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ABSTRACT 

To gain a better understanding of the relationship between capillary pressure, water 

saturation and interfacial area in two phase flow, we have studied the drainage and imbibition 

process for an oil-water system. A level set model that was developed at IRIS was used to 

simulate the results, which where plotted in Excel and Matlab. Furthermore Paraview was 

used to visualize the oil migration for the imbibition and drainage process.   

            The capillary pressure curves showed to differ when the invasion of the fluid occurred 

from different sides in the heterogeneous rock. Furthermore the result obtained showed that 

inclusion of the interfacial area in the capillary pressure and water saturation relationship did 

not eliminate hysteresis. 
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NOMENCLATURE   

       interfacial area between any fluid-fluid interaction 

      interfacial area between oil and water 

      specific interfacial area between oil and water 

C   interface curvature 

     capillary pressure 

     oil pressure 

     water pressure 

      capillary pressure in nonwetting fluid 

     capillary pressure in wetting fluid 

         interfacial tension between the nonwetting and wetting fluid 

      principal radii of the curvature for the nonwetting fluid  

     principal radii of the curvature for the wetting fluid 

     mean radius of curvature 

     water saturation 

     oil saturation 

     volume of the void space  

    volume of oil in the pore space 

      interfacial energy between oil and solid 

      interfacial energy between oil and water 

      interfacial energy between solid and water 

    contact angle 

   ⃗   distance function 

    signed distance function  

      the signed distance function for oil/water interface 

      the signed distance function for void/solid interface 

      sign function 

    tolerance value 

H   the Heaviside function  

    the Dirac delta function 
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     interface boundary 

    exterior  

    interior 

 ⃗⃗⃗   normal vector 

 ⃗⃗   tangential vector 

     interface speed in normal direction 

     interface speed in tangential direction 

   mean interface curvature 

HJ WENO  Hamilton Jacobi Weighted Essentially Nonoscillatory 

TVD RK  Total Variation Diminishing Runga-Kutta 

CFL   Courant-Friedreich-Levy 

    b-factor 

   number of grid points 

IFA   interfacial area 

 

 

Subscripts 

   fluid 

   oil  

   water 

   solid 

   void 

   capillary 

   normal direction 

   tangential direction 
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CHAPTER 1 

INTRODUCTION 

Fluid interactions are important in the petroleum industry and other fields such as 

image processing, computer graphics, computational physics and the list goes on (Helland et 

al. 2011). In many industries the interactions between immiscible fluids on a microscopic 

level is important to understand for a series of natural and technical processes. However to 

investigate fluid interactions at microscopic level is not always an easy task. In the petroleum 

industry the main focus is usually the interactions between the two immiscible fluids oil and 

water. The thermodynamic process associated with these two immiscible fluids in the porous 

media is the capillary induced forces (Morrow et al. 1970). Example is the movement of oil 

within the porous solids naturally due to pressure differences or forced during water injection. 

Furthermore a number of experiments have been conducted to explain the relationship 

between the capillary pressure and water saturation during fluid movement. The characteristic 

shapes of the drainage and imbibition curves for fluid displacement are well known figures. 

The shape however depends on the restriction of displacement of the immiscible fluid in the 

porous media and it may give rise to capillary hysteresis. Capillary hysteresis is due to many 

factors that govern in the porous media, such as pore connectivity and pore geometry. 

However the lack of information about the microscale geometry and the microscale processes 

limit our understanding of the multiphase flow (Culligan et al. 2006). Variables such as the 

porosity and saturation are defined at macroscopic level. However they might not have a 

meaning on microscale level (Culligan et al. 2006). The article by Hassanizadeh and Gray 

[1993] proposed an inclusion of the interfacial area between two immiscible fluids to the 

capillary pressure and water saturation relationship. So that it would aid to eliminate or 

diminish capillary hysteresis, and relate a macroscopic variable such as the water saturation to 

a microscopic one. Furthermore the latter work by Joekar-Niasar et al. [2007] showed that the 

interfacial area could be an essential variable to the       relationship for eliminating 

hysteresis.  

            The main objective of this work is to study the relationship between the capillary 

pressure, water saturation and interfacial area with help of the level set model developed at 

IRIS. The model developed at IRIS uses the level set method to find results for the capillary 

pressure, water saturation and interfacial area between oil and water. The model is tested to 
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whether it simulates results according to experimental results, and if the result obtained can be 

used to determine if in fact adding the micrcoscopic variable to the      -relationship will 

eliminate hysteresis.  

            To be able to investigate whether the model produces theoretically correct results 

compared to experimental data, the drainage and imbibition curves for invasion in different 

sides of a cube where simulated. The data results where visualized in Paraview to recognize a 

number of well-known capillary hysteresis events. Furthermore analytical calculations of the 

interfacial area between oil and water were also conducted to compare with simulations.  



11 
 

CHAPTER 2 

LITERATURE REVIEW 

The basic concepts that are related to this study are elaborated in the following chapter.  

2.1 Capillary pressure 

In oil migration the capillary pressure is an important factor that needs to be studied in detail. 

The reservoir consists of many fractures with dimensions of tens of microns or less, and the 

capillary pressure play a significant role in determining the fluid configurations (Prodanovic 

et al. 2007). The capillary pressure can either aid or oppose the displacement of one fluid by 

another in the pores of a porous media. The pressure arises when two immiscible fluids come 

in contact combined with the pore size, pore geometry and the wetting characteristics of the 

fluids (Wendebourg et al. 1997). Amongst the wetting characteristics the surface and 

interfacial tensions of the rock and fluids play an important part for the generation of the 

capillary pressure. The curved surface between the two immiscible fluids will contract into 

the smallest possible area per unit volume depending on the wettability of the fluid (Tarek et 

al. 2010). Figure 2.1 is shown to be able to fully understand the concept.  

 

Figure 2.1: a) Interfacial equilibrium between the contact point of two fluids at the surface of 

a solid body (Bear et al. 1991) b) Intermolecular interaction A) in the interface between oil 

and water, B) in the oil phase (Schwartzstein et al. 2005).  

As shown in the figure 2.1a the interface between the two immiscible fluids,       , is curved 

where    and   denotes nonwetting and wetting, respectively. Figure 2.1b shows an 

illustration of the molecule force interactions in the oil and at the interface between oil and 

water. This molecular force contraction per unit length is defined as the interface tension 

(Schwartzstein et al. 2005). Within a liquid the molecule will be surrounded on all sides by 
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other similar molecules that exert force on it, but because of the molecular arrangement 

symmetry there is no net molecular movement. However at the interface between oil and 

water, the liquid which is much “stronger” will dominate the interface. In the example of oil 

and water, the water is denser and therefore has higher wettability strength and will occupy a 

larger area on the solid than oil. The oil phase will contract itself to the smallest possible area. 

You may then ask yourself what is keeping the oil from contracting and then collapsing. This 

can be explained by the Laplace law which is given in equation (2.1). The equation gives the 

interfacial tension between the two liquids as a function of capillary pressure. Capillary 

pressure is expressed as the pressure discontinuity that is generated at any point on the 

interface between the nonwetting and wetting phase (Bear et al. 1991). In equilibrium the 

expression for the capillary pressure is given by the Laplace eqaution as following (Bear et al. 

1991),  

 
                                (

 

   
 

 

  
) 

(2.1) 

where    is the saturation of the wetting fluid,         is the interfacial tension between the 

nonwetting and wetting fluid,    and    . is the pressure in the wetting and nonwetting fluid, 

respectively.    and    are the principal radii of the curvature at the interface which are not 

usually measured. Mean radius of curvature,   , is used and equation  (2.1) can be rewritten 

as following, 

 
   

        

  
 

(2.2) 

The pressure discontinuity that arises can be explained by the fact that the oil does not 

collapse, but exerts a capillary pressure on the water. It can be visualized by considering an 

oil sphere which is surrounded by water. Although water is denser and oil would want to 

contract to smallest possible area, it will stop its contraction at a certain point. At this point 

the capillary pressure is the pressure “inside” the sphere. The smaller the radius of the sphere 

the larger the capillary pressure will be. Therefore in order to maintain a porous medium 

partially saturated with a nonwetting fluid and a wetting fluid the pressure of the nonwetting 

fluid has to be a value greater than that of the wetting fluid (Ahmed et al. 2010). The pressure 

excess in the nonwetting fluid is the capillary pressure, and this quantity is a function of the 

wetting phase saturation (Tarek et al. 2010). Saturation can be defined as the fraction of a 
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fluid in a given pore space. Water saturation can be calculated by equation (2.3) if we 

consider only oil and water in the pore space.  

