the coast (Figure 27). 
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The time thickness map (Figure 25) shows the presence of three major 

depocenters (depocenter 1, 2 and 3). Depocenter 1 is located in the northern offshore 

area; it has an approximate 5000 TWT (ms) thickness (Figure 25). Depocenters 2 and 3 

are located south of the GFS. Depocenter 2 is found along the Tumaco onshore basin. It 

has an N~35°E trend, and an approximate 5000-5500 TWT (ms) thickness (Figure 25). 

Depocenter 3, is found along the Manglares basin. It has the same structural trend as 

depocenter 2 and it has an approximate 4000 TWT (ms) thickness and is bound to the 

west by the Tumaco high and to the east by the southern extension of the Gorgona high 

(Figure 25). 
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Figure 27. To the left TWT structural map at near the top of the Miocene sequence. The shallower structures are located to the south of the 

GFS and are controlled by the basement paleo-highs structures. To the right, Miocene time thickness map. Three main depocenters (1, 2, 3) can be 

identified as show in the figure.AC: accretionary prism, HDZ: highly deformated zone, FF: fault family. 
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Sequence III-A: (Early (?) to Middle (?) Miocene) 

It comprises the Capayas and Viche formations. 

Well character  

This sequence was drilled by all the wells in the study area. However, the best 

well log data is from the Remolinogrande-1 well (Figures 18, 19). In this well, the 

gamma ray readings are spiky varying from medium to high values suggesting the 

intercalation of shales and sandstones (Figures 18, 19). Core descriptions from this 

sequence done by Caldas-ANH (2011) indicate that this sequence consists of sandstones 

and conglomerates. Sporadically, it presents levels of siltstones and limestones. The 

sandstones and conglomerate layers are mainly composed by cristaline quartz, igneous 

lithics (basaltic, porfiritic and plutonic lithics), sedimentary lithics and methamorphic 

lithics as phylites and serpentinites. Most of the layers are rich in bivalves, gasteropods 

and forams.  

Based on foraminifers analysis, Duque Caro (1990) suggested an upper slope 

deposition. López (2009) based on seismic analysis, suggested that these units were 

deposited by a volcano-clastic fan at the toe of the continental slope.  

 

Seismic Character  

To the south, at the Tumaco onshore basin and Manglares basin, it is 

characterized by having high-amplitud, continuous and well-bedded reflectors that 

contrast with the blurry and chaotic reflectors of tectono-sequence II. The reflectors of 

these sequence onlaps over tectono-sequence II and define a major uniformity 

appreciated with the Tumaco onshore basin and the Manglares basin.  
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Time structural map 

Figure 28 shows a TWT structural map near the top of the Early (?) to Middle (?) 

Miocene sequence. The TWT structural map shows that the Miocene tectono-sequence is 

affected by fault all fault families, except fault family 4. Fault families 2, 3, 6, 7 are 

common south of the GFS, while fault family 5 dominates northwards of GFS.  

Four main structural highs are found south of the GFS in the offshore area 

(Figure 28). The three southernmost highs have a common N~30°E trend and matches 

with the basement paleo-highs mapped in tectono-sequence I which suggest that the 

Miocene sedimentation is also controlled by the basement highs. The northernmost high 

defines the initial formation of the Patía Promotory (Figure 28) which can also be 

appreciated in Figure 10. 

Associated with fault family 6, north of GFS is common the formation of piggy-

back basins. The most preserved and well-formed piggy back basins are located near the 

coast line as shown in Figures 14 and 27. 
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Figure 28. To the left TWT structural map at near the top of the Early (?) to 

Middle (?) Miocene sequence. To the right, Early (?) to Middle (?) Miocene time 

thickness map. AC: accretionary prism, HDZ: highly deformed zone, FF: fault family. 
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Sequence III-B (Middle Miocene (?)) 

Well character 

Since it was not possible to separate sequence III-A and III-B from well log 

character the well character of this sequence corresponds to the same well character and 

core descriptions as in sequence III-A. 

Seismic character 

The seismic facies of this sequence is variable depending upon the location within 

the basin (Figure 23). In the Tumaco onshore basin the seismic facies are characterized 

by discontinuous to continuous parallel to sub-parallel reflectors with high frequency and 

low amplitudes values (Figure 24). In eastern side of the basin, the reflectors onlaps 

against sequence III-A, suggesting the uplifting of the Western Cordillera for this time 

and defining the occurrence of unconformity U3.  

In the Manglares basin, is also characterized by discontinuous to continuous 

parallel to sub-parallel reflectors with high frequency amplitude values which changes 

laterally to low frequency amplitude values. Channelized features are also common in 

this sequence, which are characterized by having high amplitude reflection values 

(Figure 30). In this area onlapping against sequence III-A is appreciated, defining 

unconformity U3 (Figure 14). 

