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Abstract 
 

The problem of lost circulation have for a long time occurred during the drilling operation. 

During the drilling through induced and natural fractures, huge drilling fluid losses lead to the 

higher operational expenses. That is why, it is vital to design the drilling fluid, so that it may 

minimize the mud invasion in to formation and prevent lost circulation. 

Generally, the mud loss occurs in the cavernous and vugular formations, as well as naturally 

occurring or induced fractures, or fractures in permeable and low permeability formations. 

Historically, this problem was dealt with the help of the Lost Circulation Materials (LCM). 

These materials are added to the drilling fluid to seal the fractures and to increase fracture 

initiation or fracture propagation pressure. The lost circulation materials may be used in the 

form of pills, when the lost circulation zone is identified. In some cases, solutions to lost 

circulation may be obtained by the pretreatment of the drilling mud with the particles of the 

proper material and with the proper particle size distribution. Subsequent treatment is also 

important, as a form of lost circulation prevention, when the particles are efficiently added to 

the mud system in the correct size, shape and type.  

 

Understanding the mechanisms of fracture sealing and the performance of the lost circulation 

materials is critical if the problem of lost circulation is to be mitigated effectively. 

 

The objective of this thesis was to investigate the performance of the chosen lost circulation 

materials (i.e LC-Lube) in 60/40 and 80/20 oil/water ratio OBM mud systems. The bridging 

performance of LC-Lube was studied with the help of the bridging tests in the laboratory. The 

D50 of the particle size distribution was 310 µm. The slot openings used in the bridging tests 

were 100 µm, 250µm, 300 µm, 400 µm and 500 µm. The concentration of LC-lube additive 

were 16,85 lb/bbl and 8,49 lb/bbl. The results of the tests were compared and the performance 

of the bridging materials discussed and analyzed. The results have shown that the LCM 

performance in two different mud systems when it comes to bridging, was better with 60/40 

OBM in the case of 250 µm and 300 µm slot openings and a concentration of 16,85 lb/bbl.  In 

the case of a lower concentration of the LC-lube, the performance with the 60/40 was as well 

better with the slot openings of 250 µm and 300 µm, although the difference was less 

pronounced.  



iii 
 

Table of contents 
Acknowledgment .............................................................................. i 

Abstract ............................................................................................ ii 

List of figures ................................................................................... v 

List of tables .................................................................................... vi 

List of symbols ................................................................................ vi 

List of abbreviations...................................................................... vii 

1 Introduction .................................................................................. 1 

1.1 Back ground for the thesis ........................................................................................................................................ 2 

1.2 Scope and objective ..................................................................................................................................................... 2 

2 Literature study ............................................................................ 3 

2.1 Review on Lost Circulation and LCM ................................................................................................................. 5 

2.2 Review well stress ..................................................................................................................................................... 11 

2.2.1 Well fracture models ...................................................................................................................................... 11 

2.2.1.1 Non-penetrating fracture model ............................................................................... 11 

2.2.1.2 Penetrating fracture model ...................................................................................... 12 

2.2.2 Stress cage theory ............................................................................................................................................ 14 

2.2.3 Review particle size selection methods ................................................................................................... 17 

3 Experimental lost circulation study .......................................... 20 

3.1 Experimental set up .................................................................................................................................................. 20 

3.2 Lost circulation particles ........................................................................................................................................ 22 

3.3 Mud preparation......................................................................................................................................................... 24 

3.4 Bridging tests .............................................................................................................................................................. 27 

3.4.1 Test with 80/20 OBM .................................................................................................................................... 28 

3.4.1.1 Particle additive- LC-Lube 16,85 ppb ...................................................................... 28 

3.4.1.2 Particle additive- LC-lube 8,49 ppb ......................................................................... 29 

3.4.2 Test with 60/40 OBM .................................................................................................................................... 30 

3.4.1.1 Particle additive- LC-Lube 16.85 ppb ...................................................................... 30 

3.4.1.1 Particle additive- LC-Lube 8.49 ppb........................................................................ 31 

3.4.3 Comparisons of tests with 60/40 and 80/20 experimental results ............................................... 32 

3.4.3.1 Comparisons of the 60/40 and 80/20 at 250microns ................................................. 32 



iv 
 

3.4.3.2 Comparisons of the 60/40 and 80/20 at 300microns ................................................. 34 

3.4.3.3 Comparisons of the 60/40 and 80/20 at 400 microns ................................................ 36 

3.4.3.4Comparisons of the 60/40 and 80/20 at 500 microns ................................................. 38 

3.4.3.5 Comparisons of the 60/40 and 80/20 at 100 microns without LCM. ......................... 40 

4 Analysis of the experimental data and discussion ................... 41 

4.1 Data Analysis Methodologies ............................................................................................................................ 41 

4.2 Analysis of 16.85 ppb LC Lube additive system ...................................................................................... 42 

4.3 Analysis of 8.49 ppb LC Lube additive system ......................................................................................... 46 

4.4 Analysis of particle free system at 100 µm slot ........................................................................................ 47 

5 Summary and Conclusions ........................................................ 49 

Reference ....................................................................................... 52 

Appendix A: Number of peaks per minute in two mud systems 54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

List of figures 
 

Figure 1: Non-Communicating Boundary Condition [18] 

Figure 2: Communicating Boundary Condition [18] 

Figure 3: Stress cage concept to enhance wellbore strength [12] 

Figure 4: Fracture sealing in permeable and in low-permeability rocks [12] 

Figure 5: Schematic particle bridging testing experimental set-up [17] 

 

Figure 6: LC-Lube particle size distribution 

Figure 7: LC-Lube cumulative particle size distribution 

Figure 8: 80/20 OBM + 16,85 ppb LC-Lube 

Figure 9: 80/20 OBM + 8,49 ppb LC-Lube 

Figure 10: 60/40 OBM 16,85 ppb LC-Lube 

Figure 11: 60/40 OBM + 8,49 ppb LC-Lube 

Figure 12: 250µm slot opening, 16,85 ppb LC-Lube 

Figure 13: 250 µm slot opening, 8,49 ppb LC-Lube 

Figure 14: 300µm slot opening, 16,85 ppb LC-Lube 

Figure 15: 300µm slot opening with 8,49 ppb LC-Lube concentration 

Figure 16: 400 µm slot opening, 16,85 ppb LC-Lube 

Figure 17: 400µm slot opening, 8,49 ppb LC-Lube 

Figure 18: 500µm slot opening, 16,85 ppb LC-Lube 

Figure 19: 500µm slot opening, 8,49 ppb LC-Lube 

Figure 20: 100µm slot opening, no LCM 

Figure 21: Average pressure with the 16,85 LC-Lube concentration 

Figure 22: Pressure parameters and number of peaks with 250 µm slot and 16,85 ppb LC-Lube 

concentration 

Figure 23: Pressure parameters and number of peaks with 300 µm slot and 16,85 ppb LC-Lube 

concentration

Figure 24: Pressure parameters and number of peaks with 400 µm slot and 16,85 ppb LC-Lube 

concentration 

Figure 25: Pressure parameters and number of peaks with 500 µm slot and 16,85 ppb LC-Lube 

concentration 

Figure 26: Pressure parameters and number of peaks with 300 µm slot and 8,49 ppb LC-Lube 

concentration



vi 
 

 

Figure 27: Pressure parameters and number of peaks with 250 µm slot and 8,49 ppb LC-Lube 

concentration 

Figure 28: Pressure parameters and number of peaks with 100 µm slot and no LCM 

Figure 29: Average pressure in tests with different slot openings, 16,85 ppb LC-Lube 

Figure 30: Average pressure in tests with different slot openings, 8,49 ppb LC-Lube 

Figure 31: Average Peak Pressure with different slot openings, 8,49 ppb LC-Lube 

 

List of tables  

Table 1: Lost Circulation in Different Zones 

 

Table 2: Different Lost Circulation Material 

Table 3: Test Mud Formulation 

Table 4: Test Mud Rheology 

Table 5: Overview over the bridging experiments 

List of symbols 

Pwf       - Fracturing Pressure 

σh, σH  - Minimum and maximum in-situ horizontal stresses 

P0        - Pore pressure 

σt        - Tensile strength of the rock 

P0       -  Pore Pressure 

σt        - Tensile strength of the rock 

σh, σH  - Minimum and maximum in-situ horizontal stresses 

α         - Biot poroelastic parameter and is defined as α = 1 – Cr/Cb, where Cr is rock matrix                     

compressibility and Cb is rock bulk compressibility 

 ν        - Poisson’s ratio for the rock 

w        - width of the fracture 

R         - Distance from the center of the wellbore 

E         - Young’s Modulus 

Hc       - the height of the compressed specimen and 

Hr       - the height of the rebound specimen. 



vii 
 

 

 

List of abbreviations 

 

LC       – Lost Circulation 

LCM    – Lost Circulation Materials 

Lb/bbl (ppb) – Pounds per barrel 

OBM    – Oil Based Mud 

ECD     – Equivalent Circulating Density 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1 Introduction 

  

Lost circulation is a frequent problem during drilling and occurs when the formation fracture 

resistance is exceeded by the pressure in the wellbore. Lost circulation is defined as an 

undesirable loss of drilling fluids into the fractures and the voids of the formation during the 

drilling or cementing. The mud loss may occur in any formation and in every depth with a 

wide range of severity depending on the loss zone. Lost circulation severity is often 

categorized as seepage, partial, sever and total lost circulation. Mud losses happen in 

formations with high permeability, natural or induced vertical and horizontal fractures and 

also in case of the cavernous and vugular rocks. Small natural fractures are found in virtually 

any formation, however, some natural fractures found in limestones and chalks may result in 

very high mud losses. As far as the induced fractures are concerned, they result from the 

tensile failure of the formation in the vicinity of the wellbore and could occur in any 

formation where the pressure in the well exceeds the fracture pressure of the formation. 