 
   

     
  

 
(2.3) 

where    is the volume of the void space and    is the volume of oil in the pore space. Since it 

is only considered to be oil and water in the pore space the saturation of oil is equal to    

    . Finally the capillary pressure for oil and water interactions can be expressed by 

equation (2.4). 

                      (2.4) 

Figure 2.2 shows a typical capillary pressure curve for a core sample where water is the 

wetting phase and oil is the nonwetting phase. The        curve for increasing    is called 

imbibition curves, while capillary pressure curve for decreasing    are called drainage curves 

(Barenblatt et al. 1990). In other words the drainage process is when oil displaces water, and 

imbibition process is when water discplaces oil. Imbibition is the reverse action of drainage 

and is the flow process of interest in oil reservoir migration (Ahmed et al. 2009).  

 

Figure 2.2: Example of the capillary pressure curve for oil and water system. Courtesy of 

Vinci Technologies. 

However one would assume that the drainage curve and the imbition curve would fall 

perfectly on the same line, but that is not the case in real porous media due to hysteresis. 

Hysteresis is a term to explain the process of fluid entrapment. Capillary hysteresis is a result 

of several factors, to mention a few pore geometry, fluid configurations and chemical 
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interactions. The pore interconnectivity can hinder the movement of fluid phases and result in 

irreducible saturation for the water and oil phase. In the subsequent sections the cause to 

capillary hysteresis is explained combined with typical phase entrapment which is 

implemented in the simulation. 

2.1.1 Contact angle hysteresis 

As mentioned before the wetting characteristics of the fluid play an important role in the rise 

or decrease of the capillary pressure. The ability a fluid phase has to wet a solid surface when 

in presence of a second immiscible fluid phase is called wettability (Fanchi et al. 2005). The 

intermolecular interactions that occur when a liquid contacts a solid surface can cause the 

liquid to either spread into a thin film or shrink to minimize its contact area (Asthana et al. 

2006). Whether the liquid will spread out or shrink depends on the strength of wettability. The 

strength of wettability is measured by the contact angle. The contact angle is always 

measured through the denser phase and is related to interfacial energies by 

                 (2.5) 

where     is the interfacial energy between oil and solid,    , is the interfacial energy 

between solid and water and     is the interfacial energy between oil and water.   is the 

contact angle between the two fluids. By earranging equation (2.5) we get the following 

expression for the interfacial energy between oil and water.   

     
       

    
 (2.6) 

Equation (2.6) indicates that if the contact angle decreases the interfacial tension between oil 

and water will increase. Increasing the interfacial tension will result in a higher capillary 

pressure as indicated in equation (2.2). 

 

Figure 2.3: Illustrative of wettability of oil and water.  

Figure 2.3 shows an illustration of the strength measurement of the contact angle, and as 

depicted in the figure the smaller the contact angle the stronger the wettability is for the water 
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phase. The important characteristic of solid-liquid and liquid-liquid interface interactions is 

contact angle hysteresis. Contact angle hysteresis is governed by adhesion, surface roughness 

and heterogeneity of the two phases which are in contact (Bhusan et al. 2011). The energy 

required to separate any two substances will always be greater than the energy gained by 

bringing them together. This loading and unloading cycle is a thermodynamically irreversible 

loss of energy process, and is refered as capillary hysteresis. As shown in figure 2.2 the 

capillary pressure during imbibition is lower than during the drainage process due to the loss 

of energy. The process of saturating or desaturating the porous media with the nonwetting 

phase is one of two causes for contact angle hysteresis (Ahmed et al. 2009). The other cause is 

the varation of the pore channel section area (Barenblatt et al. 1990). Contact angle hysteresis 

can be grouped into either thermodynamic or kinetic hysteresis. Thermodynamic contact 

angle hysteresis is a function of the surface roughness and heterogenity of the pore channel. 

While kinetic contact angle hyteresis describes the hysteresis produced when the contact 

angle is changed with time due to kinetic changes in the system. The contact angle hysteresis 

will give result to a difference of events depending on whether drainage or imbibition occurs. 

For the drainage processes events such as Haines jump will occur, and for imbibitio processes 

piston like invasion and snap off can occur. All events are explained in the following sections. 

2.1.2 Haines jump 

During the drainage process the porous media will get more saturated with the nonwetting 

fluid. The capillary pressure will increase in accordance with equation (2.3), and the pressure 

of the nonwetting phase increases as the saturation of the nonwetting fluid rises. As explained 

in detail in previous chapter, the Laplace law concludes that increasing the capillary pressure 

will result in a higher radius of curvature or alteration in the surface tension of the fluids. 

Assuming the surface tension stays the same, the nonwetting phase will expand creating a 

critical interface. The critical interface is defined as the critical curvature and is the last stable 

curvature before the invading fluid occupies the entire pore space (Prodanovic et al. 2006b). 

The nonwetting phase will cause an abrupt movement of the interface, a so-called Haines 

Jump (Lenordmand et al. 1983). The jumps occur over a small timescale and the rules that 

govern the movement are based on the calculations of stability of the interfaces (Lenordmand 

et al. 1983). Figure 2.4 shows an illustration of a Haines jump. As shown in the figure the oil 

phase will have an abrupt movement, causing a large amount of oil phase filling in the pore 

space. It will stop when the oil phase encounters a pore throat that is smaller than the pore 

throat it “broke through”.  
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Figure 2.4: Haines jump in pore throat for drainage events (Jerauld et al. 1990). 

2.1.3 Piston like invasion 

Haines jump occur during the drainage process, for imbibition processes experiments have 

shown two different mechanisms that dominate, the piston like invasion and the snap off. 

Imbibition is in our simulation and as mentioned before is the process of invading the pore 

body with the wetting fluid i.e. invading the pore body with water. It is important to note that 

in the imbibition process the wetting phase will preferably imbibe into smaller pore bodies 

and throats (Barrera et al. 2007).  In piston like invasion the pore body can be invaded by the 

wetting phase at a particular capillary pressure value, only if the apparent size is lower than 

the critical value that is required to balance the current capillary pressure (Barrera et al. 2007). 

Furthermore experiments have shown that the probability of invasion of a pore body by the 

wetting fluid (water) will decrease with the number of connected pore throats that are filled 

with the nonwetting phase (oil) (Barrera et al. 2007). Hence the apparent size of a pore body 

is a function of the radius and number of throats containing the nonwetting fluid.   

 

Figure 2.5: Piston like invasion in a pore throat for imbibition events.  
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Therefore as long as the number of throats containing oil and the radius is lower than the 

critical value the piston like invasion will take place. As shown in figure 2.5 the water will 

push oil further in the pore throat and the interface is still present at the end of the throat. 

Piston like invasion will occur at a more favorable pressure than snap off. Snap off occurs 

only when the piston like invasion is topologically impossible due to pore interconnectivity. 

In the following section a description of snap off is elaborated.  

2.1.4 Snap off 

Snap off is a process that occurs during imbibition (Jerauld et al. 1990). In a snap off process 

the nonwetting phase will exhibit a saddle-shaped interface. This is due to the fact that the 

decrease in capillary pressure will result in oil contracting to the smallest possible area before 

it will snap off and separate completely.  

 

Figure 2.6: Snap off in pore throat for imbibition events (Jerauld et al. 1990).  

 

This mechanism can be explained by the discontinuity in pressure over the interface. Because 

the capillary pressure will decrease, it will make the wetting phase “stronger” and therefore it 

will occupy a larger surface area. This higher pressure in the wetting fluid combined with the 

small size of the pore throat causes suction in the wetting fluid from adjacent throats (Barrera 

et al. 2007). The suction is explained as a transport of the wetting fluid from the edges of the 

pore body into the edges of the throat, with a tendency toward equalizing the capillary 

pressure (Vaifai et al. 2009). Illustration of the mechanism and saddle-shaped interface split is 

shown in figure 2.6.  