In the Patía segment, is characterized for having chaotic and discontinuous 

reflectors with a transparent and ghostly appearance which makes difficult the description 

of a consistent seismic pattern. In the Tumaco high area the reflectors of this sequence are 

dipping landwards (Figure 14) suggesting the uplifting of the Tumaco high. 
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In the north Tumaco offshore area it is characterized for discontinuous, parallel to 

sub-parallel reflectors, with low to medium amplitudes. These reflectors downlaps 

against sequence III-A defining unconformity U3 (Figure 14). 

 

Time structural map and time thickness map 

Figure 29 shows a TWT structural map near the top of the Middle (?) Miocene 

sequence. The TWT structural map shows that this sequence is affected by fault families 

1 to 8. To the south of the GFS is affected by fault families 3, 6, 7 and 8; to the north of 

the GFS is affected for fault families 1 and 5.  

Four main structural highs are found south of the GFS in the offshore area 

(Figure 29). The three southernmost highs have a common N~30°E trend and matches 

with the basement paleo-highs mapped in tectono-sequence I which suggest that the 

Middle (?) Miocene sedimentation is also controlled by the basement highs. The 

northernmost high defines the Patía Promotory (Figure 28) which can also be appreciated 

in Figure 10.  

Associated with fault family 6, north of GFS is common the formation of piggy-

back basins. The most preserved and well-formed piggy back basins are located near the 

coast line as shown in Figures 14 and 29. 

Time thickness map (Figure 29) indicates that the thickness of the sequence 

varies along the whole basin and reveals the occurrence of four major depocenters.   

The first depocenter is localized in the Tumaco onshore basin (Figures 24, 29). 

Based on the free-air gravity map is possible to determine that this depocenter has a NW-

SW trending (Figure 3). The thickness of this sequence varies in this area. Towards the 
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Western Cordillera and the Remolinogrande high the sequence is thinner while in the 

central portion of the basin the sequence is thicker (Figure 24).  

The second depocenter is located to the south of the offshore area, in the 

Manglares basin along (Figure 16, 25) where it reaches at maximum depth of 5000 TWT 

(ms) and an approximate thickness of 2500 TWT (ms). Based on the free-air gravity map 

is possible to determine that this depocenter has a NW-SW trending (Figure 3).  

The last two depocenters are located in the northern area of the Tumaco offshore 

basin (Figure 29). In this area, these depocenter are characterized by having 

approximately 2500 TWT (ms) thickness and are associated to piggy-back basins formed 

due to the deformation generation by fault family 5. 
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Figure 29. To the left TWT structural map at near the top of the Middle (?)Miocene sequence. To the right, Middle (?)Miocene time 

thickness map. AC: accretionary prism, HDZ: highly deformed zone, FF: fault family. 

((
((

((
((

((
((

((
(( (( (( (( ((

((

((

((

((

((

((

((

((

78°W79°W

4°N

3°N

2°N

±

5000

-170

40

km

TWT (ms) TWT (ms)

((
((

((
((

((
((

((
((

(( (( (( ((

((

((

((

((

((

((

((

((

0

78°W79°W

4°N

3°N

2°N

±

2500

-2800

40

km

TWT (ms)

Tumaco

high

Guaiquer

ridge

Tumaco

onshore basin

FF7

FF5

Depocenters

thin

sequence

FF6



 

 

 61 

 

 

Figure 30. Close up from the figure 16 showing main Middle Miocene canyons.
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Sequence III-C: (Middle (?) to Late (?) Miocene 

It is constitute by the Chagüí and San Agustín formations. 

Outcrop 

The only outcropping formation from this sequence is the San Agustín formation. 

According to Caldas-ANH (2011), this unit is found along the Tumaco Bay with an 

approximate thickness of 300 meters. It is composed by a thick sequence of mudstones 

and siltstones with high concentration of forams and sporadic intercalation of fine 

sandstones.  

Well character  

It was drilled by all the wells in the study area. The base of this sequence is 

marked by medium gamma ray readings which increase towards the top of the sequence.   

Based on core descriptions from the Remolinogrande-1 well, Caldas-ANH (2011) 

indicates that the Chagüí Formation is mainly composed by a series of thick sandstones 

layers intercalated with siltstones. According to Caldas-ANH (2011), this unit has high 

concentration of volcanic lithics of intermediate and plutonic composition, which are 

more common towards the top of the unit. In addition, the presence of methamorphic 

lithics (e.g. phylits) and minerals (e.g. amphibols), are common.  

The San Agustín Formation consists of a thick sedimentary succession of 

claystones and siltstones rich in forams, and occasionally bioturbated intercalated with 

thick tobaceus sandstones beds of fine to medium grain size (Caldas-ANH, 2011). 

Caldas-ANH (2011) interpreted a prodelta to middle platform sedimentary environment 

of deposition to this unit.  

Based on nanofossils studies, Universidad de Cadas (2011) established a Late 

Miocene age (Tortonian – Messianian); and based on the zonation of Jaramillo et al. 
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(2011) and palinomorfs studies, Caldas-ANH (2011) established a Late Miocene – 

Pliocene age (Tortonian – Zanclean).  