Caverns and vugs are also very problematic type of loss zones which in most cases occur in 

limestones and dolomites. 

  

Various techniques have been studied and applied to arrest the lost circulation, most of which 

may be grouped into preventive and corrective measures. The main focus, however, have also 

been concentrated on the Lost Circulation Materials, as an important means of preventing and 

correcting the problem of lost circulation.  The particle size distribution together with the 

physical properties of the materials are important factors for the choice of lost circulation 

materials. 
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1.1 Back ground for the thesis 

 

Extensive studies on lost circulation have been conducted at the University of Stavanger 

among which is the Experimental and Analytical Borehole Stability Study by Mesfin A. 

Belayneh, conducting numerous experiments on particle bridging with various water-based 

fluids
17

. The aim of the project was to evaluate bridging performances of individual and 

blending of particles with various slot openings. The results were compared and ranked in 

terms of sealing capacity, time required to seal and stability of the mud cake. 

Another important background for the research was the Experimental and Mechanistic 

Modelling of Fracture Sealing Performance, conducted by researchers from University of 

Calgary and University of Stavanger
10

. 

 

1.2 Scope and objective 

 

In this project, the performance of lost circulation particles is studied in two different oil 

based systems with different water oil ratio.  

 First, the study of the literature is conducted and the information on the lost 

circulation, lost circulation materials and experiments on lost circulation and borehole 

stability is collected. The theoretical part gives the understanding of the lost 

circulation mechanisms and ways of mitigating it.  

 The practical part of the project consists of preparing the two oil based mud systems, 

one with 60/40 oil water ratio and another with 80/20 oil water ratio. The rheology of 

the drilling fluid is tested in the laboratory. As a lost circulation material, the resilient 

graphite (LC Lube) is used with a certain particle size distribution. After the mud and 

particle preparation, the lost circulation bridging experiment in two mud systems is 

conducted and the pressure data is collected. 

 The third stage of the project is the comparison of the two chosen mud system and the 

analysis of the experiment results. 

 The last part of the thesis is the conclusion, summary of the project. 
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2 Literature study  

 

The problem of lost circulation may be usually solved with the help of preventive measures, 

when it is addressed during the planning phase, or it could be also solved during the execution 

phase when the well is being drilled. These two ways are usually called Preventive and 

Corrective measures of treating the problem of the Lost Circulation
1
. The choice between the 

strategies is usually dictated by the “Pay now, or pay later” principle, but in some cases it may 

not be always cheaper to invest in the preventive measures. The choice however depends on 

each individual well. 

 

Preventive Measures. The main reason why preventive measures are important, is purely 

economical, that is avoiding drilling non-productive time due to lost circulation. One 

important way to prevent the lost circulation is managing the wellbore stresses. The main idea 

of wellbore strengthening is to design and apply borehole stress treatments to increase the 

hoop stress around the wellbore. 

 

This treatment can be described as placing a designed particle size distribution particulate 

treating pill across the interval, and then performing an open hole formation integrity test up 

to the maximum equivalent circulation density (ECD) expected while drilling, cementing and 

casing that interval
1
. A short fracture (fractures) is initiated but is plugged immediately by the 

particles which prevent further pressure and fluid transmission to the tip of the fracture and 

simultaneously propping the fracture to prevent closure. As a result, the hoop stress is 

increased around the wellbore and the strengthened wellbore can contain a higher ECD. 

 

Software is used to predict the ECD over interval, the first module in the software is used to 

calculate the fracture width which could be initiated and the second module gives a 

proposition for the proper material and PSD that can prop and plug the fracture. Normally, 

borehole stress treatment materials are selected from sized resilient graphitic carbon and 

ground marble. Afterwards, the third module is used to predict the change in rheology, which 

is affected by the added LCM, and the new ECD is calculated
1
.  

 

LCM is not the only additive in the drilling fluid, special chemical sealant treatment is 

designed using the software for long fractures. Chemical sealant systems are designed to react 
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with drilling fluid to make a highly viscous and cohesive sealant which is displaced into the 

fractures.  

 

A particular example of preventive measures could be a depleted reservoir, where the Fracture 

initiation gradient is lowered to less than the mud weight. The drilling fluid is pre-treated with 

the selected particulates before entering the depleted formation. Particulates have to be 

present in the correct size and concentration before fractures are initiated by the excessive 

circulation pressures
2
.  

 

Corrective Measures. The well construction plan should not only address pretreatment and 

borehole stress treatments, but lost circulation mitigation if it occurs. In this situation both 

particulate and chemical sealant systems could be used. The design of these is based on the 

fracture widths estimated by the model. 

 

One example of fighting the problem is the Combination Materials – which is basically a 

combination of resilient graphitic carbon and other sized components plus having a 

component that absorbs large amounts of water when it hydrates which increases volume and 

viscosity. It all turns into a hybrid chemical/particulate treatment
1
. When the treatment is 

pumped, it is not completely hydrated and has a lower viscosity, in the same time it can carry 

the LCM. When it enters the lost circulation zone, hydration continues and a viscous plug is 

created. The sized solids are also in place to plug the zone. This type of treatment is often 

more effective compared to the conventional LCM treatment. 

 

It is also advised to add subsequent treatments in the form of sweeps, instead of adding into 

the active drilling fluid system in the suction pit. It will ensure the wellbore sees a higher 

concentration of particulate materials. It is also pointed out in the literature that one should 

have remediation materials on site for immediate application if needed. 

 

 

 

 



5 
 

2.1 Review on Lost Circulation and LCM 

 

Lost circulation, or lost returns, is the loss to formation voids of whole drilling fluid or cement 

slurry used during drilling operations. The loss may vary from a gradual lowering of the pits 

to a complete loss of returns
14

.  

 

Mud losses vary in type, severity, and location in the hole. Even having the experience in the 

area, it is difficult to make valid standard recommendations. However, there is a systematic 

approach to controlling lost circulation that uses both preventive and corrective measures. It is 

mostly concerned with correct use of LCM such as bentonite, diesel oil and cement and a 

blend of bridging agents that are stocked on the location. 

 

Types of Loss Zones. 

Mud losses occur to the following types of formations
14

: 

1. Unconsolidated or highly permeable formations (such as loose gravels) 

2. Natural fractures 

3. Horizontal induced fractures 

4. Cavernous formations (crevices and channels) 

5. Vertical natural and induced fractures. 

 

Normally, loss zones are either horizontal or vertical. Induced and natural fractures are 

horizontal in shallower depths, as we go deeper, fractures are vertical. For inducement of 

horizontal fractures, one should overcome rock strength and overburden pressure. Vertical 

openings are formed without lifting overburden, and are formed at lower pressures. 

 

Horizontal Loss Zones
14

 

 

Porous sands and gravels.  If the matrix of porous formation takes in whole mud or cement, it 

must have permeability of 10-100 darcies. Gravels and shallow sands often reveal such 

permeabilities and can accept cement or mud. The deeper sands normally don’t show the 

permeability more than 3,5 darcies, that is why their matrices are not often loss zones if they 

are not fractured. The pores of gravel constitute the loss zone, these can be filled with water 

with different pressures. For gravel widening, overburden must be lifted. 
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Natural or intrinsic horizontal fractures. A natural horizontal fracture can exist if the 

overburden is self-supporting. This is true for any width of the fracture, and for the widening 

of that, the overburden has to be lifted. The opening may be filled with water or air, so that 

the whole can transfer the drilling mud into the fracture. 

 

Induced horizontal fractures 

There may be some cases when the horizontal fracture can be induced. One of the most 

common is in shale. Another situation is offshore in an undercompacted sea bed. 

 

Cavernous formations 

A natural fracture of very large proportions which occurs in limestones, is called cavern. 

Cavernous formations are horizontal and overburden is self-supporting. Water can be flowing 

in horizontal caverns both within the fracture, and from an upper or lower zone into them, and 

it will make the sealing more difficult. 

 

Vertical Loss Zones
14

 

Natural vertical fractures. These fractures may exist in the deeper formations, but while the 

fracture is there, it has little or no width. That’s why the mud losses to them are small until the 

fractures are widened. This widening happens more easily than horizontally induced ones. If 

the opening already exists, only the fracture propagation pressure must be overcome and 

widen the fracture. 

 

Induced vertical fractures. The most difficult mud losses occur in caverns, but these are not 

the most common ones. Caverns form mainly in limestones, while the mud losses to induced 

vertical fractures may occur in essentially any formation. The reasons why the fractures are 

induced are: high mud weight, well irregularities, excessive back pressure or chokedown, 

closed hydraulic system or rough handling of the drilling tools. 