All the mechanism and characteristics of the capillary pressure change and curvature change 

is implemented in the level set method. However the level set method is not the only method 

used to describe the capillary pressure, saturation and interfacial relationship. The following 

chapter gives a short description of other methods used in this area. 
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2.2 Pore scale modeling techniques  

The classical macro-scale models to represent the multiphase flow rely heavily on the Navier-

Stokes equation and the extensions of Darcy’s law (Porter et al. 2009). A model of 

macroscopic scale does not capture the important physical phenomena of multiphase flow 

such as the fluid-fluid interfaces, because the capillary pressure is assumed to be a function of 

   only (Porter et al. 2009).  The classical macro-scale models to represent the multiphase 

flow rely heavily on the Navier-Stokes equation and the extensions of Darcy’s law (Porter et 

al. 2009). A model of macroscopic scale does not capture the important physical phenomena 

of multiphase flow such as the fluid-fluid interfaces, because the capillary pressure is assumed 

to be a function of    only (Porter et al. 2009).  A numerous models have been proposed to 

give an accurate microscopic description of the capillary pressure, saturation and interfacial 

area relationship for a porous media. These include the pore network model, Lattice-

Boltzmann model and the main topic of this thesis which is the level set model. The level set 

method will be explained in detail in the subsequent chapter.   

2.2.1 Lattice-Boltzmann model 

The more general definition of the lattice Boltzmann method (LBM) is that it is a method to 

bridge the gap between micro-scale and macro-scale by not considering each particle behavior 

alone, but the behavior of a collection of particles as a unit (Mohamad et al. 2011). The unit of 

particles is represented by a distribution function (See figure 1b). In the work done by Porter 

et al. 2009 a multiphase lattice Boltzmann simulation is used to investigate the hysteresis in a 

glass bead porous system. The simulation conducted drainage and imbibition simulation of 

the porous system. The LB model studies the relationship between the capillary pressure, 

wetting phase saturation and nonwetting-wetting interfacial area per volume. The result 

showed that the model gave good agreement of experimental data by Culligan et al. 2004 for 

drainage, but was less satisfactory for imbibition. 

2.2.2 Pore network model 

The pore network method is an idea to map the porous medium onto equivalent network of 

interconnected pore throats and pore bodies (Muhammad et al. 2011). Exact mapping of the 

pore space onto an equivalent pore network has proven to be difficult. The porous media is 

very heterogeneous and the mapping of the interconnected pore throats and bodies involves a 

judicious choice of what constitutes a pore throat or pore body, and where they are connected 

(Muhammad et al. 2011). The development of a pore network model needs three 
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characteristics measured. These characteristics are the pore size, pore length and the average 

connectivity of the porous media.  When these properties have been found through techniques 

which will not be introduced here, the next step is selecting a shape for the pore throats. The 

choice may be cylindrical or slit-like, or have converging-diverging segments.  

The model proposed by Joekar-Niasar et al. 2009 determines the pore geometry by means of a 

pore network model. The network model gives a simulated set of drainage and imbibition 

experiments performed on a two-dimensional micromodel (Joekar-Niasar et al. 2009). The 

models approach for constructing the pore geometry is to find the medial axis by a pixel-

based distance transform. Their analysis showed encouraging results, and they presented a 

good predictive tool from the pore network model for the relationship between the capillary 

pressure, water saturation and fluid-fluid interfacial area.  

 

 

Figure 2.7: Schematic illustration of the different techniques used for simulation. a) 

Macroscopic scale b) Mesoscopic scale c) Microscopic scale (Mohamad et al. 2011). 
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CHAPTER 3 

THE LEVEL SET MODEL 

The following chapter gives a short description of the applied mathematics used to develop 

the level set model.  

3.1 The level set method 

The level set method was developed by Osher and Sethian (1988) and is a tool that can 

describe the exact position and shape of the fluid and solid interfaces in realistic fracture 

geometry (Prodanovic et al. 2008). In other words it is a numerical method for propagating 

interfaces (Prodanovic et al. 2012) 

 

Figure 3.1: a) Illustrative 1D interface (closed surface) for the zero level set       of a 

real valued level set function  , which is defined over the entire 2D domain. b) How the level 

set in a) is obtained. c) Different locations of the interface at time   , where      represents 

its initial location.   
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The method describes the interface evolution implicitly by a function          which is a 

dimension higher than the interface. The method consists of letting the interface between the 

two predefined phases to be described by the zero level set, which is the set of points  ⃗ that 

satisfy            (See figure 3.1a). Furthermore the sign of          determine the 

interior and exterior of the interface boundary (See figure 3.1). The topological interface 

changes such as merging and splitting are handled naturally. As depicted in figure 3.1a) 

depending on the users predefined sign for the interior and exterior, the level set for our 

simulation will have the same notation as the one in the figure. If the implicit function gives a 

value which is larger than zero it will be outside the interface and inside the interface when 

the function is less than zero. In the level set method developed by Helland et al. [2011} at 

IRIS, the implicit function will be larger than zero in the wetting phase and less than zero for 

the non-wetting phase, and equal to zero at the interface between the two fluids. Similar 

description for the interface between void and solid is also implemented in the simulation. 

Table A.1 in the appendix gives a description of the signs the implicit functions calculates in 

the simulation for the different interfaces. In order to fully understand the level set method, 

the implicit function   has to be explained and is done so briefly in the following sections.  

3.2 Signed distance function 

Till now it has been explained that an implicit function   has to be used to determine the 

interface between fluid-fluid contact and solid-void contact. The properties of an implicit 

function serve well for the level set method compared to an explicit representation. The 

benefits of implicit representation is that the interface can be represented as the isocontour of 

the function  . Hence the implicit function   needs to be chosen in such a way that its zero 

isocontour can be used to represent the surface of interest. The function has to be zero at the 

interface, negative in the interior and positive in the exterior as mentioned in previous 

chapters. Firstly we look at the distance function    ⃗  which can be defined as following,  

    ⃗       | ⃗   ⃗ |  for all  ⃗       (3.1) 

where    represents the interface and  ⃗  is the position vector at the interface. 

Furthermore |  |   , this is an important property to be noted. The basic concept of the 

distance function and its properties are implemented in the signed distance function. The 

properties are listed below. 

1. |   ⃗ |     ⃗  for all  ⃗ 
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2.    ⃗     ⃗    for all  ⃗      

3.    ⃗      ⃗  for all  ⃗      

4.    ⃗     ⃗ for all  ⃗      

where    represents the exterior and    represents the interior. And last but not least the 

signed distance function satisfies the following equation: 

 |  |    (3.2) 

This property is a natural choice for        due to numerical stability obtained because    is 

neither very flat nor very steep. Furthermore the void-solid signed distance function,    , is 

computed by the reinitialization equation given in equation (3.3).  

         |  |       (3.3) 

where      is a sign function that is continually updated as calculations progress. The 

numerical approximation for      is given in equation (3.4).  

      
 

√   |  |      
 (3.4) 

Equation (3.4) is also updated continually as the calculation progresses so that the term |  | 

gives the intended effect on the simulations. The reinitialization procedure is used to compute 

the fluid-fluid signed distance function, denoted as    , based on an input fluid configuration 

file (Helland et al. 2011). The input file is a micro CT scan of a real porous media. The input 

files are explained in further detail in chapter 4. For each capillary pressure the signed 

distance function     is evolved until it reaches steady state. Steady state is reached when the 

Level set equation is solved. 

3.3 The Level Set Equation 

The level set value of a particle on the front with path  ⃗    will be equal to zero (   ⃗       

 ) also shown in figure 3.1. Furthermore by using the chain rule the zero level set equation 

can be rewritten as following,  

   

  
   

  ⃗   

  
   

(3.5) 
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The first term is later denoted as    and the second term gives the gradient of the implicit 

function      and the velocity of the particle path. The velocity of the particle will have a 

component in the normal direction and one in the tangential direction as shown equation (3.6).    