Seismic character  

The seismic facies of this sequence is variable depending upon the location within 

the basin (Figure 23). In the Tumaco onshore basin the seismic facies are characterized 

by discontinuous to continuous parallel to sub-parallel reflectors with high frequency and 

low amplitudes values (Figure 24). In both flacks of the basin, the reflectors onlaps 

against sequence III-B suggesting the uplifting of the Remolinogrande high and the 

Western Cordillera for this time and marking the occurrence of unconformity U4.  

In the Manglares basin, is also characterized by discontinuous to continuous 

parallel to sub-parallel reflectors with high frequency amplitude values which changes 

laterally to low frequency amplitude values. In this area onlapping against sequence III-B 

is appreciated, defining unconformity U4 (Figure 14). 

In the Patía segment, is characterized for having chaotic and discontinuous 

reflectors with a transparent and ghostly appearance which makes difficult the description 

of a consistent seismic pattern. In the Tumaco high area the reflectors of this sequence are 

dipping landwards (Figure 14). 

In the north Tumaco offshore area it is characterized for discontinuous, parallel to 

sub-parallel reflectors, with low to medium amplitudes. These reflectors downlaps 

against sequence III-B, defining unconformity U4 (Figure 14). 

In the Pacific trench (tectono-sequence III), it is characterized It is characterized 

by having higher amplitude reflectors than tectono-sequence II intercalated with chaotic, 

blurry and non-continuous reflectors (Figure 26).  
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Time structural map and time thickness map 

Figure 31 shows a TWT structural map near the top near the top of the Middle (?) 

to Late (?) Miocene sequence. The TWT structural map shows that this sequence is 

affected by fault families 1, 3, 5, 6, 7 and 8. To the south of fault family 1 (GFS) the GFS 

it is affected by fault families 3, 6, 7 and 8; to the north of the GFS is affected for fault 

families 5.  

 

Four main structural highs are found south of the GFS in the offshore area 

(Figure 31). The three southernmost highs have a common N~30°E trend and matches 

with the basement paleo-highs mapped in tectono-sequence I which suggest that the 

Middle (?) to Late (?) Miocene sedimentation is also controlled by the basement highs. 

The northernmost high defines the Patía Promotory (Figure 31) and the shelf which 

extends towards the north in the whole study area. The Patía promontory and the shelf 

break can be also appreciated in Figure 10. 

Associated with fault family 6, north of GFS is common the formation of piggy-

back basins. The most preserved and well-formed piggy back basins are located near the 

coast line as shown in Figures 14 and 31. Also, in the southwestern side of the basin, is 

possible to observe a better formation of the Guaiquer ridge during this time. 

 

Time thickness map (Figure 29) indicates that the thickness of the sequence 

varies along the whole basin and reveals the occurrence of three major depocenters.   

The first depocenter is localized in the Tumaco onshore basin (Figures 24, 31). 

Based on the free-air gravity map is possible to determine that this depocenter has a NW-

SW trending (Figure 3). The thickness of this sequence varies in this area. Towards the 

Western Cordillera and the Remolinogrande high the sequence is thinner while in the 
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central portion of the basin the sequence is thicker (Figure 24). And compared with 

sequences III-A and III-B its depocenter is wider and longer. 

The second depocenter is located to the south of the offshore area, in the 

Manglares basin along (Figure 16, 31) where it reaches at maximum depth of 5000 TWT 

(ms) and an approximate thickness of 3000 TWT (ms). Based on the free-air gravity map 

is possible to determine that this depocenter has a NW-SW trending (Figure 3).  

The last depocenter is located in the northern area of the Tumaco offshore basin 

(Figure 31). It has an approximate W-E trend. In this area, this depocenter is 

characterized by having approximately 3200 TWT (ms) thickness.  

It is also important to notice, that towards southern highs the thickness of the 

sediments is thinner (Figure 31).  
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Figure 31. To the left TWT structural map at near the top of the Middle (?) to Late (?) Miocene sequence. To the right, Middle (?) to Late (?) 

Miocene time thickness map. AC: accretionary prism, HDZ: highly deformed zone, FF: fault family. ((
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TECTONO-SEQUENCE IV ( LATE MIOCENE -PLIOCENE TO RECENT): 

Outcrop description 

It represents the most recent and shallower sedimentary sequence in the basin. It 

consists of the Cascajal Formation (Late Miocene - Pliocene) and Recent sediments. 

According to the Caldas-ANH (2011) this unit outcrops in the Tumaco Bay and can be 

correlated with the Raposo Formation in the Ladrilleros area, north of the study area 

(Figure 24). 

The Cascajal Formation consist of a succession of decimetric to metric 

sandstones, conglomeratic sandstones and conglomerates with lithic composition and 

lenticular geometry occasionally intercalated with mudstones with less than 2 meters of 

thickness (Caldas-ANH, 2011).  

Based on the facies interpretation (Caldas-ANH, 2011) suggests that this unit was 

dominated by littoral environments of high energy (deltaic environments) like marine and 

distributary channels and coastal lagoons.   