 

Underground blowout. It is a condition where fluids (gas or water) are flowing from a lower 

active zone into a higher loss zone (normally an induced vertical opening). 
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Induced vertical fractures distinguish from natural vertical fractures in a way that mud loss to 

induced ones requires enough pressure to break the formation. The loss to natural fracture 

only needs the pressure to exceed the pressure of fracture propagation.  

 

The plugging mechanisms in horizontal and vertical loss zones would be different since the 

borehole geometry of the fractures is different. While horizontal zones contact on a circle, the 

zone would be limited in height and lost circulation materials would pancake out in a 

horizontal plane or on the face of the hole. The vertical zones contact the hole in a line and 

can have vertical contacts up to 500 feet in height. Lost circulation materials would flow into 

a vertical plane and would not pancake but tend to drop or settle - extending rather than 

sealing the fracture. 

 

Some of the ways of mitigating the lost circulation in different zones are analyzed by 

Messenger, these are summarized in the table 1. 

 

 

 

 

 

 

Porous Sands and 
Gravels 

Bridging agents which form a cake on the face of the gravel. 
Fiber component aids by binding the granular, the flake bridging agents with 

the gravel. (for example, plugging with sawdust with shredded leather fiber. 

Horizontal Fractures Up to ¼ 

inch wide 

Bridging agents approximately the width of the fracture 

The seal is more permanent if the bridge is out in the fracture 
and the fracture is packed with LCM and mud solids by 

dehydration. 

From ¼ 
inch to 1 

foot 

Cement slurries, if the slurry can be held till the cement sets. 
Soft plugs run before the slurry as a backup to hold the cement 

slurry in place. 

Soft/hard plugs. 

Vertical Fractures Fracture must be permanently pried apart by packing it with dehydrated mud 
solids and bridging materials 

Dehydration can only occur down the fracture if the fracture is in nonporous 

formation. 
Portland cements. The fracture must be pried apart by developing squeeze 

pressure and held apart while the cement slurry dehydrates and sets. 

Soft plugs 

Table 1: Lost Circulation in Different Zones [14] 
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There have been numerous different lost circulation materials used in the oil industry, some of 

them are presented  in the table 2, with the evaluation test proposed by Howard and Scott. 

 

 

Various Bridging Materials and their Evaluation tests (after Howard and Scott) 

Material Type Description Concentration 
lb/bbl 

Largest fracture 
sealed, in. 

Nut Shell Granular 50% 3/16 + 10 mesh 
50% 10 + 100 mesh 

20 0,2 

Plastic Granular 50% 3/16 + 10 mesh 
50% 10 + 100 mesh 

20 0,2 

Limestone Granular 50% 3/16 + 10 mesh 
50% 10 + 100 mesh 

40 0,13 

Sulfur Granular 50% 3/16 + 10 mesh 
50% 10 + 100 mesh 

120 0,13 

Nut shell Granular 50% 10 + 16 mesh 
50% 10 + 100 mesh 

20 0,13 

Expanded Perlite Granular 50% 3/16 + 10 mesh 
50% 10 + 100 mesh 

60 0,11 

Cellophane Lamellated ¾ in. flakes 8 0,11 

Sawdust Fibrous ¼ in. particles 10 0,11 

Prairie hay Fibrous ½ in. fibers 10 0,11 

Bark Fibrous ¾ in. fibers 10 0,07 

Cotton Seed Hulls Granular Fine 10 0,06 

Prairie Hay Fibrous ¾ in. particles 12 0,05 

Cellophane Lamellated ½ in. flakes 8 0,05 

Shredded wood 
 

Fibrous ¼ in. fibers 8 0,035 

Sawdust Fibrous 1/16 in. particles 20 0,02 

 

Table 2: Different Lost Circulation Materials [15] 

Among the lost circulation materials used nowadays are the Resilient Graphite, Ground 

Marble, different fibers and chemical sealants used for the lost circulation problem. Some of 

these are described here, whereas the main attention is drawn to the resilient graphite which is 

used in the experiment. 
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Resilient Graphitic Carbon Material
6
 

The most important  characteristic of graphitic carbon is its resiliency (up to 150% at 10000 

psi). There is no other LCM that when put in a press at 10000 psi , still yields free-flowing 

beads. All other LCM will compact. This resiliency allows the product to compress when 

pressure is applied and rebound when the pressure is released, whereby maintaining the seal at 

different pressures. 

 

In addition to its resilient characteristics, graphitic carbon is available in various grades which 

allows to design the pill to design the requirements of the seal. 

 

 

Fibers
7 

are often used as LCM during cementing. Fiber evolution began with 2 – in. long 

natural fibers, and glass fibers 3-mm long are available to the industry for lost-circulation 

issues. 

 

Losses before cementing can be controlled by treating mud with LCM. Losses can also occur 

after running and setting the liner. Fibers are generally organic polymers and are added to 

cement slurries after preparation. Fibers are inert and do not affect slurry properties, like fluid 

loss, thickening time etc. But there are mixing issues associated with large concentrations of 

fibers related to bridging and plugging at mixing and pumping units, float equipment etc. It 

has also been observed that specific gravity of conventional fibers is less than water, that is 

why they may float on the surface after mixing, causing the slurry to be inhomogenous. 

 

The new types of fibers have been developed for use with cement slurries. Some of these 

fibers are brittle, so any bridging can be unplugged after applying higher pumping pressures. 

Some elastomers can assist in minimizing loss by helping to bridge off the porous formation 

or fracture when combined with these new fibers. These fibers are smaller in sizes (1/8-in. 

length) and can be used in larger quantities than the conventional fibers. They increase fluid 

viscosity and special devices are required for rheology measurements. 

 

Ground Marble and combinations of LCM. 
8
 

 

In many cases, it is a combination of several lost circulation materials that works better in 

arresting mud losses compared to just one type of LCM. Traditionally ,the combination of 
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Ground Marble and resilient graphitic carbon is reported to perform due to synergetic effect 

between the two. In the case of reservoir zones, operators usually recommend the use of 

particles that minimize or have no impact on formation damage. The usual definition used by 

many operators is equate the “non-damaging” to “acid soluble”. Ground marble is, as of now, 

the most widely used as non-damaging LCM in the reservoir zones. Particles like GM alone 

might be good enough in arresting fluid losses, but in the case of highly permeable formations 

or formations with large fractures or vugs, they often fail, particularly if a wide PSD is not 

maintained, but the combination of high aspect ratio materials like fibers with GM 

demonstrate a complete plugging. 

 

The presence of high permeability features in the formation, such as large naturally occurring 

fractures or an extensive interconnected vugular porosity system, represent a significant 

challenge for overbalanced drilling operations with respect to rapid and deep invasion and 

significant permeability impairment. In this case one may use a mixture of ground marble, 

unique resilient graphitic carbon and fibers. 
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2.2 Review well stress  

2.2.1 Well fracture models   

2.2.1.1 Non-penetrating fracture model  

 

In rocks like shale with low permeability, the bridge will need extremely low permeability to 

prevent the transmission of the pressure into the fracture. In situations like these, one needs 

mud cakes with extremely low fluid loss. Aston et al have analyzed fluid loss mechanisms in 

oil muds and described ways for achieving those muds.  

 

 

Figure 1: Non-Communicating Boundary Condition [18] 

 

 

The bridge formation across a shale opening should be considered in detail. The beginning 

flow of fluid into the fracture when it is formed will put the bridging solids at the opening 

mouth, but a difference in pressure across the bridge should hold the bridge stable. Pressure 

decay into the shale matrix behind bridge will be minimal especially with oil muds, which 

have additional sealing action because of the interfacial tension. In water based muds, a slow 

pressure leak off into the shale will occur. The challenge will become to engineer the water 

based fluid with a very low fluid loss, so that the permeability of the bridge at the opening 

would be minimal
12

. Figure 1 shows the situation with the low permeability rocks. 

 

Aadnøy and Chenevert (1987)
19

 obtained elastic solutions linking the hydraulic fracturing 

initiation pressure  Pwf(breakdown pressure) and the two principal horizontal stresses σh and 

σH and for this derivation, the Kirsch solution can be used. As is marked earlier, the pore 

pressure in the surrounding formation remains same during hydraulic fracturing, that is 
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fracturing fluid does is not entering the formation. When one of the principal effective stress 

components is larger than the tensile strength of the rock (σt), the hydraulic fracturing is 

initiated. As far as tangential stress is concerned, it will be perpendicular to the minimum 

horizontal stress
17

. Thus, the initiated hydraulic fracture will be extended in the direction of 

the maximum horizontal stress and formation breakdown pressure will be related to the stress 

according to Kirsch’s equation: 

 

Pwf = 3σh – σH – P0 + σt         1 

 

Where: 

 Pwf       - Fracturing Pressure 

 σh, σH  - Minimum and maximum in-situ horizontal stresses 

 P0        - Pore pressure 

 σt        - Tensile strength of the rock 

 

This equation is a function of in-situ rock and reservoir parameters and experimental work 

show that the fracturing pressure also depends on the drilling fluid used. 