   ⃗   

  
  ⃗⃗     ⃗⃗⃗     ⃗⃗ 

(3.6) 

Where  ⃗⃗ and  ⃗⃗⃗ denotes the tangent and normal vector, respectively.  As shown in figure 3.1a 

the vector  ⃗⃗⃗ points normally to the level sets and since  ⃗⃗⃗ and    point in the same direction 

and  ⃗⃗ is orthogonally on  ⃗⃗⃗,  ⃗⃗       for any tangent vector. Therefore the level set 

equation 

    (   ⃗⃗⃗     ⃗⃗)  |  |    (3.7) 

is equivalent to 

       ⃗⃗⃗  |  |    (3.8) 

Furthermore the local unit normal to the interface is given in equation (3.9) 

 
 ⃗⃗⃗  

  

|  |
 

(3.9) 

As a result of,  

 
 ⃗⃗⃗     

  

|  |
    

|  | 

|  |
 |  | 

(3.10) 

we may rewrite equation (3.5) as 

      |  |    (3.11) 

The level set model developed by Helland et al.[ 2011] has an interface motion which 

depends directly on the level set function    ⃗       and has motion by mean curvature where 

the interface moves in the normal direction. Motion by mean curvature contains only a 

component in the normal direction, i.e., the tangential component is identically zero as 

mentioned before. Therefore the term    in equation (3.11) is the speed of the interface in 

direction normal to itself. The speed of the interface,   , represents the balance between the 

capillary and interfacial forces as following:  

      ⃗⃗   ⃗⃗⃗      (3.12) 
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where      ⁄  is the input interfacial curvature and   is the mean curvature of the interface 

(Helland et al. 2011). The level set for our application can finally be written as following,  

         |  |    (3.13) 

In the above equation the |  | term is solved by discretizing it using the Hamilton-Jacobi 

Weighted Essentially Non-Oscillatory technique (HJ WENO) and Godunov’s method. The 

mean curvature is solved by the central difference formulas, all methods are described in 

subsequent sections.  

3.4 Numerical Discretization 

In the following sections the discretization methods are explained. All methods give 

approximations to the calculations in the simulation.  

3.4.1 HJ WENO and Godunov’s method for upwinding.  

To be able to evolve and move the equation   forward in time across a predefined grid, a 

method called upwind differencing is used. At time    the current value of the implicit 

function can be defined as         ). After every time increment    the implicit function 

needs be updated for every grid point. The new values can be represented as      

       , where            . A simple first-order accurate method for time discretization 

given by the forward Euler method, 

        

  
  ⃗⃗        

(3.14) 

where  ⃗⃗  is the velocity of the implicit function at time   , and     is the gradient operator 

at time    for the implicit function. Expanding the above equation the following is obtained,  

        

  
     

      
      

    
(3.15) 

The sign of     and   determine whether the values of   are moving to the right or left of its 

respective coordinate direction. This can be explained by considering a point   , where the 

spatial derivative of   is denoted as      . Equation (3.15) can then be written as,  

   
      

 

  
   

      
    

(3.16) 
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Using the method of characteristics if   at a grid point   is positive, the values of   are 

moving to the right. And to determine the value of   we have to look to the left of the grid 

point position   . This partial derivative is denoted as   
  If on the other hand the velocity u is 

negative, the implicit function at that grid point is moving from right to left. The method of 

characteristics tells us to look to the right of    to determine an appropriate value of    at time 

    . This partial derivative is denoted as   
 . The method of choosing an approximation to 

the spatial derivate based on the sign of u is known as upwinding. Generally, upwinding 

approximates derivatives by biasing the finite difference stencil in the direction where the 

characteristics information is coming from (Osher et al. 2003).  Furthermore to obtain an 

accurate calculation of   
  and   

  the Hamilton Jacobi Weighted Essentially Nonoscillatory 

(HJ WENO) polynomial interpolation is used. A detailed mathematical approach will not be 

shown here but can be found in many applied mathematical books, reader is advised to refer 

to Osher et al [2003] for more detailed description. The basic idea of Hamilton Jacobi 

Essentially Nonoscillatory (HJ ENO) polynomial interpolation is that it is a method which 

allows one to extend the first order accurate upwinding, which was explained earlier, to 

higher-order spatial accuracy giving better approximations to   
  and   

 . This is done by 

using the smoothest possible polynomial interpolation to find   then differentiating to get   . 

A number of mathemathical steps will result in exactly three possible HJ ENO 

approximations for   
 . These three approximations can be found in the appendix. 

Furthermore this is where the HJ WENO method is included, and is an approach to give an 

even better approximation of    
 . This is because the HJ WENO method takes a convex 

combination of the three ENO approximations, and if any of the three approximations 

interpolates across a discontinuity it will be given the minimal weight. This minimizes its 

contribution and the total error of the simulation, because picking only one of the three 

stencils as done with the HJ ENO method is will give a bad approximation in smooth regions 

where the data is well behaved (Osher et al. 2003).  

Furthermore the Godunov’s method for upwinding is used to determine       and    from 

the result obtained by the HJ WENO method. Thus the Godunov’s method determines which 

result of   
  and   

  will be used to determine   . The same goes for    and   . The 

Godunov’s method is a good method for avoiding artificial dissipation because it chooses the 

most meaningful solution (Osher et al. 2003). The elegant formula by Rouy and Tourin is 

implemented in the model and has the following form for     (Osher et al. 2003),  
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     (      

             
      ) (3.17) 

 

and for    , 

   
     (      

             
      ) (3.18) 

3.4.2 Central Differences 

As shown in figure 3.1 the zero level set is a one-dimensional interface between a two-

dimensional non-circular object at an instant at time, and the curvature   of the interface 

varies with location (Figure 3.1a). If the curvature   is larger than zero the curve will have a 

convex shape, and if it is less than zero it will have a concave shape (see figure 3.1a). The 

mean curvature of the interface is defined as the divergence of the normal  ⃗⃗⃗             

(Osher et al. 2003), 

      ⃗⃗⃗ (3.19) 

where    (        ) is the spatial gradient of  . Inserting equation (3.9) into (3.14) will 

give the following equation for the curvature of each level set, 

 
  (

  
                

       
                

    

            
    

) |  | ⁄  
(3.20) 

The   term is solved by the central difference formulas given in appendix A.2, which are used 

to discretize the spatial derivatives of   in the curvature term given in equation (3.20).The 

equations given in appendix A.2 are only approximations to the spatial derivatives.  

3.4.3 Time update 

To advance the front forward in time, a method for the time discretization has to be 

implemented in the model. The time update in the model is done by using the TVD RK 

method, and the adaptive time stepping based on the CFL condition.  

As mentioned before the HJ WENO allows us to discretize the spatial term in the level set 

equation to fifth order accuracy. The level set method is quite sensitive to spatial accuracy and 

therefore the fifth order accuracy of the HJ WENO method is the best choice. If the temporal 

truncation error is less likely to get progressively large, it may be concluded that the forward 

Euler time discretization is usable for time discretization (Osher et al. 2003). However the 

forward Euler time discretization in equation (3.14) gives only first-order accuracy in time 
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and it is known for a fact that the error for our simulation will increase when invasion for 

larger and larger pore throats occur. Therefore higher order temporal discretization is needed 

in times when it is necessary to obtain a more accurate numerical solution. In the level set 

model the total variation diminishing (TVD) Runge-Kutta (RK) method is used for temporal 

discretization. This method increases its accuracy by the method of lines approach. The 

method of lines approach allows the temporal discretization of the partial differential equation 

to be treated as an ordinary differential equation. This is done in a semidiscrete manner where 

the spatial discretization is separated from the temporal discretization.  

Basic first order accurate TVD RK is the first step in forward Euler method. The third order 

accurate TVD RK scheme takes first an Euler step to advance the solution to time      ,  

        

  
  ⃗⃗        

(3.21) 

then the second Euler step to advance the solution to time       , 

          

  
  ⃗⃗            

(3.22) 

followed by an averaging step 

 
   

 
  

 

 
   

 

 
     

(3.23) 

Equation (3.23) produces an approximation to   at time    
 

 
  . Furthermore another Euler 

step is taken to advance the solution to time    
 

 
   which is also followed by an averaging 

step. Combining the TVD RK scheme with central differencing for the spatial discretization 

will result in a stable numerical method for time discretization. In our model when we solve 

for stable fluid configurations the error will not become less as we advance in time. The 

reason for this is because the interfacial area sometimes will penetrate through larger pores, 

and when penetrating larger pores the error will increase. Likewise the error will decrease 

when the pores become narrower and till stabile configuration is achieved. Hence if we are 

looking at a static problem, for example when the signed distance function is reinitialized, the 

error will get less for every iteration step. For a static problem as during the reinitialization 

process the TVD method is the one to be used for time discretization. But for the problem 

mentioned above, when the penetration happens in pore throats that increase in size the 

Courant-Friedreich-Levy (CFL) condition needs to be applied. This is because this condition 

decides how large the time step for the numerical method used to solve equation (3.14) can 
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get for numerical stability and convergence against the right solution. Once all terms have 

been discretized, and the TVD RK method has been used to advance the front in time (Osher 

et al. 2003). The adaptive time stepping based on CFL condition is applied. The equation 

implemented in the level set code for the time restriction is given in equation (3.24) (Osher et 

al. 2003).  