Based on the scarce palinological recovery, Caldas-ANH (2011) established and 

age of Late Miocene – Pliocene (Messinian – Zanclean?).  

Well character 

The sequence was drilled by the Remolinogrande-1, Sandi-1, Tambora-1 and 

Majagua-1 well. The well character shows low gamma ray readings, suggesting the 

presence of sandstones layers as indicated by the outcrop descriptions (Figures 18, 19, 

20). The thickness of the sequence varies from 30 to 250 meters along the basin, where 

the major thickness is found in the central area of the study area, in the Remolinogrande-

1 and Sandi-1 wells. 
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Seismic character 

The seismic facies are characterized by well-bedded, continuous and high 

amplitude reflectors with different terminations patterns and types of discontinuities. 

In the Tumaco onshore basin it is characterized by continuous parallel to sub-

parallel reflectors, with low to medium amplitudes. Onlapping reflectors against the 

tectono-sequence II, the Western Cordillera and the Remolinogrande high are appreciated 

(Figure 23, 24). Also, onlap and downlap reflectors indicate the presence of a prograding 

shelf (Figure 32).  

Across the Manglares basin, in the offshore area, it is characterized by continuous 

parallel to sub-parallel reflectors, with low to medium amplitudes with downlaps and 

onlaps against the western flank of the basin (Figure 16, 23). However, in some seismic 

lines, this sequence is pinching out against the western flank of this basin. 

The Patía segment it is characterized by well-bedded, parallel to sub-parallel 

continuous high amplitude reflectors that onlaps and downlaps against tectono-sequence 

II (Figure 16). In the Patía area these reflectors are almost horizontal. 

In the north Tumaco offshore area it is characterized for discontinuous, parallel to 

sub-parallel reflectors, with low to medium amplitudes that downlaps against  tectono-

sequence II, defining unconformity U5 (Figure 14). 

In the Pacific trench, it is characterized for having low frequency, chaotic and 

burry reflectors that change laterally and vertically to higher amplitude and well defined 

reflectors (Figure 26). These reflectors gently dip 3-5° basinwards (Figure 16).
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Time structural map and time thickness map 

Figure 33 shows a TWT structural map near the top near op of the Pliocene to 

Recent sequence in the offshore area. The TWT structural map shows that this sequence 

is affected by fault families 1, 3, 5 6, 7 and 8. To the south of fault family 1 (GFS) the 

GFS it is affected by fault families 3, 6, 7 and 8; to the north it is affected for fault 

families 1 and occasionally by fault family 5.  

 

Two main structural highs are observed (Figure 33). The first one is located along 

the western side of the coast line of the entire study area. It has an approximate N~30°E 

trend. This structural high is wider towards the north and thinner towards the south and 

the central area it extends up to the highly deformation zone (Figure 33). Its western side 

is highly affected by normal gravitational faults of fault family 7. This high clearly define 

the Patía promontory and the shelf break (Figure 33). The second one is located 

westwards of the Manglares basin and clearly define the Tumaco high as appreciated in 

Figures 33 and 10.  

 

Time thickness map (Figure 33) indicates that the thickness of the sequence 

varies along the whole basin and reveals the occurrence of four major depocenters.   

The first three depocenters are localized in the Tumaco offshore basin as shown in 

Figure  33. This depocenters have and approximate thickness of 2000 TWT (ms) and are 

located in the Manglares basin, the Patía segment and south of the Patía promontory. The   

northernmost depocenter has an N~30°E trend and an approximate 2000 TWT (ms) 

thickness. Most of the study area exhibits thinner depocenters localities with approximate 

thickness of 1000 TWT (ms) as shown in Figure 33. 
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In the Patía segment and in the Pacific trench the thickness of the sequence varies 

from 100 to 1000 TWT (ms) and it is slightly affected by the deformation (Figures 16 

and 26). 
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Figure 32. Close up from figure 24 showing the Pliocene prograding shelf.
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Figure 33. To the left TWT structural map from near the top of the Pliocene to Recent sequence in the offshore area. 1) 

White dashed line represent the shelf break, 2) Gravitational faulting along the shelf break. To the right time thickness map of 

the Pliocene-Recent sequence showing the main depocenters. White circles indicates areas of no deposition or erosion. AC: 

accretionary prism, HDZ: highly deformed zone, FF: fault family. 
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Hydrocarbon Indicators 

BOTTOM SIMULATING REFLECTOR (BSR) 

The new seismic reflection data collected along the offshore Pacific margin in 

Colombia exhibit a persistent seismic reflector in all the lines characterized by cross-

cutting other seismic reflectors, having high amplitudes and reverse polarity. This 

reflector was identified as ‘bottom simulated reflector’ (BRS) (Figure. 38). It was 

mapped throughout the offshore area and it appears at depths 800-5600 TWT (ms)  below 

the sea floor and can be traced from the actual accretionary prism at water depths of 3200 

mbsl westwards up to  400 mbls  slope, eastwards.  

  

 

Figure 34. Bottom simulating reflector (BSR) example. Notice how closely 

parallels the sea bottom reflector.  The gas hydrate must be found in the sediments above 

the BSR, and free gas in the sediments below.  