Experiments have shown that for penetrating fluids without filtrate control, a Kirsch equation 

works well. Fracture initiation during well stimulation can be modeled with Kirsch equation, 

which simplest form is: 

Pw = σh                                     2 

This simplest form stated that borehole will fracture when minimum in-situ stress is exceeded, 

in case the there is a penetrating fluid.  During the drilling operation, the filter cake barrier is 

formed by the fluids. 

 

2.2.1.2 Penetrating fracture model  

 

In permeable rocks particle bridge doesn’t need to be perfect because the passing fluid will 

leak away from within the fracture into the rock matrix. That is why there will be no pressure 

build-up in the fracture and the fracture will not develop. If a mud cake forms initially on the 

walls of the fracture, the opening could grow slowly to expose new surface and relieve the 
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pressure. Afterwards, the pressure will decline first behind the bridge when the fracture forms. 

That will increase the effective stress across the fracture and cause closure behind the bridge. 

That will become a stable foundation for the bridge
12

. 

 

If mud contains the particles that are very small to bridge near the opening, the fracture can 

become sealed by a mud cake build up inside the fracture. In this situation, the sealing will be 

slower and the fracture length may extend too far, and the useful stress cage effect may not 

form. Fracture gradients observed in sands are usually higher than predicted by theoretical 

models. The reason might be the presence of mud solids and mud cake deposition
12

. 

 

Figure 2: Communicating Boundary Condition [18] 

 

It is illustrated that there exists a fluid flow and pressure communication between formation 

and the well. The flow of the fluid inside the formation adds to the stress field in around the 

wellbore. So in clean open holes without mud cake, this is the situation
17

. This effect of fluid 

permeation on the stress distribution in the vicinity of the wellbore has been studied by 

Haimson and Fairhurst (1968) using the theory of poroelasticity and obtained the following 

equation: 

        
 σ   σ  σ 

   
       

    

               3 

Where: 

 Pwf      - Breakdown Pressure 

 P0       -  Pore Pressure 

 σt        - Tensile strength of the rock 

 σh, σH  - Minimum and maximum in-situ horizontal stresses 
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α         - Biot poroelastic parameter and is defined as α = 1 – Cr/Cb, where Cr is rock matrix 

compressibility and Cb is rock bulk compressibility 

 ν        - Poisson’s ratio for the rock 

 

 

2.2.2 Stress cage theory  

 

The principle of the Stress Cage Theory is to deposit solids at or close to the face of the 

induced fractures which will act as a proppant and also isolate fluid pressure in the wellbore 

from the majority of the fracture. The dissipation of the filtrate into the formation beyond 

LCM plug will lead to dissipation of the pressure. Solid particles plugging the fracture keep it 

open, and near wellbore tangential stress increases
5
.  An equation for a penny shaped fracture 

with strengthening effect is as follows 

 

 P 
   

        
                 4 

where 

 w- width of the fracture 

 - Poisson Ratio 

 R- Distance from the center of the wellbore 

 E- Young’s Modulus 
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Figure 3: Stress cage concept to enhance wellbore strength [12] 

 

Stress cages result in a wellbore strengthening with the help of changing the stress state in the 

vicinity of the well. This is accomplished by allowing the fractures to form in the wellbore 

formation and sealing them with the lost circulation material of the sufficient size and 

concentration. The materials act as wedges compressing the formation within the zone of 

stress caging around the well.  

The lost circulation particles should hold the fracture open near the fracture mouth and to seal 

efficiently to provide pressure isolation to prevent the propagation of the opening. In case 

when the induced opening is created and sealed at or close to the wellbore, the hoop stress is 

established in the vicinity of the well. However, the stress cage applications are specific for a 

field and formation that is mud additives used for the stress cage effect are custom designed 

for each specific well
6
.  
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Figure 4: Fracture sealing in permeable and in low-permeability rocks [12] 
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2.2.3 Review particle size selection methods  

 

There have been several models for the selection of the lost circulation materials, which are 

based on the size for the purpose of keeping mud loss at minimum. Here is the list of several 

models: 

 

1. Abrams’ Median Particle-Size Rule 
21

 (Abram 1977). According to Abram the 

median particle size of the bridging material has to be equal or slightly greater than 1/3 

the median pore size/fracture size of the formation. D (50) = λ/3. This rule addresses 

the size of particle to initiate a bridge. It is important to note that the rule doesn’t give 

an optimum size  for ideal packing sequence for minimizing fluid invasion and 

optimizing sealing. 

 

2. IPT (Ideal Packing Theory)(Dick 2000) 
22

. The IPT addresses either pore sizing 

from thin section analysis or permeability information, combined with PSD of 

bridging material, to determine ideal packing sequence. 

 

3. The Vickers Method (Vickers 2006) 
23

. This method tries to exceed the bridging 

efficiency gained in IPT. It was decided to match target fractions. For minimal fluid 

loss in the reservoir, the following criteria should be met: 

 

D(90) = largest pore throat 

D(75) < 2/3 of largest pore throat 

D(50) +/- 1/3 of the mean pore throat 

D(25) 1/7 of the mean pore throat 

D(10) > smallest pore throat 

 

4. Halliburton Method (Whitfill 2008) 
24

. The D(50) of the PSD is set equal to the 

estimated fracture width to offset uncertainty in the estimation. In that situation, 

enough particles smaller and larger than the fracture are present to plug smaller and 

larger fracture width. 

 

Aston 
12

 has noted several observations, concerning the lost circulation materials: 
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- The fluid should contain a smooth/continuous range of particle sizes ranging from clay 

size (around 1 micron) to the required bridging width 

- Ideal packing theory ( the d1/2 rule) is useful for selecting the optimum size 

distribution in low weight muds. 

- High particle concentrations are best and at least 15 ppb of bridging mix is required 

for an effective seal. 

- Mud weight is not a critical factor in forming a successful bridge. 

 

 

 

Less studied LCM properties 
5
. 

 

The size of the particles is not the only aspect of the LCM selection, there are several physical 

characteristics that are to be taken into account. 

 

Crushing resistance Determination 

LCM in the plug is subjected to wellbore stresses, one of these is Fracture Closure Stress, 

which is generally equal to minimum horizontal stress. That is why, the opening of the 

fracture depends on the difference between ECD and FCS. The LCM bridge is expected to 

have good crush resistance for it to be durable. To study the crushing resistance, the Tinius 

Olsen Hydraulic Tester may be used, when the sieving is used for measuring the particle size 

distribution before and after crushing. 

 

Resiliency determination 

LCM plug needs to have resiliency to accommodate fracture width changes due to pump 

operations. Resiliency can be defined as the extent to which a material rebounds when the 

applied force is removed. The resiliency is determined normally at 10,000 psi. The formula 

for resiliency is: 

             
  

  
                    5  

 

Where Hc is the height of the compressed specimen and Hr is the height of the rebound 

specimen. 
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Shape and size 

Sphericity -  is a measure of how spherical a particle is. Mathematically, it is the ratio  of the 

surface area of a sphere (with the same volume as the given particle) to the surface area of the 

particle. 

 

  
            

  
              6  

 

Convexity. The projected area of the object divided by the area enclosed by an imaginary  

“rubber band” wrapped around the object. The values of convexity is from 0 to 1. Convex 

shape has convexity 1.0, concave shape has a lower value, close to zero. This characteristic 

also tells about the particle surface roughness
5
.  

 

 

In addition to PSD, other mechanical properties like crush resistance and resiliency of LCM 

also have an important role in the remediation of lost circulation and wellbore strengthening.  

 

Many of the physical parameters for different LCM are however similar. It was observed that 

Ground nutshells undergo permanent deformation, but there is no significant change in 

particle size. Resilient graphite undergoes elastic deformation and regains its actual shape 

once the pressure is removed, particles undergo reduction in size, but it is significantly less 

than ground marble. In fact, two LCM may perform better when used together, for example, 

the combination of ground marble and resilient graphite, provide a better result. LCM like 

ground shells and ground rubber does not undergo any change in particle size at 5000 psi, but 

the resiliency is not exhibited. 
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3 Experimental lost circulation study  

 

3.1 Experimental set up 

 

The experiments have been conducted at the laboratory of the University of Stavanger. Two 

types of oil-based mud have been prepared: one with 60/40 oil-water ratio and another type 

with 80/20 oil-water ratio. After sieving the particles and constructing the particle size 

distribution, the particles have been mixed with two different types of mud in two different 

concentrations. Afterwards, the two different types of mud were tested in a particle bridging 

system. 

  

The system is schematically shown in figure 5. The system is constructed of steel vessel 

which is filled with the drilling fluid before the experiment starts. Firstly, the vessel is 

connected to atmospheric pressure through an opening in the upper part of the system. When 

the experiment is started, water is pumped through the opening in the system at a rate of 6 

ml/min. The water is pumped on the top of the drilling fluid until there is no air in the system. 