 

  (
|  |

  
 

|  |

  
 

|  |

  
 

  

     
 

  

     
 

  

     
)    

 

(3.24) 

  is a the curvature constant, which is equal to 1 in our simulation.   ,    and    are the 

Hamilton-Jacobi equations for each direction. For our simulation    is equivalent to     etc., 

also for our simulation         . Implementing these changes the CFL condition used 

in the level set code is given in equation (3.25) below.  

 
  (

|   |  |   |  |   |

  |  |
 

 

     
)    

 

(3.25) 

Rewritten for simplification, 

    
 

   
 (3.26) 

where       in our model.  

Much of the purpose of this thesis is to investigate interfacial area between oil and water and 

its effect on hysteresis. The following sub chapter gives a short description of the volume and 

surface integral, which is used to calculate the interfacial area between oil and water.  

3.5 Volume and surface integral 

Saturation and interfacial areas are calculated at each steady state by volume and surface 

integrals. The volume integral for the non-wetting fluid can be calculated by the following 

equation,  

 
   ∫        ⃗

 

 
(3.27) 

Furthermore the surface integral given in equation (3.28) can be used to calculate the 

interfacial area between any fluid-fluid interactions.  
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     ∫  (   ⃗ )|    ⃗ |  ⃗

 

 
(3.28) 

The above equation can be rewritten to represent the interfacial area between oil and water, 

where water is the wetting phase, 

 

        ∫       |    |    

 

 

 

(3.29) 

The procedure to find only the point contacts between oil and water involves the calculation 

of the Heaviside and Dirac delta functions. Furthermore by implementing the Heaviside 

function and Dirac Delta function in equation (3.29), the equation given below is the 

interfacial area between oil and water excluding the thin film on the solid wall. 

 

    ∫                   |    |    

 

 

 

(3.30) 

The above equation includes a few symbols which have not been explained yet. Such as the 

Heaviside function  , the Dirac delta function   and the b factor.  The Heaviside function is a 

step function which is defined to be equal to zero for every negative value of   and to unity 

for every positive value of   and we may write the following (Osher et al. 2003),  

     {
            
            

 

where   is the signed distance function which is a function of the multi-dimensional variable 

 ⃗. Because the variable  ⃗ is of multi-dimensional order the Heaviside function is defined as a 

function of   for simplicity (Osher et al. 2003). Derivation of the one-dimensional Heaviside 

function gives us the Dirac delta function as shown in equation (3.31). 

            (3.31) 

To avoid the discontinuity at        in the numerical calculations we use a smeared out 

version of the Heaviside function (Osher et al. 2003). This is done by selecting a tolerance 

value   whose value if of the order of the width of the numerical cell, such that (Prodanovic et 

al. 2012): 



30 
 

 

     {

                                                              
 

 
 

 

  
 

 

  
   (

  

 
)                

                                                                

 

 

(3.32) 

According to Osher et al. [2003] the best value for the tolerance is       , and is the value 

implemented in our simulations as well. Furthermore the Dirac delta function is as mentioned 

before the derivative of the Heaviside function and is given in equation (3.33). 

 

     {

                                                              
 

  
 

 

  
   (

  

 
)                        

                                                                

 

 

(3.33) 

 

The smeared Heaviside function and the Dirac delta function from equation (3.30) and (3.31) 

are illustrated in figure 3.2.  

 

Figure 3.2: Illustration of the smeared out Heaviside function and its derivative.  

Figure 3.2 shows a general illustration of the Heaviside function and its corresponding delta 

function. In our simulation we would like to not account for the interfacial which is the thin 

film on the solid wall. In order to do so the b-factor is introduced. The Heaviside function will 

have the following form,  

            

 

{
 
 

 
                                                                        

 

 
 

   

  
 

    

  
 

 

  
   (

 

 
           )                           

                                                                      

 

where     is the void/solid distance function and    is fixed and equal to    . Figure 3.3 

shows the Heaviside function for three different b-factors.  It can be seen from figure 3.3 that 
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the smeared Heaviside function has an opposite direction to the illustration shown in figure 

3.2. This is because the void/solid signed distance function has to be negative in the void, as 

shown in figure 3.4. 

 

 

Figure 3.3 The smeared Heaviside functions with b-factor equal to 0, 1.5 and 2.  

Furthermore the Dirac delta function will also shift as a consequence of the b-factor change. 

The Dirac delta function has the following form,   

       

{
 
 

 
                                                                          

 
 

  
 

   

  
   (

 

 
           )                                    

                                                                        

 

Finally the interface is found when the signed distance function is equal to zero. This 

corresponds to the interval        . To better understand this interval and the calculation 

of the interface, figure 3.4 is shown. The figure shows an illustration of how the calculation of 

the interfacial area shifts when the b-factor is changed, and the interval is implemented. 

Figure 3.4a) is an illustration of the case when b=0, and figure 3.4b) shows the case when b is 

larger than zero. Th green, red and blue line represents the signed distance functions area of 

calculation. At the red line the signed distance function is equal to zero. The signed distance 

function is also shown in the figure with the corresponding smeared Heaviside function. 

Furthermore the space between the red line, to the blue and green is the same and is the 

tolerance value. This tolerance value is as mentioned before the best value according to Osher 

et al. [2003]. The ideal case for the simulation would be figure 3.4b). This is because as 
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shown in figure 3.4a) the outer most part of the function will intersect in the solid area. 

Decreasing the b-factor will give us a better approximation of interfacial area between the 

solid surface and the fluids. Furthermore figure 3.4 shows how the delta function is stationary 

as shown in figure 3.4b) while the Heaviside function is shifted. This concept is important to 

understand and in chapter 6 the optimal b-factor will be chosen in order to minimize the error 

of the interfacial area calculations.   

 

Figure 3.4: Illustration of the Heaviside functions approach to interfacial area simulations 

for a) b=0 a) b larger than 0.  

Till now it has been explained to an extent how the model finds and excludes the thin film on 

the solid wall. To be able to compare the result from the simulation, an analytical approach 

has to be presented. The work done by Frette and Helland [2010] is used to analytically 

calculate the interfacial area of the curved section only. Figure 3.5 shows an illustration of the 

analytical approach for calculating the interfacial area between oil and water at the curvature 

only. For a simple geometry as a triangular the calculation is given in equation (3.34) Frette 

and Helland [2010]. 

             (
 

 
    ) (3.34) 

where n is number of corners,   is the angle between oil and water as shown in figure 3.5. As 

shown in the figure the pore corners will be occupied by the wetting phase (water) after an oil 

invasion. The interface in a corner can be represented by a circular arc meniscus with radius   

Frette and Helland [2010]. The radius is expressed by the Laplace formula for interfaces in 

two-dimensional pore spaces,   
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(3.35) 

where C is the interface curvature with units equal to [    ].Inserting this into equation 

yields the following analytical approach to calculating the interface area between oil and 

water: 

 
    

  

 
(
 

 
  ) 

(3.36) 

The analytical approach is important to test the reliability of the level set model and is done so 

in chapter 6. 

 

 

Figure 3.5: Illustration of the analytical approach to calculating the interfacial area (Frette 

and Helland [2010].  

The following chapter gives a description of the input files the simulation model needs in 

order to give appropriate results. 
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CHAPTER 4 

LEVEL SET MODEL FOR CAPILLARY-CONTROLLED 

DISPLACEMENTS 

The first step in the level set code developed by IRIS is to read the input-files, which are 

images of the pore geometry and initial oil-water configuration. The subsequent step is to 

calculate the solid/void signed distance function and the oil-water signed distance function. 

After the signed distance function for both systems has been calculated, the simulation solves 

the level set equation. After each time step the process of reinitialization of the     to the 

signed distance function takes place. The level set equation and its fluid-solid boundary 

conditions are solved and changed for each time step until steady-state is reached. Steady state 

is reached when the convergence criteria is fulfilled. The convergence criterion is given in 

equation (4.1) below.  