 

A TWT structural map of the BSR and a time thickness map between the BSR 

and the sea bottom were done (Figure 35).  
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The TWT structural map (Figure 35) indicates that this reflector can be found 

from the continental slope, bellow 400 TWT (ms) depths up to the accretionary prism at 

about 6400 TWT (ms). The time thickness map (Figure 35) shows how the thickness 

between the sea bottom and the BSR varies along the basin and that it is fairly constant 

along the study area. However, the thickness in the northern area is more constant that in 

the southern area.
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Figure 35. To the left TWT (ms) map of the BSR to the right time thickness map between the BSR and the sea bottom.
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ORGANIC GEOCHEMICAL ANALYSIS 

From the five wells drilled in the study area, only three contains Rock-eval 

analysis and Vitrinite Reflectance (Ro) data (Sandi-1, Tambora-1 and Majagua-1). The 

Remolinogrande-1 well only has Total Organic Carbon (TOC) and (Ro) values.  

 

In order to determine the kerogen type and maturity of the samples from the 

Sandi-1, Tambora-1 and Majagua-1 the hydrogen index (IH), oxygen index (OI) and the 

maximum temperature (Tmax) values were plotted in Figures 36, 37 and 38. The 

modified Van Krevelen diagram (Figure 36) and the IH vs Tmax plot (Figure 37) 

indicates that most of the samples have kerogen type III and IV and only the well 

Tambora-1 has some samples with kerogen type II. Figure 38 indicates that only one 

sample, from all the wells, reached the pick of the oil window.  
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Figure 36. Modified van krevelen diagram for the Sandi-1, Tambora-1 and 

Majagua-1 wells. Notice that most of the samples have kerogen type IV associated with 

inert organic matter. The best kerogen characteristics are associated with the well 

Tambora, which has kerogens types IV (inert), III (terrestrial) and II (marine).  
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Figure 37. Crossplot diagram of HI vs Tmax. The diagram indicates that only the 

samples from the Tambora-1 wells have the potential to generate liquid and gas 

hydrocarbons, associate with kerogen types II and III respectively. However, most of the 

samples are still inmature to generate any kind of hydrocarbon. Only few samples from 

the Majagua-1 and Sandi-1 wells are located at the beginning of the oil generation 

windown. 
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Figure 38. Crossplot diagram of Tmax vs Production Index (PI). The diagram indicates that all the samples of the 

Majagua-1 well area in a low level of hydrocarbon conversion and two of the seven samples of the Sandi-1 well are stained or 

contaminated, one is located within the oil window and the rest of the samples are still inmature to generate hydrocarbons.
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5. DISCUSSION 

The Gorgona Terrane accretion  

Franco and Abbot (1999) based on the ages assign to the Gorgona basement by 

Sinton et al., 1993 (~89 Ma) and the ages of siliceous shales that unconformable overlie 

the basement of the Gorgona island dated by Gansser (1950) and Dietrich et al., 1981 as 

Upper Eocene (36.6 to 43.6 Ma) calculated that the age of the accretion of the Gorgona 

terrane was Early to Middle Eocene.  

Based on deformed sandstones that unconformable overlies that basement in the 

Gorgona Island, paleomagnetic data and plate tectonic reconstructions, (kerr and Tarney, 

2005) suggest that the Gorgona terrane is part of the Caribbean oceanic plateau that was 

carried by the Farrallón plate from 26°-30°S northwards until it was accreted to the 

Colombian continental margin during the Middle Eocene (~45 Ma).  

Using seismic interpretation, Marcaillou and Collot (2008) suggest that the 

basement of the Manglares basin was accreted to the continental margin during the Late 

Cretaceous or Paleocene. 

 

In this study seismic interpretation and gravity data allows defining that the 

Remolinogrande high corresponds to the southern extension of the Gorgona Island, 

defining a unique terrane of Cretaceous age ~ 90 Ma (based on radiometric ages from 

volcano-clastic rocks from  Remolinogrande high and Gorgona dikes from Universidad 

de Caldas-ANH (2011)) with and approximate extension of 150 km (Figure 3).  

 

Unconformity U1 identified on seismic data is suggested to be the time of 

accretion of the Gorgona terrane. Based on U-Pb dating in detritic zircons and nanofossils 

studies, Universidad de Caldas-ANH (2011) assigned an Upper Oligocene to Lower 

Miocene age (28-20 Ma) to the sandstones dated by Gansser (1950) and Dietrich et al., 
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1981 as Late Eocene and based on calcareous nanofosils analyses assigned and Eocene – 

Early Miocene to the Unidad Sur-1 (tectono-sequence II is this study).  