When the vessel is completely filled, the vessel is closed and the pressure can be increased 

using the water pump. The flow of the drilling fluid out of the vessel is only restricted by the 

opening in the lower part of the system and the particles, mixed in the fluid. In the process of 

the experiment, the lost circulation particles in the mud manage to build bridges on the lower 

opening and it leads to a pressure increase in the vessel. As the pressure builds up, the particle 

bridges collapse, however the pressure variation is recorded using the computer data 

acquisition system. During the experiment, several bridging and collapse occurs until all the 

mud from the vessel has left it. It can also occur, that the opening is permanently plugged and 

the maximum pump pressure of 60 MPa is not enough to break through the bridge. In that 

situation, the experiment is terminated by stopping the pump and relieving the pressure in the 

vessel.  

 

The slots used during the testing are 100µm, 250 µm, 300µm, 400µm and 500µm. 

Dimensions of the high-pressure cylinder are 35 mm inner diameter, 64 mm outer diameter 

and 150 mm long. The rate of the water injection during testing was 4 ml/min and the 

duration of the test was around 30 min each, or until all the mud had exited the pressure 
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vessel. The results of the pressure variation is graphed. The experiment is run at a room 

temperature, which does not simulate the reservoir temperature. 

 

 

Figure 5: Schematic particle bridging testing experimental set-up [17] 
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3.2 Lost circulation particles 

 

In the experiment, all the lost circulation materials added to the mud have been thoroughly 

mixed just before placing the mud in the high-pressure cylindrical vessel; that is why it is 

possible to assume that before the pressure is applied, the particles are uniformly distributed 

in the fluid. The particle size distribution of the filter cake in static situation should be 

representative of the particle size distribution of the mud itself. However, when the mud cake 

builds up the situation can be different since each opening requires a certain combination of 

the particle size and form. 

 

During the course of the experiment, LC – lube have been used as a lost circulation material, 

chemical drilling fluid additive, namely, specially formulated resilient graphite used to control 

loss of circulation, partial loss and seepage loss of drilling fluid. The size, shape and durable 

nature of LC-Lube make it a good agent for pre-emptive use in highly depleted reservoirs, 

sand and limestone sections. Its bridging properties come from the deformable nature of this 

material. Resilient graphite also functions as a solid lubricant and used as a sliding agent. It is 

chemically inert, thermally stable and may be applied in water, synthetic or oil-based fluids 

maintaining its durability and high compressive strength. 

 

The most important characteristic of graphitic carbon is its resiliency (up to 150% at 10000 

psi). There is no other LCM that when put in a press at 10000 psi , still yields free-flowing 

beads. All other LCM will compact. This resiliency allows the product to compress when 

pressure is applied and rebound when the pressure is released, whereby maintaining the seal at 

different pressures. 

 

In addition to its resilient characteristics, graphitic carbon is available in various grades which 

allow making the pill to design the requirements of the seal. 

 

The particles used for bridging tests in the project are products of MI-SWACO. The particle 

size distribution is given below and the D50 of the distribution is approximately 310 µm. One 

of the slots used in the experiment is 300 µm, and with this Particle Size Distribution it 

corresponds to the Halliburton Method (Whitfill 2008). However, other slots used in the 

experiment are either larger or smaller than D50 of the Particle Size Distribution. This allows 

investigating the effect of the change in the fracture width. 
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Figure 6: LC-Lube particle size distribution 

 

 
 

Figure 7: LC-Lube cumulative particle size distribution 
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3.3 Mud preparation  

 

In the course of the experiment, two types of oil-based mud have been prepared: one with 

80/20 oil water ratio and another type with 60/40 oil water ratio. The procedure and 

components are shown in a table below. Both fluids have the same density, but different 

rheology. 

 

Traditionally, viscometer is used to measure the rheological properties of the drilling mud. 

The measurements done with the viscometer were made in conditions of the room 

temperature. In some cases, the drilling fluid may be warmed up to simulate the well 

conditions. 

 

One of the problems of drilling in North Sea is that formations contain very reactive clay 

which swells very easily. That is why the drilling fluid is used, which prevents clay swelling. 

Oil based mud is an alternative to inhibitive water based fluids. It is also used in cases when 

different friction forces are expected, for instance in deviation wells, with risk for differential 

sticking, etc. Oil-based mud is actually invert emulsion drilling fluid. 

 

In oil emulsion drilling fluid one have water drops emulsified in oil. These oil drops are acting 

in the same manner as solid particles in drilling fluid. Water content may vary from 5-50% in 

the oil based mud. The oil phase is wetting all the solid particles in the mud. That is the reason 

why drilling fluid with high weight or many particles needs a higher oil-water ratio. 

 

Besides the three phases ( oil, water, particles), the additives in oil based mud are: 

- Emulsifiers 

- Viscosifiers 

- Filter control substances 

The mud has been prepared especially for the experiment using the chemicals from MI 

SWACO and UIS laboratory. The preparation procedure and the viscosity information is 

documented in the tables 3 and 4. 
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Mud formulation per liter 

 

 

Product name Use 
80/20 
OBM 

60/40 
OBM 

Mixing time 
 

EDC 95/11 Base Fluid 440 321  

Paramul Emulsifier 20 30  

Parawet Wetting agent 8 8 5 min 

Lime(Hydratkalk) pH modifier 20 25 5 min 

Water (mix water + salt 
separately and add the 
brine mixture)   137 279 

 

CaCl2 (mix water + salt 
separately and add the 
brine mixture) Osmotic control 37 75 

10 min 

Versatrol M Fluid loss control 10 10 5 min  

Benton 128 Viscosifier 9 4 5min 

Barite (All Grades) Weighting agent 1065 997 25 min 
Table 3: Test Mud Formulation 

 

 

 

 
MUD RHEOLOGY 

 
80/20 OBM 60/40 OBM 

θ600 160 261 

θ300 98 161 

θ200 76 124 

θ100 50 81 

θ6 17 23 

θ3 15 19 

SG 1,75 1,75 

AV (cP) 80 130,5 

PV (cP) 62 100 

YP (lb/100sq ft) 36 61 
Table 4: Test Mud Rheology 
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The apparent viscosity, plastic viscosity and yield point are important viscosity parameters 

giving information about the drilling fluid: 

Apparent Viscosity (AV).  

 

This value is obtained by applying the instrumental equations used in obtaining the viscosity 

of a Newtonian fluid to viscometer measurements of a non-Newtonian fluid. Generally it tells 

us about the total viscosity of the fluid. In our case the 60/40 drilling fluid has a remarkably 

higher apparent viscosity than the 80/20 one as a result of smaller percentage of oil. 

 

Plastic Viscosity (PV) is the resistance caused by mechanical friction: 

- Friction between the particles in the mud 

- Friction between particles and fluid phase 

- Friction between fluid elements 

 

Plastic viscosity is dependent on the concentration, size and particle configuration in the 

drilling fluid. 

 

Yield Point (YP) is the amount of flow resistance which results from the adhesive forces 

between the particles as a result of electrical charges (electrostatic forces). 
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3.4 Bridging tests 

 

This part presents an overview of the bridging experiments conducted with the 60/40 and 

80/20 oil-based mud and LC Lube. The tests have been carried out with various slot openings 

and different concentration of the bridging particles. The usual time of the test was set 30 

minutes, however, during some tests, the slot became plugged and the maximum pressure of 

60 MPa was not able to collapse the bridge formed, causing the time of the test to be shorter 

than 30 min. 

 

The test results are compared according to the pressure behavior during the experiments 

 

Program of the bridging tests 

Mud and additives  Slot µm Remark 

60/40 OBM + 16,85 LC Lube 200 good 

60/40 OBM + 16,85 LC Lube 300 plugged after 10 min 

60/40 OBM + 16,85 LC Lube 400 good 

60/40 OBM + 16,85 LC Lube 500 good 

      

80/20 OBM + 16,85 LC Lube 200 plugged after 23 min 

80/20 OBM + 16,85 LC Lube 300 good 

80/20 OBM + 16,85 LC Lube 400 good 

80/20 OBM + 16,85 LC Lube 500 good 

      

60/40 OBM + 8,49 LC Lube 200 good 

60/40 OBM + 8,49 LC Lube 300 good 

60/40 OBM + 8,49 LC Lube 400 good 

60/40 OBM + 8,49 LC Lube 500 good 

      

80/20 OBM + 8,49 LC Lube 200 good 

80/20 OBM + 8,49 LC Lube 300 good 

80/20 OBM + 8,49 LC Lube 400 good 

80/20 OBM + 8,49 LC Lube 500 good 

      

60/40 OBM + no LCM 100 good 

80/20 OBM + no LCM 100 good 
Table 5: Overview over the bridging experiments 
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3.4.1 Test with 80/20 OBM  

3.4.1.1 Particle additive- LC-Lube 16,85 ppb 

 

In the experiment with 80/20 OBM, a peculiar attention was drawn by the test with a 300 µm 

slot opening. Right at the start, the pressure started to escalate at a higher rate than in the cases 

of the other slots, even the 250µm one which is narrower. In the same time the sealing 

becomes more effective since the bridge withstands the pressure of 50 MPa and it was 

decided to allow a higher pressure and the strongest bridge in this section collapses only at a 

pressure of 57 MPa. As is seen from the test, the method of the PSD choice, which is based on 

the D50 being equal to the fracture size have worked here and have shown the best sealing 

result, since the D50 of the particle size distribution used has been very close to 300 µm. 