 

∑ |    
        

 |     

 
        

 

(4.1) 

Equation (4.1) sums up all the errors for each grid point divided by the total number of points. 

That number has to be smaller than the tolerance       multiplied by   . The tolerance in our 

simulation is set equal to 0.002 and    is equal to    , which is the voxel size. The 

convergence criterion is determined by comparing     after each reinitialization. 

Furthermore the input and output files are described below.  

Input and output files  

The following input files are read by the level set code:  

image.dat: An image of the geometry of the porous medium.  

init_ow_conf.dat: The initial oil- and water configuration.  

The following files are simulated by the program:  

geometry.dat: Gives a black and white image of the porous medium. Solid = 1, void = 0. 

initial_fluid_config.dat: Gives a black and white image of the initial fluid configuration, 

water = 1, oil = 0.  
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phi.dat: The void-solid signed distance function, phi < 0 in void and phi > 0 in solid. 

phi_ow_error_xxxx.dat: Data-file with total error after each iteration step for the given 

capillary pressure step ‘xxxx’. Column 1: iteration, Column 2: error.  

Pc_Sw_aow_xxxx.dat: Data-file with capillary pressure, volume and areas at capillary 

pressure step ‘xxxx’ calculated in the entire computational domain. Column 1: input 

interfacial curvature (=capillary pressure/interfacial tension), Column 2: Volume of oil, 

Column 3: Volume of pore space, Column 4: Volume of solid phase, Column 5: Surface area 

between void and solid, Column 6: Area between oil and water neglecting the contribution 

from thin water films coating the solid surface.  

Pc_Sw_aow_subset_xxxx.dat: Data-file with capillary pressure, volume and areas at 

capillary pressure step ‘xxxx’ calculated in a specified subset of the computational domain. 

Column 1: input interfacial curvature (=capillary pressure/interfacial tension), Column 2: 

Volume of oil, Column 3: Volume of pore space, Column 4: Volume of solid phase, Column 

5: Surface area between void and solid, Column 6: Area between oil and water neglecting the 

contribution from thin water films coating the solid surface, Column 7: Area between oil and 

water including the contribution from thin water films coating the solid surface.  

phi_ow_xxxx.dat: Oil-water level set function for stable fluid configuration at the specified 

capillary pressure step ‘xxxx’, where phi_ow < 0 in oil, phi_ow > 0 in water. A Matlab-file 

“plot_data.m” plots the fluid configuration based on the phi_ow-data. 

4.1 Boundary conditions  

In the simulation the boundary conditions are changed in such a way that the oil phase enters 

the porous medium from only one side in the cube. In the integer array      [           ] 

the user is able to input at which side of the cube the oil will enter. The array gives all faces of 

the void/solid image that are specified by 1 as the inlet boundary while all other boundaries 

specified by 0. The drainage simulation is done for all sides of the cube. The imbibition 

simulation is done for a number of interface curvatures, but only for the sides where     

and    .  

Furthermore the integer array         [           ] specifies the boundary conditions at all 

the faces of the void/solid image. The faces that are specified to be inlet boundaries in 

     [           ]  must have value -1 in         [           ], because linear 
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extrapolation is assumed at inlet boundaries. At all other boundaries, mirror-reflected 

conditions are used, and this corresponds to the value 2 in the array         [           ]. 

The parameter       [           ] is not used and all its elements are set to 0.  

At the inlet boundaries a layer with thickness inlet_layer_thickness with pore space filled with 

invading fluid is added to the computational domain, and n[] is updated accordingly. The 

parameter n_crop represents the updated first and last index in the x-, y- and z-directions of 

the subdomain without the layer added.  

Figure 4.1 shows an example in two dimensions for how the pore space filling simulation 

undergoes. The figure shows an inlet boundary       [ ]    and    . The boundary 

conditions of the computational domain are mirror reflected, periodic and linear extrapolated 

at the inlet boundary. And as shown in figure 4.1 at the inlet boundary, 2-3 layers of invading 

fluid will be added.  

 

 

Figure 4.1: Two dimensional example of the filling at the inlet boundary. 
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CHAPTER 5 

CAPILLARY PRESSURE, WATER SATURATION AND 

INTERFACIAL AREA RELATIONSHIP 

The interfacial area between many fluid-fluid configuration play a critical role in many 

subsurface multiphase flows and transport processes (Porter et al. 2010). In the past decade 

there have been a lot of investigations to grasp the relationship between the capillary pressure, 

water saturation and interfacial area. There are well known examples of the       

relationship, but not much for the           relationship. Porter et al. [2010] mention 

that there are two contributions to the total interfacial area between two immiscible fluids. 

The two contributions are the capillary pressure induced area, and thin film-associated 

interfacial area. Capillary associated interfacial area consists of all nonwetting interfaces in 

contact with the bulk, mobile wetting-phase and wetting-phase pendular rings (Porter et al. 

2010). Furthermore according to the article by Porter et al. 2010 the film associated interfacial 

consists of the nonwetting phase in contact with the wetting phase films that exist on solids of 

pores occupied by the nonwetting phase. Figure 5.1 shows the fluid contact contributions that 

lead to the total fluid-fluid interfacial area.  

. 

Figure 5.1: Illustration of the fluid-fluid contact contributions and interfacial area (Porter et 

al. 2010).  
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The figure shows an illustration of the interfacial area contributions for every phase in an oil 

and water system. The interfacial area which is of interest for our study is the interfacial area 

between oil and water. The interfacial area between oil and water is denoted as    . The 

interfacial area as calculated in the level set method is shown in equation (5.1.) 

 

    ∫     |  |  ⃗

 

 

(5.1) 

In the simulation results the interfacial area will be denoted as the specific interfacial area, 

which is the equation given above for interfacial area divided by the total volume of the pore 

media. Equation (5.2) gives the specific interfacial area as a function of bulk volume and total 

interfacial area.  

 

    
 

 
∫    

 

   

(5.2) 

where V is the total volume of the porous system under study.  

In work done by Hassanizadeh and Gray [1993] they proposed that an inclusion of the 

interfacial area variable in the       relationship could aid to eliminate the hysteresis that is 

commonly observed in the       relationship. Furthermore results from the work done by 

Joekar-Niasar et al. [2007] concluded that the interfacial area can be an essential variable in 

the capillary pressure and saturation relationship for multiphase flow. However not much 

experimental investigations concerning the relationship between       and     has been 

done. Only a few measurements have been reported in the literature (Porter et al. 2010), such 

as Culligan et al. [2004, 2006] amongst a few others. However none of them looked at the 

direct relationship between        and    . The literature review by Porter et al. [2010] 

concludes that there has not been much experimental study which the writer is aware of that 

focuses on characterizing the            relationship. However a number of pore scale 

modeling techniques have been used to investigate the direct            relationship. A 

number of pore network models have been developed and they all give a variety of 

characteristics for the            relationship (Porter et al. 2010). For example the work 

done by Helland and Skjæveland [2007] showed that the shape of the surface was sensitive to 

contact angle hysteresis, while the work done by Joekar-Niasar et al. [2009] and Held and 

Celia [2001] showed that there a slit anticline shape of the interfacial area when plotted 

against water saturation. There have also been a few Lattice-Boltzmann simulations of the 
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           relationship, like the one by Porter et al. [2009], which also showed that the 

modeled interfacial area exhibited the anticline curvature along the   -axis. Porter et al. 

[2010] measured the capillary pressure, water saturation and interfacial area of the wetting 

and nonwetting phase for drainage and imbibition for a cube pack. This is of relevance to our 

study, because we are also looking at a sphere cube pack in the our simulations. Figure 5.2 

shows the experimental result from their work for interfacial area as a function of water 

saturation for both the total IFA and capillary associated IFA.  

 

Figure 5.2: Result of experimental data for the interfacial area as a function of water 

saturation for a) total IFA,    b) capillary associated IFA,     (Porter et al. 2010). 

Figure 5.2 a) shows that there is no hysteresis observed when looking at the total IFA, 

however there is hysteresis in the capillary associated IFA. Furthermore Porter et al. [2010] 

also plotted a three dimensional plot of the            relationship. The result is shown 

in figure 5.3.  