 

The age difference between the Gorgona basement rocks (~ 89 Ma) and the 

overlying sedimentary rocks (~28 – 20 Ma) provides a minimum estimate of the time of 

the accretion of the Gorgona terrane. The age difference is 61 – 69 Ma, which suggest 

that the Gorgona Island was accreted during the Late Cretaceous – Paleocene in 

agreement with Collot and Marcalliou (2008); and related to the time of accretion of 

other oceanic plateaus in Ecuador (Jaillard et al., 2004; Luzieux et al., 2006) and rather 

the Middle to Late Eocene tectonic event proposed by Franco and Abbot (1999) and Kerr 

et al., (2004) can be the reason for unconformity U2 and the moderate deformation and 

folding observed in tectono-sequence II (Figure 16). This Middle to Late Eocene event 

can be correlated with a regional plate kinematic change known in the Andes as the 

Incaic compressive phase (Mégard, 1984; Jaillard and Soler, 1996; Noblet et al., 1996) as 

proposed by Marcalliou and Collot (2008). 

 

 

Processes for seaward migration of the accretionary prism in response 

to oceanic plateau and seamount accretion. 

 

Figure 13 shows the bathymetric profiles along the Tumaco offshore basin. The 

bathymetric data shows that the Tumaco offshore basin in the southern area does not 

exhibit a gentle topographic slope (Figure 13, profiles A, B and C), but rather a rough 

topographic profile with a “bulge” that extends towards the north and the south for almost 

50 km. In this area, the sediments are strongly deformed, thrusts and vertical faults occur 

making difficult to follow the seismic sequences and generating complicated structures 
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that are poorly resolve. This topographic “bulge” matches with an anomalous gravity 

high shown in Figure 3. This seismic and gravity signatures suggest that this topographic 

high may be related to seamount material that was accreted into the continental margin. 

In addition, the highly deformed area, related to fault family 6 westward of the Manglares 

basin (Figure 16), can be correlated with a previous accretionary prism related to the 

accretion of the Gorgona Island. 

 

The accretion of oceanic plateaus and seamounts can take several forms. Large 

accretion events may cause the reversal in trench polarity and switch in the direction of 

subduction (Ben-Avraham et al., 1982; Kroenke et al., 1991). “Smaller accretion events 

can also produce seaward trench jumps. Because sufficiently buoyant lithosphere cannot 

subduct, the continued motion of the rest of the oceanic plate will cause a build up of 

forces near the buoyant feature. When these forces exceed the strength of its weakest 

part, the buoyant feature and some surrounding seafloor will break off from the 

subducting plate and a new trench will form seaward of the former trench.” (Franco and 

Abbot, 1999).  

 

 

In this study, it is proposed that the Tumaco offshore basin not only experience 

the accretion of the Gorgona Island but also the accretion of a seamount feature. In both 

cases, the accretion was followed by a seaward trench jump which originates the 

migration of the accretionary prism and the formation of a new fore-arc system. Figure 

39 shows the proposed evolution and deformation model for the subduction of the 

seamount feature in the Tumaco offshore basin.  
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This model, can be correlated with sandbox experiments by Dominguez et al., 

(1998, 2000) where the topography of the continental slope in subduction systems could 

be highly affected by the accretion of seamount features. In his experiments he describes 

all the deformation stages affecting the accretionary prism and how this one migrates 

seawards as seamount features is incorporated into the subduction system. The main 

stages can be resuming in: 1) uplifting of the continental margin, 2) indentation of the 

accretionary wedge, 3) subsidence of the frontal margin 4) the formation of a new 

accretionary prism (Figure 39)  

 

 

Figure 39. Schematic stages of the seamount subduction and seawards migration 

of the accretionary prism. Modified from Dominguez et al., (2000).
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Tectono-stratigraphic evolution 

LATE CRETACEOUS – PALEOCENE 

By Late Cretaceous- early Paleocene the tectonic regime in southwestern 

Colombia changed from a passive margin to an active convergent margin as a result of 

oblique collision of the leading edge of the Caribbean plate and South American plate 

(SOAM) (Cediel et al., 2003; Duque-Caro, 1990; Kennan and Pindell, 2009; Moreno-

Sanchez and Pardo-Trujillo, 2003; Pindell et al, 1998). Collision started in Ecuador and 

southern Colombia, resulting in the emplacement of the Western Cordillera range, around 

75-70 Ma (Villagomez, 2010). The collision was followed by right-lateral strike-slip 

faulting along the Romeral fault system, as the Caribbean plate collision migrated 

diachronously to the north and northeast (Villagómez et al., 2011). 

 

During the Late Cretaceous- Middle Paleocene the accretion of the Gorgona 

terrane against the western margin of southwestern Colombia took place (Marcalliou and 

Collot, 2008) (Figure 40). This terrane was carried by the Farrallón plate from 26°-30° 

northwards (Kerr et al., 2004) until it was accreted to the Colombian continental margin. 

The accretion was diagonal and probably driven by strike-slip faults related to fault 

family 1.  The buoyancy of the basement terrene generates a basinwards jump in the 

subduction zone (Franco and Collot, 1999).  

 

According to Gómez et al., (2005a) the oblique accretion of oceanic blocks 

against the Western Cordillera is the driving mechanism for the Late Cretaceous initiation 

of shortening and uplift in the Central Cordillera. 
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EARLY (?) EOCENE  - EARLY MIOCENE ? 