 

As for the 250µm slot opening, effective bridging was initiated later in time compared to the 

300 µm slot. The pressure build up observed was much smoother in the beginning of the test 

but the pressure peaks and the frequency of the peaks observed was approximately the same 

as in the case of 250 µm slot. 

 

 

Figure 8: 80/20 OBM + 16,85 ppb LC-Lube 
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The slot openings of 400 µm and 500 µm showed a similar behavior to each other in 

comparison to 200 and 300µm although the bridging was tolerating higher pressures in case 

of the 400 µm than 500 µm. One can observe a substantial reduction in maximum pressure 

and average peak pressure when shifting from 300 µm slot opening to 400 µm. Although the 

change in opening size is only 100 µm, the change in collapse pressure is far remarkably 

higher than in case of 300 µm and 400 µm. 

 

3.4.1.2 Particle additive- LC-lube 8,49 ppb 

As the concentration of the LC Lube was lowered, there have been observed certain changes 

in the pressure behavior. The test with the 300 µm slot opening was not longer showing the 

highest collapse pressures. During the pressure build up process, the pressure was behaving in 

a similar way as in the case of 250 µm slot opening. Later on, when the bridging materials are 

sinking towards the slot opening, the 300 µm test shows a higher maximum pressure and a 

higher average peak pressure. In the case when there is double as little LC Lube material in 

the system, the D50 rule is not longer showing the same result and the LCM is functioning 

better in the narrower fracture opening. 

 

 

 

Figure 9: 80/20 OBM + 8,49 ppb LC-Lube 
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In the case of the 400 µm and 500 µm one can observe that the number of bridges is close to 

the test with a higher concentration of LCM, but the average peak pressure and maximum 

pressure is getting higher in case of the 400 µm slot opening. It may be also observed that the 

pressure build up in case of 400 µm and 500 µm develops slower when the concentration is 

lowered. 

 

3.4.2 Test with 60/40 OBM 

 

3.4.1.1 Particle additive- LC-Lube 16.85 ppb 

 

16,85 lb/bbl LCM concentration. 

During the test with 60/40 oil based mud, the 300 µm slot opening became completely 

plugged after 10 minutes at a maximum pressure of 60 MPa. 

 

It is remarkable that in the case of the 60/40 OBM testing, the pressure buildup has occurred 

slower in the case of 250 and 300 µm slots than it has been observed in the case of the 80/20 

oil based mud. The high peaks and a maximum pressure were achieved earlier by the 250 µm 

slot opening test than in the case of 300 µm. However, the 300 µm bridging peaks developing 

less intense, led to a perfect bridging at a maximum pressure, which again points out that the 

D50 PSD choice gives good results when it comes to plugging the fracture.  

As opposed to the corresponding 80/20 OBM test, the pressure in case of 250 µm opening 

was developing faster than in 300 µm, but still the plugging result turned out to be better in 

case of 300 µm. 

 

The difference between the 400 µm and 500 µm slot opening pressure variation is less 

pronounced in the 60/40 OBM with 16,85 lb/bbl of lost circulation materials than in the 80/20 

corresponding experiment. Although more bridges occurred with 400 µm slot, there are quite 

high peaks generated with the 500 µm slot, being higher than the average pressure in 400 µm 

slot. The difference in the average pressure is still substantial when the slot opening is 

enlarged from 300 µm to 400 µm. For the largest openings in the 60/40, 16,85 lb/bbl 

experiment, the pressure holds more even. 
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Figure 10: 60/40 OBM 16,85 ppb LC-Lube 

3.4.1.1 Particle additive- LC-Lube 8.49 ppb 

 

8,49 lb/bbl LCM concentration. 

After reducing the concentration of LC Lube to 8,49 lb/bbl, the pressure build-up with the 250 

and 300 µm slots became more escalating in the beginning of the experiment. During the first 

10 minutes of the test, the pressure variation with 200 and 300 µm had a higher amplitude 

than in the case with higher concentration with 300 µm forming higher peak pressures than 

the 250µm slot opening. In the case of 8,49 lb/bbl LCM concentration, there haven’t been any 

permanent bridging in the course of the experiment, and the maximum peak with 300 µm 

reached up to 46 MPa.  

Pressure variation with 400 and 500 µm also behaved in a slightly different manner: bridging 

with 400 µm became more active with bridges tolerating higher pressures than in the case of 

16,85 lb/bbl concentration, whereas the bridging with 500 µm became less frequent, with 

pressure going down to atmospheric with no bridging at all. 
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Figure 11: 60/40 OBM + 8,49 ppb LC-Lube 

 

3.4.3 Comparisons of tests with 60/40 and 80/20 experimental results 

 

It is important to observe how the bridging occurs and pressure varies in two different drilling 

fluids with the same slot opening and the same concentration of the lost circulation materials.  

3.4.3.1 Comparisons of the 60/40 and 80/20 at 250microns  

 

16,85 lb/bbl LCM concentration. 

 

In the beginning of the test with 16, 85 lb/bbl of LCM, the pressure build up with 60/40 OBM 

escalated faster than in the case of 80/20. After reaching the average pressure of 40 MPa, it 

was observed that 80/20 and 60/40 having a similar pressure amplitude, but with 60/40 OBM 

reaching a higher average peak pressure on the maximum level of 55 MPa.  

After 15 minutes of the test, the pressures in both mud systems started to sink reaching the 

average of 30 MPa. After 22 minutes the slot in the test with 80/20 OBM was plugged at a 
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pressure of 50 MPa. The test with 60/40 OBM was conducted with a higher maximum 

pressure. 

 

 

 

 

Figure 12: 250µm slot opening, 16,85 ppb LC-Lube 

 

8,49 lb/bbl LCM concentration. 

In the test with less bridging material, a more even result of the pressure variation was 

observed. As is seen from the graph, 60/40 OBM is showing a higher level of the peak 

bridging pressures especially in the end of the experiment, when more particles are 

approaching the slot opening. However, during the first 8 minutes of the test, bridging with 

80/20 OBM showed the highest peaks reaching for around 45 MPa. The pressure build-up in 

the beginning of the test was almost similar for the two mud systems. 
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Figure 13: 250 µm slot opening, 8,49 ppb LC-Lube 

3.4.3.2 Comparisons of the 60/40 and 80/20 at 300microns 

 

LC-Lube 16,85 ppb 

 

After 10 minutes of the experiment with the 60/40 oil based mud, the 300 µm slot opening 

became completely plugged with the maximum pressure of 60 MPa. As is seen from the 

figure, the pressure development in 60/40 OBM was not as steep as in case of the 80/20 

OBM. Right from the beginning the bridge was formed with a collapse pressure of 30 MPa in 

case of 80/20 OBM, and then approaching 57 MPa after first 5 minutes of the experiment, 

after that, the average pressure in the cell became around 35 MPa gradually going down with 

time. The bridging with 80/20 OBM occurs at relatively high pressures of 45-50 MPa 

throughout the experiment. 

 

The pressure in the test with 60/40 OBM escalated gradually, first, forming the bridges at a 

pressure of 25 MPa, and after 7 minutes going up with the peak pressure of 50 MPa and right 

after that plugging the 300 µm slot at the highest allowed pressure of 60 MPa, showing 

validity of the D50 rule in the particle size distribution. 
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Figure 14: 300µm slot opening, 16,85 ppb LC-Lube 

 

LC-Lube 8,49 ppb 

With the LCM volume reduction, the 300µm slot opening is no longer plugged by the 60/40 

oil based mud. In the beginning of the test, the pressure in 80/20 mud is increasing more 

rapidly again, but the difference is not so big in comparison with 60/40. During the test, the 

frequency and the amplitude of the bridging looks similar for the both mud systems, but it is 

still seen, that the peaks formed in 60/40 OBM are higher during the most of the time. The 

only instance, when the 80/20 mud shows a higher peak pressure is during the minute 22 

when the peak pressure reaches up to 50 MPa. When the concentration of LC Lube is 

reduced, the difference in the plugging performance of the mud systems used is reduced. 
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Figure 15: 300µm slot opening with 8,49 ppb LC-Lube concentration 

 

3.4.3.3 Comparisons of the 60/40 and 80/20 at 400 microns 

 

400 µm corresponds to the D70 of the particle size distribution, 70 per cent of the particle 

mass is less in size than 400 µm. 

 

LC-Lube 16,85 ppb 

When the slot opening width was increased to 400 microns, the test with 80/20 oil based mud 

showed an overall higher pressure throughout the whole time. Peak pressures and the 

amplitude with 80/20 was dominating, only during the period of time from 18 to 21 minute, 

the bridging collapse pressure in 60/40 OBM started to escalate to a higher level than with 

80/20 OBM. It should also be noted that it took longer time for 60/40 OBM to empty the 

pressure vessel, which may also be caused by the lower pressure peaks during the experiment. 
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Figure 16: 400 µm slot opening, 16,85 ppb LC-Lube 

LC-Lube 8,49 ppb 

 
As the concentration of lost circulation materials became double as little, the shape of 

pressure graphs of both mud systems became significantly different throughout the 

experiment. In both cases, the escalation in the beginning became more gradual showing a 

similar behavior within the first 5 minutes of the test. Afterwards, 80/20 system started to 

show a higher collapse peaks in comparison with the 60/40 OBM with a higher amplitude of 

the pressure variation. The overall picture became that the 80/20 OBM has formed more 

bridges tolerating higher pressure, whereas the 60/40 OBM forms high peaks during the two 

small periods at minute 14 and minute 25. The average peak pressure in this test wa 18 – 20 

MPa. 
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Figure 17: 400µm slot opening, 8,49 ppb LC-Lube 

 

3.4.3.4Comparisons of the 60/40 and 80/20 at 500 microns 

 

According to the Particle Size Distribution, D90 of the particles is approximately 500 µm, that 

is 10 mass percents of particles are bigger than 500 µm. 