 

Figure 5.3: Best fit surface plot for the experimental a)           data b)            

data (Porter et al. 2010). 
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The surface plot shown in figure 5.3a) looks very flat, and is due to the linear result shown in 

figure 5.2a). However for the capillary associated IFA, the relationship has a slight convex 

curve. Both figures indicate that the capillary associated IFA exhibit hysteresis. We may ask 

ourselves what is needed to eliminate hysteresis from the         relationship. Will 

inclusion of the interfacial area reduce this difference?  Chapter 6 presents the result from all 

simulations done in our study. The results are used to compare with experimental results from 

previous work to validate the reliability of the model, and also to try to answer the question 

stated above.  
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CHAPTER 6 

SIMULATION RESULTS AND DISCUSSIONS 

In the following chapter simulation results and interpretations are presented. The output files 

that where explained in chapter 4 are read in Matlab, and the results are used to graph curves 

in Excel. Three dimensional plot of the data where done in Matlab, and the visualization of 

the interface between oil and water for predefined interface curvature is done in Paraview. 

The calculations and results are based on a synthetic cube pack. The size of the synthetic cube 

pack is          voxels. The voxel size is set equal to        as mentioned before. 

The length of the cubic sphere pack is therefore equal to             . Figure 6.1 

shows the cube simulation for the void solid space and its corresponding coordinate system. 

For the drainage process if     then the inlet is on the top surface and the nonwetting phase 

fluid invades on the same side, hence it moves in negative z-direction, and if     the inlet of 

the nonwetting fluid is on the bottom surface and the invading fluid i.e. oil moves in positive 

z-direction. The imbibition process can be explained in the same manner, but the water will be 

the invading fluid. All figures in simulated in Paraview are of the oil displacement drainage 

process will be represented by the color red and the imbibition process by the color green.  

 

Figure 6.1: Void/solid cube and its corresponding coordinate system visualized in Paraview.  
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Also important to note is that most of the result presented is of the subset pack, which is a 

cube within the sphere pack. If that is not the case it will be noted as the “total” sphere pack. 

To test the reliability of the model a simulation for a triangular shaped pore is done in Matlab. 

The result is shown in figure 6.2. The figure shows how the oil/water interface move as the 

capillary pressure increases. The green line represents the interface between the solid and 

void, the pink, blue and yellow line show the evolution of the oil/water interface. The figure 

confirms theory that as the capillary pressure increases, the nonwetting fluid will occupy a 

larger area than the wetting phase.  

. 

Figure 6.2: Result from Matlab simulation for increased capillary pressure.  

The interfacial area that can be represented as the thin film on the solid wall can be excluded 

by using equation (3.34) as mentioned before. In our example the number of corners is set 

equal to 3. The contact angle between oil and water is set equal to 0 and the surface tension 

equal to 1. Example of analytical calculation of the interfacial area for C=0.25: 

 
    

   

    [    ]
(
 

 
 

     

    
)           [   ] 

(6.1) 

Furthermore the analytical approach is compared to the model to determine the best value for 

for the b-factor. Figure 6.3 show the result for the interfacial area between oil and water for a 

number of different b-factors as a function of interface curvature. As can be seen from the 

figure the low b-factor is nowhere near the analytical results compared to higher b-factors. 

Figure 6.4 show the result of the b-factor for values of 1.5 and higher.  
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Figure 6.3: Interface area of oil and water as a function of interface curvature.  

 

Figure 6.4: Interface area of oil and water as a function of interface curvature for values 

b=1.5 and higher.  
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Figure 6.4 shows us that a b-factor between       and     seems to correspond the best 

according to the analytical result. Therefore it may conclude that     is the best choice, but 

this is not the case. Recall figure 3.4 which showed an illustration of how the model simulates 

the results depending on the value of the b –factor. If we choose a value lower than      , 

the model will include oil-water interfacial area contributions from interfaces that coincide 

with the solid phase. This can be explained by figure 3.4 and equation (3.28) for the 

interfacial area which is given in chapter 3.5. Equation (3.28) gives the interfacial area 

between oil and water as the integral of Dirac delta function multiplied by the Heaviside 

function. To be able to fully grasp the concept and which value of b gives the best result, the 

delta function and the Heaviside function used in the simulation is plotted in Matlab. The 

results are shown in figure 6.5 and for the b-factor 0, 1.5 and 2 only. Appendix A.3 has the 

full Matlab code for the reader if it is desired to test for other b-factors. Recall that the 

interfacial area is calculated by multiplying the Heaviside function with the Dirac delta 

function. Furthermore if we consider the interval mentioned in chapter 3,        , which 

is the interval that should represent the interface and plus a tolerance value more of the signed 

distance function. If we look at the first figure, where b=0, the interfacial area at the solid 

phase will be concluded in the calculations. Because as mentioned before, if the signed 

distance function is positive it will be on the solid phase, however if it is negative it will be in 

the void phase. Furthermore both figures for b=1.5 and b=2 are equal to zero at this section, 

which means that there is no calculation of the interfacial area in the solid phase. However as 

seen in the last figure, where b=2 the shift is too far to the left. If we consider figure 3.4 in 

chapter 3 and imagine the green line being shifted more inward. Then the model will not 

account for any interfacial area at solid phase, which can be a positive thing. However this 

will cause a loss in the interfacial area at the corners of the triangular pore. The best result 

would be to have a b-factor as the one shown in the right side of figure 3.4, one that barely 

touches the solid phase. A b-factor corresponding to that will give a better accordance with 

the analytical result because it will also include the interfacial area if the surface is rugged.  

Figure 6.6 shows the interfacial area of the different b-factors as a function of water 

saturation. The figure indicates that for lower water saturations the interfacial area has a much 

larger difference for the various b-factors. This can be explained by the fact that at lower 

water saturation the corners in the pore will be filled with oil, and a small b-factor will result 

in a higher uncertainty for the interfacial area. An analytical calculation of the interfacial area 

as a function of water saturation would be of essence to be able to compare the results. 

However this calculation was not conducted, but it can be concluded from the result  
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Figure 6.5: The dirac delta function and the Heaviside function for b-factor equal to 0, 1.5 

and 2.  
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Figure 6.6: Interface area of oil and water as a function of water saturation for the different 

b-factors.  

shown in the previous figures that the best choice for the b-factor is b=1.5, which is the 

number implemented in the simulation. The drainage results for invasion at different sides of 

the sphere pack are given in figures 6.7 to 6.12.  

 

Figure 6.7: The drainage curve for invasion at z=0. 
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Figure 6.8: The drainage curve for invasion at z=L.  

 

Figure 6.9: The drainage curve for invasion at y=0. 
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Figure 6.10: The drainage curve for invasion at y=L. 

 

Figure 6.11: The drainage curve for invasion at x=0. 
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Figure 6.12: The drainage curve for invasion at x=L. 

The drainage curves are simulated well, and show that the capillary pressure curves will be 

different for invasion in different sides of the sphere pack. Figure 6.13 shows all the drainage 

curves in one figure, the largest difference is for curve z=L and x=L.   

 

Figure 6.13: The specific interfacial area between oil and water for the subset pack. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0

In
te

rf
ac

e
 c

u
rv

at
u

re
, C

 [
µ

m
-1

] 

Water saturation, Sw 

x=L 

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

In
te

rf
ac

e
 c

u
rv

at
u

re
 [

µ
m

-1
] 

 

Sw 

z=0

z=L

y=0

y=L

x=0

x=L



50 
 

Figure 6.13 also shows a large saturation jump at z=L compared to the other figures, this can 

also be seen in figure 6.7. Because the process is drainage this abrupt change in water 

saturation is an example of a Haines jump.  

 

Figure 6.14: The total specific interfacial area between oil and water as a function of water 

saturation. 

Figure 6.14 shows the total specific interfacial area between oil and water as a function of the 

water saturation. The result is linear and compared to the result by Porter et al. [2010] it 

coincides well. Figure 6.15 shows the result in the subset pack, and has the characteristic 

convex shape that can also be seen in the result by Porter et al. [2010].  Figure 6.16 and 6.17 

show the drainage curve and their corresponding imbibition curves for invasion at z=0 and 

z=L, respectively. The figures seem to correspond well with theoretical results (See figure 

1.2). Figure 6.18 and 6.19 give     as a function of    for the imbibition process at invasion 

for z=0 and z=L, respectively. Again the figures have the convex shape as mentioned before. 