From Early to Middle Eocene convergence of the Farrallón plate below the South 

American plate was oblique, between 45° and 35° (Somoza, 1998) generating 

magmatism in the Western Codillera as evidenced by the Mandé Batholith ~43–44 Ma 

(Borrero et al., 2012) and the initial formation of the fore-arc basin. During this time  

calcareous turbidites from tectono-sequence II dominated the sedimentation (López, 

2009) (Figure 40). This sedimentation was controlled by fault family 4 in the basement. 

The folding observed in the Manglares basin in tectono-sequence I and II suggest that a 

compressional episode occurs during the Oligocene (Figure 16). Which can be either 

correlated with a regional plate kinematic change known in the Andes as the Incaic 

compressive phase (Jaillard and Soler, 1996; Noblet et al., 1996); with the break-up of 

the Farallones plate (Lonsdale, 2005) or the collision between the Panama arc against the 

South American plate ~23- 25 Ma (Farris et al., 2011). 

The Oligocene break-up of the Farallones plate into the Nazca and Cocos plates 

marked a period of plate kinematic reorganization (Farris et al., 2011). The new Nazca 

plate has an orthogonal subduction below the South American plate generating arc 

magmatism in the Western Cordillera as evidence by the Pierdrancha Batholith ~ 24 -23 

Ma (Borrero et al., 2012).  

EARLY MIOCENE -MIDDLE MIOCENE 

During the Early – Middle Miocene, the Tumaco on-offshore basin was 

dominated by two main processes, high subsidence and high sedimentation rates 

indicated by the large topography extend of tectono-sequence III (Figure 40).  Changes 

and migration of depocenter in the Manglares basin (Figure 16) can be explained as a 

consequence of high subsidence rates and different episodes of the formation of the 

Manglares fore-arc basin. 

http://www.sciencedirect.com/science/article/pii/S0895981112000417#bib80
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Based on foraminifers analysis, Duque Caro (1990) suggested an upper slope 

deposition. López (2009) based on seismic analysis, suggested that these units were 

deposited by a volcano-clastic fan at the toe of the continental slope.  

 

MIDDLE – LATE MIOCENE 

During the Middle to Upper Miocene, the Tumaco offshore  basin was dominated 

by compressional process due to the convergence of the Nazca pate below the South 

American plate (Figure 40). This compressional process generates: 1) a thick-skin 

deformation style south of Garrapatas Fault Zone, folding tectono-sequence I-III (fault 

family 6); 2) a thin-skin deformation style north of GFS, folding and faulting tectono-

sequence III (fault family 5). 

This compressional event is well documented in Ecuador and Colombia and 

corresponds to one of the periods of exhumation of the Western Cordillera in Colombia 

(Villagomez, 2010) and Cordillera Real in Ecuador (Spikings 2001). 

During this time, the subsidence rates in the basin decrease resulting in 

shallowing process with deposition of thick sandstones sequences with high 

concentration of volcanic lithics of intermediate and plutonic composition sourced by 

Western Cordillera (Sequence III-C). 

EARLY PLIOCENE – RECENT 

During the Early Pliocene to Recent the compressive phase is less intense and the 

basin underwent high subsidence and sedimentation rates (Figure 40) . In the Patía 

promontory, the onlapping reflectors of tectono-sequence IV against the basement 

“bulge” indicates ongoing uplift of this basement “bulge”.  
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Prograding reflectors of tectono-sequence IV over tectono-sequence III, suggest 

that sedimentation was dominated by deltas and continental fans, with volcano-clastics 

sourced by volcanos at the Western Cordillera during the time.  

The Manglares basin is locally affected by the occurrence of fault families 7 and 

8. Fault family 7, associated with basinwards dipping normal faults with larger throws 

~500 TWT (ms), affects the southeastern corner of the Manglares basin. The fact that 

these faults are dipping basinwards, in the same direction of seafloor topography and 

strata dip direction, suggest that they can be associated to gravitational process affecting 

the sea floor and the shelf break. These fault faults detaches in the Paleogene sequence 

and generated compression in the western flank of the Manglares basin generating out of 

sequence deformation 

 In contrast, fault family 8, high angle normal faulting with small throws values 

that generally dips landwards affects tectono-sequence III and IV. No evidence of growth 

strata is appreciated, suggesting that the extension activity occurs recently, after 

deposition of tectono-sequence IV.  The fact that the faults are dipping landwards and no 

seawards suggest that they are related to tectonic processes rather that to be associated 

with gravitational process, and can be related to the recent activity of the Buenaventura 

Fault Zone. 
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Figure 40. Simplified structural evolution model proposed in this study. a) Structural evolution for the Tumaco offshore basin, 

northwards Garrapata fault system (GFS) - Tumaco North b) Structural evolution model for the Tumaco  on- and offshore basin, 

south Garrapata fault system (GFS) -Tumaco South. 1) The basement is involved in this model and 2) As the subduction advances and 

the terranes collides the fore-arc basins migrates eastwards. PT: Pacific trench; AC: Accretionary prism; RG: Remolinogrande high; 

WC: Western Cordillera; Ton: Tumaco onshore basin and Toff: Tumaco offshore basin.