LC-Lube 16,85 ppb 

 
As the width of the slot opening increases, fewer differences in behavior of the two mud 

systems are to be observed. During the first ten minutes of the test mud systems behave in a 

similar way. After 10 minutes the 60/40 OBM starts to form higher peaks reaching to 18 – 20 

MPa. Later on the behavior of the pressure becomes similar again, and only in the end of the 

test, during last 5 minutes, it may be observed that the 60/40 OBM shows a higher average 

peak pressure during. The highest peak pressure in this test is 20 MPa. 
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Figure 18: 500µm slot opening, 16,85 ppb LC-Lube 

LC-Lube 8,49 ppb 

 
In this test, one can observe that in both mud systems the peaks are becoming less frequent, 

and the peak pressures are becoming higher with time in the course of the experiment. Still 

the 80/20 OBM system portrays a slightly better performance when it comes to plugging, 

making the highest collapse pressure up to 21 MPa in the end of the test. On the other side, at 

8,49 ppb concentration and a 500 µm width of the slot opening, the difference in lost 

circulation particles performance in the two mud systems becomes less pronounced. 

 

Figure 19: 500µm slot opening, 8,49 ppb LC-Lube 
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3.4.3.5 Comparisons of the 60/40 and 80/20 at 100 microns without LCM. 

  

One test was performed with no lost circulation particles to observe the performance of mud 

systems with a narrowest slot opening used in the experiment. It turned out that in this case 

the maximum pressure and the average peak pressure is higher with the 80/20 OBM system, 

the highest peak being 50 MPa, the amplitude of the pressure is also higher in case of 80/20 

OBM. 

In this case the bridging is caused by the particles, which contain in the mud before the LCM 

addition, which is weighting agent, bentonite in the case of the two mud systems used in the 

experiment. Although the density of the mud system used is the same, the amount bentonite is 

different, being slightly higher in 80/20 OBM (1065 g/liter) than in 60/40 OBM (997 g/liter). 

But this difference is very small, and the test shows that bentonite make more stable bridges 

in the mud system with a higher oil fraction. 

 

Figure 20: 100µm slot opening, no LCM 
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4 Analysis of the experimental data and discussion 

 

4.1 Data Analysis Methodologies 

 

The data analysis methodology is based on reference
 10

 

For the further analysis of the data obtained, it was decided to use the following 

methodologies to extract more information. Normally, maximum pressure observed has been 

reported. In addition to traditional parameters, other parameters are used:  

1. Maximum Pressure in the cell (Pmax). This parameter describes the maximum strength 

of the bridge during the course of the experiment. The difficulty in analyzing this 

parameter is that the distribution of particles in the drilling mud may be not uniform. 

During the experiment, however, the mud was mixed thoroughly to make the 

distribution as even as possible. 

2. Average Pressure in the cell (Pave).  This parameter refers to the mean pressure value 

during the experiment. 

3. Average Peak Pressure in the cell (Ppeak). During the experiment, the peak pressure 

values show the strength of the formed bridges. The particles form bridges more than 

once during the experiment. The average peak pressure values show the average 

strength of the bridges and is a reliable measure to analyze the sealing resistance. 

4. Total number of bridges (N). This parameter shows the performance of the particles in 

terms of forming new barriers once the bridge collapses. Number of bridges equals to 

the number of peaks. 

 

 

In both mud systems the maximum , average and average peak pressure is increasing from 

250 µm to 300 µm slot opening and then substantially decreasing and continued to slightly 

decrease from 400 µm to 500 µm, the pressure in most cases being higher in 60/40 OBM. The 

effect of highest pressure in 300 µm can be explained by the fact that D50 of the Particle Size 

Distribution is very close to 300 µm. 
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4.2 Analysis of 16.85 ppb LC Lube additive system  
 

 

 

Figure 21: Average pressure with the 16,85 LC-Lube concentration 

 

250 micron 

From the comparison of Maximum Pressure, Average pressure, Average Peak pressure and 

number of peaks, it was observed that in the case of 250µm the bridging is initiated more 

frequently, tolerating more pressure, and with a higher maximum pressure in the mud with a 

lower oil water ratio. That is lost circulation will be better controlled with a 60/40 OBM in the 

case when the fracture will be 250 microns. 
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Figure 22: Pressure parameters and number of peaks with 250 µm slot and 16,85 ppb LC-Lube concentration 

 

 

300 micron 

In the case of 300 µm the situation with the experiment became completely different than 

with the 250 µm. When using the 60/40 OBM the slot opening became perfectly plugged after 

10 minutes with a highest allowed pressure of 60 MPa. When plugged, the pressure started to 

vary from 60 MPa to 60,2 MPa and than 60 again staying perfectly plugged for some time 

after bridging. When computing the Maximum Pressure, Average Pressure, average Peak 

pressure and number of peaks, it was assumed that after perfectly plugging the slot opening, 

the pressure in the cell stays constant and is 60 MPa and the number of peaks and average 

peak pressure is compared only to the moment of bridging since no peaks are generated after 

that by the system with the 60/40 OBM. As is seen from the graph, the only variable, which is 

less in 60/40 OBM is the average peak pressure. The reason for was that the escalation of the 

pressure happened much faster in 80/20 OBM and bridging at higher pressures started at the 

early stage of the test. On the other hand in 60/40 OBM the pressure increase was more 

gradual and resulted in lower average values during the first 10 minutes, after which the slot 

became perfectly plugged. It is reasonable to predict that if the equipment would allow a 

higher pressure in the test vessel, the average peak pressure in the 60/40 OBM would be 

higher. On the other side, perfect plugging happened when the pressure was going from 60 

MPa to 60,2 MPa and then back to 60 MPa for some time, that is making some new peaks at a 
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pressure of 60 MPa. With the assumption of peak pressure varying around 60 MPa through 

the rest of the test, the Ppeak in 60/40 OBM would be reasonably higher. That is why it is 

reasonable to state that the average peak pressure during the first 10 minutes of the 

experiment is not representative for the whole 30 minutes experiment. 

 

Judging from the rest of the data, maximum pressure, average pressure, number of peaks and 

the fact that the system with 60/40 OBM managed to perfectly plug the 300 µm slot opening, 

one may conclude that the Lost Circulation Materials revealed a better performance in the 

60/40 OBM system with the 16,85 lb/bbl concentration of LC Lube. 

 

As is described above, the D50 of the Particle Size Distribution of the LC-Lube is 310 µm 

which is very close to the slot opening used in this particular test, which makes the both mud 

systems perform better than in the tests with other slot openings. 

 

Figure 23: Pressure parameters and number of peaks with 300 µm slot and 16,85 ppb LC-Lube concentration 

 

400 micron 

When it comes to the analysis of 400 µm slot opening, the 60/40 mud system reveals a lower 

average pressure, lower peak pressure, slightly less peaks formed and the maximum pressure 

is the same in two mud systems. In comparison with the two previous slot openings the 

pressure values in this case are rather low to provide some information about significant 
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differences between the performances of LCM in the two mud systems. As for the number of 

bridges formed, this value is almost the same, so is the maximum pressure. It is possible to 

conclude from the data that the LCM behaves more or less the same in the two mud systems.  

 

Figure 24: Pressure parameters and number of peaks with 400 µm slot and 16,85 ppb LC-Lube concentration 

 

The same situation occurs in the test with 500 µm, maximum pressure is the same in both 

systems, the number of peaks slightly differs, whereas average pressure and average peak 

pressure differs, being insignificantly higher in the 60/40 OBM. It is possible to conclude that 

in the case of 500 µm slot opening, the lost circulation materials perform in a similar way in 

the two different mud systems. 

 

Figure 25: Pressure parameters and number of peaks with 500 µm slot and 16,85 ppb LC-Lube concentration 
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4.3 Analysis of 8.49 ppb LC Lube additive system  
 

After a careful examination of the tests with a concentration of lost circulation materials of 

8,49 ppb, it was observed that the average pressure and average peak pressure during the tests 

have been higher in the 60/40 OBM in the case of 250 and 300 µm slot openings, and this 

difference was higher in case of 300 µm slot opening. During the test with 300 µm the 

number of peaks and the maximum pressure was approximately the same for both oil based 

systems. One can observe, the bridging is initiated better in the 60/40 OBM but the 

concentration is not enough to make a lot of difference and the average pressure and average 

peak pressure is 2-3 MPa higher in case of 60/40 OBM.  