Figure 6.20 compares     from drainage and imbibition for invasion at z=0 and z=L. The 

figure shows that the specific interfacial area is much higher for the imbibition compared to 

drainage. Figure 6.20b) shows that for low water saturation the specific interfacial area is 

almost identical for drainage and imbibition. The reason for higher interfacial area between 

oil and water could be due to the hysteresis events that are simulated by the model.  
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Figure 6.15: The specific interfacial area between oil and water for the subset pack. 

 

Figure 6.16: The specific interfacial area between oil and water for the subset pack. 
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Figure 6.17: The specific interfacial area between oil and water for the subset pack. 

 

Figure 6.18: The specific interfacial area between oil and water for invasion at z=0. 
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Figure 6.19: The specific interfacial area between oil and water for invasion at z=L. 

 

Figure 6.20: The specific interfacial area between oil and water for both drainage and 

imbibition at invasion a) z=0 and b )z=L. 
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In the following three figures the water saturation and specific interfacial area for a constant 

curvature is plotted for invasion at z=0 and z=L. The curvature is chosen for C=0.5, C=0.6 

and C=0.75, because these interface curvatures will give a value for all imbibition curves.  

 

 

Figure 6.21: The specific interfacial area between oil and water as a function of water 

saturation at constant interface curvature equal to C=0.5[µm
-1

] 

 

Figure 6.22: The specific interfacial area between oil and water as a function of water 

saturation at constant interface curvature equal to C=0.6[µm
-1

]. 
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Figure 6.23: The specific interfacial area between oil and water as a function of water 

saturation at constant interface curvature equal to C=0.75[µm
-1

] 

In all three figures of the constant interface curvature, the specific interfacial area for the 

invasion at z=0 and z=L do not coincide well. This is an indication that the difference 

between the capillary pressure curves for invasion at different sides cannot be eliminated by 

adding the specific interfacial area. Furthermore figure 6.24 show a three dimensional surface 

plot of the           relationship to compare with Porter et al. [2010]. Both surface plots 

in figure 6.24 have a slight convex shape. As shown in figure 5.3b) a slight bump in the 

surface plot can be an indication that there is hysteresis present. Both figure 6.24 and the 

previous three figures for constant interface curvature give result that including the interfacial 

area in the level set model does not eliminate hysteresis. 

Figure 6.25 and 6.26 show a Paraview visualization of the oil displacement during drainage 

for z=0 and z=L, respectively. The details of the exact screenshot is shown in the upper left 

corner of the figure, and the interface curvature step is the same for the figures to be able to 

compare. Figure 6.25 shows a more stable displacement at this C step, compared to figure 

6.26. Figure 6.25 shows what may seem as a small Haines jump in the upper left corner. 

Figure 6.26 has a much more drastic jump in the displacement and can be due to the pore 

connectivity the invasion of water at that direction encounters.    
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Figure 6.24: Surface plot of the relationship between the interface curvature, water 

saturation and interfacial area for a) z=0 and b) z=L. 
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Figure 6.25: Oil displacement under drainage for a) C=1 b) C=1.3 for invasion at z=0.  
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Figure 6.26: Oil displacement under drainage for a) C=1 b) C=1.3 for invasion at z=L.  
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Figure 6.27 till 6.30 show the Paraview visualization of the oil displacement during 

imbibition. The first two figures show the displacement for invasion at z=0, and the two 

subsequent figures for z=L. The visualizations for the figures are done for the interface 

curvature jump of only C=0.05 [µm
-1

]. Figure 6.26 shows the imbibition curve starting at 

C=1.3, not a big change can be seen in the figure. However when comparing the two by 

quickly shifting them, a small jump in the interface can be observed. No snap off was 

observed in the figure for that curvature step, only piston like invasion occurred during the oil 

displacement. Same conclusion can be drawn for figure 6.28. Figure 6.29 does not show a 

snap off but at the bottom that where fluid is displaced there might have been a snap off. This 

could have been observed if a smaller curvature step was simulated. Figure 6.30 shows a clear 

occurrence of snap off, but again by quickly shifting the figures the piston like invasion is the 

one that occur the most in the figure. Actually it occur the most in all four figures.  

Additional figures of the drainage process for invasion at other sides are given in the 

Appendix. The most drastic jump in the saturation during drainage is for z=L, as can be seen 

from the drainage curves as well. The explanation can be that as oil is displaced in negative z-

direction, at a certain point the critical curvature will get exceeded and also the gravity will 

yield to push the fluid through the porous media. All other invasions during drainage start on 

the horizontal plane.  
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Figure 6.27: Oil displacement under imbibition starting at C=1.3 for invasion at z=0 
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. 

Figure 6.28: Oil displacement under imbibition starting at C=1.55 for invasion at z=0. 
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Figure 6.29: Oil displacement under imbibition starting at C=1 for invasion at z=L.  
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Figure 6.30: Oil displacement under imbibition starting at C=2.4 for invasion at z=L.  
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CHAPTER 7 

CONCLUSION 

The level set method is a great tool to examine the capillary-controlled displacement 

events in drainage and imbibition. The new method of using the Heaviside function to 

calculate the oil/water interfacial area is a powerful implementation to the level set model. We 

have shown that the level set model computation of the capillary pressure, water saturation 

and interfacial area between oil and water where in accordance with previous work done by 

Porter et al. [2010]. The model showed that the interfacial area between oil and water will be 

larger during imbibition than drainage. The model also showed that the capillary pressure 

curves for invasion at different sides of the sphere pack, will give different results during 

drainage. Furthermore the inclusion of the interfacial area between oil and water in the 

relationship between capillary pressure and water saturation did not eliminate these 

differences.  

            Additionally the Paraview visualization concluded that the most likely event to occur 

during imbibition was piston like invasion, which is in accordance with theory previously 

explained. Also the drastic jump in water saturation that was observed for z=L during 

drainage, was concluded to be due to the gravitational forces pulling the oil after critical 

curvature had been exceeded.  

 



65 
 

RECOMMENDATIONS FOR FUTURE WORK 

In this thesis great focus was set on determining whether the interfacial area between 

oil and water could eliminate hysteresis, by adding this parameter to the relationship between 

capillary pressure and water saturation. However the work has only looked at the result in 

vertical direction, hence the z-direction. Therefore our result is not completely conclusive and 

further simulation research for the horizontal directions should be addressed.  

            We also recommend further work with the level set model to verify if the inclusion of 

the interfacial area between any two immiscible fluids can aid to diminish or eliminate 

hysteresis. Also undergo simulations of drainage curves at different saturation points on the 

imbibition curves, and construct a surface plot of drainage and compare this result with the 

surface plot of imbibition constructed in our work. Also it is recommended to further work on 

examining the hysteresis events in Paraview by simulating with a smaller interface curvature 

step.  
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APPENDIX 

 

    Interface = 0 Solid = Positive Void = Negative 

    Interface = 0 Oil = Negative Water = Positive 

Table A.1: Description of the signs the implicit functions calculates in the simulation for the 

different interfaces. 

A.1 The three potential HJ ENO approximations to   
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A.2 Central difference formulas used to discretize the spatial derivatives of   in the curvature 

term: 

 

First order derivatives: 
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Second order derivatives: 
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Second order mixed derivatives: 
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In our case:           

A.3 Matlab code for the smeared Heaviside function: 

Smeared Heaviside function: 

b = 0; 
eps = 1.5; 
dx = 1; 

  
i=0; 
for phi_vs = -5:.05:5 
    i=i+1; 
    if phi_vs > (eps-b*dx) 
    heavi_func(i) = 0; 

     
    elseif phi_vs < (-eps-b*dx) 
    heavi_func(i) = 1; 

     
    else  
    heavi_func(i) = 1/2 - phi_vs/(2*eps) - (b*dx)/(2*eps) + 

(1/(2*pi)*sin(pi*(-phi_vs-b*dx)/eps)); 

     
    end 

  
end 

  
plot(-5:.05:5, heavi_func) 
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Figure A.1: Oil displacement under drainage for a) C=1 b) C=1.3 for invasion at x=0.  
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Figure A.2: Oil displacement under drainage for four different C, at invasion y=0. 

 

 

Figure A.3: Oil displacement under drainage for a) C=1 b) C=1.3 for invasion at z=L.  
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