Early Eocene – 

Early Miocene Late Cretaceous - 

Paleocene 
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Hydrocarbon Exploration Implications 

SOURCE ROCKS  

The mudstones and siltstones of the Unidad Sur-1 Formation which belongs to 

tectono-sequence II as shown are thought to be the source rocks in the basin. The organic 

geochemistry analysis done by Robertson Research (1981a), concluded that the Unidad 

Sur-1 Formation has potential to generate gas. However, the fact that the samples from 

this unit comes from the Remolinogrande high area and that these rocks are thought to be 

deposited and buried to deeper depths in the Tumaco onshore basin (Figure 24) and some 

areas in the Tumaco offshore basin (Figure.X) provides reasons to suggest that this unit 

may be mature enough at higher burial depths allowing the generation of liquid 

hydrocarbons.  

In addition, source rock analysis from the shaly intervals of tectono-sequence III  

in the Tambora-1, Sandi-1 and Majagua-1 suggest that the main hydrocarbon potential of 

this sequence is gas related (Figure 37), associated with kerogen type III (Figure 36) but 

with a low level of conversion (Figure 38). 

RESERVOIR ROCKS  

The Middle to Late Miocene rocks, which belong to tectono-sequence III-B and III-C are 

thought to be the main reservoir units of the Tumaco basin.   According to the onshore 

stratigraphic descriptions of these sequences are composed by a sandstones and 

conglomerates with lithic material deposited in deltaic environments.  

TRAPS AND SEAL ROCKS 

Based on seismic interpretation, stratigraphic and structural plays types have been 

identified in the study area as shown in Figure 41. 
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Two main types of structural traps are observed (Figure 41). 1) Structural traps 

associated with normal faulting in the flanks of the Cretaceous basement paleo-highs 

(Fault family 4 ) structural traps associated to the older and less deformed thrust and fold 

belt, near the Buenaventura Bay and related to fault family 6 (Figure 41). 

Stratigraphic straps:  

Mainly found in the northern part of the study area and in the Manglares basin. 

They are associated with submarine fans and incised canyons of Miocene age, sequence 

II-B and II C (Figure 41).  

Figure 30 shows an example of canyon found in the Manglares basin which can be an 

excellent stratigraphic trap in the study area. Another play type includes Paleogene (?) 

Turbidites deposited within the depocenter axes of the Manglares basin. 

 

MIGRATION 

In the Tumaco onshore basin migration may occur from NWW or SEE, while in 

the north migration may have occurred from SW or NW  filling up traps along the eastern 

and northern side of the N30°E Gorgona basement complex and in the north, traps west 

of the Buenaventura Bay, in the surrounding area of the Tambora-1 well (Figure 41). 

The elongated Gorgona basement complex is likely to have acted as a migration 

barrier for the hydrocarbons migrating from the Tumaco onshore basin, the Manglares 

basin and from the north (near the Buenavantura Bay) during the Miocene. This may 

explain the gas seeps found in the Gorgona basement complex vicinities. 

 

Figure 42 shows the hydrocarbon chart resume of the Tumaco on-and offshore basin.
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Figure 41. Schematic map of the Tumaco on- and offshore basin showing location of possible hydrocarbon 

accumulations and type of plays associated to it. Figure based on 2-D seismic interpretation. The figure also show non 

hydrocarbon prospective areas as the accretionaty prism and the highly deformed zone. HC: Hydrocarbon.
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Figure 42. Hydrocarbon events chart summarizing the major petroleum system 

elements of the Tumaco on- and offshore basin.  The critical moment is reached during 

the Late Miocene when the deposition of the seal rock occurred. 
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CONCLUSIONS 

 

1. Four main tectono - stratigraphic sequences were interpreted ranging in age from 

Cretaceous to Recent. 

2. Two main structural deformation styles were identified. 1. A thin-skin deformation 

style, north of the Garrapatas Fault System (GFS) and a thick- skin deformation style, 

south of GFS - named as Tumaco South.  

3. To the south, in the Tumaco south area, it was possible to identify that the fore-arc 

basins are migrating eastwards as Cretaceous basement “terranes” collides while the 

subduction of the Nazca plate beneath the South American plate advances. 

4. Based on the seismic interpretation and published data it is proposed that the 

Remolinogrande high is the southern extension of the Gorgona basement and together 

define a unique terrane which was accreted to the Colombian continental margin 

during the Late Cretaceous – Paleocene. 

5. The source rock evaluation indicates that the main source rocks are the rocks of the 

Unidad Sur-1 Formation (tectono-sequence II) and the main hydrocarbon potential is 

gas related. 

6. The main potential reservoirs rocks include Early to Middle Miocene sandstones 

(sequence IIA-IIB) with hydrocarbon plays related to canyons and submarine fans.
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