 

 

 

Figure 26: Pressure parameters and number of peaks with 300 µm slot and 8,49 ppb LC-Lube concentration 

In the test with 250 µm the maximum pressure and the number of pressure peaks was higher 

in 80/20, whereas the average pressure and the average peak pressure was higher in 60/40 

OBM. In this case it is hard to draw any conclusions from the comparison of the two mud 

systems.    
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Figure 27: Pressure parameters and number of peaks with 250 µm slot and 8,49 ppb LC-Lube concentration 

In case of 400 and 500 µm slots, from the data generated during these two experiments, it is 

impossible to draw some correlations between the oil water ratio and the performance of 

bridging particles. The reasons for that are low concentration of LCM and the width of the 

slot opening which is much higher than the D50 of the Particle Size Distribution. 

4.4 Analysis of particle free system at 100 µm slot 

 

 The bridging test of the two oil based muds have shown the following results: the maximum 

pressure, average pressure and average peak pressure are remarkably higher in 80/20 OBM; 

whereas the number of bridges is higher in 60/40 OBM. The experiment shows that bridging 

occurs more often in 60/40 OBM, whereas the strength of the bridge is higher in case of the 

80/20 OBM when the bridging is accomplished by barite instead of the LC Lube. 
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Figure 28: Pressure parameters and number of peaks with 100 µm slot and no LCM 

 

It is rather remarkable, in the case of 100 µm the bridging is accomplished better in the 

drilling fluid with a higher concentration of oil. The 80/20 OBM system has a lower viscosity 

than in the case of 60/40 OBM, and thus the friction between the particles is anticipated to be 

more in the case of 60/40 drilling fluid. More friction between the particles means more 

effective bridging, whereas the situation with the 100 µm is different.  
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5 Summary and Conclusions 
 

In this project, the performance of the LC-Lube in the 80/20 and 60/40 oil based systems was 

compared. After the bridging experiments, the data was analyzed, using the maximum 

pressure, average pressure, average peak pressure and the number of peaks. 

  

In the figure 29 we may observe the variation in average pressure between the two mud 

systems when the concentration of LCM was 16,85 ppb. The higher average pressure is 

generated in 250µm and 300µm slots and the 300µm slot became perfectly plugged during the 

test with 60/40 OBM. It is seen that the bridging performance in 60/40 is better with this slot 

widths. 

 

The number of peaks in the test with 60/40 OBM and 250µm and 300µm slots are also higher 

in the 80/20 OBM. The number of peaks has to do with the resiliency of the material, that is, 

the ability of the particles to deform without yielding or crushing. This ability is observed to 

be better in 60/40 OBM with the slot openings mentioned above. 

 

 

 

Figure 29: Average pressure in tests with different slot openings, 16,85 ppb LC-Lube 

 

In the case of double as little concentration of LC-Lube, the situation with the average 

pressure and average peak pressure is repeating. In the figures 30 and 31, it is seen that in the 
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whereas when the slot is widened, the difference vanishes. The shape of the graph remains the 

same even when the concentration is changed. 

 

 

 

Figure 30: Average pressure in tests with different slot openings, 8,49 ppb LC-Lube 

 

Figure 31: Average Peak Pressure with different slot openings, 8,49 ppb LC-Lube 
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A summary of the experimental results is the following: 

 

1. As a result, it has been investigated that judging by the maximum pressure, average 

pressure, average peak pressure and the number of peaks, the performance of LC Lube 

was best in the tests with 250 µm and 300 µm slot openings with a concentration of 

16,85 lb/bbl. In the case of the 300 µm slot, the opening became perfectly plugged. In 

this case the D50 of the particle size distribution of LC Lube was approximately the 

same as the slot opening. 

 

2. When the concentration is set double as little, that is 8,49 lb/bbl, the difference in 

performance between the 60/40 and 80/20 oil based systems becomes less 

pronounced, and might still be observed in the tests with 250 and 300 µm slot 

openings where the average test pressure and the average peak pressure is slightly 

higher in the 60/40 oil based drilling fluid. 

 

 

3. When the slot opening is made 400 µm and 500 µm, the lost circulation materials in 

two different systems have fewer differences than in 250 µm and 300 µm slot 

openings. In the case of  400 µm the bridging occurs slightly better in the 80/20 OBM 

system, and in the case of 500 µm pressures are higher in 60/40 Oil based system. 

However, these differences are not so obvious as in the case of 250 and 300 µm slot 

openings. 

 

4. At 100 µm with no LC Lube present, and having mainly barite in the oil based system, 

the bridging performance of barite, according to the maximum Pressure, average 

pressure and average peak pressure, is better in the 80/20 oil based system. 

 

 

5. Comparing the viscosity of the two mud systems with the lost circulation performance, 

in the fluid systems, when the slot openings are D50 and D25 of the Particle Size 

Distribution, it is possible to observe that the higher the viscosity of the drilling mud 

system, the better is the bridging performance of the LC Lube in the mud system. 

However, more experiments are needed to describe this correlation.  

 



52 
 

Reference 

 

1. New Design Models and Materials Provide Engineered Solutions to Lost Circulation. 

Donald L. Whitfill, Dale E. Jamison. SPE 101693 

2. How to Drill Mature, Depleted Reservoirs Without Downhole Losses Using 

Engineered Drilling Fluids. Alan Calder, Barry Fitzgerald. SPE 123832 

3. Comprehensive Approach to Severe Lost Circulation Problems in Russia. Natalia 

Collins, Andrei Kharitonov. SPE 135704 

4. Novel Rheological Tool to Determine Lost Circulation Materials (LCM) Plugging 

Performance. Sandeep Kulkarni, Sharath Savari. SPE 150726 

5. Wellbore Strengthening: The Less-Studied Properties of Lost-Circulation Materials. 

Arunesh Kumar, Sharath Savari. SPE 133484 

6. Lost Circulation Material Selection, Particle Size Distribution and Fracture Modelling 

with Fracture Simulation Software. Don Whitfill/Halliburton. IADC/SPE 115039 

7. A New Binary LCM System Helped Cure Losses during Cementing while Minimizing 

Risk of Plugging for Slim Liners. Devesh Bhairsora, Nestor Paton. SPE 150712 

8. Improved Lost Circulation Treatment Design and Testing Techniques Minimize 

Formation Damage. Sharath Savari, Arunesh Kumar. Halliburton. SPE 143603 

9. Optimizing  in Four Steps Composite Lost-Circulation Pills Without Knowing Loss 

Zone Width. Slaheddine Kefi, SPE, Jesse C. Lee. Schlumberger. IADC/SPE 133735 

10. Experimental and Mechanistic Modeling of Fracture Sealing Resistance with Respect 

to Fluid and Fracture Properties. Mostafavi, V. and Hareland, G., Belayneh, M., 

Aadnoy, B.S. ARMA 11-198 

11. Lost Circulation Treatments for Naturally Fractured, Vugular, or Cavernous 

Formations. B.E. Canson, Amoco Production Co. SPE/IADC 13440 

12. Drilling Fluids for Wellbore Strengthening. M.S. Aston, M.W. Alberty. BP 

Exploration. IADC/SPE 87130. 

13. Fracture Closure Stress (FCS) and Lost Returns Practices. Fred E. Dupriest, SPE, 

ExxonMobil. SPE/IADC 92192 

14. Lost Circulation. Joseph U. Messenger. Pennwell Publishing Company. Tulsa, 

Oklahoma. 1981. 



53 
 

15.  Drilling and Drilling Fluids. G.V. Chilingarian. Petroleum Engineering Department. 

University of southern California, Los Angeles. P. Vorabutr. Texas Pacific Oil 

Company, Inc. Dallas 

16. An Analysis and the Control of Lost Circulation. Howard G.C., Scott P.P. Trans. 

AIME, 1951. 

17. Experimental and Analytical Borehole Stability Study. Mesfin Belayneh. Stavanger 

University College. 2004. 

18. Classification of Drilling-Induced Fractures and their Relationship to In-Situ Stress 

Directions. The Log Analysts (Society of professional Well Log Analysts) 1998. 

19. Stability of highly inclined boreholes. B.S. Aadnøy, M.E. Chenvert . SPE Drilling 

Eng. (1987). 

20. Elastoplastic Fracture Model Improves Predictions in Deviated Wells. Bernt Aadnøy, 

Erik Kårstad, Mesfin Belayneh, SPE, IRIS. SPE110355 

21. Mud design to minimize rock impairment due to particle invasion. Abrams, A. JPT 

(May 1977) 

22. Optimizing the selection of Bridging particles for reservoir drilling fluids. Dick M. A., 

T.J. Heinz. SPE 58793 

23. A new methodology that surpasses current bridging theories. Vickers, Stephen;Cowie, 

Martin. 

24. Lost Circulation Material selection, Particle size distribution and fracture modeling 

with fracture simulation software. Whitfill, Don. IADC/SPE 115039 

 

 

 

 

 

 

 



54 
 

Appendix A: Number of peaks per minute in two mud systems 

 

 

 

Figur 32: Number of Peaks per minute as a function of slot opening, concentration of 16,85 ppb LC-Lube 

 

 

Figur 33:Number of Peaks per minute as a function of slot opening, concentration of 8,49 ppb LC-Lube 
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